NASA Astrophysics Data System (ADS)
Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham
2016-09-01
A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.
NASA Astrophysics Data System (ADS)
Bo, Jiang; Hao, Weidong; Hu, Zhihong; Liu, Fuguo
2015-12-01
In order to solve the problem of over temperature tube-burst caused by oxide scale shedding and blocking tubes of high temperature reheater of a 200MW super high pressure power plant boiler, this paper expounds the mechanism of scale forming and shedding, and analyzes the probable causes of the tube-burst failure. The results show that the root cause of scale forming is that greater steam extraction flow after reforming of the second extraction leads to less steam flow into reheater, which causes over temperature to some of the heated tubes; and the root cause of scale shedding is that long term operation in AGC-R mode brings about great fluctuations of unit load, steam temperature and pressure, accelerating scale shedding. In conclusion, preventive measures are drawn up considering the operation mode of the unit.
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
NASA Astrophysics Data System (ADS)
Parrilla, Nicholas; Ralph, Joe; Bachmann, Ben; Goyon, Clement; Dewald, Eduard
2017-10-01
The temperature profile from the Laser Entrance Hole to 3.5 mm from the exit point was measured for plasma with high atomic number (high-Z) of Depleted Uranium ignition scale hohlraums. Each hohlraum was filled with 0.6 mg/cc He as part of the high foot CH campaign. Temperature of the flowing plasma is measured by fitting the velocity distribution to a Maxwellian and considering the Planckian spectral distributions with and without a 42 um Ge filter. The two spectra are then compared to determine the temperature of the high-Z plasma.
High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.E. O'Brien; X. Zhang; K. DeWall
2012-09-01
This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.
LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien
2010-08-01
Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demandmore » for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.« less
NASA Astrophysics Data System (ADS)
Schroeer, K.; Kirchengast, G.
2016-12-01
Relating precipitation intensity to temperature is a popular approach to assess potential changes of extreme events in a warming climate. Potential increases in extreme rainfall induced hazards, such as flash flooding, serve as motivation. It has not been addressed whether the temperature-precipitation scaling approach is meaningful on a regional to local level, where the risk of climate and weather impact is dealt with. Substantial variability of temperature sensitivity of extreme precipitation has been found that results from differing methodological assumptions as well as from varying climatological settings of the study domains. Two aspects are consistently found: First, temperature sensitivities beyond the expected consistency with the Clausius-Clapeyron (CC) equation are a feature of short-duration, convective, sub-daily to sub-hourly high-percentile rainfall intensities at mid-latitudes. Second, exponential growth ceases or reverts at threshold temperatures that vary from region to region, as moisture supply becomes limited. Analyses of pooled data, or of single or dispersed stations over large areas make it difficult to estimate the consequences in terms of local climate risk. In this study we test the meaningfulness of the scaling approach from an impact scale perspective. Temperature sensitivities are assessed using quantile regression on hourly and sub-hourly precipitation data from 189 stations in the Austrian south-eastern Alpine region. The observed scaling rates vary substantially, but distinct regional and seasonal patterns emerge. High sensitivity exceeding CC-scaling is seen on the 10-minute scale more than on the hourly scale, in storms shorter than 2 hours duration, and in shoulder seasons, but it is not necessarily a significant feature of the extremes. To be impact relevant, change rates need to be linked to absolute rainfall amounts. We show that high scaling rates occur in lower temperature conditions and thus have smaller effect on absolute precipitation intensities. While reporting of mere percentage numbers can be misleading, scaling studies can add value to process understanding on the local scale, if the factors that influence scaling rates are considered from both a methodological and a physical perspective.
Adaptive temperature-accelerated dynamics
NASA Astrophysics Data System (ADS)
Shim, Yunsic; Amar, Jacques G.
2011-02-01
We present three adaptive methods for optimizing the high temperature Thigh on-the-fly in temperature-accelerated dynamics (TAD) simulations. In all three methods, the high temperature is adjusted periodically in order to maximize the performance. While in the first two methods the adjustment depends on the number of observed events, the third method depends on the minimum activation barrier observed so far and requires an a priori knowledge of the optimal high temperature T^{opt}_{high}(E_a) as a function of the activation barrier Ea for each accepted event. In order to determine the functional form of T^{opt}_{high}(E_a), we have carried out extensive simulations of submonolayer annealing on the (100) surface for a variety of metals (Ag, Cu, Ni, Pd, and Au). While the results for all five metals are different, when they are scaled with the melting temperature Tm, we find that they all lie on a single scaling curve. Similar results have also been obtained for (111) surfaces although in this case the scaling function is slightly different. In order to test the performance of all three methods, we have also carried out adaptive TAD simulations of Ag/Ag(100) annealing and growth at T = 80 K and compared with fixed high-temperature TAD simulations for different values of Thigh. We find that the performance of all three adaptive methods is typically as good as or better than that obtained in fixed high-temperature TAD simulations carried out using the effective optimal fixed high temperature. In addition, we find that the final high temperatures obtained in our adaptive TAD simulations are very close to our results for T^{opt}_{high}(E_a). The applicability of the adaptive methods to a variety of TAD simulations is also briefly discussed.
Multiscale approach to contour fitting for MR images
NASA Astrophysics Data System (ADS)
Rueckert, Daniel; Burger, Peter
1996-04-01
We present a new multiscale contour fitting process which combines information about the image and the contour of the object at different levels of scale. The algorithm is based on energy minimizing deformable models but avoids some of the problems associated with these models. The segmentation algorithm starts by constructing a linear scale-space of an image through convolution of the original image with a Gaussian kernel at different levels of scale, where the scale corresponds to the standard deviation of the Gaussian kernel. At high levels of scale large scale features of the objects are preserved while small scale features, like object details as well as noise, are suppressed. In order to maximize the accuracy of the segmentation, the contour of the object of interest is then tracked in scale-space from coarse to fine scales. We propose a hybrid multi-temperature simulated annealing optimization to minimize the energy of the deformable model. At high levels of scale the SA optimization is started at high temperatures, enabling the SA optimization to find a global optimal solution. At lower levels of scale the SA optimization is started at lower temperatures (at the lowest level the temperature is close to 0). This enforces a more deterministic behavior of the SA optimization at lower scales and leads to an increasingly local optimization as high energy barriers cannot be crossed. The performance and robustness of the algorithm have been tested on spin-echo MR images of the cardiovascular system. The task was to segment the ascending and descending aorta in 15 datasets of different individuals in order to measure regional aortic compliance. The results show that the algorithm is able to provide more accurate segmentation results than the classic contour fitting process and is at the same time very robust to noise and initialization.
NASA Astrophysics Data System (ADS)
Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.
2018-06-01
Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.
NASA Astrophysics Data System (ADS)
Dudek, M.; Podsadna, J.; Jaszczur, M.
2016-09-01
In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shores, D.A.; Stout, J.H.; Gerberich, W.W.
1993-06-01
This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.
NASA Technical Reports Server (NTRS)
Wang, Guiling; Wang, Dagang; Trenberth, Kevin E.; Erfanian, Amir; Yu, Miao; Bosilovich, Michael G.; Parr, Dana T.
2017-01-01
Theoretical models predict that, in the absence of moisture limitation, extreme precipitation intensity could exponentially increase with temperatures at a rate determined by the Clausius-Clapeyron (C-C) relationship. Climate models project a continuous increase of precipitation extremes for the twenty-first century over most of the globe. However, some station observations suggest a negative scaling of extreme precipitation with very high temperatures, raising doubts about future increase of precipitation extremes. Here we show for the present-day climate over most of the globe,the curve relating daily precipitation extremes with local temperatures has a peak structure, increasing as expected at the low medium range of temperature variations but decreasing at high temperatures. However, this peak-shaped relationship does not imply a potential upper limit for future precipitation extremes. Climate models project both the peak of extreme precipitation and the temperature at which it peaks (T(sub peak)) will increase with warming; the two increases generally conform to the C-C scaling rate in mid- and high-latitudes,and to a super C-C scaling in most of the tropics. Because projected increases of local mean temperature (T(sub mean)) far exceed projected increases of T(sub peak) over land, the conventional approach of relating extreme precipitation to T(sub mean) produces a misleading sub-C-C scaling rate.
Hydrogen Production from Nuclear Energy via High Temperature Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Carl M. Stoots; J. Stephen Herring
2006-04-01
This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.
Hot mill process parameters impacting on hot mill tertiary scale formation
NASA Astrophysics Data System (ADS)
Kennedy, Jonathan Ian
For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation.
2011-11-01
Cleaning of High Temperature Salt Water Heat Exchangers ESTCP WP-200302 Subtitle: Redesigned Pre-production Full-Scale Heat Pipe Bleed Air Cooler For...FINAL 3. DATES COVERED (From - To) 1-Jan-2003 – 1-Oct-2009 4. TITLE AND SUBTITLE Elimination of Acid Cleaning of High Temperature Salt Water Heat...6-5 Figure 6- 6 HP-BAC Tube Sheet Being Immersed in Ultrasonic Cleaning Tank ..................................... 6-6 Figure 6- 7 Heat Pipe
Testing asteroseismic radii of dwarfs and subgiants with Kepler and Gaia
NASA Astrophysics Data System (ADS)
Sahlholdt, C. L.; Silva Aguirre, V.; Casagrande, L.; Mosumgaard, J. R.; Bojsen-Hansen, M.
2018-05-01
We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models for a subset of the sample, and test the impact of using effective temperatures from either spectroscopy or the infrared flux method. An offset of 3 per cent, showing no dependency on any stellar parameters, is found between seismic parallaxes derived from frequency modelling and those from Gaia. For parallaxes based on radii from the scaling relations, a smaller offset is found on average; however, the offset becomes temperature dependent which we interpret as problems with the scaling relations at high stellar temperatures. Using the hotter infrared flux method temperature scale, there is no indication that radii from the scaling relations are inaccurate by more than about 5 per cent. Taking the radii and masses from the modelling of individual frequencies as reference values, we seek to correct the scaling relations for the observed temperature trend. This analysis indicates that the scaling relations systematically overestimate radii and masses at high temperatures, and that they are accurate to within 5 per cent in radius and 13 per cent in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars.
Complete Mie-Gruneisen Equation of State (update)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2016-03-14
The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gr¨uneisen coefficient, = -V (@eP)V , that is a function of only V . Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled-temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that if themore » domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gr¨uneisen EOS in which the pressure is linear in both the specific energy and the temperature. This corresponds to the limiting case of two temperature scales with one of the scales in the high temperature limit. Such an EOS has previously been used to model liquid nitromethane.« less
Chip Scale Ultra-Stable Clocks: Miniaturized Phonon Trap Timing Units for PNT of CubeSats
NASA Technical Reports Server (NTRS)
Rais-Zadeh, Mina; Altunc, Serhat; Hunter, Roger C.; Petro, Andrew
2016-01-01
The Chip Scale Ultra-Stable Clocks (CSUSC) project aims to provide a superior alternative to current solutions for low size, weight, and power timing devices. Currently available quartz-based clocks have problems adjusting to the high temperature and extreme acceleration found in space applications, especially when scaled down to match small spacecraft size, weight, and power requirements. The CSUSC project aims to utilize dual-mode resonators on an ovenized platform to achieve the exceptional temperature stability required for these systems. The dual-mode architecture utilizes a temperature sensitive and temperature stable mode simultaneously driven on the same device volume to eliminate ovenization error while maintaining extremely high performance. Using this technology it is possible to achieve parts-per-billion (ppb) levels of temperature stability with multiple orders of magnitude smaller size, weight, and power.
Shock initiation of explosives: High temperature hot spots explained
NASA Astrophysics Data System (ADS)
Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.; Suslick, Kenneth S.; Dlott, Dana D.
2017-08-01
We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s-1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ˜4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu-Wen; Anovitz, Lawrence; Burg, Avihu
Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests thatmore » increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.« less
Stochastic clustering of material surface under high-heat plasma load
NASA Astrophysics Data System (ADS)
Budaev, Viacheslav P.
2017-11-01
The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.
The Importance of Biologically Relevant Microclimates in Habitat Suitability Assessments
Varner, Johanna; Dearing, M. Denise
2014-01-01
Predicting habitat suitability under climate change is vital to conserving biodiversity. However, current species distribution models rely on coarse scale climate data, whereas fine scale microclimate data may be necessary to assess habitat suitability and generate predictive models. Here, we evaluate disparities between temperature data at the coarse scale from weather stations versus fine-scale data measured in microhabitats required for a climate-sensitive mammal, the American pika (Ochotona princeps). We collected two years of temperature data in occupied talus habitats predicted to be suitable (high elevation) and unsuitable (low elevation) by the bioclimatic envelope approach. At low elevations, talus surface and interstitial microclimates drastically differed from ambient temperatures measured on-site and at a nearby weather station. Interstitial talus temperatures were frequently decoupled from high ambient temperatures, resulting in instantaneous disparities of over 30°C between these two measurements. Microhabitat temperatures were also highly heterogeneous, such that temperature measurements within the same patch of talus were not more correlated than measurements at distant patches. An experimental manipulation revealed that vegetation cover may cool the talus surface by up to 10°C during the summer, which may contribute to this spatial heterogeneity. Finally, low elevation microclimates were milder and less variable than typical alpine habitat, suggesting that, counter to species distribution model predictions, these seemingly unsuitable habitats may actually be better refugia for this species under climate change. These results highlight the importance of fine-scale microhabitat data in habitat assessments and underscore the notion that some critical refugia may be counterintuitive. PMID:25115894
The importance of biologically relevant microclimates in habitat suitability assessments.
Varner, Johanna; Dearing, M Denise
2014-01-01
Predicting habitat suitability under climate change is vital to conserving biodiversity. However, current species distribution models rely on coarse scale climate data, whereas fine scale microclimate data may be necessary to assess habitat suitability and generate predictive models. Here, we evaluate disparities between temperature data at the coarse scale from weather stations versus fine-scale data measured in microhabitats required for a climate-sensitive mammal, the American pika (Ochotona princeps). We collected two years of temperature data in occupied talus habitats predicted to be suitable (high elevation) and unsuitable (low elevation) by the bioclimatic envelope approach. At low elevations, talus surface and interstitial microclimates drastically differed from ambient temperatures measured on-site and at a nearby weather station. Interstitial talus temperatures were frequently decoupled from high ambient temperatures, resulting in instantaneous disparities of over 30 °C between these two measurements. Microhabitat temperatures were also highly heterogeneous, such that temperature measurements within the same patch of talus were not more correlated than measurements at distant patches. An experimental manipulation revealed that vegetation cover may cool the talus surface by up to 10 °C during the summer, which may contribute to this spatial heterogeneity. Finally, low elevation microclimates were milder and less variable than typical alpine habitat, suggesting that, counter to species distribution model predictions, these seemingly unsuitable habitats may actually be better refugia for this species under climate change. These results highlight the importance of fine-scale microhabitat data in habitat assessments and underscore the notion that some critical refugia may be counterintuitive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, A F; Zaug, J M; Crowhurst, J C
2005-01-27
We present here the summary of the results of our studies using the APS synchrotron beamline IDB Sector 16 (HPCAT). Optical calibration of pressure sensors for high pressures and temperatures: The high-pressure ruby scale for static measurements is well established to at least 100 GPa (about 5% accuracy), however common use of this and other pressure scales at high temperature is clearly based upon unconfirmed assumptions. Namely that high temperature does not affect observed room temperature pressure derivatives. The establishment of a rigorous pressure scale along with the identification of appropriate pressure gauges (i.e. stable in the high P-T environmentmore » and easy to use) is important for securing the absolute accuracy of fundamental experimental science where results guide the development of our understanding of planetary sciences, geophysics, chemistry at extreme conditions, etc. X-ray diffraction in formic acid under high pressure: Formic acid (HCOOH) is common in the solar system; it is a potential component of the Galilean satellites. Despite this, formic acid has not been well-studied at high temperatures and pressures. A phase diagram of formic acid at planetary interior pressures and temperatures will add to the understanding of planetary formation and the potential for life on Europa. Formic acid (unlike most simple organic acids) forms low-temperature crystal structures characterized by infinite hydrogen-bonded chains of molecules. The behavior of these hydrogen bonds at high pressure is of great interest. Our current research fills this need.« less
USDA-ARS?s Scientific Manuscript database
In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiabin, Han; Carey, James W; Zhang, Jinsuo
2011-01-27
Traditional corrosion inhibitors are bio-toxic chemicals with organic components that bond to the fresh metal surface and thus isolate them from corrosive environments. The shortcoming of these inhibitors is that they are less effective in high-temperature and high-pressure environments, and where corrosion scale is formed or particulates are deposited. In this paper, we describe a novel green inorganic inhibitor made of environmentally friendly and cost-effective geo-material that was developed for high-temperature and high-pressure environments, particularly under scale-forming conditions. It inhibits corrosion by enhancing the protectiveness of corrosion scale. In contrast to traditional corrosion inhibitors which are efficient for bare surfacemore » corrosion but not effective with scale, the novel inhibitor has no effect on bare surface corrosion but greatly improves corrosion inhibition under scale-formation conditions. This is because a homogeneous scale doped with inhibitor component forms. This enhanced corrosion scale demonstrated excellent protection against corrosion. In high-pressure CO{sub 2} systems (pCO{sub 2}=10 Mpa, T=50 C and [NaCl]=1 wt%) without inhibitor, the bare-surface corrosion rate decreases from ca. 10 mm/y to 0.3 mm/year due to formation of scale. Application of a six hundred ppm solution ofthe new inorganic inhibitor reduced the corrosion rate to 0.01 mm/year, an additional factor of 30. The current inhibitor product was designed for application to CO{sub 2} systems that form corrosion scale, including but not limited to oil and gas wells, offshore production of oil and gas, CO{sub 2} sequestration and enhanced geothermal production involving CO{sub 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunc, Vlastimil; Duty, Chad E.; Lindahl, John M.
2017-08-01
In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.
Reaching extended length-scales with temperature-accelerated dynamics
NASA Astrophysics Data System (ADS)
Amar, Jacques G.; Shim, Yunsic
2013-03-01
In temperature-accelerated dynamics (TAD) a high-temperature molecular dynamics (MD) simulation is used to accelerate the search for the next low-temperature activated event. While TAD has been quite successful in extending the time-scales of simulations of non-equilibrium processes, due to the fact that the computational work scales approximately as the cube of the number of atoms, until recently only simulations of relatively small systems have been carried out. Recently, we have shown that by combining spatial decomposition with our synchronous sublattice algorithm, significantly improved scaling is possible. However, in this approach the size of activated events is limited by the processor size while the dynamics is not exact. Here we discuss progress in developing an alternate approach in which high-temperature parallel MD along with localized saddle-point (LSAD) calculations, are used to carry out TAD simulations without restricting the size of activated events while keeping the dynamics ``exact'' within the context of harmonic transition-state theory. In tests of our LSAD method applied to Ag/Ag(100) annealing and Cu/Cu(100) growth simulations we find significantly improved scaling of TAD, while maintaining a negligibly small error in the energy barriers. Supported by NSF DMR-0907399.
NASA Astrophysics Data System (ADS)
Hines, R. J.; Harter, T.; Tyler, S. W.; McFadin, B.; Yokel, E.
2008-12-01
The Scott River is a major tributary to the Klamath River that provides cold water rearing habitat for wild salmonid populations, including coho salmon (Oncorhynchus kisutch), Chinook salmon (O. tshawytscha), and steelhead trout (O. mykiss). During the summer months (July through September), the main-stem Scott River becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the groundwater aquifer. Summer stream temperatures in the Scott River are currently at levels that are not considered sustainable for the native salmonid population, resulting in the enactment of a Total Maximum Daily Load (TMDL) for temperature. Two of the conditions affecting stream temperature have been identified as increases in solar radiation due to a reduction in riparian vegetation and decreased accretion of groundwater. In conjunction with a regional scale surface water-groundwater modeling effort to investigate the benefits of various conjunctive use management alternatives on mid- and late summer baseflow in the Scott River, we completed high-resolution field measurements of stream temperature over an approximately 1,050-meter reach. Temperatures were measured using Fiber-Optic Distributed Temperature Sensing (DTS) techniques. The DTS survey in combination with FLIR stream surface temperature data from 2003 indicate that groundwater discharge to the Scott River is highly localized throughout the valley. The results of the DTS survey depict highly localized areas of groundwater accretion, as well as prominent localized temperature effects from riparian vegetation and river geomorphology. While originally modeled as a well-mixed stream during FLIR analysis, the DTS data further suggest that locally strong, vertical thermal gradients are found near the bottom of the active stream channel. The high-resolution temperature measurements were paired with fish surveys in order to determine the correlation between areas of identified lower river temperatures, groundwater accretion and other beneficial salmonid habitat indicators. Our work suggests that understanding of local-scale groundwater-stream interaction and analysis of corresponding local-scale geologic and riparian vegetation controls are critical to understanding the basin-scale groundwater-stream interactions. Preliminary data reviews indicate that groundwater discharge leads to distinct cold temperature pools near the streambed, while the remainder of the stream column is thermally well mixed. This local-scale, three-dimensional understanding is necessary if strategies are to be developed that aim for effective water resource management practices and improved beneficial use habitat. A multi-scale field reconnaissance and modeling approach is suggested to develop water management practices that lead to better habitat protection throughout the watershed.
Response of the Vegetation-Climate System to High Temperature (Invited)
NASA Astrophysics Data System (ADS)
Berry, J. A.
2009-12-01
High temperature extremes may lead to inhibition of photosynthesis and stomatal closure at the leaf scale. When these responses occur over regional scales, they can initiate a positive feedback loop in the coupled vegetation-climate system. The fraction of net radiation that is used by the land surface to evaporate water decreases leading to deeper, drier boundary layers, fewer clouds, increased solar radiation reaching the surface, and possibility reduced precipitation. These interactions within the vegetation-climate system may amplify natural (or greenhouse gas forced) variations in temperature and further stress the vegetation. Properly modeling of this system depends, among other things, on getting the plant responses to high temperature correct. I will review the current state of this problem and present some studies of rain forest trees to high temperature and drought conducted in the Biosphere 2 enclosure that illustrate how experiments in controlled systems can contribute to our understanding of complex systems to extreme events.
Oxidation Study of an Ultra High Temperature Ceramic Coatings Based on HfSiCN
NASA Technical Reports Server (NTRS)
Sacksteder, Dagny; Waters, Deborah L.; Zhu, Dongming
2018-01-01
High temperature fiber-reinforced ceramic matrix composites (CMCs) are important for aerospace applications because of their low density, high strength, and significantly higher-temperature capabilities compared to conventional metallic systems. The use of the SiCf/SiC and Cf/SiC CMCs allows the design of lighter-weight, more fuel efficient aircraft engines and also more advanced spacecraft airframe thermal protection systems. However, CMCs have to be protected with advanced environmental barrier coatings when they are incorporated into components for the harsh environments such as in aircraft engine or spacecraft applications. In this study, high temperature oxidation kinetics of an advanced HfSiCN coating on Cf/SiC CMC substrates were investigated at 1300 C, 1400 C, and 1500 C by using thermogravimetric analysis (TGA). The coating oxidation reaction parabolic rate constant and activation energy were estimated from the experimental results. The oxidation reaction studies showed that the coatings formed the most stable, predominant HfSiO4-HfO2 scales at 1400 C. A peroxidation test at 1400 C then followed by subsequent oxidation tests at various temperatures also showed more adherent scales and slower scale growth because of reduced the initial transient oxidation stage and increased HfSiO4-HfO2 content in the scales formed on the HfSiCN coatings.
High Temperature Perforating System for Geothermal Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, Moises E.
The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.
NASA Astrophysics Data System (ADS)
Jacobson, Benjamin A.; Gleckman, Philip L.; Holman, Robert L.; Sagie, Daniel; Winston, Roland
1991-10-01
We have demonstrated the feasibility of a high temperature cool-wall optical furnace that harnesses the unique power of concentrated solar heating for advanced materials processing and testing. Out small-scale test furnace achieved temperatures as high as 2400 C within a 10 mm X 0.44 mm cylindrical hot-zone. Optimum performance and efficiency resulted from an innovative two-stage optical design using a long-focal length, point-focus, conventional primary concentrator and a non-imaging secondary concentrator specifically designed for the cylindrical geometry of the target fiber. A scale-up analysis suggests that even higher temperatures can be achieved over hot zones large enough for practical commercial fiber post- processing and testing.
Reynolds and Prandtl number scaling of viscous heating in isotropic turbulence
NASA Astrophysics Data System (ADS)
Pushkarev, Andrey; Balarac, Guillaume; Bos, Wouter J. T.
2017-08-01
Viscous heating is investigated using high-resolution direct numerical simulations. Scaling relations are derived and verified for different values of the Reynolds and Prandtl numbers. The scaling of the heat fluctuations is shown to depend on Lagrangian correlation times and on the scaling of dissipation-rate fluctuations. The convergence of the temperature spectrum to asymptotic scaling is observed to be slow, due to the broadband character of the temperature production spectrum and the slow convergence of the dissipation-rate spectrum to its asymptotic form.
NASA Astrophysics Data System (ADS)
Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; Pask, John E.
2018-03-01
We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method for O(N) Kohn-Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw-Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw-Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. We further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect O(N) scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.
NASA Astrophysics Data System (ADS)
Li, Jianping; Xia, Xiangsheng
2015-09-01
In order to improve the understanding of the hot deformation and dynamic recrystallization (DRX) behaviors of large-scaled AZ80 magnesium alloy fabricated by semi-continuous casting, compression tests were carried out in the temperature range from 250 to 400 °C and strain rate range from 0.001 to 0.1 s-1 on a Gleeble 1500 thermo-mechanical machine. The effects of the temperature and strain rate on the hot deformation behavior have been expressed by means of the conventional hyperbolic sine equation, and the influence of the strain has been incorporated in the equation by considering its effect on different material constants for large-scaled AZ80 magnesium alloy. In addition, the DRX behavior has been discussed. The result shows that the deformation temperature and strain rate exerted remarkable influences on the flow stress. The constitutive equation of large-scaled AZ80 magnesium alloy for hot deformation at steady-state stage (ɛ = 0.5) was The true stress-true strain curves predicted by the extracted model were in good agreement with the experimental results, thereby confirming the validity of the developed constitutive relation. The DRX kinetic model of large-scaled AZ80 magnesium alloy was established as X d = 1 - exp[-0.95((ɛ - ɛc)/ɛ*)2.4904]. The rate of DRX increases with increasing deformation temperature, and high temperature is beneficial for achieving complete DRX in the large-scaled AZ80 magnesium alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuebing; Chen, Ting; Qi, Xintong
In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in anmore » offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.« less
Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor
NASA Astrophysics Data System (ADS)
Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura
2016-04-01
Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.
Nickel, H; Quadakkers, W J; Singheiser, L
2002-10-01
In three different examples, the effects of the oxidation behaviour as well as the microstructural stability of high temperature materials and protective coatings was determined by combining the results of kinetic studies with extensive analytical investigations using, among other techniques, SNMS, SIMS, SEM, TEM, Rutherford back scattering (RBS) as well as X-ray diffraction. 1). The effect of water vapour on the oxidation behaviour of 9% Cr steels in simulated combustion gases has been determined. The effects of O2 and H2O content on the oxidation behaviour of 9% Cr steel in the temperature range 600-800 degrees C showed that in dry oxygen a protective scale was formed with an oxidation rate controlled by diffusion in the protective scale. In the presence of water vapour, after an incubation period, the scales became non-protective as a result of a change in the oxidation limiting process. The destruction of the protective scale by water vapour does not only depend on H2O content but also on the H2O/O2-ratio. 2). The increase of component surface temperature in modern gas turbines leads to an enhanced oxidation attack of the blade coating. Improvements in corrosion resistance and longer lifetime thermal barrier coatings in gas turbines have been achieved by improvement of the high temperature properties of MCrAlY coatings by additions of minor alloying elements such as yttrium, silicon and titanium. 3). The use of oxide dispersion strengthened (ODS) alloys provides excellent creep resistance up to much higher temperatures than can be achieved with conventional wrought or cast alloys in combination with suitable high temperature oxidation/corrosion resistance. Investigation of the growth mechanisms of protective chromia and alumina scales were examined by a two-stage oxidation method with 18O tracer. The distribution of the oxygen isotopes in the oxide scale was determined by SIMS and SNMS. The results show the positive influence of a Y2O3 dispersion on the oxidation resistance of the ODS alloys and its effect on growth mechanisms.
Ultra-high-Q phononic resonators on-chip at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Kharel, Prashanta; Chu, Yiwen; Power, Michael; Renninger, William H.; Schoelkopf, Robert J.; Rakich, Peter T.
2018-06-01
Long-lived, high-frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path toward chip-scale integration. Confocal bulk acoustic wave resonators have demonstrated an immense potential to support long-lived phonon modes in crystalline media at cryogenic temperatures. So far, these devices have been macroscopic with cm-scale dimensions. However, as we push these oscillators to high frequencies, we have an opportunity to radically reduce the footprint as a basis for classical and emerging quantum technologies. In this paper, we present novel design principles and simple microfabrication techniques to create high performance chip-scale confocal bulk acoustic wave resonators in a wide array of crystalline materials. We tailor the acoustic modes of such resonators to efficiently couple to light, permitting us to perform a non-invasive laser-based phonon spectroscopy. Using this technique, we demonstrate an acoustic Q-factor of 2.8 × 107 (6.5 × 106) for chip-scale resonators operating at 12.7 GHz (37.8 GHz) in crystalline z-cut quartz (x-cut silicon) at cryogenic temperatures.
Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.
Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H
2007-02-23
We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.
Sulfide scaling in low enthalpy geothermal environments; A survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criaud, A.; Fouillac, C.
1989-01-01
A review of the sulfide scaling phenomena in low-temperature environments is presented. While high-temperature fluids tend to deposit metal sulfides because of their high concentrations of dissolved metals and variations of temperature, pressure and fluid chemistry, low temperature media are characterized by very low metal content but much higher dissolved sulfide. In the case of the goethermal wells of the Paris Basin, detailed studies demonstrate that the relatively large concentrations of chloride and dissolved sulfide are responsible for corrosion and consequent formation of iron sulfide scale composed of mackinawite, pyrite and pyrrhotite. The effects of the exploitation schemes are farmore » less important than the corrosion of the casings. The low-enthalpy fluids that do not originate from sedimentary aquifers (such as in Iceland and Bulgaria), have a limited corrosion potential, and the thin sulfide film that appears may prevent the progress of corrosion.« less
NASA Astrophysics Data System (ADS)
Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.
2015-12-01
Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.
Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus.
Willett, Christopher S
2010-09-01
Thermal adaptation to spatially varying environmental conditions occurs in a wide range of species, but what is less clear is the nature of fitness trade-offs associated with this temperature adaptation. Here, populations of the intertidal copepod Tigriopus californicus are examined at both local and latitudinal scales to determine whether these populations have evolved differences in their survival under high temperature stress. A clear pattern of increasing high temperature stress tolerance is seen with decreasing latitude, consistent with temperature adaptation. Additionally, there is also evidence for significant variation in thermal tolerance on a smaller scale. The competitive fitness of pairs of northern and southern copepod populations were also examined under a series of lower, more moderate temperatures. These fitness assays show that the southern populations that have the best survival under extreme high temperatures have lowered competitive fitness at the lower temperatures tested, whereas the fitness of the southern populations exceeded that of the northern populations at the highest temperatures tested. Combined, these results suggest that there may be evolutionary trade-offs between performance at high and stressful temperatures and fitness at moderate temperatures in this species. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.
Ultrastrong ductile and stable high-entropy alloys at small scales.
Zou, Yu; Ma, Huan; Spolenak, Ralph
2015-07-10
Refractory high-entropy alloys (HEAs) are a class of emerging multi-component alloys, showing superior mechanical properties at elevated temperatures and being technologically interesting. However, they are generally brittle at room temperature, fail by cracking at low compressive strains and suffer from limited formability. Here we report a strategy for the fabrication of refractory HEA thin films and small-sized pillars that consist of strongly textured, columnar and nanometre-sized grains. Such HEA pillars exhibit extraordinarily high yield strengths of ∼ 10 GPa--among the highest reported strengths in micro-/nano-pillar compression and one order of magnitude higher than that of its bulk form--and their ductility is considerably improved (compressive plastic strains over 30%). Additionally, we demonstrate that such HEA films show substantially enhanced stability for high-temperature, long-duration conditions (at 1,100 °C for 3 days). Small-scale HEAs combining these properties represent a new class of materials in small-dimension devices potentially for high-stress and high-temperature applications.
Design and implementation of a micromechanical silicon resonant accelerometer.
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-11-19
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.
Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asperger, R.G.
1982-08-01
A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12more » refs.)« less
Scaling of spectra in grid turbulence with a mean cross-stream temperature gradient
NASA Astrophysics Data System (ADS)
Bahri, Carla; Arwatz, Gilad; Mueller, Michael E.; George, William K.; Hultmark, Marcus
2014-11-01
Scaling of grid turbulence with a constant mean cross-stream temperature gradient is investigated using a combination of theoretical predictions, DNS, and experimental data. Conditions for self-similarity of the governing equations and the scalar spectrum are investigated, which reveals necessary conditions for self-similarity to exist. These conditions provide a theoretical framework for scaling of the temperature spectrum as well as the temperature flux spectrum. One necessary condition, predicted by the theory, is that the characteristic length scale describing the scalar spectrum must vary as √{ t} for a self-similar solution to exist. In order to investigate this, T-NSTAP sensors, specially designed for temperature measurements at high frequencies, were deployed in a heated passive grid turbulence setup together with conventional cold-wires, and complementary DNS calculations were performed to complement and complete the experimental data. These data are used to compare the behavior of different length scales and validate the theoretical predictions.
Superior room-temperature ductility of typically brittle quasicrystals at small sizes
Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph
2016-01-01
The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ∼4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals—dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices. PMID:27515779
USDA-ARS?s Scientific Manuscript database
This study demonstrated a new method for mapping high-resolution (spatial: 1 m, and temporal: 1 h) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj
We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method formore » $$\\mathscr{O}(N)$$ Kohn–Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw–Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw–Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. Here, we further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect $$\\mathscr{O}(N)$$ scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.« less
Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; ...
2017-12-07
We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method formore » $$\\mathscr{O}(N)$$ Kohn–Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw–Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw–Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. Here, we further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect $$\\mathscr{O}(N)$$ scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.« less
Temperature Scales: Celsius, Fahrenheit, Kelvin, Reamur, and Romer.
ERIC Educational Resources Information Center
Romer, Robert H.
1982-01-01
Traces the history and development of temperature scales which began with the 17th-century invention of the liquid-in-glass thermometer. Focuses on the work of Olaf Romer, Daniel Fahrenheit, Rene-Antoine de Reamur, Anders Celsius, and William Thomson (Lord Kelvin). Includes experimental work and consideration of high/low fixed points on the…
NASA Astrophysics Data System (ADS)
Nguyen, C. T.; Buscail, H.; Cueff, R.; Issartel, C.; Riffard, F.; Perrier, S.; Poble, O.
2009-09-01
Ceria coatings were applied in order to improve the adherence of alumina scales developed on a model Fe-20Cr-5Al alloy during oxidation at high temperature. These coatings were performed by argon annealing of a ceria sol-gel coating at temperatures ranging between 600 and 1000 °C. The influence of these coatings on the alloy oxidation behaviour was studied at 1100 °C. In situ X-ray diffraction (XRD) was performed to characterize the coating crystallographic nature after annealing and during the oxidation process. The alumina scale morphologies were studied by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). The present work shows that the alumina scale morphology observed on cerium sol-gel coated alloy was very convoluted. On the cerium sol-gel coated alloy, argon annealing results in an increase of the oxidation rate in air, at 1100 °C. The 600 °C argon annealing temperature results in a good alumina scale adherence under thermal cycling conditions at 1100 °C.
NASA Astrophysics Data System (ADS)
Hou, Dong; Usher, Tedi-Marie; Zhou, Hanhan; Raengthon, Natthaphon; Triamnak, Narit; Cann, David P.; Forrester, Jennifer S.; Jones, Jacob L.
2017-08-01
The existence of local tetragonal distortions is evidenced in the BaTiO3-xBi(Zn1/2Ti1/2)O3 (BT-xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2-3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transforms to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan; ...
2017-08-11
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
Asymptotic Slavery in the Copper Oxide High Temperature Superconductors
NASA Astrophysics Data System (ADS)
Phillips, Philip
2004-05-01
Vast progress in theoretical solid state physics has been made by constructing models which mimic the low-energy properties of solids. Essential to the success of this program is the separability of the high and low energy degrees of freedom. While it is hoped that a high energy reduction can be made to solve the problem of high temperature superconductivity in the copper oxide materials, I will show that no consistent theory is possible if the high energy scale is removed. At the heart of the problem is the mixing of all energy scales (that is, UV-IR mixing) in the copper-oxide materials. Optical experiments demonstrate that the number of low-energy degrees of freedom is derived from a high energy scale. The implications of the inseparability of the high and low energy degrees of freedom on the phase diagram of the cuprates is discussed.
Kalla, Adarsh M; Sahu, C; Agrawal, A K; Bisen, P; Chavhan, B B; Sinha, Geetesh
2016-05-01
The present research was intended to develop a small scale butter churn and its performance by altering churning temperature and churn speed during butter making. In the present study, the cream was churned at different temperatures (8, 10 and 12 °C) and churn speeds (35, 60 and 85 rpm). The optimum parameters of churning time (40 min), moisture content (16 %) and overrun (19.42 %) were obtained when cream was churned at churning temperature of 10 °C and churn speed of 60 rpm. Using appropriate conditions of churning temperature and churn speed, high quality butter can be produced at cottage scale.
NASA Technical Reports Server (NTRS)
Mahoney, M.; Hovde, S.; Kelly, K.; Proffitt, M.; Richard, E.; Thompson, T.; Tuck, A.
2000-01-01
Exchange between the upper tropical troposphere and the lower troposphere is considered by examining high altitude aircraft observations of water, ozone, methane, wind and temperature for scale invariance.
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-09-18
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.
The gallium melting-point standard: its role in our temperature measurement system.
Mangum, B W
1977-01-01
The latest internationally-adopted temperature scale, the International Practical Temperature Scale of 1968 (amended edition of 1975), is discussed in some detail and a brief description is given of its evolution. The melting point of high-purity gallium (stated to be at least 99.99999% pure) as a secondary temperature reference point is evaluated. I believe that this melting-point temperature of gallium should be adopted by the various medical professional societies and voluntary standards groups as the reaction temperature for enzyme reference methods in clinical enzymology. Gallium melting-point cells are available at the National Bureau of Standards as Standard Reference Material No. 1968.
High temperature corrosion of a nickel base alloy by helium impurities
NASA Astrophysics Data System (ADS)
Rouillard, F.; Cabet, C.; Wolski, K.; Terlain, A.; Tabarant, M.; Pijolat, M.; Valdivieso, F.
2007-05-01
High temperature corrosion properties of Haynes 230 were investigated in a purposely-designed facility under a typical very high temperature reactor (VHTR) impure helium medium. The study was focused on the surface oxide scale formation and its stability at about 1223 K. The alloy developed a Mn/Cr rich oxide layer on its surface under impure helium at 1173 K. Nevertheless, a deleterious reaction destructing the chromium oxide was evidenced above a critical temperature, TA. Reagents and products of this last reaction were investigated.
THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; A.M. Ougouag
2011-12-01
The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.« less
Oxidation Resistance and Critical Sulfur Content of Single-Crystal Superalloys
NASA Technical Reports Server (NTRS)
Smialek, James L.
1997-01-01
The high-temperature components of a jet turbine engine are made from nickel-base superalloys. These components must be able to withstand high stresses, fatigue, and corrosive reactions with high-temperature gases. Such oxidation resistance is associated with slow-growing Al2O3 scales that remain adherent to superalloy components after many thermal cycles. Historically, good oxidation resistance has been obtained by coating these components with Ni-Cr-Al-Y coatings, where small additions of yttrium (Y) were necessary for scale adhesion. Subsequently, it was found that the Y aids scale adhesion by preventing sulfur from segregating to the scale metal interface and thus preventing the sulfur from weakening the oxide-metal bonds. Y is a difficult element to incorporate in single-crystal superalloy castings, but it was shown in early work at the NASA Lewis Research Center that good adhesion could be obtained for low-sulfur, uncoated, singlecrystal superalloys, without Y additions. Low sulfur contents for these uncoated superalloys were achieved in the laboratory by a high-temperature hydrogen annealing process. This process allows segregation and surface cleaning of sulfur monolayers in a reducing environment. Another approach is to remove sulfur from the alloy in the melting process. The present study was designed to establish a guideline for the minimum level of desulfurization needed to achieve maximum performance. Coupons of various thicknesses of the superalloy PWA 1480 were hydrogen annealed at various times (8 to 100 hr) and temperatures (1000 to 1300 C), resulting in coupons with sulfur contents ranging from about 0.05 to 5 ppm. Cyclic oxidation tests at 1100 C were then used to assess adhesion and spalling. The weight change of one set of 20-mil (0.5-mm) samples, annealed for 20 hr at 1000, 1100, 1200, and 1300 C, is shown in the following figure. Clearly, the effect of the annealing temperature is quite dramatic in that the higher temperatures produced scales that spalled very little, whereas the lower temperatures resulted in severe weight losses comparable to those for the as-received, unannealed sample.
Floris, Patrick; Curtin, Sean; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan
2018-07-01
The compatibility of CHO cell culture medium formulations with all stages of the bioprocess must be evaluated through small-scale studies prior to scale-up for commercial manufacturing operations. Here, we describe the development of a bespoke small-scale device for assessing the compatibility of culture media with a widely implemented upstream viral clearance strategy, high-temperature short-time (HTST) treatment. The thermal stability of undefined medium formulations supplemented with soy hydrolysates was evaluated upon variations in critical HTST processing parameters, namely, holding times and temperatures. Prolonged holding times of 43 s at temperatures of 110 °C did not adversely impact medium quality while significant degradation was observed upon treatment at elevated temperatures (200 °C) for shorter time periods (11 s). The performance of the device was benchmarked against a commercially available mini-pilot HTST system upon treatment of identical formulations on both platforms. Processed medium samples were analyzed by untargeted LC-MS/MS for compositional profiling followed by chemometric evaluation, which confirmed the observed degradation effects caused by elevated holding temperatures but revealed comparable performance of our developed device with the commercial mini-pilot setup. The developed device can assist medium optimization activities by reducing volume requirements relative to commercially available mini-pilot instrumentation and by facilitating fast throughput evaluation of heat-induced effects on multiple medium lots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Fu-Ting; Fu, Congbin; Qian, Yun
Two measures of intra-seasonal variability, indicated respectively by standard deviations (SD) and day-to-day (DTD) fluctuations denoted by absolute differences between adjacent 2-day periods, as well as their relationships with large-scale circulation patterns were investigated in China during 1962–2008 on the basis of homogenized daily temperature records from 549 local stations and reanalysis data. Our results show that both the SD and DTD of daily minimum temperatures (Tmin) in summer as well as the minimum and maximum temperatures in winter have been decreasing, while the daily maximum temperature (Tmax) variability in summer is fluctuating more, especially over southern China. In summer,more » an attribution analysis indicates that the intensity of the Western Pacific Subtropical High (WPSH) and high-level East Asian Subtropical Jet stream (EASJ) are positively correlated with both SD and DTD, but the correlation coefficients are generally greater with the SD than with the DTD of the daily maximum temperature, Tmax. In contrast, the location of the EASJ shows the opposite correlation pattern, with intensity regarding the correlation with both SD and DTD. In winter, the Arctic Oscillation (AO) is negatively correlated with both the SD and DTD of the daily minimum temperature, but its intra-seasonal variability exhibits good agreement with the SD of the Tmin. The Siberian High acts differently with respect to the SD and DTD of the Tmin, demonstrating a regionally consistent positive correlation with the SD. Overall, the large-scale circulation can well explain the intra-seasonal SD, but DTD fluctuations may be more local and impacted by local conditions, such as changes in the temperature itself, the land surface, and so on.« less
Design and Implementation of a Micromechanical Silicon Resonant Accelerometer
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-01-01
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978
NASA Technical Reports Server (NTRS)
Gao, Xin-Hai; Yu, Wen-Bi; Stanford, John L.
