Sample records for scale networking lsn

  1. 78 FR 7464 - Large Scale Networking (LSN) ; Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN) ; Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination...://www.nitrd.gov/nitrdgroups/index.php?title=Joint_Engineering_Team_ (JET)#title. SUMMARY: The JET...

  2. 77 FR 58415 - Large Scale Networking (LSN); Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN); Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET). SUMMARY: The JET, established in 1997, provides for information sharing among Federal...

  3. 78 FR 70076 - Large Scale Networking (LSN)-Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN)--Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET)#title. SUMMARY: The JET, established in 1997, provides for information sharing among...

  4. Allometric relationships between traveltime channel networks, convex hulls, and convexity measures

    NASA Astrophysics Data System (ADS)

    Tay, Lea Tien; Sagar, B. S. Daya; Chuah, Hean Teik

    2006-06-01

    The channel network (S) is a nonconvex set, while its basin [C(S)] is convex. We remove open-end points of the channel connectivity network iteratively to generate a traveltime sequence of networks (Sn). The convex hulls of these traveltime networks provide an interesting topological quantity, which has not been noted thus far. We compute lengths of shrinking traveltime networks L(Sn) and areas of corresponding convex hulls C(Sn), the ratios of which provide convexity measures CM(Sn) of traveltime networks. A statistically significant scaling relationship is found for a model network in the form L(Sn) ˜ A[C(Sn)]0.57. From the plots of the lengths of these traveltime networks and the areas of their corresponding convex hulls as functions of convexity measures, new power law relations are derived. Such relations for a model network are CM(Sn) ˜ ? and CM(Sn) ˜ ?. In addition to the model study, these relations for networks derived from seven subbasins of Cameron Highlands region of Peninsular Malaysia are provided. Further studies are needed on a large number of channel networks of distinct sizes and topologies to understand the relationships of these new exponents with other scaling exponents that define the scaling structure of river networks.

  5. 78 FR 7464 - Large Scale Networking (LSN)-Middleware And Grid Interagency Coordination (MAGIC) Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... (703) 292-4873. Date/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2... basis. WebEx participation is available for each meeting. Please reference the MAGIC Team Web site for...

  6. 77 FR 58416 - Large Scale Networking (LSN); Middleware and Grid Interagency Coordination (MAGIC) Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD.... Dates/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00pm, at... participation is available for each meeting. Please reference the MAGIC Team Web site for updates. Magic Web...

  7. 78 FR 70076 - Large Scale Networking (LSN)-Middleware and Grid Interagency Coordination (MAGIC) Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00 p.m., at the National... for each meeting. Please reference the MAGIC Team Web site for updates. Magic Web site: The agendas...

  8. Embedding "Getting Practical" and ASE Improving Practical Work in Triple Science LSN Network

    ERIC Educational Resources Information Center

    Stephenson, Kay; Chapman, Georgina

    2011-01-01

    With the two-year pilot of "Getting Practical" drawing to a close, new ways to embed the key messages into existing CPD programmes are being sought. In "Embedding Getting Practical," the first author describes how she has been able to do this with the courses she is involved with. In "ASE Improving Practical Work in Triple Science LSN Network,"…

  9. Yucca Mountain licensing support network archive assistant.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunlavy, Daniel M.; Bauer, Travis L.; Verzi, Stephen J.

    2008-03-01

    This report describes the Licensing Support Network (LSN) Assistant--a set of tools for categorizing e-mail messages and documents, and investigating and correcting existing archives of categorized e-mail messages and documents. The two main tools in the LSN Assistant are the LSN Archive Assistant (LSNAA) tool for recategorizing manually labeled e-mail messages and documents and the LSN Realtime Assistant (LSNRA) tool for categorizing new e-mail messages and documents. This report focuses on the LSNAA tool. There are two main components of the LSNAA tool. The first is the Sandia Categorization Framework, which is responsible for providing categorizations for documents in anmore » archive and storing them in an appropriate Categorization Database. The second is the actual user interface, which primarily interacts with the Categorization Database, providing a way for finding and correcting categorizations errors in the database. A procedure for applying the LSNAA tool and an example use case of the LSNAA tool applied to a set of e-mail messages are provided. Performance results of the categorization model designed for this example use case are presented.« less

  10. Employability Skills Examined: Ten Key Messages from LSN's Quest to Understand Employability Skills

    ERIC Educational Resources Information Center

    Lanning, Jill; Martin, Rob; Villeneuve-Smith, Frank

    2008-01-01

    As the phrase "Employability Skills" increasingly cropped up in speeches from august platforms, appeared in titles of conferences, peppers publications exhorting more effort for and by UK plc and formed the title of an increasing number of qualifications, Learning and Skills Network (LSN) has been intrigued to find out more about this…

  11. Foresight Group Roundtable: Fresh Thinking for Learning and Skills. Centre for Innovation in Learning--Positioning Paper

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2010

    2010-01-01

    Creating a fertile space for debate and ideas in order to drive innovation in learning and skills is integral to LSN's (Learning and Skills Network's) mission. To achieve this LSN has pioneered a new approach to making learning work from classroom to boardroom--and created the Centre for Innovation in Learning. This new, independent think tank…

  12. Analysis of the seismicity in the region of Mirovo salt mine after 8 years monitoring

    NASA Astrophysics Data System (ADS)

    Dimitrova, Liliya; Solakov, Dimcho; Simeonova, Stela; Aleksandrova, Irena; Georgieva, Gergana

    2015-04-01

    Mirovo salt deposit is situated in the NE part of Bulgaria and 5 kilometers away from the town of Provadiya. The mine is in operation since 1956. The salt is produced by dilution and extraction of the brine to the surface. A system of chambers-pillars is formed within the salt body as a result of the applied technology. The mine is situated in a seismically quiet part of the state. The region is characterized with complex geological structure and several faults. During the last 3 decades a large number of small and moderate earthquakes (M<4.5) are realized in the close vicinity of the salt deposit. Local seismological network (LSN) is deployed in the region to monitor the local seismicity. It consists of 6 three component digital stations. A real-time data transfer from LSN stations to National Data Center (in Sofia) is implemented using the VPN and MAN networks of the Bulgarian Telecommunication Company. Common processing and interpretation of the data from LSN and the national seismic network is performed. Real-time and interactive data processing are performed by the Seismic Network Data Processor (SNDP) software package. More than 700 earthquakes are registered by the LSN within 30km region around the mine during the 8 years monitoring. First we processed the data and compile a catalogue of the earthquakes occur within the studied region (30km around the salt mine). Spatial pattern of seismicity is analyzed. A large number of the seismic events occurred within the northern and north-western part of the salt body. Several earthquakes occurred in close vicinity of the mine. Concerning that the earthquakes could be tectonic and/or induced an attempt is made to find criteria to distinguish natural from induced seismicity. To characterize and distinguish the main processes active in the area we also made waveform and spectral analysis of a number of earthquakes.

  13. Report of the Interagency Optical Network Testbeds Workshop 2 September 12-14, 2006 NASA Ames Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Mambretti Richard desJardins

    2006-05-01

    A new generation of optical networking services and technologies is rapidly changing the world of communications. National and international networks are implementing optical services to supplement traditional packet routed services. On September 12-14, 2005, the Optical Network Testbeds Workshop 2 (ONT2), an invitation-only forum hosted by the NASA Research and Engineering Network (NREN) and co-sponsored by the Department of Energy (DOE), was held at NASA Ames Research Center in Mountain View, California. The aim of ONT2 was to help the Federal Large Scale Networking Coordination Group (LSN) and its Joint Engineering Team (JET) to coordinate testbed and network roadmaps describingmore » agency and partner organization views and activities for moving toward next generation communication services based on leading edge optical networks in the 3-5 year time frame. ONT2 was conceived and organized as a sequel to the first Optical Network Testbeds Workshop (ONT1, August 2004, www.nren.nasa.gov/workshop7). ONT1 resulted in a series of recommendations to LSN. ONT2 was designed to move beyond recommendations to agree on a series of “actionable objectives” that would proactively help federal and partner optical network testbeds and advanced research and education (R&E) networks to begin incorporating technologies and services representing the next generation of advanced optical networks in the next 1-3 years. Participants in ONT2 included representatives from innovative prototype networks (Panel A), basic optical network research testbeds (Panel B), and production R&D networks (Panels C and D), including “JETnets,” selected regional optical networks (RONs), international R&D networks, commercial network technology and service providers (Panel F), and senior engineering and R&D managers from LSN agencies and partner organizations. The overall goal of ONT2 was to identify and coordinate short and medium term activities and milestones for researching, developing, identifying, evaluating, and implementing the services, technologies, and interoperability mechanisms required. The roadmaps were formulated and presented not so much to reconcile the roadmaps with each other but rather to provide a means to compare the major ongoing and planned optical networking activities in the R&E community, organized by categories of activities and communities of interest. In addition, a 5-15 year network research perspective was provided by Panel E, which presented a report on two recent National Science Foundation workshops that examined long term research goals and directions, and industry perspectives on forthcoming optical networking technologies and services were presented in Panel F by representatives from optical technologies and network services industries. The report, “Mapping a Future for Optical Networking and Communications” is available on the NSF website (www.nsf.gov), and the industry perspectives will be available on the ONT2 website.« less

  14. The Mobile Learning Network: Getting Serious about Games Technologies for Learning

    ERIC Educational Resources Information Center

    Petley, Rebecca; Parker, Guy; Attewell, Jill

    2011-01-01

    The Mobile Learning Network currently in its third year, is a unique collaborative initiative encouraging and enabling the introduction of mobile learning in English post-14 education. The programme, funded jointly by the Learning and Skills Council and participating colleges and schools and supported by LSN has involved nearly 40,000 learners and…

  15. Guide to Entrepreneurship Education: Programmes and Practice

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2009

    2009-01-01

    One of the most important factors in successful entrepreneurship is for education to nurture the right mindset within students. To develop this mindset, the inclusion of entrepreneurship in a student's education is essential and therefore must be included on the curriculum. This short Learning and Skills Network (LSN) guide identifies areas of…

  16. eCPD in Action and Self-Assessment

    ERIC Educational Resources Information Center

    Butler, Steve

    2007-01-01

    Self-assessment is an integral component in the life of any education and training organisation so as to ensure quality improvement. This publication illustrates an individual self-assessment tool developed by the Learning and Skills Network (LSN) which gives feedback and support to assist staff to enhance their teaching and learning through the…

  17. Precision analysis of a quantitative CT liver surface nodularity score.

    PubMed

    Smith, Andrew; Varney, Elliot; Zand, Kevin; Lewis, Tara; Sirous, Reza; York, James; Florez, Edward; Abou Elkassem, Asser; Howard-Claudio, Candace M; Roda, Manohar; Parker, Ellen; Scortegagna, Eduardo; Joyner, David; Sandlin, David; Newsome, Ashley; Brewster, Parker; Lirette, Seth T; Griswold, Michael

    2018-04-26

    To evaluate precision of a software-based liver surface nodularity (LSN) score derived from CT images. An anthropomorphic CT phantom was constructed with simulated liver containing smooth and nodular segments at the surface and simulated visceral and subcutaneous fat components. The phantom was scanned multiple times on a single CT scanner with adjustment of image acquisition and reconstruction parameters (N = 34) and on 22 different CT scanners from 4 manufacturers at 12 imaging centers. LSN scores were obtained using a software-based method. Repeatability and reproducibility were evaluated by intraclass correlation (ICC) and coefficient of variation. Using abdominal CT images from 68 patients with various stages of chronic liver disease, inter-observer agreement and test-retest repeatability among 12 readers assessing LSN by software- vs. visual-based scoring methods were evaluated by ICC. There was excellent repeatability of LSN scores (ICC:0.79-0.99) using the CT phantom and routine image acquisition and reconstruction parameters (kVp 100-140, mA 200-400, and auto-mA, section thickness 1.25-5.0 mm, field of view 35-50 cm, and smooth or standard kernels). There was excellent reproducibility (smooth ICC: 0.97; 95% CI 0.95, 0.99; CV: 7%; nodular ICC: 0.94; 95% CI 0.89, 0.97; CV: 8%) for LSN scores derived from CT images from 22 different scanners. Inter-observer agreement for the software-based LSN scoring method was excellent (ICC: 0.84; 95% CI 0.79, 0.88; CV: 28%) vs. good for the visual-based method (ICC: 0.61; 95% CI 0.51, 0.69; CV: 43%). Test-retest repeatability for the software-based LSN scoring method was excellent (ICC: 0.82; 95% CI 0.79, 0.84; CV: 12%). The software-based LSN score is a quantitative CT imaging biomarker with excellent repeatability, reproducibility, inter-observer agreement, and test-retest repeatability.

  18. Professional Development Framework for e-Learning: A Guide for Advisers and Practitioners

    ERIC Educational Resources Information Center

    Smith, Ros

    2007-01-01

    In January 2006 the Learning and Skills Development Agency (LSDA) launched its draft publication, "A Professional Development Framework for e-Learning" (ePD) for consultation with the post-16 education and training sector. In March 2006 the Learning and Skills Council funded the Learning and Skills Network (LSN) to run a pilot to…

  19. Engaging Employers to Drive up Skills: The Realities of Effective Employer Engagement--Current Opportunities and Challenges

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2010

    2010-01-01

    The Learning and Skills Network's (LSN's) think tank, the Centre for Innovation in Learning, in association with the 157 Group, the Association of Learning Providers (ALP) and the Association of Colleges (AoC), has undertaken timely and important research into how to support and improve employer engagement in the further education (FE) and skills…

  20. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    PubMed

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (P<0.05) in LXSN rats (23+/-1, 37+/-2, and 52+/-2 at 0.5, 2, and 10 ng). Importantly, treating LSN-HHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  1. Report of the Interagency Optical Network Testbeds Workshop 2, NASA Ames Research Center, September 12-14, 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Optical Network Testbeds Workshop 2 (ONT2), held on September 12-14, 2005, was cosponsored by the Department of Energy Office of Science (DOE/SC) and the National Aeronautics and Space Administration (NASA), in cooperation with the Joint Engineering Team (JET) of the Federal Networking and Information Technology Research and Development (NITRD) Program's Large Scale Networking (LSN) Coordinating Group. The ONT2 workshop was a follow-on to an August 2004 Workshop on Optical Network Testbeds (ONT1). ONT1 recommended actions by the Federal agencies to assure timely development and implementation of optical networking technologies and infrastructure. Hosted by the NASA Ames Research Center in Mountain View, California, the ONT2 workshop brought together representatives of the U.S. advanced research and education (R&E) networks, regional optical networks (RONs), service providers, international networking organizations, and senior engineering and R&D managers from Federal agencies and national research laboratories. Its purpose was to develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks; recommend activities for transitioning the optical networking research community and its current infrastructure to leading-edge optical networks over the next three to five years; and present information enabling commercial network infrastructure providers to plan for and use leading-edge optical network services in that time frame.

  2. 10 CFR 2.1011 - Management of electronic information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1011 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND...-license application phase. The LSN Administrator shall have the responsibility to— (1) Identify technical... Application Presiding Officer relative to the resolution of any disputes regarding LSN availability, including...

  3. Liver Surface Nodularity Score Allows Prediction of Cirrhosis Decompensation and Death.

    PubMed

    Smith, Andrew D; Zand, Kevin A; Florez, Edward; Sirous, Reza; Shlapak, Darya; Souza, Frederico; Roda, Manohar; Bryan, Jason; Vasanji, Amit; Griswold, Michael; Lirette, Seth T

    2017-06-01

    Purpose To determine whether use of the liver surface nodularity (LSN) score, a quantitative biomarker derived from routine computed tomographic (CT) images, allows prediction of cirrhosis decompensation and death. Materials and Methods For this institutional review board-approved HIPAA-compliant retrospective study, adult patients with cirrhosis and Model for End-Stage Liver Disease (MELD) score within 3 months of initial liver CT imaging between January 3, 2006, and May 30, 2012, were identified from electronic medical records (n = 830). The LSN score was measured by using CT images and quantitative software. Competing risk regression was used to determine the association of the LSN score with hepatic decompensation and overall survival. A risk model combining LSN scores (<3 or ≥3) and MELD scores (<10 or ≥10) was created for predicting liver-related events. Results In patients with compensated cirrhosis, 40% (129 of 326) experienced decompensation during a median follow-up period of 4.22 years. After adjustment for competing risks including MELD score, LSN score (hazard ratio, 1.38; 95% confidence interval: 1.06, 1.79) was found to be independently predictive of hepatic decompensation. Median times to decompensation of patients at high (1.76 years, n = 48), intermediate (3.79 years, n = 126), and low (6.14 years, n = 152) risk of hepatic decompensation were significantly different (P < .001). Among the full cohort with compensated or decompensated cirrhosis, 61% (504 of 830) died during the median follow-up period of 2.26 years. After adjustment for competing risks, LSN score (hazard ratio, 1.22; 95% confidence interval: 1.11, 1.33) and MELD score (hazard ratio, 1.08; 95% confidence interval: 1.06, 1.11) were found to be independent predictors of death. Median times to death of patients at high (0.94 years, n = 315), intermediate (2.79 years, n = 312), and low (4.69 years, n = 203) risk were significantly different (P < .001). Conclusion The LSN score derived from routine CT images allows prediction of cirrhosis decompensation and death. © RSNA, 2016 Online supplemental material is available for this article.

  4. Local network deployed around the Kozloduy NPP - a useful tool for seismological monitoring

    NASA Astrophysics Data System (ADS)

    Solakov, Dimcho; Simeonova, Stela; Dimitrova, Liliya; Slavcheva, Krasimira; Raykova, Plamena; Popova, Maria; Georgiev, Ivan

    2015-04-01

    Radiation risks may transcend national borders, and international cooperation serves to promote and enhance safety globally by exchanging experience and by improving capabilities to control hazards, to prevent accidents, to respond to emergencies and to mitigate any harmful consequences. International safety standards provide support for states in meeting their obligations under general principles of international law, such as those relating to environmental protection. Seismic safety is a key element of NPP safe operation. Safety and security measures have in common the aim of protecting human life and health and the environment. The Kozloduy NPP site is located in the stable part of the Moesian platform (area of about 50000 km2). From seismological point of view the Moesian platform is the most quite area on the territory of Bulgaria. There are neither historical nor instrumental earthquakes with M>4.5 occurred within the platform. The near region (area with radial extent of 30 km) of the NPP site is characterized with very low seismic activity. The strongest recorded quake is the 1987 earthquake МS=3.6, localized 22 km northwest of the Kozloduy NPP site on the territory of Romania. In line with international practice, the geological, geophysical and seismological characteristics of the region around the site have been investigated for the purpose of evaluating the seismic hazards at the NPP site. A local network (LSN) of sensitive seismographs having a recording capability for micro-earthquakes have been installed around Kozloduy NPP and operated since 1997. The operation and data processing, data interpretation, and reporting of the local micro-earthquake network are linked to the national seismic network (NOTSSI). A real-time data transfer from stations to National Data Center (in Sofia) was implemented using the VPN and MAN networks of the Bulgarian Telecommunication. Real-time and interactive data processing are performed by the Seismic Network Data Processor (SNDP) software package. Strong motion accelerographs and GPS instrumentation are installed permanently within the near region. The equipment is periodically upgraded and calibrated to provide adequate information in line with updated international operational practice. The results of the 17 years of operation of LSN "Kozloduy" are presented in the present study. The multiple studies carried out indicate that LSN jointly with NOTSSI provide reliable registration of weak seismicity in the near (30 km) region of NPP site. Earthquakes recorded within and near the network are carefully analyzed in connection with seismotectonic studies of the near region. The seismological database acquired is homogeneous for the entire region to the extent possible or, at a minimum, is sufficiently complete for characterizing, from a seismotectonic point of view, features relevant to the site.

  5. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic and posthatch development. Furthermore, TGF-beta1 also reduced the expression of the cell adhesion receptor beta1 integrin subunit during embryonic and posthatch muscle growth in normal and LSN chickens. Therefore, the reduction of beta1 integrin in response to TGF-beta1 is also associated with decreased posthatch muscle growth. The results from this study indicate that TGF-beta1 inhibits skeletal muscle growth by regulating MyoD and myogenin expression. These data also suggest that a beta1 integrin-mediated alternative pathway is likely involved in the TGF-beta1-induced reduction of muscle growth.

  6. Tenacity of Collateral Perfusion in Proximal Cerebral Arterial Occlusions 6-12 h after Onset.

    PubMed

    Kim, Beom Joon; Kim, Hyeran; Jeong, Han-Gil; Yang, Mi Hwa; Jung, Cheol Kyu; Han, Moon-Ku; Kim, Jae Hyoung; Demchuk, Andrew M; Bae, Hee-Joon

    2018-06-07

    Clinical trials have shown that benefits of endovascular recanalization (EVT) for acute ischemic stroke patients with sizable penumbral tissues seems plausible even beyond 6 h after their last seen normal (LSN). Persistency of ischemic penumbra remains unclear in delayed periods. From a prospective stroke registry database, we identified 111 acute ischemic stroke patients who had internal carotid artery or middle cerebral artery occlusion with baseline National Institutes of Health Stroke Scale scores ≥6 points and arrived 6-12 h after LSN. Baseline information and functional outcomes were prospectively collected as a clinical registry. Attending physicians made treatment decisions for EVT based on the current guidelines and institutional protocols. MR image parameters, including the volume of diffusion-restricted lesions and mapping of the -hypoperfused area, were quantified using automated commercial software. Binary logistic regression analysis models, with modified Rankin Scale (mRS) scores of 0-1 at 3 months after stroke included as a dependent variable, were constructed. Between 6 and 12 h after onset, 58% had a mismatch ratio of ≥1.8 at baseline and 42% had favorable imaging profiles as determined by DEFUSE 2 study. After 9 h, there was a mismatch ratio of ≥1.8 in 47 and 38% favorable profiles. EVT was performed in 54% of cases. A 3-month mRS score of 0-1 was found in 19% (25% in EVT and 12% in medical treatment groups) of cases. EVT was associated with an increased OR of having a mRS score of 0-1 at 3 months after stroke (adjusted OR 7.59 [95% CI 1.28-61.60]). Penumbral tissues were persistent in a substantial proportion of anterior circulation occlusion cases 6-12 h after LSN. EVT at 6-12 h in a predominantly Asian cohort resulted in better outcomes. © 2018 S. Karger AG, Basel.

  7. LSN MS guidelines for the management of multiple sclerosis.

    PubMed

    Shatila, A R; Koussa, S; Jabbour, R; Mourad, A; Aouad, A; Sabbagh, G; Kallab, K; Hilal, R; Khalifeh, R; Gebeily, S; Tourbah, A

    2013-12-01

    The prevalence of multiple sclerosis (MS) in Lebanon is unknown, as there are no available or reliable epidemiological studies to date. The circumstances of Middle East countries are different from those of Europe and North America in terms of differential diagnoses and disease management. The aim of the conference is to establish guidelines for diagnosis, treatment, follow-up and management of patients with MS in Lebanon. Another objective is to discuss and participate in research projects based on epidemiology, clinical trials and more fundamental aspects of the disease in the future. Under the authority of the Lebanese Society of Neurology (LSN), a group of neurologists took the initiative to participate in this LSN MS committee with the purpose of establishing a consensus for the management of patients with MS, and under the supervision of a Coordinator (A.T.) designed by the LSN board. Diagnostic and therapeutic, follow-up and research recommendations were proposed with special emphasis on the specific needs and circumstances of Lebanon. The experts highlighted the importance of considering particular needs, the identification of patients at high risk of developing MS in order to maximize therapeutic opportunities, and cost-effective control of treatment efficacy, as well as global assessment of disability. The experts established guidelines concerning diagnosis, treatment, and follow-up of patients with MS in Lebanon. Furthermore, they recommended some clinical and fundamental research projects. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Proposed Relocation of the 37th Tactical Fighter Wing and Other Tactical Force Structure Actions

    DTIC Science & Technology

    1991-05-09

    Joseph M. Tonopah NV Merlino, Bernie Tonopah NV 3 Murphy, N. V. Tonopah NV Michols, Judith E. Tonopah NV Nye, Al Tonopah NV 3 Payne, Unda Tonopah NV...the iNavy’s weTher tFctca operate-bospeds Aof mor reqir e ient. The e iiatssinldtohe tosha ve 00m lsn per g h ou r ea an aflon tio w idr-treed, lo-rs...John B. Walker, Nevada State ClearinghoUSe Document R Kevin Von Finger, TX Document S Jim Fish, Public Lands Action Network, NM Document T Judith S

  9. Discovery of a Highly Selective NAMPT Inhibitor That Demonstrates Robust Efficacy and Improved Retinal Toxicity with Nicotinic Acid Coadministration.

    PubMed

    Zhao, Genshi; Green, Colin F; Hui, Yu-Hua; Prieto, Lourdes; Shepard, Robert; Dong, Sucai; Wang, Tao; Tan, Bo; Gong, Xueqian; Kays, Lisa; Johnson, Robert L; Wu, Wenjuan; Bhattachar, Shobha; Del Prado, Miriam; Gillig, James R; Fernandez, Maria-Carmen; Roth, Ken D; Buchanan, Sean; Kuo, Ming-Shang; Geeganage, Sandaruwan; Burkholder, Timothy P

    2017-12-01

    NAMPT, an enzyme essential for NAD + biosynthesis, has been extensively studied as an anticancer target for developing potential novel therapeutics. Several NAMPT inhibitors have been discovered, some of which have been subjected to clinical investigations. Yet, the on-target hematological and retinal toxicities have hampered their clinical development. In this study, we report the discovery of a unique NAMPT inhibitor, LSN3154567. This molecule is highly selective and has a potent and broad spectrum of anticancer activity. Its inhibitory activity can be rescued with nicotinic acid (NA) against the cell lines proficient, but not those deficient in NAPRT1, essential for converting NA to NAD + LSN3154567 also exhibits robust efficacy in multiple tumor models deficient in NAPRT1. Importantly, this molecule when coadministered with NA does not cause observable retinal and hematological toxicities in the rodents, yet still retains robust efficacy. Thus, LSN3154567 has the potential to be further developed clinically into a novel cancer therapeutic. Mol Cancer Ther; 16(12); 2677-88. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Prevalence and management of helminthiasis among underfives living with HIV/AIDS at Amana Hospital, Tanzania.

    PubMed

    Mwambete, Kennedy D; Tunzo, Jones; Justin-Temu, Mary

    2013-01-01

    This was a cross-sectional study intended to assess the prevalence and management of helminthiasis (HL) among underfives living with HIV/AIDS (ULHA). Clinical histories of ULHA were scrutinized for HIV/AIDS status, antiretroviral therapy (ART), HL prevalence, and their management. About 364 ULHA were studied, 213 (58.5%) were girls and 151 (41.5%) were boys. Of the 364 ULHA, 171 (47.5%) had HL and 64.3% were treated with albendazole (ABZ). Trichuriasis was ascribed to 23.6% of HL. Majority (72.5%) of ULHA had a CD4 count below 200 cells/mm³. Direct association was observed between CD4 counts and HL. About 55% ULHA were on lamivudine (3TC)-stavudine (d4T)-nevirapine (NVP; LSN) combination therapy. The ABZ-LSN combination was frequently used for HIV/AIDS and HL management. High prevalence of HL and vivid correlation between HIV status and HL were observed. The LSN-ABZ combination was frequently employed for management of HIV/AIDS and HL. We recommended prompt diagnosis of HL to avoid acceleration of HIV infection to AIDS.

  11. Fluoxetine, 17-β estradiol or folic acid combined with intra-lateral septal infusions of neuropeptide Y produced antidepressant-like actions in ovariectomized rats forced to swim.

    PubMed

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia

    2011-12-01

    Folic acid is antidepressant, either alone or combined with several antidepressant drugs. However, the antidepressant-like actions of folic acid combined with intra-lateral septal (LSN) infusions of neuropeptide Y (NPY) in the forced swimming test (FST) have not been tested before. Thus, systemic injections of fluoxetine (20.0mg/kg, P<0.05; s.c.) or 17-β estradiol (10.0 μg/rat, P<0.05; s.c.) or oral administrations of folic acid (50.0 mg/kg, P<0.05; 75.0 mg/kg, P<0.05) or NPY intra-LSN (3.0 μg, P<0.05; 3.5 μg, P<0.05) reduced immobility of ovariectomized Wistar rats. Subthreshold doses of: folic acid (25.0 mg/kg) or 17-β estradiol (5.0 μg/rat, P<0.05) or fluoxetine (15.0 mg/kg, P<0.05; s.c.) combined with subthreshold doses of NPY (2.5 μg/rat, P<0.05; intra-LSN) and these combinations produced antidepressant-like actions; which were canceled by BIBP 3226 (a NPY-Y1 receptor antagonist). It is concluded that folic acid produced antidepressant-like effects probably through the participation of the NPY Y1 receptors found in the lateral septal nuclei. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The Extreme Hosts of Extreme Supernovae

    NASA Astrophysics Data System (ADS)

    Neill, James D.

    2012-01-01

    We present the results from a deeper survey of Luminous Supernova (LSN) hosts with the Galaxy Evolution Explorer (GALEX). We have added new, multiple kilo-second observations to our original observations of seventeen LSN hosts providing better constraints on their physical properties. We place the LSNe hosts on the galaxy NUV-r versus M(r) color magnitude diagram (CMD) with a larger comparison sample ( 26,000) to illustrate the extreme nature of these galaxies. The LSN hosts favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low luminosity end. The new observations provide tighter constraints on the star formation rates (SFRs) and stellar masses, M(*), and show that the LSNe result from regions of high specific star formation and yet low total SFR. This regime is of particular interest for exploring the upper end of the stellar IMF and its variation. If our understanding of the progenitors of the LSNe leans toward very massive (> 200 M_sun) progenitors, the potential for a conflict with IMF theory exists because the conditions found in the hosts producing the LSNe should not create such massive stars. If it also required that LSNe can only be produced in primordial or very low metallicity environments, then they will also provide evidence for strong variation in metallicity within a dwarf galaxy, since their masses are consistent with low, but not extreme metallicity.

  13. Exposures of tungsten nanostructures to divertor plasmas in DIII-D

    DOE PAGES

    Rudakov, D. L.; Wong, C. P. C.; Doerner, R. P.; ...

    2016-01-22

    Tungsten nanostructures (W-fuzz) prepared in the PISCES-A linear device have been found to survive direct exposure to divertor plasmas in DIII-D. W-fuzz was exposed in the lower divertor of DIII-D using the divertor material evaluation system. Two samples were exposed in lower single null (LSN) deuterium H-mode plasmas. The first sample was exposed in three discharges terminated by vertical displacement event disruptions, and the second in two discharges near the lowered X-point. More recently, three samples were exposed near the lower outer strike point in predominantly helium H-mode LSN plasmas. In all cases, the W-fuzz survived plasma exposure with littlemore » obvious damage except in the areas where unipolar arcing occurred. In conclusion, arcing is effective in W-fuzz removal, and it appears that surfaces covered with W-fuzz can be more prone to arcing than smooth W surfaces.« less

  14. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs

    PubMed Central

    Quan, Shuo; Yang, Liming; Abraham, Nader G.; Kappas, Attallah

    2001-01-01

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin. PMID:11593038

  15. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs.

    PubMed

    Quan, S; Yang, L; Abraham, N G; Kappas, A

    2001-10-09

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin.

  16. Intravenous thrombolysis in ischemic stroke with unknown onset using CT perfusion.

    PubMed

    Cortijo, E; García-Bermejo, P; Calleja, A I; Pérez-Fernández, S; Gómez, R; del Monte, J M; Reyes, J; Arenillas, J F

    2014-03-01

    Acute ischemic stroke patients with unclear onset time presenting >4.5 h from last-seen-normal (LSN) time are considered late patients and excluded from i.v. thrombolysis. We aimed to evaluate whether this subgroup of patients is different from patients presenting >4.5 h from a witnessed onset, in terms of eligibility and response to computed tomography perfusion (CTP)-guided i.v. thrombolysis. We prospectively studied consecutive acute non-lacunar middle cerebral artery (MCA) ischemic stroke patients presenting >4.5 h from LSN. All patients underwent multimodal CT and were considered eligible for i.v. thrombolysis according to CTP criteria. Two patient groups were established based on the knowledge of the stroke onset time. We compared the proportion of candidates suitable for intravenous thrombolysis between both groups, and their outcome after thrombolytic therapy. Among 147 MCA ischemic stroke patients presenting >4.5 h from LSN, stroke onset was witnessed in 74 and unknown in 73. Thirty-seven (50%) patients in the first group and 32 (44%) in the second met CTP criteria for thrombolysis (P = 0.7). Baseline variables were comparable between both groups with the exception of age, which was higher in the unclear onset group. The rates of early neurological improvement (54.1% vs 46.9%), 2-h MCA recanalization (43.5% vs 37%), symptomatic hemorrhagic transformation (3% vs 0%) and good 3-month functional outcome (62.2% vs 56.3%) did not differ significantly between both groups. Delayed stroke patients with unknown onset time were no different than patients >4.5 h regarding eligibility and response to CTP-based i.v. thrombolysis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Computing, information, and communications: Technologies for the 21. Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-01

    To meet the challenges of a radically new and technologically demanding century, the Federal Computing, Information, and Communications (CIC) programs are investing in long-term research and development (R and D) to advance computing, information, and communications in the United States. CIC R and D programs help Federal departments and agencies to fulfill their evolving missions, assure the long-term national security, better understand and manage the physical environment, improve health care, help improve the teaching of children, provide tools for lifelong training and distance learning to the workforce, and sustain critical US economic competitiveness. One of the nine committees of themore » National Science and Technology Council (NSTC), the Committee on Computing, Information, and Communications (CCIC)--through its CIC R and D Subcommittee--coordinates R and D programs conducted by twelve Federal departments and agencies in cooperation with US academia and industry. These R and D programs are organized into five Program Component Areas: (1) HECC--High End Computing and Computation; (2) LSN--Large Scale Networking, including the Next Generation Internet Initiative; (3) HCS--High Confidence Systems; (4) HuCS--Human Centered Systems; and (5) ETHR--Education, Training, and Human Resources. A brief synopsis of FY 1997 accomplishments and FY 1998 goals by PCA is presented. This report, which supplements the President`s Fiscal Year 1998 Budget, describes the interagency CIC programs.« less

  18. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    NASA Astrophysics Data System (ADS)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a very low rupture velocity. The low rupture velocity can mean slow-faulting, which brings to slow release of accumulated seismic energy. The slow release energy does principally little to moderate damages. Additionally wave form of the earthquake shows low frequency content of P-waves (the maximum P-wave is at 1.19 Hz) and the specific P- wave displacement spectral is characterise with not expressed spectrum plateau and corner frequency. These and other signs suggest us to the conclusion, that the 2012 Mw5.6 earthquake can be considered as types of slow earthquake, like a low frequency quake. The study is based on data from Bulgarian seismological network (NOTSSI), the local network (LSN) deployed around Kozloduy NPP and System of Accelerographs for Seismic Monitoring of Equipment and Structures (SASMES) installed in the Kozloduy NPP. NOTSSI jointly with LSN and SASMES provide reliable information for multiple studies on seismicity in regional scale.

  19. Modeling carbon production and transport during ELMs in DIII-D

    NASA Astrophysics Data System (ADS)

    Hogan, J.; Wade, M.; Coster, D.; Lasnier, C.

    2004-11-01

    Large-scale Type I ELM events could provide a significant C source in ITER, and C production rates depend on incident D flux density and surface temperature, quantities which can vary significantly during an ELM event. Recent progress on DIII-D has improved opportunities for code comparison. Fast time-scale measurements of divertor CIII evolution [1] and fast edge CER measurements of C profile evolution during low-density DIII-D LSN ELMy H-modes (type I) [2] have been modeled using the solps5.0/Eirene99 coupled edge code and time dependent thermal analysis codes. An ELM model based on characteristics of MHD peeling-ballooning modes reproduces the pedestal evolution. Qualitative agreement for the CIII evolution during an ELM event is found using the Roth et al annealing model for chemical sputtering and the sensitivity to other models is described. Significant ELM-to-ELM variations in observed maximum divertor target IR temperature during nominally identical ELMs are investigated with models for C emission from micron-scale dust particles. [1] M Groth, M Fenstermacher et al J Nucl Mater 2003, [2] M Wade, K Burrell et al PSI-16

  20. Disruption avoidance and fast ramp-down techniques for the DIII-D experimental scenarios

    NASA Astrophysics Data System (ADS)

    Barr, Jayson; Eidietis, N. W.; Humphreys, D. A.; Sammuli, B.; Luce, T.

    2017-10-01

    Plasma current ramp-down in ITER will continue in H-mode from 15 MA to 10 MA, and will keep a diverted shape until termination. This is in contrast to the limited ramp-down scenarios typically used in DIII-D operations. Additionally, fast emergency ramp-down scenarios for ITER and future reactors are a priority for disruption avoidance. New experiments in DIII-D use the ramp-down phase of a variety of experiments including in the ITER baseline scenario to survey and identify optimized ramp-down scenarios for both scheduled terminations and terminations triggered by off-normal event detection. Systematic scans in current ramp-rate (1-5 MA/s), neutral beam power (including βN feedback) and ramp-down shaping (limited versus continued diverted) have identified fast ramp-down scenarios for Lower Single Null (LSN) and Double Null (DN) plasmas. Scenario-specific methods and their rates of successful termination will be presented and compared relative to a historical data-set of ramp-down programming in the limiter configuration. Locked modes are found to be the most significant challenge to disruption avoidance in diverted ramp-downs. Results for LSN diverted discharges that begin the rampdown with large locked-modes will also be presented. If available, results of similar experiments on EAST will be presented. Work supported by US DOE under DE-FC02-04ER54698 and DE-SC0010685.

  1. A selective estrogen receptor modulator for the treatment of hot flushes.

    PubMed

    Wallace, Owen B; Lauwers, Kenneth S; Dodge, Jeffrey A; May, Scott A; Calvin, Joel R; Hinklin, Ronald; Bryant, Henry U; Shetler, Pamela K; Adrian, Mary D; Geiser, Andrew G; Sato, Masahiko; Burris, Thomas P

    2006-02-09

    A selective estrogen receptor modulator (SERM) for the potential treatment of hot flushes is described. (R)-(+)-7,9-difluoro-5-[4-(2-piperidin-1-ylethoxy)phenyl]-5H-6-oxachrysen-2-ol, LSN2120310, potently binds ERalpha and ERbeta and is an antagonist in MCF-7 breast adenocarcinoma and Ishikawa uterine cancer cell lines. The compound is a potent estrogen antagonist in the rat uterus. In ovariectomized rats, the compound lowers cholesterol, maintains bone mineral density, and is efficacious in a morphine dependent rat model of hot flush efficacy.

  2. Simulation and Mixed Integer Linear Programming Models for Analysis of Semi-Automated Mail Processing

    DTIC Science & Technology

    1989-12-01

    Sincere appreciation is deserved by Geraldo Veiga , Department of Industrial Engineering and Operations Research, at the University of California, Berkeley...Convergence 124 Veiga , University of California, Berkeley, must be credited with applying the MINOS code to our GMF-A problems). MINOS is a FORTRAN...placed in cart ACT,O,,TS23; and if the cart is full, an ACT,O,LSN8l3CARr.GE.LSMBl3FULL,TS24; entity is sent to TS24 to ACr,O,,TT fl ; empty the cart

  3. Subchronic Oral Toxicity of the Insect Repellent N,N-Diethyl-m-Toluamide (m-DET), September 1978 - May 1979.

    DTIC Science & Technology

    1980-02-08

    4 O. TIR.EP---- ... S T EOFREPORT PERIOO COVERED Subchronic Oral Toxicity of the Insect Repellent N , N -Diethyl-m-Tolumide (m-DET y Special,%udyj.... r...PROVING 811l1111 MI 211 PHASE 5 p1~ SUBCHRONIC ORAL TOXICITY STUDY OF THE INSECT REPELLENT N , N -DIETHYL-M-TOLUAMIDE (M-DET) 75-51-0034-80 SEPTEMBER 1978...DOWNGRAOING SCHEDULE to. DISTRIBUTION STATEMENT (of this Repoet) N . TIsB doclunent has bei-, n approved, or pub Lic releLsn cmwd sale; iLa d(-ributfon

  4. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico.

    PubMed

    Zavala-Norzagaray, Alan A; Aguirre, A Alonso; Velazquez-Roman, Jorge; Flores-Villaseñor, Héctor; León-Sicairos, Nidia; Ley-Quiñonez, C P; Hernández-Díaz, Lucio De Jesús; Canizalez-Roman, Adrian

    2015-01-01

    The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL), Baja California Sur (BCS), Mexico (Pacific Ocean) and the lagoon system of Navachiste (LSN) and Marine Area of Influence (MAI), Guasave, Sinaloa (Gulf of California). A total of 34 black turtles (Chelonia mydas agassizii) were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea) were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%), V. parahaemolyticus in 17/64 (26%), and V. cholerae in 6/64 (9%). However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI). Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4%) belonged to the pathogenic strains (tdh (+) gene) and 2/17 (11.7%) had the pandemic clone (tdh (+) and toxRS/new (+)). Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66%) the accessory cholera enterotoxin gene (ace) was identified but without virulence gene zot, ctxA, and ctxB. Of the isolated V. parahaemolyticus, V. cholerae, and V. alginolyticus strains, 94.1, 33.4, and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin), respectively. In conclusion, the presence of several potential (toxigenic) human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico.

  5. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    PubMed

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Modeling impurity production and transport during ELM transients in a DIII-D lower single null configuration.

    NASA Astrophysics Data System (ADS)

    Hogan, J.; Fenstermacher, M.; Groth, M.; West, P.; Coster, D.; Thomas, P.

    2003-10-01

    Better understanding of carbon production and eventual pathways is an important need for ITER. ELM events can provide a significant carbon source, and small scale experiments predict significant dependence of C production rates on incident deuterium flux and surface temperature, quantities which change significantly during an ELM event. Thus, development of better quantitative models has been hampered by lack of sufficient time resolution during ELMs. Recent progress on DIII-D has significantly improved the spectroscopic resolution [1, 2]. Measured CIII evolution during low- and high-density DIII-D LSN ELMy H-modes (type I and type I-III, respectively) has been compared with modeling using the solps5.0/Eirene99 coupled edge code, and the CASTEM- 2000 3-D, time dependent thermal analysis code. The latter provides time-resolved absolute surface temperature distributions for the cases described in [2]. Comparison with observations using the Roth et al annealing model for chemical sputtering finds qualitative agreement. However, the transition in ELM type/frequency as density increases is the most important factor, and this is an input to the calculation given the present state of first principles ELM models. [1] M Fenstermacher et al EPS2003 [2] M Groth et al J Nucl Mater 2003

  7. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico

    PubMed Central

    Zavala-Norzagaray, Alan A.; Aguirre, A. Alonso; Velazquez-Roman, Jorge; Flores-Villaseñor, Héctor; León-Sicairos, Nidia; Ley-Quiñonez, C. P.; Hernández-Díaz, Lucio De Jesús; Canizalez-Roman, Adrian

    2015-01-01

    The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL), Baja California Sur (BCS), Mexico (Pacific Ocean) and the lagoon system of Navachiste (LSN) and Marine Area of Influence (MAI), Guasave, Sinaloa (Gulf of California). A total of 34 black turtles (Chelonia mydas agassizii) were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea) were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%), V. parahaemolyticus in 17/64 (26%), and V. cholerae in 6/64 (9%). However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI). Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4%) belonged to the pathogenic strains (tdh+ gene) and 2/17 (11.7%) had the pandemic clone (tdh+ and toxRS/new+). Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66%) the accessory cholera enterotoxin gene (ace) was identified but without virulence gene zot, ctxA, and ctxB. Of the isolated V. parahaemolyticus, V. cholerae, and V. alginolyticus strains, 94.1, 33.4, and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin), respectively. In conclusion, the presence of several potential (toxigenic) human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico. PMID:26161078

  8. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  9. Construction of multi-scale consistent brain networks: methods and applications.

    PubMed

    Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.

  10. Validating Large Scale Networks Using Temporary Local Scale Networks

    USDA-ARS?s Scientific Manuscript database

    The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...

  11. Exploring network operations for data and information networks

    NASA Astrophysics Data System (ADS)

    Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming

    2017-01-01

    Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.

  12. Approximating natural connectivity of scale-free networks based on largest eigenvalue

    NASA Astrophysics Data System (ADS)

    Tan, S.-Y.; Wu, J.; Li, M.-J.; Lu, X.

    2016-06-01

    It has been recently proposed that natural connectivity can be used to efficiently characterize the robustness of complex networks. The natural connectivity has an intuitive physical meaning and a simple mathematical formulation, which corresponds to an average eigenvalue calculated from the graph spectrum. However, as a network model close to the real-world system that widely exists, the scale-free network is found difficult to obtain its spectrum analytically. In this article, we investigate the approximation of natural connectivity based on the largest eigenvalue in both random and correlated scale-free networks. It is demonstrated that the natural connectivity of scale-free networks can be dominated by the largest eigenvalue, which can be expressed asymptotically and analytically to approximate natural connectivity with small errors. Then we show that the natural connectivity of random scale-free networks increases linearly with the average degree given the scaling exponent and decreases monotonically with the scaling exponent given the average degree. Moreover, it is found that, given the degree distribution, the more assortative a scale-free network is, the more robust it is. Experiments in real networks validate our methods and results.

  13. Fat fractal scaling of drainage networks from a random spatial network model

    USGS Publications Warehouse

    Karlinger, Michael R.; Troutman, Brent M.

    1992-01-01

    An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.

  14. Scale-free networks which are highly assortative but not small world

    NASA Astrophysics Data System (ADS)

    Small, Michael; Xu, Xiaoke; Zhou, Jin; Zhang, Jie; Sun, Junfeng; Lu, Jun-An

    2008-06-01

    Uncorrelated scale-free networks are necessarily small world (and, in fact, smaller than small world). Nonetheless, for scale-free networks with correlated degree distribution this may not be the case. We describe a mechanism to generate highly assortative scale-free networks which are not small world. We show that it is possible to generate scale-free networks, with arbitrary degree exponent γ>1 , such that the average distance between nodes in the network is large. To achieve this, nodes are not added to the network with preferential attachment. Instead, we greedily optimize the assortativity of the network. The network generation scheme is physically motivated, and we show that the recently observed global network of Avian Influenza outbreaks arises through a mechanism similar to what we present here. Simulations show that this network exhibits very similar physical characteristics (very high assortativity, clustering, and path length).

  15. Large-Scale Coronal Heating from "Cool" Activity in the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1999-01-01

    In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Taken together, the coronal network emission and bright point emission are only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX-X, and Fe XII). Using the median-brightness contour, we divide the large-scale Fe XII corona into dim and bright halves, and find that the bright-half/dim half brightness ratio is about 1.5. We also find that the bright half relative to the dim half has 10 times greater total bright point Fe XII emission, 3 times greater Fe XII network emission, 2 times greater Fe IX-X network emission, 1.3 times greater He II network emission, and has 1.5 times more magnetic flux. Also, the cooler network (He II) radiates an order of magnitude more energy than the hotter coronal network (Fe IX-X, and Fe XII). From these results we infer that: 1) The heating of the network and the heating of the large-scale corona each increase roughly linearly with the underlying magnetic flux. 2) The production of network coronal bright points and heating of the coronal network each increase nonlinearly with the magnetic flux. 3) The heating of the large-scale corona is driven by widespread cooler network activity rather than by the exceptional network activity that produces the network coronal bright points and the coronal network. 4) The large-scale corona is heated by a nonthermal process since the driver of its heating is cooler than it is. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  16. Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios

    NASA Astrophysics Data System (ADS)

    Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui

    2018-01-01

    The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.

  17. Spatial connections in regional climate model rainfall outputs at different temporal scales: Application of network theory

    NASA Astrophysics Data System (ADS)

    Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui

    2018-01-01

    Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.

  18. Scale-free network provides an optimal pattern for knowledge transfer

    NASA Astrophysics Data System (ADS)

    Lin, Min; Li, Nan

    2010-02-01

    We study numerically the knowledge innovation and diffusion process on four representative network models, such as regular networks, small-world networks, random networks and scale-free networks. The average knowledge stock level as a function of time is measured and the corresponding growth diffusion time, τ is defined and computed. On the four types of networks, the growth diffusion times all depend linearly on the network size N as τ∼N, while the slope for scale-free network is minimal indicating the fastest growth and diffusion of knowledge. The calculated variance and spatial distribution of knowledge stock illustrate that optimal knowledge transfer performance is obtained on scale-free networks. We also investigate the transient pattern of knowledge diffusion on the four networks, and a qualitative explanation of this finding is proposed.

  19. Decoding the spatial signatures of multi-scale climate variability - a climate network perspective

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.

    2017-12-01

    During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.

  20. Synchronization of coupled large-scale Boolean networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fangfei, E-mail: li-fangfei@163.com

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  1. Some scale-free networks could be robust under selective node attacks

    NASA Astrophysics Data System (ADS)

    Zheng, Bojin; Huang, Dan; Li, Deyi; Chen, Guisheng; Lan, Wenfei

    2011-04-01

    It is a mainstream idea that scale-free network would be fragile under the selective attacks. Internet is a typical scale-free network in the real world, but it never collapses under the selective attacks of computer viruses and hackers. This phenomenon is different from the deduction of the idea above because this idea assumes the same cost to delete an arbitrary node. Hence this paper discusses the behaviors of the scale-free network under the selective node attack with different cost. Through the experiments on five complex networks, we show that the scale-free network is possibly robust under the selective node attacks; furthermore, the more compact the network is, and the larger the average degree is, then the more robust the network is; with the same average degrees, the more compact the network is, the more robust the network is. This result would enrich the theory of the invulnerability of the network, and can be used to build robust social, technological and biological networks, and also has the potential to find the target of drugs.

  2. Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network

    NASA Astrophysics Data System (ADS)

    Yang, Bin

    2017-07-01

    Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately

  3. Impact of reduced scale free network on wireless sensor network

    NASA Astrophysics Data System (ADS)

    Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar

    2016-12-01

    In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.

  4. Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.

  5. Large-Scale Coronal Heating from the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Porter, Jason G.; Hathaway, David H.

    1999-01-01

    In Fe 12 images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi- supergranular. In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. The emission of the coronal network and bright points contribute only about 5% of the entire quiet solar coronal Fe MI emission. Here we investigate the large-scale corona, the supergranular and larger-scale structure that we had previously treated as a background, and that emits 95% of the total Fe XII emission. We compare the dim and bright halves of the large- scale corona and find that the bright half is 1.5 times brighter than the dim half, has an order of magnitude greater area of bright point coverage, has three times brighter coronal network, and has about 1.5 times more magnetic flux than the dim half These results suggest that the brightness of the large-scale corona is more closely related to the large- scale total magnetic flux than to bright point activity. We conclude that in the quiet sun: (1) Magnetic flux is modulated (concentrated/diluted) on size scales larger than supergranules. (2) The large-scale enhanced magnetic flux gives an enhanced, more active, magnetic network and an increased incidence of network bright point formation. (3) The heating of the large-scale corona is dominated by more widespread, but weaker, network activity than that which heats the bright points. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  6. Multiscale unfolding of real networks by geometric renormalization

    NASA Astrophysics Data System (ADS)

    García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles

    2018-06-01

    Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.

  7. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network

    PubMed Central

    Qu, Xiaobo; He, Yifan

    2018-01-01

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods. PMID:29509666

  8. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.

    PubMed

    Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di

    2018-03-06

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.

  9. Scale-space measures for graph topology link protein network architecture to function.

    PubMed

    Hulsman, Marc; Dimitrakopoulos, Christos; de Ridder, Jeroen

    2014-06-15

    The network architecture of physical protein interactions is an important determinant for the molecular functions that are carried out within each cell. To study this relation, the network architecture can be characterized by graph topological characteristics such as shortest paths and network hubs. These characteristics have an important shortcoming: they do not take into account that interactions occur across different scales. This is important because some cellular functions may involve a single direct protein interaction (small scale), whereas others require more and/or indirect interactions, such as protein complexes (medium scale) and interactions between large modules of proteins (large scale). In this work, we derive generalized scale-aware versions of known graph topological measures based on diffusion kernels. We apply these to characterize the topology of networks across all scales simultaneously, generating a so-called graph topological scale-space. The comprehensive physical interaction network in yeast is used to show that scale-space based measures consistently give superior performance when distinguishing protein functional categories and three major types of functional interactions-genetic interaction, co-expression and perturbation interactions. Moreover, we demonstrate that graph topological scale spaces capture biologically meaningful features that provide new insights into the link between function and protein network architecture. Matlab(TM) code to calculate the scale-aware topological measures (STMs) is available at http://bioinformatics.tudelft.nl/TSSA © The Author 2014. Published by Oxford University Press.

  10. Theory of rumour spreading in complex social networks

    NASA Astrophysics Data System (ADS)

    Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.

    2007-01-01

    We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.

  11. Weighted Scaling in Non-growth Random Networks

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li

    2012-09-01

    We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.