1987-01-01
Four years of satellite-derived microwave and infrared radiances are analyzed for the three-dimensional and seasonal variation of semiannual oscillations (SAO) in stratospheric temperatures, with particular focus on high latitudes, to investigate the effect of stratospheric warmings on SAO. Separate analyses of individual seasons in each hemisphere reveal that the strongest SAO in temperature occur in the Northern Hemisphere (NH) winter polar upper stratosphere. These results, together with the latitudinal structure of the temperature SAO and the fact that the NH polar SAO is nearly out of phase with the lower latitude SAO, are consistent with the existence of a global-scale, meridional circulation on the SAO time scale. The results suggest that polar stratospheric warmings are an important source of SAO in both high and low latitude stratospheric temperature fields. Interannual variations, three-dimensional phase structure, and zonal asymmetry of SAO are also detailed. The SH stratospheric SAO is dominated by a localized feature in the high-latitude, eastern hemisphere which tilts westward with height.
Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien
2012-03-01
Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technologymore » will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.« less
Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics
Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan
2013-01-01
The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220
Investigation of multi-scale flash-weakening of rock surfaces during high speed slip
NASA Astrophysics Data System (ADS)
Barbery, M. R.; Saber, O.; Chester, F. M.; Chester, J. S.
2017-12-01
A significant reduction in the coefficient of friction of rock can occur if sliding velocity approaches seismic rates as a consequence of weakening of microscopic sliding contacts by flash heating. Using a high-acceleration and -speed biaxial apparatus equipped with a high-speed Infra-Red (IR) camera to capture thermographs of the sliding surface, we have documented the heterogeneous distribution of temperature on flash-heated decimetric surfaces characterized by linear arrays of high-temperature, mm-size spots, and streaks. Numerical models that are informed by the character of flash heated surfaces and that consider the coupling of changes in temperature and changes in the friction of contacts, supports the hypothesis that independent mechanisms of flash weakening operate at different contact scales. Here, we report on new experiments that provide additional constraints on the life-times and rest-times of populations of millimeter-scale contacts. Rock friction experiments conducted on Westerly granite samples in a double-direct shear configuration achieve velocity steps from 1 mm/s to 900 mm/s at 100g accelerations over 2 mm of displacement with normal stresses of 22-36 MPa and 30 mm of displacement during sustained high-speed sliding. Sliding surfaces are machined to roughness similar to natural fault surfaces and that allow us to control the characteristics of millimeter-scale contact populations. Thermographs of the sliding surface show temperatures up to 200 C on millimeter-scale contacts, in agreement with 1-D heat conduction model estimates of 180 C. Preliminary comparison of thermal modeling results and experiment observations demonstrate that we can distinguish the different life-times and rest-times of contacts in thermographs and the corresponding frictional weakening behaviors. Continued work on machined surfaces that lead to different contact population characteristics will be used to test the multi-scale and multi-mechanism hypothesis for flash weakening during seismic slip on rough fault surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Nan
2007-12-01
Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedesmore » the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al 2O 3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni 3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O 3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni 3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (~970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free γ'-Ni 3Al increased the extent of external NiO formation due to non-protective HfO 2 formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.« less
NASA Astrophysics Data System (ADS)
Schroeer, K.; Kirchengast, G.
2018-06-01
Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.
Fiber optic photoelastic pressure sensor for high temperature gases
NASA Technical Reports Server (NTRS)
Wesson, Laurence N.; Redner, Alex S.; Baumbick, Robert J.
1990-01-01
A novel fiber optic pressure sensor based on the photoelastic effects has been developed for extremely high temperature gases. At temperatures varying from 25 to 650 C, the sensor experiences no change in the peak pressure of the transfer function and only a 10 percent drop in dynamic range. Refinement of the sensor has resulted in an optoelectronic interface and processor software which can calculate pressure values within 1 percent of full scale at any temperature within the full calibrated temperature range.
Thermodynamic and kinetic aspects of UO 2 fuel oxidation in air at 400-2000 K
NASA Astrophysics Data System (ADS)
Taylor, Peter
2005-09-01
Most nuclear fuel oxidation research has addressed either low-temperature (<700 K) air oxidation related to fuel storage or high-temperature (>1500 K) steam oxidation linked to reactor safety. This paper attempts to unify modelling for air oxidation of UO 2 fuel over a wide range of temperature, and thus to assist future improvement of the ASTEC code, co-developed by IRSN and GRS. Phenomenological correlations for different temperature ranges distinguish between oxidation on the scale of individual grains to U 3O 7 and U 3O 8 below ˜700 K and individual fragments to U 3O 8 via UO 2+ x and/or U 4O 9 above ˜1200 K. Between about 700 and 1200 K, empirical oxidation rates slowly decline as the U 3O 8 product becomes coarser-grained and more coherent, and fragment-scale processes become important. A more mechanistic approach to high-temperature oxidation addresses questions of oxygen supply, surface reaction kinetics, thermodynamic properties, and solid-state oxygen diffusion. Experimental data are scarce, however, especially at low oxygen partial pressures and high temperatures.
Universal intrinsic scale of the hole concentration in high- Tc cuprates
NASA Astrophysics Data System (ADS)
Honma, T.; Hor, P. H.; Hsieh, H. H.; Tanimoto, M.
2004-12-01
We have measured thermoelectric power (TEP) as a function of hole concentration per CuO2 layer Ppl in Y1-xCaxBa2Cu3O6 (Ppl=x/2) with no oxygen in the Cu-O chain layer. The room-temperature TEP as a function of Ppl , S290(Ppl) , of Y1-xCaxBa2Cu3O6 behaves identically to that of La2-zSrzCuO4 (Ppl=z) . We argue that S290(Ppl) represents a measure of the intrinsic equilibrium electronic states of doped holes and, therefore, can be used as a common scale for the carrier concentrations of layered cuprates. We shows that the Ppl determined by this new universal scale is consistent with both hole concentration microscopically determined by NQR and the hole concentration macroscopically determined by the formal valency of Cu . We find two characteristic scaling temperatures, TS* and TS2* , in the TEP versus temperature curves that change systematically with doping. Based on the universal scale, we uncover a universal phase diagram in which almost all the experimentally determined pseudogap temperatures as a function of Ppl fall on two common curves; lower pseudogap temperature defined by the TS* versus Ppl curve and upper pseudogap temperature defined by the TS2* versus Ppl curve. We find that while pseudogaps are intrinsic properties of doped holes of a single CuO2 layer for all high- Tc cuprates, Tc depends on the number of layers, therefore, the inter layer coupling, in each individual system.
NASA Astrophysics Data System (ADS)
Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.
2016-12-01
Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.
NASA Astrophysics Data System (ADS)
Best, James P.; Zechner, Johannes; Wheeler, Jeffrey M.; Schoeppner, Rachel; Morstein, Marcus; Michler, Johann
2016-12-01
For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.
NASA Technical Reports Server (NTRS)
Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna
2016-01-01
This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-01-01
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, P.C.; DePoorter, G.L.; Munoz, D.R.
1991-02-01
We have initiated a three phase investigation of the development of high performance refractory fibers with enhanced insulating properties and longer usable lifetimes. This report presents the results of the first phase of the study, performed from Aug. 1989 through Feb. 1991, which shows that significant energy saving are possible through the use of high temperature insulating fibers that better retain their efficient insulating properties during the service lifetime of the fibers. The remaining phases of this program include the pilot scale development and then full scale production feasibility development and evaluation of enhanced high temperature refractory insulting fibers. Thismore » first proof of principle phase of the program presents a summary of the current use patterns of refractory fibers, a laboratory evaluation of the high temperature performance characteristics of selected typical refractory fibers and an analysis of the potential energy savings through the use of enhanced refractory fibers. The current use patterns of refractory fibers span a wide range of industries and high temperature furnaces within those industries. The majority of high temperature fiber applications are in furnaces operating between 2000 and 26000{degrees}F. The fibers used in furnaces operating within this range provide attractive thermal resistance and low thermal storage at reasonable cost. A series of heat treatment studies performed for this phase of the program has shown that the refractory fibers, as initially manufactured, have attractive thermal conductivities for high temperature applications but the fibers go through rapid devitrification and subsequent crystal growth upon high temperature exposure. Development of improved fibers, maintaining the favorable characteristics of the existing as-manufactured fibers, could save between 1 and 4% of the energy consumed in high temperature furnaces using refractory fibers.« less
Seasonal ozone levels and control by seasonal meteorology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagnotti, V.
1990-02-01
Meteorological data, particularly 850-MB level temperatures, for Fort Totten, New York (1980) and Atlantic City, New Jersey (1981-1988) were examined for any relationship to seasonal ozone levels. Other radiosonde stations in the Northeast were utilized for 1983 and 1986, years of widely differing ozone levels. Statistics for selected parameters and years are presented. Emphasis is placed on recurring warm temperature regimes in high ozone years. Successive occurrences or episodes of high temperatures characterize seasonally high ozone years. Seasonally persistent high temperatures are related to seasonally chronic high ozone. An example is presented relating the broad-scale climatologically anomalous pattern of highmore » temperatures to anomalous circulation patterns at the 700-MB level.« less
NASA Astrophysics Data System (ADS)
Amare, Belachew N.
Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural coating. During this project it was found that stiffness response to increase and remain stable to a certain level and reduce at latter stages of thermal cyclic exposure. The predominant growth and adherent Ni-rich outer oxide scale was found on top of the alumina scale throughout the oxidation cycles. The FEA analysis revealed that ODS alloys could be potential high temperature turbine coating materials if micro-channel cooling system is implemented.
NASA Technical Reports Server (NTRS)
Jahren, A. H.; Kruger, M. B.; Jeanloz, Raymond
1992-01-01
The wavelength shifts of the R1 and R2 fluorescence lines of alexandrite (BeAl2O4:Cr(+3)) have been experimentally calibrated against the ruby-fluorescence scale as a function of both hydrostatic and nonhydrostatic pressures between 0 and 50 GPa, and simultaneously as a function of temperatures between 290 and 550 K. It is found that the pressure-temperature cross derivative of the fluorescence wavelength shifts are negligible for both ruby and alexandrite.
Mausbach, Peter; Köster, Andreas; Vrabec, Jadran
2018-05-01
Aspects of isomorph theory, Rosenfeld-Tarazona temperature scaling, and thermodynamic geometry are comparatively discussed on the basis of the Lennard-Jones potential. The first two approaches approximate the high-density fluid state well when the repulsive interparticle interactions become dominant, which is typically the case close to the freezing line. However, previous studies of Rosenfeld-Tarazona scaling for the isochoric heat capacity and its relation to isomorph theory reveal deviations for the temperature dependence. It turns out that a definition of a state region in which repulsive interactions dominate is required for achieving consistent results. The Riemannian thermodynamic scalar curvature R allows for such a classification, indicating predominantly repulsive interactions by R>0. An analysis of the isomorphic character of the freezing line and the validity of Rosenfeld-Tarazona temperature scaling show that these approaches are consistent only in a small state region.
NASA Astrophysics Data System (ADS)
Niezgodzki, Igor; Knorr, Gregor; Lohmann, Gerrit; Tyszka, Jarosław; Markwick, Paul J.
2017-09-01
We investigate the impact of different CO2 levels and different subarctic gateway configurations on the surface temperatures during the latest Cretaceous using the Earth System Model COSMOS. The simulated temperatures are compared with the surface temperature reconstructions based on a recent compilation of the latest Cretaceous proxies. In our numerical experiments, the CO2 level ranges from 1 to 6 times the preindustrial (PI) CO2 level of 280 ppm. On a global scale, the most reasonable match between modeling and proxy data is obtained for the experiments with 3 to 5 × PI CO2 concentrations. However, the simulated low- (high-) latitude temperatures are too high (low) as compared to the proxy data. The moderate CO2 levels scenarios might be more realistic, if we take into account proxy data and the dead zone effect criterion. Furthermore, we test if the model-data discrepancies can be caused by too simplistic proxy-data interpretations. This is distinctly seen at high latitudes, where most proxies are biased toward summer temperatures. Additional sensitivity experiments with different ocean gateway configurations and constant CO2 level indicate only minor surface temperatures changes (< 1°C) on a global scale, with higher values (up to 8°C) on a regional scale. These findings imply that modeled and reconstructed temperature gradients are to a large degree only qualitatively comparable, providing challenges for the interpretation of proxy data and/or model sensitivity. With respect to the latter, our results suggest that an assessment of greenhouse worlds is best constrained by temperatures in the midlatitudes.
Safe and Durable High-Temperature Lithium-Sulfur Batteries via Molecular Layer Deposited Coating.
Li, Xia; Lushington, Andrew; Sun, Qian; Xiao, Wei; Liu, Jian; Wang, Biqiong; Ye, Yifan; Nie, Kaiqi; Hu, Yongfeng; Xiao, Qunfeng; Li, Ruying; Guo, Jinghua; Sham, Tsun-Kong; Sun, Xueliang
2016-06-08
Lithium-sulfur (Li-S) battery is a promising high energy storage candidate in electric vehicles. However, the commonly employed ether based electrolyte does not enable to realize safe high-temperature Li-S batteries due to the low boiling and flash temperatures. Traditional carbonate based electrolyte obtains safe physical properties at high temperature but does not complete reversible electrochemical reaction for most Li-S batteries. Here we realize safe high temperature Li-S batteries on universal carbon-sulfur electrodes by molecular layer deposited (MLD) alucone coating. Sulfur cathodes with MLD coating complete the reversible electrochemical process in carbonate electrolyte and exhibit a safe and ultrastable cycle life at high temperature, which promise practicable Li-S batteries for electric vehicles and other large-scale energy storage systems.
Relativistic thermal electron scale instabilities in sheared flow plasma
NASA Astrophysics Data System (ADS)
Miller, Evan D.; Rogers, Barrett N.
2016-04-01
> The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.
Study on Collapse Mechanism of Steel Frame Structure under High Temperature and Blast Loading
NASA Astrophysics Data System (ADS)
Baoxin, Qi; Yan, Shi; Bi, Jialiang
2018-03-01
Numerical simulation analysis for collapsing process and mechanism of steel frame structures under the combined effects of fire and explosion is performed in this paper. First of all, a new steel constitutive model considering fire (high temperature softening effect) and blast (strain rate effect) is established. On the basis of the traditional Johnson-Cook model and the Perzyna model, the relationship between strain and scaled distance as well as the EOUROCODE3 standard heating curve taking into account the temperature effect parameters is introduced, and a modified Johnson-Cook constitutive model is established. Then, the influence of considering the scaled distance is introduced in order to more effectively describe the destruction and collapse phenomena of steel frame structures. Some conclusions are obtained based on the numerical analysis that the destruction will be serious and even progressively collapse with decreasing of the temperature of the steel column for the same scaled distance under the combined effects of fire and blast; the damage will be serious with decreasing of the scaled distance of the steel column under the same temperature under the combined effects of fire and blast; in the case of the combined effects of fire and blast happening in the side-spans, the partial progressive collapse occurs as the scaled distance is less than or equal to 1.28; six kinds of damages which are no damage, minor damage, moderate damage, severe damage, critical collapse, and progressive collapse.
Thermal Comfort in the Hot Humid Tropics of Australia
Wyndham, C. H.
1963-01-01
Day and night comfort votes were recorded from Caucasian residents at Weipa, a mission station in the hot humid tropics of North Queensland, Australia. The limit of day comfort for more than 50% of the men was 81·5°F. (27·5°C.) “normal” corrected effective temperature; the night limit was 78·0°F. (25·5°C.). Day comfort limits correlated well with air conditions at which sweat was apparent: night limits correlated with the amount of bed covering. Evidence of a change over 14 days in day comfort limit was found. Limitations in the effective temperature scale for expressing the “oppressive nature” of night air conditions are pointed out. Criticism is voiced of the use of dry bulb temperature instead of the effective temperature scale in conditions of high wet bulb temperatures with high relative humidity, such as in the hot humid tropics. PMID:14002126
NASA Technical Reports Server (NTRS)
Seltzer, M. S.; Wright, I. G.; Wilcox, B. A.
1973-01-01
The surface regions of a DSNiCrAl alloy have been doped, by a pack diffusion process, with small amounts of Mn, Fe, or Co, and the effect of these dopants on the total normal emissivity of the scales produced by subsequent high temperature oxidation has been measured. While all three elements lead to a modest increase in emissivity, (up to 23% greater than the undoped alloy) only the change caused by manganese is thermally stable. However, this increased emissivity is within 85 percent of that of TDNiCr oxidized to form a chromia scale. The maganese-doped alloy is some 50 percent weaker than undoped DSNiCrAl after the doping treatment, and approximately 30 percent weaker after oxidation.
Low-Sulfate Seawater Injection into Oil Reservoir to Avoid Scaling Problem
NASA Astrophysics Data System (ADS)
Merdhah, Amer Badr Bin; Mohd Yassin, Abu Azam
This study presents the results of laboratory experiments carried out to investigate the formation of calcium, strontium and barium sulfates from mixing Angsi seawater or low sulfate seawater with the following sulfate contents (75, 50, 25, 5 and 1%) and formation water contain high concentration of calcium, strontium and barium ions at various temperatures (40-90°C) and atmospheric pressure. The knowledge of solubility of common oil field scale formation and how their solubilities are affected by changes in salinity and temperatures is also studied. Results show a large of precipitation occurred in all jars containing seawater while the amount of precipitation decreased when the low sulfate seawater was used. At higher temperatures the mass of precipitation of CaSO4 and SrSO4 scales increases and the mass of precipitation of BaSO4 scale decreases since the solubilities of CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. It can be concluded that even at sulfate content of 1% there may still be a scaling problem.
Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite
Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao
2015-01-01
The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 108 Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 108 Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior. PMID:26314913
Tonkin, Jonathan D.; Shah, Deep Narayan; Kuemmerlen, Mathias; Li, Fengqing; Cai, Qinghua; Haase, Peter; Jähnig, Sonja C.
2015-01-01
Little work has been done on large-scale patterns of stream insect richness in China. We explored the influence of climatic and catchment-scale factors on stream insect (Ephemeroptera, Plecoptera, Trichoptera; EPT) richness across mid-latitude China. We assessed the predictive ability of climatic, catchment land cover and physical structure variables on genus richness of EPT, both individually and combined, in 80 mid-latitude Chinese streams, spanning a 3899-m altitudinal gradient. We performed analyses using boosted regression trees and explored the nature of their influence on richness patterns. The relative importance of climate, land cover, and physical factors on stream insect richness varied considerably between the three orders, and while important for Ephemeroptera and Plecoptera, latitude did not improve model fit for any of the groups. EPT richness was linked with areas comprising high forest cover, elevation and slope, large catchments and low temperatures. Ephemeroptera favoured areas with high forest cover, medium-to-large catchment sizes, high temperature seasonality, and low potential evapotranspiration. Plecoptera richness was linked with low temperature seasonality and annual mean, and high slope, elevation and warm-season rainfall. Finally, Trichoptera favoured high elevation areas, with high forest cover, and low mean annual temperature, seasonality and aridity. Our findings highlight the variable role that catchment land cover, physical properties and climatic influences have on stream insect richness. This is one of the first studies of its kind in Chinese streams, thus we set the scene for more in-depth assessments of stream insect richness across broader spatial scales in China, but stress the importance of improving data availability and consistency through time. PMID:25909190
NASA Astrophysics Data System (ADS)
Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka
2016-05-01
The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy storage.
On the Scaling Laws and Similarity Spectra for Jet Noise in Subsonic and Supersonic Flow
NASA Technical Reports Server (NTRS)
Kandula, Max
2008-01-01
The scaling laws for the simulation of noise from subsonic and ideally expanded supersonic jets are reviewed with regard to their applicability to deduce full-scale conditions from small-scale model testing. Important parameters of scale model testing for the simulation of jet noise are identified, and the methods of estimating full- scale noise levels from simulated scale model data are addressed. The limitations of cold-jet data in estimating high-temperature supersonic jet noise levels are discussed. New results are presented showing the dependence of overall sound power level on the jet temperature ratio at various jet Mach numbers. A generalized similarity spectrum is also proposed, which accounts for convective Mach number and angle to the jet axis.
2009-12-01
Malliakos. Detonation cell size measurements in high-temperature hydrogen- air-steam mixtures at the bnl high-temperature combustion facility. Technical...Report NUREG/CR-6391, BNL -NUREG-52482, Brookhaven National Laboratory, 1997. [13] W.B. Benedick, R. Knystautas, and J.H.S. Lee. Large-scale
Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System
NASA Astrophysics Data System (ADS)
Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.
2017-01-01
The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.
NASA Astrophysics Data System (ADS)
Detzer, J.; Loikith, P. C.; Mechoso, C. R.; Barkhordarian, A.; Lee, H.
2017-12-01
South America's climate varies considerably owing to its large geographic range and diverse topographical features. Spanning the tropics to the mid-latitudes and from high peaks to tropical rainforest, the continent experiences an array of climate and weather patterns. Due to this considerable spatial extent, assessing temperature variability at the continent scale is particularly challenging. It is well documented in the literature that temperatures have been increasing across portions of South America in recent decades, and while there have been many studies that have focused on precipitation variability and change, temperature has received less scientific attention. Therefore, a more thorough understanding of the drivers of temperature variability is critical for interpreting future change. First, k-means cluster analysis is used to identify four primary modes of temperature variability across the continent, stratified by season. Next, composites of large scale meteorological patterns (LSMPs) are calculated for months assigned to each cluster. Initial results suggest that LSMPs, defined using meteorological variables such as sea level pressure (SLP), geopotential height, and wind, are able to identify synoptic scale mechanisms important for driving temperature variability at the monthly scale. Some LSMPs indicate a relationship with known recurrent modes of climate variability. For example, composites of geopotential height suggest that the Southern Annular Mode is an important, but not necessarily dominant, component of temperature variability over southern South America. This work will be extended to assess the drivers of temperature extremes across South America.
Landscape-scale patterns of fire and drought on the high plains, USA
Paulette Ford; Charles Jackson; Matthew Reeves; Benjamin Bird; Dave Turner
2015-01-01
We examine 31 years (1982-2012) of temperature, precipitation and natural wildfire occurrence data for Federal and Tribal lands to determine landscape-scale patterns of drought and fire on the southern and central High Plains of the western United States. The High Plains states of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas and...
Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L.
2006-01-01
The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low-flow habitat more frequently, than at other times. Non-random habitat use was more frequent at the point scale (4.5 m2) than at the larger reach scale (20-40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter-flowing water as temperature increased, and shallower, slower-flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high-velocity habitats in summer to deeper, low-velocity habitats in winter, and of using shallower, low-velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non-random use of available habitats is more frequent at small scales. ?? 2006 The Fisheries Society of the British Isles.
High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy
2013-12-20
This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard tomore » their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified for high-temperature operation. In parallel with the design and fabrication of the subscale prototype ESP system, a subscale test facility consisting of a high-temperature-high-pressure flow loop was designed, fabricated, and installed at GE Global Research in Niskayuna, NY. A test plan for the prototype system was also established. The original plan of testing the prototype hardware in the flow loop was delayed until a future date.« less
NASA Astrophysics Data System (ADS)
Thomas, Christoph K.; Kennedy, Adam M.; Selker, John S.; Moretti, Ayla; Schroth, Martin H.; Smoot, Alexander R.; Tufillaro, Nicholas B.; Zeeman, Matthias J.
2012-02-01
We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space-time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.
Ubiquitous solar atmospheric coronal and transition region bright points (BPs) are compact features overlying strong concentrations of magnetic flux. Here, we utilize high-cadence observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to provide the first observations of extreme ultraviolet quiet-Sun (QS) network BP activity associated with sigmoidal structuring. To our knowledge, this previously unresolved fine structure has never been associated with such small-scale QS events. This QS event precedes a bi-directional jet in a compact, low-energy, and low-temperature environment, where evidence is found in support of the typical fan-spine magnetic field topology. As in active regionsmore » and micro-sigmoids, the sigmoidal arcade is likely formed via tether-cutting reconnection and precedes peak intensity enhancements and eruptive activity. Our QS BP sigmoid provides a new class of small-scale structuring exhibiting self-organized criticality that highlights a multi-scaled self-similarity between large-scale, high-temperature coronal fields and the small-scale, lower-temperature QS network. Finally, our QS BP sigmoid elevates arguments for coronal heating contributions from cooler atmospheric layers, as this class of structure may provide evidence favoring mass, energy, and helicity injections into the heliosphere.« less
Design for Oxidation Resistance
NASA Technical Reports Server (NTRS)
Smialek, James L.; Schaeffer, Jon C.; Barrett, Charles A.
1997-01-01
Alloys intended for use in high-temperature environment rely on the formation of a continuous, compact, slow-growing oxide layer for oxidation and hot corrosion resistance. To be protective, this oxide layer must be chemically, thermodynamically stable. Successful alloy design for oxidative environment is best achieved by developing alloys that are capable of forming adherent scales of either alumina (Al2O3), chromia (Cr2O3), or silica (SiO2). In this article, emphasis has been placed on the issue related to high-temperature oxidation of superalloys used in gas turbine engine application. Despite the complexity of these alloys, optimal performance has been associated with protective alumina scale formation. As will be described below, both compositional makeup and protective coatings play key role in providing oxidation protection. Other high-temperature materials described include nickel and titanium aluminide intermetallics, refractory metal, and ceramics.
NASA Astrophysics Data System (ADS)
Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping
2017-11-01
The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.
Low-temperature breakdown of antiferromagnetic quantum critical behavior in FeSe
NASA Astrophysics Data System (ADS)
Grinenko, V.; Sarkar, R.; Materne, P.; Kamusella, S.; Yamamshita, A.; Takano, Y.; Sun, Y.; Tamegai, T.; Efremov, D. V.; Drechsler, S.-L.; Orain, J.-C.; Goko, T.; Scheuermann, R.; Luetkens, H.; Klauss, H.-H.
2018-05-01
A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many parent compounds of Fe-based superconductors. However, in the FeSe system with a nematic transition at Ts≈90 K, no evidence for long-range static magnetism is found down to very low temperatures. The lack of magnetism is a challenge for the theoretical description of FeSe. We investigated high-quality single crystals of FeSe using high-field (up to 9.5 T) muon spin rotation (μ SR ) measurements. The μ SR Knight shift and the bulk susceptibility linearly scale at high temperatures but deviate from this behavior around T*˜10 -20 K, where the Knight shift exhibits a kink. In the temperature range Ts≳T ≳T* , the muon spin depolarization rate shows a quantum critical behavior Λ ∝T-0.4 . The observed critical scaling indicates that FeSe is in the vicinity of an itinerant antiferromagnetic quantum critical point. Below T* the quantum critical behavior breaks down. We argue that this breakdown is caused by a temperature-induced Lifschitz transition.
NASA Astrophysics Data System (ADS)
Takahashi, Go; Akashi, Haruaki
AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.
Vu-Bac, N.; Bessa, M. A.; Rabczuk, Timon; ...
2015-09-10
In this paper, we present experimentally validated molecular dynamics predictions of the quasi- static yield and post-yield behavior for a highly cross-linked epoxy polymer under gen- eral stress states and for different temperatures. In addition, a hierarchical multiscale model is presented where the nano-scale simulations obtained from molecular dynamics were homogenized to a continuum thermoplastic constitutive model for the epoxy that can be used to describe the macroscopic behavior of the material. Three major conclusions were achieved: (1) the yield surfaces generated from the nano-scale model for different temperatures agree well with the paraboloid yield crite- rion, supporting previous macroscopicmore » experimental observations; (2) rescaling of the entire yield surfaces to the quasi-static case is possible by considering Argon’s theoretical predictions for pure compression of the polymer at absolute zero temperature; (3) nano- scale simulations can be used for an experimentally-free calibration of macroscopic con- tinuum models, opening new avenues for the design of materials and structures through multi-scale simulations that provide structure-property-performance relationships.« less
Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; ...
2015-12-30
Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent andmore » KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.« less
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Thomas, C.; Wolf, A. S.
2012-12-01
Silicate melts are the essential agents of planetary differentiation and evolution. Their phase relations, element partitioning preferences, density, and transport properties determine the fates of heat and mass flow in the high-temperature interior of active planets. In the early Earth and in extrasolar super-Earth-mass terrestrial planets it is these properties at very high pressure (> 100 GPa) that control the evolution from possible magma oceans to solid-state convecting mantles. Yet these melts are complex, dynamic materials that present many challenges to experimental, theoretical, and computational understanding or prediction of their properties. There has been encouraging convergence among various approaches to understanding the structure and dynamics of silicate melts at multiple scales: nearest- and next-nearest neighbor structural information is derived from spectroscopic techniques such as high-resolution multinuclear NMR; first-principles molecular dynamics probe structure and dynamics at scales up to hundreds of atoms; Archimedean, ultrasonic, sink/float, and shock wave methods probe macroscopic properties (and occasionally dynamics); and deformation and diffusion experiments probe dynamics at macroscopic scale and various time scales. One challenge that remains to integrating all this information is a predictive model of silicate liquid structure that agrees with experiments and simulation both at microscopic and macroscopic scale. In addition to our efforts to collect macroscopic equation of state data using shock wave methods across ever-wider ranges of temperature, pressure, and composition space, we have introduced a simple model of coordination statistics around cations that can form the basis of a conceptual and predictive link across scales and methods. This idea is explored in this presentation specifically with regard to the temperature dependence of sound speed in ultramafic liquids. This is a highly uncertain quantity and yet it is key, in many models, to extrapolating the equation of state up or down temperature to geophysically relevant conditions. Ultrasonic data on felsic to basaltic melts, across a fairly narrow temperature range from their liquidi to ≤1650 °C, suggest either no temperature dependence or sound speeds that increase with temperature. Simulations, conducted at much higher temperature to obtain relaxation, suggest a strong decrease in sound speed with temperature. Our shock wave data on Mg2SiO4 liquid at 2000 °C yield a sound speed significantly lower than that predicted from data on less mafic liquids collected at lower temperatures where Mg2SiO4 liquid is not stable. The same shock method applied to melt compositions that are stable at 1300-1550 °C, however, yields sound speeds comparable to the ultrasonic results. Although each of these methods has its shortcomings, we show that considerable insight can be obtained in the context of a predictive model of Mg2+ and Si4+ coordination statistics as functions of temperature and pressure. We suggest that this can explain the difference between results obtained at ordinary upper mantle magmatic temperatures and those expected for magma oceans.
Quan Zhang; Richard P. Phillips; Stefano Manzoni; Russell L. Scott; A. Christopher Oishi; Adrien Finzi; Edoardo Daly; Rodrigo Vargas; Kimberly A. Novick
2018-01-01
In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This...
Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro
2016-04-29
Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.
Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization
NASA Astrophysics Data System (ADS)
Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu
2017-06-01
The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.
Association between temperature and maternal stress during pregnancy.
Lin, Yanfen; Hu, Wenjing; Xu, Jian; Luo, Zhongcheng; Ye, Xiaofang; Yan, Chonghuai; Liu, Zhiwei; Tong, Shilu
2017-10-01
Maternal psychological stress during pregnancy has essentially been conceptualized as a teratogen. However, little is known about the effect of temperature on maternal stress during pregnancy. The aim of this study is to investigate the relationship between temperature and maternal stress during pregnancy. In 2010, a total of 1931 eligible pregnant women were enrolled across Shanghai from four prenatal-care clinics during their mid-to-late pregnancy. Maternal life-event stress and emotional stress levels during pregnancy were assessed by the "Life Event Scale for Pregnant Women" (LESPW) and "Symptom Checklist-90-Revised Scale" (SCL-90-R), respectively. Exposure to ambient temperature was evaluated based on daily regional average in different moving average and lag days. The generalized estimating equations were used to evaluate the relationship between daily average temperature/temperature difference and maternal stress. After adjusting for relevant confounders, an U-shaped relationship was observed between daily average temperature and maternal Global-Severity-Index (GSI) of the SCL-90-R. Cumulative exposures to extremely low temperatures (< P5, 1.4-10.5℃, lag 0-1 days, 0-2 days and 0-5 days) and extremely high temperatures (≥ P95, 31.2-34.1℃, lag 0-1 days and 0-2 days), and acute exposures to extremely low (lag day 0, 1, 2 and 3) and high (lag day 0, 1) temperatures, all induced higher risks of high GSI (the highest tertile), compared to the risk induced by exposed to an optimal temperature range (20-25℃) (P< 0.05). Increased temperature difference was associated with high maternal GSI (P< 0.05). However, non-significant associations were observed between daily average temperatures/temperature differences and maternal log-transferred LESPW scores. Cumulative and acute exposures to extremely low/high temperatures may both induce emotional stress during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.
Synthesis micro-scale boron nitride nanotubes at low substrate temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajjad, Muhammad, E-mail: msajjadd@gmail.com; Makarov, Vladimir; Morell, Gerardo
2016-07-15
High temperature synthesis methods produce defects in 1D nanomaterials, which ultimately limit their applications. We report here the synthesis of micro-scale boron nitride nanotubes (BNNT) at low substrate temperature (300 {sup o}C) using a pulsed CO{sub 2} laser deposition technique in the presence of catalyst. The electron microscopic analyses have shown the nanotubes distributed randomly on the surface of the substrate. The average diameter (∼0.25 μm) of a nanotube, which is the highest reported value to date, is estimated by SEM data and confirmed by TEM measurements. These nanotubes are promising for high response deep-UV photo-luminescent devices. A detailed synthesismore » mechanism is presented and correlated with the experimental results.« less
Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A
2012-10-01
The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.
Nanoscale assembly of high-temperature oxidation-resistant nanocomposites.
Peng, Xiao
2010-02-01
Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.
Nanoscale assembly of high-temperature oxidation-resistant nanocomposites
NASA Astrophysics Data System (ADS)
Peng, Xiao
2010-02-01
Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.
NASA Astrophysics Data System (ADS)
Banovic, Stephen William
The objective of the present study was to investigate the corrosion behavior of weldable Fe-Al alloys in environments representative of low NOx gas compositions, i.e., high partial pressures of sulfur [p(S2)] and low partial pressures of oxygen [p(O2)]. Through an integrated experimental approach involving thermogravimetric techniques, post-exposure metallographic examination of the corroded samples, and detailed chemical microanalyses of the reaction scales, the effects of aluminum content, temperature, and gas composition on the corrosion behavior were observed. The corrosion behavior of Fe-Al alloys was found to be directly related to the type and morphology of corrosion product that formed during high temperature exposure in the oxidizing/sulfidizing environment. The inhibition stage was characterized by growth of a thin, gamma alumina scale that suppressed excessive degradation of the substrate at all temperatures. Localized mechanical failure of the initial passive scale, in combination with the inability to re-establish itself, was found to result in nodular growth of non-protective sulfide phases across the sample face due to short circuit diffusion through the gamma alumina layer. With the remnants of the initial gamma scale found between the outer and inner scale, it was concluded that these layers grew by iron diffusion outward and sulfur diffusion inward, respectively. The corrosion rate observed during development of these morphologies was directly related to the density of the nodules on the surface and the exposure temperature. The final period observed was the steady-state stage. This behavior was encountered from the onset of exposure for all Fe-5 wt% Al alloys tested, or upon coalescence of the nodular growths. After initially high corrosion rates, the weight gains were found to increase at a steady rate as subsequent growth occurred via diffusion through the continuous scale. Determination of the corrosion product growth mechanism could not be directly obtained from the thermogravimetric data. For samples with relatively high weight gains, enhanced scale growth at the comers and edges of the sample, as well as the morphology of the multi-layered, multi-phase corrosion products, violated the assumptions necessary for data manipulation by this means. The results from this study indicate that weldable compositions of Fe-Al alloys (10 wt% Al) show excellent corrosion resistance to aggressive low NO x gas compositions in the service temperature range (below 600°C). With the potential promise for applications requiring a combination of weldability and corrosion resistance in moderately reducing environments, these alloys are viable candidates for further evaluation for use as sulfidation resistant weld overlay coatings. (Abstract shortened by UMI.)
The influence of outdoor thermal environment on young Japanese females.
Kurazumi, Yoshihito; Ishii, Jin; Kondo, Emi; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Sakoi, Tomonori; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2014-07-01
The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relationship between the physiological and psychological responses of humans and the enhanced conduction-corrected modified effective temperature (ETFe). Subjective experiments were conducted in an outdoor environment. Subjects were exposed to the thermal environment in a standing posture. Air temperature, humidity, air velocity, short wave solar radiation, long wave radiation, ground surface temperature, sky factor, and the green solid angle were measured. The temperatures of skin exposed to the atmosphere and in contact with the ground were measured. Thermal sensation and thermal comfort were measured by means of rating the whole-body thermal sensation (cold-hot) and the whole body thermal comfort (comfortable-uncomfortable) on a linear scale. Linear rating scales are given for the hot (100) and cold (0), and comfortable (100) and uncomfortable (0) directions only. Arbitrary values of 0 and 100 were assigned to each endpoint, the reported values read in, and the entire length converted into a numerical value with an arbitrary scale of 100 to give a linear rating scale. The ETFe considered to report a neither hot nor cold, thermally neutral sensation of 50 was 35.9 °C, with 32.3 °C and 42.9 °C, respectively, corresponding to the low and high temperature ends of the ETFe considered to report a neither comfortable nor uncomfortable comfort value of 50. The mean skin temperature considered to report a neither hot nor cold, thermally neutral sensation of 50 was 33.3 °C, with 31.0 °C and 34.3 °C, respectively, corresponding to the low and high temperature ends of the mean skin temperature considered to report a neither comfortable nor uncomfortable comfort value of 50. The acceptability raised the mean skin temperature even for thermal environment conditions in which ETFe was high.
The influence of outdoor thermal environment on young Japanese females
NASA Astrophysics Data System (ADS)
Kurazumi, Yoshihito; Ishii, Jin; Kondo, Emi; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Sakoi, Tomonori; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2014-07-01
The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relationship between the physiological and psychological responses of humans and the enhanced conduction-corrected modified effective temperature (ETFe). Subjective experiments were conducted in an outdoor environment. Subjects were exposed to the thermal environment in a standing posture. Air temperature, humidity, air velocity, short wave solar radiation, long wave radiation, ground surface temperature, sky factor, and the green solid angle were measured. The temperatures of skin exposed to the atmosphere and in contact with the ground were measured. Thermal sensation and thermal comfort were measured by means of rating the whole-body thermal sensation (cold-hot) and the whole body thermal comfort (comfortable-uncomfortable) on a linear scale. Linear rating scales are given for the hot (100) and cold (0), and comfortable (100) and uncomfortable (0) directions only. Arbitrary values of 0 and 100 were assigned to each endpoint, the reported values read in, and the entire length converted into a numerical value with an arbitrary scale of 100 to give a linear rating scale. The ETFe considered to report a neither hot nor cold, thermally neutral sensation of 50 was 35.9 °C, with 32.3 °C and 42.9 °C, respectively, corresponding to the low and high temperature ends of the ETFe considered to report a neither comfortable nor uncomfortable comfort value of 50. The mean skin temperature considered to report a neither hot nor cold, thermally neutral sensation of 50 was 33.3 °C, with 31.0 °C and 34.3 °C, respectively, corresponding to the low and high temperature ends of the mean skin temperature considered to report a neither comfortable nor uncomfortable comfort value of 50. The acceptability raised the mean skin temperature even for thermal environment conditions in which ETFe was high.
Reinforcements: The key to high performance composite materials
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.
1990-01-01
Better high temperature fibers are the key to high performance, light weight composite materials. However, current U.S. and Japanese fibers still have inadequate high temperature strength, creep resistance, oxidation resistance, modulus, stability, and thermal expansion match with some of the high temperature matrices being considered for future aerospace applications. In response to this clear deficiency, both countries have research and development activities underway. Once successful fibers are identified, their production will need to be taken from laboratory scale to pilot plant scale. In such efforts it can be anticipated that the Japanese decisions will be based on longer term criteria than those applied in the U.S. Since the initial markets will be small, short term financial criteria may adversely minimize the number and strength of U.S. aerospace materials suppliers to well into the 21st century. This situation can only be compounded by the Japanese interests in learning to make commercial products with existing materials so that when the required advanced fibers eventually do arrive, their manufacturing skills will be developed.
Temperature and Structure of Active Eruptions from a Handheld Camcorder
NASA Astrophysics Data System (ADS)
Radebaugh, Jani; Carling, Greg T.; Saito, Takeshi; Dangerfield, Anne; Tingey, David G.; Lorenz, Ralph D.; Lopes, Rosaly M.; Howell, Robert R.; Diniega, Serina; Turtle, Elizabeth P.
2014-11-01
A commercial handheld digital camcorder can operate as a high-resolution, short-wavelength, low-cost thermal imaging system for monitoring active volcanoes, when calibrated against a laboratory heated rock of similar composition to the given eruptive material. We utilize this system to find full pixel brightness temperatures on centimeter scales at close but safe proximity to active lava flows. With it, observed temperatures of a Kilauea tube flow exposed in a skylight reached 1200 C, compared with pyrometer measurements of the same flow of 1165 C, both similar to reported eruption temperatures at that volcano. The lava lake at Erta Ale, Ethiopia had crack and fountain temperatures of 1175 C compared with previous pyrometer measurements of 1165 C. Temperature calibration of the vigorously active Marum lava lake in Vanuatu is underway, challenges being excessive levels of gas and distance from the eruption (300 m). Other aspects of the fine-scale structure of the eruptions are visible in the high-resolution temperature maps, such as flow banding within tubes, the thermal gradient away from cracks in lake surfaces, heat pathways through pahoehoe crust and temperature zoning in spatter and fountains. High-resolution measurements such as these reveal details of temperature, structure, and change over time at the rapidly evolving settings of active lava flows. These measurement capabilities are desirable for future instruments exploring bodies with active eruptions like Io, Enceladus and possibly Venus.
The Kelvin and Temperature Measurements
Mangum, B. W.; Furukawa, G. T.; Kreider, K. G.; Meyer, C. W.; Ripple, D. C.; Strouse, G. F.; Tew, W. L.; Moldover, M. R.; Johnson, B. Carol; Yoon, H. W.; Gibson, C. E.; Saunders, R. D.
2001-01-01
The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for “on-site” thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by calibration of blackbody sources, tungsten-strip lamps, and pyrometers. As an example of the research efforts in absolute radiometry, which impacts the NIST spectral irradiance and radiance scales, results with filter radiometers and a high-temperature blackbody are summarized. PMID:27500019
Auroral origin of medium scale gravity waves in neutral composition and temperature
NASA Technical Reports Server (NTRS)
Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.
1979-01-01
The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.
High-resolution chemical composition of geothermal scalings from Hungary: Preliminary results
NASA Astrophysics Data System (ADS)
Boch, Ronny; Dietzel, Martin; Deák, József; Leis, Albrecht; Mindszenty, Andrea; Demeny, Attila
2015-04-01
Geothermal fluids originating from several hundreds to thousands meters depth mostly hold a high potential for secondary mineral precipitation (scaling) due to high total dissolved solid contents at elevated temperature and pressure conditions. The precipitation of e.g. carbonates, sulfates, sulfides, and silica has shown to cause severe problems in geothermal heat and electric power production, when clogging of drill-holes, downhole pumps, pipes and heat exchangers occurs (e.g. deep geothermal doublet systems). Ongoing scaling reduces the efficiency in energy extraction and might even question the abandonment of installations in worst cases. In an attempt to study scaling processes both temporally and spatially we collected mineral precipitates from selected sites in Hungary (Bükfürdo, Szechenyi, Szentes, Igal, Hajduszoboszlo). The samples of up to 8 cm thickness were recovered from different positions of the geothermal systems and precipitated from waters of various temperatures (40-120 °C) and variable overall chemical composition. Most of these scalings show fine lamination patterns representing mineral deposition from weeks up to 45 years at our study sites. Solid-fluid interaction over time captured in the samples are investigated applying high-resolution analytical techniques such as laser-ablation mass-spectrometry and electron microprobe, micromill-sampling for stable isotope analysis, and micro-XRD combined with hydrogeochemical modeling. A detailed investigation of the processes determining the formation and growth of precipitates can help to elucidate the short-term versus long-term geothermal performance with regard to anthropogenic and natural reservoir and production dynamics. Changes in fluid chemistry, temperature, pressure, pH, degassing rate (CO2) and flow rate are reflected by the mineralogical, chemical and isotopic composition of the precipitates. Consequently, this high-resolution approach is intended as a contribution to decipher the environmental conditions during the formation of the investigated scalings and to increase our knowledge on retarding and preventive measures of scaling for geothermal applications.
Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.
2016-01-01
The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471
Metal Hydrides for High-Temperature Power Generation
Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; ...
2015-08-10
Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m 3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less
NASA Astrophysics Data System (ADS)
Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.
2016-04-01
Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.