  12. Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking

    NASA Astrophysics Data System (ADS)

    Yuan, Wu-Jie; Zhou, Jian-Fang; Li, Qun; Chen, De-Bao; Wang, Zhen

    2013-08-01

    Inspired by the anti-Hebbian learning rule in neural systems, we study how the feedback from dynamical synchronization shapes network structure by adding new links. Through extensive numerical simulations, we find that an adaptive network spontaneously forms scale-free structure, as confirmed in many real systems. Moreover, the adaptive process produces two nontrivial power-law behaviors of deviation strength from mean activity of the network and negative degree correlation, which exists widely in technological and biological networks. Importantly, these scalings are robust to variation of the adaptive network parameters, which may have meaningful implications in the scale-free formation and manipulation of dynamical networks. Our study thus suggests an alternative adaptive mechanism for the formation of scale-free structure with negative degree correlation, which means that nodes of high degree tend to connect, on average, with others of low degree and vice versa. The relevance of the results to structure formation and dynamical property in neural networks is briefly discussed as well.

  13. Mean field analysis of algorithms for scale-free networks in molecular biology

    PubMed Central

    2017-01-01

    The sampling of scale-free networks in Molecular Biology is usually achieved by growing networks from a seed using recursive algorithms with elementary moves which include the addition and deletion of nodes and bonds. These algorithms include the Barabási-Albert algorithm. Later algorithms, such as the Duplication-Divergence algorithm, the Solé algorithm and the iSite algorithm, were inspired by biological processes underlying the evolution of protein networks, and the networks they produce differ essentially from networks grown by the Barabási-Albert algorithm. In this paper the mean field analysis of these algorithms is reconsidered, and extended to variant and modified implementations of the algorithms. The degree sequences of scale-free networks decay according to a powerlaw distribution, namely P(k) ∼ k−γ, where γ is a scaling exponent. We derive mean field expressions for γ, and test these by numerical simulations. Generally, good agreement is obtained. We also found that some algorithms do not produce scale-free networks (for example some variant Barabási-Albert and Solé networks). PMID:29272285

  14. Influence of the time scale on the construction of financial networks.

    PubMed

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-09-30

    In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.

  15. Mean field analysis of algorithms for scale-free networks in molecular biology.

    PubMed

    Konini, S; Janse van Rensburg, E J

    2017-01-01

    The sampling of scale-free networks in Molecular Biology is usually achieved by growing networks from a seed using recursive algorithms with elementary moves which include the addition and deletion of nodes and bonds. These algorithms include the Barabási-Albert algorithm. Later algorithms, such as the Duplication-Divergence algorithm, the Solé algorithm and the iSite algorithm, were inspired by biological processes underlying the evolution of protein networks, and the networks they produce differ essentially from networks grown by the Barabási-Albert algorithm. In this paper the mean field analysis of these algorithms is reconsidered, and extended to variant and modified implementations of the algorithms. The degree sequences of scale-free networks decay according to a powerlaw distribution, namely P(k) ∼ k-γ, where γ is a scaling exponent. We derive mean field expressions for γ, and test these by numerical simulations. Generally, good agreement is obtained. We also found that some algorithms do not produce scale-free networks (for example some variant Barabási-Albert and Solé networks).

  16. Scale-Free Networks and Commercial Air Carrier Transportation in the United States

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.

    2004-01-01

    Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.

  17. Scaling theory for information networks.

    PubMed

    Moses, Melanie E; Forrest, Stephanie; Davis, Alan L; Lodder, Mike A; Brown, James H

    2008-12-06

    Networks distribute energy, materials and information to the components of a variety of natural and human-engineered systems, including organisms, brains, the Internet and microprocessors. Distribution networks enable the integrated and coordinated functioning of these systems, and they also constrain their design. The similar hierarchical branching networks observed in organisms and microprocessors are striking, given that the structure of organisms has evolved via natural selection, while microprocessors are designed by engineers. Metabolic scaling theory (MST) shows that the rate at which networks deliver energy to an organism is proportional to its mass raised to the 3/4 power. We show that computational systems are also characterized by nonlinear network scaling and use MST principles to characterize how information networks scale, focusing on how MST predicts properties of clock distribution networks in microprocessors. The MST equations are modified to account for variation in the size and density of transistors and terminal wires in microprocessors. Based on the scaling of the clock distribution network, we predict a set of trade-offs and performance properties that scale with chip size and the number of transistors. However, there are systematic deviations between power requirements on microprocessors and predictions derived directly from MST. These deviations are addressed by augmenting the model to account for decentralized flow in some microprocessor networks (e.g. in logic networks). More generally, we hypothesize a set of constraints between the size, power and performance of networked information systems including transistors on chips, hosts on the Internet and neurons in the brain.

  18. Multiplex Networks of Cortical and Hippocampal Neurons Revealed at Different Timescales

    PubMed Central

    Timme, Nicholas; Ito, Shinya; Myroshnychenko, Maxym; Yeh, Fang-Chin; Hiolski, Emma; Hottowy, Pawel; Beggs, John M.

    2014-01-01

    Recent studies have emphasized the importance of multiplex networks – interdependent networks with shared nodes and different types of connections – in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy – an information theoretic quantity that can be used to measure linear and nonlinear interactions – to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons (“hubs”) were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons. PMID:25536059

  19. A general model for metabolic scaling in self-similar asymmetric networks

    PubMed Central

    Savage, Van M.; Enquist, Brian J.

    2017-01-01

    How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE) model argues that these two principles (space-filling and energy minimization) are (i) general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii) can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber’s Law can still be attained within many asymmetric networks. PMID:28319153

  20. A general model for metabolic scaling in self-similar asymmetric networks.

    PubMed

    Brummer, Alexander Byers; Savage, Van M; Enquist, Brian J

    2017-03-01

    How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE) model argues that these two principles (space-filling and energy minimization) are (i) general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii) can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  1. How the initial level of visibility and limited resource affect the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Han, Dun; Li, Dandan; Sun, Mei

    2016-06-01

    This work sheds important light on how the initial level of visibility and limited resource might affect the evolution of the players’ strategies under different network structure. We perform the prisoner’s dilemma game in the lattice network and the scale-free network, the simulation results indicate that the average density of death in lattice network decreases with the increases of the initial proportion of visibility. However, the contrary phenomenon is observed in the scale-free network. Further results reflect that the individuals’ payoff in lattice network is significantly larger than the one in the scale-free network. In the lattice network, the visibility individuals could earn much more than the invisibility one. However, the difference is not apparent in the scale-free network. We also find that a high Successful-Defection-Payoff (SDB) and a rich natural environment have relatively larger deleterious cooperation effects. A high SDB is beneficial to raising the level of visibility in the heterogeneous network, however, that has adverse visibility consequences in homogeneous network. Our result reveals that players are more likely to cooperate voluntarily under homogeneous network structure.

  2. Integration and segregation of large-scale brain networks during short-term task automatization

    PubMed Central

    Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes

    2016-01-01

    The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095

  3. Scale-free Graphs for General Aviation Flight Schedules

    NASA Technical Reports Server (NTRS)

    Alexandov, Natalia M. (Technical Monitor); Kincaid, Rex K.

    2003-01-01

    In the late 1990s a number of researchers noticed that networks in biology, sociology, and telecommunications exhibited similar characteristics unlike standard random networks. In particular, they found that the cummulative degree distributions of these graphs followed a power law rather than a binomial distribution and that their clustering coefficients tended to a nonzero constant as the number of nodes, n, became large rather than O(1/n). Moreover, these networks shared an important property with traditional random graphs as n becomes large the average shortest path length scales with log n. This latter property has been coined the small-world property. When taken together these three properties small-world, power law, and constant clustering coefficient describe what are now most commonly referred to as scale-free networks. Since 1997 at least six books and over 400 articles have been written about scale-free networks. In this manuscript an overview of the salient characteristics of scale-free networks. Computational experience will be provided for two mechanisms that grow (dynamic) scale-free graphs. Additional computational experience will be given for constructing (static) scale-free graphs via a tabu search optimization approach. Finally, a discussion of potential applications to general aviation networks is given.

  4. Scaling properties in time-varying networks with memory

    NASA Astrophysics Data System (ADS)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  5. School Improvement Networks as a Strategy for Large-Scale Education Reform: The Role of Educational Environments

    ERIC Educational Resources Information Center

    Glazer, Joshua L.; Peurach, Donald J.

    2013-01-01

    The development and scale-up of school improvement networks is among the most important educational innovations of the last decade, and current federal, state, and district efforts attempt to use school improvement networks as a mechanism for supporting large-scale change. The potential of improvement networks, however, rests on the extent to…

  6. Why do Scale-Free Networks Emerge in Nature? From Gradient Networks to Transport Efficiency

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltan

    2004-03-01

    It has recently been recognized [1,2,3] that a large number of complex networks are scale-free (having a power-law degree distribution). Examples include citation networks [4], the internet [5], the world-wide-web [6], cellular metabolic networks [7], protein interaction networks [8], the sex-web [9] and alliance networks in the U.S. biotechnology industry [10]. The existence of scale-free networks in such diverse systems suggests that there is a simple underlying common reason for their development. Here, we propose that scale-free networks emerge because they ensure efficient transport of some entity. We show that for flows generated by gradients of a scalar "potential'' distributed on a network, non scale-free networks, e.g., random graphs [11], will become maximally congested, while scale-free networks will ensure efficient transport in the large network size limit. [1] R. Albert and A.-L. Barabási, Rev.Mod.Phys. 74, 47 (2002). [2] M.E.J. Newman, SIAM Rev. 45, 167 (2003). [3] S.N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford Univ. Press, Oxford, 2003. [4] S. Redner, Eur.Phys.J. B, 4, 131 (1998). [5] M. Faloutsos, P. Faloutsos and C. Faloutsos Comp.Comm.Rev. 29, 251 (1999). [6] R. Albert, H. Jeong, and A.L. Barabási, Nature 401, 130 (1999). [7] H. Jeong et.al. Nature 407, 651 (2000). [8] H. Jeong, S. Mason, A.-L. Barabási and Z. N. Oltvai, Nature 411, 41 (2001). [9] F. Liljeros et. al. Nature 411 907 (2000). [10] W. W. Powell, D. R. White, K. W. Koput and J. Owen-Smith Am.J.Soc. in press. [11] B. Bollobás, Random Graphs, Second Edition, Cambridge University Press (2001).

  7. Evidence of Rentian Scaling of Functional Modules in Diverse Biological Networks.

    PubMed

    How, Javier J; Navlakha, Saket

    2018-06-12

    Biological networks have long been known to be modular, containing sets of nodes that are highly connected internally. Less emphasis, however, has been placed on understanding how intermodule connections are distributed within a network. Here, we borrow ideas from engineered circuit design and study Rentian scaling, which states that the number of external connections between nodes in different modules is related to the number of nodes inside the modules by a power-law relationship. We tested this property in a broad class of molecular networks, including protein interaction networks for six species and gene regulatory networks for 41 human and 25 mouse cell types. Using evolutionarily defined modules corresponding to known biological processes in the cell, we found that all networks displayed Rentian scaling with a broad range of exponents. We also found evidence for Rentian scaling in functional modules in the Caenorhabditis elegans neural network, but, interestingly, not in three different social networks, suggesting that this property does not inevitably emerge. To understand how such scaling may have arisen evolutionarily, we derived a new graph model that can generate Rentian networks given a target Rent exponent and a module decomposition as inputs. Overall, our work uncovers a new principle shared by engineered circuits and biological networks.

  8. Honeycomb: Visual Analysis of Large Scale Social Networks

    NASA Astrophysics Data System (ADS)

    van Ham, Frank; Schulz, Hans-Jörg; Dimicco, Joan M.

    The rise in the use of social network sites allows us to collect large amounts of user reported data on social structures and analysis of this data could provide useful insights for many of the social sciences. This analysis is typically the domain of Social Network Analysis, and visualization of these structures often proves invaluable in understanding them. However, currently available visual analysis tools are not very well suited to handle the massive scale of this network data, and often resolve to displaying small ego networks or heavily abstracted networks. In this paper, we present Honeycomb, a visualization tool that is able to deal with much larger scale data (with millions of connections), which we illustrate by using a large scale corporate social networking site as an example. Additionally, we introduce a new probability based network metric to guide users to potentially interesting or anomalous patterns and discuss lessons learned during design and implementation.

  9. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.

    PubMed

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

  10. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

    PubMed Central

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems. PMID:29503613

  11. Effects of topology on network evolution

    NASA Astrophysics Data System (ADS)

    Oikonomou, Panos; Cluzel, Philippe

    2006-08-01

    The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.

  12. Constructing Neuronal Network Models in Massively Parallel Environments.

    PubMed

    Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.

  13. Constructing Neuronal Network Models in Massively Parallel Environments

    PubMed Central

    Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808

  14. A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes.

    PubMed

    Lee, Jinhwan; An, Kunsik; Won, Phillip; Ka, Yoonseok; Hwang, Hyejin; Moon, Hyunjin; Kwon, Yongwon; Hong, Sukjoon; Kim, Changsoon; Lee, Changhee; Ko, Seung Hwan

    2017-02-02

    Although solution processed metal nanowire (NW) percolation networks are a strong candidate to replace commercial indium tin oxide, their performance is limited in thin film device applications due to reduced effective electrical areas arising from the dimple structure and percolative voids that single size metal NW percolation networks inevitably possess. Here, we present a transparent electrode based on a dual-scale silver nanowire (AgNW) percolation network embedded in a flexible substrate to demonstrate a significant enhancement in the effective electrical area by filling the large percolative voids present in a long/thick AgNW network with short/thin AgNWs. As a proof of concept, the performance enhancement of a flexible phosphorescent OLED is demonstrated with the dual-scale AgNW percolation network compared to the previous mono-scale AgNWs. Moreover, we report that mechanical and oxidative robustness, which are critical for flexible OLEDs, are greatly increased by embedding the dual-scale AgNW network in a resin layer.

  15. Multistage Security Mechanism For Hybrid, Large-Scale Wireless Sensor Networks

    DTIC Science & Technology

    2007-06-01

    sensor network . Building on research in the areas of the wireless sensor networks (WSN) and the mobile ad hoc networks (MANET), this thesis proposes an...A wide area network consisting of ballistic missile defense satellites and terrestrial nodes can be viewed as a hybrid, large-scale mobile wireless

  16. Scale-free effect of substitution networks

    NASA Astrophysics Data System (ADS)

    Li, Ziyu; Yu, Zhouyu; Xi, Lifeng

    2018-02-01

    In this paper, we construct the growing networks in terms of substitution rule. Roughly speaking, we replace edges of different colors with different initial graphs. Then the evolving networks are constructed. We obtained the free-scale effect of our substitution networks.

  17. Towards a comprehensive understanding of emerging dynamics and function of pancreatic islets: A complex network approach. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    NASA Astrophysics Data System (ADS)

    Loppini, Alessandro

    2018-03-01

    Complex network theory represents a comprehensive mathematical framework to investigate biological systems, ranging from sub-cellular and cellular scales up to large-scale networks describing species interactions and ecological systems. In their exhaustive and comprehensive work [1], Gosak et al. discuss several scenarios in which the network approach was able to uncover general properties and underlying mechanisms of cells organization and regulation, tissue functions and cell/tissue failure in pathology, by the study of chemical reaction networks, structural networks and functional connectivities.

  18. The large-scale organization of metabolic networks

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabási, A.-L.

    2000-10-01

    In a cell or microorganism, the processes that generate mass, energy, information transfer and cell-fate specification are seamlessly integrated through a complex network of cellular constituents and reactions. However, despite the key role of these networks in sustaining cellular functions, their large-scale structure is essentially unknown. Here we present a systematic comparative mathematical analysis of the metabolic networks of 43 organisms representing all three domains of life. We show that, despite significant variation in their individual constituents and pathways, these metabolic networks have the same topological scaling properties and show striking similarities to the inherent organization of complex non-biological systems. This may indicate that metabolic organization is not only identical for all living organisms, but also complies with the design principles of robust and error-tolerant scale-free networks, and may represent a common blueprint for the large-scale organization of interactions among all cellular constituents.

  19. Tests of peak flow scaling in simulated self-similar river networks

    USGS Publications Warehouse

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  20. Federated queries of clinical data repositories: Scaling to a national network.

    PubMed

    Weber, Griffin M

    2015-06-01

    Federated networks of clinical research data repositories are rapidly growing in size from a handful of sites to true national networks with more than 100 hospitals. This study creates a conceptual framework for predicting how various properties of these systems will scale as they continue to expand. Starting with actual data from Harvard's four-site Shared Health Research Information Network (SHRINE), the framework is used to imagine a future 4000 site network, representing the majority of hospitals in the United States. From this it becomes clear that several common assumptions of small networks fail to scale to a national level, such as all sites being online at all times or containing data from the same date range. On the other hand, a large network enables researchers to select subsets of sites that are most appropriate for particular research questions. Developers of federated clinical data networks should be aware of how the properties of these networks change at different scales and design their software accordingly. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Utilizing Maximal Independent Sets as Dominating Sets in Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    Derzsy, N.; Molnar, F., Jr.; Szymanski, B. K.; Korniss, G.

    Dominating sets provide key solution to various critical problems in networked systems, such as detecting, monitoring, or controlling the behavior of nodes. Motivated by graph theory literature [Erdos, Israel J. Math. 4, 233 (1966)], we studied maximal independent sets (MIS) as dominating sets in scale-free networks. We investigated the scaling behavior of the size of MIS in artificial scale-free networks with respect to multiple topological properties (size, average degree, power-law exponent, assortativity), evaluated its resilience to network damage resulting from random failure or targeted attack [Molnar et al., Sci. Rep. 5, 8321 (2015)], and compared its efficiency to previously proposed dominating set selection strategies. We showed that, despite its small set size, MIS provides very high resilience against network damage. Using extensive numerical analysis on both synthetic and real-world (social, biological, technological) network samples, we demonstrate that our method effectively satisfies four essential requirements of dominating sets for their practical applicability on large-scale real-world systems: 1.) small set size, 2.) minimal network information required for their construction scheme, 3.) fast and easy computational implementation, and 4.) resiliency to network damage. Supported by DARPA, DTRA, and NSF.

  2. Influence of the Time Scale on the Construction of Financial Networks

    PubMed Central

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-01-01

    Background In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. Methodology/Principal Findings For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Conclusions/Significance Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis. PMID:20949124

  3. Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.

    PubMed

    Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai

    2008-03-15

    A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.

  4. Large-Scale, Three–Dimensional, Free–Standing, and Mesoporous Metal Oxide Networks for High–Performance Photocatalysis

    PubMed Central

    Bai, Hua; Li, Xinshi; Hu, Chao; Zhang, Xuan; Li, Junfang; Yan, Yan; Xi, Guangcheng

    2013-01-01

    Mesoporous nanostructures represent a unique class of photocatalysts with many applications, including splitting of water, degradation of organic contaminants, and reduction of carbon dioxide. In this work, we report a general Lewis acid catalytic template route for the high–yield producing single– and multi–component large–scale three–dimensional (3D) mesoporous metal oxide networks. The large-scale 3D mesoporous metal oxide networks possess large macroscopic scale (millimeter–sized) and mesoporous nanostructure with huge pore volume and large surface exposure area. This method also can be used for the synthesis of large–scale 3D macro/mesoporous hierarchical porous materials and noble metal nanoparticles loaded 3D mesoporous networks. Photocatalytic degradation of Azo dyes demonstrated that the large–scale 3D mesoporous metal oxide networks enable high photocatalytic activity. The present synthetic method can serve as the new design concept for functional 3D mesoporous nanomaterials. PMID:23857595

  5. Organization and scaling in water supply networks

    NASA Astrophysics Data System (ADS)

    Cheng, Likwan; Karney, Bryan W.

    2017-12-01

    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  6. Once upon a (slow) time in the land of recurrent neuronal networks….

    PubMed

    Huang, Chengcheng; Doiron, Brent

    2017-10-01

    The brain must both react quickly to new inputs as well as store a memory of past activity. This requires biology that operates over a vast range of time scales. Fast time scales are determined by the kinetics of synaptic conductances and ionic channels; however, the mechanics of slow time scales are more complicated. In this opinion article we review two distinct network-based mechanisms that impart slow time scales in recurrently coupled neuronal networks. The first is in strongly coupled networks where the time scale of the internally generated fluctuations diverges at the transition between stable and chaotic firing rate activity. The second is in networks with finitely many members where noise-induced transitions between metastable states appear as a slow time scale in the ongoing network firing activity. We discuss these mechanisms with an emphasis on their similarities and differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Spiking neural network simulation: memory-optimal synaptic event scheduling.

    PubMed

    Stewart, Robert D; Gurney, Kevin N

    2011-06-01

    Spiking neural network simulations incorporating variable transmission delays require synaptic events to be scheduled prior to delivery. Conventional methods have memory requirements that scale with the total number of synapses in a network. We introduce novel scheduling algorithms for both discrete and continuous event delivery, where the memory requirement scales instead with the number of neurons. Superior algorithmic performance is demonstrated using large-scale, benchmarking network simulations.

  8. Scaling of counter-current imbibition recovery curves using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Jafari, Iman; Masihi, Mohsen; Nasiri Zarandi, Masoud

    2018-06-01

    Scaling imbibition curves are of great importance in the characterization and simulation of oil production from naturally fractured reservoirs. Different parameters such as matrix porosity and permeability, oil and water viscosities, matrix dimensions, and oil/water interfacial tensions have an effective on the imbibition process. Studies on the scaling imbibition curves along with the consideration of different assumptions have resulted in various scaling equations. In this work, using an artificial neural network (ANN) method, a novel technique is presented for scaling imbibition recovery curves, which can be used for scaling the experimental and field-scale imbibition cases. The imbibition recovery curves for training and testing the neural network were gathered through the simulation of different scenarios using a commercial reservoir simulator. In this ANN-based method, six parameters were assumed to have an effect on the imbibition process and were considered as the inputs for training the network. Using the ‘Bayesian regularization’ training algorithm, the network was trained and tested. Training and testing phases showed superior results in comparison with the other scaling methods. It is concluded that using the new technique is useful for scaling imbibition recovery curves, especially for complex cases, for which the common scaling methods are not designed.

  9. Growing optimal scale-free networks via likelihood

    NASA Astrophysics Data System (ADS)

    Small, Michael; Li, Yingying; Stemler, Thomas; Judd, Kevin

    2015-04-01

    Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1/N +ζ (γ ) (k+1 ) γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ . We generate viable realization with finite N for 1 ≪γ <2 as well as γ >2 . We observe an apparently discontinuous transition at γ ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.

  10. Network rewiring dynamics with convergence towards a star network

    PubMed Central

    Dick, G.; Parry, M.

    2016-01-01

    Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz (Nature 393, 440–442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach. PMID:27843396

  11. Network rewiring dynamics with convergence towards a star network.

    PubMed

    Whigham, P A; Dick, G; Parry, M

    2016-10-01

    Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz ( Nature 393 , 440-442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach.

  12. Vaccination intervention on epidemic dynamics in networks

    NASA Astrophysics Data System (ADS)

    Peng, Xiao-Long; Xu, Xin-Jian; Fu, Xinchu; Zhou, Tao

    2013-02-01

    Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-world, Barabási-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.

  13. Scaling of global input-output networks

    NASA Astrophysics Data System (ADS)

    Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming

    2016-06-01

    Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.

  14. [Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis.

    PubMed

    Yu, Ya Ping; Yin, Hai Wei; Kong, Fan Hua; Wang, Jing Jing; Xu, Wen Bin

    2016-07-01

    Based on ArcGIS, Erdas, GuidosToolbox, Conefor and other software platforms, using morphological spatial pattern analysis (MSPA) and landscape connectivity analysis methods, this paper quantitatively analysed the scale effect, edge effect and distance effect of the Nanjing urban green infrastructure network pattern in 2013 by setting different pixel sizes (P) and edge widths in MSPA analysis, and setting different dispersal distance thresholds in landscape connectivity analysis. The results showed that the type of landscape acquired based on the MSPA had a clear scale effect and edge effect, and scale effects only slightly affected landscape types, whereas edge effects were more obvious. Different dispersal distances had a great impact on the landscape connectivity, 2 km or 2.5 km dispersal distance was a critical threshold for Nanjing. When selecting the pixel size 30 m of the input data and the edge wide 30 m used in the morphological model, we could get more detailed landscape information of Nanjing UGI network. Based on MSPA and landscape connectivity, analysis of the scale effect, edge effect, and distance effect on the landscape types of the urban green infrastructure (UGI) network was helpful for selecting the appropriate size, edge width, and dispersal distance when developing these networks, and for better understanding the spatial pattern of UGI networks and the effects of scale and distance on the ecology of a UGI network. This would facilitate a more scientifically valid set of design parameters for UGI network spatiotemporal pattern analysis. The results of this study provided an important reference for Nanjing UGI networks and a basis for the analysis of the spatial and temporal patterns of medium-scale UGI landscape networks in other regions.

  15. Environmentally induced amplitude death and firing provocation in large-scale networks of neuronal systems

    NASA Astrophysics Data System (ADS)

    Pankratova, Evgeniya V.; Kalyakulina, Alena I.

    2016-12-01

    We study the dynamics of multielement neuronal systems taking into account both the direct interaction between the cells via linear coupling and nondiffusive cell-to-cell communication via common environment. For the cells exhibiting individual bursting behavior, we have revealed the dependence of the network activity on its scale. Particularly, we show that small-scale networks demonstrate the inability to maintain complicated oscillations: for a small number of elements in an ensemble, the phenomenon of amplitude death is observed. The existence of threshold network scales and mechanisms causing firing in artificial and real multielement neural networks, as well as their significance for biological applications, are discussed.

  16. PKI security in large-scale healthcare networks.

    PubMed

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  17. Nonequilibrium transitions in complex networks: A model of social interaction

    NASA Astrophysics Data System (ADS)

    Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; San Miguel, Maxi

    2003-02-01

    We analyze the nonequilibrium order-disorder transition of Axelrod’s model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.

  18. Parameters affecting the resilience of scale-free networks to random failures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Hamilton E.; LaViolette, Randall A.; Lane, Terran

    2005-09-01

    It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the remaining nodes would still be connected in a giant component. In this paper, we show that a large and important subclass of scale-free networks are not robust to massive numbers of random node deletions. In particular, we study scale-free networks which have minimum node degreemore » of 1 and a power-law degree distribution beginning with nodes of degree 1 (power-law networks). We show that, in a power-law network approximating the Internet's reported distribution, when the probability of deletion of each node is 0.5 only about 25% of the surviving nodes in the network remain connected in a giant component, and the giant component does not persist beyond a critical failure rate of 0.9. The new result is partially due to improved analytical accommodation of the large number of degree-0 nodes that result after node deletions. Our results apply to power-law networks with a wide range of power-law exponents, including Internet-like networks. We give both analytical and empirical evidence that such networks are not generally robust to massive random node deletions.« less

  19. Dense power-law networks and simplicial complexes

    NASA Astrophysics Data System (ADS)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  20. Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    Barthélemy, Marc; Barrat, Alain; Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2004-04-01

    We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost instantaneously in networks with scale-free degree distributions. This feature is associated with an epidemic propagation that follows a precise hierarchical dynamics. Once the highly connected hubs are reached, the infection pervades the network in a progressive cascade across smaller degree classes. The present results are relevant for the development of adaptive containment strategies.