NASA Astrophysics Data System (ADS)
Knist, Sebastian; Goergen, Klaus; Simmer, Clemens
2018-02-01
We perform simulations with the WRF regional climate model at 12 and 3 km grid resolution for the current and future climates over Central Europe and evaluate their added value with a focus on the daily cycle and frequency distribution of rainfall and the relation between extreme precipitation and air temperature. First, a 9 year period of ERA-Interim driven simulations is evaluated against observations; then global climate model runs (MPI-ESM-LR RCP4.5 scenario) are downscaled and analyzed for three 12-year periods: a control, a mid-of-century and an end-of-century projection. The higher resolution simulations reproduce both the diurnal cycle and the hourly intensity distribution of precipitation more realistically compared to the 12 km simulation. Moreover, the observed increase of the temperature-extreme precipitation scaling from the Clausius-Clapeyron (C-C) scaling rate of 7% K-1 to a super-adiabatic scaling rate for temperatures above 11 °C is reproduced only by the 3 km simulation. The drop of the scaling rates at high temperatures under moisture limited conditions differs between sub-regions. For both future scenario time spans both simulations suggest a slight decrease in mean summer precipitation and an increase in hourly heavy and extreme precipitation. This increase is stronger in the 3 km runs. Temperature-extreme precipitation scaling curves in the future climate are projected to shift along the 7% K-1 trajectory to higher peak extreme precipitation values at higher temperatures. The curves keep their typical shape of C-C scaling followed by super-adiabatic scaling and a drop-off at higher temperatures due to moisture limitation.
Scaling relation for high-temperature biodiesel surrogate ignition delay times
Campbell, Matthew F.; Davidson, David F.; Hanson, Ronald K.
2015-10-11
High-temperature Arrhenius ignition delay time correlations are useful for revealing the underlying parameter dependencies of combustion models, for simplifying and optimizing combustion mechanisms for use in engine simulations, for scaling experimental data to new conditions for comparison purposes, and for guiding in experimental design. Here, we have developed a scaling relationship for Fatty Acid Methyl Ester (FAME) ignition time data taken at high temperatures in 4%O 2/Ar mixtures behind reflected shocks using an aerosol shock tube: τ ign [ms] = 2.24 x 10 -6 [ms] (P [atm]) -.41 (more » $$\\phi$$) 0.30(C n) -.61 x exp $$ \\left(\\frac{37.1 [kcal/mol]}{\\hat{R}_u [kcal / mol K] T [K]}\\right) $$ In addition, we have combined our ignition delay time data for methyl decanoate, methyl palmitate, methyl oleate, and methyl linoleate with other experimental results in the literature in order to derive fuel-specific oxygen-mole-fraction scaling parameters for these surrogates. In conclusion, in this article, we discuss the significance of the parameter values, compare our correlation to others found in the literature for different classes of fuels, and contrast the above expression’s performance with correlations obtained using leading FAME kinetic models in 4%O 2/Ar mixtures.« less
Multitude of core-localized shear Alfvén waves in a high-temperature fusion plasma.
Nazikian, R; Berk, H L; Budny, R V; Burrell, K H; Doyle, E J; Fonck, R J; Gorelenkov, N N; Holcomb, C; Kramer, G J; Jayakumar, R J; La Haye, R J; McKee, G R; Makowski, M A; Peebles, W A; Rhodes, T L; Solomon, W M; Strait, E J; Vanzeeland, M A; Zeng, L
2006-03-17
Evidence is presented for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments confirm wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are comparable to the scale length of electrostatic drift wave turbulence. Theoretical analysis confirms a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.
NASA Astrophysics Data System (ADS)
Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg
2017-02-01
Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.
Exploration of the Structure of the High Temperature Phase of the Hexagonal RMnO3 System
NASA Astrophysics Data System (ADS)
Wu, T.; Tyson, T. A.; Zhang, H.; Yu, T.; Page, K.; Ghose, S.
Temperature dependent structural studies of the high temperature phase of hexagonal RMnO3 systems have been conducted. Both long range and local structural probes have been utilized. Discussions of the appropriate space groups and local distortions relevant to length scale will be given. Ab initio MD simulations are used to interpret the observations. This work is supported by DOE Grant DE-FG02-07ER46402.
NASA Astrophysics Data System (ADS)
Guo, Xiaoxiang; Xie, Xie; Ren, Jingli; Laktionova, Marina; Tabachnikova, Elena; Yu, Liping; Cheung, Wing-Sum; Dahmen, Karin A.; Liaw, Peter K.
2017-12-01
This study investigates the plastic behavior of the Al0.5CoCrCuFeNi high-entropy alloy at cryogenic temperatures. The samples are uniaxially compressed at 4.2 K, 7.5 K, and 9 K. A jerky evolution of stress and stair-like fluctuation of strain are observed during plastic deformation. A scaling relationship is detected between the released elastic energy and strain-jump sizes. Furthermore, the dynamical evolution of serrations is characterized by the largest Lyapunov exponent. The largest Lyapunov exponents of the serrations at the three temperatures are all negative, which indicates that the dynamical regime is non-chaotic. This trend reflects an ordered slip process, and this ordered slip process exhibits a more disordered slip process, as the temperature decreases from 9 K to 4.2 K or 7.5 K.
Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors
NASA Astrophysics Data System (ADS)
Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.
2013-01-01
Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures.
Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, A.; Villanueva, R.; Vie, D.
2013-01-15
Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and themore » nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.« less
Anomalous glassy dynamics in simple models of dense biological tissue
NASA Astrophysics Data System (ADS)
Sussman, Daniel M.; Paoluzzi, M.; Marchetti, M. Cristina; Manning, M. Lisa
2018-02-01
In order to understand the mechanisms for glassy dynamics in biological tissues and shed light on those in non-biological materials, we study the low-temperature disordered phase of 2D vertex-like models. Recently it has been noted that vertex models have quite unusual behavior in the zero-temperature limit, with rigidity transitions that are controlled by residual stresses and therefore exhibit very different scaling and phenomenology compared to particulate systems. Here we investigate the finite-temperature phase of two-dimensional Voronoi and Vertex models, and show that they have highly unusual, sub-Arrhenius scaling of dynamics with temperature. We connect the anomalous glassy dynamics to features of the potential energy landscape associated with zero-temperature inherent states.
Compact Ceramic Microchannel Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewinsohn, Charles
The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less
NASA Astrophysics Data System (ADS)
Pilipenko, S. V.; Kovalev, Y. Y.; Andrianov, A. S.; Bach, U.; Buttaccio, S.; Cassaro, P.; Cimò, G.; Edwards, P. G.; Gawroński, M. P.; Gurvits, L. I.; Hovatta, T.; Jauncey, D. L.; Johnson, M. D.; Kovalev, Yu A.; Kutkin, A. M.; Lisakov, M. M.; Melnikov, A. E.; Orlati, A.; Rudnitskiy, A. G.; Sokolovsky, K. V.; Stanghellini, C.; de Vicente, P.; Voitsik, P. A.; Wolak, P.; Zhekanis, G. V.
2018-03-01
The high brightness temperatures, Tb ≳ 1013 K, detected in several active galactic nuclei by RadioAstron space VLBI observations challenge theoretical limits. Refractive scattering by the interstellar medium may affect such measurements. We quantify the scattering properties and the sub-mas scale source parameters for the quasar B0529+483. Using RadioAstron correlated flux density measurements at 1.7, 4.8, and 22 GHz on projected baselines up to 240 000 km we find two characteristic angular scales in the quasar core, about 100 and 10 μas. Some indications of scattering substructure are found. Very high brightness temperatures, Tb ≥ 1013 K, are estimated at 4.8 and 22 GHz even taking into account the refractive scattering. Our findings suggest a clear dominance of the particle energy density over the magnetic field energy density in the core of this quasar.
Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang
2018-06-19
In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.
Nonlinear modulation of the HI power spectrum on ultra-large scales. I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeh, Obinna; Maartens, Roy; Santos, Mario, E-mail: umeobinna@gmail.com, E-mail: roy.maartens@gmail.com, E-mail: mgrsantos@uwc.ac.za
2016-03-01
Intensity mapping of the neutral hydrogen brightness temperature promises to provide a three-dimensional view of the universe on very large scales. Nonlinear effects are typically thought to alter only the small-scale power, but we show how they may bias the extraction of cosmological information contained in the power spectrum on ultra-large scales. For linear perturbations to remain valid on large scales, we need to renormalize perturbations at higher order. In the case of intensity mapping, the second-order contribution to clustering from weak lensing dominates the nonlinear contribution at high redshift. Renormalization modifies the mean brightness temperature and therefore the evolutionmore » bias. It also introduces a term that mimics white noise. These effects may influence forecasting analysis on ultra-large scales.« less
Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
2012-01-01
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.
NASA Astrophysics Data System (ADS)
Morikawa, Junko; Takasu, Hiroki; Zamengo, Massimiliano; Kato, Yukitaka
2017-05-01
Li-Metal oxides (typical example: lithium ortho-silicate Li4SiO4) are regarded as a novel solid carbon dioxide CO2 absorbent accompanied by an exothermic reaction. At temperatures above 700°C the sorbent is regenerated with the release of the captured CO2 in an endothermic reaction. As the reaction equilibrium of this reversible chemical reaction is controllable only by the partial pressure of CO2, the system is regarded as a potential candidate for chemical heat storage at high temperatures. In this study, we applied our recent developed mobile type instrumentation of micro-scale infrared thermal imaging system to observe the heat of chemical reaction of Li4SiO4 and CO2 at temperature higher than 600°C or higher. In order to quantify the micro-scale heat transfer and heat exchange in the chemical reaction, the superimpose signal processing system is setup to determine the precise temperature. Under an ambient flow of carbon dioxide, a powder of Li4SiO4 with a diameter 50 micron started to shine caused by an exothermic chemical reaction heat above 600°C. The phenomena was accelerated with increasing temperature up to 700°C. At the same time, the reaction product lithium carbonate (Li2CO3) started to melt with endothermic phase change above 700°C, and these thermal behaviors were captured by the method of thermal imaging. The direct measurement of multiple thermal phenomena at high temperatures is significant to promote an efficient design of chemical heat storage materials. This is the first observation of the exothermic heat of the reaction of Li4SiO4 and CO2 at around 700°C by the thermal imaging method.
NASA Astrophysics Data System (ADS)
Wroblewski, D. E.; Werne, J.; Cote, O.; Hacker, J.; Dobosy, R.
2010-12-01
High-resolution turbulence measurements of temperature and three components of velocity were acquired from the GROB 520T EGRETT high altitude research aircraft equipped with three NOAA/FRD built BAT probes. The research campaign spanned eight years with the goal of characterizing clear air turbulence (CAT) and optical turbulence (OpT) in the upper troposphere and lower stratosphere (UTLS), focusing on scales from 1 meter to 1 km, a range that encompasses three-dimensional phenomena critical to CAT and OpT, but for which a dearth of experimental data exists. This talk will cover structure function analysis from 129 separate level flight segments representing 41 hours of flight time and 12,600 km of flight distance. The scaling behavior for sub 100- meter scales will be discussed, with an emphasis on Kelvin-Helmholtz (KH) shear layer development as a phenomenological model for this scale range. Comparisons with micro-scale, direct numerical simulations of KH billows will be presented.
NASA Technical Reports Server (NTRS)
King, W. E.; Ethridge, E. C.
1985-01-01
The role of trace additions of reactive elements like Y, Ce, Th, or Hf to Cr bearing alloys was studied by applying a new developed technique of transverse section analytical electron microscopy. This reactive-element effect improves the high temperature oxidation resistance of alloys by strongly reducing the high temperature oxidation rate and enhancing the adhesion of the oxide scale, however, the mechanisms for this important effect remain largely unknown. It is indicated that the presence of yttrium affects the oxidation of Fe-Cr-Y alloys in at least two ways. The reactive element alters the growth mechanism of the oxide scale as evidenced by the marked influence of the reactive element on the oxide scale microstructure. The present results also suggest that reactive-element intermetallic compounds, which internally oxidize in the metal during oxidation, act as sinks for excess vacancies thus inhibiting vacancy condensation at the scale-metal interface and possibly enhancing scale adhesion.
NASA Astrophysics Data System (ADS)
Grove, Timothy L.; Baker, Michael B.; Kinzler, Rosamond J.
1984-10-01
The rate of CaAl-NaSi interdiffusion in plagioclase feldspar was determined under 1 atm anhydrous conditions over the temperature range 1400° to 1000°C in calcic plagioclase (An 80-81) by homogenizing coherent exsolution lamellae. The dependence of the average interdiffusion coefficient on temperature is given by the expression: D˜ = 10.99 ( cm 2/sec) exp (-123.4( kcal/mol)/RT), (T in °K). This value is for diffusion perpendicular to the (03 1¯) interface of the lamellae. CaAl-NaSi interdiffusion is 4 to 5 orders of magnitude slower than oxygen diffusion in the temperature range 1400° to 1200°C and possibly 10 orders of magnitude slower at subsolidus temperatures. The large differences in diffusion rates explain the apparent contradiction posed by the plagioclases of large layered intrusions ( e.g., the Skaergaard), which retain delicate Ca, Na compositional zoning profiles on the micron scale, but have undergone complete oxygen isotopic exchange with heated meteoric groundwater from the surrounding wall rocks. CaAl-NaSi diffusion is slow, the closure temperature is high (within the solidus-liquidus interval), and Ca-Na zoning is preserved. Oxygen diffusion is faster, the closure temperature is lower (350°-400°C) and the feldspars exchange oxygen with the low-temperature hydrothermal fluids. The complex micron-scale oscillatory zones in plagioclase can also be used as cooling rate speedometers for volcanic and plutonic plagioclase. Cooling histories typical of large mafic intrusions ( e.g. the Stillwater) are slow, begin at high initial temperatures (1200°C) and result in homogenization of oscillatory zones on the scale of 10 microns. The oscillatory zones found in the plagioclase of granodioritic plutons are preserved because cooling is initiated at a lower temperature (1000°C) limiting diffusion to submicron length scales despite the slow cooling rate of the intrusion.
Self-Correcting Electronically-Scanned Pressure Sensor
NASA Technical Reports Server (NTRS)
Gross, C.; Basta, T.
1982-01-01
High-data-rate sensor automatically corrects for temperature variations. Multichannel, self-correcting pressure sensor can be used in wind tunnels, aircraft, process controllers and automobiles. Offers data rates approaching 100,000 measurements per second with inaccuracies due to temperature shifts held below 0.25 percent (nominal) of full scale over a temperature span of 55 degrees C.
ERIC Educational Resources Information Center
Ucke, C.; Schlichting, H. J.
2017-01-01
This relatively rare thermometer has a rather unusual display: lower temperatures are located at the top of the scale, higher ones at the bottom. A sphere on a chain floats in a suitable liquid, sinking at high temperatures when the density of the liquid decreases and rising in the increased density at low temperatures. With reasonable effort and…
Assessment of choke valve erosion in a high-pressure, high-temperature gas condensate well using TLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birchenough, P.M.; Cornally, D.; Dawson, S.G.B.
1994-12-31
Many planned new developments in the North Sea will involve the exploitation of hostile high pressure, high temperature gas condensate reserves. The extremely high pressure letdown over the wellhead choke leads to very high flow velocities, and consequent risks of erosion damage occurring to the choke internals. In a recent study, measurements of erosion have been performed during an offshore well test under flowing conditions using advanced Thin Layer Activation techniques and scaled Laboratory tests.
Shot noise at high temperatures
NASA Astrophysics Data System (ADS)
Gutman, D. B.; Gefen, Yuval
2003-07-01
We consider the possibility of measuring nonequilibrium properties of the current correlation functions at high temperatures (and small bias). Through the example of the third cumulant of the current (S3) we demonstrate that odd-order correlation functions represent nonequilibrium physics even at small external bias and high temperatures. We calculate S3=y(eV/T)e2I for a quasi-one-dimensional diffusive constriction. We calculate the scaling function y in two regimes: when the scattering processes are purely elastic and when the inelastic electron-electron scattering is strong. In both cases we find that y interpolates between two constants. In the low- (high-) temperature limit y is strongly (weakly) enhanced (suppressed) by the electron-electron scattering.
Hydrogen Annealing Of Single-Crystal Superalloys
NASA Technical Reports Server (NTRS)
Smialek, James L.; Schaeffer, John C.; Murphy, Wendy
1995-01-01
Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.
Johnson Noise Thermometry in the range 505 K to 933 K
NASA Astrophysics Data System (ADS)
Tew, Weston; Labenski, John; Nam, Sae Woo; Benz, Samuel; Dresselhaus, Paul; Martinis, John
2006-03-01
The International Temperature Scale of 1990 (ITS-90) is an artifact-based temperature scale, T90, designed to approximate thermodynamic temperature T. The thermodynamic errors of the ITS-90, characterized as the value of T-T90, only recently have been quantified by primary thermodynamic methods. Johnson Noise Thermometry (JNT) is a primary method which can be applied over wide temperature ranges, and NIST is currently using JNT to determine T-T90 in the range 505 K to 933 K, overlapping both acoustic gas-based and radiation-based thermometry. Advances in digital electronics have now made the computationally intensive processing required for JNT viable using noise voltage correlation in the frequency domain. We have also optimized the design of the 5-wire JNT temperature probes to minimize electromagnetic interference and transmission line effects. Statistical uncertainties under 50 μK/K are achievable using relatively modest bandwidths of ˜100 kHz. The NIST JNT system will provide critical data for T-T90 linking together the highly accurate acoustic gas-based data at lower temperatures with the higher-temperature radiation-based data, forming the basis for a new International Temperature Scale with greatly improved thermodynamic accuracy.
Broadband, high-resolution investigation of advanced absorption line shapes at high temperature
NASA Astrophysics Data System (ADS)
Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.
2017-08-01
Spectroscopic studies of planetary atmospheres and high-temperature processes (e.g., combustion) require absorption line-shape models that are accurate over extended temperature ranges. To date, advanced line shapes, like the speed-dependent Voigt and Rautian profiles, have not been tested above room temperature with broadband spectrometers. We investigate pure water vapor spectra from 296 to 1305 K acquired with a dual-frequency comb spectrometer spanning from 6800 to 7200 c m-1 at a point spacing of 0.0033 c m-1 and absolute frequency accuracy of <3.3 ×10-6c m-1 . Using a multispectral fitting analysis, we show that only the speed-dependent Voigt accurately models this temperature range with a single power-law temperature-scaling exponent for the broadening coefficients. Only the data from the analysis using this profile fall within theoretical predictions, suggesting that this mechanism captures the dominant narrowing physics for these high-temperature conditions.
NASA Technical Reports Server (NTRS)
Orton, Glenn S.; Friedson, A. James; Baines, Kevin H.; Martin, Terry Z.; West, Robert A.; Caldwell, John; Hammel, Heidi B.; Bergstralh, Jay T.; Malcolm, Michael E.
1991-01-01
The spatial organization and time dependence of Jupiter's stratospheric temperatures have been measured by observing thermal emission from the 7.8-micrometer CH4 band. These temperatures, observed through the greater part of a Jovian year, exhibit the influence of seasonal radiative forcing. Distinct bands of high temperature are located at the poles and midlatitudes, while the equator alternates between warm and cold with a period of approximately 4 years. Substantial longitudinal variability is often observed within the warm midlatitude bands, and occasionally elsewhere on the planet. This variability includes small, localized structures, as well as large-scale waves with wavelengths longer than about 30,000 kilometers. The amplitudes of the waves vary on a time scale of about 1 month; structures on a smaller scale may have lifetimes of only days. Waves observed in 1985, 1987, and 1988 propagated with group velocities less than + or - 30 meters/sec.
Combined heat and power supply using Carnot engines
NASA Astrophysics Data System (ADS)
Horlock, J. H.
The Marshall Report on the thermodynamic and economic feasibility of introducing large scale combined heat and electrical power generation (CHP) into the United Kingdom is summarized. Combinations of reversible power plant (Carnot engines) to meet a given demand of power and heat production are analyzed. The Marshall Report states that fairly large scale CHP plants are an attractive energy saving option for areas of high heat load densities. Analysis shows that for given requirements, the total heat supply and utilization factor are functions of heat output, reservoir supply temperature, temperature of heat rejected to the reservoir, and an intermediate temperature for district heating.
Enhancing Tensile Response of Sn Using Cu at Nano Length Scale and High Temperature Extrusion
2009-02-01
temperature extruded Sn-1.1Cu 664 samples suggesting the presence of lenticular pores. This aspect ratio of pores was only 1.7 for high temperature Sn...resulting in filling the voids or breaking the lenticular pores into small pores besides higher atomic diffusion rates [8...relatively round pores were observed for hot extruded Sn-Cu samples that helps to increase the strength. The lenticular pores (higher aspect ratio) in
NASA Astrophysics Data System (ADS)
Alinger, Matthew J.
Iron powders containing ≈14wt%Cr and smaller amounts of W and Ti were mechanically alloyed (MA) by ball milling with Y2O3 and subsequently either hot consolidated by hot extrusion or isostatic pressing, or powder annealed, producing very high densities of nm-scale coherent transition phase precipitates, or Y-Ti-O nano-clusters (NCs), along with fine-scale grains. These so-called nanostructured ferritic alloys (NFAs) manifest very high strength (static and creep) and corrosion-oxidation resistance up to temperatures in excess of 800°C. We used a carefully designed matrix of model MA powders and consolidated alloys to systematically assess the NC evolutions during each processing step, and to explore the combined effects of alloy composition and a number of processing variables, including the milling energy, consolidation method and the time and temperature of annealing of the as-milled powders. The stability of the NCs was also characterized during high-temperate post-consolidation annealing of a commercial NFA, MA957. The micro-nanostructural evolutions, and their effects on the alloy strength, were characterized by a combination of techniques, including XRD, TEM, atom-probe tomography (APT) and positron annihilation spectroscopy (PAS). However, small angle neutron scattering (SANS) was the primary tool used to characterize the nm-scale precipitates. The effect of the micro-nanostructure on the alloy strength was assessed by microhardness measurements. The studies revealed the critical sequence-of-events in forming the NCs, involves dissolution of Y, Ti and O during ball milling. The supersaturated solutes then precipitate during hot consolidation or powder annealing. The precipitate volume fraction increases with both the milling energy and Ti additions at lower consolidation and annealing temperatures (850°C), and at higher processing temperatures (1150°C) both are needed to produce NCs. The non-equilibrium kinetics of NC formation are nucleation controlled and independent of time with an effective activation energy of ≈60 kJ/mole. High temperature precipitate coarsening and transformations to oxide phases show a high effective activation energy (≈880 kJ/mole) and have a time dependence characteristic of a dislocation pipe diffusion mechanism. The NCs act as weak to moderately strong (alpha = 0.1 to 0.5) obstacles that can be sheared by dislocations, where the obstacle strength increases with alpha ≈0.37log(r/2b).
Black holes from large N singlet models
NASA Astrophysics Data System (ADS)
Amado, Irene; Sundborg, Bo; Thorlacius, Larus; Wintergerst, Nico
2018-03-01
The emergent nature of spacetime geometry and black holes can be directly probed in simple holographic duals of higher spin gravity and tensionless string theory. To this end, we study time dependent thermal correlation functions of gauge invariant observables in suitably chosen free large N gauge theories. At low temperature and on short time scales the correlation functions encode propagation through an approximate AdS spacetime while interesting departures emerge at high temperature and on longer time scales. This includes the existence of evanescent modes and the exponential decay of time dependent boundary correlations, both of which are well known indicators of bulk black holes in AdS/CFT. In addition, a new time scale emerges after which the correlation functions return to a bulk thermal AdS form up to an overall temperature dependent normalization. A corresponding length scale was seen in equal time correlation functions in the same models in our earlier work.
NASA Astrophysics Data System (ADS)
Biernath, Christian; Hauck, Julia; Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart
2014-05-01
Persons susceptible to allergenic pollen grains need to apply suppressive pharmacy before the occurrence of the first allergy symptoms. Patient targeted medication could be improved if forecasts of the allergenic potential of pollen (biochemical composition of the pollen grain) and the onset, duration, and end of the pollen season are precise on regional scale. In plant tissue the biochemical composition may change within hours due to the resource availability for plant growth and plant internal nutrient re-mobilization. As these processes highly depend on both, the environmental conditions and the development stage of a plant, precise simulations of the onset and duration of the flowering period are crucial to determine the allergenic potential of tissues and pollen. Here, dynamic plant models that consider the dependence of the chemical composition of tissue on the development stage of the plant embedded in process-based ecosystem models seem promising tools; however, today dynamic plant growth is widely ignored in simulations of atmospheric pollen loads. In this study we raise the question whether frequently applied temperature sum models (TSM) could precisely simulate the plant development stages in case of birches on regional scale. These TSM integrate average temperatures above a base temperature below which no further plant development is assumed. In this study, we therefore tested the ability of TSM to simulate the flowering period of birches on more than 100 sites in Bavaria, Germany over a period of three years (2010-2012). Our simulations indicate that the often applied base temperatures between 2.3°C and 3.5°C for the integration of daily or hourly average temperatures, respectively, in Europe are too high to adequately simulate the onset of birch flowering in Bavaria where a base temperature of 1°C seems more convenient. A more regional calibration of the models to sub-regions in Bavaria with comparable climatic conditions could further improve the simulation results if compared to simulations using a model that was adjusted to only one representative location in Bavaria. Our simulation results suggest that birch phenology needs to be modelled on a more regional scale to derive precise predictions of the flowering period. Some weak simulation results are suspected to be due to the high genetic diversity of birches and their high adaptive potential to a wide range of environmental conditions which indeed is a characteristic for many pioneer species. The high adaptive potential could be an explanation why authors who calibrate their models to other climatic regions observe better simulation results using higher base temperatures. However, our simulations indicate that the simulation results may be biased if the base temperatures are assumed constant for one species and transferred to larger or smaller scales, to other regions with different climatic conditions, or when applied to extrapolate birch pollen seasons to future climate conditions.
NASA Astrophysics Data System (ADS)
Blanco, K.; Aponte, H.; Vera, E.
2017-12-01
For all Industrial sector is important to extend the useful life of the materials that they use in their process, the scales of CaCO3 are common in situation where fluids are handled with high concentration of ions and besides this temperatures and CO2 concentration dissolved, that scale generates large annual losses because there is a reduction in the process efficiency or corrosion damage under deposit, among other. In order to find new alternatives to this problem, the citric acid was evaluated as scale of calcium carbonate inhibition in critical condition of temperature and concentration of CO2 dissolved. Once the results are obtained it was carried out the statistical evaluation in order to generate an equation that allow to see that behaviour, giving as result, a good efficiency of inhibition to the conditions evaluated the scales of products obtained were characterized through scanning electron microscopy.
Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics
McCaul, Margaret; Barland, Jack; Cleary, John; Cahalane, Conor; McCarthy, Tim; Diamond, Dermot
2016-01-01
The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation. PMID:27589770
Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics
Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana
2013-01-01
Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical species is higher than at any time in the last 86,000 years. PMID:24312614
Millennial-scale temperature change velocity in the continental northern Neotropics.
Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana
2013-01-01
Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical species is higher than at any time in the last 86,000 years.
McCaul, Margaret; Barland, Jack; Cleary, John; Cahalane, Conor; McCarthy, Tim; Diamond, Dermot
2016-08-31
The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.
From mean-field localized magnetism to itinerant spin fluctuations in the "nonmetallic metal" FeCrAs
NASA Astrophysics Data System (ADS)
Plumb, K. W.; Stock, C.; Rodriguez-Rivera, J. A.; Castellan, J.-P.; Taylor, J. W.; Lau, B.; Wu, W.; Julian, S. R.; Kim, Young-June
2018-05-01
FeCrAs displays an unusual electrical response that is neither metallic in character nor divergent at low temperatures, as expected for an insulating response, and therefore it has been termed a "nonmetal metal." The anomalous resistivity occurs for temperatures below ˜900 K. We have carried out neutron scattering experiments on powder and single crystal samples to study the magnetic dynamics and critical fluctuations in FeCrAs. Magnetic neutron diffraction measurements find Cr3 + magnetic order setting in at TN=115 K ˜10 meV with a mean-field critical exponent. Using neutron spectroscopy we observe gapless, high velocity, magnetic fluctuations emanating from magnetic positions with propagation wave vector q⃗0=(1/3 ,1/3 ) , which persists up to at least 80 meV ˜927 K, an energy scale much larger than TN. Despite the mean-field magnetic order at low temperatures, the magnetism in FeCrAs therefore displays a response which resembles that of itinerant magnets at high energy transfers. We suggest that the presence of stiff high-energy spin fluctuations extending up to a temperature scale of ˜900 K is the origin of the unusual temperature dependence of the resistivity.
Development of Creep-Resistant, Alumina-Forming Ferrous Alloys for High-Temperature Structural Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukinori; Brady, Michael P.; Muralidharan, Govindarajan
This paper overviews recent advances in developing novel alloy design concepts of creep-resistant, alumina-forming Fe-base alloys, including both ferritic and austenitic steels, for high-temperature structural applications in fossil-fired power generation systems. Protective, external alumina-scales offer improved oxidation resistance compared to chromia-scales in steam-containing environments at elevated temperatures. Alloy design utilizes computational thermodynamic tools with compositional guidelines based on experimental results accumulated in the last decade, along with design and control of the second-phase precipitates to maximize high-temperature strengths. The alloys developed to date, including ferritic (Fe-Cr-Al-Nb-W base) and austenitic (Fe-Cr-Ni-Al-Nb base) alloys, successfully incorporated the balanced properties of steam/water vapor-oxidationmore » and/or ash-corrosion resistance and improved creep strength. Development of cast alumina-forming austenitic (AFA) stainless steel alloys is also in progress with successful improvement of higher temperature capability targeting up to ~1100°C. Current alloy design approach and developmental efforts with guidance of computational tools were found to be beneficial for further development of the new heat resistant steel alloys for various extreme environments.« less
Oxidation resistant high creep strength austenitic stainless steel
Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.
2010-06-29
An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.
Higher climatological temperature sensitivity of soil carbon in cold than warm climates
NASA Astrophysics Data System (ADS)
Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.
2017-11-01
The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.
Numerical renormalization group method for entanglement negativity at finite temperature
NASA Astrophysics Data System (ADS)
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
Novel AlInN/GaN integrated circuits operating up to 500 °C
NASA Astrophysics Data System (ADS)
Gaska, R.; Gaevski, M.; Jain, R.; Deng, J.; Islam, M.; Simin, G.; Shur, M.
2015-11-01
High electron concentration in 2DEG channel of AlInN/GaN devices is remarkably stable over a broad temperature range, enabling device operation above 500 °C. The developed IC technology is based on three key elements: (1) exceptional quality AlInN/GaN heterostructure with very high carrier concentration and mobility enables IC fast operation in a broad temperature range; (2) heterostructure field effect transistor approach t provides fully planar IC structure which is easy to scale and to combine with the other high temperature electronic components; (3) fabrication advancements including novel metallization scheme and high-K passivation/gate dielectrics enable high temperature operation. The feasibility of the developed technology was confirmed by fabrication and testing of the high temperature inverter and differential amplifier ICs using AlInN/GaN heterostructures. The developed ICs showed stable performance with unit-gain bandwidth above 1 MHz and internal response time 45 ns at temperatures as high as 500 °C.
Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.
Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less
VCSEL Scaling, Laser Integration on Silicon, and Bit Energy
2017-03-01
need of high efficiency with high temperature operation eliminates essentially all laser diode technologies except VCSELs. Therefore scaling of the...CW laser diode and separate modulator. Lower diagram circuitry shows the case for a DML VCSEL. The small gain volume and high speed modulation...speed of the modulator. However the CW laser that is needed for the modulator appears to create a technological roadblock for laser diode platforms
Synthesis of Nano-Scale Fast Ion Conducting Cubic Li7La3Zr2O12
2013-09-25
offer the flexibility to make nano-dimensional particles with high sinterability nor the ability to coat/protect electrode powders. By developing a...sintering temperature are needed. One possible approach is to use small particles , such as nano-scale particles , that can be sintered at lower temperatures...matrix to suppress Li dendrite penetration. By developing a sol–gel process, the LLZO particle size can be precisely tuned, from the nanometer to the
NASA Astrophysics Data System (ADS)
Xu, Chen; Ahmad, Zeeshan; Aryanfar, Asghar; Viswanathan, Venkatasubramanian; Greer, Julia R.
2017-01-01
Most next-generation Li ion battery chemistries require a functioning lithium metal (Li) anode. However, its application in secondary batteries has been inhibited because of uncontrollable dendrite growth during cycling. Mechanical suppression of dendrite growth through solid polymer electrolytes (SPEs) or through robust separators has shown the most potential for alleviating this problem. Studies of the mechanical behavior of Li at any length scale and temperature are limited because of its extreme reactivity, which renders sample preparation, transfer, microstructure characterization, and mechanical testing extremely challenging. We conduct nanomechanical experiments in an in situ scanning electron microscope and show that micrometer-sized Li attains extremely high strengths of 105 MPa at room temperature and of 35 MPa at 90 °C. We demonstrate that single-crystalline Li exhibits a power-law size effect at the micrometer and submicrometer length scales, with the strengthening exponent of -0.68 at room temperature and of -1.00 at 90 °C. We also report the elastic and shear moduli as a function of crystallographic orientation gleaned from experiments and first-principles calculations, which show a high level of anisotropy up to the melting point, where the elastic and shear moduli vary by a factor of ˜4 between the stiffest and most compliant orientations. The emergence of such high strengths in small-scale Li and sensitivity of this metal’s stiffness to crystallographic orientation help explain why the existing methods of dendrite suppression have been mainly unsuccessful and have significant implications for practical design of future-generation batteries.
NASA Technical Reports Server (NTRS)
Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.
2011-01-01
Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.
Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature.
Peng, Y Z; Zhu, G B; Wang, S Y; Yu, D S; Cui, Y W; Meng, X S
2005-01-01
In order to investigate the feasibility of biological treatment of hypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9 degrees C) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiments. Pilot-scale studies showed that high COD removal efficiency, higher than 80%, was obtained at low temperature when 30 percent seawater was introduced. The salinity improved the settleability of activated sludge, and average sludge value dropped down from 38% to 22.5% after adding seawater. Seawater salinity had a strong negative effect on notronomonas and nitrobacter growth, but much more on the nitrobacter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperature. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0.15 kgNH4+-N/(kgMLSS.d), the ammonia removal efficiency via nitrite pathway was above 90%. The critical level of ammonia loading was 0.15, 0.08 and 0.03 kgNH4+-N/(kgMLSS.d) respectively at the different temperature 30 degrees C, 25 degrees C and 20 degrees C when the influent ammonia concentration was 60-80 mg/L and pH was 7.5-8.0.
Proposal for Universality in the Viscosity of Metallic Liquids
Blodgett, M. E.; Egami, Takeshi; Nussinov, Z.; ...
2015-09-09
The range of magnitude of the liquid viscosity, η, as a function of temperature is one of the most impressive of any physical property, changing by approximately 17 orders of magnitude from its extrapolated value at infinite temperature (η o) to that at the glass transition temperature, T g. We present experimental measurements of containerlessly processed metallic liquids that suggest that log(η/η o) as a function of T A/T is a potentially universal scaled curve. In stark contrast to previous approaches, the scaling requires only two fitting parameters, which are on average predictable. The temperature T A corresponds to themore » onset of cooperative motion and is strongly correlated with T g, suggesting that the processes underlying the glass transition first appear in the high temperature liquid.« less
NASA Astrophysics Data System (ADS)
Sun, Guoxun; Bi, Jianqiang; Wang, Weili; Zhang, Jingde
2017-12-01
Reduced graphene oxide@boron nitride nanosheet (RGO@BNNS) hybrids were prepared for the first time using template-assisted autoclave pyrolysis technique at the temperature as low as 600 °C. The developed method can be scaled into gram-scale synthesis of the material. The BNNSs combine with RGO through van der Waals interplanar interaction without damaging the structures of RGO. Such ultrathin BNNSs on the surface of RGO can serve as high-performance oxidation-resistant coatings in oxidizing atmospheres at high temperatures. The RGO@BNNS hybrids can sustain up to 800 °C over a relatively long period of time.
Diffusional aspects of the high-temperature oxidation of protective coatings
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.
1989-01-01
The role of diffusional transport associated with the high-temperature oxidation of coatings is examined, with special attention given to the low-pressure plasma spraying MCrAl-type overlay coatings and similar Ni-base alloys which form protective AlO3 scales. The use of diffusional analysis to predict the minimum solute concentration necessary to form and grow a solute oxide scale is illustrated. Modeling procedures designed to simulate the diffusional transport in coatings and substrates are presented to show their use in understanding coating degradation, predicting the protective life of a coating, and evaluating various coating parameters to guide coating development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caillouet, Laurie; Vidal, Jean -Philippe; Sauquet, Eric
This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the 1871–2012 period built on the NOAA Twentieth Century global extended atmospheric reanalysis (20CR). The objective is to fill in the spatial and temporal data gaps in surface observations in order to improve our knowledge on the local-scale climate variability from the late nineteenth century onwards. The SANDHY (Stepwise ANalogue Downscaling method for HYdrology) statistical downscaling method, initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between large-scale 20CR predictors and local-scale predictands from the Safran high-resolution near-surface reanalysis,more » available from 1958 onwards only. SANDHY provides a daily ensemble of 125 analogue dates over the 1871–2012 period for 608 climatically homogeneous zones paving France. Large precipitation biases in intermediary seasons are shown to occur in regions with high seasonal asymmetry like the Mediterranean. Moreover, winter and summer temperatures are respectively over- and under-estimated over the whole of France. Two analogue subselection methods are therefore developed with the aim of keeping the structure of the SANDHY method unchanged while reducing those seasonal biases. The calendar selection keeps the analogues closest to the target calendar day. The stepwise selection applies two new analogy steps based on similarity of the sea surface temperature (SST) and the large-scale 2 m temperature ( T). Comparisons to the Safran reanalysis over 1959–2007 and to homogenized series over the whole twentieth century show that biases in the interannual cycle of precipitation and temperature are reduced with both methods. The stepwise subselection moreover leads to a large improvement of interannual correlation and reduction of errors in seasonal temperature time series. When the calendar subselection is an easily applicable method suitable in a quantitative precipitation forecast context, the stepwise subselection method allows for potential season shifts and SST trends and is therefore better suited for climate reconstructions and climate change studies. Furthermore, the probabilistic downscaling of 20CR over the period 1871–2012 with the SANDHY probabilistic downscaling method combined with the stepwise subselection thus constitutes a perfect framework for assessing the recent observed meteorological events but also future events projected by climate change impact studies and putting them in a historical perspective.« less
Caillouet, Laurie; Vidal, Jean -Philippe; Sauquet, Eric; ...
2016-03-16
This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the 1871–2012 period built on the NOAA Twentieth Century global extended atmospheric reanalysis (20CR). The objective is to fill in the spatial and temporal data gaps in surface observations in order to improve our knowledge on the local-scale climate variability from the late nineteenth century onwards. The SANDHY (Stepwise ANalogue Downscaling method for HYdrology) statistical downscaling method, initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between large-scale 20CR predictors and local-scale predictands from the Safran high-resolution near-surface reanalysis,more » available from 1958 onwards only. SANDHY provides a daily ensemble of 125 analogue dates over the 1871–2012 period for 608 climatically homogeneous zones paving France. Large precipitation biases in intermediary seasons are shown to occur in regions with high seasonal asymmetry like the Mediterranean. Moreover, winter and summer temperatures are respectively over- and under-estimated over the whole of France. Two analogue subselection methods are therefore developed with the aim of keeping the structure of the SANDHY method unchanged while reducing those seasonal biases. The calendar selection keeps the analogues closest to the target calendar day. The stepwise selection applies two new analogy steps based on similarity of the sea surface temperature (SST) and the large-scale 2 m temperature ( T). Comparisons to the Safran reanalysis over 1959–2007 and to homogenized series over the whole twentieth century show that biases in the interannual cycle of precipitation and temperature are reduced with both methods. The stepwise subselection moreover leads to a large improvement of interannual correlation and reduction of errors in seasonal temperature time series. When the calendar subselection is an easily applicable method suitable in a quantitative precipitation forecast context, the stepwise subselection method allows for potential season shifts and SST trends and is therefore better suited for climate reconstructions and climate change studies. Furthermore, the probabilistic downscaling of 20CR over the period 1871–2012 with the SANDHY probabilistic downscaling method combined with the stepwise subselection thus constitutes a perfect framework for assessing the recent observed meteorological events but also future events projected by climate change impact studies and putting them in a historical perspective.« less
USDA-ARS?s Scientific Manuscript database
Water-washed cottonseed meal (WCSM) has been shown as a promising bio-based wood adhesive. Recently, we prepared WCSM on a pilot scale for promotion of its industrial application. In this work, we tested the bonding strength of WCSM slurries with high solid contents and low press temperatures per i...
Marshall, David J; McQuaid, Christopher D
2011-01-22
The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30-40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and -0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis.
Global River Water Temperature Modelling at Hyper-Resolution
NASA Astrophysics Data System (ADS)
Wanders, N.; van Vliet, M. T. H.; Wada, Y.; Van Beek, L. P.
2017-12-01
The temperature of river water plays a crucial role in many physical, chemical and biological aquatic processes. The influence of changing water temperatures is not only felt locally, but also has regional and downstream impacts. Sectors that might be affected by sudden or gradual changes in the water temperature are: energy production, industry and recreation. Although it is very important to have detailed information on this environmental variable, high-resolution simulations of water temperature on a large scale are currently lacking. Here we present a novel hyper-resolution water temperature dataset at the global scale. We developed the 1-D energy routing model WARM, to simulate river temperature for the period 1980-2014 at 10 km and 50 km resolution. The WARM model accounts for surface water abstraction, reservoirs, riverine flooding and formation of ice, therefore enabling a realistic representation of the water temperature. The water temperature simulations have been validated against 358 river monitoring stations globally for the period 1980 to 2014. The results indicate the increase in resolution significantly improves the simulation performance with a decrease in the water temperature RMSE from 3.5°C to 3.0°C and an increase in the mean correlation of the daily discharge simulations, from R=0.4 to 0.6. We find an average global increase in water temperature of 0.22°C per decade between 1960-2014, with increasing trends towards the end of the simulations period. Strong increasing trends in maxima in the Northern Hemisphere (0.62°C per decade) and minima in the Southern Hemisphere (0.45°C per decade). Finally, we show the impact of major heatwaves and drought events on the water temperature and water availability. The high resolution not only improves the model performance; it also positively impacts the relevancy of the simulation for local and regional scale studies and impact assessments. This new global water temperature dataset could help to develop decision-support system related to water quality with increasing precision and accuracy.
Liu, Yu; Sun, Changfeng; Li, Qiang; Cai, Qiufang
2016-01-01
The historical May-October mean temperature since 1831 was reconstructed based on tree-ring width of Qinghai spruce (Picea crassifolia Kom.) collected on Mt. Dongda, North of the Hexi Corridor in Northwest China. The regression model explained 46.6% of the variance of the instrumentally observed temperature. The cold periods in the reconstruction were 1831-1889, 1894-1901, 1908-1934 and 1950-1952, and the warm periods were 1890-1893, 1902-1907, 1935-1949 and 1953-2011. During the instrumental period (1951-2011), an obvious warming trend appeared in the last twenty years. The reconstruction displayed similar patterns to a temperature reconstruction from the east-central Tibetan Plateau at the inter-decadal timescale, indicating that the temperature reconstruction in this study was a reliable proxy for Northwest China. It was also found that the reconstruction series had good consistency with the Northern Hemisphere temperature at a decadal timescale. Multi-taper method spectral analysis detected some low- and high-frequency cycles (2.3-2.4-year, 2.8-year, 3.4-3.6-year, 5.0-year, 9.9-year and 27.0-year). Combining these cycles, the relationship of the low-frequency change with the Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Southern Oscillation (SO) suggested that the reconstructed temperature variations may be related to large-scale atmospheric-oceanic variations. Major volcanic eruptions were partly reflected in the reconstructed temperatures after high-pass filtering; these events promoted anomalous cooling in this region. The results of this study not only provide new information for assessing the long-term temperature changes in the Hexi Corridor of Northwest China, but also further demonstrate the effects of large-scale atmospheric-oceanic circulation on climate change in Northwest China.
Temperature structure and kinematics of the IRDC G035.39-00.33
NASA Astrophysics Data System (ADS)
Sokolov, Vlas; Wang, Ke; Pineda, Jaime E.; Caselli, Paola; Henshaw, Jonathan D.; Tan, Jonathan C.; Fontani, Francesco; Jiménez-Serra, Izaskun; Lim, Wanggi
2017-10-01
Aims: Infrared dark clouds represent the earliest stages of high-mass star formation. Detailed observations of their physical conditions on all physical scales are required to improve our understanding of their role in fueling star formation. Methods: We investigate the large-scale structure of the IRDC G035.39-00.33, probing the dense gas with the classical ammonia thermometer. This allows us to put reliable constraints on the temperature of the extended, pc-scale dense gas reservoir and to probe the magnitude of its non-thermal motions. Available far-infrared observations can be used in tandem with the observed ammonia emission to estimate the total gas mass contained in G035.39-00.33. Results: We identify a main velocity component as a prominent filament, manifested as an ammonia emission intensity ridge spanning more than 6 pc, consistent with the previous studies on the Northern part of the cloud. A number of additional line-of-sight components are found, and a large-scale linear velocity gradient of 0.2km s-1 pc-1 is found along the ridge of the IRDC. In contrast to the dust temperature map, an ammonia-derived kinetic temperature map, presented for the entirety of the cloud, reveals local temperature enhancements towards the massive protostellar cores. We show that without properly accounting for the line of sight contamination, the dust temperature is 2-3 K larger than the gas temperature measured with NH3. Conclusions: While both the large-scale kinematics and temperature structure are consistent with that of starless dark filaments, the kinetic gas temperature profile on smaller scales is suggestive of tracing the heating mechanism coincident with the locations of massive protostellar cores. The reduced spectral cubes (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A133
Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado
Richard Zehner
2012-11-01
This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs at Wagon Wheel Gap have geochemistry and geothermometry values indicative of high-temperature systems. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 4. Power lines 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps
Cyclic Oxidation Behavior of Simulated Post-Weld Heat-Treated P91
NASA Astrophysics Data System (ADS)
Rajendran Pillai, S.; Dayal, R. K.
2011-10-01
For long-term service life it is desirable that the high-temperature components posses slow-growing oxide scale. The growth and degradation of the oxide scale on P91 were studied by a thermal cycling method. The oxidation temperature was 780 °C and the duration of each cycle was 2 h. The mass gain and integrity of the scale was examined using a thermogravimetric balance. Any lack of integrity is monitored by the transient mass gain associated with the exposure of fresh surface. The scale retained the integrity throughout 100 cycles. Post-oxidation examination was carried out by scanning electron microscopy, energy dispersive spectroscopy and laser Raman spectroscopy. The nature of the scale was characterized and the reason for the compositional segregation is analyzed.
Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy
NASA Technical Reports Server (NTRS)
Baranow, S.; Klingler, L. J.
1973-01-01
Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.
Toward High-Energy-Density, High-Efficiency, and Moderate-Temperature Chip-Scale Thermophotovoltaics
2013-04-02
this architecture include concentrated solar photovoltaics , thermoelectrics , and fuel cells. System Testing. Themicroreactorwas ignitedbyhydrogen...2, 3), thermoelectrics (4, 5), and thermophotovoltaics (TPVs) (6, 7). TPVs present an extremely appealing approach for small-scale power sources due...into spectrally confined thermal radiation, optically coupled to low-bandgap photovoltaic (PV) diodes that are electrically interfaced with a unique
Shin, Sangwoo; Kong, Bo Hyun; Kim, Beom Seok; Kim, Kyung Min; Cho, Hyung Koun; Cho, Hyung Hee
2011-07-23
In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Gary
The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1 st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2 nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. Amore » number of these modules are arranged in an m x n array to form the current-limiting matrix.« less
NASA Astrophysics Data System (ADS)
Shchelik, S. V.; Pavlov, A. S.
2013-07-01
Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.
Flux pinning characteristics and irreversibility line in high temperature superconductors
NASA Technical Reports Server (NTRS)
Matsushita, T.; Ihara, N.; Kiuchi, M.
1995-01-01
The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.
Derivation of martian surface slope characteristics from directional thermal infrared radiometry
NASA Astrophysics Data System (ADS)
Bandfield, Joshua L.; Edwards, Christopher S.
2008-01-01
Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ˜0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ˜180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.
Screening and transport in 2D semiconductor systems at low temperatures
Das Sarma, S.; Hwang, E. H.
2015-01-01
Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738
Are Karakoram temperatures out of phase compared to hemispheric trends?
NASA Astrophysics Data System (ADS)
Asad, Fayaz; Zhu, Haifeng; Zhang, Hui; Liang, Eryuan; Muhammad, Sher; Farhan, Suhaib Bin; Hussain, Iqtidar; Wazir, Muhammad Atif; Ahmed, Moinuddin; Esper, Jan
2017-05-01
In contrast to a global retreating trend, glaciers in the Karakoram showed stability and/or mass gaining during the past decades. This "Karakoram Anomaly" has been assumed to result from an out-of-phase temperature trend compared to hemispheric scales. However, the short instrumental observations from the Karakoram valley bottoms do not support a quantitative assessment of long-term temperature trends in this high mountain area. Here, we presented a new April-July temperature reconstruction from the Karakoram region in northern Pakistan based on a high elevation ( 3600 m a.s.l.) tree-ring chronology covering the past 438 years (AD 1575-2012). The reconstruction passes all statistical calibration and validation tests and represents 49 % of the temperature variance recorded over the 1955-2012 instrumental period. It shows a substantial warming accounting to about 1.12 °C since the mid-twentieth century, and 1.94 °C since the mid-nineteenth century, and agrees well with the Northern Hemisphere temperature reconstructions. These findings provide evidence that the Karakoram temperatures are in-phase, rather than out-of-phase, compared to hemispheric scales since the AD 1575. The synchronous temperature trends imply that the anomalous glacier behavior reported from the Karakoram may need further explanations beyond basic regional thermal anomaly.
Data-driven modeling of surface temperature anomaly and solar activity trends
Friedel, Michael J.
2012-01-01
A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.
1996-01-01
Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.
NASA Astrophysics Data System (ADS)
OBrien, J. P.; O'Brien, T. A.
2015-12-01
Single climatic extremes have a strong and disproportionate effect on society and the natural environment. However, the joint occurrence of two or more concurrent extremes has the potential to negatively impact these areas of life in ways far greater than any single event could. California, USA, home to nearly 40 million people and the largest agricultural producer in the United States, is currently experiencing an extreme drought, which has persisted for several years. While drought is commonly thought of in terms of only precipitation deficits, above average temperatures co-occurring with precipitation deficits greatly exacerbate drought conditions. The 2014 calendar year in California was characterized both by extremely low precipitation and extremely high temperatures, which has significantly deepened the already extreme drought conditions leading to severe water shortages and wildfires. While many studies have shown the statistics of 2014 temperature and precipitation anomalies as outliers, none have demonstrated a connection with large-scale, long-term climate trends, which would provide useful relationships for predicting the future trajectory of California climate and water resources. We focus on understanding non-stationarity in the joint distribution of California temperature and precipitation anomalies in terms of large-scale, low-frequency trends in climate such as global mean temperature rise and oscillatory indices such as ENSO and the Pacific Decadal Oscillation among others. We consider temperature and precipitation data from the seven distinct climate divisions in California and employ a novel, high-fidelity kernel density estimation method to directly infer the multivariate distribution of temperature and precipitation anomalies conditioned on the large-scale state of the climate. We show that the joint distributions and associated statistics of temperature and precipitation are non-stationary and vary regionally in California. Further, we show that recurrence intervals of extreme concurrent events vary as a function of time and of teleconnections. This research has implications for predicting and forecasting future temperature and precipitation anomalies, which is critically important for city, water, and agricultural planning in California.
Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science
NASA Astrophysics Data System (ADS)
Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.
2017-12-01
The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization intensity jointly influence the nature and magnitude of coupling between air temperature and tree cover, and demonstrate how urban vegetation provides an important ecosystem service in cities by decreasing the intensity of local urban heat islands.
Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.
Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph
2017-03-08
Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.
Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.
1992-01-01
Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors
NASA Technical Reports Server (NTRS)
Barrett, Charles A.
1999-01-01
Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic (typical of isothermal oxidation), paralinear, linear, and mixed-linear kinetics.
Song, Huiming; Liu, Yu; Li, Qiang; Gao, Na; Ma, Yongyong; Zhang, Yanhua
2014-01-01
Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) collected at Mt. Shimen on the western Loess Plateau, China, were used to reconstruct the mean May–July temperature during AD 1630–2011. The regression model explained 48% of the adjusted variance in the instrumentally observed mean May–July temperature. The reconstruction revealed significant temperature variations at interannual to decadal scales. Cool periods observed in the reconstruction coincided with reduced solar activities. The reconstructed temperature matched well with two other tree-ring based temperature reconstructions conducted on the northern slope of the Qinling Mountains (on the southern margin of the Loess Plateau of China) for both annual and decadal scales. In addition, this study agreed well with several series derived from different proxies. This reconstruction improves upon the sparse network of high-resolution paleoclimatic records for the western Loess Plateau, China. PMID:24690885
NASA Astrophysics Data System (ADS)
Lee, K. E.; Park, W.; Bae, S. W.; Nam, S. I.
2016-12-01
We have reconstructed variations in sea surface temperature (SST) for the last 2000 yr by using the alkenone unsaturation index of marine sediments of cores TY2010 PC4 and ARA/ES 03-01 GC01 recovered from the southwestern part of the East Sea. The core site is chracterized by very high sedimentation rate so that a new high-resolution continuous SST record can be reconstructed with an average temporal resolution of 2-7 years. The core top alkenone temperature (20.5°C) is higher than the annual averaged in situ SST (18 °C) and it corresponds to those of summer to autumn. During the last 2000 yr, the alkenone temperatures exhibited fluctuations on multi-decadal to centennial time scales. The temperatures were relatively warm fluctuating between 19.6°C and 21°C on centennial time scale during the period of AD 0- 1200. There were two evident cold periods: AD 1200-1400 and AD 1600-1800. The lowest temperature (approximately 18°C) occurred at AD 1290 and AD 1650. The temperatures increased toward 20 centry, which is consistent with anthropogenic global warming. Results of singular spectrum analysis of the last 2000 yr SST record suggest that there is characteristic periodicity of 100 yr and 160 yr and 50-60 yr, which can be natural variability of climate system. In addition, a comparison of the SST record with global volcanic forcing data shows that volcanic events also can be correlated to the distinct cooling events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun
2015-07-01
A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to dependmore » largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.« less
Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes
Macias-Fauria, Marc; Johnson, Edward A.
2013-01-01
Forests are expected to expand into alpine areas because of climate warming, causing land-cover change and fragmentation of alpine habitats. However, this expansion will only occur if the present upper treeline is limited by low-growing season temperatures that reduce plant growth. This temperature limitation has not been quantified at a landscape scale. Here, we show that temperature alone cannot realistically explain high-elevation tree cover over a >100-km2 area in the Canadian Rockies and that geologic/geomorphic processes are fundamental to understanding the heterogeneous landscape distribution of trees. Furthermore, upslope tree advance in a warmer scenario will be severely limited by availability of sites with adequate geomorphic/topographic characteristics. Our results imply that landscape-to-regional scale projections of warming-induced, high-elevation forest advance into alpine areas should not be based solely on temperature-sensitive, site-specific upper-treeline studies but also on geomorphic processes that control tree occurrence at long (centuries/millennia) timescales. PMID:23569221
NASA Astrophysics Data System (ADS)
Bordin, José Rafael
2018-04-01
In this paper we explore the self-assembly patterns in a two dimensional colloidal system using extensive Langevin Dynamics simulations. The pair potential proposed to model the competitive interaction have a short range length scale between first neighbors and a second characteristic length scale between third neighbors. We investigate how the temperature and colloidal density will affect the assembled morphologies. The potential shows aggregate patterns similar to observed in previous works, as clusters, stripes and porous phase. Nevertheless, we observe at high densities and temperatures a porous mesophase with a high mobility, which we name fluid porous phase, while at lower temperatures the porous structure is rigid. triangular packing was observed for the colloids and pores in both solid and fluid porous phases. Our results show that the porous structure is well defined for a large range of temperature and density, and that the fluid porous phase is a consequence of the competitive interaction and the random forces from the Langevin Dynamics.
Real-time atomistic observation of structural phase transformations in individual hafnia nanorods
Hudak, Bethany M.; Depner, Sean W.; Waetzig, Gregory R.; ...
2017-05-12
High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO 2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO 2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO 2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolutionmore » the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.« less
On the determination of growth stress during oxidation of pure zirconium at elevated temperature
NASA Astrophysics Data System (ADS)
Kurpaska, L.; Favergeon, J.; Lahoche, L.; Moulin, G.
2018-07-01
An experimental approach have been proposed to evaluate growth of stress during high temperature oxidation of pure zirconium. The development of stress in the oxide scale has been investigated experimentally in in-situ conditions by combining the Deflection Test in Monofacial Oxidation (DTMO) with Acoustic Emission analysis (AE). Microstructure of the sample were studied by using Scanning Electron Microscopy technique. Oxidation experiments were performed continuously during 24 h at 400 °C and 500 °C in air under normal atmospheric pressure. Taking into account purely elastic behaviour of the material, primary evolution of growth stress developed in the oxide scale during oxidation process have been estimated. Presented study of the Zr/ZrO2 system revealed two opposite phenomena of stress relief when cooling from 400 °C and 500 °C to room temperature. This study is presented as a tool to understand the phenomena of stress evolution in the zirconia layer during isothermal treatment at high temperature and after cooling.
Temperature dependence of the anisotropy field of L10 FePt near the Curie temperature
NASA Astrophysics Data System (ADS)
Richter, H. J.; Parker, G. J.
2017-06-01
Near the Curie temperature, the anisotropy field of magnetically uniaxial L10 FePt is expected to follow the scaling law (1 - T/Tc)β, where T is the temperature and Tc is the Curie temperature. In the literature, β values between 0.36 and 0.65 have been reported. Based on recording measurements and micromagnetic analysis, we show that only the values of β near the low end of the reported range are compatible with the data. We also conclude that thermally activated magnetization reversal at temperatures near Tc cannot be ignored, even at time scales smaller than 1 ns. We demonstrate that thermally activated magnetization reversal at temperatures close to Tc is well described by conventional theory with a frequency factor f0 of the order of 1012 Hz. It is reasoned that the unusually high value for f0 is a consequence of the temperature-induced reduction of the degree of alignment of the micro-spins within the grains.
NASA Astrophysics Data System (ADS)
Pawar, Shashikant S.; Arakeri, Jaywant H.
2016-06-01
Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.
Metrologically useful states of spin-1 Bose condensates with macroscopic magnetization
NASA Astrophysics Data System (ADS)
Kajtoch, Dariusz; Pawłowski, Krzysztof; Witkowska, Emilia
2018-02-01
We study theoretically the usefulness of spin-1 Bose condensates with macroscopic magnetization in a homogeneous magnetic field for quantum metrology. We demonstrate Heisenberg scaling of the quantum Fisher information for states in thermal equilibrium. The scaling applies to both antiferromagnetic and ferromagnetic interactions. The effect preserves as long as fluctuations of magnetization are sufficiently small. Scaling of the quantum Fisher information with the total particle number is derived within the mean-field approach in the zero-temperature limit and exactly in the high-magnetic-field limit for any temperature. The precision gain is intuitively explained owing to subtle features of the quasidistribution function in the phase space.
Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran
2013-03-01
Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.
Ab-initio study of thermodynamic properties of boron nanowire at atomic scale
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal D.; Gupta, Sanjeev K.; Sonvane, Y.; Gajjar, P. N.
2018-04-01
In the present work, we have optimized ribbon like zigzag structure of boron (B) nanowire (NW) and investigated vibrational and thermodynamic properties using quasi-harmonic approximations (QHA). All positive phonon in the phonon dispersive curve have confirmed dynamical stability of ribbon B-NW. The thermodynamic properties, like Debye temperature, internal energy and specific heat, are calculated as a function of temperature. The variation of specific heat is proportional to T3 Debye law at lower temperature for B-NW, while it becomes constant above room temperature at 1200K; obeys Dulong-Petit's law. The high Debye temperature of 1120K is observed at ambient temperature, which can be attributed to high thermal conductivity. Our study shows that B-NW with high thermal conductivity could be the next generation electron connector for nanoscale electronic devices.
Birosca, S; Dingley, D; Higginson, R L
2004-03-01
High-temperature oxidation of steel has been extensively studied. The microstructure of iron oxides is, however, not well understood because of the difficulty in imaging it using conventional methods, such as optical or electron microscopy. A knowledge of the oxide microstructure and texture is critical in understanding how the oxide film behaves during high-temperature deformation of steels and more importantly how it can be removed following processing. Recently, electron back-scatter diffraction (EBSD) has proved to be a powerful technique for distinguishing the different phases in scales. This technique gives valuable information both on the microstructure and on the orientation relationships between the steel and the scale layers. In the current study EBSD has been used to investigate the microstructure and microtexture of iron oxide layers grown on interstitial free steel at different times and temperatures. Heat treatments have been carried out under normal oxidation conditions in order to relate the results to real steel manufacturing in industry. The composition, morphologies, microstructure and microtexture of selected conditions have been studied using EBSD.
Pohlscheidt, Michael; Charaniya, Salim; Kulenovic, Fikret; Corrales, Mahalia; Shiratori, Masaru; Bourret, Justin; Meier, Steven; Fallon, Eric; Kiss, Robert
2014-04-01
The production of therapeutic proteins by mammalian cell culture is complex and sets high requirements for process, facility, and equipment design, as well as rigorous regulatory and quality standards. One particular point of concern and significant risk to supply chain is the susceptibility to contamination such as bacteria, fungi, mycoplasma, and viruses. Several technologies have been developed to create barriers for these agents to enter the process, e.g. filtration, UV inactivation, and temperature inactivation. However, if not implemented during development of the manufacturing process, these types of process changes can have significant impact on process performance if not managed appropriately. This article describes the implementation of the high-temperature short-time (HTST) treatment of cell culture media as an additional safety barrier against adventitious agents during the transfer of a large-scale commercial cell culture manufacturing process. The necessary steps and experiments, as well as subsequent results during qualification runs and routine manufacturing, are shown.
NASA Astrophysics Data System (ADS)
Do, Bao Phuong Huu; Dung Nguyen, Ba; Duy Nguyen, Hoang; Nguyen, Phuong Tung
2013-12-01
We report the synthesis of magnetic iron oxide nanoparticles encapsulated in maleic acid-2-acrylamido-2-methyl-1-propanesulfonate based polymer. This composite nanoparticle is specified for the high-pressure/high-temperature (HPHT) oilfield scale inhibition application. The process includes a facile-ultrasound-supported addition reaction to obtain iron oxide nanoparticles with surface coated by oleic acid. Then via inverse microemulsion polymerization with selected monomers, the specifically designed copolymers have been formatted in nanoscale. The structure and morphology of obtained materials were characterized by transmission electron microscopy (TEM), x-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and the thermal stability. The effectiveness of synthesized compounds as a carbonate scale inhibitor was investigated by testing method NACE standard TM 03-074-95 at aging temperature of 70, 90 and 120 °C. The magnetic nanocomposite particles can be easily collected and detected demonstrating their superior monitoring ability, which is absent in the case of conventional copolymer-based scale inhibitor.
NASA Astrophysics Data System (ADS)
Ludewig, P.; Reinhard, S.; Jandieri, K.; Wegele, T.; Beyer, A.; Tapfer, L.; Volz, K.; Stolz, W.
2016-03-01
High-quality, pseudomorphically strained Ga(NAsP)/(BGa)(AsP)-multiple quantum well heterostructures (MQWH) have been deposited on exactly oriented (001) Si-substrate by metal organic vapour phase epitaxy (MOVPE) in a wide temperature range between 525 °C and 700 °C. The individual atomic incorporation efficiencies, growth rates as well as nanoscale material properties have been clarified by applying detailed high-resolution X-ray diffraction (HR-XRD), photoluminescence (PL) spectroscopy and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) studies. An almost constant N-incorporation efficiency is obtained for a wide growth temperature range from 550 °C up to 650 °C. The P-incorporation is steadily increasing with increasing growth temperature reaching values at high temperatures in excess of the applied gas phase ratio. While the lower interface from the binary GaP- to the quaternary Ga(NAsP)-material system is very sharp, the upper interface is significantly rougher with a roughness scale of ±0.43 nm in quantum well thickness variation at a growth temperature of 525 °C. This roughness scale increases steadily with increasing growth temperature. No indication of any phase separation effects is detected in the Ga(NAsP)-material system even at the highest growth temperature of 700 °C. The obtained experimental results are briefly discussed with respect to the anticipated metastable character of the novel dilute-nitride Ga(NAsP)-material system grown lattice-matched to (001) Si-substrate.
Spectroscopy for Industrial Applications: High-Temperature Processes
NASA Astrophysics Data System (ADS)
Fateev, Alexander; Grosch, Helge; Clausen, Sonnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan
2014-06-01
The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spectral absorption features gases of interest for a specific instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However use of HITRAN is limited to low-temperature processes (< 400 K) and therefor can be used for absorption spectra calculations at limited temperature/pressure ranges. For higher temperatures, the HITEMP-2010 database is available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a development of hot line lists have been made; those have been implemented in the latest HITRAN2012 database1. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV, 0.019 nm) on a flow gas cell2 up to 800 K are presented. Molecules are of great interest in various high-temperature environments including exoplanets, combustion and gasification. Measured NH3 hot lines have been assigned and spectra have been compared with that obtained by calculations based on the BYTe hot line list1. High-temperature NH3 absorption spectra have been used in the analysis of in situ high-resolution IR absorption measurements on the producer gas in low-temperature gasification process on a large scale. High-resolution UV temperature-dependent absorption cross-sections of phenol are reported for the first time. All UV data have been calibrated by relevant GC/MS measurements. Use of the data is demonstrated by the analysis of in situ UV absorption measurements on a small-scale low-temperature gasifier. A comparison between in situ, gas extraction and conventional gas sampling measurements is presented. Overall the presentation shows an example of successful industrial and academic partnerships within the framework of national and international ongoing projects.
NASA Astrophysics Data System (ADS)
Jenerette, D.; Wang, J.; Chandler, M.; Ripplinger, J.; Koutzoukis, S.; Ge, C.; Castro Garcia, L.; Kucera, D.; Liu, X.
2017-12-01
Large uncertainties remain in identifying the distribution of urban air quality and temperature risks across neighborhood to regional scales. Nevertheless, many cities are actively expanding vegetation with an expectation to moderate both climate and air quality risks. We address these uncertainties through an integrated analysis of satellite data, atmospheric modeling, and in-situ environmental sensor networks maintained by citizen scientists. During the summer of 2017 we deployed neighborhood-scale networks of air temperature and ozone sensors through three campaigns across urbanized southern California. During each five-week campaign we deployed six sensor nodes that included an EPA federal equivalent method ozone sensor and a suite of meteorological sensors. Each node was further embedded in a network of 100 air temperature sensors that combined a randomized design developed by the research team and a design co-created by citizen scientists. Between 20 and 60 citizen scientists were recruited for each campaign, with local partners supporting outreach and training to ensure consistent deployment and data gathering. We observed substantial variation in both temperature and ozone concentrations at scales less than 4km, whole city, and the broader southern California region. At the whole city scale the average spatial variation with our ozone sensor network just for city of Long Beach was 26% of the mean, while corresponding variation in air temperature was only 7% of the mean. These findings contrast with atmospheric model estimates of variation at the regional scale of 11% and 1%. Our results show the magnitude of fine-scale variation underestimated by current models and may also suggest scaling functions that can connect neighborhood and regional variation in both ozone and temperature risks in southern California. By engaging citizen science with high quality sensors, satellite data, and real-time forecasting, our results help identify magnitudes of climate and air quality risk variation across scales and can guide individual decisions and urban policies surrounding vegetation to moderate these risks.
NASA Astrophysics Data System (ADS)
Emsenhuber, Alexandre; Jutzi, Martin; Benz, Willy
2018-02-01
We model large-scale ( ≈ 2000 km) impacts on a Mars-like planet using a Smoothed Particle Hydrodynamics code. The effects of material strength and of using different Equations of State on the post-impact material and temperature distributions are investigated. The properties of the ejected material in terms of escaping and disc mass are analysed as well. We also study potential numerical effects in the context of density discontinuities and rigid body rotation. We find that in the large-scale collision regime considered here (with impact velocities of 4 km/s), the effect of material strength is substantial for the post-impact distribution of the temperature and the impactor material, while the influence of the Equation of State is more subtle and present only at very high temperatures.
NASA Astrophysics Data System (ADS)
Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.
2013-12-01
Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large scale experiments, including: peak temperatures, velocities and thicknesses of the smouldering front, rates of mass destruction of the contaminant, and rates of gaseous emissions during combustion. Additionally, upward and downward smouldering experiments were compared at the column scale to assess the significance of buoyant flow effects. An understanding of these scaling relationships will provide important information to aid in the design of field-scale applications of STAR.
Role of absorbing aerosols on hot extremes in India in a GCM
NASA Astrophysics Data System (ADS)
Mondal, A.; Sah, N.; Venkataraman, C.; Patil, N.
2017-12-01
Temperature extremes and heat waves in North-Central India during the summer months of March through June are known for causing significant impact in terms of human health, productivity and mortality. While greenhouse gas-induced global warming is generally believed to intensify the magnitude and frequency of such extremes, aerosols are usually associated with an overall cooling, by virtue of their dominant radiation scattering nature, in most world regions. Recently, large-scale atmospheric conditions leading to heat wave and extreme temperature conditions have been analysed for the North-Central Indian region. However, the role of absorbing aerosols, including black carbon and dust, is still not well understood, in mediating hot extremes in the region. In this study, we use 30-year simulations from a chemistry-coupled atmosphere-only General Circulation Model (GCM), ECHAM6-HAM2, forced with evolving aerosol emissions in an interactive aerosol module, along with observed sea surface temperatures, to examine large-scale and mesoscale conditions during hot extremes in India. The model is first validated with observed gridded temperature and reanalysis data, and is found to represent observed variations in temperature in the North-Central region and concurrent large-scale atmospheric conditions during high temperature extremes realistically. During these extreme events, changes in near surface properties include a reduction in single scattering albedo and enhancement in short-wave solar heating rate, compared to climatological conditions. This is accompanied by positive anomalies of black carbon and dust aerosol optical depths. We conclude that the large-scale atmospheric conditions such as the presence of anticyclones and clear skies, conducive to heat waves and high temperature extremes, are exacerbated by absorbing aerosols in North-Central India. Future air quality regulations are expected to reduce sulfate particles and their masking of GHG warming. It is concurrently important to mitigate emissions of warming black carbon particles, to manage future climate change-induced hot extremes.
Ceramic fibers for matrix composites in high-temperature engine applications
Baldus; Jansen; Sporn
1999-07-30
High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon.
Use of heat as a groundwater tracer in fractured rock hydrology
NASA Astrophysics Data System (ADS)
Bour, Olivier; Le Borgne, Tanguy; Klepikova, Maria V.; Read, Tom; Selker, John S.; Bense, Victor F.; Le Lay, Hugo; Hochreutener, Rebecca; Lavenant, Nicolas
2015-04-01
Crystalline rocks aquifers are often difficult to characterize since flows are mainly localized in few fractures. In particular, the geometry and the connections of the main flow paths are often only partly constrained with classical hydraulic tests. Here, we show through few examples how heat can be used to characterize groundwater flows in fractured rocks at the borehole, inter-borehole and watershed scale. Estimating flows from temperature measurements requires heat advection to be the dominant process of heat transport, but this condition is generally met in fractured rock at least within the few structures where flow is highly channelized. At the borehole scale, groundwater temperature variations with depth can be used to locate permeable fractures and to estimates borehole flows. Measurements can be done with classical multi-parameters probes, but also with recent technologies such as Fiber Optic Distributed Temperature Sensing (FO-DTS) which allows to measure temperature over long distances with an excellent spatial and temporal resolution. In addition, we show how a distributed borehole flowmeter can be achieved using an armored fiber-optic cable and measuring the difference in temperature between a heated and unheated cable that is a function of the fluid velocity. At the inter-borehole scale, temperature changes during cross-borehole hydraulic tests allow to identify the connections and the hydraulic properties of the main flow paths between boreholes. At the aquifer scale, groundwater temperature may be monitored to record temperature changes and estimate groundwater origin. In the example chosen, the main water supply comes from a depth of at least 300 meters through relatively deep groundwater circulation within a major permeable fault zone. The influence of groundwater extraction is clearly identified through groundwater temperature monitoring. These examples illustrate the advantages and limitations of using heat and groundwater temperature measurements for fractured rock hydrology.
Development of cast alumina-forming austenitic stainless steels
Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; ...
2016-09-06
Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt. % are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt. % Ni with good creep strength and the ability to form a protective alumina scale for use atmore » temperatures up to 800 C - 850 C in H 2O-, S-, and C- containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloy along with improved oxidation resistance typical of alumina-forming alloys. Lastly, challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.« less
Development of Cast Alumina-Forming Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.
2016-11-01
Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.
Zhang, Chunlan; Quan, Qing; Wu, Yongjie; Chen, Youhua; He, Peng; Qu, Yanhua; Lei, Fumin
2017-04-01
Large-scale patterns of species richness have gained much attention in recent years; however, the factors that drive high species richness are still controversial in local regions, especially in highly diversified montane regions. The Qinghai-Tibetan Plateau (QTP) and the surrounding mountains are biodiversity hot spots due to a high number of endemic montane species. Here, we explored the factors underlying this high level of diversity by studying the relationship between species richness and environmental variables. The richness patterns of 758 resident bird species were summarized at the scale of 1°×1° grid cell at different taxonomic levels (order, family, genus, and species) and in different taxonomic groups (Passeriformes, Galliformes, Falconiformes, and Columbiformes). These richness patterns were subsequently analyzed against habitat heterogeneity (topographical heterogeneity and land cover), temperature amplitude (annual temperature, annual precipitation, precipitation seasonality, and temperature seasonality) and a vegetation index (net primary productivity). Our results showed that the highest richness was found in the southeastern part of the QTP, the eastern Himalayas. The lowest richness was observed in the central plateau of the QTP. Topographical heterogeneity and temperature amplitude are the primary factors that explain overall patterns of species richness in the QTP, although the specific effect of each environmental variable varies between the different taxonomic groups depending on their own evolutionary histories and ecological requirements. High species richness in the southeastern QTP is mostly due to highly diversified habitat types and temperature zones along elevation gradients, whereas the low species richness in the central plateau of the QTP may be due to environmental and energetic constraints, as the central plateau is harsh environment.
NASA Astrophysics Data System (ADS)
Wang, Haipeng; Chen, Jianhui; Zhang, Shengda; Zhang, David D.; Wang, Zongli; Xu, Qinghai; Chen, Shengqian; Wang, Shijin; Kang, Shichang; Chen, Fahu
2018-03-01
Long-term, high-resolution temperature records which combine an unambiguous proxy and precise dating are rare in China. In addition, the societal implications of past temperature change on a regional scale have not been sufficiently assessed. Here, based on the modern relationship between chironomids and temperature, we use fossil chironomid assemblages in a precisely dated sediment core from Gonghai Lake to explore temperature variability during the past 4000 years in northern China. Subsequently, we address the possible regional societal implications of temperature change through a statistical analysis of the occurrence of wars. Our results show the following. (1) The mean annual temperature (TANN) was relatively high during 4000-2700 cal yr BP, decreased gradually during 2700-1270 cal yr BP and then fluctuated during the last 1270 years. (2) A cold event in the Period of Disunity, the Sui-Tang Warm Period (STWP), the Medieval Warm Period (MWP) and the Little Ice Age (LIA) can all be recognized in the paleotemperature record, as well as in many other temperature reconstructions in China. This suggests that our chironomid-inferred temperature record for the Gonghai Lake region is representative. (3) Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature, and the relationship is a good example of the potential societal implications of temperature change on a regional scale.
Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM
NASA Technical Reports Server (NTRS)
Crane, Robert G.; Hewitson, B. C.
1991-01-01
A new diagnostic tool is developed for examining relationships between the synoptic scale circulation and regional temperature distributions in GCMs. The 4 x 5 deg GISS GCM is shown to produce accurate simulations of the variance in the synoptic scale sea level pressure distribution over the U.S. An analysis of the observational data set from the National Meteorological Center (NMC) also shows a strong relationship between the synoptic circulation and grid point temperatures. This relationship is demonstrated by deriving transfer functions between a time-series of circulation parameters and temperatures at individual grid points. The circulation parameters are derived using rotated principal components analysis, and the temperature transfer functions are based on multivariate polynomial regression models. The application of these transfer functions to the GCM circulation indicates that there is considerable spatial bias present in the GCM temperature distributions. The transfer functions are also used to indicate the possible changes in U.S. regional temperatures that could result from differences in synoptic scale circulation between a 1XCO2 and a 2xCO2 climate, using a doubled CO2 version of the same GISS GCM.
2013-01-01
Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subsequently subjected to dual-stage annealing due to the melting temperature of Al thin films (660°C). The first comprised a low-temperature oxidation anneal at 450°C for 24 h. This was followed by a high-temperature annealing in the range of 1,000°C and 1,200°C for 1 h to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results indicate that the patterns were retained on sapphire substrates after high-temperature annealing at less than 1,200°C. Finally, large-scale nanopatterned sapphire substrates were successfully fabricated by annealing of patterned Al thin films for 24 h at 450°C and 1 h at 1,000°C by soft UV-nanoimprint lithography. PMID:24215718
2011-01-01
In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled. PMID:21781335
Do cities simulate climate change? A comparison of herbivore response to urban and global warming
Youngsteadt, Elsa; Dale, Adam G.; Terando, Adam; Dunn, Robert R.; Frank, Steven D.
2014-01-01
Cities experience elevated temperature, CO2, and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.
NASA Technical Reports Server (NTRS)
Guhathakurta, M.; Fisher, R. R.
1994-01-01
In this paper we utilize the latitiude distribution of the coronal temperature during the period 1984-1992 that was derived in a paper by Guhathakurta et al, 1993, utilizing ground-based intensity observations of the green (5303 A Fe XIV) and red (6374 A Fe X) coronal forbidden lines from the National Solar Observatory at Sacramento Peak, and establish it association with the global magnetic field and the density distributions in the corona. A determination of plasma temperature, T, was estimated from the intensity ratio Fe X/Fe XIV (where T is inversely proportional to the ratio), since both emission lines come from ionized states of Fe, and the ratio is only weakly dependent on density. We observe that there is a large-scale organization of the inferred coronal temperature distribution that is associated with the large-scale, weak magnetic field structures and bright coronal features; this organization tends to persist through most of the magnetic activity cycle. These high-temperature structures exhibit time-space characteristics which are similar to those of the polar crown filaments. This distribution differs in spatial and temporal characterization from the traditional picture of sunspot and active region evolution over the range of the sunspot cycle, which are manifestations of the small-scale, strong magnetic field regions.
NASA Astrophysics Data System (ADS)
Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel
2015-04-01
Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum rainfall intensities under a warming climate.
Synoptic-scale characteristics and atmospheric controls of summer heat waves in China
NASA Astrophysics Data System (ADS)
Wang, Weiwen; Zhou, Wen; Li, Xiuzhen; Wang, Xin; Wang, Dongxiao
2016-05-01
Summer heat waves with persistent extreme high temperatures have been occurring with increasing frequency in recent decades. These extreme events have disastrous consequences for human health, economies, and ecosystems. In this study, we examine three summers with intense and protracted heat waves: the summers of 2003, 2006, and 2013, with high temperatures located mainly in southeastern, southwestern, and eastern China, respectively. The synoptic-scale characteristics of these heat waves and associated atmospheric circulation anomalies are investigated. In the early heat wave episode of 2003, a heat center was located in the southeast coastal provinces during the first 20 days of July. The maximum southward displacement of the East Asian jet stream (EAJS) induced anticyclonic anomalies to the south, associated with southwestward intensification of the western North Pacific subtropical high (WNPSH), and extreme high temperatures were found only to the south of the Yangtze River. In the later episode, a poleward displacement of the EAJS and an enhanced WNPSH over the midlatitudes of eastern China resulted in a "heat dome" over the region, and the heat wave extended northward to cover a larger area of eastern China. The coupling between the westward-enhanced WNPSH and poleward-displaced EAJS was found in the East China heat wave of 2013 as well. But the area of high temperatures reached far to the north in August 2013, with below-normal temperatures located in a small region of South China. In the 2006 southwestern drought and heat wave, extreme poleward displacement of the EAJS, associated with extraordinary westward extension of the WNSPH, resulted in further blocking of the moisture supply from the southwest monsoon. Large-scale moisture deficiencies, dry conditions, and downslope winds were common features of all investigated heat wave episodes. But in 2006, low-level heat lows associated with a well-mixed layer due to intensive daytime heating and atmospheric turbulence were emphasized.
On the Measurement of Power Law Creep Parameters from Instrumented Indentation
NASA Astrophysics Data System (ADS)
Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.
2017-11-01
Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.
Atomistic simulations of materials: Methods for accurate potentials and realistic time scales
NASA Astrophysics Data System (ADS)
Tiwary, Pratyush
This thesis deals with achieving more realistic atomistic simulations of materials, by developing accurate and robust force-fields, and algorithms for practical time scales. I develop a formalism for generating interatomic potentials for simulating atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. This is done by fitting against an extensive database of ab initio results, as well as to experimental measurements for mixed oxide nuclear fuels. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies. A hybrid stochastic and deterministic algorithm is proposed that while maintaining fully atomistic resolution, allows one to achieve milliseconds and longer time scales for several thousands of atoms. The method exploits the rare event nature of the dynamics like other such methods, but goes beyond them by (i) not having to pick a scheme for biasing the energy landscape, (ii) providing control on the accuracy of the boosted time scale, (iii) not assuming any harmonic transition state theory (HTST), and (iv) not having to identify collective coordinates or interesting degrees of freedom. The method is validated by calculating diffusion constants for vacancy-mediated diffusion in iron metal at low temperatures, and comparing against brute-force high temperature molecular dynamics. We also calculate diffusion constants for vacancy diffusion in tantalum metal, where we compare against low-temperature HTST as well. The robustness of the algorithm with respect to the only free parameter it involves is ascertained. The method is then applied to perform tensile tests on gold nanopillars on strain rates as low as 100/s, bringing out the perils of high strain-rate molecular dynamics calculations. We also calculate temperature and stress dependence of activation free energy for surface nucleation of dislocations in pristine gold nanopillars under realistic loads. While maintaining fully atomistic resolution, we reach the fraction-of-a-second time scale regime. It is found that the activation free energy depends significantly and nonlinearly on the driving force (stress or strain) and temperature, leading to very high activation entropies for surface dislocation nucleation.
NASA Astrophysics Data System (ADS)
Balling, Robert C.; Roy, Shouraseni Sen
2005-06-01
Many scientists have noted that global temperature anomalies were highly correlated with solar irradiance values until sometime in the 1970s, but since that time, the pronounced warming in the near-surface temperature record is not explained by variations or trends in solar receipt. In this investigation, spatial dimensions are explored in the relationship between irradiance and near-surface air temperatures. At the scale of individual 5° by 5° grid cells, the solar control on annual temperature variations is not statistically significant. When the temperature data are aggregated by 5° latitudinal bands, the solar - temperature connect is generally significant, and in every band, there is substantial evidence that a non-solar control has become dominant in recent decades. The buildup of greenhouse gases and/or some other global-scale feedback, such as widespread changes in atmospheric water vapor, emerge as potential explanations for the recent residual warming found in all latitudinal bands.
Geothermal Geodatabase for Routt Hot Springs, Routt County, Colorado
Richard Zehner
2012-11-01
This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs and wells in the Routt Hot Spring and Steamboat Springs areahave geochemistry and geothermometry values indicative of high-temperature systems. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps
Systems Engineering Provides Successful High Temperature Steam Electrolysis Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles V. Park; Emmanuel Ohene Opare, Jr.
2011-06-01
This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability tomore » perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.« less
High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu
2002-01-01
It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.
High-temperature oxidation/corrosion of iron-based superalloys
NASA Technical Reports Server (NTRS)
Lemkey, F. D.; Smeggil, J. G.; Bailey, R. S.; Schuster, J. C.; Nowotny, H.
1987-01-01
The oxidation and sulfidation of several novel iron-base superalloys were evaluated in high-temperature cyclic tests. The experimental austenitic alloys examined were modifications of NASAUT-4GA which were developed for Stirling-engine application. The weight gains and resulting surface scales were measured and analyzed. Mixed oxide scales were found to form on all specimens exposed above 871 C. The build-up of these scales led to a depletion of Mn and Cr in a zone adjacent to the oxides. In addition, the initial oxidation of the Fe-rich alloy was inhibited by a thin but tenacious Si layer which formed at the interface between oxides and the parent layer. Sulfidation tests using Na2SO4 coatings resulted in the formation of a protective spinel and alpha-Fe2O3 phases. Preferential attack of the carbide phase by hydrogen was not observed after 350 h at 871 C.
NASA Astrophysics Data System (ADS)
von Reumont, J.; Hetzinger, S.; Garbe-Schönberg, D.; Manfrino, C.; Dullo, W.-Chr.
2016-03-01
The rising temperature of the world's oceans is affecting coral reef ecosystems by increasing the frequency and severity of bleaching and mortality events. The susceptibility of corals to temperature stress varies on local and regional scales. Insights into potential controlling parameters are hampered by a lack of long term in situ data in most coral reef environments and sea surface temperature (SST) products often do not resolve reef-scale variations. Here we use 42 years (1970-2012) of coral Sr/Ca data to reconstruct seasonal- to decadal-scale SST variations in two adjacent but distinct reef environments at Little Cayman, Cayman Islands. Our results indicate that two massive Diploria strigosa corals growing in the lagoon and in the fore reef responded differently to past warming events. Coral Sr/Ca data from the shallow lagoon successfully record high summer temperatures confirmed by in situ observations (>33°C). Surprisingly, coral Sr/Ca from the deeper fore reef is strongly affected by thermal stress events, although seasonal temperature extremes and mean SSTs at this site are reduced compared to the lagoon. The shallow lagoon coral showed decadal variations in Sr/Ca, supposedly related to the modulation of lagoonal temperature through varying tidal water exchange, influenced by the 18.6 year lunar nodal cycle. Our results show that reef-scale SST variability can be much larger than suggested by satellite SST measurements. Thus, using coral SST proxy records from different reef zones combined with in situ observations will improve conservation programs that are developed to monitor and predict potential thermal stress on coral reefs.
NASA Astrophysics Data System (ADS)
Chatha, Sukhpal Singh; Sidhu, Hazoor S.; Sidhu, Buta S.
2013-06-01
Ni-20Cr coating was deposited on T91 boiler tube steel by high-velocity oxy-fuel (HVOF) process to enhance high-temperature oxidation resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under in the platen superheater zone of coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles, each of 100-h duration followed by 1-h cooling at ambient temperature. The extent of degradation of the specimens was assessed by the thickness loss and depth of internal corrosion attack. Ni-20Cr-coated steel performed better than the uncoated steel in actual boiler environment. The improved degradation resistance of Ni-20Cr coating can be attributed to the presence of Cr2O3 in the top oxide scale and dense microstructure.
Synthesis of thin films and materials utilizing a gaseous catalyst
Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard
2013-10-29
A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.
1990-12-26
to mechanical properties , atomic structure , electronic bonding, and long term stability of interfaces at high temperature. The objective of this...discussion. The subjects were measurement of the local mechanical properties of-interfaces, constrained deformation, reactions at metal ceramic...as a function of oxygen activity and the effect of these reactions on mechanical properties understood, (iv) local deformation on the scale of
Climate Drivers of Alaska Summer Stream Temperature
NASA Astrophysics Data System (ADS)
Bieniek, P.; Bhatt, U. S.; Plumb, E. W.; Thoman, R.; Trammell, E. J.