  1. Structural Controllability and Controlling Centrality of Temporal Networks

    PubMed Central

    Pan, Yujian; Li, Xiang

    2014-01-01

    Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it's urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node's controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks. PMID:24747676

  2. Optimal topologies for maximizing network transmission capacity

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.

    2018-04-01

    It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.

  3. Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion.

    PubMed

    Babaei, Sepideh; Hulsman, Marc; Reinders, Marcel; de Ridder, Jeroen

    2013-01-23

    Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the protein-protein interaction network. To this end, we introduce a multi-scale diffusion kernel and apply it to a large collection of murine retroviral insertional mutagenesis data. The diffusion strength plays the role of scale parameter, determining the size of the network neighborhood that is taken into account. As a result, in addition to detecting genes with frequent mutations in their genomic vicinity, we find genes that harbor frequent mutations in their interaction network context. We identify densely connected components of known and putatively novel cancer genes and demonstrate that they are strongly enriched for cancer related pathways across the diffusion scales. Moreover, the mutations in the clusters exhibit a significant pattern of mutual exclusion, supporting the conjecture that such genes are functionally linked. Using multi-scale diffusion kernel, various infrequently mutated genes are found to harbor significant numbers of mutations in their interaction network neighborhood. Many of them are well-known cancer genes. The results demonstrate the importance of defining recurrent mutations while taking into account the interaction network context. Importantly, the putative cancer genes and networks detected in this study are found to be significant at different diffusion scales, confirming the necessity of a multi-scale analysis.

  4. Assortativeness and information in scale-free networks

    NASA Astrophysics Data System (ADS)

    Piraveenan, M.; Prokopenko, M.; Zomaya, A. Y.

    2009-02-01

    We analyze Shannon information of scale-free networks in terms of their assortativeness, and identify classes of networks according to the dependency of the joint remaining degree distribution on the assortativeness. We conjecture that these classes comprise minimalistic and maximalistic networks in terms of Shannon information. For the studied classes, the information is shown to depend non-linearly on the absolute value of the assortativeness, with the dominant term of the relationship being a power-law. We exemplify this dependency using a range of real-world networks. Optimization of scale-free networks according to information they contain depends on the landscape of parameters’ search-space, and we identify two regions of interest: a slope region and a stability region. In the slope region, there is more freedom to generate and evaluate candidate networks since the information content can be changed easily by modifying only the assortativeness, while even a small change in the power-law’s scaling exponent brings a reward in a higher rate of information change. This feature may explain why the exponents of real-world scale-free networks are within a certain range, defined by the slope and stability regions.

  5. Functional Topology of Evolving Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan S.; Urich, Christian; Krueger, Elisabeth; Kumar, Praveen; Rao, P. Suresh C.

    2017-11-01

    We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L∝Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P>(A≥δ>)˜aδ-ɛ]. For the smallest UDNs (<2 km2), length-area scales linearly (h ˜ 1), but power law scaling (h ˜ 0.6) emerges as the UDNs grow. While P>(A≥δ>) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P>(A≥δ>)=aδ-ɛexp⁡>(-cδ>)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.

  6. Epidemic dynamics and endemic states in complex networks

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2001-06-01

    We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.

  7. Wayfinding in Social Networks

    NASA Astrophysics Data System (ADS)

    Liben-Nowell, David

    With the recent explosion of popularity of commercial social-networking sites like Facebook and MySpace, the size of social networks that can be studied scientifically has passed from the scale traditionally studied by sociologists and anthropologists to the scale of networks more typically studied by computer scientists. In this chapter, I will highlight a recent line of computational research into the modeling and analysis of the small-world phenomenon - the observation that typical pairs of people in a social network are connected by very short chains of intermediate friends - and the ability of members of a large social network to collectively find efficient routes to reach individuals in the network. I will survey several recent mathematical models of social networks that account for these phenomena, with an emphasis on both the provable properties of these social-network models and the empirical validation of the models against real large-scale social-network data.

  8. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Consensus of Multi-Agent Systems with Prestissimo Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying

    2010-04-01

    In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.

  9. Dynamics Behaviors of Scale-Free Networks with Elastic Demand

    NASA Astrophysics Data System (ADS)

    Li, Yan-Lai; Sun, Hui-Jun; Wu, Jian-Jun

    Many real-world networks, such as transportation networks and Internet, have the scale-free properties. It is important to study the bearing capacity of such networks. Considering the elastic demand condition, we analyze load distributions and bearing capacities with different parameters through artificially created scale-free networks. The simulation results show that the load distribution follows a power-law form, which means some ordered pairs, playing the dominant role in the transportation network, have higher demand than other pairs. We found that, with the decrease of perceptual error, the total and average ordered pair demand will decrease and then stay in a steady state. However, with the increase of the network size, the average demand of each ordered pair will decrease, which is particularly interesting for the network design problem.

  10. Sensitivity of the Positive and Negative Syndrome Scale (PANSS) in Detecting Treatment Effects via Network Analysis.

    PubMed

    Esfahlani, Farnaz Zamani; Sayama, Hiroki; Visser, Katherine Frost; Strauss, Gregory P

    2017-12-01

    Objective: The Positive and Negative Syndrome Scale is a primary outcome measure in clinical trials examining the efficacy of antipsychotic medications. Although the Positive and Negative Syndrome Scale has demonstrated sensitivity as a measure of treatment change in studies using traditional univariate statistical approaches, its sensitivity to detecting network-level changes in dynamic relationships among symptoms has yet to be demonstrated using more sophisticated multivariate analyses. In the current study, we examined the sensitivity of the Positive and Negative Syndrome Scale to detecting antipsychotic treatment effects as revealed through network analysis. Design: Participants included 1,049 individuals diagnosed with psychotic disorders from the Phase I portion of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Of these participants, 733 were clinically determined to be treatment-responsive and 316 were found to be treatment-resistant. Item level data from the Positive and Negative Syndrome Scale were submitted to network analysis, and macroscopic, mesoscopic, and microscopic network properties were evaluated for the treatment-responsive and treatment-resistant groups at baseline and post-phase I antipsychotic treatment. Results: Network analysis indicated that treatment-responsive patients had more densely connected symptom networks after antipsychotic treatment than did treatment-responsive patients at baseline, and that symptom centralities increased following treatment. In contrast, symptom networks of treatment-resistant patients behaved more randomly before and after treatment. Conclusions: These results suggest that the Positive and Negative Syndrome Scale is sensitive to detecting treatment effects as revealed through network analysis. Its findings also provide compelling new evidence that strongly interconnected symptom networks confer an overall greater probability of treatment responsiveness in patients with psychosis, suggesting that antipsychotics achieve their effect by enhancing a number of central symptoms, which then facilitate reduction of other highly coupled symptoms in a network-like fashion.

  11. Mass balances of dissolved gases at river network scales across biomes.

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Stewart, R. J.; Sheehan, K.

    2016-12-01

    Estimating aquatic metabolism and gas fluxes at broad spatial scales is needed to evaluate the role of aquatic ecosystems in continental carbon cycles. We applied a river network model, FrAMES, to quantify the mass balances of dissolved oxygen at river network scales across five river networks in different biomes. The model accounts for hydrology; spatially varying re-aeration rates due to flow, slope, and water temperature; gas inputs via terrestrial runoff; variation in light due to canopy cover and water depth; benthic gross primary production; and benthic respiration. The model was parameterized using existing groundwater information and empirical relationships of GPP, R, and re-aeration, and was tested using dissolved oxygen patterns measured throughout river networks. We found that during summers, internal aquatic production dominates the river network mass balance of Kings Cr., Konza Prairie, KS (16.3 km2), whereas terrestrial inputs and aeration dominate the network mass balance at Coweeta Cr., Coweeta Forest, NC (15.7 km2). At network scales, both river networks are net heterotrophic, with Coweeta more so than Kings Cr. (P:R 0.6 vs. 0.7, respectively). The river network of Kings Creek showed higher network-scale GPP and R compared to Coweeta, despite having a lower drainage density because streams are on average wider so cumulative benthic surface areas are similar. Our findings suggest that the role of aquatic systems in watershed carbon balances will depend on interactions of drainage density, channel hydraulics, terrestrial vegetation, and biological activity.

  12. Measuring Networking as an Outcome Variable in Undergraduate Research Experiences

    PubMed Central

    Hanauer, David I.; Hatfull, Graham

    2015-01-01

    The aim of this paper is to propose, present, and validate a simple survey instrument to measure student conversational networking. The tool consists of five items that cover personal and professional social networks, and its basic principle is the self-reporting of degrees of conversation, with a range of specific discussion partners. The networking instrument was validated in three studies. The basic psychometric characteristics of the scales were established by conducting a factor analysis and evaluating internal consistency using Cronbach’s alpha. The second study used a known-groups comparison and involved comparing outcomes for networking scales between two different undergraduate laboratory courses (one involving a specific effort to enhance networking). The final study looked at potential relationships between specific networking items and the established psychosocial variable of project ownership through a series of binary logistic regressions. Overall, the data from the three studies indicate that the networking scales have high internal consistency (α = 0.88), consist of a unitary dimension, can significantly differentiate between research experiences with low and high networking designs, and are related to project ownership scales. The ramifications of the networking instrument for student retention, the enhancement of public scientific literacy, and the differentiation of laboratory courses are discussed. PMID:26538387

  13. Allometric scaling law in a simple oxygen exchanging network: possible implications on the biological allometric scaling laws.

    PubMed

    Santillán, Moisés

    2003-07-21

    A simple model of an oxygen exchanging network is presented and studied. This network's task is to transfer a given oxygen rate from a source to an oxygen consuming system. It consists of a pipeline, that interconnects the oxygen consuming system and the reservoir and of a fluid, the active oxygen transporting element, moving through the pipeline. The network optimal design (total pipeline surface) and dynamics (volumetric flow of the oxygen transporting fluid), which minimize the energy rate expended in moving the fluid, are calculated in terms of the oxygen exchange rate, the pipeline length, and the pipeline cross-section. After the oxygen exchanging network is optimized, the energy converting system is shown to satisfy a 3/4-like allometric scaling law, based upon the assumption that its performance regime is scale invariant as well as on some feasible geometric scaling assumptions. Finally, the possible implications of this result on the allometric scaling properties observed elsewhere in living beings are discussed.

  14. New scaling relation for information transfer in biological networks

    PubMed Central

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-01-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781–4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös–Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883

  15. Scaling of load in communications networks.

    PubMed

    Narayan, Onuttom; Saniee, Iraj

    2010-09-01

    We show that the load at each node in a preferential attachment network scales as a power of the degree of the node. For a network whose degree distribution is p(k)∼k{-γ} , we show that the load is l(k)∼k{η} with η=γ-1 , implying that the probability distribution for the load is p(l)∼1/l{2} independent of γ . The results are obtained through scaling arguments supported by finite size scaling studies. They contradict earlier claims, but are in agreement with the exact solution for the special case of tree graphs. Results are also presented for real communications networks at the IP layer, using the latest available data. Our analysis of the data shows relatively poor power-law degree distributions as compared to the scaling of the load versus degree. This emphasizes the importance of the load in network analysis.

  16. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    PubMed

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  17. Damage spreading in spatial and small-world random Boolean networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming; Teuscher, Christof

    2014-02-01

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean networks (RBNs) are commonly used as a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other nonrandom connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the Hamming distance at very low connectivities (K¯≪1) and that the critical connectivity of stability Ks changes compared to random networks. At higher K¯, this scaling remains unchanged. We also show that the Hamming distance of spatially local networks scales with a power law as the system size N increases, but with a different exponent for local and small-world networks. The scaling arguments for small-world networks are obtained with respect to the system sizes and strength of spatially local connections. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  18. Inter-subject FDG PET Brain Networks Exhibit Multi-scale Community Structure with Different Normalization Techniques.

    PubMed

    Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A

    2018-07-01

    Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.

  19. Emergence, evolution and scaling of online social networks.

    PubMed

    Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng

    2014-01-01

    Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.

  20. Estimation of Global Network Statistics from Incomplete Data

    PubMed Central

    Bliss, Catherine A.; Danforth, Christopher M.; Dodds, Peter Sheridan

    2014-01-01

    Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week. PMID:25338183

  1. Multifractal analysis and topological properties of a new family of weighted Koch networks

    NASA Astrophysics Data System (ADS)

    Huang, Da-Wen; Yu, Zu-Guo; Anh, Vo

    2017-03-01

    Weighted complex networks, especially scale-free networks, which characterize real-life systems better than non-weighted networks, have attracted considerable interest in recent years. Studies on the multifractality of weighted complex networks are still to be undertaken. In this paper, inspired by the concepts of Koch networks and Koch island, we propose a new family of weighted Koch networks, and investigate their multifractal behavior and topological properties. We find some key topological properties of the new networks: their vertex cumulative strength has a power-law distribution; there is a power-law relationship between their topological degree and weight strength; the networks have a high weighted clustering coefficient of 0.41004 (which is independent of the scaling factor c) in the limit of large generation t; the second smallest eigenvalue μ2 and the maximum eigenvalue μn are approximated by quartic polynomials of the scaling factor c for the general Laplacian operator, while μ2 is approximately a quartic polynomial of c and μn= 1.5 for the normalized Laplacian operator. Then, we find that weighted koch networks are both fractal and multifractal, their fractal dimension is influenced by the scaling factor c. We also apply these analyses to six real-world networks, and find that the multifractality in three of them are strong.

  2. Inference of scale-free networks from gene expression time series.

    PubMed

    Daisuke, Tominaga; Horton, Paul

    2006-04-01

    Quantitative time-series observation of gene expression is becoming possible, for example by cell array technology. However, there are no practical methods with which to infer network structures using only observed time-series data. As most computational models of biological networks for continuous time-series data have a high degree of freedom, it is almost impossible to infer the correct structures. On the other hand, it has been reported that some kinds of biological networks, such as gene networks and metabolic pathways, may have scale-free properties. We hypothesize that the architecture of inferred biological network models can be restricted to scale-free networks. We developed an inference algorithm for biological networks using only time-series data by introducing such a restriction. We adopt the S-system as the network model, and a distributed genetic algorithm to optimize models to fit its simulated results to observed time series data. We have tested our algorithm on a case study (simulated data). We compared optimization under no restriction, which allows for a fully connected network, and under the restriction that the total number of links must equal that expected from a scale free network. The restriction reduced both false positive and false negative estimation of the links and also the differences between model simulation and the given time-series data.

  3. Classes of real-world 'small-world' networks: From the neural network of C. Elegans to the web of human sexual contacts

    NASA Astrophysics Data System (ADS)

    Nunes Amaral, Luis A.

    2002-03-01

    We study the statistical properties of a variety of diverse real-world networks including the neural network of C. Elegans, food webs for seven distinct environments, transportation and technological networks, and a number of distinct social networks [1-5]. We present evidence of the occurrence of three classes of small-world networks [2]: (a) scale-free networks, characterized by a vertex connectivity distribution that decays as a power law; (b) broad-scale networks, characterized by a connectivity distribution that has a power-law regime followed by a sharp cut-off; (c) single-scale networks, characterized by a connectivity distribution with a fast decaying tail. Moreover, we note for the classes of broad-scale and single-scale networks that there are constraints limiting the addition of new links. Our results suggest that the nature of such constraints may be the controlling factor for the emergence of different classes of networks. [See http://polymer.bu.edu/ amaral/Networks.html for details and htpp://polymer.bu.edu/ amaral/Professional.html for access to PDF files of articles.] 1. M. Barthélémy, L. A. N. Amaral, Phys. Rev. Lett. 82, 3180-3183 (1999). 2. L. A. N. Amaral, A. Scala, M. Barthélémy, H. E. Stanley, Proc. Nat. Acad. Sci. USA 97, 11149-11152 (2000). 3. F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg, Nature 411, 907-908 (2001). 4. J. Camacho, R. Guimera, L.A.N. Amaral, Phys. Rev. E RC (to appear). 5. S. Mossa, M. Barthelemy, H.E. Stanley, L.A.N. Amaral (submitted).

  4. Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network

    NASA Technical Reports Server (NTRS)

    Wiesenberg, Brent

    1999-01-01

    Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.

  5. Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.

    2006-01-01

    The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1-1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1-1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis. Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces the number of order 1 and order 2 streams predicted by the large-scale channel structure. This network comprises two spatial patterns of rills with width-to-depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width-to-depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and chanel) had different drainage network structures to collect and transfer water and sediment. Copyright ?? 2005 John Wiley & Sons, Ltd.

  6. A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale.

    PubMed

    Burns, K C; Zotz, G

    2010-02-01

    Epiphytes are an important component of many forested ecosystems, yet our understanding of epiphyte communities lags far behind that of terrestrial-based plant communities. This discrepancy is exacerbated by the lack of a theoretical context to assess patterns in epiphyte community structure. We attempt to fill this gap by developing an analytical framework to investigate epiphyte assemblages, which we then apply to a data set on epiphyte distributions in a Panamanian rain forest. On a coarse scale, interactions between epiphyte species and host tree species can be viewed as bipartite networks, similar to pollination and seed dispersal networks. On a finer scale, epiphyte communities on individual host trees can be viewed as meta-communities, or suites of local epiphyte communities connected by dispersal. Similar analytical tools are typically employed to investigate species interaction networks and meta-communities, thus providing a unified analytical framework to investigate coarse-scale (network) and fine-scale (meta-community) patterns in epiphyte distributions. Coarse-scale analysis of the Panamanian data set showed that most epiphyte species interacted with fewer host species than expected by chance. Fine-scale analyses showed that epiphyte species richness on individual trees was lower than null model expectations. Therefore, epiphyte distributions were clumped at both scales, perhaps as a result of dispersal limitations. Scale-dependent patterns in epiphyte species composition were observed. Epiphyte-host networks showed evidence of negative co-occurrence patterns, which could arise from adaptations among epiphyte species to avoid competition for host species, while most epiphyte meta-communities were distributed at random. Application of our "meta-network" analytical framework in other locales may help to identify general patterns in the structure of epiphyte assemblages and their variation in space and time.

  7. Trapping in scale-free networks with hierarchical organization of modularity.

    PubMed

    Zhang, Zhongzhi; Lin, Yuan; Gao, Shuyang; Zhou, Shuigeng; Guan, Jihong; Li, Mo

    2009-11-01

    A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.

  8. Aquatic Nitrate Retention at River Network Scales Across Flow Conditions Determined Using Nested In Situ Sensors

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O.

    2017-11-01

    Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in-stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event-scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51-78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution.

  9. Controllability of multiplex, multi-time-scale networks

    NASA Astrophysics Data System (ADS)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.

  10. Mathematics, Information, and Life Sciences

    DTIC Science & Technology

    2012-03-05

    INS • Chip -scale atomic clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser communications • Frequency-agile RF systems...FY12 BAA Bionavigation (Bio) Neuromorphic Computing (Human) Multi-scale Modeling (Math) Foundations of Information Systems (Info) BRI

  11. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    PubMed

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. © 2015 Wiley Periodicals, Inc.

  12. Scaling Laws of Discrete-Fracture-Network Models

    NASA Astrophysics Data System (ADS)

    Philippe, D.; Olivier, B.; Caroline, D.; Jean-Raynald, D.

    2006-12-01

    The statistical description of fracture networks through scale still remains a concern for geologists, considering the complexity of fracture networks. A challenging task of the last 20-years studies has been to find a solid and rectifiable rationale to the trivial observation that fractures exist everywhere and at all sizes. The emergence of fractal models and power-law distributions quantifies this fact, and postulates in some ways that small-scale fractures are genetically linked to their larger-scale relatives. But the validation of these scaling concepts still remains an issue considering the unreachable amount of information that would be necessary with regards to the complexity of natural fracture networks. Beyond the theoretical interest, a scaling law is a basic and necessary ingredient of Discrete-Fracture-Network models (DFN) that are used for many environmental and industrial applications (groundwater resources, mining industry, assessment of the safety of deep waste disposal sites, ..). Indeed, such a function is necessary to assemble scattered data, taken at different scales, into a unified scaling model, and to interpolate fracture densities between observations. In this study, we discuss some important issues related to scaling laws of DFN: - We first describe a complete theoretical and mathematical framework that takes account of both the fracture- size distribution and the fracture clustering through scales (fractal dimension). - We review the scaling laws that have been obtained, and we discuss the ability of fracture datasets to really constrain the parameters of the DFN model. - And finally we discuss the limits of scaling models.

  13. Effects of multi-stakeholder platforms on multi-stakeholder innovation networks: Implications for research for development interventions targeting innovations at scale

    PubMed Central

    Schut, Marc; Hermans, Frans; van Asten, Piet; Leeuwis, Cees

    2018-01-01

    Multi-stakeholder platforms (MSPs) have been playing an increasing role in interventions aiming to generate and scale innovations in agricultural systems. However, the contribution of MSPs in achieving innovations and scaling has been varied, and many factors have been reported to be important for their performance. This paper aims to provide evidence on the contribution of MSPs to innovation and scaling by focusing on three developing country cases in Burundi, Democratic Republic of Congo, and Rwanda. Through social network analysis and logistic models, the paper studies the changes in the characteristics of multi-stakeholder innovation networks targeted by MSPs and identifies factors that play significant roles in triggering these changes. The results demonstrate that MSPs do not necessarily expand and decentralize innovation networks but can lead to contraction and centralization in the initial years of implementation. They show that some of the intended next users of interventions with MSPs–local-level actors–left the innovation networks, whereas the lead organization controlling resource allocation in the MSPs substantially increased its centrality. They also indicate that not all the factors of change in innovation networks are country specific. Initial conditions of innovation networks and funding provided by the MSPs are common factors explaining changes in innovation networks across countries and across different network functions. The study argues that investigating multi-stakeholder innovation network characteristics targeted by the MSP using a network approach in early implementation can contribute to better performance in generating and scaling innovations, and that funding can be an effective implementation tool in developing country contexts. PMID:29870559

  14. Effects of multi-stakeholder platforms on multi-stakeholder innovation networks: Implications for research for development interventions targeting innovations at scale.

    PubMed

    Sartas, Murat; Schut, Marc; Hermans, Frans; Asten, Piet van; Leeuwis, Cees

    2018-01-01

    Multi-stakeholder platforms (MSPs) have been playing an increasing role in interventions aiming to generate and scale innovations in agricultural systems. However, the contribution of MSPs in achieving innovations and scaling has been varied, and many factors have been reported to be important for their performance. This paper aims to provide evidence on the contribution of MSPs to innovation and scaling by focusing on three developing country cases in Burundi, Democratic Republic of Congo, and Rwanda. Through social network analysis and logistic models, the paper studies the changes in the characteristics of multi-stakeholder innovation networks targeted by MSPs and identifies factors that play significant roles in triggering these changes. The results demonstrate that MSPs do not necessarily expand and decentralize innovation networks but can lead to contraction and centralization in the initial years of implementation. They show that some of the intended next users of interventions with MSPs-local-level actors-left the innovation networks, whereas the lead organization controlling resource allocation in the MSPs substantially increased its centrality. They also indicate that not all the factors of change in innovation networks are country specific. Initial conditions of innovation networks and funding provided by the MSPs are common factors explaining changes in innovation networks across countries and across different network functions. The study argues that investigating multi-stakeholder innovation network characteristics targeted by the MSP using a network approach in early implementation can contribute to better performance in generating and scaling innovations, and that funding can be an effective implementation tool in developing country contexts.

  15. Scaling properties of multitension domain wall networks

    NASA Astrophysics Data System (ADS)

    Oliveira, M. F.; Martins, C. J. A. P.

    2015-02-01

    We study the asymptotic scaling properties of domain wall networks with three different tensions in various cosmological epochs. We discuss the conditions under which a scale-invariant evolution of the network (which is well established for simpler walls) still applies and also consider the limiting case where defects are locally planar and the curvature is concentrated in the junctions. We present detailed quantitative predictions for scaling densities in various contexts, which should be testable by means of future high-resolution numerical simulations.

  16. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.

    PubMed

    Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio

    2018-06-19

    Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.

  17. Generating clustered scale-free networks using Poisson based localization of edges

    NASA Astrophysics Data System (ADS)

    Türker, İlker

    2018-05-01

    We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.

  18. Structural and functional properties of spatially embedded scale-free networks.

    PubMed

    Emmerich, Thorsten; Bunde, Armin; Havlin, Shlomo

    2014-06-01

    Scale-free networks have been studied mostly as non-spatially embedded systems. However, in many realistic cases, they are spatially embedded and these constraints should be considered. Here, we study the structural and functional properties of a model of scale-free (SF) spatially embedded networks. In our model, both the degree and the length of links follow power law distributions as found in many real networks. We show that not all SF networks can be embedded in space and that the largest degree of a node in the network is usually smaller than in nonembedded SF networks. Moreover, the spatial constraints (each node has only few neighboring nodes) introduce degree-degree anticorrelations (disassortativity) since two high degree nodes cannot stay close in space. We also find significant effects of space embedding on the hopping distances (chemical distance) and the vulnerability of the networks.

  19. Emergence of cooperation in non-scale-free networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Zhou, Shi; Wang, Wenting

    2014-06-01

    Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. Previous studies proposed a strategy updating mechanism, which successfully demonstrated that the scale-free network can provide a framework for the emergence of cooperation. Instead, individuals in random graphs and small-world networks do not favor cooperation under this updating rule. However, a recent empirical result shows the heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. In this paper, we propose a strategy updating rule with payoff memory. We observe that the random graphs and small-world networks can provide even better frameworks for cooperation than the scale-free networks in this scenario. Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor a necessary condition for the widespread cooperation in complex networks. Also, the topological structures are not sufficed to determine the level of cooperation in complex networks.

  20. Cascade heterogeneous face sketch-photo synthesis via dual-scale Markov Network

    NASA Astrophysics Data System (ADS)

    Yao, Saisai; Chen, Zhenxue; Jia, Yunyi; Liu, Chengyun

    2018-03-01

    Heterogeneous face sketch-photo synthesis is an important and challenging task in computer vision, which has widely applied in law enforcement and digital entertainment. According to the different synthesis results based on different scales, this paper proposes a cascade sketch-photo synthesis method via dual-scale Markov Network. Firstly, Markov Network with larger scale is used to synthesise the initial sketches and the local vertical and horizontal neighbour search (LVHNS) method is used to search for the neighbour patches of test patches in training set. Then, the initial sketches and test photos are jointly entered into smaller scale Markov Network. Finally, the fine sketches are obtained after cascade synthesis process. Extensive experimental results on various databases demonstrate the superiority of the proposed method compared with several state-of-the-art methods.

  1. Retinotopic patterns of functional connectivity between V1 and large-scale brain networks during resting fixation

    PubMed Central

    Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Bowman, Anthony D.; Szaflarski, Jerzy P.; Visscher, Kristina M.