2016-12-01
The temperature of the water in lakes, rivers and streams has wide ranging impacts from local water quality and fish habitats to global climate change. Salmon fisheries in Alaska, a critical source of food in many subsistence communities, are sensitive to large-scale climate variability and river and stream temperatures have also been linked with salmon production in Alaska. Given current and projected climate change, understanding the mechanisms that link the large-scale climate and river and stream temperatures is essential to better understand the changes that may occur with aquatic life in Alaska's waterways on which subsistence users depend. An analysis of Alaska stream temperatures in the context of reanalysis, downscaled, station and other climate data is undertaken in this study to fill that need. Preliminary analysis identified eight stream observation sites with sufficiently long (>15 years) data available for climate-scale analysis in Alaska with one station, Terror Creek in Kodiak, having a 30-year record. Cross-correlation of summer (June-August) water temperatures between the stations are generally high even though they are spread over a large geographic region. Correlation analysis of the Terror Creek summer observations with seasonal sea surface temperatures (SSTs) in the North Pacific broadly resembles the SST anomaly fields typically associated with the Pacific Decadal Oscillation (PDO). A similar result was found for the remaining stations and in both cases PDO-like correlation patterns also occurred in the preceding spring. These preliminary results demonstrate that there is potential to diagnose the mechanisms that link the large-scale climate system and Alaska stream temperatures.
Multi-scale simulation of quantum dot formation in Al/Al (110) homoepitaxy
NASA Astrophysics Data System (ADS)
Tiwary, Yogesh; Fichthorn, Kristen
2007-03-01
In experimental studies of Al(110) homoepitaxy, it is observed that over a certain temperature window (330-500K), 3D huts, up to 50 nm high with well defined and smooth (111) and (100) facets, form and self-organize over the micron scale [1]. The factors leading to this kinetic self-organization are currently unclear. To understand how these structures form and evolve, we simulated multi-layer, homoepitaxial growth on Al(110) using ab initio kinetic Monte Carlo (KMC). At the high temperatures, where nano-huts form, the KMC simulations are slow. To tackle this problem, we use a technique developed by Devita & Sander [2], in which isolated adatoms make multiple moves in one step. We achieve high efficiency with this algorithm and we explore very high temperatures on large simulation lattices. We uncover a variety of interesting morphologies (Ripples, mounds, smooth surface, huts) that depend on the growth temperature. By varying the barriers for various rate processes, we discern the factors that determine hut sizes, aspect ratios, and self-organization. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003). [2] J.P. Devita & L.M. Sander, Phys. Rev. B 72, 205421 (2005).
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id
2014-03-24
The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} ismore » also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.« less
Zachary A. Holden; Alan Swanson; Anna E. Klene; John T. Abatzoglou; Solomon Z. Dobrowski; Samuel A. Cushman; John Squires; Gretchen G. Moisen; Jared W. Oyler
2016-01-01
Gridded temperature data sets are typically produced at spatial resolutions that cannot fully resolve fine-scale variation in surface air temperature in regions of complex topography. These data limitations have become increasingly important as scientists and managers attempt to understand and plan for potential climate change impacts. Here, we describe the...
Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank
2013-07-21
The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.
NASA Astrophysics Data System (ADS)
Branciforte, R.; Weiss, S. B.; Schaefer, N.
2008-12-01
Climate change threatens California's vast and unique biodiversity. The Bay Area Upland Habitat Goals is a comprehensive regional biodiversity assessment of the 9 counties surrounding San Francisco Bay, and is designing conservation land networks that will serve to protect, manage, and restore that biodiversity. Conservation goals for vegetation, rare plants, mammals, birds, fish, amphibians, reptiles, and invertebrates are set, and those goals are met using the optimization algorithm MARXAN. Climate change issues are being considered in the assessment and network design in several ways. The high spatial variability at mesoclimatic and topoclimatic scales in California creates high local biodiversity, and provides some degree of local resiliency to macroclimatic change. Mesoclimatic variability from 800 m scale PRISM climatic norms is used to assess "mesoclimate spaces" in distinct mountain ranges, so that high mesoclimatic variability, especially local extremes that likely support range limits of species and potential climatic refugia, can be captured in the network. Quantitative measures of network resiliency to climate change include the spatial range of key temperature and precipitation variables within planning units. Topoclimatic variability provides a finer-grained spatial patterning. Downscaling to the topoclimatic scale (10-50 m scale) includes modeling solar radiation across DEMs for predicting maximum temperature differentials, and topographic position indices for modeling minimum temperature differentials. PRISM data are also used to differentiate grasslands into distinct warm and cool types. The overall conservation strategy includes local and regional connectivity so that range shifts can be accommodated.
NASA Astrophysics Data System (ADS)
Satoh, Katsuhiko
2013-08-01
The thermodynamic scaling of molecular dynamic properties of rotation and thermodynamic parameters in a nematic phase was investigated by a molecular dynamic simulation using the Gay-Berne potential. A master curve for the relaxation time of flip-flop motion was obtained using thermodynamic scaling, and the dynamic property could be solely expressed as a function of TV^{γ _τ }, where T and V are the temperature and volume, respectively. The scaling parameter γτ was in excellent agreement with the thermodynamic parameter Γ, which is the logarithm of the slope of a line plotted for the temperature and volume at constant P2. This line was fairly linear, and as good as the line for p-azoxyanisole or using the highly ordered small cluster model. The equivalence relation between Γ and γτ was compared with results obtained from the highly ordered small cluster model. The possibility of adapting the molecular model for the thermodynamic scaling of other dynamic rotational properties was also explored. The rotational diffusion constant and rotational viscosity coefficients, which were calculated using established theoretical and experimental expressions, were rescaled onto master curves with the same scaling parameters. The simulation illustrates the universal nature of the equivalence relation for liquid crystals.
Jiang, Jing; Jacobs, Alan G; Wenning, Brandon; Liedel, Clemens; Thompson, Michael O; Ober, Christopher K
2017-09-20
Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.
NASA Technical Reports Server (NTRS)
Stabe, Roy G.; Schwab, John R.
1991-01-01
A 0.767-scale model of a turbine stator designed for the core of a high-bypass-ratio aircraft engine was tested with uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The principal measurements were radial and circumferential surveys of stator-exit total temperature, total pressure, and flow angle. The stator-exit flow field was also computed by using a three-dimensional Navier-Stokes solver. Other than temperature, there were no apparent differences in performance due to the inlet conditions. The computed results compared quite well with the experimental results.
High pressure/temperature equation of state of gold silver alloys
NASA Astrophysics Data System (ADS)
Jenei, Zsolt; Lipp, Magnus J.; Klepeis, Jae-Hyun P.; Cynn, Hyunchae; Evans, William J.; Park, Changyong
2012-02-01
Gold-silver alloys crystallize in face centered cubic structures, like their constituent pure elements [McKeehan -- Phys.Rev. 20, 424 (1922)]. The cell parameter of the alloys does not scale linearly with the ratio of Ag/Au. In this work we investigate the high-pressure/temperature behavior of gold-silver alloys with different Au/Ag ratios. Powder x-ray diffraction experiments performed at HPCAT/Advanced Photon Source confirm the stability of the alloy's fcc structure to pressures/temperatures exceeding 100 GPa/1000 K. We will present isothermal EOS of the alloys from ambient temperature up to 1000 K, discuss the thermal expansion and its variation with pressure.
HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J.A.
1983-08-01
As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300/sup 0/ to approx. 1150/sup 0/C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophymore » and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology.« less
Fuel Cells Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles
2008-02-13
Talk “High temperature Polymer Electrolyte Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195...Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195, 212th Meeting of the Electrochemical
NASA Astrophysics Data System (ADS)
Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.
2018-03-01
The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.
NASA Astrophysics Data System (ADS)
Dutta, Rituraj; Kumar, A.
2017-10-01
Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz-5 MHz and in the temperature range of 300 K-380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.
The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.
Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui
2017-10-04
This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.
Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md.; Fletcher, Christine
2016-01-01
General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon. PMID:27561887
Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md; Fletcher, Christine
2016-08-26
General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon.
Calcium-based multi-element chemistry for grid-scale electrochemical energy storage
NASA Astrophysics Data System (ADS)
Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.
2016-03-01
Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.
Calcium-based multi-element chemistry for grid-scale electrochemical energy storage
Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.
2016-01-01
Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance. PMID:27001915
Calcium-based multi-element chemistry for grid-scale electrochemical energy storage.
Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L; Sadoway, Donald R
2016-03-22
Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.
High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle
NASA Technical Reports Server (NTRS)
Brown, Shannon T.; Lim, Boon H.; Tanner, Alan B.; Tanabe, Jordan M.; Kangaslahti, Pekka P.; Gaier, Todd C.; Soria, Mary M.; Lambrigtsen, Bjorn H.; Denning, Richard F.; Stachnik, Robert A.
2012-01-01
Microwave imaging radiometers operating in the 50-183 GHz range for retrieving atmospheric temperature and water vapor profiles from airborne platforms have been limited in the spatial scales of atmospheric structures that are resolved not because of antenna aperture size, but because of high receiver noise masking the small variations that occur on small spatial scales. Atmospheric variability on short spatial and temporal scales (second/ km scale) is completely unresolved by existing microwave profilers. The solution was to integrate JPL-designed, high-frequency, low-noise-amplifier (LNA) technology into the High-Altitude MMIC Sounding Radiometer (HAMSR), which is an airborne microwave sounding radiometer, to lower the system noise by an order of magnitude to enable the instrument to resolve atmospheric variability on small spatial and temporal scales. HAMSR has eight sounding channels near the 60-GHz oxygen line complex, ten channels near the 118.75-GHz oxygen line, and seven channels near the 183.31-GHz water vapor line. The HAMSR receiver system consists of three heterodyne spectrometers covering the three bands. The antenna system consists of two back-to-back reflectors that rotate together at a programmable scan rate via a stepper motor. A single full rotation includes the swath below the aircraft followed by observations of ambient (roughly 0 C in flight) and heated (70 C) blackbody calibration targets located at the top of the rotation. A field-programmable gate array (FPGA) is used to read the digitized radiometer counts and receive the reflector position from the scan motor encoder, which are then sent to a microprocessor and packed into data files. The microprocessor additionally reads telemetry data from 40 onboard housekeeping channels (containing instrument temperatures), and receives packets from an onboard navigation unit, which provides GPS time and position as well as independent attitude information (e.g., heading, roll, pitch, and yaw). The raw data files are accessed through an Ethernet port. The HAMSR data rate is relatively low at 75 kbps, allowing for real-time access over the Global Hawk high-data-rate downlink. Once on the ground, the raw data are unpacked and processed through two levels of processing. The Level 1 product contains geo-located, time-stamped, calibrated brightness temperatures for the Earth scan. These data are then input to a lD variational retrieval algorithm to produce temperature, water vapor, and cloud liquid water profiles, as well as several derived products such as potential temperature and relative humidity.
Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3 (btc)2).
Majano, Gerardo; Pérez-Ramírez, Javier
2013-02-20
Copper(II) hydroxide is converted directly to HKUST-1 (Cu(3) (btc)(2) ) after only 5 min at room-temperature in aqueous ethanolic solution without the need of additional solvents. Scale up to the kilogram scale does not influence porous properties yielding pure-phase product with a remarkable total surface area exceeding 1700 m(2) g(-1) featuring aggregates of nanometer-sized crystals (<600 nm) and extremely high space-time yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer
2017-05-01
Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty where more observations are required or environmental controls are hard to constrain. © 2016 John Wiley & Sons Ltd.
Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg
2017-04-01
Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LST sat ) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LST cam ). We show the consequences of neglecting atmospheric effects on LST cam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LST osr ) and LST cam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LST cam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LST cam , proving the necessity to correct LST cam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LST cam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.
Exfoliation Propensity of Oxide Scale in Heat Exchangers Used for Supercritical CO2 Power Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Shingledecker, John P.; Kung, Steve
2016-01-01
Supercritical CO2 (sCO2) Brayton cycle systems offer the possibility of improved efficiency in future fossil energy power generation plants operating at temperatures of 650 C and above. As there are few data on the oxidation/corrosion behavior of structural alloys in sCO2 at these temperatures, modeling to predict the propensity for oxide exfoliation is not well developed, thus hindering materials selection for these novel cycles. The ultimate goal of this effort is to provide needed data on scale exfoliation behavior in sCO2 for confident alloy selection. To date, a model developed by ORNL and EPRI for the exfoliation of oxide scalesmore » formed on boiler tubes in high-temperature, high-pressure steam has proven useful for managing exfoliation in conventional steam plants. A major input provided by the model is the ability to predict the likelihood of scale failure and loss based on understanding of the evolution of the oxide morphologies and the conditions that result in susceptibility to exfoliation. This paper describes initial steps taken to extend the existing model for exfoliation of steam-side oxide scales to sCO2 conditions. The main differences between high-temperature, high-pressure steam and sCO2 that impact the model involve (i) significant geometrical differences in the heat exchangers, ranging from standard pressurized tubes seen typically in steam-producing boilers to designs for sCO2 that employ variously-curved thin walls to create shaped flow paths for extended heat transfer area and small channel cross-sections to promote thermal convection and support pressure loads; (ii) changed operating characteristics with sCO2 due to the differences in physical and thermal properties compared to steam; and (iii) possible modification of the scale morphologies, hence properties that influence exfoliation behavior, due to reaction with carbon species from sCO2. The numerical simulations conducted were based on an assumed sCO2 operating schedule and several generic heat exchanger channel shapes and cross-sectional areas. Implications for the evolution of stresses in the oxide scales formed on sCO2 heat exchangers, and ensuing critical oxide thicknesses for exfoliation, were derived and compared with expectations for an equivalent conventional tubular heat exchanger in a steam cycle (for a given alloy).« less
Parameterization of water vapor using high-resolution GPS data and empirical models
NASA Astrophysics Data System (ADS)
Ningombam, Shantikumar S.; Jade, Sridevi; Shrungeshwara, T. S.
2018-03-01
The present work evaluates eleven existing empirical models to estimate Precipitable Water Vapor (PWV) over a high-altitude (4500 m amsl), cold-desert environment. These models are tested extensively and used globally to estimate PWV for low altitude sites (below 1000 m amsl). The moist parameters used in the model are: water vapor scale height (Hc), dew point temperature (Td) and water vapor pressure (Es 0). These moist parameters are derived from surface air temperature and relative humidity measured at high temporal resolution from automated weather station. The performance of these models are examined statistically with observed high-resolution GPS (GPSPWV) data over the region (2005-2012). The correlation coefficient (R) between the observed GPSPWV and Model PWV is 0.98 at daily data and varies diurnally from 0.93 to 0.97. Parameterization of moisture parameters were studied in-depth (i.e., 2 h to monthly time scales) using GPSPWV , Td , and Es 0 . The slope of the linear relationships between GPSPWV and Td varies from 0.073°C-1 to 0.106°C-1 (R: 0.83 to 0.97) while GPSPWV and Es 0 varied from 1.688 to 2.209 (R: 0.95 to 0.99) at daily, monthly and diurnal time scales. In addition, the moist parameters for the cold desert, high-altitude environment are examined in-depth at various time scales during 2005-2012.
NASA Astrophysics Data System (ADS)
Zhao, Yu; Xu, Songsong; Zou, Yun; Li, Jinhui; Zhang, Z. W.
High strength low alloy (HSLA) steels with high strength, high toughness, good corrosion resistance and weldability, can be widely used in shipbuilding, automobile, construction, bridging industry, etc. The microstructure evolution and mechanical properties can be influenced by thermomechanical processing. In this study, themomechanical processing is optimized to control the matrix microstructure and nano-scale precipitates in the matrix simultaneously. It is found that the low-temperature toughness and ductility of the steels are significantly the matrix microstructure during enhancing the strength by introducing the nano-scale precipitates. The effects of alloying elements on the microstructure evolution and nano-scale precipitation are also discussed.
NASA Astrophysics Data System (ADS)
Rice, Anthony; Allerman, Andrew; Crawford, Mary; Beechem, Thomas; Ohta, Taisuke; Spataru, Catalin; Figiel, Jeffrey; Smith, Michael
2018-03-01
The use of metal-organic chemical vapor deposition at high temperature is investigated as a means to produce epitaxial hexagonal boron nitride (hBN) at the wafer scale. Several categories of hBN films were found to exist based upon precursor flows and deposition temperature. Low, intermediate, and high NH3 flow regimes were found to lead to fundamentally different deposition behaviors. The low NH3 flow regimes yielded discolored films of boron sub-nitride. The intermediate NH3 flow regime yielded stoichiometric films that could be deposited as thick films. The high NH3 flow regime yielded self-limited deposition with thicknesses limited to a few mono-layers. A Langmuir-Hinshelwood mechanism is proposed to explain the onset of self-limited behavior for the high NH3 flow regime. Photoluminescence characterization determined that the intermediate and high NH3 flow regimes could be further divided into low and high temperature behaviors with a boundary at 1500 °C. Films deposited with both high NH3 flow and high temperature exhibited room temperature free exciton emission at 210 nm and 215.9 nm.
The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds
Wernberg, Thomas; Thomsen, Mads S.; Connell, Sean D.; Russell, Bayden D.; Waters, Jonathan M.; Zuccarello, Giuseppe C.; Kraft, Gerald T.; Sanderson, Craig; West, John A.; Gurgel, Carlos F. D.
2013-01-01
Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales. PMID:24260352
Pico-Kelvin thermometry and temperature stabilization using a resonant optical cavity.
Tan, Si; Wang, Suwen; Saraf, Shailendhar; Lipa, John A
2017-02-20
Ultra-high sensitivity temperature sensing and stable thermal control are crucial for many science experiments testing fundamental theories to high precision. Here we report the first pico-kevin scale thermometer operating at room temperature with an exceptionally low theoretical noise figure of ~70pK/Hz at 1 Hz and a high dynamic range of ~500 K. We have experimentally demonstrated a temperature sensitivity of <3.8nK/Hz at 1 Hz near room temperature, which is an order of magnitude improvement over the state of the art. We have also demonstrated an ultra-high stability thermal control system using this thermometer, achieving 3.7 nK stability at 1 s and ∼ 120 pK at 104 s, which is 10-100 times more stable than the state of the art. With some upgrades to this proof-of-principle device, we can expect it to be used for very high resolution tests of special relativity and in critical point phenomena.
CVD growth of graphene at low temperature
NASA Astrophysics Data System (ADS)
Zeng, Changgan
2012-02-01
Graphene has attracted a lot of research interest owing to its exotic properties and a wide spectrum of potential applications. Chemical vapor deposition (CVD) from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth. However, high growth temperature, typically 1000^oC, is required for such growth. In this talk, I will show a revised CVD route to grow graphene on Cu foils at low temperature, adopting solid and liquid hydrocarbon feedstocks. For solid PMMA and polystyrene precursors, centimeter-scale monolayer graphene films are synthesized at a growth temperature down to 400^oC. When benzene is used as the hydrocarbon source, monolayer graphene flakes with excellent quality are achieved at a growth temperature as low as 300^oC. I will also talk about our recent progress on low-temperature graphene growth using paraterphenyl as precursor. The successful low-temperature growth can be qualitatively understood from the first principles calculations. Our work might pave a way to economical and convenient growth route of graphene, as well as better control of the growth pattern of graphene at low temperature.
Design and fabrication of a high temperature leading edge heating array, phase 1
NASA Technical Reports Server (NTRS)
1972-01-01
Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module.
Liu, Yu; Sun, Changfeng; Li, Qiang; Cai, Qiufang
2016-01-01
The historical May–October mean temperature since 1831 was reconstructed based on tree-ring width of Qinghai spruce (Picea crassifolia Kom.) collected on Mt. Dongda, North of the Hexi Corridor in Northwest China. The regression model explained 46.6% of the variance of the instrumentally observed temperature. The cold periods in the reconstruction were 1831–1889, 1894–1901, 1908–1934 and 1950–1952, and the warm periods were 1890–1893, 1902–1907, 1935–1949 and 1953–2011. During the instrumental period (1951–2011), an obvious warming trend appeared in the last twenty years. The reconstruction displayed similar patterns to a temperature reconstruction from the east-central Tibetan Plateau at the inter-decadal timescale, indicating that the temperature reconstruction in this study was a reliable proxy for Northwest China. It was also found that the reconstruction series had good consistency with the Northern Hemisphere temperature at a decadal timescale. Multi-taper method spectral analysis detected some low- and high-frequency cycles (2.3–2.4-year, 2.8-year, 3.4–3.6-year, 5.0-year, 9.9-year and 27.0-year). Combining these cycles, the relationship of the low-frequency change with the Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Southern Oscillation (SO) suggested that the reconstructed temperature variations may be related to large-scale atmospheric-oceanic variations. Major volcanic eruptions were partly reflected in the reconstructed temperatures after high-pass filtering; these events promoted anomalous cooling in this region. The results of this study not only provide new information for assessing the long-term temperature changes in the Hexi Corridor of Northwest China, but also further demonstrate the effects of large-scale atmospheric-oceanic circulation on climate change in Northwest China. PMID:27509206
Effects of a temperature-dependent rheology on large scale continental extension
NASA Technical Reports Server (NTRS)
Sonder, Leslie J.; England, Philip C.
1988-01-01
The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.
NASA Astrophysics Data System (ADS)
Frieler, Katja; Meinshausen, Malte; Braun, Nadine; Hare, Bill
2010-05-01
Given the expected and already observed impacts of climate change there is growing agreement that global mean temperature rise should be limited to below 2 or 1.5 degrees. The translation of such a temperature target into guidelines for global emission reduction over the coming decades has become one of the most important and urgent tasks. In fact, there are four recent studies (Meinshausen et al. 2009, Allen et al. 2009, Matthews et al. 2009 and Zickfeld et al. 2009) which take a very comprehensive approach to quantifying the current uncertainties related to the question of what are the "allowed amounts" of global emissions given specific limits of global warming. Here, we present an extension of this budget approach allowing to focus on specific regional impacts. The method is based on probabilistic projections of regional temperature and precipitation changes providing the input for available impact functions. Using the example of Greenland's surface mass balance (Gregory et al., 2006) we will demonstrate how the probability of specific impacts can be described in dependence of global GHG emission budgets taking into account the uncertainty of global mean temperature projections as well as uncertainties of regional climate patterns varying from AOGCM to AOGCM. The method utilizes the AOGCM based linear relation between global mean temperature changes and regionally averaged changes in temperature and precipitation. It allows to handle the variations of regional climate projections from AR4 AOGCM runs independent of the uncertainties of global mean temperature change that are estimated by a simple climate model (Meinshausen et al., 2009). While the linearity of this link function is already established for temperature and to a lesser degree (depending on the region) also for precipitation (Santer et al. 1990; Mitchell et al. 1999; Giorgi et al., 2008; Solomon et al., 2009), we especially focus on the quantification of the uncertainty (in particularly the inter-AOGCM variations) of the associated scaling coefficients. Our approach is based on a linear mixed effects model (e.g. Bates and Pinheiro, 2001). In comparison to other scaling approaches we do not fit separate models for the temperature and precipitation data but we apply a two-dimensional model, i.e., we explicitly account for the fact that models (scenarios or runs) showing an especially high temperature increase may also show high precipitation increases or vice versa. Coupling the two-dimensional distribution of the scaling coefficients with the uncertainty distributions of global mean temperature change given different GHG emission trajectories finally provides time series of two dimensional uncertainty distributions of regional changes in temperature and precipitation, where both components might be correlated. These samples provide the input for regional specific impact functions. In case of Greenland we use a function by Gregory et al., 2006 that allows us to calculate changes in sea level rise due to changes in Greenland's surface mass balance in dependence of regionally averaged changes in temperature and precipitation. The precipitation signal turns out to be relatively strong for Greenland with AOGCMs consistently showing increasing precipitation with increasing global mean temperature. In addition, temperature and precipitation increases turned out to be highly correlated for Greenland: Models showing an especially high temperature increase also show high precipitation increases reflected by a correlation coefficient of 0.88 for the inter-model variations of both components of the scaling coefficients. Taking these correlations into account is especially important because the surface mass balance of the Greenland ice sheet critically depends on the interaction of the temperature and precipitation component of climate change: Increasing precipitation may at least partly balance the loss due to increasing temperatures.
Poore, R.Z.; Matthews, R.K.
1984-01-01
Oxygen isotope analyses of late Eocene and Oligocene planktonic foraminifers from low and middle latitude sites in the Atlantic Basin show that different species from the same samples can yield significantly different isotopic values. The range of isotopic values observed between species is greatest at low-latitudes and declines poleward. Many planktonic foraminifers exhibit a systematic isotopic ranking with respect to each other and can therefore be grouped on the basis of their isotopic ranking. The isotopic ranking of some taxa, however, appears to vary geographically and/or through time. Isotopic and paleontologic data from DSDP Site 522 indicate that commonly used isotopic temperature scales underestimate Oligocene sea surface temperatures. We suggest these temperature scales require revision to reflect the presence of Oligocene glaciation. Comparison of isotopic and paleontologic data from Sites 522, 511 and 277 suggests cold, low-salinity surface waters were present in high southern latitudes during the early Oligocene. Lowsalinity, high latitude surface waters could be caused by Eocene/Oligocene paleogeography or by the production of warm saline bottom water. ?? 1984.
Do cities simulate climate change? A comparison of herbivore response to urban and global warming.
Youngsteadt, Elsa; Dale, Adam G; Terando, Adam J; Dunn, Robert R; Frank, Steven D
2015-01-01
Cities experience elevated temperature, CO2 , and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Lam, Simon K. H.
2017-09-01
A promising direction to improve the sensitivity of a SQUID is to increase its junction's normal resistance value, Rn, as the SQUID modulation voltage scales linearly with Rn. As a first step to develop highly sensitive single layer SQUID, submicron scale YBCO grain boundary step edge junctions and SQUIDs with large Rn were fabricated and studied. The step-edge junctions were reduced to submicron scale to increase their Rn values using focus ion beam, FIB and the measurement of transport properties were performed from 4.3 to 77 K. The FIB induced deposition layer proves to be effective to minimize the Ga ion contamination during the FIB milling process. The critical current-normal resistance value of submicron junction at 4.3 K was found to be 1-3 mV, comparable to the value of the same type of junction in micron scale. The submicron junction Rn value is in the range of 35-100 Ω, resulting a large SQUID modulation voltage in a wide temperature range. This performance promotes further investigation of cryogen-free, high field sensitivity SQUID applications at medium low temperature, e.g. at 40-60 K.
Effects of plasma shaping on nonlinear gyrokinetic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belli, E. A.; Hammett, G. W.; Dorland, W.
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W. M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on bothmore » the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of {chi}{approx}{kappa}{sup -1.5} or {kappa}{sup -2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.« less
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 10 11 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement
NASA Astrophysics Data System (ADS)
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
NASA Technical Reports Server (NTRS)
Cezairliyan, Ared
1993-01-01
Rapid (subsecond) heating techniques developed at the National Institute of Standards and Technology for the measurements of selected thermophysical and related properties of metals and alloys at high temperatures (above 1000 C) are described. The techniques are based on rapid resistive self-heating of the specimen from room temperature to the desired high temperature in short times and measuring the relevant experimental quantities, such as electrical current through the specimen, voltage across the specimen, specimen temperature, length, etc., with appropriate time resolution. The first technique, referred to as the millisecond-resolution technique, is for measurements on solid metals and alloys in the temperature range 1000 C to the melting temperature of the specimen. It utilizes a heavy battery bank for the energy source, and the total heating time of the specimen is typically in the range of 100-1000 ms. Data are recorded digitally every 0.5 ms with a full-scale resolution of about one part in 8000. The properties that can be measured with this system are as follows: specific heat, enthalpy, thermal expansion, electrical resistivity, normal spectral emissivity, hemispherical total emissivity, temperature and energy of solid-solid phase transformations, and melting temperature (solidus). The second technique, referred to as the microsecond-resolution technique, is for measurements on liquid metals and alloys in the temperature range 1200 to 6000 C. It utilizes a capacitor bank for the energy source, and the total heating time of the specimen is typically in the range 50-500 micro-s. Data are recorded digitally every 0.5 micro-s with a full-scale resolution of about one part in 4000. The properties that can be measured with this system are: melting temperature (solidus and liquidus), heat of fusion, specific heat, enthalpy, and electrical resistivity. The third technique is for measurements of the surface tension of liquid metals and alloys at their melting temperature. It utilizes a modified millisecond-resolution heating system designed for use in a microgravity environment.
Locally adaptive parallel temperature accelerated dynamics method
NASA Astrophysics Data System (ADS)
Shim, Yunsic; Amar, Jacques G.
2010-03-01
The recently-developed temperature-accelerated dynamics (TAD) method [M. Sørensen and A.F. Voter, J. Chem. Phys. 112, 9599 (2000)] along with the more recently developed parallel TAD (parTAD) method [Y. Shim et al, Phys. Rev. B 76, 205439 (2007)] allow one to carry out non-equilibrium simulations over extended time and length scales. The basic idea behind TAD is to speed up transitions by carrying out a high-temperature MD simulation and then use the resulting information to obtain event times at the desired low temperature. In a typical implementation, a fixed high temperature Thigh is used. However, in general one expects that for each configuration there exists an optimal value of Thigh which depends on the particular transition pathways and activation energies for that configuration. Here we present a locally adaptive high-temperature TAD method in which instead of using a fixed Thigh the high temperature is dynamically adjusted in order to maximize simulation efficiency. Preliminary results of the performance obtained from parTAD simulations of Cu/Cu(100) growth using the locally adaptive Thigh method will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinenweber, Kurt, E-mail: kurtl@asu.edu; Gullikson, Amber L.; Stoyanov, Emil
2015-09-15
The accuracy and precision of pressure measurements and the pursuit of reliable and readily available pressure scales at simultaneous high temperatures and pressures are still topics in development in high pressure research despite many years of work. In situ pressure scales based on x-ray diffraction are widely used but require x-ray access, which is lacking outside of x-ray beam lines. Other methods such as fixed points require several experiments to bracket a pressure calibration point. In this study, a recoverable high-temperature pressure gauge for pressures ranging from 3 GPa to 10 GPa is presented. The gauge is based on themore » pressure-dependent solubility of an SiO{sub 2} component in the rutile-structured phase of GeO{sub 2} (argutite), and is valid when the argutite solid solution coexists with coesite. The solid solution varies strongly in composition, mainly in pressure but also somewhat in temperature, and the compositional variations are easily detected by x-ray diffraction of the recovered products because of significant changes in the lattice parameters. The solid solution is measured here on two isotherms, one at 1200 °C and the other at 1500 °C, and is developed as a pressure gauge by calibrating it against three fixed points for each temperature and against the lattice parameter of MgO measured in situ at a total of three additional points. A somewhat detailed thermodynamic analysis is then presented that allows the pressure gauge to be used at other temperatures. This provides a way to accurately and reproducibly evaluate the pressure in high pressure experiments and applications in this pressure-temperature range, and could potentially be used as a benchmark to compare various other pressure scales under high temperature conditions. - Graphical abstract: The saturation curve of SiO{sub 2} in TiO{sub 2} shows a strong pressure dependence and a strong dependence of unit cell volume on composition. This provides an opportunity to use this saturation curve as a measurement of pressure during a high-pressure experiment. The curve is a sensitive measure of pressure from 3 GPa to 10 GPa at high temperatures. The pressure is derived from lattice parameter measurements on the recovered solid solution, meaning that in-situ measurements are not necessary to evaluate the pressure of the experiment. - Highlights: • The unit cell of a saturated GeO{sub 2}–SiO{sub 2} solid solution is used as a pressure sensor. • We measure nine bracketed pressure points on the GeO{sub 2}–SiO{sub 2} saturation surface. • We provide a pressure calibrant from 3 GPa to 10 GPa at two temperatures. • Four points are measured at 1200 °C and five points at 1500 °C. • A thermodynamic model is developed for use of the calibrant at other temperatures.« less
Complete Mie-Gruneisen Equation of State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2012-06-28
The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gruneisen coefficient, {Lambda} = -V({partial_derivative}{sub e}P){sub V}, that is a function of only V. Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that ifmore » the domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then {Lambda} a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gruneisen EOS in which the pressure is linear in both the specific energy and the temperature. Such an EOS has previously been used to model liquid nitromethane.« less
Potential ability of zeolite to generate high-temperature vapor using waste heat
NASA Astrophysics Data System (ADS)
Fukai, Jun; Wijayanta, Agung Tri
2018-02-01
In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.
Mo-Si-B-Based Coatings for Ceramic Base Substrates
NASA Technical Reports Server (NTRS)
Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)
2015-01-01
Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.
A PILOT-SCALE STUDY ON THE COMBUSTION OF WASTE ...
Symposium Paper Post-consumer carpet is a potential substitute fuel for high temperature thermal processes such as cement kilns and boilers.This paper reports on results examining emissions of PCDDs/Fs from a series of pilot-scale experiments performed on the EPA's rotary kiln incinerator simulator facility in Research triangle Park, NC.
Scale-up of wheat straw conversion to fuel ethanol at 100 liter scale
USDA-ARS?s Scientific Manuscript database
Wheat straw can serve as low cost feedstock for conversion to ethanol. Pretreatment is crucial prior to enzymatic hydrolysis. We have used dilute H2SO4 pretreatment at a high temperature for pretreatment of wheat straw. The pretreated hydrolyzate was bioabated using a novel fungal strain able to ...
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-03-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ning; Yearsley, John; Voisin, Nathalie
2015-05-15
Stream temperatures in urban watersheds are influenced to a high degree by anthropogenic impacts related to changes in landscape, stream channel morphology, and climate. These impacts can occur at small time and length scales, hence require analytical tools that consider the influence of the hydrologic regime, energy fluxes, topography, channel morphology, and near-stream vegetation distribution. Here we describe a modeling system that integrates the Distributed Hydrologic Soil Vegetation Model, DHSVM, with the semi-Lagrangian stream temperature model RBM, which has the capability to simulate the hydrology and water temperature of urban streams at high time and space resolutions, as well asmore » a representation of the effects of riparian shading on stream energetics. We demonstrate the modeling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model is able both to produce realistic streamflow predictions at fine temporal and spatial scales, and to provide spatially distributed water temperature predictions that are consistent with observations throughout a complex stream network. We use the modeling construct to characterize impacts of land use change and near-stream vegetation change on stream temperature throughout the Mercer Creek system. We then explore the sensitivity of stream temperature to land use changes and modifications in vegetation along the riparian corridor.« less
Fabrication of Metallic Glass Powder for Brazing Paste for High-Temperature Thermoelectric Modules
NASA Astrophysics Data System (ADS)
Seo, Seung-Ho; Kim, Suk Jun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok
2018-06-01
Metallic glass (MG) offers the advantage of outstanding oxidation resistance, since it has disordered atomic-scale structure without grain boundaries. We fabricated Al-based MG ribbons (Al84.5Y10Ni5.5) by a melt spinning process. We evaluated the adhesion strength of interfaces between the Al-based MG and a Ni-coated Cu electrode formed under various conditions at high temperature. In addition, we attempted to optimize the process conditions for pulverizing MG ribbons to < 100 micrometers by combining high-energy ball milling and planetary milling. We confirmed that the electrical resistivity of the Al-based MG ribbon was substantially reduced after annealing at high temperature (over 300°C) due to crystallization.
Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod
NASA Astrophysics Data System (ADS)
Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin
2016-10-01
It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.
Closing in on the large-scale CMB power asymmetry
NASA Astrophysics Data System (ADS)
Contreras, D.; Hutchinson, J.; Moss, A.; Scott, D.; Zibin, J. P.
2018-03-01
Measurements of the cosmic microwave background (CMB) temperature anisotropies have revealed a dipolar asymmetry in power at the largest scales, in apparent contradiction with the statistical isotropy of standard cosmological models. The significance of the effect is not very high, and is dependent on a posteriori choices. Nevertheless, a number of models have been proposed that produce a scale-dependent asymmetry. We confront several such models for a physical, position-space modulation with CMB temperature observations. We find that, while some models that maintain the standard isotropic power spectrum are allowed, others, such as those with modulated tensor or uncorrelated isocurvature modes, can be ruled out on the basis of the overproduction of isotropic power. This remains the case even when an extra isocurvature mode fully anticorrelated with the adiabatic perturbations is added to suppress power on large scales.
Scaling laws and bulk-boundary decoupling in heat flow.
del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I
2015-03-01
When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.
NASA Astrophysics Data System (ADS)
Li, Wanli; Vicente, C. L.; Xia, J. S.; Pan, W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.
2009-05-01
The quantum Hall-plateau transition was studied at temperatures down to 1 mK in a random alloy disordered high mobility two-dimensional electron gas. A perfect power-law scaling with κ=0.42 was observed from 1.2 K down to 12 mK. This perfect scaling terminates sharply at a saturation temperature of Ts˜10mK. The saturation is identified as a finite-size effect when the quantum phase coherence length (Lϕ∝T-p/2) reaches the sample size (W) of millimeter scale. From a size dependent study, Ts∝W-1 was observed and p=2 was obtained. The exponent of the localization length, determined directly from the measured κ and p, is ν=2.38, and the dynamic critical exponent z=1.
Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.
Exploring Electric Polarization Mechanisms in Multiferroic Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyson, Trevor A.
2017-01-24
Multiferroic oxides are a class of systems which exhibit coupling between the electrical polarization and the magnetization. These materials show promise to lead to devices in which ferromagnetic memory can be written with magnetic fields or magnetic bits can be written by an electric field. The work conducted in our research focuses on single phase materials. We studied the detailed coupling of the spin and lattice correlations in these systems. In the first phase of the proposal, we explored the complex spin spiral systems and low temperature behavior of hexagonal layered REMnO 3 (RE= rare earth, Y and Sc) systemmore » following the detailed structural changes which occurred on crossing into the magnetic states. The techniques were applied to other layered materials such as superconductors and thermoelectric where the same layered motif exists. The second phase of the proposal focused on understanding the mechanisms involved in the onset high temperature ferroelectricity ion hexagonal REMnO 3 and at low temperature in E-Type magnetic ordered perovskite REMnO 3. We wsynthesized preovskite small A site multiferroics by high pressure and high temperature methods. Detailed measurement of the structural properties and dynamics were conducted over a range of length scales from atomic to mesoscopic scale using, x-ray absorption spectroscopy, x-ray diffuse scattering, x-ray and neutron pair distribution analysis and high resolution x-ray diffraction. Changes in vibration modes which occur with the onset of polarization were probed with temperature and pressure dependent infrared absorption spectroscopy. In addition the orthorhombic system (small radius RE ions) which is believed to exhibit electronically driven ferroelectricity and is also not understood was examined. The multiple length scale synchrotron based measurements may assist in developing more detailed models of these materials and possibly lead to device applications. The experimental work was complemented by density functional methods to determine the magnetic ground states and ab initio molecular dynamics methods (AIMD) to determine the high temperature structures. Simulation were carried out on supercomputers at the National Energy Research Scientific Computing Center (NERSC). An important contribution of this work was the training of graduate students and postdoctoral researchers in materials synthesis, high pressure methods and synchrotron based spectroscopy and x-ray scattering techniques.« less
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-11-01
Flow patterns in conjunction with seasonal and diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many temperature-sensitive microbial processes. In this study, we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high-resolution observations of hydraulic heads and temperatures to quantify reach-scale water and heat flux across the river-groundwater interface and hyporheic temperature dynamics of a lowland gravel bed river. The model was calibrated in order to constrain estimates of the most sensitive model parameters. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7°C and an average Nash Sutcliffe efficiency of 0.87. Our results indicate that nonsubmerged streambed structures such as gravel bars cause substantial thermal heterogeneity within the saturated sediment at the reach scale. Individual hyporheic flow path temperatures strongly depend on the flow path residence time, flow path depth, river, and groundwater temperature. Variations in individual hyporheic flow path temperatures were up to 7.9°C, significantly higher than the daily average (2.8°C), but still lower than the average seasonal hyporheic temperature difference (19.2°C). The distribution between flow path temperatures and residence times follows a power law relationship with exponent of about 0.37. Based on this empirical relation, we further estimated the influence of hyporheic flow path residence time and temperature on oxygen consumption which was found to partly increase by up to 29% in simulations.
Evaluation of Small-Sized Platinum Resistance Thermometers with ITS-90 Characteristics
NASA Astrophysics Data System (ADS)
Yamazawa, K.; Anso, K.; Widiatmo, J. V.; Tamba, J.; Arai, M.
2011-12-01
Many platinum resistance thermometers (PRTs) are applied for high precision temperature measurements in industry. Most of the applications use PRTs that follow the industrial standard of PRTs, IEC 60751. However, recently, some applications, such as measurements of the temperature distribution within equipments, require a more precise temperature scale at the 0.01 °C level. In this article the evaluation of remarkably small-sized PRTs that have temperature-resistance characteristics very close to that of standard PRTs of the International Temperature Scale of 1990 (ITS-90) is reported. Two types of the sensing element were tested, one is 1.2 mm in diameter and 10 mm long, the other is 0.8 mm and 8 mm. The resistance of the sensor is 100 Ω at the triple-point-of-water temperature. The resistance ratio at the Ga melting-point temperature of the sensing elements exceeds 1.11807. To verify the closeness of the temperature-resistance characteristics, comparison measurements up to 157 °C were employed. A pressure-controlled water heat-pipe furnace was used for the comparison measurement. Characteristics of 19 thermometers with these small-sized sensing elements were evaluated. The deviation from the temperature measured using a standard PRT used as a reference thermometer in the comparison was remarkably small, when we apply the same interpolating function for the ITS-90 sub-range to these small thermometers. Results including the stability of the PRTs and the uncertainty evaluation of the comparison measurements, and the comparison results showing the small deviation from the ITS-90 temperature-resistance characteristics are reported. The development of such a PRT might be a good solution for applications such as temperature measurements of small objects or temperature distribution measurements that need the ITS-90 temperature scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandriyana,, E-mail: bandri@batan.go.id; Ismoyo, Agus Hadi; Dimyati, A.
Surface treatment by implantation with nitrogen-ion was performed on the commercial feritic high strength steel AISI 410 which is termed for high temperature applications. The aim of this research was focused on the surface modification to improve its high temperature oxidation property in the early stages. Ion implantation was carried out at acceleration energy of 100 KeV and ion current 10 mA for 30, 60 and 90 minutes. The samples were subjected to the high temperature oxidation test by means of thermogravimetry in a magnetic suspension balance (MSB) at 500 °C for 5 hours. The scanning electron microscopy (SEM), X-ray diffractionmore » spectrometry (XRD) and Vickers Hardness measurement were used for sample characterization. The formation of ferro-nitride phase after implantation did not occur, however a thin layer considered to contain nitrogen interstitials was detected. The oxidation of both samples before and after implantation followed parabolic kinetics indicating inward growth of oxide scale characteristically due to diffusion of oxygen anions towards matrix surface. After oxidation test relativelly stable oxide scales were observed. Oxidation rates decreased proportionally with the increasing of implantation time due to the formation of oxide layer which is considered to be effectiv inhibitor for the oxygen diffusion.« less
NASA Technical Reports Server (NTRS)
Vezzoli, G. C.; Chen, M. F.; Craver, F.
1991-01-01
It is observed that for the known high-T(sub c) Cu-, Tl-, and Bi-based superconductors, T(sub c) scales consistently with the number of bound holes per unit cell which arise from charge transfer excitations of frequency approximately = 3 x 10(exp 13) that neutralized the multivalence cations into diamagnetic states. The resulting holes are established on the oxygens. Extrapolation of this empirical fit in the up-temperature direction suggests a T(sub c) of about 220-230 K at a value of 25 holes/unit cell (approximately the maximum that can be materials-engineered into a high-T(sub c) K2MnF4 or triple Perovskite structure). In the down-temperature direction, the extrapolation gives a T(sub c) in the vicinity of 235 K for the Y-Ba-Cu-O system as well as the known maximum temperature of 23 K for low-T(sub c) materials shown by Nb3Ge. The approach is also consistent with the experimental findings that only multivalence ions which are diamagnetic in their atomic state (Cu, Tl, Bi, Pb, and Sb) associate with high-T(sub c) compounds.
NASA Technical Reports Server (NTRS)
Mckeown, Anderson B; Hibbard, Robert R
1955-01-01
The effect of dissolved oxygen in the filter-clogging characteristics of three JP-4 and two JP-5 fuels was studied at 300 degrees to 400 degrees F in a bench- scale rig, employing filter paper as the filter medium. The residence time of the fuel at the high temperature was approximately 6 seconds. For these conditions, the clogging characteristics of the fuels increased with both increasing temperature and increasing concentration of dissolved oxygen. The amount of insoluble material formed at high temperatures necessary to produce clogging of filters was very small, of the order of 1 milligram per gallon of fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Antony, E-mail: antony@cosmologist.info
Rayleigh scattering from neutral hydrogen during and shortly after recombination causes the CMB anisotropies to be significantly frequency dependent at high frequencies. This may be detectable with Planck, and would be a strong signal in any future space-based CMB missions. The later peak of the Rayleigh visibility compared to Thomson scattering gives an increased large-scale CMB polarization signal that is a greater than 4% effect for observed frequencies ν ∼> 500GHz. There is a similar magnitude suppression on small scales from additional damping. Due to strong correlation between the Rayleigh and primary signal, measurement of the Rayleigh component is limitedmore » by noise and foregrounds, not cosmic variance of the primary CMB, and should observable over a wide range of angular scales at frequencies 200GHz ∼< ν ∼< 800GHz. I give new numerical calculations of the temperature and polarization power spectra, and show that future CMB missions could measure the temperature Rayleigh cross-spectrum at high precision, detect the polarization from Rayleigh scattering, and also accurately determine the cross-spectra between the Rayleigh temperature signal and primary polarization. The Rayleigh scattering signal may provide a powerful consistency check on recombination physics. In principle it can be used to measure additional horizon-scale primordial perturbation modes at recombination, and distinguish a significant tensor mode B-polarization signal from gravitational lensing at the power spectrum level.« less
Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations
NASA Astrophysics Data System (ADS)
Xie, Z.
2015-12-01
In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.
In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD
NASA Technical Reports Server (NTRS)
Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.
1990-01-01
Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.
In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD
NASA Technical Reports Server (NTRS)
Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.
1991-01-01
Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.
Assessing uncertainty in high-resolution spatial climate data across the US Northeast.
Bishop, Daniel A; Beier, Colin M
2013-01-01
Local and regional-scale knowledge of climate change is needed to model ecosystem responses, assess vulnerabilities and devise effective adaptation strategies. High-resolution gridded historical climate (GHC) products address this need, but come with multiple sources of uncertainty that are typically not well understood by data users. To better understand this uncertainty in a region with a complex climatology, we conducted a ground-truthing analysis of two 4 km GHC temperature products (PRISM and NRCC) for the US Northeast using 51 Cooperative Network (COOP) weather stations utilized by both GHC products. We estimated GHC prediction error for monthly temperature means and trends (1980-2009) across the US Northeast and evaluated any landscape effects (e.g., elevation, distance from coast) on those prediction errors. Results indicated that station-based prediction errors for the two GHC products were similar in magnitude, but on average, the NRCC product predicted cooler than observed temperature means and trends, while PRISM was cooler for means and warmer for trends. We found no evidence for systematic sources of uncertainty across the US Northeast, although errors were largest at high elevations. Errors in the coarse-scale (4 km) digital elevation models used by each product were correlated with temperature prediction errors, more so for NRCC than PRISM. In summary, uncertainty in spatial climate data has many sources and we recommend that data users develop an understanding of uncertainty at the appropriate scales for their purposes. To this end, we demonstrate a simple method for utilizing weather stations to assess local GHC uncertainty and inform decisions among alternative GHC products.
NASA Astrophysics Data System (ADS)
Tiselj, Iztok
2014-12-01
Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and instantaneous streamwise velocities, but between the instantaneous temperatures and velocities averaged over certain time interval.
Tree-ring width based temperature and precipitation reconstruction in southeastern China
NASA Astrophysics Data System (ADS)
Shi, Jiangfeng; Shi, Shiyuan; Zhao, Yesi; Lu, Huayu
2017-04-01
Southeastern China is a subtropical region where the climate is dominated by the Asian monsoon climate system, with high temperature and precipitation in summer, and low temperature and precipitation in winter. Tree-ring research has been developed very fast in the past decade in the region. Some studies show that coniferous tree growth in the region is limited by temperatures in prior winter and during the growing season (i.e., prior November to current April, April to July, etc.), however to different limiting levels. Higher temperature in the dormant season means less damage to leaves and roots, and less consumption of previously stored carbohydrates and starches that can be used for tree growth in the coming year. The mechanism of positive relationships with the growing season is the same as that in high-latitude and high-elevation regions. The temperature reconstructions match each other very well at decadal to multi-decadal scales during the past 150 years at a large spatial scale, that is, of 700 km away, even though there are some discrepancies in the early part of the comparisons. Possible reasons for the discrepancies may include local temperature differences, small sample depth in the early part of the reconstructions, and/or juvenile effects. Generally, there is a weak precipitation signal in tree-ring width chronlogies. However, some studies have shown potentials in precipitation reconstruction in recent years, such as using tree-ring width chrnologies by taking samples at some special sites, using adjusted late-wood width chronlogies, and using stable isotopes. Thus, we might have a comprehensive understanding of the Asian monsson climate system over the past several centuries through temperature and precipitation reconstruction together using tree-ring series.
Modulation of Gravity Waves by Tides as Seen in CRISTA Temperatures
NASA Technical Reports Server (NTRS)
Preusse, P.; Eckermann, S. D.; Oberheide, J.; Hagan, M. E.; Offermann, D.
2001-01-01
During shuttle missions STS-66 (November, 1994) and STS-85 (August, 1997) the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) acquired temperature data with very high spatial resolution. These are analyzed for gravity waves (GW). The altitude range spans the whole middle atmosphere from the tropopause up to the mesopause. In the upper mesosphere tidal amplitudes exceed values of 10 K. Modulation of GW activity by the tides is observed and analyzed using CRISTA temperatures and tidal predictions of the Global Scale Wave Model (GSWM). The modulation process is identified as a tidally-induced change of the background buoyancy frequency. The findings agree well with the expectations for saturated GW and are the first global scale observations of this process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L.
2016-11-15
Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement ofmore » electron temperature gradient scale length.« less
NASA Astrophysics Data System (ADS)
Tsuei, C. C.; Gupta, A.; Trafas, G.; Mitzi, D.
1994-03-01
The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O_2 environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa_2CaCu_2O6+δ films has been achieved.
Tsuei, C C; Gupta, A; Trafas, G; Mitzi, D
1994-03-04
The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O(2) environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa(2)CaCu(2)O(6+delta) films has been achieved.
NASA Technical Reports Server (NTRS)
Shelton, Duane; Gamota, George
1989-01-01
The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.
Trends in mean and extreme temperatures over Ibadan, Southwest Nigeria
NASA Astrophysics Data System (ADS)
Abatan, Abayomi A.; Osayomi, Tolulope; Akande, Samuel O.; Abiodun, Babatunde J.; Gutowski, William J.
2018-02-01
In recent times, Ibadan has been experiencing an increase in mean temperature which appears to be linked to anthropogenic global warming. Previous studies have indicated that the warming may be accompanied by changes in extreme events. This study examined trends in mean and extreme temperatures over Ibadan during 1971-2012 at annual and seasonal scales using the high-resolution atmospheric reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth-century dataset (ERA-20C) at 15 grid points. Magnitudes of linear trends in mean and extreme temperatures and their statistical significance were calculated using ordinary least squares and Mann-Kendall rank statistic tests. The results show that Ibadan has witnessed an increase in annual and seasonal mean minimum temperatures. The annual mean maximum temperature exhibited a non-significant decline in most parts of Ibadan. While trends in cold extremes at annual scale show warming, trends in coldest night show greater warming than in coldest day. At the seasonal scale, we found that Ibadan experienced a mix of positive and negative trends in absolute extreme temperature indices. However, cold extremes show the largest trend magnitudes, with trends in coldest night showing the greatest warming. The results compare well with those obtained from a limited number of stations. This study should inform decision-makers and urban planners about the ongoing warming in Ibadan.
Turbo-Brayton cryocooler technology for low-temperature space applications
NASA Astrophysics Data System (ADS)
Zagarola, Mark V.; Breedlove, Jeffrey F.; McCormick, John A.; Swift, Walter L.
2003-03-01
High performance, low temperature cryocoolers are being developed for future space-borne telescopes and instruments. To meet mission objectives, these coolers must be compact, lightweight, have low input power, operate reliably for 5-10 years, and produce no disturbances that would affect the pointing accuracy of the instruments. This paper describes progress in the development of turbo-Brayton cryocoolers addressing cooling in the 5 K to 20 K temperature range for loads of up to 300 mW. The key components for these cryocoolers are the miniature, high-speed turbomachines and the high performance recuperative heat exchangers. The turbomachines use gas-bearings to support the low mass, high speed rotors, resulting in negligible vibration and long life. Precision fabrication techniques are used to produce the necessary micro-scale geometric features that provide for high cycle efficiencies at these reduced sizes. Turbo-Brayton cryocoolers for higher temperatures and loads have been successfully developed for space applications. For efficient operation at low temperatures and capacities, advances in the core technologies have been pursued. Performance test results of a new, low poer compressor will be presented, and early cryogenic test results on a low temperature expansion turbine will be discussed. Projections for several low temperature cooler configurations are summarized.
Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine
NASA Astrophysics Data System (ADS)
Lockett, R. D.; Ball, D.; Robertson, G. N.
2013-07-01
A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.
Development of high strength ferritic steel for interconnect application in SOFCs
NASA Astrophysics Data System (ADS)
Froitzheim, J.; Meier, G. H.; Niewolak, L.; Ennis, P. J.; Hattendorf, H.; Singheiser, L.; Quadakkers, W. J.
High-Cr ferritic model steels containing various additions of the refractory elements Nb and/or W were studied with respect to oxidation behaviour (hot) tensile properties, creep behaviour and high-temperature electrical conductivity of the surface oxide scales. Whereas W additions of around 2 wt.% had hardly any effect on the oxidation rates at 800 and 900 °C, Nb additions of 1% led to a substantially enhanced growth rate of the protective surface oxide scale. It was found that this adverse effect can be alleviated by suitable Si additions. This is related to the incorporation of Si and Nb into Laves phase precipitates which also contribute to increased creep and hot tensile strength. The dispersion of Laves phase precipitates was greatly refined by combined additions of Nb and W. The high-temperature electrical conductivity of the surface oxide scales was similar to that of the Nb/W-free alloys. Thus the combined additions of Nb, W and Si resulted in an alloy with oxidation resistance, ASR contribution and thermal expansion comparable to the commercial alloy Crofer 22 APU, but with creep strength far greater than that of Crofer 22 APU.
Cyclic Oxidation Modeling Program Rewritten for MS Windows
NASA Technical Reports Server (NTRS)
Smialek, James L.; Auping, Judith V.
2002-01-01
Turbine superalloy components are subject to high-temperature oxidation during operation. Protection is often conferred by coatings designed to form slow-growing, adherent oxide scales. Degradation by oxidation is exacerbated by the thermal cycling encountered during normal aircraft operations. Cooling has been identified as the major contributor to stresses in the oxidation scales, and it may often cause some oxide scale spallation with a proportional loss of protective behavior. Overall oxidation resistance is, thus, studied by the weight change behavior of alloy coupons during high-temperature cyclic oxidation in furnace or burner rig tests. The various characteristics of this behavior are crucial in understanding the performance of alloys at high temperatures. This new modeling effort helps in the understanding of the major factors involved in the cyclic oxidation process. Weight change behavior in cyclic oxidation is typified by an initial parabolic weight gain response curve that eventually exhibits a maximum, then transitions into a linear rate of weight loss due to spalling. The overall shape and magnitude of the curve are determined by the parabolic growth rate, kp, the cycle duration, the type of oxide scale, and the regular, repetitive spalling process. This entire process was modeled by a computer program called the Cyclic Oxidation Spalling Program (COSP) previously developed at the NASA Glenn Research Center. Thus, by supplying appropriate oxidation input parameters, one can determine the best fit to the actual data. These parameters describe real behavior and can be used to compare alloys and project cyclic oxidation behavior for longer times or under different cycle frequencies.
Fleming, Austin; Folsom, Charles; Ban, Heng; ...
2015-11-13
Concentrating solar power (CSP) with thermal energy storage has potential to provide grid-scale, on-demand, dispatachable renewable energy. As higher solar receiver output temperatures are necessary for higher thermal cycle efficiency, current CSP research is focused on high outlet temperature and high efficiency receivers. Here, the objective of this study is to provide a simplified model to analyze the thermal efficiency of multi-cavity concentrating solar power receivers.
Operational methods of thermodynamics. Volume 1 - Temperature measurement
NASA Astrophysics Data System (ADS)
Eder, F. X.
The principles of thermometry are examined, taking into account the concept of temperature, the Kelvin scale, the statistical theory of heat, negative absolute temperatures, the thermodynamic temperature scale, the thermodynamic temperature scale below 1 K, noise thermometry, temperature scales based on black-body radiation, acoustical thermometry, and the International Practical Temperature Scale 1968. Aspects of practical temperature measurement are discussed, giving attention to thermometers based on the expansion of a gas or a liquid, instruments utilizing the relative thermal expansion of two different metals, devices measuring the vapor pressure of a liquid, thermocouples, resistance thermometers, radiation pyrometers of various types, instruments utilizing the temperature dependence of a number of material characteristics, devices for temperature control, thermometer calibration, and aspects of thermometer installation and inertia. A description is presented of the approaches employed for the measurement of low temperatures.
Improved Durability of SOEC Stacks for High Temperature Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang
2013-01-01
High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-termmore » durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-01-01
The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-12-31
The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Sphaleron rate in the minimal standard model.
D'Onofrio, Michela; Rummukainen, Kari; Tranberg, Anders
2014-10-03
We use large-scale lattice simulations to compute the rate of baryon number violating processes (the sphaleron rate), the Higgs field expectation value, and the critical temperature in the standard model across the electroweak phase transition temperature. While there is no true phase transition between the high-temperature symmetric phase and the low-temperature broken phase, the crossover is sharp and located at temperature T(c) = (159.5 ± 1.5) GeV. The sphaleron rate in the symmetric phase (T>T(c)) is Γ/T(4) = (18 ± 3)α(W)(5), and in the broken phase in the physically interesting temperature range 130 GeV < T < T(c) it can be parametrized as log(Γ/T(4)) = (0.83 ± 0.01)T/GeV-(147.7 ± 1.9). The freeze-out temperature in the early Universe, where the Hubble rate wins over the baryon number violation rate, is T* = (131.7 ± 2.3) GeV. These values, beyond being intrinsic properties of the standard model, are relevant for, e.g., low-scale leptogenesis scenarios.
Oxidation of Alumina-Forming MAX Phases in Turbine Environments
NASA Technical Reports Server (NTRS)
Smialek, James; Garg, Anita; Harder, Bryan; Nesbitt, James; Gabb, Timothy; Gray, SImon
2017-01-01
Protective coatings for high temperature turbine components are based on YSZ thermal barriers and oxidation resistant, alumina-forming NiAl or NiCoCrAlY bond coats. Ti2AlC and Cr2AlC MAX phases are thus of special interest because of good oxidation resistance and CTE that can match Al2O3 and YSZ. Their alumina scales grow according to cubic kinetics due to grain growth in the scale, with initial heating dominated by fast TiO2 growth. Protective cubic kinetics are also found in high pressure burner rig tests of MAXthal 211 Ti2AlC, but with reduced rates due to volatile TiO(OH)2 formation in water vapor. YSZ-coatings on bulk Ti2AlC exhibit remarkable durability up to 1300C in furnace tests and at least a 25x life advantage compared to superalloys. At another extreme, Cr2AlC is resistant to low temperature Na2SO4 hot corrosion and exhibits thermal cycling stability bonded to a superalloy disk material. Accordingly, sputtered Cr2AlC coatings on disk specimens prevented hot corrosion detriments on LCF. Breakaway oxidation (Ti2AlC), scale spallation (Cr2AlC), interdiffusion, and processing as coatings still present serious challenges. However the basic properties of MAX phases provide some unusual opportunities for use in high temperature turbines.
Smith, F.A.; Betancourt, J.L.
1998-01-01
Temperature profoundly influences the physiology and life history characteristics of organisms, particularly in terms of body size. Because so many critical parameters scale with body mass, long-term temperature fluctuations can have dramatic impacts. We examined the response of a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), to temperature change from 20 000 yr BP to present, at five sites within the Colorado Plateau. Our investigations focused on the relationship between temperature, plant composition and abundance, and woodrat size. Body size was estimated by measuring fossil fecal pellets, a technique validated in earlier work. We found significant and highly covariable patterns in body mass over the five locations, suggesting that responses to temperature fluctuations during the late Quaternary have been very similar. Although woodrat mass and the occurrence of several plant species in the fossil record were significantly correlated, in virtually all instances changes in woodrat size preceded changes in vegetational composition. These results may be due to the greater sensitivity of woodrats to temperature, or to the shorter generation times of woodrats as compared to most plants. An alternative hypothesis is that winter temperatures increased before summer ones. Woodrats are highly sensitive to warmer winters, whereas little response would be expected from forest/woodland plants growing at their lower limits. Our work suggests that woodrat size is a precise paleothermometer, yielding information about temperature variation over relatively short-term temporal and regional scales.
Kenkel, Carly D; Almanza, Albert T; Matz, Mikhail V
2015-12-01
Despite decades of monitoring global reef decline, we are still largely unable to explain patterns of reef deterioration at local scales, which precludes the development of effective management strategies. Offshore reefs of the Florida Keys, USA, experience milder temperatures and lower nutrient loads in comparison to inshore reefs yet remain considerably more degraded than nearshore patch reefs. A year-long reciprocal transplant experiment of the mustard hill coral (Porites astreoides) involving four source and eight transplant locations reveals that corals adapt and/or acclimatize to their local habitat on a < 10-km scale. Surprisingly, transplantation to putatively similar environmental types (e.g., offshore corals moved to a novel offshore site, or along-shore transplantation) resulted in greater reductions in fitness proxies, such as coral growth, than cross-channel transplantation between inshore and offshore reefs. The only abiotic factor showing significantly greater differences between along-shore sites was daily temperature range extremes (rather than the absolute high or low temperatures reached), providing a possible explanation for this pattern. Offshore-origin corals exhibited significant growth reductions at sites with greater daily temperature ranges, which explained up to 39% of the variation in their mass gain. In contrast, daily temperature range explained at most 9% of growth variation in inshore-origin corals, suggesting that inshore corals are more tolerant of high-frequency temperature fluctuations. Finally, corals incur trade-offs when specializing to their native reef. Across reef locations the coefficient of selection against coral transplants was 0.07 ± 0.02 (mean ± SE). This selection against immigrants could hinder the ability of corals to recolonize devastated reefs, whether through assisted migration efforts or natural recruitment events, providing a unifying explanation for observed patterns of coral decline in this reef system.
Assessing vulnerability to invasion by nonnative plant species at multiple spatial scales
Stohlgren, T.J.; Chong, G.W.; Schell, L.D.; Rimar, K.A.; Otsuki, Yuka; Lee, M.; Kalkhan, M.A.; Villa, C.A.
2002-01-01
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.
Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization
NASA Astrophysics Data System (ADS)
Krumm, Christoph
Biomass pyrolysis is a promising thermochemical method for producing fuels and chemicals from renewable sources. Development of a fundamental understanding of biomass pyrolysis chemistry is difficult due to the multi-scale and multi-phase nature of the process; biomass length scales span 11 orders of magnitude and pyrolysis phenomena include solid, liquid, and gas phase chemistry in addition to heat and mass transfer. These complexities have a significant effect on chemical product distributions and lead to variability between reactor technologies. A major challenge in the study of biomass pyrolysis is the development of kinetic models capable of describing hundreds of millisecond-scale reactions of biomass into lower molecular weight products. In this work, a novel technique for studying biomass pyrolysis provides the first- ever experimental determination of kinetics and rates of formation of the primary products from cellulose pyrolysis, providing insight into the millisecond-scale chemical reaction mechanisms. These findings highlight the importance of heat and mass transport limitations for cellulose pyrolysis chemistry and are used to identify the length scales at which transport limitations become relevant during pyrolysis. Through this technique, a transition is identified, known as the reactive melting point, between low and high temperature depolymerization. The transition between two mechanisms of cellulose decompositions unifies the mechanisms that govern low temperature char formation, intermediate pyrolysis conditions, and high temperature gas formation. The conditions under which biomass undergoes pyrolysis, including modes of heat transfer, have been shown to significantly affect the distribution of biorenewable chemical and fuel products. High-speed photography is used to observe the liftoff of initially crystalline cellulose particles when impinged on a heated surface, known as the Leidenfrost effect for room-temperature liquids. Order-of-magnitude changes in the lifetime of cellulose particles are observed as a result of changing modes in heat transfer as cellulose intermediate liquid droplets wet and de-wet polished ceramic surfaces. Introduction of surface macroporosity is shown to completely inhibit the cellulose Leidenfrost effect, providing avenues for surface modification and reactor design to control particle heat transfer in industrial pyrolysis applications. Cellulosic particles on surfaces consisting of microstructured, asymmetric ratchets were observed to spontaneously move orthogonal to ratchet wells above the cellulose reactive Leidenfrost temperature (>750 °C). Evaluation of the accelerating particles supported the mechanism of propelling viscous forces (50-200 nN) from rectified pyrolysis vapors, thus providing the first example of biomass conveyors with no moving parts driven by high temperature for biofuel reactors. Combined knowledge of pyrolysis chemistry, kinetics, and heat and mass transport effects direct the design of the next generation pyrolysis reactors for tuning bio- oil quality and design of improved catalytic upgrading technology.
A discrete dislocation dynamics model of creeping single crystals
NASA Astrophysics Data System (ADS)
Rajaguru, M.; Keralavarma, S. M.
2018-04-01
Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.
Frequency analysis of stress relaxation dynamics in model asphalts
NASA Astrophysics Data System (ADS)
Masoori, Mohammad; Greenfield, Michael L.
2014-09-01
Asphalt is an amorphous or semi-crystalline material whose mechanical performance relies on viscoelastic responses to applied strain or stress. Chemical composition and its effect on the viscoelastic properties of model asphalts have been investigated here by computing complex modulus from molecular dynamics simulation results for two different model asphalts whose compositions each resemble the Strategic Highway Research Program AAA-1 asphalt in different ways. For a model system that contains smaller molecules, simulation results for storage and loss modulus at 443 K reach both the low and high frequency scaling limits of the Maxwell model. Results for a model system composed of larger molecules (molecular weights 300-900 g/mol) with longer branches show a quantitatively higher complex modulus that decreases significantly as temperature increases over 400-533 K. Simulation results for its loss modulus approach the low frequency scaling limit of the Maxwell model at only the highest temperature simulated. A Black plot or van Gurp-Palman plot of complex modulus vs. phase angle for the system of larger molecules suggests some overlap among results at different temperatures for less high frequencies, with an interdependence consistent with the empirical Christensen-Anderson-Marasteanu model. Both model asphalts are thermorheologically complex at very high frequencies, where they show a loss peak that appears to be independent of temperature and density.
Food safety hazards lurk in the kitchens of young adults.
Byrd-Bredbenner, Carol; Maurer, Jaclyn; Wheatley, Virginia; Cottone, Ellen; Clancy, Michele
2007-04-01
Food mishandling in home kitchens likely causes a significant amount of foodborne disease; however, little is known about the food safety hazards lurking in home kitchens. The purposes of this study were to audit the kitchens of young adults with education beyond high school to identify food safety problems and develop recommendations for education efforts. Researchers developed a criterion-referenced home kitchen observation instrument to assess compliance of home food storage and rotation practices (e.g., temperature), sanitation and chemical storage, and general kitchen condition (e.g., infestation) with recommended practices. The instrument contained seven scales: Kitchen Cleanliness (eight items), Appliance Cleanliness (three items), Cleaning Supplies Availability (eight items), Temperatures (Food Thermometer Access & Refrigerator/Freezer Temperatures) (five items), Cold Food Storage (seven items), Dry Food Storage (eight items), and Poisons Storage (two items). Descriptive statistics were conducted to describe the study population, as a whole, and by gender. A total of 154 young adults (mean age, 20.7+/- 1.3 SD) enrolled in a northeastern university participated. Participants scored 70% or higher on Poisons Storage, Dry Food Storage, Kitchen Cleanliness, and Cleaning Supplies Availability scales but less than 60% on the Appliance Cleanliness and Cold Food Storage scales. Performance was lowest on the Temperatures scale. Females scored significantly higher than males on the Kitchen Cleanliness and Cleaning Supply Availability scales. Average refrigerator and freezer temperatures were higher than recommendations. Food safety education targeted at this young adult population needs to evolve into focused messages pertaining to the key food safety violations in this population.
NASA Technical Reports Server (NTRS)
Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.
1984-01-01
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.
Understanding the high-temperature deformation
NASA Astrophysics Data System (ADS)
Gyurko, Angela M.; Vignoul, Gregory E.; Tien, John K.; Sanchez, Juan M.
1992-11-01
Engineering, University of Texas at Austin, Austin, TX 78712 While much of the high-temperature intermetallics research has centered around Ni3Al and other aluminum-based systems, the present study focuses on the Engel-Brewer Ll2 intermetallic Ir3Zr, which has a melting temperature approaching that of ceramics (2280 °C). Due to limited material availability, the technique of microindentation was used to study both the temperature and time dependence of strength. Because of the widely held belief that certain mechanical properties of intermetallics scale roughly with temperature, Ir3Zr was expected to exhibit high strength. The microhardness was observed to vary from 225 MPa at room temperature to 75 MPa at 1400 °C, which is significantly lower than the behavior of Ni3Al. The activation energy for creep was determined to be 467 kJ/mole, and the stress exponent was found to be 18.2. The ordering energy of this system was calculated to be 0.114 eV. If it can be assumed that high ordering energy correlates to a high antiphase boundary (APB) energy, then the behavior of this system is consistent with a model that predicts highly glissile dislocation cores.
Hygrothermal behavior of polybenzimidazole
Liu, Peng; Mullins, Michael; Bremner, Tim; ...
2016-04-11
Poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole] (PBI) is used in extremely high temperature harsh environment applications. It is a unique engineering material that is formed into parts by powder-sintering at temperatures as high as 500 °C. Recently, ever increasing demands for high temperature polymers have led to significant interest in PBI such that engineering guidelines could be established for its application in high temperature and highly humid environments. The goal of this work was to understand the material science of PBI in hot-wet environments at temperatures up to 288 °C. Thermal gravimetric analysis and mass spectrometry were employed to identify the degraded volatile products. Themore » molecular scale damping behavior of PBI was probed using dynamic mechanical analysis. The changes in tensile properties and fracture toughness due to environmental exposure were also characterized. Upon heating above 250 °C, moisture-containing PBI exhibits obvious molecular structure change. Evidence of crosslinking and degradation is observed. With 288 °C hot water treatment severe degradation of PBI is observed. As a result, fundamental structure-property relationships of PBI affected by these higher temperature, high moisture content environments are discussed.« less
High frequency measurements of shot noise suppression in atomic-scale metal contacts
NASA Astrophysics Data System (ADS)
Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas
2009-03-01
Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.
Bele, M; Jovanovič, P; Pavlišič, A; Jozinović, B; Zorko, M; Rečnik, A; Chernyshova, E; Hočevar, S; Hodnik, N; Gaberšček, M
2014-11-07
We present a novel, scaled-up sol-gel synthesis which enables one to produce 20 g batches of highly active and stable carbon supported PtCu3 nanoparticles as cathode materials for low temperature fuel cell application. We confirm the presence of an ordered intermetallic phase underneath a multilayered Pt-skin together with firm embedment of nanoparticles in the carbon matrix.
Numerical Modeling of High-Temperature Corrosion Processes
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
1995-01-01
Numerical modeling of the diffusional transport associated with high-temperature corrosion processes is reviewed. These corrosion processes include external scale formation and internal subscale formation during oxidation, coating degradation by oxidation and substrate interdiffusion, carburization, sulfidation and nitridation. The studies that are reviewed cover such complexities as concentration-dependent diffusivities, cross-term effects in ternary alloys, and internal precipitation where several compounds of the same element form (e.g., carbides of Cr) or several compounds exist simultaneously (e.g., carbides containing varying amounts of Ni, Cr, Fe or Mo). In addition, the studies involve a variety of boundary conditions that vary with time and temperature. Finite-difference (F-D) techniques have been applied almost exclusively to model either the solute or corrodant transport in each of these studies. Hence, the paper first reviews the use of F-D techniques to develop solutions to the diffusion equations with various boundary conditions appropriate to high-temperature corrosion processes. The bulk of the paper then reviews various F-D modeling studies of diffusional transport associated with high-temperature corrosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willems van Beveren, L. H., E-mail: laurensw@unimelb.edu.au; Bowers, H.; Ganesan, K.
2016-06-14
Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here, we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at. %. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to mapmore » out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.« less
Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun
2017-03-06
High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO 2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO 2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO 2 conversion and utilization. Here, we discuss in detail the approaches of CO 2 conversion, the developmental history, the basic principles, the economic feasibility of CO 2 /H 2 O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO 2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.
Influence of oxidation temperature on the oxide scale formation of NiCoCrAl coatings
NASA Astrophysics Data System (ADS)
Sugiarti, E.; Zaini, K. A.; Sundawa, R.; Wang, Y.; Ohnuki, S.; Hayashi, S.
2017-04-01
Intermetalic coatings of NiCoCrAl have been successfully developed on low carbon steel substrate to improve oxidation resistance in extreme environments. The influence of oxidation temperature on the oxide scale formation was studied in the temperature range of 600-1000 °C. The measurements were made in air under isothermal oxidation test for 100 h. The surface morphology showed that a cauliflower like structure developed entire the oxide scale of sample oxidized at 800 °C and 1000 °C, while partly distributed on the surface of sample oxidized at 600 °C. The XRD analysis identified Cr2O3 phase predominantly formed on the oxidized sample at 600 °C and meta-stable Al2O3 with several polymorphs crystalline structures: η, δ, θ, κ, and α-Al2O3 at relatively high temperatures, i.e. 800 °C and 1000 °C. A Cross-sectional microstructure showed that complex and porous structures formed on the top surface of 600 °C and 1000 °C samples. In contrast, a very thin oxide scale formed on 800 °C oxidized samples and it appeared to act as a diffusion barrier of oxygen to diffuse inward, hence could increase in the service life of carbon steel substrate.
Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo
2017-03-01
The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO 2 -supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO 2 -supported V 2 O 5 catalyst coated (with a loading of 7wt% of impregnated V 2 O 5 ) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m 3 h -1 ) using real exhaust gas from the waste incinerator. The experimental results showed that the V 2 O 5 /TiO 2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wähmer, M.; Anhalt, K.; Hollandt, J.; Klein, R.; Taubert, R. D.; Thornagel, R.; Ulm, G.; Gavrilov, V.; Grigoryeva, I.; Khlevnoy, B.; Sapritsky, V.
2017-10-01
Absolute spectral radiometry is currently the only established primary thermometric method for the temperature range above 1300 K. Up to now, the ongoing improvements of high-temperature fixed points and their formal implementation into an improved temperature scale with the mise en pratique for the definition of the kelvin, rely solely on single-wavelength absolute radiometry traceable to the cryogenic radiometer. Two alternative primary thermometric methods, yielding comparable or possibly even smaller uncertainties, have been proposed in the literature. They use ratios of irradiances to determine the thermodynamic temperature traceable to blackbody radiation and synchrotron radiation. At PTB, a project has been established in cooperation with VNIIOFI to use, for the first time, all three methods simultaneously for the determination of the phase transition temperatures of high-temperature fixed points. For this, a dedicated four-wavelengths ratio filter radiometer was developed. With all three thermometric methods performed independently and in parallel, we aim to compare the potential and practical limitations of all three methods, disclose possibly undetected systematic effects of each method and thereby confirm or improve the previous measurements traceable to the cryogenic radiometer. This will give further and independent confidence in the thermodynamic temperature determination of the high-temperature fixed point's phase transitions.
Paluch, Marian; Wojnarowska, Zaneta; Goodrich, Peter; Jacquemin, Johan; Pionteck, Jürgen; Hensel-Bielowka, Stella
2015-08-28
Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent γ = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent γ reported herein along with literature data for other ionic liquids, it appears that γ decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent γ may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.
Novel Surface Modification Method for Ultrasupercritical Coal-Fired Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, T. Danny
2013-05-22
US Department of Energy seeks an innovative coating technology for energy production to reduce the emission of SOx, NOx, and CO2 toxic gaseous species. To realize this need, Inframat Corporation (IMC) proposed an SPS thermal spray coating technique to produce ultrafine/nanocoatings that can be deposited onto the surfaces of high temperature boiler tubes, so that higher temperatures of boiler operation becomes possible, leading to significantly reduced emission of toxic gaseous species. It should be noted that the original PI was Dr. Xinqing Ma, who after 1.5 year conducting this project left Inframat in December, 2008. Thus, the PI was transferredmore » to Dr. Danny Xiao, who originally co-authored the proposal with Dr. Ma, in order to carry the project into a completion. Phase II Objectives: The proposed technology has the following attributes, including: (1). Dispersion of a nanoparticle or alloyed particle in a solvent to form a uniform slurry feedstock; (2). Feeding of the slurry feedstock into a thermal spray flame, followed by deposition of the slurry feedstock onto substrates to form tenacious nanocoatings; (3). High coating performance: including high bonding strength, and high temperature service life in the temperature range of 760oC/1400oF. Following the above premises, our past Phase I project has demonstrated the feasibility in small scale coatings on boiler substrates. The objective of this Phase II project was to focus on scale-up the already demonstrated Phase I work for the fabrication of SPS coatings that can satisfy DOE's emission reduction goals for energy production operations. Specifically, they are: (1). Solving engineering problems to scale-up the SPS-HVOF delivery system to a prototype production sub-delivery system; (2). Produce ultrafine/nanocoatings using the scale-up prototype system; (3). Demonstrate the coated components using the scale-up device having superior properties. Proposed Phase II Tasks: In the original Phase II proposal, we have six (6) technical tasks plus one (1) reporting task, as described below: Task 1 Scale-up and optimize the SPS process; Task 2 Coating design and fabrication with desired microstructure; Task 3 Evaluate microstructure and physical properties; Task 4 Test performance of long-term corrosion and erosion; Task 5 Test mechanical property and reliability; Task 6 Coating of a prototype boiler tube for evaluation; Task 7 Reporting task. To date, we have already completed all the technical tasks of 1 through 6. Major Phase II Achievements: In this four (4) year working period, Inframat had spent great effort to complete the proposed tasks. The project had been completed; the goals have been accomplished. Major achievements obtained include: (1). Developed a prototype scale-up slurry feedstock delivery system for thermal spray coatings; (2). Successfully coated high performance coatings using this scale-up slurry delivery system; (3). Commercial applications in energy efficiency and clean energy components have been developed using this newly fabricated slurry feedstock delivery system.« less
Unified high-temperature behavior of thin-gauge superalloys
NASA Astrophysics Data System (ADS)
England, Raymond Oliver
This research proposes a methodology for accelerated testing in the area of high-temperature creep and oxidation resistance for thin-gauge superalloy materials. Traditional long-term creep (stress-relaxation) and oxidation tests are completed to establish a baseline. The temperature range used in this study is between 1200 and 1700°F. The alloys investigated are Incoloy MA 956, Waspaloy, Haynes 214, Haynes 242, Haynes 230, and Incoloy 718. The traditional creep test involves loading the specimens to a constant test mandrel radius of curvature, and measuring the retained radius of curvature as a function of time. The accelerated creep test uses a servohydraulic test machine to conduct single specimen, variable strain-rate load relaxation experiments. Standard metallographic evaluations are used to determine extent and morphology of attack in the traditional oxidation tests, while the accelerated oxidation test utilizes thermogravimetric analysis to obtain oxidation rate data. The traditional long-term creep testing indicates that the mechanically-alloyed material Incoloy MA 956 and Haynes alloy 214 may be suitable for long-term, high-temperature (above 1400°F) structural applications. The accelerated creep test produced a continuous linear function of log stress versus strain rate which can be used to calculate creep rate. The long-term and traditional oxidation tests indicate that Al2O3 scale formers such as Incoloy MA 956 and Haynes 214 are much more resistant to high-temperature oxidation than Cr2O3 scale formers such as Waspaloy. Both accelerated tests can be completed within roughly one day, and can evaluate multiple test temperatures using standardized single specimens. These simple experiments can be correlated with traditional long-term tests which require years to complete.
Analysis of surface scale on the Ni-based superalloy CMSX-10N and proposed mechanism of formation
NASA Astrophysics Data System (ADS)
Simmonds, S.; D'Souza, N.; Ryder, K. S.; Dong, H.
2012-01-01
There is a continuing demand to raise the operating temperature of jet engine turbine blades to meet the need for higher turbine entry temperatures (TET) in order to increase thermal efficiency and thrust. Modern, high-pressure turbine blades are made from Ni-based superalloys in single-crystal form via the investment casting process. One important post-cast surface defect, known as 'surface scale', has been investigated on the alloy CMSX-10N. This is an area of distinct discolouration of the aerofoil seen after casting. Auger electron and X-ray photoelectron spectroscopy analysis were carried out on both scaled and un-scaled areas. In the scaled region, a thin layer (~800nm) of Ni oxide is evident. In the un-scaled regions there is a thicker Al2O3 layer. It is shown that, as the blade cools during casting, differential thermal contraction of mould and alloy causes the solid blade to 'detach' from the mould in these scaled areas. The formation of Ni Oxides is facilitated by this separation.
Drivers of leaf carbon exchange capacity across biomes at the continental scale.
Smith, Nicholas G; Dukes, Jeffrey S
2018-04-29
Realistic representations of plant carbon exchange processes are necessary to reliably simulate biosphere-atmosphere feedbacks. These processes are known to vary over time and space, though the drivers of the underlying rates are still widely debated in the literature. Here, we measured leaf carbon exchange in >500 individuals of 98 species from the Neotropics to high boreal biomes to determine the drivers of photosynthetic and dark respiration capacity. Covariate abiotic (long- and short-term climate) and biotic (plant type, plant size, ontogeny, water status) data were used to explore significant drivers of temperature-standardized leaf carbon exchange rates. Using model selection, we found the previous week's temperature and soil moisture at the time of measurement to be a better predictor of photosynthetic capacity than long-term climate, with the combination of high recent temperatures and low soil moisture tending to decrease photosynthetic capacity. Non-trees (annual and perennials) tended to have greater photosynthetic capacity than trees, and, within trees, adults tended to have greater photosynthetic capacity than juveniles, possibly as a result of differences in light availability. Dark respiration capacity was less responsive to the assessed drivers than photosynthetic capacity, with rates best predicted by multi-year average site temperature alone. Our results suggest that, across large spatial scales, photosynthetic capacity quickly adjusts to changing environmental conditions, namely light, temperature, and soil moisture. Respiratory capacity is more conservative and most responsive to longer-term conditions. Our results provide a framework for incorporating these processes into large-scale models and a data set to benchmark such models. © 2018 by the Ecological Society of America.
Modeling Mars Cyclogenesis and Frontal Waves: Seasonal Variations and Implications on Dust Activity
NASA Technical Reports Server (NTRS)
Hollingsworth, J. L.; Kahre, M. A.
2014-01-01
Between late autumn through early spring,middle and high latitudes onMars exhibit strong equator-to-polemean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic period waves) [1, 2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wave-like disturbances serve as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars' extratropical weather systems have significant sub-synoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).
Peng, Tao; Lv, Haifeng; He, Daping; Pan, Mu; Mu, Shichun
2013-01-01
A large-scale availability of the graphene is critical to the successful application of graphene-based electronic devices. The growth of epitaxial graphene (EG) on insulating silicon carbide (SiC) surfaces has opened a new promising route for large-scale high-quality graphene production. However, two key obstacles to epitaxial growth are extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions. Here, we report that the amorphous SiC (a-Si1−xCx) nano-shell (nano-film) can be directly transformed into graphene by using chlorination method under very mild reaction conditions of relative low temperature (800°C) and the ambient pressure in chlorine (Cl2) atmosphere. Therefore, our finding, the direct transformation of a-Si1−xCx into graphene under much milder condition, will open a door to apply this new method to the large-scale production of graphene at low costs. PMID:23359349
NASA Technical Reports Server (NTRS)
Hollingsworth, J. L.; Kahre, Melinda A.
2012-01-01
Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).
Characterization of Thermal Refugia and Biogeochemical Hotspots at Sleepers River Watershed, VT
NASA Astrophysics Data System (ADS)
Hwang, K.; Chandler, D. G.; Kelleher, C.; Shanley, J. B.; Shaw, S. B.
2017-12-01
During low flow, changes in the extent of the channel network in headwater catchments depend on groundwater-surface water interactions, and dictate thermal and biogeochemical heterogeneities. Channel reaches with low temperature may act as refugia for valued species such as brook trout, and warmer reaches with high dissolved organic matter may act as biogeochemical hotspots. Prior studies have found uniform scaling of hydrologic and biogeochemical processes above certain spatial thresholds but sizable heterogeneities in these processes below the threshold. We utilize high resolution measurements of water quality parameters including stream temperature, conductivity and fluorescent dissolved organic matter (fDOM) at tributaries in two catchments of Sleepers River Watershed, Vermont to investigate seasonal and spatial variation of water quality and scaling of stream chemistry within the intensive study area and the larger Sleepers River Watershed. This study leverages findings from various small scale regional studies to identify differences in headwater channel reach behavior in a similar climate across some dissimilar geomorphic units, to inform the identification of thermal refugia and biogeochemical hotspots.
High-Temperature Modal Survey of a Hot-Structure Control Surface
NASA Technical Reports Server (NTRS)
Spivey, Natalie D.
2011-01-01
Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.
NASA Astrophysics Data System (ADS)
Wimer, N. T.; Mackoweicki, A. S.; Poludnenko, A. Y.; Hoffman, C.; Daily, J. W.; Rieker, G. B.; Hamlington, P.
2017-12-01
Results are presented from a joint computational and experimental research effort focused on understanding and characterizing wildland fire spread at small scales (roughly 1m-1mm) using direct numerical simulations (DNS) with chemical kinetics mechanisms that have been calibrated using data from high-speed laser diagnostics. The simulations are intended to directly resolve, with high physical accuracy, all small-scale fluid dynamic and chemical processes relevant to wildland fire spread. The high fidelity of the simulations is enabled by the calibration and validation of DNS sub-models using data from high-speed laser diagnostics. These diagnostics have the capability to measure temperature and chemical species concentrations, and are used here to characterize evaporation and pyrolysis processes in wildland fuels subjected to an external radiation source. The chemical kinetics code CHEMKIN-PRO is used to study and reduce complex reaction mechanisms for water removal, pyrolysis, and gas phase combustion during solid biomass burning. Simulations are then presented for a gaseous pool fire coupled with the resulting multi-step chemical reaction mechanisms, and the results are connected to the fundamental structure and spread of wildland fires. It is anticipated that the combined computational and experimental approach of this research effort will provide unprecedented access to information about chemical species, temperature, and turbulence during the entire pyrolysis, evaporation, ignition, and combustion process, thereby permitting more complete understanding of the physics that must be represented by coarse-scale numerical models of wildland fire spread.
Electronic structure of the bismuth family of high-temperature superconductors
NASA Astrophysics Data System (ADS)
Feng, Donglai
High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic properties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the large superconducting phase transition temperature in a high temperature superconductor is associated with parameters that cause both large pairing strength and strong phase coherence in the system. The number of CuO2 layers in each unit cell is just one of the factors that affect these parameters.
Local-scale and watershed-scale determinants of summertime urban stream temperatures
Derek B. Booth; Kristin A. Kraseski; C. Rhett Jackson
2014-01-01
The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local-scale and watershed-scale factors on summer temperatures in urban streams, hundreds of near-instantaneous temperature measurements throughout...
NASA Astrophysics Data System (ADS)
Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob
2014-05-01
The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust models, since this step is the bottle-neck of this technique. In the first approach, a plot-scale model was used to predict the temperature reached in samples collected in other plots from the same site. In a plot-scale model, all the heated aliquots come from a unique plot-scale sample. As expected, the results obtained with this approach were deceptive, because this approach was assuming that a plot-scale model would be enough to represent the whole variability of the site. The accuracy (measured as the root mean square error of prediction, thereinafter RMSEP) was 86ºC, and the bias was also high (>30ºC). In the second approach, the temperatures predicted through several plot-scale models were averaged. The accuracy was improved (RMSEP=65ºC) respect the first approach, because the variability from several plots was considered and biased predictions were partially counterbalanced. However, this approach implies more efforts, since several plot-scale models are needed. In the third approach, the predictions were obtained with site-scale models. These models were constructed with aliquots from several plots. In this case, the results were accurate, since the RMSEP was around 40ºC, the bias was very small (<1ºC) and the R2 was 0.92. As expected, this approach clearly outperformed the second approach, in spite of the fact that the same efforts were needed. In a plot-scale model, only one interaction between temperature and soil components was modelled. However, several different interactions between temperature and soil components were present in the calibration matrix of a site-scale model. Consequently, the site-scale models were able to model the temperature reached excluding the influence of the differences in soil composition, resulting in more robust models respect that variation. Summarizing, the results were highlighting the importance of an adequate strategy to develop robust and accurate models with moderate efforts, and how a wrong strategy can result in deceptive predictions.