    2016-01-01

    Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. PMID:27554527

  2. Examining the Emergence of Large-Scale Structures in Collaboration Networks: Methods in Sociological Analysis

    ERIC Educational Resources Information Center

    Ghosh, Jaideep; Kshitij, Avinash

    2017-01-01

    This article introduces a number of methods that can be useful for examining the emergence of large-scale structures in collaboration networks. The study contributes to sociological research by investigating how clusters of research collaborators evolve and sometimes percolate in a collaboration network. Typically, we find that in our networks,…

  3. Cooperation-Induced Topological Complexity: A Promising Road to Fault Tolerance and Hebbian Learning

    DTIC Science & Technology

    2012-03-16

    topological complexity a way to compare the efficiency of a scale-free network to the random network of Erdos and Renyi . All this is extensively dis- cussed in...an excellent review paper byArenas et al. (2008) showing very interesting comparisons of Erdos– Renyi networks and scale- free networks as a function

  4. Scaling an in situ network for high resolution modeling during SMAPVEX15

    USDA-ARS?s Scientific Manuscript database

    Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in si...

  5. Deploying temporary networks for upscaling of sparse network stations

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Kelly, Victoria; Hall, Mark; Palecki, Michael A.; Temimi, Marouane

    2016-10-01

    Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, business and consumer applications, or even human health issues. The installation of soil moisture sensors as sparse, national networks is necessitated by limited financial resources. However, this results in the incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, and the fine spatial distribution of precipitation events. To this end, temporary networks can be installed in the areas surrounding a permanent installation within a sparse network. The temporary networks deployed in this study provide a more representative average at the 3 km and 9 km scales, localized about the permanent gauge. The value of such temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor set to approximate the average of a temporary network at the 3 km and 9 km scales using a simple linear scaling function is tested. The capacity of a temporary network to provide reliable estimates with diminishing numbers of sensors, the temporal stability of those networks, and ultimately, the relationship of the variability of those networks to soil moisture conditions at the permanent sensor are investigated. In this manner, this work demonstrates the single-season installation of a temporary network as a mechanism to characterize the soil moisture variability at a permanent gauge within a sparse network.

  6. Distribution of shortest path lengths in a class of node duplication network models

    NASA Astrophysics Data System (ADS)

    Steinbock, Chanania; Biham, Ofer; Katzav, Eytan

    2017-09-01

    We present analytical results for the distribution of shortest path lengths (DSPL) in a network growth model which evolves by node duplication (ND). The model captures essential properties of the structure and growth dynamics of social networks, acquaintance networks, and scientific citation networks, where duplication mechanisms play a major role. Starting from an initial seed network, at each time step a random node, referred to as a mother node, is selected for duplication. Its daughter node is added to the network, forming a link to the mother node, and with probability p to each one of its neighbors. The degree distribution of the resulting network turns out to follow a power-law distribution, thus the ND network is a scale-free network. To calculate the DSPL we derive a master equation for the time evolution of the probability Pt(L =ℓ ) , ℓ =1 ,2 ,⋯ , where L is the distance between a pair of nodes and t is the time. Finding an exact analytical solution of the master equation, we obtain a closed form expression for Pt(L =ℓ ) . The mean distance 〈L〉 t and the diameter Δt are found to scale like lnt , namely, the ND network is a small-world network. The variance of the DSPL is also found to scale like lnt . Interestingly, the mean distance and the diameter exhibit properties of a small-world network, rather than the ultrasmall-world network behavior observed in other scale-free networks, in which 〈L〉 t˜lnlnt .

  7. Thin Watts-Strogatz networks.

    PubMed

    de Moura, Alessandro P S

    2006-01-01

    A modified version of the Watts-Strogatz (WS) network model is proposed, in which the number of shortcuts scales with the network size N as Nalpha, with alpha < 1. In these networks, the ratio of the number of shortcuts to the network size approaches zero as N --> infinity, whereas in the original WS model, this ratio is constant. We call such networks "thin Watts-Strogatz networks." We show that even though the fraction of shortcuts becomes vanishingly small for large networks, they still cause a kind of small-world effect, in the sense that the length L of the network increases sublinearly with the size. We develop a mean-field theory for these networks, which predicts that the length scales as N1-alpha ln N for large N. We also study how a search using only local information works in thin WS networks. We find that the search performance is enhanced compared to the regular network, and we predict that the search time tau scales as N1-alpha/2. These theoretical results are tested using numerical simulations. We comment on the possible relevance of thin WS networks for the design of high-performance low-cost communication networks.

  8. Influence of impurity seeding on the plasma radiation in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Liping, DONG; Yanmin, DUAN; Kaiyun, CHEN; Xiuda, YANG; Ling, ZHANG; Feng, XU; Jingbo, CHEN; Songtao, MAO; Zhenwei, WU; Liqun, HU

    2018-04-01

    Plasma radiation characteristics in EAST argon (Ar) gas and neon (Ne) gas seeding experiments are studied. The radiation profiles reconstructed from the fast bolometer measurement data by tomography method are compared with the ones got from the simulation program based on corona model. And the simulation results coincide roughly with the experimental data. For Ar seeding discharges, the substantial enhanced radiations can be generally observed in the edge areas at normalized radius ρ pol∼0.7–0.9, while the enhanced regions are more outer for Ne seeding discharges. The influence of seeded Ar gas on the core radiation is related to the injected position. In discharges with LSN divertor configuration, the Ar ions can permeate into the core region more easily when being injected from the opposite upper divertor ports. In USN divertor configuration, the W impurity sputtered from the upper divertor target plates are observed to be an important contributor to the increase of the core radiation no matter impurity seeding from any ports. The maximum radiated power fractions f rad (P rad/P heat) about 60%–70% have been achieved in the recent EAST experimental campaign in 2015–2016.

  9. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    PubMed

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.

  10. Unifying Inference of Meso-Scale Structures in Networks.

    PubMed

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  11. How to simulate global cosmic strings with large string tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de

    Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.

  12. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  13. Deep multi-scale convolutional neural network for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-zhe; Yang, Xia

    2018-04-01

    In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.

  14. Immunization of complex networks

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2002-03-01

    Complex networks such as the sexual partnership web or the Internet often show a high degree of redundancy and heterogeneity in their connectivity properties. This peculiar connectivity provides an ideal environment for the spreading of infective agents. Here we show that the random uniform immunization of individuals does not lead to the eradication of infections in all complex networks. Namely, networks with scale-free properties do not acquire global immunity from major epidemic outbreaks even in the presence of unrealistically high densities of randomly immunized individuals. The absence of any critical immunization threshold is due to the unbounded connectivity fluctuations of scale-free networks. Successful immunization strategies can be developed only by taking into account the inhomogeneous connectivity properties of scale-free networks. In particular, targeted immunization schemes, based on the nodes' connectivity hierarchy, sharply lower the network's vulnerability to epidemic attacks.

  15. Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity

    PubMed Central

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin

    2011-01-01

    Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799

  16. Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity

    NASA Astrophysics Data System (ADS)

    Zhou, Tao; Liu, Jian-Guo; Bai, Wen-Jie; Chen, Guanrong; Wang, Bing-Hong

    2006-11-01

    In this paper, we propose a susceptible-infected model with identical infectivity, in which, at every time step, each node can only contact a constant number of neighbors. We implemented this model on scale-free networks, and found that the infected population grows in an exponential form with the time scale proportional to the spreading rate. Furthermore, by numerical simulation, we demonstrated that the targeted immunization of the present model is much less efficient than that of the standard susceptible-infected model. Finally, we investigate a fast spreading strategy when only local information is available. Different from the extensively studied path-finding strategy, the strategy preferring small-degree nodes is more efficient than that preferring large-degree nodes. Our results indicate the existence of an essential relationship between network traffic and network epidemic on scale-free networks.

  17. Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network

    NASA Astrophysics Data System (ADS)

    Zhu, J.

    2017-12-01

    A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.

  18. Plant systems biology: network matters.

    PubMed

    Lucas, Mikaël; Laplaze, Laurent; Bennett, Malcolm J

    2011-04-01

    Systems biology is all about networks. A recent trend has been to associate systems biology exclusively with the study of gene regulatory or protein-interaction networks. However, systems biology approaches can be applied at many other scales, from the subatomic to the ecosystem scales. In this review, we describe studies at the sub-cellular, tissue, whole plant and crop scales and highlight how these studies can be related to systems biology. We discuss the properties of system approaches at each scale as well as their current limits, and pinpoint in each case advances unique to the considered scale but representing potential for the other scales. We conclude by examining plant models bridging different scales and considering the future prospects of plant systems biology. © 2011 Blackwell Publishing Ltd.

  19. A toolbox model of evolution of metabolic pathways on networks of arbitrary topology.

    PubMed

    Pang, Tin Yau; Maslov, Sergei

    2011-05-01

    In prokaryotic genomes the number of transcriptional regulators is known to be proportional to the square of the total number of protein-coding genes. A toolbox model of evolution was recently proposed to explain this empirical scaling for metabolic enzymes and their regulators. According to its rules, the metabolic network of an organism evolves by horizontal transfer of pathways from other species. These pathways are part of a larger "universal" network formed by the union of all species-specific networks. It remained to be understood, however, how the topological properties of this universal network influence the scaling law of functional content of genomes in the toolbox model. Here we answer this question by first analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We prove that critical branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and sufficient for quadratic scaling. We further generalize the rules of the model to incorporate reactions with multiple substrates/products as well as branched and cyclic metabolic pathways. To achieve its metabolic tasks, the new model employs evolutionary optimized pathways with minimal number of reactions. Numerical simulations of this realistic model on the universal network of all reactions in the KEGG database produced approximately quadratic scaling between the number of regulated pathways and the size of the metabolic network. To quantify the geometrical structure of individual pathways, we investigated the relationship between their number of reactions, byproducts, intermediate, and feedback metabolites. Our results validate and explain the ubiquitous appearance of the quadratic scaling for a broad spectrum of topologies of underlying universal metabolic networks. They also demonstrate why, in spite of "small-world" topology, real-life metabolic networks are characterized by a broad distribution of pathway lengths and sizes of metabolic regulons in regulatory networks.

  20. Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.

    PubMed

    Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen

    2016-05-01

    Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.

  1. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    PubMed

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  2. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction

    PubMed Central

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-01-01

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks. PMID:28394270

  3. The Buildup of a Scale-free Photospheric Magnetic Network

    NASA Astrophysics Data System (ADS)

    Thibault, K.; Charbonneau, P.; Crouch, A. D.

    2012-10-01

    We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.

  4. Average receiving scaling of the weighted polygon Koch networks with the weight-dependent walk

    NASA Astrophysics Data System (ADS)

    Ye, Dandan; Dai, Meifeng; Sun, Yanqiu; Shao, Shuxiang; Xie, Qi

    2016-09-01

    Based on the weighted Koch networks and the self-similarity of fractals, we present a family of weighted polygon Koch networks with a weight factor r(0 < r ≤ 1) . We study the average receiving time (ART) on weight-dependent walk (i.e., the walker moves to any of its neighbors with probability proportional to the weight of edge linking them), whose key step is to calculate the sum of mean first-passage times (MFPTs) for all nodes absorpt at a hub node. We use a recursive division method to divide the weighted polygon Koch networks in order to calculate the ART scaling more conveniently. We show that the ART scaling exhibits a sublinear or linear dependence on network order. Thus, the weighted polygon Koch networks are more efficient than expended Koch networks in receiving information. Finally, compared with other previous studies' results (i.e., Koch networks, weighted Koch networks), we find out that our models are more general.

  5. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    PubMed Central

    Diwadkar, Amit; Vaidya, Umesh

    2016-01-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies. PMID:27067994

  6. Measuring Pilot Knowledge in Training: The Pathfinder Network Scaling Technique

    DTIC Science & Technology

    2007-01-01

    Network Scaling Technique Leah J. Rowe Roger W. Schvaneveldt L -3 Communications Arizona State University Mesa, AZ Mesa, AZ leah.rowe...7293 Page 2 of 8 Measuring Pilot Knowledge in Training: The Pathfinder Network Scaling Technique Leah J. Rowe Roger W. Schvaneveldt L -3...training. ABOUT THE AUTHORS Leah J. Rowe is a Training Research Specialist with L -3 Communications at the Air Force Research Laboratory

  7. Differentiating unipolar and bipolar depression by alterations in large-scale brain networks.

    PubMed

    Goya-Maldonado, Roberto; Brodmann, Katja; Keil, Maria; Trost, Sarah; Dechent, Peter; Gruber, Oliver

    2016-02-01

    Misdiagnosing bipolar depression can lead to very deleterious consequences of mistreatment. Although depressive symptoms may be similarly expressed in unipolar and bipolar disorder, changes in specific brain networks could be very distinct, being therefore informative markers for the differential diagnosis. We aimed to characterize specific alterations in candidate large-scale networks (frontoparietal, cingulo-opercular, and default mode) in symptomatic unipolar and bipolar patients using resting state fMRI, a cognitively low demanding paradigm ideal to investigate patients. Networks were selected after independent component analysis, compared across 40 patients acutely depressed (20 unipolar, 20 bipolar), and 20 controls well-matched for age, gender, and education levels, and alterations were correlated to clinical parameters. Despite comparable symptoms, patient groups were robustly differentiated by large-scale network alterations. Differences were driven in bipolar patients by increased functional connectivity in the frontoparietal network, a central executive and externally-oriented network. Conversely, unipolar patients presented increased functional connectivity in the default mode network, an introspective and self-referential network, as much as reduced connectivity of the cingulo-opercular network to default mode regions, a network involved in detecting the need to switch between internally and externally oriented demands. These findings were mostly unaffected by current medication, comorbidity, and structural changes. Moreover, network alterations in unipolar patients were significantly correlated to the number of depressive episodes. Unipolar and bipolar groups displaying similar symptomatology could be clearly distinguished by characteristic changes in large-scale networks, encouraging further investigation of network fingerprints for clinical use. Hum Brain Mapp 37:808-818, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Scaling an in situ network for high resolution modeling during SMAPVEX15

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.; Jacobs, J. M.; Jackson, T. J.; Crow, W. T.; Holifield Collins, C.; Goodrich, D. C.; Colliander, A.

    2015-12-01

    Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in situ networks, temporary networks, and aerial mapping of soil moisture. During the Soil Moisture Active Passive Validation Experiments in 2015 (SMAPVEX15) in and around the USDA-ARS Walnut Gulch Experimental Watershed and LTAR site in southeastern Arizona, USA, a high density network of soil moisture stations was deployed across a sparse, permanent in situ network in coordination with intensive soil moisture sampling and an aircraft campaign. This watershed is also densely instrumented with precipitation gages (one gauge/0.57 km2) to monitor the North American Monsoon System, which dominates the hydrologic cycle during the summer months in this region. Using the precipitation and soil moisture time series values provided, a physically-based model is calibrated that will provide estimates at the 3km, 9km, and 36km scales. The results from this model will be compared with the point-scale gravimetric samples, aircraft-based sensor, and the satellite-based products retrieved from NASA's Soil Moisture Active Passive mission.

  9. Universal Batch Steganalysis

    DTIC Science & Technology

    2014-06-30

    steganalysis) in large-scale datasets such as might be obtained by monitoring a corporate network or social network. Identifying guilty actors...guilty’ user (of steganalysis) in large-scale datasets such as might be obtained by monitoring a corporate network or social network. Identifying guilty...floating point operations (1 TFLOPs) for a 1 megapixel image. We designed a new implementation using Compute Unified Device Architecture (CUDA) on NVIDIA

  10. Spatial spreading of infectious disease via local and national mobility networks in South Korea

    NASA Astrophysics Data System (ADS)

    Kwon, Okyu; Son, Woo-Sik

    2017-12-01

    We study the spread of infectious disease based on local- and national-scale mobility networks. We construct a local mobility network using data on urban bus services to estimate local-scale movement of people. We also construct a national mobility network from orientation-destination data of vehicular traffic between highway tollgates to evaluate national-scale movement of people. A metapopulation model is used to simulate the spread of epidemics. Thus, the number of infected people is simulated using a susceptible-infectious-recovered (SIR) model within the administrative division, and inter-division spread of infected people is determined through local and national mobility networks. In this paper, we consider two scenarios for epidemic spread. In the first, the infectious disease only spreads through local-scale movement of people, that is, the local mobility network. In the second, it spreads via both local and national mobility networks. For the former, the simulation results show infected people sequentially spread to neighboring divisions. Yet for the latter, we observe a faster spreading pattern to distant divisions. Thus, we confirm the national mobility network enhances synchronization among the incidence profiles of all administrative divisions.

  11. Impact of degree heterogeneity on the behavior of trapping in Koch networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongzhi; Gao, Shuyang; Xie, Wenlei

    2010-12-01

    Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent γ of power-law degree distribution P(k )˜k-γ, which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked systems also display ubiquitous degree correlations. In this paper, we address the trapping issue on the Koch networks, which is a special random walk with one trap fixed at a hub node. The Koch networks are power-law with the characteristic exponent γ in the range between 2 and 3, they are either assortative or disassortative. We calculate exactly the MFPT that is the average of first-passage time from all other nodes to the trap. The obtained explicit solution shows that in large networks the MFPT varies lineally with node number N, which is obviously independent of γ and is sharp contrast to the scaling behavior of MFPT observed for uncorrelated random scale-free networks, where γ influences qualitatively the MFPT of trapping problem.

  12. A new multi-scale method to reveal hierarchical modular structures in biological networks.

    PubMed

    Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin

    2016-11-15

    Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.

  13. The architecture of dynamic reservoir in the echo state network

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  14. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  15. The brainstem reticular formation is a small-world, not scale-free, network

    PubMed Central

    Humphries, M.D; Gurney, K; Prescott, T.J

    2005-01-01

    Recently, it has been demonstrated that several complex systems may have simple graph-theoretic characterizations as so-called ‘small-world’ and ‘scale-free’ networks. These networks have also been applied to the gross neural connectivity between primate cortical areas and the nervous system of Caenorhabditis elegans. Here, we extend this work to a specific neural circuit of the vertebrate brain—the medial reticular formation (RF) of the brainstem—and, in doing so, we have made three key contributions. First, this work constitutes the first model (and quantitative review) of this important brain structure for over three decades. Second, we have developed the first graph-theoretic analysis of vertebrate brain connectivity at the neural network level. Third, we propose simple metrics to quantitatively assess the extent to which the networks studied are small-world or scale-free. We conclude that the medial RF is configured to create small-world (implying coherent rapid-processing capabilities), but not scale-free, type networks under assumptions which are amenable to quantitative measurement. PMID:16615219

  16. Statistical properties of world investment networks

    NASA Astrophysics Data System (ADS)

    Song, Dong-Ming; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2009-06-01

    We have performed a detailed investigation on the world investment networks constructed from the Coordinated Portfolio Investment Survey (CPIS) data of the International Monetary Fund, ranging from 2001 to 2006. The distributions of degrees and node strengths are scale-free. The weight distributions can be well modeled by the Weibull distribution. The maximum flow spanning trees of the world investment networks possess two universal allometric scaling relations, independent of time and the investment type. The topological scaling exponent is 1.17±0.02 and the flow scaling exponent is 1.03±0.01.

  17. Autonomous management of a recursive area hierarchy for large scale wireless sensor networks using multiple parents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan Vee; Delgado-Frias, Jose

    Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configuremore » the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.« less

  18. On the Reliability of Individual Brain Activity Networks.

    PubMed

    Cassidy, Ben; Bowman, F DuBois; Rae, Caroline; Solo, Victor

    2018-02-01

    There is intense interest in fMRI research on whole-brain functional connectivity, and however, two fundamental issues are still unresolved: the impact of spatiotemporal data resolution (spatial parcellation and temporal sampling) and the impact of the network construction method on the reliability of functional brain networks. In particular, the impact of spatiotemporal data resolution on the resulting connectivity findings has not been sufficiently investigated. In fact, a number of studies have already observed that functional networks often give different conclusions across different parcellation scales. If the interpretations from functional networks are inconsistent across spatiotemporal scales, then the whole validity of the functional network paradigm is called into question. This paper investigates the consistency of resting state network structure when using different temporal sampling or spatial parcellation, or different methods for constructing the networks. To pursue this, we develop a novel network comparison framework based on persistent homology from a topological data analysis. We use the new network comparison tools to characterize the spatial and temporal scales under which consistent functional networks can be constructed. The methods are illustrated on Human Connectome Project data, showing that the DISCOH 2 network construction method outperforms other approaches at most data spatiotemporal resolutions.

  19. Popularity versus similarity in growing networks

    NASA Astrophysics Data System (ADS)

    Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, Mariangeles; Boguna, Marian

    2012-02-01

    Preferential attachment is a powerful mechanism explaining the emergence of scaling in growing networks. If new connections are established preferentially to more popular nodes in a network, then the network is scale-free. Here we show that not only popularity but also similarity is a strong force shaping the network structure and dynamics. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which preferential attachment emerges from local optimization processes. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.

  20. Network analysis reveals multiscale controls on streamwater chemistry

    USGS Publications Warehouse

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  1. Network analysis reveals multiscale controls on streamwater chemistry

    PubMed Central

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks. PMID:24753575

  2. Network analysis reveals multiscale controls on streamwater chemistry.

    PubMed

    McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W

    2014-05-13

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  3. Network cosmology.

    PubMed

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  4. Network Cosmology

    PubMed Central

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  5. Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains

    NASA Astrophysics Data System (ADS)

    Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi

    2013-03-01

    We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.

  6. Epidemic Threshold in Structured Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    EguíLuz, VíCtor M.; Klemm, Konstantin

    2002-08-01

    We analyze the spreading of viruses in scale-free networks with high clustering and degree correlations, as found in the Internet graph. For the susceptible-infected-susceptible model of epidemics the prevalence undergoes a phase transition at a finite threshold of the transmission probability. Comparing with the absence of a finite threshold in networks with purely random wiring, our result suggests that high clustering (modularity) and degree correlations protect scale-free networks against the spreading of viruses. We introduce and verify a quantitative description of the epidemic threshold based on the connectivity of the neighborhoods of the hubs.

  7. The analysis of HIV/AIDS drug-resistant on networks

    NASA Astrophysics Data System (ADS)

    Liu, Maoxing

    2014-01-01

    In this paper, we present an Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) drug-resistant model using an ordinary differential equation (ODE) model on scale-free networks. We derive the threshold for the epidemic to be zero in infinite scale-free network. We also prove the stability of disease-free equilibrium (DFE) and persistence of HIV/AIDS infection. The effects of two immunization schemes, including proportional scheme and targeted vaccination, are studied and compared. We find that targeted strategy compare favorably to a proportional condom using has prominent effect to control HIV/AIDS spread on scale-free networks.

  8. Emergence of scale-free close-knit friendship structure in online social networks.

    PubMed

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks.

  9. Emergence of Scale-Free Close-Knit Friendship Structure in Online Social Networks

    PubMed Central

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks. PMID:23272067

  10. Effects of spatial scale of sampling on food web structure

    PubMed Central

    Wood, Spencer A; Russell, Roly; Hanson, Dieta; Williams, Richard J; Dunne, Jennifer A

    2015-01-01

    This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling. PMID:26380704

  11. Networks and landscapes: a framework for setting goals and evaluating performance at the large landscape scale

    Treesearch

    R Patrick Bixler; Shawn Johnson; Kirk Emerson; Tina Nabatchi; Melly Reuling; Charles Curtin; Michele Romolini; Morgan Grove

    2016-01-01

    The objective of large landscape conser vation is to mitigate complex ecological problems through interventions at multiple and overlapping scales. Implementation requires coordination among a diverse network of individuals and organizations to integrate local-scale conservation activities with broad-scale goals. This requires an understanding of the governance options...

  12. Designing of network planning system for small-scale manufacturing

    NASA Astrophysics Data System (ADS)

    Kapulin, D. V.; Russkikh, P. A.; Vinnichenko, M. V.

    2018-05-01

    The paper presents features of network planning in small-scale discrete production. The procedure of explosion of the production order, considering multilevel representation, is developed. The software architecture is offered. Approbation of the network planning system is carried out. This system allows carrying out dynamic updating of the production plan.

  13. Supporting Sustainability: Teachers' Advice Networks and Ambitious Instructional Reform

    ERIC Educational Resources Information Center

    Coburn, Cynthia E.; Russell, Jennifer L.; Kaufman, Julia Heath; Stein, Mary Kay

    2012-01-01

    Scaling up instructional improvement remains a central challenge for school systems. While existing research suggests that teachers' social networks play a crucial role, we know little about what dimensions of teachers' social networks matter for sustainability. Drawing from a longitudinal study of the scale-up of mathematics reform, we use…

  14. A paradigm for viewing biologic systems as scale-free networks based on energy efficiency: implications for present therapies and the future of evolution.

    PubMed

    Yun, Anthony J; Lee, Patrick Y; Doux, John D

    2006-01-01

    A network constitutes an abstract description of the relationships among entities, respectively termed links and nodes. If a power law describes the probability distribution of the number of links per node, the network is said to be scale-free. Scale-free networks feature link clustering around certain hubs based on preferential attachments that emerge due either to merit or legacy. Biologic systems ranging from sub-atomic to ecosystems represent scale-free networks in which energy efficiency forms the basis of preferential attachments. This paradigm engenders a novel scale-free network theory of evolution based on energy efficiency. As environmental flux induces fitness dislocations and compels a new meritocracy, new merit-based hubs emerge, previously merit-based hubs become legacy hubs, and network recalibration occurs to achieve system optimization. To date, Darwinian evolution, characterized by innovation sampling, variation, and selection through filtered termination, has enabled biologic progress through optimization of energy efficiency. However, as humans remodel their environment, increasing the level of unanticipated fitness dislocations and inducing evolutionary stress, the tendency of networks to exhibit inertia and retain legacy hubs engender maladaptations. Many modern diseases may fundamentally derive from these evolutionary displacements. Death itself may constitute a programmed adaptation, terminating individuals who represent legacy hubs and recalibrating the network. As memes replace genes as the basis of innovation, death itself has become a legacy hub. Post-Darwinian evolution may favor indefinite persistence to optimize energy efficiency. We describe strategies to reprogram or decommission legacy hubs that participate in human disease and death.

  15. Managing Network Partitions in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif

    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.

  16. Scaling and percolation in the small-world network model

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.; Watts, D. J.

    1999-12-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Padé approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.

  17. Transformation of social networks in the late pre-Hispanic US Southwest.

    PubMed

    Mills, Barbara J; Clark, Jeffery J; Peeples, Matthew A; Haas, W R; Roberts, John M; Hill, J Brett; Huntley, Deborah L; Borck, Lewis; Breiger, Ronald L; Clauset, Aaron; Shackley, M Steven

    2013-04-09

    The late pre-Hispanic period in the US Southwest (A.D. 1200-1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure.