NBS/NIST Gas Thermometry From 0 to 660 °C
Schooley, J. F.
1990-01-01
In the NBS/NIST Gas Thermometry program, constant-volume gas thermometers, a unique mercury manometer, and a highly accurate thermal expansion apparatus have been employed to evaluate temperatures on the Kelvin Thermodynamic Temperature Scale (KTTS) that correspond to particular temperatures on the 1968 International Practical Temperature Scale (IPTS-68). In this paper, we present a summary of the NBS/NIST Gas Thermometry project, which originated with planning activities in the late 1920s and was completed by measurements of the differences t(KTTS)-t(IPTS-68) in the range 0 to 660 °C. Early results of this project were the first to demonstrate the surprisingly large inaccuracy of the IPTS-68 with respect to the KTTS above 0 °C. Advances in several different measurement techniques, development of new, specialized instruments, and two distinct sets of gas thermometry observations have resulted from the project. PMID:28179778
Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment
Boyle, D. P.; Majeski, R.; Schmitt, J. C.; ...
2017-07-05
It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less
Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, D. P.; Majeski, R.; Schmitt, J. C.
It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less
Robust label-free biosensing using microdisk laser arrays with on-chip references.
Wondimu, S F; Hippler, M; Hussal, C; Hofmann, A; Krämmer, S; Lahann, J; Kalt, H; Freude, W; Koos, C
2018-02-05
Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching. The technique relies on reference structures protected by locally dispensed passivation materials, and can be scaled to extended arrays of hundreds of devices. We prove the viability of the concept in a series of experiments, demonstrating robust and sensitive label-free detection over a wide range of constant or continuously varying temperatures. To the best of our knowledge, these measurements represent the first demonstration of biosensing in active WGM devices with simultaneous compensation of both photobleaching and temperature drift.
NASA Astrophysics Data System (ADS)
Morinari, Takao
2018-06-01
The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al.,
NASA Astrophysics Data System (ADS)
Shri Prakash, B.; Pavitra, R.; Senthil Kumar, S.; Aruna, S. T.
2018-03-01
Lowering of operation temperature has become one of the primary goals of solid oxide fuel (SOFC) research as reduced temperature improves the prospects for widespread commercialization of this energy system. Reduced operational temperature also mitigates the issues associated with high temperature SOFCs and paves way not only for the large scale stationary power generation but also makes SOFCs viable for portable and transport applications. However, there are issues with electrolyte and cathode materials at low temperatures, individually as well as in association with other components, which makes the performance of the SOFCs less satisfactory than expected at lowered temperatures. Bi-layering of electrolytes and impregnation of cathodes have emerged as two important strategies to overcome these issues and achieve higher performance at low temperatures. This review article provides the perspective on the strategy of bi-layering of electrolyte to achieve the desired high performance from SOFC at low to intermediate temperatures.
Modeling effects of climate change and phase shifts on detrital production of a kelp bed.
Krumhansl, Kira A; Lauzon-Guay, Jean-Sébastien; Scheibling, Robert E
2014-03-01
The exchange of energy and nutrients between ecosystems (i.e., resource subsidies) plays a central role in ecological dynamics over a range of spatial and temporal scales. Little attention has been paid to the role of anthropogenic impacts on natural systems in altering the magnitude, timing, and quality of resource subsidies. Kelp ecosystems are highly productive on a local scale and export over 80% of kelp primary production as detritus, subsidizing consumers across broad spatial scales. Here, we generate a model of detrital production from a kelp bed in Nova Scotia to hindcast trends in detrital production based on temperature and wave height recorded in the study region from 1976 to 2009, and to project changes in detrital production that may result from future climate change. Historical and projected increases in temperature and wave height led to higher rates of detrital production through increased blade breakage and kelp dislodgment from the substratum, but this reduced kelp biomass and led to a decline in detrital production in the long-term. We also used the model to demonstrate that the phase shift from a highly productive kelp bed to a low-productivity barrens, driven by the grazing activity of sea urchins, reduces kelp detrital production by several orders of magnitude, an effect that would be exacerbated by projected increases in temperature and wave action. These results indicate that climate-mediated changes in ecological dynamics operating on local scales may alter the magnitude of resource subsidies to adjacent ecosystems, affecting ecological dynamics on regional scales.
Ziegler, Lucia; Arim, Matías; Bozinovic, Francisco
2016-07-01
Understanding physiological and environmental determinants of strategies of reproductive allocation is a pivotal aim in biology. Because of their high metabolic cost, properties of sexual acoustic signals may correlate with body size, temperature, and an individual's energetic state. A quantitative theory of acoustic communication, based on the metabolic scaling with temperature and mass, was recently proposed, adding to the well-reported empirical patterns. It provides quantitative predictions for frequencies, call rate, and durations. Here, we analysed the mass, temperature, and body condition scaling of spectral and temporal attributes of the advertisement call of the treefrog Hypsiboas pulchellus. Mass dependence of call frequency followed metabolic expectations (f~M (-0.25), where f is frequency and M is mass) although non-metabolic allometry could also account for the observed pattern. Temporal variables scaled inversely with mass contradicting metabolic expectations (d~M (0.25), where d is duration), supporting instead empirical patterns reported to date. Temperature was positively associated with call rate and negatively with temporal variables, which is congruent with metabolic predictions. We found no significant association between temperature and frequencies, adding to the bulk of empirical evidence. Finally, a result of particular relevance was that body condition consistently determined call characteristics, in interaction with temperature or mass. Our intraspecific study highlights that even if proximate determinants of call variability are rather well understood, the mechanisms through which they operate are proving to be more complex than previously thought. The determinants of call characteristics emerge as a key topic of research in behavioural and physiological biology, with several clear points under debate which need to be analysed on theoretical and empirical grounds.
Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre
NASA Astrophysics Data System (ADS)
Yin, Baoquan; Wu, Xiaoting
2018-02-01
In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.
Stress Evaluation while Prolonged Driving Operation Using the Facial Skin Temperature
NASA Astrophysics Data System (ADS)
Asano, Hirotoshi; Muto, Takumi; Ide, Hideto
There is a relation to the accident of a car and the physiological and psychological state of a driver. The stress may lead to the fall of a fatigue or attentiveness. Therefore, it is an important subject from viewpoint such as accident prevention to evaluate the mental state of a driver. The study aimed at the development of a quantitative instrumentation technology of the stress when a subject is driving for a long time. First of all, we measured the physiological and psychological stress of a driver. The facial skin temperature and ventricular rate that was driver's physiological amount were measured and compared it with visual analog scale of the subjective amount. It was able to be obtaining of the high correlation in facial skin temperature and visual analog scale from the outcome of the experiment. Therefore, the possibility of appreciable of driver's stress at a facial skin temperature was shown. As a result of the experiment, we showed a possibility that facial skin temperature could evaluate long driving stress.
High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Butler, T. M.; Alfano, J. P.; Martens, R. L.; Weaver, M. L.
2015-01-01
High-entropy alloys (HEAs) are a class of alloys that are being considered for a number of applications. In the present study, the microstructures and 1050°C oxidation behaviors of two HEAs, Al10Cr22.5Co22.5Ni22.5Fe22.5 (at.%) and Al20Cr25Co25Ni25Si5 have been investigated along with Al15Cr10Co35Ni35Si5, which is a high-temperature shape-memory alloy. Oxide formation occurred via selective oxidation in a manner that was consistent with the oxide formation model devised by Giggins and Pettit for model Ni-Cr-Al alloys. The lower Al content alloy formed an external Cr2O3 scale and an internal subscale consisting of Al2O3 and AlN precipitates. The higher Al content alloys exhibited smaller mass gains and formed external Al2O3 scales without any internal oxidation of the alloys.
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
Small-scale structure of the CO emission in S255 from lunar occultation observations
NASA Technical Reports Server (NTRS)
Schloerb, F. P.; Scoville, N. Z.
1980-01-01
Two lunar occultations of the S255 H II region/molecular cloud complex were observed in the 2.6 mm CO line during 1978 and 1979. The resolution obtained (between 4 arcsec and 7 arcsec) enables us to resolve bright sources that are much smaller than the 44 arcsec telescope beam. In addition to the large-scale structure (approximately 10 arcmin in size) seen in previous CO maps, the observations reveal two high-temperature emission regions in the cloud core associated with two compact infrared sources about 20 arcsec apart. The first CO hot spot is larger in size with a Gaussian width of 41 arcsec + or - 7 arcsec and a peak temperature of 65 K. Its center falls between the two small infrared sources S255 IRS1 and IRS2. The linear size and peak temperature of this source are remarkably similar to those in the Orion Kleinmann-Low nebula. The second source is revealed from a discontinuous change in the CO line flux as the lunar limb crossed S255 IRS1. The size of this component is less than 7 arcsec; its temperature must exceed 200 K. No evidence is found for exceptionally high temperatures at the boundary of the two H II regions crossed during the occultations.
Taki, M; Signorini, A; Oton, C J; Nannipieri, T; Di Pasquale, F
2013-10-15
We experimentally demonstrate the use of cyclic pulse coding for distributed strain and temperature measurements in hybrid Raman/Brillouin optical time-domain analysis (BOTDA) optical fiber sensors. The highly integrated proposed solution effectively addresses the strain/temperature cross-sensitivity issue affecting standard BOTDA sensors, allowing for simultaneous meter-scale strain and temperature measurements over 10 km of standard single mode fiber using a single narrowband laser source only.
NASA Astrophysics Data System (ADS)
Krause, Stefan; Hannah, David; Blume, Theresa; Angermann, Lisa; Lewandowski, Joerg; Cassidy, Nigel
2016-04-01
This study presents the nested application of three heat tracing methods for identifying aquifer-river exchange fluxes at multiple scales ranging from centimeter to stream reach-scale. The investigations focus on a UK lowland river where hotspots of redox-reactivity were found to coincide with locations of increased streambed residence times underneath flow confining streambed peat and clay structures. In order to identify the spatial extend and patterns of reactivity hot spots associated with these streambed structures, reach-scale patterns of aquifer-river exchange fluxes have been analysed by Fibre-Optic Distributed Temperature Sensing (FO-DTS) along a cable buried in the streambed of a 250 m reach in combination with 2D thermocouple arrays in a 12 m long pool-riffle-pool sequence and small-scale heat pulse injections for tracing shallow hyporheic flow paths within the uppermost 20cm streambed sediments. FO-DTS observed streambed temperature anomalies caused by the mixing of different temperatures of GW and SW end-members were used to infer information on exchange fluxes at the aquifer-river interface. FO-DTS survey results indicate that patterns of up to 2C colder (Summer) and 3.5C warmer (Winter) temperatures in investigated streambed sediments can be attributed to fast GW up-welling in sandy and gravely sediments. Contrasting conditions were found at locations where streambed temperatures equal SW temperatures and GW-SW exchange was inhibited by the existence of peat or clay lenses within the streambed. FO-DTS observations of regional GW up-welling patterns were complemented by heat pulse injection experiments which provided essential information of the shallow aquifer- river exchange fluxes and confirmed increased SW infiltration and lateral flow in riffle crests and at locations with highly conductive streambed sediments above flow confining low conductivity structures. The propagation of diurnal temperature oscillations from the surface to streambed depths of up to 40cm was observed at thermocouple profiles along a pool-riffle-pool sequence in order to analyse the potential masking of FO-DTS observed temperature patterns by topography induced hyporheic exchange fluxes. The cross-correlation functions based analysis of the depth dampening and offset of diurnal temperature amplitudes revealed that streambed temperature variation due to topography induced hyporheic exchange flow was an order of magnitude lower than the FO-DTS signal strength. The investigations supported the development of a conceptual model of aquifer-river exchange and hyporheic reactivity in lowland rivers including temperature traceable hyporheic exchange fluxes at multiple scales.
Predication of skin temperature and thermal comfort under two-way transient environments.
Zhou, Xin; Xiong, Jing; Lian, Zhiwei
2017-12-01
In this study, three transient environmental conditions consisting of one high-temperature phase within two low-temperature phases were developed, thus creating a temperature rise followed by a temperature fall. Twenty-four subjects (including 12 males and 12 females) were recruited and they underwent all three test scenarios. Skin temperature on seven body parts were measured during the whole period of the experiment. Besides, thermal sensation was investigated at specific moments by questionnaires. Thermal sensation models including PMV model, Fiala model and the Chinese model were applied to predict subjects' thermal sensation with comparisons carried out among them. Results show that most predicated thermal sensation by Chinese model lies within the range of 0.5 scale of the observed sensation vote, and it agrees best with the observed thermal sensation in transient thermal environment than PMV and Fiala model. Further studies should be carried out to improve performance of Chinese model for temperature alterations between "very hot" to "hot" environment, for prediction error in the temperature-fall situation of C5 (37-32°C) was over 0.5 scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hatanaka, T; Imagawa, T; Kitajima, A; Takeuchi, M
2001-12-15
Combustion experiments in a laboratory-scale fluidized-bed reactor were performed to elucidate the effects of combustion temperature on PCDD/Fs formation during incineration of model wastes with poly(vinyl chloride) or sodium chloride as a chlorine source and copper chloride as a catalyst. Each temperature of primary and secondary combustion zones in the reactor was set independently to 700, 800, and 900 degrees C using external electric heaters. The PCDD/Fs concentration is reduced as the temperature of the secondary combustion zone increases. It is effective to keep the temperature of the secondary combustion zone high enough to reduce their release during the waste incineration. On the other hand, as the temperature of the primary combustion zone rises, the PCDD/Fs concentration also increases. Lower temperature of the primary combustion zone results in less PCDD/Fs concentration in these experimental conditions. This result is probably related to the devolatilization rate of the solid waste in the primary combustion zone. The temperature decrease slows the devolatilization rate and promotes mixing of oxygen and volatile matters from the solid waste. This contributes to completing combustion reactions, resulting in reducing the PCDD/Fs concentration.
Borg, David N; Costello, Joseph T; Bach, Aaron J; Stewart, Ian B
2017-02-01
The perceptual strain index (PeSI) has been shown to overcome the limitations associated with the assessment of the physiological strain index (PSI), primarily the need to obtain a core body temperature measurement. The PeSI uses the subjective scales of thermal sensation and perceived exertion (RPE) to provide surrogate measures of core temperature and heart rate, respectively. Unfortunately, thermal sensation has shown large variability in providing an estimation of core body temperature. Therefore, the primary aim of this study was to determine if thermal comfort improved the ability of the PeSI to predict the PSI during exertional-heat stress. Eighteen healthy males (age: 23.5years; body mass: 79.4kg; maximal aerobic capacity: 57.2ml·kg -1 ·min -1 ) wore four different chemical/biological protective garments while walking on treadmill at a low (<325W) or moderate (326-499W) metabolic workload in environmental conditions equivalent to wet bulb globe temperatures 21, 30 or 37°C. Trials were terminated when heart rate exceeded 90% of maximum, when core body temperature reached 39°C, at 120min or due to volitional fatigue. Core body temperature, heart rate, thermal sensation, thermal comfort and RPE were recorded at 15min intervals and at termination. Multiple statistical methods were used to determine the most accurate perceptual predictor. Significant moderate relationships were observed between the PeSI (r=0.74; p<0.001), the modified PeSI (r=0.73; p<0.001) and unexpectedly RPE (r=0.71; p<0.001) with the PSI, respectively. The PeSI (mean bias: -0.8±1.5 based on a 0-10 scale; area under the curve: 0.887), modified PeSI (mean bias: -0.5±1.4 based on 0-10 scale; area under the curve: 0.886) and RPE (mean bias: -0.7±1.4 based on a 0-10 scale; area under the curve: 0.883) displayed similar predictive performance when participants experienced high-to-very high levels of physiological strain. Modifying the PeSI did not improve the subjective prediction of physiological strain. However, RPE provided an equally accurate prediction of physiological strain, particularly when high-to-very high levels of strain were observed. Therefore, given its predictive performance and user-friendliness, the evidence suggests that RPE in isolation is a practical and cost-effective tool able to estimate physiological strain during exertional-heat stress under these work conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate
NASA Astrophysics Data System (ADS)
Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei
2018-05-01
The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.
First Principles Simulations of P-V-T Unreacted Equation of State of LLM-105
NASA Astrophysics Data System (ADS)
Manaa, Riad; Kuo, I.-Feng; Fried, Laurence
2015-03-01
Equations of states (EOS) of unreacted energetic materials extending to high-pressure and temperatures regimes are of particular interest since they provide fundamental information about the associated thermodynamic properties of these materials at extreme conditions. Very often, experimental and computational studies focus only on determining a pressure-volume relationship at ambient to moderate temperatures. Adding elevated temperature data to construct a P-V-T EOS is highly desirable to extend the range of materials properties. Atomic scale molecular dynamics simulations are particularly suited for such a construct since EOSs are the manifestation of the underlying atomic interactions. In this work, we report dispersion-corrected density functional theoretical calculations of unreacted equation of state (EOS) of the energetic material 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105). We performed large-scale constant-volume and temperature molecular dynamics simulations for pressures ranging from ambient to 35 GPa, and temperatures ranging from 300 K to 1000 K. These calculations allowed us to construct an unreacted P-V-T EOS and obtain bulk modulus for each P-V isotherm. We also report the thermal expansion coefficient of LLM-105 in the temperature range of this study. This work performed under the auspices of the U.S. Department of Energy Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Stability of ternesite and the production at scale of ternesite-based clinkers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanein, Theodore; Galan, Isabel; Glasser, Fredrik P.
A method to synthesize high-purity ternesite is presented and the importance of reaction volume is highlighted; a brief description of the product morphology is also presented. Thermodynamic data for ternesite are derived and the limits of ternesite stability are then explored. An upper temperature stability limit of ≈ 1290 °C at 1 atm is determined; however, this temperature is dependent on the fugacity of the volatile components in the atmosphere. Thermodynamic predictions confirm that belite and ternesite rich calcium sulfoaluminate clinkers can be readily produced in a single stage process at temperatures above 1200 °C provided the atmosphere and temperaturemore » are controlled. To demonstrate this control at larger scales, a conventional 7.4-meter rotary kiln has been used to produce ≈ 20 kg of ternesite-containing clinkers. This demonstrates the usefulness of thermodynamic modelling as it has enabled ternesite-based clinkers to be readily produced at scale in a single-stage process using existing equipment without major modifications.« less
Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L
The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.
Azizi, Amin; Gadinski, Matthew R; Li, Qi; AlSaud, Mohammed Abu; Wang, Jianjun; Wang, Yi; Wang, Bo; Liu, Feihua; Chen, Long-Qing; Alem, Nasim; Wang, Qing
2017-09-01
Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh-environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h-BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge-discharge efficiency is achieved in the PEI sandwiched with CVD-grown h-BN films at elevated temperatures when compared to neat PEI films and other high-temperature polymer and nanocomposite dielectrics. Notably, the h-BN-coated PEI films are capable of operating with >90% charge-discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm -3 , even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge-discharge cycles are demonstrated in the h-BN-coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Venugopal, P. Dilip; Dively, Galen P.; Herbert, Ames; Malone, Sean; Whalen, Joanne; Lamp, William O.
2016-01-01
Objectives Assessment and identification of spatial structures in the distribution and abundance of invasive species is important for unraveling the underlying ecological processes. The invasive agricultural insect pest Halyomorpha halys that causes severe economic losses in the United States is currently expanding both within United States and across Europe. We examined the drivers of H. halys invasion by characterizing the distribution and abundance patterns of H. halys and native stink bugs (Chinavia hilaris and Euschistus servus) across eight different spatial scales. We then quantified the interactive and individual influences of temperature, and measures of resource availability and distance from source populations, and their relevant spatial scales. We used Moran’s Eigenvector Maps based on Gabriel graph framework to quantify spatial relationships among the soybean fields in mid-Atlantic Unites States surveyed for stink bugs. Findings Results from the multi-spatial scale, multivariate analyses showed that temperature and its interaction with resource availability and distance from source populations structures the patterns in H. halys at very broad spatial scale. H. halys abundance decreased with increasing average June temperature and distance from source population. H. halys were not recorded at fields with average June temperature higher than 23.5°C. In parts with suitable climate, high H. halys abundance was positively associated with percentage developed open area and percentage deciduous forests at 250m scale. Broad scale patterns in native stink bugs were positively associated with increasing forest cover and, in contrast to the invasive H. halys, increasing mean July temperature. Our results identify the contrasting role of temperature in structuring regional patterns in H. halys and native stink bugs, while demonstrating its interaction with resource availability and distance from source populations for structuring H. halys patterns. Conclusion These results help predicting the pest potential of H. halys and vulnerability of agricultural systems at various regions, given the climatic conditions, and its interaction with resource availability and distance from source populations. Monitoring and control efforts within parts of the United States and Europe with more suitable climate could focus in areas of peri-urban developments with deciduous forests and other host plants, along with efforts to reduce propagule pressure. PMID:26928562
Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, S. K.; Lustbader, J.; Musselman, M.
2015-05-06
This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.
2012-01-01
Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.
NASA Astrophysics Data System (ADS)
Behrani, Vikas
Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind the effect of REs on scale adhesion and sulfidation behavior. Thus, the present work will have a broad impact on the field of materials and coatings selection for high temperature industrial environments such as boilers and gasifiers, and provides information on RE-modified aluminized coatings on carbon steel as an alternative for the use of bulk superalloys under high temperature sulfur bearing environments.
High-frequency fluctuations of surface temperatures in an urban environment
NASA Astrophysics Data System (ADS)
Christen, Andreas; Meier, Fred; Scherer, Dieter
2012-04-01
This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-01-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.
NASA Astrophysics Data System (ADS)
Park, Jun; Hwang, Seung-On
2017-11-01
The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.
Chemical sensing of plant stress at the ecosystem scale
NASA Astrophysics Data System (ADS)
Karl, T.; Guenther, A.; Turnipseed, A.; Patton, E. G.; Jardine, K.
2008-09-01
Significant ecosystem-scale emissions of methylsalicylate (MeSA), a semivolatile plant hormone thought to act as the mobile signal for systemic acquired resistance (SAR), were observed in an agroforest. Our measurements show that plant internal defence mechanisms can be activated in response to temperature stress and are modulated by water availability on large scales. Highest MeSA fluxes (up to 0.25 mg/m2/h) were observed after plants experienced ambient night-time temperatures of ~7.5°C followed by a large daytime temperature increase (e.g. up to 22°C). Under these conditions estimated night-time leaf temperatures were as low as ~4.6°C, likely inducing a response to prevent chilling injury. Our observations imply that plant hormones can be a significant component of ecosystem scale volatile organic compound (VOC) fluxes (e.g. as high as the total monoterpene (MT) flux) and therefore contribute to the missing VOC budget. If generalized to other ecosystems and different types of stresses these findings suggest that semivolatile plant hormones have been overlooked by investigations of the impact of biogenic VOCs on aerosol formation events in forested regions. Our observations show that the presence of MeSA in canopy air serves as an early chemical warning signal indicating ecosystem-scale stresses before visible damage becomes apparent. As a chemical metric, ecosystem emission measurements of MeSA in ambient air could therefore support field studies investigating factors that adversely affect plant growth.
Universal Responses of Cyclic-Oxidation Models Studied
NASA Technical Reports Server (NTRS)
Smialek, James L.
2003-01-01
Oxidation is an important degradation process for materials operating in the high-temperature air or oxygen environments typical of jet turbine or rocket engines. Reaction of the combustion gases with the component material forms surface layer scales during these oxidative exposures. Typically, the instantaneous rate of reaction is inversely proportional to the existing scale thickness, giving rise to parabolic kinetics. However, more realistic applications entail periodic startup and shutdown. Some scale spallation may occur upon cooling, resulting in loss of the protective diffusion barrier provided by a fully intact scale. Upon reheating, the component will experience accelerated oxidation due to this spallation. Cyclic-oxidation testing has, therefore, been a mainstay of characterization and performance ranking for high-temperature materials. Models simulate this process by calculating how a scale spalls upon cooling and regrows upon heating (refs. 1 to 3). Recently released NASA software (COSP for Windows) allows researchers to specify a uniform layer or discrete segments of spallation (ref. 4). Families of model curves exhibit consistent regularity and trends with input parameters, and characteristic features have been empirically described in terms of these parameters. Although much insight has been gained from experimental and model curves, no equation has been derived that can describe this behavior explicitly as functions of the key oxidation parameters.
Assessing sufficiency of thermal riverscapes for resilient ...
Resilient salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. Efforts to protect, enhance and restore watershed thermal regimes for salmon may target specific locations and features within stream networks hypothesized to provide disproportionately high-value functional resilience to salmon populations. These include relatively small-scale features such as thermal refuges, and larger-scale features such as entire watersheds or aquifers that support thermal regimes buffered from local climatic conditions. Quantifying the value of both small and large scale thermal features to salmon populations has been challenged by both the difficulty of mapping thermal regimes at sufficient spatial and temporal resolutions, and integrating thermal regimes into population models. We attempt to address these challenges by using newly-available datasets and modeling approaches to link thermal regimes to salmon populations across scales. We will describe an individual-based modeling approach for assessing sufficiency of thermal refuges for migrating salmon and steelhead in large rivers, as well as a population modeling approach for assessing large-scale climate refugia for salmon in the Pacific Northwest. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effec
Davies, Ashley G.; Keszthelyi, Laszlo P.; McEwen, Alfred S.
2011-01-01
We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 μm) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale.
Fuel system technology overview
NASA Technical Reports Server (NTRS)
Friedman, R.
1980-01-01
Fuel system research and technology studies are being conducted to investigate the correlations and interactions of aircraft fuel system design and environment with applicable characteristics of the fuel. Topics include: (1) analysis of in-flight fuel temperatures; (2) fuel systems for high freezing point fuels; (3) experimental study of low temperature pumpability; (4) full scale fuel tank simulation; and (5) rapid freezing point measurement.
A simple model of hohlraum power balance and mitigation of SRS
Albright, Brian J.; Montgomery, David S.; Yin, Lin; ...
2016-04-01
A simple energy balance model has been obtained for laser-plasma heating in indirect drive hohlraum plasma that allows rapid temperature scaling and evolution with parameters such as plasma density and composition. Furthermore, this model enables assessment of the effects on plasma temperature of, e.g., adding high-Z dopant to the gas fill or magnetic fields.
Inter-annual Variability of Temperature and Extreme Heat Events during the Nairobi Warm Season
NASA Astrophysics Data System (ADS)
Scott, A.; Misiani, H. O.; Zaitchik, B. F.; Ouma, G. O.; Anyah, R. O.; Jordan, A.
2016-12-01
Extreme heat events significantly stress all organisms in the ecosystem, and are likely to be amplified in peri-urban and urban areas. Understanding the variability and drivers behind these events is key to generating early warnings, yet in Equatorial East Africa, this information is currently unavailable. This study uses daily maximum and minimum temperature records from weather stations within Nairobi and its surroundings to characterize variability in daily minimum temperatures and the number of extreme heat events. ERA-Interim reanalysis is applied to assess the drivers of these events at event and seasonal time scales. At seasonal time scales, high temperatures in Nairobi are a function of large scale climate variability associated with the Atlantic Multi-decadal Oscillation (AMO) and Global Mean Sea Surface Temperature (GMSST). Extreme heat events, however, are more strongly associated with the El Nino Southern Oscillation (ENSO). For instance, the persistence of AMO and ENSO, in particular, provide a basis for seasonal prediction of extreme heat events/days in Nairobi. It is also apparent that the temporal signal from extreme heat events in tropics differs from classic heat wave definitions developed in the mid-latitudes, which suggests that a new approach for defining these events is necessary for tropical regions.
δ18O of apatite phosphate in small pelagic fish: insights from wild-caught and tank-grown specimens
NASA Astrophysics Data System (ADS)
Lambert, T.; Javor, B.; Paytan, A.
2011-12-01
Oxygen isotope ratios of mineralized structures in fish reflect the temperature and isotopic composition of the water in which they grow. For bulk samples (e.g., whole scales, bones, and otoliths), understanding how this signal is integrated across time and space is critical, especially for organisms exposed to high variability in growth conditions. Here, we assess the response of fish scale δ18O (from apatite phosphate) to experimentally manipulated water conditions. Wild-caught sardines were grown at controlled temperatures (13°C, 17°C, and 21°C) for 11 months. Higher growth temperatures correlated to lower δ18O values, representing a combination of scale apatite deposited before and after the temperature manipulation. Models that account for both biomineral allometry and exposure to varying water properties (e.g., by overlaying migration routes, isoscapes, and temperature maps) have the potential to quantify the varying contributions of minerals grown under different conditions. We use this method to predict δ18O of apatite phosphate for small pelagic fish found in California coastal waters, then compare expected values to those obtained from collected samples. Since phosphate oxygen is relatively resistant to diagenesis, this modern calibration establishes a framework for paleo studies.
NASA Astrophysics Data System (ADS)
Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.
2014-12-01
Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.
Stochastic density functional theory at finite temperatures
NASA Astrophysics Data System (ADS)
Cytter, Yael; Rabani, Eran; Neuhauser, Daniel; Baer, Roi
2018-03-01
Simulations in the warm dense matter regime using finite temperature Kohn-Sham density functional theory (FT-KS-DFT), while frequently used, are computationally expensive due to the partial occupation of a very large number of high-energy KS eigenstates which are obtained from subspace diagonalization. We have developed a stochastic method for applying FT-KS-DFT, that overcomes the bottleneck of calculating the occupied KS orbitals by directly obtaining the density from the KS Hamiltonian. The proposed algorithm scales as O (" close=")N3T3)">N T-1 and is compared with the high-temperature limit scaling O
NASA Astrophysics Data System (ADS)
Koven, C. D.; Hugelius, G.; Lawrence, D. M.; Wieder, W. R.
2016-12-01
The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models. To assess the likely long-term response of soils to climate change, spatial gradients in soil carbon turnover times can identify broad-scale and long-term controls on the rate of carbon cycling as a function of climate and other factors. Here we show that the climatological temperature control on carbon turnover in the top meter of global soils is more sensitive in cold climates than in warm ones. We present a simplified model that explains the high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Critically, current Earth system models (ESMs) fail to capture this pattern, however it emerges from an ESM that explicitly resolves vertical gradients in soil climate and turnover. The weak tropical temperature sensitivity emerges from a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong future carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behavior.
NASA Astrophysics Data System (ADS)
Sentić, Stipo; Sessions, Sharon L.
2017-06-01
The weak temperature gradient (WTG) approximation is a method of parameterizing the influences of the large scale on local convection in limited domain simulations. WTG simulations exhibit multiple equilibria in precipitation; depending on the initial moisture content, simulations can precipitate or remain dry for otherwise identical boundary conditions. We use a hypothesized analogy between multiple equilibria in precipitation in WTG simulations, and dry and moist regions of organized convection to study tropical convective organization. We find that the range of wind speeds that support multiple equilibria depends on sea surface temperature (SST). Compared to the present SST, low SSTs support a narrower range of multiple equilibria at higher wind speeds. In contrast, high SSTs exhibit a narrower range of multiple equilibria at low wind speeds. This suggests that at high SSTs, organized convection might occur with lower surface forcing. To characterize convection at different SSTs, we analyze the change in relationships between precipitation rate, atmospheric stability, moisture content, and the large-scale transport of moist entropy and moisture with increasing SSTs. We find an increase in large-scale export of moisture and moist entropy from dry simulations with increasing SST, which is consistent with a strengthening of the up-gradient transport of moisture from dry regions to moist regions in organized convection. Furthermore, the changes in diagnostic relationships with SST are consistent with more intense convection in precipitating regions of organized convection for higher SSTs.
Spray-dry desulfurization of flue gas from heavy oil combustion.
Scala, Fabrizio; Lancia, Amedeo; Nigro, Roberto; Volpicelli, Gennaro
2005-01-01
An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.
New probes of Cosmic Microwave Background large-scale anomalies
NASA Astrophysics Data System (ADS)
Aiola, Simone
Fifty years of Cosmic Microwave Background (CMB) data played a crucial role in constraining the parameters of the LambdaCDM model, where Dark Energy, Dark Matter, and Inflation are the three most important pillars not yet understood. Inflation prescribes an isotropic universe on large scales, and it generates spatially-correlated density fluctuations over the whole Hubble volume. CMB temperature fluctuations on scales bigger than a degree in the sky, affected by modes on super-horizon scale at the time of recombination, are a clean snapshot of the universe after inflation. In addition, the accelerated expansion of the universe, driven by Dark Energy, leaves a hardly detectable imprint in the large-scale temperature sky at late times. Such fundamental predictions have been tested with current CMB data and found to be in tension with what we expect from our simple LambdaCDM model. Is this tension just a random fluke or a fundamental issue with the present model? In this thesis, we present a new framework to probe the lack of large-scale correlations in the temperature sky using CMB polarization data. Our analysis shows that if a suppression in the CMB polarization correlations is detected, it will provide compelling evidence for new physics on super-horizon scale. To further analyze the statistical properties of the CMB temperature sky, we constrain the degree of statistical anisotropy of the CMB in the context of the observed large-scale dipole power asymmetry. We find evidence for a scale-dependent dipolar modulation at 2.5sigma. To isolate late-time signals from the primordial ones, we test the anomalously high Integrated Sachs-Wolfe effect signal generated by superstructures in the universe. We find that the detected signal is in tension with the expectations from LambdaCDM at the 2.5sigma level, which is somewhat smaller than what has been previously argued. To conclude, we describe the current status of CMB observations on small scales, highlighting the tensions between Planck, WMAP, and SPT temperature data and how the upcoming data release of the ACTpol experiment will contribute to this matter. We provide a description of the current status of the data-analysis pipeline and discuss its ability to recover large-scale modes.
Mapping surface temperature variability on a debris-covered glacier with an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Kraaijenbrink, P. D. A.; Litt, M.; Shea, J. M.; Treichler, D.; Koch, I.; Immerzeel, W.
2016-12-01
Debris-covered glacier tongues cover about 12% of the glacier surface in high mountain Asia and much of the melt water is generated from those glaciers. A thin layer of supraglacial debris enhances ice melt by lowering the albedo, while thicker debris insulates the ice and reduces melt. Data on debris thickness is therefore an important input for energy balance modelling of these glaciers. Thermal infrared remote sensing can be used to estimate the debris thickness by using an inverse relation between debris surface temperature and thickness. To date this has only been performed using coarse spaceborne thermal imagery, which cannot reveal small scale variation in debris thickness and its influence on the heterogeneous melt patterns on debris-covered glaciers. We deployed an unmanned aerial vehicle mounted with a thermal infrared sensor over the debris-covered Lirung Glacier in Nepal three times in May 2016 to reveal the spatial and temporal variability of surface temperature in high detail. The UAV survey matched a Landsat 8 overpass to be able to make a comparison with spaceborne thermal imagery. The UAV-acquired data is processed using Structure from Motion photogrammetry and georeferenced using DGPS-measured ground control points. Different surface types were distinguished by using data acquired by an additional optical UAV survey in order to correct for differences in surface emissivity. In situ temperature measurements and incoming solar radiation data are used to calibrate the temperature calculations. Debris thicknesses derived are validated by thickness measurements of a ground penetrating radar. Preliminary analysis reveals a spatially highly heterogeneous pattern of surface temperature over Lirung Glacier with a range in temperature of over 40 K. At dawn the debris is relatively cold and its temperature is influenced strongly by the ice underneath. Exposed to the high solar radiation at the high altitude the debris layer heats up very rapidly as sunrise progresses, and the influence of ice on debris surface temperature reduces considerably. Many patterns are revealed that cannot be detected from the Landsat data, both on small spatial and temporal scales. The high detail the UAV-borne thermal imagery provides in time and space has great potential in the research of debris cover and its characteristics.
Local- and landscape-scale land cover affects microclimate and water use in urban gardens.
Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M
2018-01-01
Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the reduced temperatures may influence watering behavior of gardeners. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Burns, Ross A.; Danehy, Paul M.; Peters, Christopher J.
2016-01-01
Femtosecond laser electronic excitation tagging (FLEET) and Rayleigh scattering (RS) from a femtosecond laser are demonstrated in the NASA Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The measured signals from these techniques are examined for their thermodynamic dependencies in pure nitrogen. The FLEET signal intensity and signal lifetimes are found to scale primarily with the gas density, as does the RS signal. Several models are developed, which capture these physical behaviors. Notably, the FLEET and Rayleigh scattering intensities scale linearly with the flow density, while the FLEET signal decay rates are a more complex function of the thermodynamic state of the gas. The measurement of various flow properties are demonstrated using these techniques. While density was directly measured from the signal intensities and FLEET signal lifetime, temperature and pressure were measured using the simultaneous FLEET velocity measurements while assuming the flow had a constant total enthalpy. Measurements of density, temperature, and pressure from the FLEET signal are made with accuracies as high as 5.3 percent, 0.62 percent, and 6.2 percent, respectively, while precisions were approximately 10 percent, 0.26 percent, and 11 percent for these same quantities. Similar measurements of density from Rayleigh scattering showed an overall accuracy of 3.5 percent and a precision of 10.2 percent over a limited temperature range (T greater than 195 K). These measurements suggest a high degree of utility at using the femtosecond-laser based diagnostics for making multiparameter measurements in high-pressure, cryogenic environments such as large-scale TCT facilities.
Cold-Cap Temperature Profile Comparison between the Laboratory and Mathematical Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.
2015-06-01
The rate of waste vitrification in an electric melter is connected to the feed-to-glass conversion process, which occurs in the cold cap, a layer of reacting feed on top of molten glass. The cold cap consists of two layers: a low temperature (~100°C – ~800°C) region of unconnected feed and a high temperature (~800°C – ~1100°C) region of foam with gas bubbles and cavities mixed in the connected glass melt. A recently developed mathematical model describes the effect of the cold cap on glass production. For verification of the mathematical model, a laboratory-scale melter was used to produce a coldmore » cap that could be cross-sectioned and polished in order to determine the temperature profile related to position in the cold cap. The cold cap from the laboratory-scale melter exhibited an accumulation of feed ~400°C due to radiant heat from the molten glass creating dry feed conditions in the melter, which was not the case in the mathematical model where wet feed conditions were calculated. Through the temperature range from ~500°C – ~1100°C, there was good agreement between the model and the laboratory cold cap. Differences were observed between the two temperature profiles due to the temperature of the glass melts and the lack of secondary foam, large cavities, and shrinkage of the primary foam bubbles upon the cooling of the laboratory-scale cold cap.« less
Skillman, L C; Bajsa, O; Ho, L; Santhanam, B; Kumar, M; Ho, G
2009-07-01
Safe reuse of animal wastes to capture energy and nutrients, through anaerobic digestion processes, is becoming an increasingly desirable solution to environmental pollution. Pathogen decay is the most important safety consideration and is in general, improved at elevated temperatures and longer hydraulic residence times. During routine sampling to assess pathogen decay in thermophilic digestion, an inversely proportional relationship between levels of Clostridium perfringens and gas production was observed. Further samples were collected from pilot-scale, bench-scale thermophilic reactors and batch scale vials to assess whether gas production (predominantly methane) could be a useful indicator of decay of the thermotolerant pathogens C. perfringens and Campylobacter jejuni. Pathogen levels did appear to be lower where gas production and levels of methanogens were higher. This was evident at each operating temperature (50, 57, 65 degrees C) in the pilot-scale thermophilic digesters, although higher temperatures also reduced the numbers of pathogens detected. When methane production was higher, either when feed rate was increased, or pH was lowered from 8.2 (piggery wastewater) to 6.5, lower numbers of pathogens were detected. Although a number of related factors are known to influence the amount and rate of methane production, it may be a useful indicator of the removal of the pathogens C. perfringens and C. jejuni.
NASA Astrophysics Data System (ADS)
Zeeman, M. J.; Wolz, K.; Adler, B.; Brenner, C.; De Roo, F.; Emeis, S.; Kalthoff, N.; Mauder, M.; Schäfer, K.; Wohlfahrt, G.; Zhao, P.
2016-12-01
We investigated biosphere-atmosphere exchange processes in relation to the atmospheric boundary-layer (ABL) flow in a shallow valley. Land-use heterogeneity and topography can force local atmospheric flow patterns, including local circulations. Such flow patterns can impair current techniques for the quantification and source attribution of surface-exchange fluxes due to flux-divergence, advection and decoupling. Wind field, temperature and humidity structures in the ABL were observed in high resolution with spatially distributed observations in a 1 km3 experimental domain. Remote-sensing observations of wind, temperature and particles in the ABL (Raman-lidar; RASS; ceilometer; microwave radiometer; 3D Doppler-lidar) were combined with a high-resolution network of in-situ observations that included vertical and horizontal profiles of wind, temperature, carbon dioxide, methane and water vapor concentrations. The experiments were co-located with the long-term eddy covariance (EC) observatory Fendt (DE-Fen; ICOS, TERENO) and were part of international cooperative efforts in 2015 and 2016 (the ScaleX campaigns). The gathered experimental data offers a scale-transcending insight in local flow patterns in mountainous terrain and their influence on surface-exchange fluxes of energy and matter as observed by EC and flux-gradient methodology. In addition, the data is used for validation of Large-Eddy Simulations in complex terrain using PALM-LES. Within this modelling framework, virtual measurements are conducted to further assess the importance of three-dimensional advective and horizontal turbulent transport terms.
NASA Astrophysics Data System (ADS)
Liu, Haitao; Huang, Zhaohui; Zhang, Xiaoguang; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Min, Xin
2018-01-01
Understanding the kinetic barrier and driving force for crystal nucleation and growth is decisive for the synthesis of nanowires with controllable yield and morphology. In this research, we developed an effective reaction system to synthesize very large scale α-Si3N4 nanowires (hundreds of milligrams) and carried out a comparative study to characterize the kinetic influence of gas precursor supersaturation and liquid metal catalyst. The phase composition, morphology, microstructure and photoluminescence properties of the as-synthesized products were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and room temperature photoluminescence measurement. The yield of the products not only relates to the reaction temperature (thermodynamic condition) but also to the distribution of gas precursors (kinetic condition). As revealed in this research, by controlling the gas diffusion process, the yield of the nanowire products could be greatly improved. The experimental results indicate that the supersaturation is the dominant factor in the as-designed system rather than the catalyst. With excellent non-flammability and high thermal stability, the large scale α-Si3N4 products would have potential applications to the improvement of strength of high temperature ceramic composites. The photoluminescence spectrum of the α-Si3N4 shows a blue shift which could be valued for future applications in blue-green emitting devices. There is no doubt that the large scale products are the base of these applications.
What spatial scales are believable for climate model projections of sea surface temperature?
NASA Astrophysics Data System (ADS)
Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.
2014-09-01
Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.
Experiments in a Combustion-Driven Shock Tube with an Area Change
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Bobbitt, B.; Parziale, N. J.; Shepherd, J. E.
Shock tubes are versatile and useful tools for studying high temperature gas dynamics and the production of hypervelocity flows. High shock speeds are desirable for creating higher enthalpy, pressure, and temperature in the test gas which makes the study of thermo-chemical effects on fluid dynamics possible. Independent of construction and operational cost, free-piston drivers, such as the one used in the T5 facility at Caltech, give the best performance [3]. The high operational cost and long turnaround time of such a facility make a more economical option desirable for smaller-scale testing.
Trends in high pressure developments for new perspectives
NASA Astrophysics Data System (ADS)
Largeteau, Alain; Prakasam, Mythili
2018-06-01
Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.
High Temperature Oxidation of Hot-Dip Aluminized T92 Steels
NASA Astrophysics Data System (ADS)
Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok
2018-03-01
The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.
High Temperature Oxidation of Hot-Dip Aluminized T92 Steels
NASA Astrophysics Data System (ADS)
Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok
2018-05-01
The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.
Ye, Fei; Tang, Wentao; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Chen, Han; Qiang, Yinghuai; Yang, Xudong; Han, Liyuan
2017-09-01
Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm 2 , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm 2 . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of extreme value distributions for maximum temperature in the Mediterranean area
NASA Astrophysics Data System (ADS)
Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus
2015-04-01
Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New (2008), A European daily high-resolution gridded data set of surface temperature and precipitation for 1950 - 2006, J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.
NASA Astrophysics Data System (ADS)
DePew, K. A.; Ma, C.; Schiffbauer, J. D.; Wang, J.; Dong, B.; Lally, E.; Wang, A.