  18. Transformation of social networks in the late pre-Hispanic US Southwest

    PubMed Central

    Mills, Barbara J.; Clark, Jeffery J.; Peeples, Matthew A.; Haas, W. R.; Roberts, John M.; Hill, J. Brett; Huntley, Deborah L.; Borck, Lewis; Breiger, Ronald L.; Clauset, Aaron; Shackley, M. Steven

    2013-01-01

    The late pre-Hispanic period in the US Southwest (A.D. 1200–1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure. PMID:23530201

  19. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  20. Node-node correlations and transport properties in scale-free networks

    NASA Astrophysics Data System (ADS)

    Obregon, Bibiana; Guzman, Lev

    2011-03-01

    We study some transport properties of complex networks. We focus our attention on transport properties of scale-free and small-world networks and compare two types of transport: Electric and max-flow cases. In particular, we construct scale-free networks, with a given degree sequence, to estimate the distribution of conductances for different values of assortative/dissortative mixing. For the electric case we find that the distributions of conductances are affect ed by the assortative mixing of the network whereas for the max-flow case, the distributions almost do not show changes when node-node correlations are altered. Finally, we compare local and global transport in terms of the average conductance for the small-world (Watts-Strogatz) model

  1. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE PAGES

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.; ...

    2017-07-18

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  2. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  3. Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks

    PubMed Central

    von Kamp, Axel; Klamt, Steffen

    2014-01-01

    One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal) provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs) which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions) in genome-scale metabolic network models. For this we combine two approaches, namely (i) the mapping of MCSs to EMs in a dual network, and (ii) a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine) by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth) than reported previously. The strength of the presented approach is that smallest intervention strategies can be quickly calculated and screened with neither network size nor the number of required interventions posing major challenges. PMID:24391481

  4. Application of stochastic processes in random growth and evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Oikonomou, Panagiotis

    We study the effect of power-law distributed randomness on the dynamical behavior of processes such as stochastic growth patterns and evolution. First, we examine the geometrical properties of random shapes produced by a generalized stochastic Loewner Evolution driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual stochastic Loewner Evolution parameter, kappa, as well as alpha which defines the power-law tail of the stable Levy distribution. We show that the properties of these patterns change qualitatively and singularly at critical values of kappa and alpha. It is reasonable to call such changes "phase transitions". These transitions occur as kappa passes through four and as alpha passes through one. Numerical simulations are used to explore the global scaling behavior of these patterns in each "phase". We show both analytically and numerically that the growth continues indefinitely in the vertical direction for alpha greater than 1, goes as logarithmically with time for alpha equals to 1, and saturates for alpha smaller than 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. Scaling functions for the probability density are given for various limiting cases. Second, we study the effect of the architecture of biological networks on their evolutionary dynamics. In recent years, studies of the architecture of large networks have unveiled a common topology, called scale-free, in which a majority of the elements are poorly connected except for a small fraction of highly connected components. We ask how networks with distinct topologies can evolve towards a pre-established target phenotype through a process of random mutations and selection. We use networks of Boolean components as a framework to model a large class of phenotypes. Within this approach, we find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. While homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously towards the target phenotype. Moreover, we show that scale-free networks always evolve faster than homogeneous random networks; remarkably, this property does not depend on the precise value of the topological parameter. By contrast, homogeneous random networks require a specific tuning of their topological parameter in order to optimize their fitness. This model suggests that the evolutionary paths of biological networks, punctuated or continuous, may solely be determined by the network topology.

  5. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.

    PubMed

    Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger

    2017-01-01

    Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.

  6. Disease spreading in real-life networks

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros; Argyrakis, Panos

    2002-08-01

    In recent years the scientific community has shown a vivid interest in the network structure and dynamics of real-life organized systems. Many such systems, covering an extremely wide range of applications, have been recently shown to exhibit scale-free character in their connectivity distribution, meaning that they obey a power law. Modeling of epidemics on lattices and small-world networks suffers from the presence of a critical infection threshold, above which the entire population is infected. For scale-free networks, the original assumption was that the formation of a giant cluster would lead to an epidemic spreading in the same way as in simpler networks. Here we show that modeling epidemics on a scale-free network can greatly improve the predictions on the rate and efficiency of spreading, as compared to lattice models and small-world networks. We also show that the dynamics of a disease are greatly influenced by the underlying population structure. The exact same model can describe a plethora of networks, such as social networks, virus spreading in the Web, rumor spreading, signal transmission etc.

  7. From scale-free to Erdos-Rényi networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir

    2006-05-01

    We analyze a model that interpolates between scale-free and Erdos-Rényi networks. The model introduced generates a one-parameter family of networks and allows one to analyze the role of structural heterogeneity. Analytical calculations are compared with extensive numerical simulations in order to describe the transition between these two important classes of networks. Finally, an application of the proposed model to the study of the percolation transition is presented.

  8. Appplication of statistical mechanical methods to the modeling of social networks

    NASA Astrophysics Data System (ADS)

    Strathman, Anthony Robert

    With the recent availability of large-scale social data sets, social networks have become open to quantitative analysis via the methods of statistical physics. We examine the statistical properties of a real large-scale social network, generated from cellular phone call-trace logs. We find this network, like many other social networks to be assortative (r = 0.31) and clustered (i.e., strongly transitive, C = 0.21). We measure fluctuation scaling to identify the presence of internal structure in the network and find that structural inhomogeneity effectively disappears at the scale of a few hundred nodes, though there is no sharp cutoff. We introduce an agent-based model of social behavior, designed to model the formation and dissolution of social ties. The model is a modified Metropolis algorithm containing agents operating under the basic sociological constraints of reciprocity, communication need and transitivity. The model introduces the concept of a social temperature. We go on to show that this simple model reproduces the global statistical network features (incl. assortativity, connected fraction, mean degree, clustering, and mean shortest path length) of the real network data and undergoes two phase transitions, one being from a "gas" to a "liquid" state and the second from a liquid to a glassy state as function of this social temperature.

  9. Salient object detection based on multi-scale contrast.

    PubMed

    Wang, Hai; Dai, Lei; Cai, Yingfeng; Sun, Xiaoqiang; Chen, Long

    2018-05-01

    Due to the development of deep learning networks, a salient object detection based on deep learning networks, which are used to extract the features, has made a great breakthrough compared to the traditional methods. At present, the salient object detection mainly relies on very deep convolutional network, which is used to extract the features. In deep learning networks, an dramatic increase of network depth may cause more training errors instead. In this paper, we use the residual network to increase network depth and to mitigate the errors caused by depth increase simultaneously. Inspired by image simplification, we use color and texture features to obtain simplified image with multiple scales by means of region assimilation on the basis of super-pixels in order to reduce the complexity of images and to improve the accuracy of salient target detection. We refine the feature on pixel level by the multi-scale feature correction method to avoid the feature error when the image is simplified at the above-mentioned region level. The final full connection layer not only integrates features of multi-scale and multi-level but also works as classifier of salient targets. The experimental results show that proposed model achieves better results than other salient object detection models based on original deep learning networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Reciprocity and the Emergence of Power Laws in Social Networks

    NASA Astrophysics Data System (ADS)

    Schnegg, Michael

    Research in network science has shown that many naturally occurring and technologically constructed networks are scale free, that means a power law degree distribution emerges from a growth model in which each new node attaches to the existing network with a probability proportional to its number of links (= degree). Little is known about whether the same principles of local attachment and global properties apply to societies as well. Empirical evidence from six ethnographic case studies shows that complex social networks have significantly lower scaling exponents γ ~ 1 than have been assumed in the past. Apparently humans do not only look for the most prominent players to play with. Moreover cooperation in humans is characterized through reciprocity, the tendency to give to those from whom one has received in the past. Both variables — reciprocity and the scaling exponent — are negatively correlated (r = -0.767, sig = 0.075). If we include this effect in simulations of growing networks, degree distributions emerge that are much closer to those empirically observed. While the proportion of nodes with small degrees decreases drastically as we introduce reciprocity, the scaling exponent is more robust and changes only when a relatively large proportion of attachment decisions follow this rule. If social networks are less scale free than previously assumed this has far reaching implications for policy makers, public health programs and marketing alike.

  11. Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex.

    PubMed

    Fröhlich, Flavio; Bazhenov, Maxim; Sejnowski, Terrence J

    2008-02-13

    Slow periodic EEG discharges are common in CNS disorders. The pathophysiology of this aberrant rhythmic activity is poorly understood. We used a computational model of a neocortical network with a dynamic homeostatic scaling rule to show that loss of input (partial deafferentation) can trigger network reorganization that results in pathological periodic discharges. The decrease in average firing rate in the network by deafferentation was compensated by homeostatic synaptic scaling of recurrent excitation among pyramidal cells. Synaptic scaling succeeded in recovering the network target firing rate for all degrees of deafferentation (fraction of deafferented cells), but there was a critical degree of deafferentation for pathological network reorganization. For deafferentation degrees below this value, homeostatic upregulation of recurrent excitation had minimal effect on the macroscopic network dynamics. For deafferentation above this threshold, however, a slow periodic oscillation appeared, patterns of activity were less sparse, and bursting occurred in individual neurons. Also, comparison of spike-triggered afferent and recurrent excitatory conductances revealed that information transmission was strongly impaired. These results suggest that homeostatic plasticity can lead to secondary functional impairment in case of cortical disorders associated with cell loss.

  12. The complexity and robustness of metro networks

    NASA Astrophysics Data System (ADS)

    Derrible, Sybil; Kennedy, Christopher

    2010-09-01

    Transportation systems, being real-life examples of networks, are particularly interesting to analyze from the viewpoint of the new and rapidly emerging field of network science. Two particular concepts seem to be particularly relevant: scale-free patterns and small-worlds. By looking at 33 metro systems in the world, this paper adapts network science methodologies to the transportation literature, and offers one application to the robustness of metros; here, metro refers to urban rail transit with exclusive right-of-way, whether it is underground, at grade or elevated. We find that most metros are indeed scale-free (with scaling factors ranging from 2.10 to 5.52) and small-worlds; they show atypical behaviors, however, with increasing size. In particular, the presence of transfer-hubs (stations hosting more than three lines) results in relatively large scaling factors. The analysis provides insights/recommendations for increasing the robustness of metro networks. Smaller networks should focus on creating transfer stations, thus generating cycles to offer alternative routes. For larger networks, few stations seem to detain a certain monopole on transferring, it is therefore important to create additional transfers, possibly at the periphery of city centers; the Tokyo system seems to remarkably incorporate these properties.

  13. Large-Scale High School Reform through School Improvement Networks: Exploring Possibilities for "Developmental Evaluation"

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Lenhoff, Sarah Winchell; Glazer, Joshua L.

    2016-01-01

    Recognizing school improvement networks as a leading strategy for large-scale high school reform, this analysis examines developmental evaluation as an approach to examining school improvement networks as "learning systems" able to produce, use, and refine practical knowledge in large numbers of schools. Through a case study of one…

  14. The Effects of Observation Errors on the Attack Vulnerability of Complex Networks

    DTIC Science & Technology

    2012-11-01

    more detail, to construct a true network we select a topology (erdos- renyi (Erdos & Renyi , 1959), scale-free (Barabási & Albert, 1999), small world...Efficiency of Scale-Free Networks: Error and Attack Tolerance. Physica A, Volume 320, pp. 622-642. 6. Erdos, P. & Renyi , A., 1959. On Random Graphs, I

  15. Sparse cliques trump scale-free networks in coordination and competition

    PubMed Central

    Gianetto, David A.; Heydari, Babak

    2016-01-01

    Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game. PMID:26899456

  16. Sparse cliques trump scale-free networks in coordination and competition

    NASA Astrophysics Data System (ADS)

    Gianetto, David A.; Heydari, Babak

    2016-02-01

    Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game.

  17. MANGO Imager Network Observations of Geomagnetic Storm Impact on Midlatitude 630 nm Airglow Emissions

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Bhatt, A.

    2017-12-01

    The Midlatitude Allsky-imaging Network for GeoSpace Observations (MANGO) is a network of imagers filtered at 630 nm spread across the continental United States. MANGO is used to image large-scale airglow and aurora features and observes the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network consists of seven all-sky imagers providing continuous coverage over the United States and extending south into Mexico. This network sees high levels of medium and large scale wave activity due to both neutral and geomagnetic storm forcing. The geomagnetic storm observations largely fall into two categories: Stable Auroral Red (SAR) arcs and Large-scale traveling ionospheric disturbances (LSTIDs). In addition, less-often observed effects include anomalous airglow brightening, bright swirls, and frozen-in traveling structures. We will present an analysis of multiple events observed over four years of MANGO network operation. We will provide both statistics on the cumulative observations and a case study of the "Memorial Day Storm" on May 27, 2017.

  18. Dynamics of Bottlebrush Networks

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Daniel, William; Vatankhah-Varnosfaderani, Mohammad; Sheiko, Sergei; Dobrynin, Andrey

    The deformation dynamics of bottlebrush networks in a melt state is studied using a combination of theoretical, computational, and experimental techniques. Three main molecular relaxation processes are identified in these systems: (i) relaxation of the side chains, (ii) relaxation of the bottlebrush backbones on length scales shorter than the bottlebrush Kuhn length (bK) , and (iii) relaxation of the bottlebrush network strands between cross-links. The relaxation of side chains having a degree of polymerization (DP), nsc, dominates the network dynamics on the time scales τ0 < t <=τsc , where τ0 and τsc τ0 (nsc + 1)2 are the characteristic relaxation times of monomeric units and side chains, respectively. In this time interval, the shear modulus at small deformations decays with time as G0BB (t) t - 1 / 2. On time scales t >τsc, bottlebrush elastomers behave as networks of filaments with a shear modulus G0BB (t) (nsc + 1)- 1 / 4t - 1 / 2 . Finally, the response of the bottlebrush networks becomes time independent at times scales longer than the Rouse time of the bottlebrush network strands. In this time interval, the network shear modulus depends on the network molecular parameters as G0BB (t) (nsc + 1)-1N-1 . Analysis of the simulation data shows that the stress evolution in the bottlebrush networks during constant strain-rate deformation can be described by a universal function. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.

  19. Recent developments in VSD imaging of small neuronal networks

    PubMed Central

    Hill, Evan S.; Bruno, Angela M.

    2014-01-01

    Voltage-sensitive dye (VSD) imaging is a powerful technique that can provide, in single experiments, a large-scale view of network activity unobtainable with traditional sharp electrode recording methods. Here we review recent work using VSDs to study small networks and highlight several results from this approach. Topics covered include circuit mapping, network multifunctionality, the network basis of decision making, and the presence of variably participating neurons in networks. Analytical tools being developed and applied to large-scale VSD imaging data sets are discussed, and the future prospects for this exciting field are considered. PMID:25225295

  20. Endogenous network of firms and systemic risk

    NASA Astrophysics Data System (ADS)

    Ma, Qianting; He, Jianmin; Li, Shouwei

    2018-02-01

    We construct an endogenous network characterized by commercial credit relationships connecting the upstream and downstream firms. Simulation results indicate that the endogenous network model displays a scale-free property which exists in real-world firm systems. In terms of the network structure, with the expansion of the scale of network nodes, the systemic risk increases significantly, while the heterogeneities of network nodes have no effect on systemic risk. As for firm micro-behaviors, including the selection range of trading partners, actual output, labor requirement, price of intermediate products and employee salaries, increase of all these parameters will lead to higher systemic risk.

  1. Network structure of production

    PubMed Central

    Atalay, Enghin; Hortaçsu, Ali; Roberts, James; Syverson, Chad

    2011-01-01

    Complex social networks have received increasing attention from researchers. Recent work has focused on mechanisms that produce scale-free networks. We theoretically and empirically characterize the buyer–supplier network of the US economy and find that purely scale-free models have trouble matching key attributes of the network. We construct an alternative model that incorporates realistic features of firms’ buyer–supplier relationships and estimate the model’s parameters using microdata on firms’ self-reported customers. This alternative framework is better able to match the attributes of the actual economic network and aids in further understanding several important economic phenomena. PMID:21402924

  2. Cascade phenomenon against subsequent failures in complex networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng

    2018-06-01

    Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.

  3. Cascading failures in interconnected networks with dynamical redistribution of loads

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuang; Zhang, Peng; Yang, Hujiang

    2015-09-01

    Cascading failures of loads in isolated networks and coupled networks have been studied in the past few years. In most of the corresponding results, the topologies of the networks are destroyed. Here, we present an interconnected network model considering cascading failures based on the dynamic redistribution of flow in the networks. Compared with the results of single scale-free networks, we find that interconnected scale-free networks have higher vulnerability. Additionally, the network heterogeneity plays an important role in the robustness of interconnected networks under intentional attacks. Considering the effects of various coupling preferences, the results show that there are almost no differences. Finally, the application of our model to the Beijing interconnected traffic network, which consists of a subway network and a bus network, shows that the subway network suffers more damage under the attack. Moreover, the interconnected traffic network may be more exposed to damage after initial attacks on the bus network. These discussions are important for the design and optimization of interconnected networks.

  4. Mathematics and the Internet: A Source of Enormous Confusion and Great Potential

    DTIC Science & Technology

    2009-05-01

    free Internet Myth The story recounted below of the scale-free nature of the Internet seems convincing, sound, and al- most too good to be true ...models. In fact, much of the initial excitement in the nascent field of network science can be attributed to an ear- ly and appealingly simple class...this new class of networks, com- monly referred to as scale-free networks. The term scale-free derives from the simple observation that power-law node

  5. A probabilistic approach to quantifying spatial patterns of flow regimes and network-scale connectivity

    NASA Astrophysics Data System (ADS)

    Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca

    2017-04-01

    The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.

  6. A multi-scale network method for two-phase flow in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces withinmore » each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.« less

  7. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    PubMed Central

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  8. The connectivity structure, giant strong component and centrality of metabolic networks.

    PubMed

    Ma, Hong-Wu; Zeng, An-Ping

    2003-07-22

    Structural and functional analysis of genome-based large-scale metabolic networks is important for understanding the design principles and regulation of the metabolism at a system level. The metabolic network is conventionally considered to be highly integrated and very complex. A rational reduction of the metabolic network to its core structure and a deeper understanding of its functional modules are important. In this work, we show that the metabolites in a metabolic network are far from fully connected. A connectivity structure consisting of four major subsets of metabolites and reactions, i.e. a fully connected sub-network, a substrate subset, a product subset and an isolated subset is found to exist in metabolic networks of 65 fully sequenced organisms. The largest fully connected part of a metabolic network, called 'the giant strong component (GSC)', represents the most complicated part and the core of the network and has the feature of scale-free networks. The average path length of the whole network is primarily determined by that of the GSC. For most of the organisms, GSC normally contains less than one-third of the nodes of the network. This connectivity structure is very similar to the 'bow-tie' structure of World Wide Web. Our results indicate that the bow-tie structure may be common for large-scale directed networks. More importantly, the uncovered structure feature makes a structural and functional analysis of large-scale metabolic network more amenable. As shown in this work, comparing the closeness centrality of the nodes in the GSC can identify the most central metabolites of a metabolic network. To quantitatively characterize the overall connection structure of the GSC we introduced the term 'overall closeness centralization index (OCCI)'. OCCI correlates well with the average path length of the GSC and is a useful parameter for a system-level comparison of metabolic networks of different organisms. http://genome.gbf.de/bioinformatics/

  9. Improving resolution of dynamic communities in human brain networks through targeted node removal

    PubMed Central

    Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.

    2017-01-01

    Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662

  10. Inefficient epidemic spreading in scale-free networks

    NASA Astrophysics Data System (ADS)

    Piccardi, Carlo; Casagrandi, Renato

    2008-02-01

    Highly heterogeneous degree distributions yield efficient spreading of simple epidemics through networks, but can be inefficient with more complex epidemiological processes. We study diseases with nonlinear force of infection whose prevalences can abruptly collapse to zero while decreasing the transmission parameters. We find that scale-free networks can be unable to support diseases that, on the contrary, are able to persist at high endemic levels in homogeneous networks with the same average degree.

  11. Robustness of Controllability for Networks Based on Edge-Attack

    PubMed Central

    Nie, Sen; Wang, Xuwen; Zhang, Haifeng; Li, Qilang; Wang, Binghong

    2014-01-01

    We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components. PMID:24586507

  12. Robustness of controllability for networks based on edge-attack.

    PubMed

    Nie, Sen; Wang, Xuwen; Zhang, Haifeng; Li, Qilang; Wang, Binghong

    2014-01-01

    We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components.

  13. Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation

    NASA Astrophysics Data System (ADS)

    Ye, Sheng; Reisinger, Alexander J.; Tank, Jennifer L.; Baker, Michelle A.; Hall, Robert O.; Rosi, Emma J.; Sivapalan, Murugesu

    2017-11-01

    Along the river network, water, sediment, and nutrients are transported, cycled, and altered by coupled hydrological and biogeochemical processes. Our current understanding of the rates and processes controlling the cycling and removal of dissolved inorganic nutrients in river networks is limited due to a lack of empirical measurements in large, (nonwadeable), rivers. The goal of this paper was to develop a coupled hydrological and biogeochemical process model to simulate nutrient uptake at the network scale during summer base flow conditions. The model was parameterized with literature values from headwater streams, and empirical measurements made in 15 rivers with varying hydrological, biological, and topographic characteristics, to simulate nutrient uptake at the network scale. We applied the coupled model to 15 catchments describing patterns in uptake for three different solutes to determine the role of rivers in network-scale nutrient cycling. Model simulation results, constrained by empirical data, suggested that rivers contributed proportionally more to nutrient removal than headwater streams given the fraction of their length represented in a network. In addition, variability of nutrient removal patterns among catchments was varied among solutes, and as expected, was influenced by nutrient concentration and discharge. Net ammonium uptake was not significantly correlated with any environmental descriptor. In contrast, net daily nitrate removal was linked to suspended chlorophyll a (an indicator of primary producers) and land use characteristics. Finally, suspended sediment characteristics and agricultural land use were correlated with net daily removal of soluble reactive phosphorus, likely reflecting abiotic sorption dynamics. Rivers are understudied relative to streams, and our model suggests that rivers can contribute more to network-scale nutrient removal than would be expected based upon their representative fraction of network channel length.

  14. Network placement optimization for large-scale distributed system

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Liu, Fangfang; Fu, Yunxia; Zhou, Zheng

    2018-01-01

    The network geometry strongly influences the performance of the distributed system, i.e., the coverage capability, measurement accuracy and overall cost. Therefore the network placement optimization represents an urgent issue in the distributed measurement, even in large-scale metrology. This paper presents an effective computer-assisted network placement optimization procedure for the large-scale distributed system and illustrates it with the example of the multi-tracker system. To get an optimal placement, the coverage capability and the coordinate uncertainty of the network are quantified. Then a placement optimization objective function is developed in terms of coverage capabilities, measurement accuracy and overall cost. And a novel grid-based encoding approach for Genetic algorithm is proposed. So the network placement is optimized by a global rough search and a local detailed search. Its obvious advantage is that there is no need for a specific initial placement. At last, a specific application illustrates this placement optimization procedure can simulate the measurement results of a specific network and design the optimal placement efficiently.

  15. An optimal routing strategy on scale-free networks

    NASA Astrophysics Data System (ADS)

    Yang, Yibo; Zhao, Honglin; Ma, Jinlong; Qi, Zhaohui; Zhao, Yongbin

    Traffic is one of the most fundamental dynamical processes in networked systems. With the traditional shortest path routing (SPR) protocol, traffic congestion is likely to occur on the hub nodes on scale-free networks. In this paper, we propose an improved optimal routing (IOR) strategy which is based on the betweenness centrality and the degree centrality of nodes in the scale-free networks. With the proposed strategy, the routing paths can accurately bypass hub nodes in the network to enhance the transport efficiency. Simulation results show that the traffic capacity as well as some other indexes reflecting transportation efficiency are further improved with the IOR strategy. Owing to the significantly improved traffic performance, this study is helpful to design more efficient routing strategies in communication or transportation systems.

  16. Scale-free networks as an epiphenomenon of memory

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Hamma, A.; Di Ventra, M.

    2015-01-01

    Many realistic networks are scale free, with small characteristic path lengths, high clustering, and power law in their degree distribution. They can be obtained by dynamical networks in which a preferential attachment process takes place. However, this mechanism is non-local, in the sense that it requires knowledge of the whole graph in order for the graph to be updated. Instead, if preferential attachment and realistic networks occur in physical systems, these features need to emerge from a local model. In this paper, we propose a local model and show that a possible ingredient (which is often underrated) for obtaining scale-free networks with local rules is memory. Such a model can be realised in solid-state circuits, using non-linear passive elements with memory such as memristors, and thus can be tested experimentally.

  17. Drastic disorder-induced reduction of signal amplification in scale-free networks.

    PubMed

    Chacón, Ricardo; Martínez, Pedro J

    2015-07-01

    Understanding information transmission across a network is a fundamental task for controlling and manipulating both biological and manmade information-processing systems. Here we show how topological resonant-like amplification effects in scale-free networks of signaling devices are drastically reduced when phase disorder in the external signals is considered. This is demonstrated theoretically by means of a starlike network of overdamped bistable systems, and confirmed numerically by simulations of scale-free networks of such systems. The taming effect of the phase disorder is found to be sensitive to the amplification's strength, while the topology-induced amplification mechanism is robust against this kind of quenched disorder in the sense that it does not significantly change the values of the coupling strength where amplification is maximum in its absence.

  18. Impulse-induced optimum signal amplification in scale-free networks.

    PubMed

    Martínez, Pedro J; Chacón, Ricardo

    2016-04-01

    Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.

  19. Synchronization in node of complex networks consist of complex chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  20. Evolving network with different edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Jie; Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13699; Ge Yizhi

    2007-10-15

    We propose a scale-free network similar to Barabasi-Albert networks but with two different types of edges. This model is based on the idea that in many cases there are more than one kind of link in a network and when a new node enters the network both old nodes and different kinds of links compete to obtain it. The degree distribution of both the total degree and the degree of each type of edge is analyzed and found to be scale-free. Simulations are shown to confirm these results.

  1. Social network analysis of multi-stakeholder platforms in agricultural research for development: Opportunities and constraints for innovation and scaling.