2012-12-01
The Center for Photonics Technology (CPT) at Virginia Tech is engaged in cutting edge research of fiber optic sensing technologies. One current research area is the design of fiber optic temperature sensors for harsh environments. Fiber optic temperature sensing offers significant advantages over electronic sensing in terms of size and insensitivity to harsh environmental conditions and electromagnetic interference. In the field, fiber optic thermometers have been used in recent snow cover studies as well as fluvial temperature profiling projects. The extended capabilities of CPT optical sensors open further possibilities for application in additional geologic realms requiring high temperature sensing in corrosive environments. Significant strides have been made in developing single-crystal sapphire based fiber optic sensing elements for high temperature environments which are otherwise difficult to instrument. Utilization of strain insensitive designs and optical sapphire materials allow for thermometers capable of operation above 1500°C with reduced sensitivity to chemical corrosion and mechanical interference. Current efforts in fabrication techniques are reducing the footprint of temperature sensors below the millimeter scale while maintaining high resolution and operating range. The FEI Helios 600 NanoLab workstation at the Virginia Tech Institute for Critical Technologies and Applied Science has been employed, providing the capabilities necessary to reduce the footprint of sensing elements to the dimensions of standard optical communication fiber using a Ga+ focused ion beam (FIB). The capability of semi-distributed multi-point sensing can also be accomplished at this scale using similar FIB milling techniques. The fiber optic thermometer designs resulting from these methods are compact, lightweight, and able to provide remote sensing without need for electrical power at the measurement point. These traits make them an ideal sensing platform for laboratory applications with minimal instrumentation egress as well as field deployment in areas where traditional electronic technologies cannot survive.
NASA Astrophysics Data System (ADS)
Walliser, E. O.; Schöne, B. R.; Tütken, T.; Zirkel, J.; Grimm, K. I.; Pross, J.
2014-10-01
Current global warming is likely to result in a unipolar glaciated world with unpredictable repercussions on atmospheric and oceanic circulation patterns. These changes are expected to affect seasonality as well as the frequency and intensity of decadal climate oscillations. To better constrain the mode and tempo of the anticipated changes, climatologists require high-resolution proxy data of time intervals in the past, e.g. the Early Oligocene during which boundary conditions were similar to those predicted for the near future. As demonstrated by the present study, pristinely preserved shells of the long-lived bivalve mollusk Glycymeris planicostalis from the late Rupelian of the Mainz Basin, Germany, provide an excellent archive to reconstruct changes of sea surface temperature on seasonal to inter-annual time scales. Their shells grew uninterruptedly during winter and summer and therefore recorded the full seasonal temperature amplitude that prevailed in the Mainz Basin 30 Ma ago. Absolute sea surface temperature data were faithfully reconstructed from δ18 Oshell values assuming a δ18Owater signature that was extrapolated from coeval sirenian tooth enamel. Extreme values ranged between 12.3 and 22.0°C and agree well with previous estimates based on planktonic foraminifera and shark teeth. However, summer and winter temperatures varied greatly on inter-annual time-scales. Winter and summer temperatures averaged over 40 annual increments of three specimens equaled 13.6 ± 0.8°C and 17.3 ± 1.2°C, respectively. Unless many samples are analyzed, this variability is hardly seen in foraminiferan tests. Our data also revealed decadal-scale oscillations of seasonal extremes which have - in the absence of appropriate climate archives - never been identified before for the Oligocene. This information can be highly relevant for numerical climate studies aiming to predict possible future climates in a unipolar glaciated or, ultimately, polar ice-free world.
Vignali, Valeria; Mazzotta, Francesco; Sangiorgi, Cesare; Simone, Andrea; Lantieri, Claudio; Dondi, Giulio
2016-01-01
In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene) polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures. PMID:28773965
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X, Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupportedmore » and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.« less
High-temperature solar receiver integrated with a short-term storage system
NASA Astrophysics Data System (ADS)
Giovannelli, Ambra; Bashir, Muhammad Anser; Archilei, Erika Maria
2017-06-01
Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.
Low-Temperature Plasma Functionalization of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Khare, Bishun; Meyyappan, M.
2004-01-01
A low-temperature plasma process has been devised for attaching specified molecular groups to carbon nanotubes in order to impart desired chemical and/or physical properties to the nanotubes for specific applications. Unlike carbon-nanotube- functionalization processes reported heretofore, this process does not involve the use of wet chemicals, does not involve exposure of the nanotubes to high temperatures, and generates very little chemical residue. In addition, this process can be carried out in a relatively simple apparatus and can readily be scaled up to mass production.
Observable consequences of zero-point energy
NASA Astrophysics Data System (ADS)
Sen, Siddhartha; Gupta, Kumar S.
2017-12-01
Spectral line widths, the Lamb shift and the Casimir effect are generally accepted to be observable consequences of the zero-point electromagnetic (ZPEM) fields. A new class of observable consequences of ZPEM field at the mesoscopic scale were recently proposed and observed. Here, we extend this class of observable effects and predict that mesoscopic water layers should have a high value for its solid-liquid phase transition temperature, as illustrated by water inside a single-walled carbon nanotube (CNT). For this case, our analysis predicts that the phase transition temperature scales inversely with the square of the effective radius available for the water flow within the CNT.
High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy
NASA Astrophysics Data System (ADS)
Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus
2016-08-01
The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.
Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data
NASA Astrophysics Data System (ADS)
Gulbe, Linda; Caune, Vairis; Korats, Gundars
2017-12-01
The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.
Jost, Jennifer; Helmuth, Brian
2007-10-01
Measurements of body temperatures in the field have shown that spatial and temporal patterns are often far more complex than previously anticipated, particularly in intertidal regions, where temperatures are driven by both marine and terrestrial climates. We examined the effects of body size, body position within the sediment, and microhabitat (presence or absence of Spartina alterniflora) on the body temperature of the mussel Geukensia demissa. We then used these data to develop a laboratory study exposing mussels to an artificial "stressful" day, mimicking field conditions as closely as possible. Results suggested that G. demissa mortality increases greatly at average daily peak temperatures of 45 degrees C and higher. When these temperatures were compared to field data collected in South Carolina in the summer of 2004, our data indicated that mussels likely experienced mortality due to high-temperature stress at this site during this period. Our results also showed that body position in the mud is the most important environmental modifier of body temperature. This experiment suggested that the presence of marsh grass leads to increases in body temperature by reducing convection, overwhelming the effects of shading. These data add to a growing body of evidence showing that small-scale thermal variability can surpass large-scale gradients.
NASA Astrophysics Data System (ADS)
Fischer, J.; Fellmuth, B.
2005-05-01
The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national units. For the base unit kelvin, this procedure is described in the sections on practical temperature scales, practical thermometry and reference standards. Testing experimentally the fundamental laws of physics means in practice the precise determination of the fundamental constants appearing in the laws. The essence of current activities is that prototypes, which may vary uncontrollably with time and location, are replaced by abstract experimental prescriptions that relate the units to the constants. This approach is shown for the definition of the kelvin and the Boltzmann constant. Dedicated to the occasion of the 60th birthday of Wolfgang Buck.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.
2015-08-15
Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operatemore » at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.« less
Edge-localized mode avoidance and pedestal structure in I-mode plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.
I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to themore » structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of large ELMs in I-mode.« less
Edge-localized mode avoidance and pedestal structure in I-mode plasmasa)
NASA Astrophysics Data System (ADS)
Walk, J. R.; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E.; Snyder, P. B.; Osborne, T.; Dominguez, A.; Cziegler, I.
2014-05-01
I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle Pnet/n ¯e, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of Pnet/n ¯e. This is consistent with targets for increased performance in I-mode, elevating pedestal βp and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of large ELMs in I-mode.
High-Temperature Modal Survey of a Hot-Structure Control Surface
NASA Technical Reports Server (NTRS)
Spivey, Natalie Dawn
2010-01-01
Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.
Climate-water quality relationships in Texas reservoirs
Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo
2015-01-01
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.
NASA Astrophysics Data System (ADS)
Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David
2017-04-01
Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of large-scale circulation influences on sub-regional conditions in terms of their sign, strength and the mechanisms through which it acts, the KV/KZI work substantively advances climate science in this domain. The work also thus provides a new set of criteria for assessing the skill of global circulation models in representation of western HMA climate processes.
NASA Technical Reports Server (NTRS)
Opila, Elizabeth
1995-01-01
Pure coupons of chemically vapor deposited (CVD) SiC were oxidized for 100 h in dry flowing oxygen at 1300 C. The oxidation kinetics were monitored using thermogravimetry (TGA). The experiments were first performed using high-purity alumina reaction tubes. The experiments were then repeated using fused quartz reaction tubes. Differences in oxidation kinetics, scale composition, and scale morphology were observed. These differences were attributed to impurities in the alumina tubes. Investigators interested in high-temperature oxidation of silica formers should be aware that high-purity alumina can have significant effects on experiment results.
Scaling analysis for the direct reactor auxiliary cooling system for FHRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Q.; Kim, I. H.; Sun, X.
2015-04-01
The Direct Reactor Auxiliary Cooling System (DRACS) is a passive residual heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines the coated particle fuel and graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three natural circulation/convection loops that rely on buoyancy as the driving force and are coupled via two heat exchangers, namely, the DRACS heat exchanger and the natural draft heat exchanger. A fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during reactor normal operation, and tomore » activate the DRACS in accidents when the reactor is shut down. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. In this paper, a detailed scaling analysis for the DRACS is performed, which will provide guidance for the design of scaled-down DRACS test facilities. Based on the Boussinesq assumption and one-dimensional flow formulation, the governing equations are non-dimensionalized by introducing appropriate dimensionless parameters. The key dimensionless numbers that characterize the DRACS system are obtained from the non-dimensional governing equations. Based on the dimensionless numbers and non-dimensional governing equations, similarity laws are proposed. In addition, a scaling methodology has been developed, which consists of a core scaling and a loop scaling. The consistency between the core and loop scaling is examined via the reference volume ratio, which can be obtained from both the core and loop scaling processes. The scaling methodology and similarity laws have been applied to obtain a scientific design of a scaled-down high-temperature DRACS test facility.« less
Reservoir Condition Pore-scale Imaging of Multiple Fluid Phases Using X-ray Microtomography
Andrew, Matthew; Bijeljic, Branko; Blunt, Martin
2015-01-01
X-ray microtomography was used to image, at a resolution of 6.6 µm, the pore-scale arrangement of residual carbon dioxide ganglia in the pore-space of a carbonate rock at pressures and temperatures representative of typical formations used for CO2 storage. Chemical equilibrium between the CO2, brine and rock phases was maintained using a high pressure high temperature reactor, replicating conditions far away from the injection site. Fluid flow was controlled using high pressure high temperature syringe pumps. To maintain representative in-situ conditions within the micro-CT scanner a carbon fiber high pressure micro-CT coreholder was used. Diffusive CO2 exchange across the confining sleeve from the pore-space of the rock to the confining fluid was prevented by surrounding the core with a triple wrap of aluminum foil. Reconstructed brine contrast was modeled using a polychromatic x-ray source, and brine composition was chosen to maximize the three phase contrast between the two fluids and the rock. Flexible flow lines were used to reduce forces on the sample during image acquisition, potentially causing unwanted sample motion, a major shortcoming in previous techniques. An internal thermocouple, placed directly adjacent to the rock core, coupled with an external flexible heating wrap and a PID controller was used to maintain a constant temperature within the flow cell. Substantial amounts of CO2 were trapped, with a residual saturation of 0.203 ± 0.013, and the sizes of larger volume ganglia obey power law distributions, consistent with percolation theory. PMID:25741751
Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña
NASA Astrophysics Data System (ADS)
Evans, Jason P.; Boyer-Souchet, Irène
2012-05-01
This study examines the role played by high sea surface temperatures around northern Australia, in producing the extreme precipitation which occurred during the strong La Niña in December 2010. These extreme rains produced floods that impacted almost 1,300,000 km2, caused billions of dollars in damage, led to the evacuation of thousands of people and resulted in 35 deaths. Through the use of regional climate model simulations the contribution of the observed high sea surface temperatures to the rainfall is quantified. Results indicate that the large-scale atmospheric circulation changes associated with the La Niña event, while associated with above average rainfall in northeast Australia, were insufficient to produce the extreme rainfall and subsequent flooding observed. The presence of high sea surface temperatures around northern Australia added ˜25% of the rainfall total.
Heating-insensitive scale increase caused by convective precipitation
NASA Astrophysics Data System (ADS)
Haerter, Jan; Moseley, Christopher; Berg, Peter
2017-04-01
The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective extremes, we conclude that the formation of extreme events is a highly nonlinear process. However, our results suggest that crucial features of convective organization throughout the day may be independent of temperature - with possible implications for large-scale model parameterizations. Yet, the timing of the onset of initial precipitation depends strongly on the temperature boundary conditions, where higher temperatures, or earlier, moderate heating, lead to earlier initiation of convection and hence allow for more time for development and the production of extremes.
EVALUATION OF A PROCESS TO CONVERT BIOMASS TO METHANOL FUEL
The report gives results of a review of the design of a reactor capable of gasifying approximately 50 lb/hr of biomass for a pilot-scale facility to develop, demonstrate, and evaluate the Hynol Process, a high-temperature, high-pressure method for converting biomass into methanol...
EVALUATION OF A PROCESS TO CONVERT BIOMASS TO METHANOL FUEL - PROJECT SUMMARY
The report gives results of a review of the design of a reactor capable of gasifying approximately 50 lb/hr of biomass for a pilot-scale facility to develop, demonstrate, and evaluate the Hynol Process, a high-temperature, high-pressure method for converting biomass into methanol...
61 FR 41385 - Notice of Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
1996-08-08
... PRESSURE VESSEL; filed 24 February 1995; patented 21 November 1995.// Patent 5,468,356: LARGE SCALE...,477,482: ULTRA HIGH DENSITY, NON- VOLATILE FERROMAGNETIC RANDOM ACCESS MEMORY; filed 1 October 1993....// Patent 5,483,017: HIGH TEMPERATURE THERMOSETS AND CERAMICS DERIVED FROM LINEAR CARBORANE-(SILOXANE OR...
Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations
Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.; ...
2017-09-12
Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less
Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.
Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less
Reliability of High-Temperature Fixed-Point Installations over 8 Years
NASA Astrophysics Data System (ADS)
Elliott, C. J.; Ford, T.; Ongrai, O.; Pearce, J. V.
2017-12-01
At NPL, high-temperature metal-carbon eutectic fixed points have been set up for thermocouple calibration purposes since 2006, for realising reference temperatures above the highest point specified in the International Temperature Scale of 1990 for contact thermometer calibrations. Additionally, cells of the same design have been provided by NPL to other national measurement institutes (NMIs) and calibration laboratories over this period, creating traceable and ISO 17025 accredited facilities around the world for calibrating noble metal thermocouples at 1324 {°}C (Co-C) and 1492 {°}C (Pd-C). This paper shows collections of thermocouple calibration results obtained during use of the high-temperature fixed-point cells at NPL and, as further examples, the use of cells installed at CCPI Europe (UK) and NIMT (Thailand). The lifetime of the cells can now be shown to be in excess of 7 years, whether used on a weekly or monthly basis, and whether used in an NMI or industrial calibration laboratory.
An Indentation Technique for Nanoscale Dynamic Viscoelastic Measurements at Elevated Temperature
NASA Astrophysics Data System (ADS)
Ye, Jiping
2012-08-01
Determination of nano/micro-scale viscoelasticity is very important to understand the local rheological behavior and degradation phenomena of multifunctional polymer blend materials. This article reviews research results concerning the development of indentation techniques for making nanoscale dynamic viscoelastic measurements at elevated temperature. In the last decade, we have achieved breakthroughs in noise floor reduction in air and thermal load drift/noise reduction at high temperature before taking on the challenge of nanoscale viscoelastic measurements. A high-temperature indentation technique has been developed that facilitates viscoelastic measurements up to 200 °C in air and 500 °C in a vacuum. During the last year, two viscoelastic measurement methods have been developed by making a breakthrough in suppressing the contact area change at high temperature. One is a sharp-pointed time-dependent nanoindentation technique for microscale application and the other is a spherical time-dependent nanoindentation technique for nanoscale application. In the near future, we expect to lower the thermal load drift and load noise floor even more substantially.
Pandey, R B; Farmer, B L
2014-11-07
Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ∼ 3) at low temperature to a ramified fibrous network (D ∼ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ∼ 1.6) of fibrous Glu- and Thr-chain configurations.
NASA Astrophysics Data System (ADS)
Pandey, R. B.; Farmer, B. L.
2014-11-01
Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.
Observation of pseudogap in MgB2
NASA Astrophysics Data System (ADS)
Patil, S.; Medicherla, V. R. R.; Ali, Khadiza; Singh, R. S.; Manfrinetti, P.; Wrubl, F.; Dhar, S. K.; Maiti, Kalobaran
2017-11-01
We investigate the electronic structure of a specially prepared highly dense conventional high temperature superconductor, MgB2, employing high resolution photoemission spectroscopy. The spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected. However, the spectra in the wider energy range reveal the emergence of a pseudogap much above the superconducting transition temperature indicating an apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of the E2g phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap and have significant implications in the study of high temperature superconductors.
Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting.
Seipp, Michael T; Durtschi, Jacob D; Liew, Michael A; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V; Wittwer, Carl T
2007-07-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39 degrees C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments.
Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro
2008-02-01
Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.
A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.
Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus
2013-03-01
We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.
Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Qi-Long, E-mail: qlcao@mail.ustc.edu.cn; Shao, Ju-Xiang; Wang, Fan-Hou, E-mail: eatonch@gmail.com
2015-04-07
Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0} exp(−E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. Themore » pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=−E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.« less
Examinations of electron temperature calculation methods in Thomson scattering diagnostics.
Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin
2012-10-01
Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. χ-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the χ-square test are examined and scale factor test is proposed as an alternative method.
Landscape-scale processes influence riparian plant composition along a regulated river
Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.
2018-01-01
Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.
NASA Astrophysics Data System (ADS)
Powell, R. L.; Goulden, M.; Peterson, S.; Roberts, D. A.; Still, C. J.
2015-12-01
Temperature is a primary environmental control on biological systems and processes at a range of spatial and temporal scales, from controlling biochemical processes such as photosynthesis to influencing continental-scale species distribution. The Landsat satellite series provides a long record (since the mid-1980s) of relatively high spatial resolution thermal infrared (TIR) imagery, from which we derive land surface temperature (LST) grids. Here, we investigate fine spatial resolution factors that influence Landsat-derived LST over a spectrally and spatially heterogeneous landscape. We focus on paired sites (inside/outside a 1994 fire scar) within a pinyon-juniper scrubland in Southern California. The sites have nearly identical micro-meteorology and vegetation species composition, but distinctly different vegetation abundance and structure. The tower at the unburned site includes a number of in-situ imaging tools to quantify vegetation properties, including a thermal camera on a pan-tilt mount, allowing hourly characterization of landscape component temperatures (e.g., sunlit canopy, bare soil, leaf litter). We use these in-situ measurements to assess the impact of fine-scale landscape heterogeneity on estimates of LST, including sensitivity to (i) the relative abundance of component materials, (ii) directional effects due to solar and viewing geometry, (iii) duration of sunlit exposure for each compositional type, and (iv) air temperature. To scale these properties to Landsat spatial resolution (~100-m), we characterize the sub-pixel composition of landscape components (in addition to shade) by applying spectral mixture analysis (SMA) to the Landsat Operational Land Imager (OLI) spectral bands and test the sensitivity of the relationships established with the in-situ data at this coarser scale. The effects of vegetation abundance and cover height versus other controls on satellite-derived estimates of LST will be assessed by comparing estimates at the burned vs. unburned sites across multiple seasons (~30 dates).
Understanding the ignition mechanism of high-pressure spray flames
Dahms, Rainer N.; Paczko, Günter A.; Skeen, Scott A.; ...
2016-10-25
A conceptual model for turbulent ignition in high-pressure spray flames is presented. The model is motivated by first-principles simulations and optical diagnostics applied to the Sandia n-dodecane experiment. The Lagrangian flamelet equations are combined with full LLNL kinetics (2755 species; 11,173 reactions) to resolve all time and length scales and chemical pathways of the ignition process at engine-relevant pressures and turbulence intensities unattainable using classic DNS. The first-principles value of the flamelet equations is established by a novel chemical explosive mode-diffusion time scale analysis of the fully-coupled chemical and turbulent time scales. Contrary to conventional wisdom, this analysis reveals thatmore » the high Damköhler number limit, a key requirement for the validity of the flamelet derivation from the reactive Navier–Stokes equations, applies during the entire ignition process. Corroborating Rayleigh-scattering and formaldehyde PLIF with simultaneous schlieren imaging of mixing and combustion are presented. Our combined analysis establishes a characteristic temporal evolution of the ignition process. First, a localized first-stage ignition event consistently occurs in highest temperature mixture regions. This initiates, owed to the intense scalar dissipation, a turbulent cool flame wave propagating from this ignition spot through the entire flow field. This wave significantly decreases the ignition delay of lower temperature mixture regions in comparison to their homogeneous reference. This explains the experimentally observed formaldehyde formation across the entire spray head prior to high-temperature ignition which consistently occurs first in a broad range of rich mixture regions. There, the combination of first-stage ignition delay, shortened by the cool flame wave, and the subsequent delay until second-stage ignition becomes minimal. A turbulent flame subsequently propagates rapidly through the entire mixture over time scales consistent with experimental observations. As a result, we demonstrate that the neglect of turbulence-chemistry-interactions fundamentally fails to capture the key features of this ignition process.« less
Modelling and control of a diffusion/LPCVD furnace
NASA Astrophysics Data System (ADS)
Dewaard, H.; Dekoning, W. L.
1988-12-01
Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.
Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field
NASA Astrophysics Data System (ADS)
Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.
2015-11-01
A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.
Aeronautics and Space Engineering Board: Aeronautics Assessment Committee
NASA Technical Reports Server (NTRS)
1977-01-01
High temperature engine materials, fatigue and fracture life prediction, composite materials, propulsion noise pollution, propulsion components, full-scale engine research, V/STOL propulsion, advanced engine concepts, and advanced general aviation propulsion research were discussed.
Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...
2016-11-15
The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard R. Schultz; Paul D. Bayless; Richard W. Johnson
2010-09-01
The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) beganmore » their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is inadequate to permit steady-state operation at reasonable conditions. 4. To enable the HTTF to operate at a more representative steady-state conditions, DOE recently allocated funding via a DOE subcontract to HTTF to permit an OSU infrastructure upgrade such that 2.2 MW will become available for HTTF experiments. 5. Analyses have been performed to study the relationship between HTTF and MHTGR via the hierarchical two-tiered scaling methodology which has been used successfully in the past, e.g., APEX facility scaling to the Westinghouse AP600 plant. These analyses have focused on the relationship between key variables that will be measured in the HTTF to the counterpart variables in the MHTGR with a focus on natural circulation, using nitrogen as a working fluid, and core heat transfer. 6. Both RELAP5-3D and computational fluid dynamics (CD-Adapco’s STAR-CCM+) numerical models of the MHTGR and the HTTF have been constructed and analyses are underway to study the relationship between the reference reactor and the HTTF. The HTTF is presently being designed. It has ¼-scaling relationship to the MHTGR in both the height and the diameter. Decisions have been made to design the reactor cavity cooling system (RCCS) simulation as a boundary condition for the HTTF to ensure that (a) the boundary condition is well defined and (b) the boundary condition can be modified easily to achieve the desired heat transfer sink for HTTF experimental operations.« less
Lin, Yong; Franzke, Christian L E
2015-08-11
Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.
Phosphate Reactions as Mechanisms of High-Temperature Lubrication
NASA Technical Reports Server (NTRS)
Nagarajan, Anitha; Garrido, Carolina; Gatica, Jorge E.; Morales, Wilfredo
2006-01-01
One of the major problems preventing the operation of advanced gas turbine engines at higher temperatures is the inability of currently used liquid lubricants to survive at these higher temperatures under friction and wear conditions. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence some other form of lubrication is necessary. Vapor-phase lubrication is a promising new technology for high-temperature lubrication. This lubrication method employs a liquid phosphate ester that is vaporized and delivered to bearings or gears; the vapor reacts with the metal surfaces, generating a solid lubricious film that has proven very stable at high temperatures. In this study, solid lubricious films were grown on cast-iron foils in order to obtain reaction and diffusion rate data to help characterize the growth mechanism. A phenomenological mathematical model of the film deposition process was derived incorporating transport and kinetic parameters that were coupled to the experimental data. This phenomenological model can now be reliably used as a predictive and scale-up tool for future vapor-phase lubrication studies.
Study of temperature effect on junctionless Si nanotube FET concerning analog/RF performance
NASA Astrophysics Data System (ADS)
Tayal, Shubham; Nandi, Ashutosh
2018-06-01
This paper for the first time investigates the effect of temperature variation on analog/RF performance of SiO2 as well as high-K gate dielectric based junctionless silicon nanotube FET (JL-SiNTFET). It is observed that the change in temperature does not variate the analog/RF performance of junctionless silicon nanotube FET by substantial amount. By increasing the temperature from 77 K to 400 K, the deterioration in intrinsic dc gain (AV) is marginal that is only ∼3 dB. Furthermore, the variation in cut-off frequency (fT), maximum oscillation frequency (fMAX), and gain-frequency product (GFP) with temperature is also minimal in JLSiNT-FET. More so, the same trend is observed even at scaled gate length (Lg = 15 nm). Furthermore, we have observed that the use of high-K gate dielectric deteriorates the analog/RF performance of JLSiNT-FET. However, the use of high-K gate dielectric negligibly changes the effect of temperature variation on analog/RF performance of JLSINT-FET device.
Short-term Temperature Prediction Using Adaptive Computing on Dynamic Scales
NASA Astrophysics Data System (ADS)
Hu, W.; Cervone, G.; Jha, S.; Balasubramanian, V.; Turilli, M.
2017-12-01
When predicting temperature, there are specific places and times when high accuracy predictions are harder. For example, not all the sub-regions in the domain require the same amount of computing resources to generate an accurate prediction. Plateau areas might require less computing resources than mountainous areas because of the steeper gradient of temperature change in the latter. However, it is difficult to estimate beforehand the optimal allocation of computational resources because several parameters play a role in determining the accuracy of the forecasts, in addition to orography. The allocation of resources to perform simulations can become a bottleneck because it requires human intervention to stop jobs or start new ones. The goal of this project is to design and develop a dynamic approach to generate short-term temperature predictions that can automatically determines the required computing resources and the geographic scales of the predictions based on the spatial and temporal uncertainties. The predictions and the prediction quality metrics are computed using a numeric weather prediction model, Analog Ensemble (AnEn), and the parallelization on high performance computing systems is accomplished using Ensemble Toolkit, one component of the RADICAL-Cybertools family of tools. RADICAL-Cybertools decouple the science needs from the computational capabilities by building an intermediate layer to run general ensemble patterns, regardless of the science. In this research, we show how the ensemble toolkit allows generating high resolution temperature forecasts at different spatial and temporal resolution. The AnEn algorithm is run using NAM analysis and forecasts data for the continental United States for a period of 2 years. AnEn results show that temperature forecasts perform well according to different probabilistic and deterministic statistical tests.
Preparation of Nanocrystalline Powders of ZrO2, Stabilized by Y2O3 Dobs for Ceramics
NASA Astrophysics Data System (ADS)
Petrunin, V. F.; Korovin, S. A.
The purpose of this study was to develop a synthesis conditions and produce samples of nanocrystalline zirconia powder in a high-temperature phase state. To increase the stability of this state at room temperature, Y2O3 was used as a dop in the two-stages chemical method including coprecipitation mixture of the corresponding hydroxides and air drying. To reduce agglomeration of nanoparticles during heat treatment of precursors the microwave oven instead of a muffle was used. Different characterisation methods have been used to determine that the obtained powders are nano-scale corresponds to a high-temperature tetragonal phase of ZrO2. It is shown that such nanocrystalline powders may be used to produce highly-dense nanoceramics.
Phase of the Wilson line at high temperature in the standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korthals Altes, C.P.; Lee, K.; Pisarski, R.D.
1994-09-26
We compute the effective potential for the phase of the Wilson line at high temperature in the standard model to one-loop order. Besides the trivial vacua, there are metastable states in the direction of U(1) hypercharge. Assuming that the Universe starts out in such a metastable state at the Planck scale, it easily persists to the time of the electroweak phase transition, which then proceeds by an unusual mechanism. All remnants of the metastable state evaporate about the time of the QCD phase transition.
High-temperature superconductors for space power transmission lines
NASA Astrophysics Data System (ADS)
Hull, John R.; Myers, Ira T.
1989-08-01
Analysis of high temperature superconductors (HTS) for space power transmission lines shows that they have the potential to provide low weight alternatives to conventional power distribution systems, especially for line lengths greater than 100 m. The use of directional radiators, combined with the natural vacuum of space, offers the possibility of reducing or eliminating the heat flux from the environment that dominates loss in terrestrial systems. This leads to scaling laws that favor flat conductor geometries. From a total launch weight viewpoint, HTS transmission lines appear superior, even with presently attainable values of current density.
High temperature surface protection. [10 gas turbines
NASA Technical Reports Server (NTRS)
Levine, S. R.
1978-01-01
Alloys of the MCrAlX type are the basis for high temperature surface protection systems in gas turbines. M can be one or more of Ni, Co, or Fe and X denotes a reactive metal added to enhance oxide scale adherence. The selection and formation as well as the oxidation, hot corrosion and thermal fatigue performance of MCrAlX coatings are discussed. Coatings covered range from simple aluminides formed by pack cementation to the more advanced physical vapor deposition overlay coatings and developmental plasma spray deposited thermal barrier coatings.
Mixing to Monsoons: Air-Sea Interactions in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Lucas, A. J.; Shroyer, E. L.; Wijesekera, H. W.; Fernando, H. J. S.; D'Asaro, E.; Ravichandran, M.; Jinadasa, S. U. P.; MacKinnon, J. A.; Nash, J. D.; Sharma, R.; Centurioni, L.; Farrar, J. T.; Weller, R.; Pinkel, R.; Mahadevan, A.; Sengupta, D.; Tandon, A.
2014-07-01
More than 1 billion people depend on rainfall from the South Asian monsoon for their livelihoods. Summertime monsoonal precipitation is highly variable on intraseasonal time scales, with alternating "active" and "break" periods. These intraseasonal oscillations in large-scale atmospheric convection and winds are closely tied to 1°C-2°C variations of sea surface temperature in the Bay of Bengal.
Thermal and athermal crackling noise in ferroelastic nanostructures.
Zhao, Z; Ding, X; Sun, J; Salje, E K H
2014-04-09
The evolution of ferroelastic microstructures under external shear is determined by large-scale molecular dynamics simulations in two and three dimensions. Ferroelastic pattern formation was found to be almost identical in two and three dimensions, with only the ferroelastic transition temperature changing. The twin patterns generated by shear deformation depend strongly on temperature, with high wall densities nucleating under optimized temperature conditions. The dynamical tweed and mobile kink movement inside the twin walls is continuous and thermally activated at high temperatures, and becomes jerky and athermal at low temperatures. With decreasing temperature, the statistical distributions of dynamical tweed and kinks vary from a Vogel-Fulcher law P(E)~exp-(E/(T-TVF)) to an athermal power-law distribution P(E)~E-E. During the yield event, the nucleation of needles and kinks is always jerky, and the energy of the jerks is power-law distributed. Low-temperature yield proceeds via one large avalanche. With increasing temperature, the large avalanche is thermally broken up into a multitude of small segments. The power-law exponents reflect the changes in temperature, even in the athermal regime.
de Ridder, Inger R; de Jong, Frank Jan; den Hertog, Heleen M; Lingsma, Hester F; van Gemert, H Maarten A; Schreuder, A H C M L Tobien; Ruitenberg, Annemieke; Maasland, E Lisette; Saxena, Ritu; Oomes, Peter; van Tuijl, Jordie; Koudstaal, Peter J; Kappelle, L Jaap; Algra, Ale; van der Worp, H Bart; Dippel, Diederik W J
2015-04-01
In the first hours after stroke onset, subfebrile temperatures and fever have been associated with poor functional outcome. In the first Paracetamol (Acetaminophen) in Stroke trial, a randomized clinical trial of 1400 patients with acute stroke, patients who were treated with high-dose paracetamol showed more improvement on the modified Rankin Scale at three-months than patients treated with placebo, but this difference was not statistically significant. In the 661 patients with a baseline body temperature of 37.0 °C or above, treatment with paracetamol increased the odds of functional improvement (odds ratio 1.43; 95% confidence interval: 1.02-1.97). This relation was also found in the patients with a body temperature of 36.5 °C or higher (odds ratio 1.31; 95% confidence interval 1.01-1.68). These findings need confirmation. The study aims to assess the effect of high-dose paracetamol in patients with acute stroke and a body temperature of 36.5 °C or above on functional outcome. The Paracetamol (Acetaminophen) In Stroke 2 trial is a multicenter, randomized, double-blind, placebo-controlled clinical trial. We use a power of 85% to detect a significant difference in the scores on the modified Rankin Scale of the paracetamol group compared with the placebo group at a level of significance of 0.05 and assume a treatment effect of 7%. Fifteen-hundred patients with acute ischemic stroke or intracerebral hemorrhage and a body temperature of 36.5 °C or above will be included within 12 h of symptom onset. Patients will be treated with paracetamol in a daily dose of six-grams or matching placebo for three consecutive days. The Paracetamol (Acetaminophen) In Stroke 2 trial has been registered as NTR2365 in The Netherlands Trial Register. The primary outcome will be improvement on the modified Rankin Scale at three-months as analyzed by ordinal logistic regression. If high-dose paracetamol will be proven effective, a simple, safe, and extremely cheap therapy will be available for many patients with acute stroke worldwide. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.
On the Regulation of the Pacific Warm Pool Temperature
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Sue-Hsien; Chan, Pui-King; Lau, William K. M. (Technical Monitor)
2002-01-01
In the tropical western Pacific, regions of the highest sea surface temperature (SST) and the largest cloud cover are found to have the largest surface heating, primarily due to the weak evaporative cooling associated with weak winds. This situation is in variance with the suggestions that the temperature in the Pacific warm pool is regulated either by the reduced solar heating due to an enhanced cloudiness or by the enhanced evaporative cooling due to an elevated SST. It is clear that an enhanced surface heating in an enhanced convection region is not sustainable and must be interrupted by variations in large-scale atmospheric circulation. As the deep convective regions shift away from regions of high SST due primarily to seasonal variation and secondarily to interannual variation of the large-scale atmospheric and oceanic circulation, both trade wind and evaporative cooling in the high SST region increase, leading to a reduction in SST. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds in the primary factor that prevent the warm pool SST from increasing to a value much higher than what is observed.
Algal-Based Renewable Energy for Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsen, Christian
2017-03-31
To help in the overall evaluation of the potential for growing algal biomass in high productivity systems, we conducted a study that evaluated water from geothermal sources and cultivated mixed consortia from hot springs in Nevada, we evaluated their growth at moderately high varying temperatures and then evaluated potential manipulations that could possibly increase their biomass and oleaginous production. Studies were conducted at scales ranging from the laboratory benchtop to raceways in field settings. Mixed consortia were readily grown at all scales and growth could be maintained in Nevada year round. Moderate productivities were attained even during the shoulder seasons-more » where temperature control was maintained by hot water and seasonally cold temperatures when there was still plentiful solar radiation. The results enhance the prospects for economic feasibility of developing algal based industries in areas with geothermal energy or even other large alternative sources of heat that are not being used for other purposes. The public may benefit from such development as a means for economic development as well as development of industries for alternative energy and products that do not rely on fossil fuels.« less
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Brady, M. P.; Santella, M. L.; Bei, H.; Maziasz, P. J.; Pint, B. A.
2011-04-01
A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the ~923 K to 1173 K (650 °C to 900 °C) temperature range due to the formation of a protective Al2O3 scale rather than the Cr2O3 scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe2(Mo,Nb)-Laves, Ni3Al-L12, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.
SIMS studies of oxide growth on beta-NiAl
NASA Technical Reports Server (NTRS)
Mitchell, D. F.; Prescott, R.; Graham, M. J.; Doychak, J.
1992-01-01
This paper reports on a study of the growth of aluminum oxide on beta-NiAl at temperatures up to 1200 C. The scales have been formed in two-stage experiments using O2-16 and O2-18 gases, and the various isotopic species have been located by direct imaging using SIMS. Supplementary information on oxide morphologies and structures has been obtained by SEM. SIMS images and depth profiles indicate where oxidation has taken place predominantly by cation or anion diffusion at different stages of the growth process. The way in which the presence of small amounts of reactive elements can affect scale growth is also considered. These results help to provide an improved understanding of the mechanism of alumina scale formation, which is of benefit in the development of oxidation-resistant alloys and intermetallics for service at high temperatures.
Low–Cost Bio-Based Carbon Fiber for High-Temperature Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naskar, Amit K.; Akato, Kokouvi M.; Tran, Chau D.
GrafTech International Holdings Inc. (GTI), worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. The focus of this work was to demonstrate lab-scale LBCF from at least 4 different precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash levelmore » of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria, as highlighted in Table 1. In addition, the ash level for the 4 carbonized lignin samples were below 500 ppm. Processing asreceived lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial lignin, prior to purification, had greater than 4X the ash level needed for this project, and prior to this work there was not a clear path of how to achieve the purity target. The lab scale development of LBCF was performed with a specific functional application in mind, specifically for high temperature rigid insulation. GTI is currently a consumer of foreignsourced pitch and rayon based carbon fibers for use in its high temperature insulation products, and the motivation was that LBCF had potential to decrease costs and increase product competitiveness in the marketplace through lowered raw material costs, lowered energy costs, and decreased environmental footprint. At the end of this project, the Technology Readiness Level (TRL) remained at 5 for LBCF in high temperature insulation.« less
Voltage Scaling of Graphene Device on SrTiO3 Epitaxial Thin Film.
Park, Jeongmin; Kang, Haeyong; Kang, Kyeong Tae; Yun, Yoojoo; Lee, Young Hee; Choi, Woo Seok; Suh, Dongseok
2016-03-09
Electrical transport in monolayer graphene on SrTiO3 (STO) thin film is examined in order to promote gate-voltage scaling using a high-k dielectric material. The atomically flat surface of thin STO layer epitaxially grown on Nb-doped STO single-crystal substrate offers good adhesion between the high-k film and graphene, resulting in nonhysteretic conductance as a function of gate voltage at all temperatures down to 2 K. The two-terminal conductance quantization under magnetic fields corresponding to quantum Hall states survives up to 200 K at a magnetic field of 14 T. In addition, the substantial shift of charge neutrality point in graphene seems to correlate with the temperature-dependent dielectric constant of the STO thin film, and its effective dielectric properties could be deduced from the universality of quantum phenomena in graphene. Our experimental data prove that the operating voltage reduction can be successfully realized due to the underlying high-k STO thin film, without any noticeable degradation of graphene device performance.
A robust molecular probe for Ångstrom-scale analytics in liquids
Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike
2016-01-01
Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum–solid interface often at a few Kelvin, but is not a notion immediately associated with liquid–solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60–metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions. PMID:27516157
NASA Astrophysics Data System (ADS)
Alexander-Turner, R.; Ortega, P.; Robson, J. I.
2018-04-01
It has been suggested that changes in the Atlantic Meridional Overturning Circulation (AMOC) can drive sea surface temperature (SST) on monthly time scales (Duchez et al., 2016, https://doi.org/10.1002/2017GB005667). However, with only 11 years of continuous observations, the validity of this result over longer, or different, time periods is uncertain. In this study, we use a 120 yearlong control simulation from a high-resolution climate model to test the robustness of the AMOC fingerprints. The model reproduces the observed AMOC seasonal cycle and its variability, and the observed 5-month lagged AMOC-SST fingerprints derived from 11 years of data. However, the AMOC-SST fingerprints are very sensitive to the particular time period considered. In particular, both the Florida current and the upper mid-ocean transport produce highly inconsistent fingerprints when using time periods shorter than 30 years. Therefore, several decades of RAPID observations will be necessary to determine the real impact of the AMOC on SSTs at monthly time scales.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.
2002-01-01
The development of the pulse detonation engine (PDE) requires robust design of the engine components that are capable of enduring harsh detonation environments. In this study, a high cycle thermal fatigue test rig was developed for evaluating candidate PDE combustor materials using a CO2 laser. The high cycle thermal fatigue behavior of Haynes 188 alloy was investigated under an enhanced pulsed laser test condition of 30 Hz cycle frequency (33 ms pulse period, and 10 ms pulse width including 0.2 ms pulse spike). The temperature swings generated by the laser pulses near the specimen surface were characterized by using one-dimensional finite difference modeling combined with experimental measurements. The temperature swings resulted in significant thermal cyclic stresses in the oxide scale/alloy system, and induced extensive surface cracking. Striations of various sizes were observed at the cracked surfaces and oxide/alloy interfaces under the cyclic stresses. The test results indicated that oxidation and creep-enhanced fatigue at the oxide scale/alloy interface was an important mechanism for the surface crack initiation and propagation under the simulated PDE condition.
Perspective of Micro Process Engineering for Thermal Food Treatment
Mathys, Alexander
2018-01-01
Micro process engineering as a process synthesis and intensification tool enables an ultra-short thermal treatment of foods within milliseconds (ms) using very high surface-area-to-volume ratios. The innovative application of ultra-short pasteurization and sterilization at high temperatures, but with holding times within the range of ms would allow the preservation of liquid foods with higher qualities, thereby avoiding many unwanted reactions with different temperature–time characteristics. Process challenges, such as fouling, clogging, and potential temperature gradients during such conditions need to be assessed on a case by case basis and optimized accordingly. Owing to the modularity, flexibility, and continuous operation of micro process engineering, thermal processes from the lab to the pilot and industrial scales can be more effectively upscaled. A case study on thermal inactivation demonstrated the feasibility of transferring lab results to the pilot scale. It was shown that micro process engineering applications in thermal food treatment may be relevant to both research and industrial operations. Scaling of micro structured devices is made possible through the use of numbering-up approaches; however, reduced investment costs and a hygienic design must be assured. PMID:29686990
Ma, Cong; Yu, Shuili; Shi, Wenxin; Heijman, S G J; Rietveld, L C
2013-08-01
A bench-scale immersed microfiltration coupled with 50 g/L PAC was developed to treat micro-polluted surface water (MPSW) under 10 and 20 °C and the effects of temperatures on the performance and the membrane fouling were also investigated. The low temperature (10 °C) delayed the time for the start-up by 9 days and the complete nitrification by 10 days. In the stable operation, two systems both had high NH₃-N removal efficiency (above 90%) and better removal of organic matters (10% DOC, 5% UV₂₅₄ and 4% SUVA) at 10 °C. Polysaccharides (SMP) were the main membrane fouling matters at low temperature (10 °C) and low temperature (10 °C) didn't cause serious chemical irreversible membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemical sensing of plant stress at the ecosystem scale
NASA Astrophysics Data System (ADS)
Karl, T.; Guenther, A.; Turnipseed, A.; Patton, E. G.; Jardine, K.
2008-06-01
Significant ecosystem-scale emissions of methylsalicylate (MeSA), a semivolatile plant hormone thought to act as the mobile signal for systemic acquired resistance (SAR) (Park et al., 2006), were observed in an agroforest. Our measurements show that plant internal defence mechanisms can be activated in response to temperature stress and are modulated by water availability on large scales. Highest MeSA fluxes (up to 0.25 mg/m2/h) were observed after plants experienced ambient night-time temperatures of ~7.5°C followed by a large daytime temperature increase (e.g. up to 22°C). Under these conditions estimated night-time leaf temperatures were as low as ~4.6°C, likely inducing a response to prevent chilling injury (Ding et al., 2002). Our observations imply that plant hormones can be a significant component of ecosystem scale volatile organic compound (VOC) fluxes (e.g. as high as the total monoterpene (MT) flux) and therefore contribute to the missing VOC budget (de Carlo et al., 2004; Goldstein and Galbally, 2007). If generalized to other ecosystems and different types of stresses these findings suggest that semivolatile plant hormones have been overlooked by investigations of the impact of biogenic VOCs on aerosol formation events in forested regions (Kulmala et al., 2001; Boy et al., 2000). Our observations show that the presence of MeSA in canopy air serves as an early chemical warning signal indicating ecosystem-scale stresses before visible damage becomes apparent. As a chemical metric, ecosystem emission measurements of MeSA in ambient air could therefore support field studies investigating factors that adversely affect plant growth.