    PubMed

    Hermans, Frans; Sartas, Murat; van Schagen, Boudy; van Asten, Piet; Schut, Marc

    2017-01-01

    Multi-stakeholder platforms (MSPs) are seen as a promising vehicle to achieve agricultural development impacts. By increasing collaboration, exchange of knowledge and influence mediation among farmers, researchers and other stakeholders, MSPs supposedly enhance their 'capacity to innovate' and contribute to the 'scaling of innovations'. The objective of this paper is to explore the capacity to innovate and scaling potential of three MSPs in Burundi, Rwanda and the South Kivu province located in the eastern part of Democratic Republic of Congo (DRC). In order to do this, we apply Social Network Analysis and Exponential Random Graph Modelling (ERGM) to investigate the structural properties of the collaborative, knowledge exchange and influence networks of these MSPs and compared them against value propositions derived from the innovation network literature. Results demonstrate a number of mismatches between collaboration, knowledge exchange and influence networks for effective innovation and scaling processes in all three countries: NGOs and private sector are respectively over- and under-represented in the MSP networks. Linkages between local and higher levels are weak, and influential organisations (e.g., high-level government actors) are often not part of the MSP or are not actively linked to by other organisations. Organisations with a central position in the knowledge network are more sought out for collaboration. The scaling of innovations is primarily between the same type of organisations across different administrative levels, but not between different types of organisations. The results illustrate the potential of Social Network Analysis and ERGMs to identify the strengths and limitations of MSPs in terms of achieving development impacts.

  2. Challenges and Opportunities to Developing Synergies Among Diverse Environmental Observatories: FSML, NEON, and GLEON

    NASA Astrophysics Data System (ADS)

    Williamson, C. E.; Weathers, K. C.; Knoll, L. B.; Brentrup, J.

    2012-12-01

    Recent rapid advances in sensor technology and cyberinfrastructure have enabled the development of numerous environmental observatories ranging from local networks at field stations and marine laboratories (FSML) to continental scale observatories such as the National Ecological Observatory Network (NEON) to global scale observatories such as the Global Lake Ecological Observatory Network (GLEON). While divergent goals underlie the initial development of these observatories, and they are often designed to serve different communities, many opportunities for synergies exist. In addition, the use of existing infrastructure may enhance the cost-effectiveness of building and maintaining large scale observatories. For example, FSMLs are established facilities with the staff and infrastructure to host sensor nodes of larger networks. Many field stations have existing staff and long-term databases as well as smaller sensor networks that are the product of a single or small group of investigators with a unique data management system embedded in a local or regional community. These field station based facilities and data are a potentially untapped gold mine for larger continental and global scale observatories; common ecological and environmental challenges centered on understanding the impacts of changing climate, land use, and invasive species often underlie these efforts. The purpose of this talk is to stimulate a dialog on the challenges of merging efforts across these different spatial and temporal scales, as well as addressing how to develop synergies among observatory networks with divergent roots and philosophical approaches. For example, FSMLs have existing long-term databases and facilities, while NEON has sparse past data but a well-developed template and closely coordinated team working in a coherent format across a continental scale. GLEON on the other hand is a grass-roots network of experts in science, information technology, and engineering with a common goal of building a scalable network around the world to understand and predict how lakes respond to global change. Creating synergies among networks at these divergent scales requires open discussions ranging from data collection and management to data serving and sharing. Coordination of these efforts can provide an additional opportunity to educate both students and the public in innovative new ways about the broader continental to global scale of ecological and environmental challenges that they have observed in their more local ecosystems.

  3. Vanishing point: Scale independence in geomorphological hierarchies

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2016-08-01

    Scale linkage problems in geosciences are often associated with a hierarchy of components. Both dynamical systems perspectives and intuition suggest that processes or relationships operating at fundamentally different scales are independent with respect to influences on system dynamics. But how far apart is ;fundamentally different;-that is, what is the ;vanishing point; at which scales are no longer interdependent? And how do we reconcile that with the idea (again, supported by both theory and intuition) that we can work our way along scale hierarchies from microscale to planetary (and vice-versa)? Graph and network theory are employed here to address these questions. Analysis of two archetypal hierarchical networks shows low algebraic connectivity, indicating low levels of inferential synchronization. This explains the apparent paradox between scale independence and hierarchical linkages. Incorporating more hierarchical levels results in an increase in complexity or entropy of the network as a whole, but at a nonlinear rate. Complexity increases as a power α of the number of levels in the hierarchy, with α < 1 and usually ≤ 0.6. However, algebraic connectivity decreases at a more rapid rate. Thus, the ability to infer one part of the hierarchical network from other level decays rapidly as more levels are added. Relatedness among system components decreases with differences in scale or resolution, analogous to distance decay in the spatial domain. These findings suggest a strategy of identifying and focusing on the most important or interesting scale levels, rather than attempting to identify the smallest or largest scale levels and work top-down or bottom-up from there. Examples are given from soil geomorphology and karst flow networks.

  4. Epidemic mitigation via awareness propagation in communication networks: the role of time scales

    NASA Astrophysics Data System (ADS)

    Wang, Huijuan; Chen, Chuyi; Qu, Bo; Li, Daqing; Havlin, Shlomo

    2017-07-01

    The participation of individuals in multi-layer networks allows for feedback between network layers, opening new possibilities to mitigate epidemic spreading. For instance, the spread of a biological disease such as Ebola in a physical contact network may trigger the propagation of the information related to this disease in a communication network, e.g. an online social network. The information propagated in the communication network may increase the awareness of some individuals, resulting in them avoiding contact with their infected neighbors in the physical contact network, which might protect the population from the infection. In this work, we aim to understand how the time scale γ of the information propagation (speed that information is spread and forgotten) in the communication network relative to that of the epidemic spread (speed that an epidemic is spread and cured) in the physical contact network influences such mitigation using awareness information. We begin by proposing a model of the interaction between information propagation and epidemic spread, taking into account the relative time scale γ. We analytically derive the average fraction of infected nodes in the meta-stable state for this model (i) by developing an individual-based mean-field approximation (IBMFA) method and (ii) by extending the microscopic Markov chain approach (MMCA). We show that when the time scale γ of the information spread relative to the epidemic spread is large, our IBMFA approximation is better compared to MMCA near the epidemic threshold, whereas MMCA performs better when the prevalence of the epidemic is high. Furthermore, we find that an optimal mitigation exists that leads to a minimal fraction of infected nodes. The optimal mitigation is achieved at a non-trivial relative time scale γ, which depends on the rate at which an infected individual becomes aware. Contrary to our intuition, information spread too fast in the communication network could reduce the mitigation effect. Finally, our finding has been validated in the real-world two-layer network obtained from the location-based social network Brightkite.

  5. Effects of maximum node degree on computer virus spreading in scale-free networks

    NASA Astrophysics Data System (ADS)

    Bamaarouf, O.; Ould Baba, A.; Lamzabi, S.; Rachadi, A.; Ez-Zahraouy, H.

    2017-10-01

    The increase of the use of the Internet networks favors the spread of viruses. In this paper, we studied the spread of viruses in the scale-free network with different topologies based on the Susceptible-Infected-External (SIE) model. It is found that the network structure influences the virus spreading. We have shown also that the nodes of high degree are more susceptible to infection than others. Furthermore, we have determined a critical maximum value of node degree (Kc), below which the network is more resistible and the computer virus cannot expand into the whole network. The influence of network size is also studied. We found that the network with low size is more effective to reduce the proportion of infected nodes.

  6. Towards Online Multiresolution Community Detection in Large-Scale Networks

    PubMed Central

    Huang, Jianbin; Sun, Heli; Liu, Yaguang; Song, Qinbao; Weninger, Tim

    2011-01-01

    The investigation of community structure in networks has aroused great interest in multiple disciplines. One of the challenges is to find local communities from a starting vertex in a network without global information about the entire network. Many existing methods tend to be accurate depending on a priori assumptions of network properties and predefined parameters. In this paper, we introduce a new quality function of local community and present a fast local expansion algorithm for uncovering communities in large-scale networks. The proposed algorithm can detect multiresolution community from a source vertex or communities covering the whole network. Experimental results show that the proposed algorithm is efficient and well-behaved in both real-world and synthetic networks. PMID:21887325

  7. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    PubMed

    Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R

    2012-01-01

    In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  8. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Treesearch

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  9. Students' Attitudes towards Edmodo, a Social Learning Network: A Scale Development Study

    ERIC Educational Resources Information Center

    Yunkul, Eyup; Cankaya, Serkan

    2017-01-01

    Social Learning Networks (SLNs) are the developed forms of Social Network Sites (SNSs) adapted to educational environments, and they are used by quite a large population throughout the world. In addition, in related literature, there is no scale for the measurement of students' attitudes towards such sites. The purpose of this study was to develop…

  10. Future global SLR network evolution and its impact on the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Kehm, Alexander; Bloßfeld, Mathis; Pavlis, Erricos C.; Seitz, Florian

    2018-06-01

    Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.

  11. Network modularity reveals critical scales for connectivity in ecology and evolution

    USGS Publications Warehouse

    Fletcher, Robert J.; Revell, Andre; Reichert, Brian E.; Kitchens, Wiley M.; Dixon, J.; Austin, James D.

    2013-01-01

    For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.

  12. Growth of a Dendritic Channel Network (Invited)

    NASA Astrophysics Data System (ADS)

    Rothman, D.; Abrams, D. M.; Devauchelle, O.; Petroff, A. P.; Lobkovsky, A. E.; Straub, K. M.; McElroy, B.; Mohrig, D. C.; Kudrolli, A.

    2009-12-01

    Dendritic channel networks are a ubiquitous feature of Earth's topography. A half century of work has detailed their scale-invariant geometry. But relatively little is known about how such networks grow, especially in natural settings at geologic time scales. This talk addresses the growth of a particularly simple class of channel networks: those which drain groundwater. We focus on a pristine field site in the Florida Panhandle, in which channels extending for kilometers have been incised vertically through tens of meters of ancient beach sands. We first show how the flow of subsurface water interacts with the planform geometry of the network. Ground-penetrating radar images of the water table shape near a highly-ramified section of the network provide a qualitative view of groundwater focusing. Noting that the water table represents a balance between water input via rain and water flowing into the channel network, we solve for the steady state shape of the water table around the entire network and the associated water fluxes. Comparison of predicted and measured fluxes shows that the ramified structure of the Florida network is consistent with uniformly forced unstable growth through a homogeneous medium. In other words, the dendritic pattern results intrinsically from growth dynamics rather than geologic heterogeneity. We then use these observations to show that the growth of groundwater-driven networks can be described by two linear response laws. Remarkably, one of these growth laws is reversible, which allows us to reconstruct network history and estimate network age. A particularly striking feature of the Florida network is the existence of a characteristic length scale between channels. Our theory predicts how this length scale evolves, thereby linking network growth to geometric form. Reference: D. M. Abrams, A. E. Lobkovsky, A. P. Petroff, K. M. Straub, B. McElroy, D. C. Mohrig, A. Kudrolli, and D. H. Rothman,, Growth laws for channel networks incised by groundwater flow, Nature Geoscience, v. 2, 193-196, March 2009.

  13. Research on cascading failure in multilayer network with different coupling preference

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Jin, Lei; Wang, Xiao Juan

    This paper is aimed at constructing robust multilayer networks against cascading failure. Considering link protection strategies in reality, we design a cascading failure model based on load distribution and extend it to multilayer. We use the cascading failure model to deduce the scale of the largest connected component after cascading failure, from which we can find that the performance of four kinds of load distribution strategies associates with the load ratio of the current edge to its adjacent edge. Coupling preference is a typical characteristic in multilayer networks which corresponds to the network robustness. The coupling preference of multilayer networks is divided into two forms: the coupling preference in layers and the coupling preference between layers. To analyze the relationship between the coupling preference and the multilayer network robustness, we design a construction algorithm to generate multilayer networks with different coupling preferences. Simulation results show that the load distribution based on the node betweenness performs the best. When the coupling coefficient in layers is zero, the scale-free network is the most robust. In the random network, the assortative coupling in layers is more robust than the disassortative coupling. For the coupling preference between layers, the assortative coupling between layers is more robust than the disassortative coupling both in the scale free network and the random network.

  14. Impact analysis of two kinds of failure strategies in Beijing road transportation network

    NASA Astrophysics Data System (ADS)

    Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan

    The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.

  15. Generating Billion-Edge Scale-Free Networks in Seconds: Performance Study of a Novel GPU-based Preferential Attachment Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S.; Alam, Maksudul

    A novel parallel algorithm is presented for generating random scale-free networks using the preferential-attachment model. The algorithm, named cuPPA, is custom-designed for single instruction multiple data (SIMD) style of parallel processing supported by modern processors such as graphical processing units (GPUs). To the best of our knowledge, our algorithm is the first to exploit GPUs, and also the fastest implementation available today, to generate scale free networks using the preferential attachment model. A detailed performance study is presented to understand the scalability and runtime characteristics of the cuPPA algorithm. In one of the best cases, when executed on an NVidiamore » GeForce 1080 GPU, cuPPA generates a scale free network of a billion edges in less than 2 seconds.« less

  16. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  17. Scaling and correlations in three bus-transport networks of China

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; Hu, Junhui; Liu, Feng; Liu, Lianshou

    2007-01-01

    We report the statistical properties of three bus-transport networks (BTN) in three different cities of China. These networks are composed of a set of bus lines and stations serviced by these. Network properties, including the degree distribution, clustering and average path length are studied in different definitions of network topology. We explore scaling laws and correlations that may govern intrinsic features of such networks. Besides, we create a weighted network representation for BTN with lines mapped to nodes and number of common stations to weights between lines. In such a representation, the distributions of degree, strength and weight are investigated. A linear behavior between strength and degree s(k)∼k is also observed.

  18. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.

    PubMed

    Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H

    2010-03-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.

  19. Lost in the city: revisiting Milgram's experiment in the age of social networks.

    PubMed

    Szüle, János; Kondor, Dániel; Dobos, László; Csabai, István; Vattay, Gábor

    2014-01-01

    As more and more users access social network services from smart devices with GPS receivers, the available amount of geo-tagged information makes repeating classical experiments possible on global scales and with unprecedented precision. Inspired by the original experiments of Milgram, we simulated message routing within a representative sub-graph of the network of Twitter users with about 6 million geo-located nodes and 122 million edges. We picked pairs of users from two distant metropolitan areas and tried to find a route between them using local geographic information only; our method was to forward messages to a friend living closest to the target. We found that the examined network is navigable on large scales, but navigability breaks down at the city scale and the network becomes unnavigable on intra-city distances. This means that messages usually arrived to the close proximity of the target in only 3-6 steps, but only in about 20% of the cases was it possible to find a route all the way to the recipient, in spite of the network being connected. This phenomenon is supported by the distribution of link lengths; on larger scales the distribution behaves approximately as P(d) ≈ 1/d, which was found earlier by Kleinberg to allow efficient navigation, while on smaller scales, a fractal structure becomes apparent. The intra-city correlation dimension of the network was found to be D2 = 1.25, less than the dimension D2 = 1.78 of the distribution of the population.

  20. DeepSkeleton: Learning Multi-Task Scale-Associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Zhao, Kai; Jiang, Yuan; Wang, Yan; Bai, Xiang; Yuille, Alan

    2017-11-01

    Object skeletons are useful for object representation and object detection. They are complementary to the object contour, and provide extra information, such as how object scale (thickness) varies among object parts. But object skeleton extraction from natural images is very challenging, because it requires the extractor to be able to capture both local and non-local image context in order to determine the scale of each skeleton pixel. In this paper, we present a novel fully convolutional network with multiple scale-associated side outputs to address this problem. By observing the relationship between the receptive field sizes of the different layers in the network and the skeleton scales they can capture, we introduce two scale-associated side outputs to each stage of the network. The network is trained by multi-task learning, where one task is skeleton localization to classify whether a pixel is a skeleton pixel or not, and the other is skeleton scale prediction to regress the scale of each skeleton pixel. Supervision is imposed at different stages by guiding the scale-associated side outputs toward the groundtruth skeletons at the appropriate scales. The responses of the multiple scale-associated side outputs are then fused in a scale-specific way to detect skeleton pixels using multiple scales effectively. Our method achieves promising results on two skeleton extraction datasets, and significantly outperforms other competitors. Additionally, the usefulness of the obtained skeletons and scales (thickness) are verified on two object detection applications: Foreground object segmentation and object proposal detection.

  1. Scale invariant rearrangement of resting state networks in the human brain under sustained stimulation.

    PubMed

    Tommasin, Silvia; Mascali, Daniele; Moraschi, Marta; Gili, Tommaso; Assan, Ibrahim Eid; Fratini, Michela; DiNuzzo, Mauro; Wise, Richard G; Mangia, Silvia; Macaluso, Emiliano; Giove, Federico

    2018-06-14

    Brain activity at rest is characterized by widely distributed and spatially specific patterns of synchronized low-frequency blood-oxygenation level-dependent (BOLD) fluctuations, which correspond to physiologically relevant brain networks. This network behaviour is known to persist also during task execution, yet the details underlying task-associated modulations of within- and between-network connectivity are largely unknown. In this study we exploited a multi-parametric and multi-scale approach to investigate how low-frequency fluctuations adapt to a sustained n-back working memory task. We found that the transition from the resting state to the task state involves a behaviourally relevant and scale-invariant modulation of synchronization patterns within both task-positive and default mode networks. Specifically, decreases of connectivity within networks are accompanied by increases of connectivity between networks. In spite of large and widespread changes of connectivity strength, the overall topology of brain networks is remarkably preserved. We show that these findings are strongly influenced by connectivity at rest, suggesting that the absolute change of connectivity (i.e., disregarding the baseline) may be not the most suitable metric to study dynamic modulations of functional connectivity. Our results indicate that a task can evoke scale-invariant, distributed changes of BOLD fluctuations, further confirming that low frequency BOLD oscillations show a specialized response and are tightly bound to task-evoked activation. Copyright © 2018. Published by Elsevier Inc.

  2. Validation of the Social Networking Activity Intensity Scale among Junior Middle School Students in China.

    PubMed

    Li, Jibin; Lau, Joseph T F; Mo, Phoenix K H; Su, Xuefen; Wu, Anise M S; Tang, Jie; Qin, Zuguo

    2016-01-01

    Online social networking use has been integrated into adolescents' daily life and the intensity of online social networking use may have important consequences on adolescents' well-being. However, there are few validated instruments to measure social networking use intensity. The present study aims to develop the Social Networking Activity Intensity Scale (SNAIS) and validate it among junior middle school students in China. A total of 910 students who were social networking users were recruited from two junior middle schools in Guangzhou, and 114 students were retested after two weeks to examine the test-retest reliability. The psychometrics of the SNAIS were estimated using appropriate statistical methods. Two factors, Social Function Use Intensity (SFUI) and Entertainment Function Use Intensity (EFUI), were clearly identified by both exploratory and confirmatory factor analyses. No ceiling or floor effects were observed for the SNAIS and its two subscales. The SNAIS and its two subscales exhibited acceptable reliability (Cronbach's alpha = 0.89, 0.90 and 0.60, and test-retest Intra-class Correlation Coefficient = 0.85, 0.87 and 0.67 for Overall scale, SFUI and EFUI subscale, respectively, p<0.001). As expected, the SNAIS and its subscale scores were correlated significantly with emotional connection to social networking, social networking addiction, Internet addiction, and characteristics related to social networking use. The SNAIS is an easily self-administered scale with good psychometric properties. It would facilitate more research in this field worldwide and specifically in the Chinese population.

  3. Relating the large-scale structure of time series and visibility networks.

    PubMed

    Rodríguez, Miguel A

    2017-06-01

    The structure of time series is usually characterized by means of correlations. A new proposal based on visibility networks has been considered recently. Visibility networks are complex networks mapped from surfaces or time series using visibility properties. The structures of time series and visibility networks are closely related, as shown by means of fractional time series in recent works. In these works, a simple relationship between the Hurst exponent H of fractional time series and the exponent of the distribution of edges γ of the corresponding visibility network, which exhibits a power law, is shown. To check and generalize these results, in this paper we delve into this idea of connected structures by defining both structures more properly. In addition to the exponents used before, H and γ, which take into account local properties, we consider two more exponents that, as we will show, characterize global properties. These are the exponent α for time series, which gives the scaling of the variance with the size as var∼T^{2α}, and the exponent κ of their corresponding network, which gives the scaling of the averaged maximum of the number of edges, 〈k_{M}〉∼N^{κ}. With this representation, a more precise connection between the structures of general time series and their associated visibility network is achieved. Similarities and differences are more clearly established, and new scaling forms of complex networks appear in agreement with their respective classes of time series.

  4. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks

    PubMed Central

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-01-01

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction. PMID:28672867

  5. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.

    PubMed

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-06-26

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

  6. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3+TiBw)/Ti6Al4V composites.

    PubMed

    Jiao, Y; Huang, L J; Duan, T B; Wei, S L; Kaveendran, B; Geng, L

    2016-09-13

    Novel Ti6Al4V alloy matrix composites with a controllable two-scale network architecture were successfully fabricated by reaction hot pressing (RHP). TiB whiskers (TiBw) were in-situ synthesized around the Ti6Al4V matrix particles, and formed the first-scale network structure (FSNS). Ti5Si3 needles (Ti5Si3) precipitated in the β phase around the equiaxed α phase, and formed the secondary-scale network structure (SSNS). This resulted in increased deformation compatibility accompanied with enhanced mechanical properties. Apart from the reinforcement distribution and the volume fraction, the ratio between Ti5Si3 and TiBw fraction were controlled. The prepared (Ti5Si3 + TiBw)/Ti6Al4V composites showed higher tensile strength and ductility than the composites with a one-scale microstructure, and superior wear resistance over the Ti6Al4V alloy under dry sliding wear conditions at room temperature.

  7. Inferring multi-scale neural mechanisms with brain network modelling

    PubMed Central

    Schirner, Michael; McIntosh, Anthony Randal; Jirsa, Viktor; Deco, Gustavo

    2018-01-01

    The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies. PMID:29308767

  8. Irreversible opinion spreading on scale-free networks

    NASA Astrophysics Data System (ADS)

    Candia, Julián

    2007-02-01

    We study the dynamical and critical behavior of a model for irreversible opinion spreading on Barabási-Albert (BA) scale-free networks by performing extensive Monte Carlo simulations. The opinion spreading within an inhomogeneous society is investigated by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. The deposition dynamics, which is studied as a function of the degree of the occupied sites, shows evidence for the leading role played by hubs in the growth process. Systems of finite size grow either ordered or disordered, depending on the temperature. By means of standard finite-size scaling procedures, the effective order-disorder phase transitions are found to persist in the thermodynamic limit. This critical behavior, however, is absent in related equilibrium spin systems such as the Ising model on BA scale-free networks, which in the thermodynamic limit only displays a ferromagnetic phase. The dependence of these results on the degree exponent is also discussed for the case of uncorrelated scale-free networks.

  9. Community Detection in Signed Networks: the Role of Negative ties in Different Scales

    PubMed Central

    Esmailian, Pouya; Jalili, Mahdi

    2015-01-01

    Extracting community structure of complex network systems has many applications from engineering to biology and social sciences. There exist many algorithms to discover community structure of networks. However, it has been significantly under-explored for networks with positive and negative links as compared to unsigned ones. Trying to fill this gap, we measured the quality of partitions by introducing a Map Equation for signed networks. It is based on the assumption that negative relations weaken positive flow from a node towards a community, and thus, external (internal) negative ties increase the probability of staying inside (escaping from) a community. We further extended the Constant Potts Model, providing a map spectrum for signed networks. Accordingly, a partition is selected through balancing between abridgment and expatiation of a signed network. Most importantly, multi-scale spectrum of signed networks revealed how informative are negative ties in different scales, and quantified the topological placement of negative ties between dense positive ones. Moreover, an inconsistency was found in the signed Modularity: as the number of negative ties increases, the density of positive ties is neglected more. These results shed lights on the community structure of signed networks. PMID:26395815

  10. Enhanced storage capacity with errors in scale-free Hopfield neural networks: An analytical study.

    PubMed

    Kim, Do-Hyun; Park, Jinha; Kahng, Byungnam

    2017-01-01

    The Hopfield model is a pioneering neural network model with associative memory retrieval. The analytical solution of the model in mean field limit revealed that memories can be retrieved without any error up to a finite storage capacity of O(N), where N is the system size. Beyond the threshold, they are completely lost. Since the introduction of the Hopfield model, the theory of neural networks has been further developed toward realistic neural networks using analog neurons, spiking neurons, etc. Nevertheless, those advances are based on fully connected networks, which are inconsistent with recent experimental discovery that the number of connections of each neuron seems to be heterogeneous, following a heavy-tailed distribution. Motivated by this observation, we consider the Hopfield model on scale-free networks and obtain a different pattern of associative memory retrieval from that obtained on the fully connected network: the storage capacity becomes tremendously enhanced but with some error in the memory retrieval, which appears as the heterogeneity of the connections is increased. Moreover, the error rates are also obtained on several real neural networks and are indeed similar to that on scale-free model networks.

  11. Modeling a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Noah; Carothers, Christopher; Mubarak, Misbah

    As supercomputers close in on exascale performance, the increased number of processors and processing power translates to an increased demand on the underlying network interconnect. The Slim Fly network topology, a new lowdiameter and low-latency interconnection network, is gaining interest as one possible solution for next-generation supercomputing interconnect systems. In this paper, we present a high-fidelity Slim Fly it-level model leveraging the Rensselaer Optimistic Simulation System (ROSS) and Co-Design of Exascale Storage (CODES) frameworks. We validate our Slim Fly model with the Kathareios et al. Slim Fly model results provided at moderately sized network scales. We further scale the modelmore » size up to n unprecedented 1 million compute nodes; and through visualization of network simulation metrics such as link bandwidth, packet latency, and port occupancy, we get an insight into the network behavior at the million-node scale. We also show linear strong scaling of the Slim Fly model on an Intel cluster achieving a peak event rate of 36 million events per second using 128 MPI tasks to process 7 billion events. Detailed analysis of the underlying discrete-event simulation performance shows that a million-node Slim Fly model simulation can execute in 198 seconds on the Intel cluster.« less

  12. Measuring Networking as an Outcome Variable in Undergraduate Research Experiences.

    PubMed

    Hanauer, David I; Hatfull, Graham

    2015-01-01

    The aim of this paper is to propose, present, and validate a simple survey instrument to measure student conversational networking. The tool consists of five items that cover personal and professional social networks, and its basic principle is the self-reporting of degrees of conversation, with a range of specific discussion partners. The networking instrument was validated in three studies. The basic psychometric characteristics of the scales were established by conducting a factor analysis and evaluating internal consistency using Cronbach's alpha. The second study used a known-groups comparison and involved comparing outcomes for networking scales between two different undergraduate laboratory courses (one involving a specific effort to enhance networking). The final study looked at potential relationships between specific networking items and the established psychosocial variable of project ownership through a series of binary logistic regressions. Overall, the data from the three studies indicate that the networking scales have high internal consistency (α = 0.88), consist of a unitary dimension, can significantly differentiate between research experiences with low and high networking designs, and are related to project ownership scales. The ramifications of the networking instrument for student retention, the enhancement of public scientific literacy, and the differentiation of laboratory courses are discussed. © 2015 D. I. Hanauer and G. Hatfull. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Scaling relationships and concavity of small valley networks on Mars

    NASA Astrophysics Data System (ADS)

    Penido, Julita C.; Fassett, Caleb I.; Som, Sanjoy M.

    2013-01-01

    Valley networks are widely interpreted as the preserved erosional record of water flowing across the martian surface. The manner in which valley morphometric properties scale with drainage area has been widely examined on Earth. Earlier studies assessing these properties on Mars have suggested that martian valleys are morphometrically distinct from those on Earth. However, these earlier measurements were generally made on large valley systems because of the limited topographic data available. In this study, we determine the scaling properties of valley networks at smaller scales than have been previously assessed, using digital elevation models from the High Resolution Stereo Camera (HRSC). We find a Hack's law exponent of 0.74, larger than on Earth, and our measurements also reveal that individual small valleys have concave up, concave down, and quasi-linear longitudinal profiles, consistent with earlier studies of dissected terrain on Mars. However, for many valleys, widths are observed to increase downstream similarly to how they scale in terrestrial channels. The similarities and differences between valley networks on Mars and Earth are consistent with the idea that valleys on Mars are comparatively immature, and precipitation was a likely mechanism for delivering water to these networks.

  14. Construction and validation of a scale of assessment of self-care behaviours anticipatory to creation of arteriovenous fistula.

    PubMed

    Sousa, Clemente Neves; Figueiredo, Maria Henriqueta; Dias, Vanessa Filipa; Teles, Paulo; Apóstolo, João Luís

    2015-12-01

    We developed a scale to assess the self-care behaviours developed by patients with end-stage renal disease to preserve the vascular network prior to construction of arteriovenous fistula. The possibility of creation of an arteriovenous fistula depends on the existence of an arterial and venous network in good condition, namely the size and elasticity of the vessels. It is essential to teach the person to develop self-care behaviours for the preservation of the vascular network, regardless of the modality of dialysis selected. Methodological study. The scale was developed based on clinical experience and research conducted by the researcher in the area of the vascular access for haemodialysis. The content of the scale was judged by two panels of experts for content validity. The revised version of the scale was administered to a convenience sample of 90 patients with end-stage renal disease. In the statistical analysis, we used the Cronbach's alpha, the Kaiser-Meyer-Olkin and scree plot and the principal component analysis with varimax rotation. A principal component analysis confirmed the univariate structure of the scale (KMO = 0·759, Bartlett's sphericity test-approximate χ(2) 142·201, p < 0·000). Cronbach's α is 0·831, varying between 0·711-0·879. This scale revealed properties that allow its use to assess the patients self-care behaviours regarding the preservation of the vascular network. This scale can be used to evaluate educational programmes for the development of self-care behaviours in the preservation of vascular network. This scale can identify not only the patients that are able to take care of their vascular network but also the proportion of patients who are not able to do it, that need to be educated. © 2015 John Wiley & Sons Ltd.

  15. Functional Connectivity in Multiple Cortical Networks Is Associated with Performance Across Cognitive Domains in Older Adults.

    PubMed

    Shaw, Emily E; Schultz, Aaron P; Sperling, Reisa A; Hedden, Trey

    2015-10-01

    Intrinsic functional connectivity MRI has become a widely used tool for measuring integrity in large-scale cortical networks. This study examined multiple cortical networks using Template-Based Rotation (TBR), a method that applies a priori network and nuisance component templates defined from an independent dataset to test datasets of interest. A priori templates were applied to a test dataset of 276 older adults (ages 65-90) from the Harvard Aging Brain Study to examine the relationship between multiple large-scale cortical networks and cognition. Factor scores derived from neuropsychological tests represented processing speed, executive function, and episodic memory. Resting-state BOLD data were acquired in two 6-min acquisitions on a 3-Tesla scanner and processed with TBR to extract individual-level metrics of network connectivity in multiple cortical networks. All results controlled for data quality metrics, including motion. Connectivity in multiple large-scale cortical networks was positively related to all cognitive domains, with a composite measure of general connectivity positively associated with general cognitive performance. Controlling for the correlations between networks, the frontoparietal control network (FPCN) and executive function demonstrated the only significant association, suggesting specificity in this relationship. Further analyses found that the FPCN mediated the relationships of the other networks with cognition, suggesting that this network may play a central role in understanding individual variation in cognition during aging.

  16. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.

    PubMed

    Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk

    2015-01-01

    Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system throughput performance.

  17. Coronal Heating and the Magnetic Flux Content of the Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Previously, from analysis of SOHO coronal images in combination with Kitt Peak magnetograms, we found that the quiet corona is the sum of two components: the large-scale corona and the coronal network. The large-scale corona consists of all coronal-temperature (T approximately 10(exp 6) K) structures larger than supergranules (greater than approximately 30,000 kilometers). The coronal network (1) consists of all coronal-temperature structures smaller than supergranules, (2) is rooted in and loosely traces the photospheric magnetic network, (3) has its brightest features seated on polarity dividing lines (neutral lines) in the network magnetic flux, and (4) produces only about 5% of the total coronal emission in quiet regions. The heating of the coronal network is apparently magnetic in origin. Here, from analysis of EIT coronal images of quiet regions in combination with magnetograms of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine the other 95% of the quiet corona and its relation to the underlying magnetic network. We find: (1) Dividing the large-scale corona into its bright and dim halves divides the area into bright "continents" and dark "oceans" having spans of 2-4 supergranules. (2) These patterns are also present in the photospheric magnetograms: the network is stronger under the bright half and weaker under the dim half. (3) The radiation from the large-scale corona increases roughly as the cube root of the magnetic flux content of the underlying magnetic network. In contrast, the coronal radiation from an active region increases roughly linearly with the magnetic flux content of the active region. We assume, as is widely held, that nearly all of the large-scale corona is magnetically rooted in the network. Our results suggest that either the coronal heating in quiet regions has a large non-magnetic component, or, if the heating is predominantly produced via the magnetic field, the mechanism is significantly different than in active regions.

  18. Optical interconnect for large-scale systems

    NASA Astrophysics Data System (ADS)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  19. Emergence of fractal scaling in complex networks

    NASA Astrophysics Data System (ADS)

    Wei, Zong-Wen; Wang, Bing-Hong

    2016-09-01

    Some real-world networks are shown to be fractal or self-similar. It is widespread that such a phenomenon originates from the repulsion between hubs or disassortativity. Here we show that this common belief fails to capture the causality. Our key insight to address it is to pinpoint links critical to fractality. Those links with small edge betweenness centrality (BC) constitute a special architecture called fractal reference system, which gives birth to the fractal structure of those reported networks. In contrast, a small amount of links with high BC enable small-world effects, hiding the intrinsic fractality. With enough of such links removed, fractal scaling spontaneously arises from nonfractal networks. Our results provide a multiple-scale view on the structure and dynamics and place fractality as a generic organizing principle of complex networks on a firmer ground.

  20. Noisy scale-free networks

    NASA Astrophysics Data System (ADS)

    Scholz, Jan; Dejori, Mathäus; Stetter, Martin; Greiner, Martin

    2005-05-01

    The impact of observational noise on the analysis of scale-free networks is studied. Various noise sources are modeled as random link removal, random link exchange and random link addition. Emphasis is on the resulting modifications for the node-degree distribution and for a functional ranking based on betweenness centrality. The implications for estimated gene-expressed networks for childhood acute lymphoblastic leukemia are discussed.

  1. LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution.

    PubMed

    Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu

    2018-09-01

    The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.

  2. Hub nodes inhibit the outbreak of epidemic under voluntary vaccination

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Zhang, Jie; Zhou, Changsong; Small, Michael; Wang, Binghong

    2010-02-01

    It is commonly believed that epidemic spreading on scale-free networks is difficult to control and that the disease can spread even with a low infection rate, lacking an epidemic threshold. In this paper, we study epidemic spreading on complex networks under the framework of game theory, in which a voluntary vaccination strategy is incorporated. In particular, individuals face the 'dilemma' of vaccination: they have to decide whether or not to vaccinate according to the trade-off between the risk and the side effects or cost of vaccination. Remarkably and quite excitingly, we find that disease outbreak can be more effectively inhibited on scale-free networks than on random networks. This is because the hub nodes of scale-free networks are more inclined to take self-vaccination after balancing the pros and cons. This result is encouraging as it indicates that real-world networks, which are often claimed to be scale free, can be favorably and easily controlled under voluntary vaccination. Our work provides a way of understanding how to prevent the outbreak of diseases under voluntary vaccination, and is expected to provide valuable information on effective disease control and appropriate decision-making.

  3. Sampling from complex networks using distributed learning automata

    NASA Astrophysics Data System (ADS)

    Rezvanian, Alireza; Rahmati, Mohammad; Meybodi, Mohammad Reza

    2014-02-01

    A complex network provides a framework for modeling many real-world phenomena in the form of a network. In general, a complex network is considered as a graph of real world phenomena such as biological networks, ecological networks, technological networks, information networks and particularly social networks. Recently, major studies are reported for the characterization of social networks due to a growing trend in analysis of online social networks as dynamic complex large-scale graphs. Due to the large scale and limited access of real networks, the network model is characterized using an appropriate part of a network by sampling approaches. In this paper, a new sampling algorithm based on distributed learning automata has been proposed for sampling from complex networks. In the proposed algorithm, a set of distributed learning automata cooperate with each other in order to take appropriate samples from the given network. To investigate the performance of the proposed algorithm, several simulation experiments are conducted on well-known complex networks. Experimental results are compared with several sampling methods in terms of different measures. The experimental results demonstrate the superiority of the proposed algorithm over the others.

  4. Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zeng, Y.

    2017-09-01

    Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.

  5. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy

    PubMed Central

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.

    2014-01-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089

  6. Large-scale Cortical Network Properties Predict Future Sound-to-Word Learning Success

    PubMed Central

    Sheppard, John Patrick; Wang, Ji-Ping; Wong, Patrick C. M.

    2013-01-01

    The human brain possesses a remarkable capacity to interpret and recall novel sounds as spoken language. These linguistic abilities arise from complex processing spanning a widely distributed cortical network and are characterized by marked individual variation. Recently, graph theoretical analysis has facilitated the exploration of how such aspects of large-scale brain functional organization may underlie cognitive performance. Brain functional networks are known to possess small-world topologies characterized by efficient global and local information transfer, but whether these properties relate to language learning abilities remains unknown. Here we applied graph theory to construct large-scale cortical functional networks from cerebral hemodynamic (fMRI) responses acquired during an auditory pitch discrimination task and found that such network properties were associated with participants’ future success in learning words of an artificial spoken language. Successful learners possessed networks with reduced local efficiency but increased global efficiency relative to less successful learners and had a more cost-efficient network organization. Regionally, successful and less successful learners exhibited differences in these network properties spanning bilateral prefrontal, parietal, and right temporal cortex, overlapping a core network of auditory language areas. These results suggest that efficient cortical network organization is associated with sound-to-word learning abilities among healthy, younger adults. PMID:22360625

  7. Physics textbooks from the viewpoint of network structures

    NASA Astrophysics Data System (ADS)

    Králiková, Petra; Teleki, Aba

    2017-01-01

    We can observe self-organized networks all around us. These networks are, in general, scale invariant networks described by the Bianconi-Barabasi model. The self-organized networks (networks formed naturally when feedback acts on the system) show certain universality. These networks, in simplified models, have scale invariant distribution (Pareto distribution type I) and parameter α has value between 2 and 5. The textbooks are extremely important in the learning process and from this reason we studied physics textbook at the level of sentences and physics terms (bipartite network). The nodes represent physics terms, sentences, and pictures, tables, connected by links (by physics terms and transitional words and transitional phrases). We suppose that learning process are more robust and goes faster and easier if the physics textbook has a structure similar to structures of self-organized networks.

  8. Traffic-driven epidemic spreading on scale-free networks with tunable degree distribution

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Wang, Bing-Hong

    2016-04-01

    We study the traffic-driven epidemic spreading on scale-free networks with tunable degree distribution. The heterogeneity of networks is controlled by the exponent γ of power-law degree distribution. It is found that the epidemic threshold is minimized at about γ=2.2. Moreover, we find that nodes with larger algorithmic betweenness are more likely to be infected. We expect our work to provide new insights in to the effect of network structures on traffic-driven epidemic spreading.

  9. Social power and opinion formation in complex networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2013-02-01

    In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.

  10. Neurobehavioral Assessment from Fetus to Infant: The NICU Network Neurobehavioral Scale and the Fetal Neurobehavior Coding Scale

    ERIC Educational Resources Information Center

    Salisbury, Amy L.; Fallone, Melissa Duncan; Lester, Barry

    2005-01-01

    This review provides an overview and definition of the concept of neurobehavior in human development. Two neurobehavioral assessments used by the authors in current fetal and infant research are discussed: the NICU Network Neurobehavioral Assessment Scale and the Fetal Neurobehavior Coding System. This review will present how the two assessments…

  11. The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference

    PubMed Central

    Deng, Changjian

    2013-01-01

    Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613

  12. Thermoelectric properties of semiconductor nanowire networks

    DOE PAGES

    Roslyak, Oleksiy; Piryatinski, Andrei

    2016-03-28

    To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi 2Te 3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNWmore » demonstrate an order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D.; Lohmann, Johannes

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delaysmore » between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.« less

  14. North America: Chapter 5

    USGS Publications Warehouse

    Schwartz, Mark D.; Beaubien, Elisabeth G.; Crimmins, Theresa M.; Weltzin, Jake F.; Edited by Schwartz, Mark D.

    2013-01-01

    Plant phenological observations and networks in North America have been largely local and regional in extent until recent decades. In the USA, cloned plant monitoring networks were the exception to this pattern, with data collection spanning the late 1950s until approximately the early 1990s. Animal observation networks, especially for birds have been more extensive. The USA National Phenology Network (USA-NPN), established in the mid-2000s is a recent effort to operate a comprehensive national-scale network in the United States. In Canada, PlantWatch, as part of Nature Watch, is the current national-scale plant phenology program.

  15. Social network analysis of multi-stakeholder platforms in agricultural research for development: Opportunities and constraints for innovation and scaling

    PubMed Central

    Hermans, Frans; Sartas, Murat; van Schagen, Boudy; van Asten, Piet

    2017-01-01

    Multi-stakeholder platforms (MSPs) are seen as a promising vehicle to achieve agricultural development impacts. By increasing collaboration, exchange of knowledge and influence mediation among farmers, researchers and other stakeholders, MSPs supposedly enhance their ‘capacity to innovate’ and contribute to the ‘scaling of innovations’. The objective of this paper is to explore the capacity to innovate and scaling potential of three MSPs in Burundi, Rwanda and the South Kivu province located in the eastern part of Democratic Republic of Congo (DRC). In order to do this, we apply Social Network Analysis and Exponential Random Graph Modelling (ERGM) to investigate the structural properties of the collaborative, knowledge exchange and influence networks of these MSPs and compared them against value propositions derived from the innovation network literature. Results demonstrate a number of mismatches between collaboration, knowledge exchange and influence networks for effective innovation and scaling processes in all three countries: NGOs and private sector are respectively over- and under-represented in the MSP networks. Linkages between local and higher levels are weak, and influential organisations (e.g., high-level government actors) are often not part of the MSP or are not actively linked to by other organisations. Organisations with a central position in the knowledge network are more sought out for collaboration. The scaling of innovations is primarily between the same type of organisations across different administrative levels, but not between different types of organisations. The results illustrate the potential of Social Network Analysis and ERGMs to identify the strengths and limitations of MSPs in terms of achieving development impacts. PMID:28166226

  16. The Contribution of Stellar Winds to Cosmic Ray Production

    NASA Astrophysics Data System (ADS)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  17. Consensus between Pipelines in Structural Brain Networks

    PubMed Central

    Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.

    2014-01-01

    Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977

  18. Robopedia: Leveraging Sensorpedia for Web-Enabled Robot Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resseguie, David R

    There is a growing interest in building Internetscale sensor networks that integrate sensors from around the world into a single unified system. In contrast, robotics application development has primarily focused on building specialized systems. These specialized systems take scalability and reliability into consideration, but generally neglect exploring the key components required to build a large scale system. Integrating robotic applications with Internet-scale sensor networks will unify specialized robotics applications and provide answers to large scale implementation concerns. We focus on utilizing Internet-scale sensor network technology to construct a framework for unifying robotic systems. Our framework web-enables a surveillance robot smore » sensor observations and provides a webinterface to the robot s actuators. This lets robots seamlessly integrate into web applications. In addition, the framework eliminates most prerequisite robotics knowledge, allowing for the creation of general web-based robotics applications. The framework also provides mechanisms to create applications that can interface with any robot. Frameworks such as this one are key to solving large scale mobile robotics implementation problems. We provide an overview of previous Internetscale sensor networks, Sensorpedia (an ad-hoc Internet-scale sensor network), our framework for integrating robots with Sensorpedia, two applications which illustrate our frameworks ability to support general web-based robotic control, and offer experimental results that illustrate our framework s scalability, feasibility, and resource requirements.« less

  19. Sexual networks: measuring sexual selection in structured, polyandrous populations.

    PubMed

    McDonald, Grant C; James, Richard; Krause, Jens; Pizzari, Tommaso

    2013-03-05

    Sexual selection is traditionally measured at the population level, assuming that populations lack structure. However, increasing evidence undermines this approach, indicating that intrasexual competition in natural populations often displays complex patterns of spatial and temporal structure. This complexity is due in part to the degree and mechanisms of polyandry within a population, which can influence the intensity and scale of both pre- and post-copulatory sexual competition. Attempts to measure selection at the local and global scale have been made through multi-level selection approaches. However, definitions of local scale are often based on physical proximity, providing a rather coarse measure of local competition, particularly in polyandrous populations where the local scale of pre- and post-copulatory competition may differ drastically from each other. These limitations can be solved by social network analysis, which allows us to define a unique sexual environment for each member of a population: 'local scale' competition, therefore, becomes an emergent property of a sexual network. Here, we first propose a novel quantitative approach to measure pre- and post-copulatory sexual selection, which integrates multi-level selection with information on local scale competition derived as an emergent property of networks of sexual interactions. We then use simple simulations to illustrate the ways in which polyandry can impact estimates of sexual selection. We show that for intermediate levels of polyandry, the proposed network-based approach provides substantially more accurate measures of sexual selection than the more traditional population-level approach. We argue that the increasing availability of fine-grained behavioural datasets provides exciting new opportunities to develop network approaches to study sexual selection in complex societies.

  20. Spread of hospital-acquired infections: A comparison of healthcare networks

    PubMed Central

    Astagneau, Pascal; Crépey, Pascal

    2017-01-01

    Hospital-acquired infections (HAIs), including emerging multi-drug resistant organisms, threaten healthcare systems worldwide. Efficient containment measures of HAIs must mobilize the entire healthcare network. Thus, to best understand how to reduce the potential scale of HAI epidemic spread, we explore patient transfer patterns in the French healthcare system. Using an exhaustive database of all hospital discharge summaries in France in 2014, we construct and analyze three patient networks based on the following: transfers of patients with HAI (HAI-specific network); patients with suspected HAI (suspected-HAI network); and all patients (general network). All three networks have heterogeneous patient flow and demonstrate small-world and scale-free characteristics. Patient populations that comprise these networks are also heterogeneous in their movement patterns. Ranking of hospitals by centrality measures and comparing community clustering using community detection algorithms shows that despite the differences in patient population, the HAI-specific and suspected-HAI networks rely on the same underlying structure as that of the general network. As a result, the general network may be more reliable in studying potential spread of HAIs. Finally, we identify transfer patterns at both the French regional and departmental (county) levels that are important in the identification of key hospital centers, patient flow trajectories, and regional clusters that may serve as a basis for novel wide-scale infection control strategies. PMID:28837555

  1. The connection-set algebra--a novel formalism for the representation of connectivity structure in neuronal network models.

    PubMed

    Djurfeldt, Mikael

    2012-07-01

    The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.

  2. States of mind: Emotions, body feelings, and thoughts share distributed neural networks

    PubMed Central

    Oosterwijk, Suzanne; Lindquist, Kristen A.; Anderson, Eric; Dautoff, Rebecca; Moriguchi, Yoshiya; Barrett, Lisa Feldman

    2012-01-01

    Scientists have traditionally assumed that different kinds of mental states (e.g., fear, disgust, love, memory, planning, concentration, etc.) correspond to different psychological faculties that have domain-specific correlates in the brain. Yet, growing evidence points to the constructionist hypothesis that mental states emerge from the combination of domain-general psychological processes that map to large-scale distributed brain networks. In this paper, we report a novel study testing a constructionist model of the mind in which participants generated three kinds of mental states (emotions, body feelings, or thoughts) while we measured activity within large-scale distributed brain networks using fMRI. We examined the similarity and differences in the pattern of network activity across these three classes of mental states. Consistent with a constructionist hypothesis, a combination of large-scale distributed networks contributed to emotions, thoughts, and body feelings, although these mental states differed in the relative contribution of those networks. Implications for a constructionist functional architecture of diverse mental states are discussed. PMID:22677148

  3. Competition-Driven Network Dynamics: Emergence of a Scale-Free Leadership Structure and Collective Efficiency

    NASA Astrophysics Data System (ADS)

    Anghel, M.; Toroczkai, Zoltán; Bassler, Kevin E.; Korniss, G.

    2004-02-01

    Using the minority game as a model for competition dynamics, we investigate the effects of interagent communications across a network on the global evolution of the game. Agent communication across this network leads to the formation of an influence network, which is dynamically coupled to the evolution of the game, and it is responsible for the information flow driving the agents' actions. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.

  4. Estimating Snow Water Equivalent over the American River in the Sierra Nevada Basin Using Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Welch, S. C.; Kerkez, B.; Glaser, S. D.; Bales, R. C.; Rice, R.

    2011-12-01

    We have designed a basin-scale (>2000 km2) instrument cluster, made up of 20 local-scale (1-km footprint) wireless sensor networks (WSNs), to measure patterns of snow depth and snow water equivalent (SWE) across the main snowmelt producing area within the American River basin. Each of the 20 WSNs has on the order of 25 wireless nodes, with over 10 nodes actively sensing snow depth, and thus snow accumulation and melt. When combined with existing snow density measurements and full-basin satellite snowcover data, these measurements are designed to provide dense ground-truth snow properties for research and real-time SWE for water management. The design of this large-scale network is based on rigorous testing of previous, smaller-scale studies, permitting for the development of methods to significantly, and efficiently scale up network operations. Recent advances in WSN technology have resulted in a modularized strategy that permits rapid future network deployment. To select network and sensor locations, various sensor placement approaches were compared, including random placement, placement of WSNs in locations that have captured the historical basin mean, as well as a placement algorithm leveraging the covariance structure of the SWE distribution. We show that that the optimal network locations do not exhibit a uniform grid, but rather follow strategic patterns based on physiographic terrain parameters. Uncertainty estimates are also provided to assess the confidence in the placement approach. To ensure near-optimal coverage of the full basin, we validated each placement approach with a multi-year record of SWE derived from reconstruction of historical satellite measurements.

  5. Resolving Structural Variability in Network Models and the Brain

    PubMed Central

    Klimm, Florian; Bassett, Danielle S.; Carlson, Jean M.; Mucha, Peter J.

    2014-01-01

    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546

  6. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    PubMed

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  7. Congruent Bifurcation Angles in River Delta and Tributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, Thomas S.; Shaw, John B.

    2017-11-01

    We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field-scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.

  8. Reduced linear noise approximation for biochemical reaction networks with time-scale separation: The stochastic tQSSA+

    NASA Astrophysics Data System (ADS)

    Herath, Narmada; Del Vecchio, Domitilla

    2018-03-01

    Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.

  9. Improving Maritime Domain Awareness Using Neural Networks for Target of Interest Classification

    DTIC Science & Technology

    2015-03-01

    spreading SCG scaled conjugate gradient xv THIS PAGE INTENTIONALLY LEFT BLANK xvi EXECUTIVE SUMMARY The research detailed in this thesis is a...algorithms were explored for training the neural networks: resilient backpropagation (RP) and scaled conjugate gradient backpropagation ( SCG ). The...results of the neural network training performance are presented using mean squared error convergence plots. In all implementations, the SCG learning

  10. Validation of the Social Networking Activity Intensity Scale among Junior Middle School Students in China

    PubMed Central

    Li, Jibin; Lau, Joseph T. F.; Mo, Phoenix K. H.; Su, Xuefen; Wu, Anise M. S.; Tang, Jie; Qin, Zuguo

    2016-01-01

    Background Online social networking use has been integrated into adolescents’ daily life and the intensity of online social networking use may have important consequences on adolescents’ well-being. However, there are few validated instruments to measure social networking use intensity. The present study aims to develop the Social Networking Activity Intensity Scale (SNAIS) and validate it among junior middle school students in China. Methods A total of 910 students who were social networking users were recruited from two junior middle schools in Guangzhou, and 114 students were retested after two weeks to examine the test-retest reliability. The psychometrics of the SNAIS were estimated using appropriate statistical methods. Results Two factors, Social Function Use Intensity (SFUI) and Entertainment Function Use Intensity (EFUI), were clearly identified by both exploratory and confirmatory factor analyses. No ceiling or floor effects were observed for the SNAIS and its two subscales. The SNAIS and its two subscales exhibited acceptable reliability (Cronbach’s alpha = 0.89, 0.90 and 0.60, and test-retest Intra-class Correlation Coefficient = 0.85, 0.87 and 0.67 for Overall scale, SFUI and EFUI subscale, respectively, p<0.001). As expected, the SNAIS and its subscale scores were correlated significantly with emotional connection to social networking, social networking addiction, Internet addiction, and characteristics related to social networking use. Conclusions The SNAIS is an easily self-administered scale with good psychometric properties. It would facilitate more research in this field worldwide and specifically in the Chinese population. PMID:27798699

  11. Flow interaction based propagation model and bursty influence behavior analysis of Internet flows

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Yu; Gu, Ren-Tao; Ji, Yue-Feng

    2016-11-01

    QoS (quality of service) fluctuations caused by Internet bursty flows influence the user experience in the Internet, such as the increment of packet loss and transmission time. In this paper, we establish a mathematical model to study the influence propagation behavior of the bursty flow, which is helpful for developing a deep understanding of the network dynamics in the Internet complex system. To intuitively reflect the propagation process, a data flow interaction network with a hierarchical structure is constructed, where the neighbor order is proposed to indicate the neighborhood relationship between the bursty flow and other flows. The influence spreads from the bursty flow to each order of neighbors through flow interactions. As the influence spreads, the bursty flow has negative effects on the odd order neighbors and positive effects on the even order neighbors. The influence intensity of bursty flow decreases sharply between two adjacent orders and the decreasing degree can reach up to dozens of times in the experimental simulation. Moreover, the influence intensity increases significantly when network congestion situation becomes serious, especially for the 1st order neighbors. Network structural factors are considered to make a further study. Simulation results show that the physical network scale expansion can reduce the influence intensity of bursty flow by decreasing the flow distribution density. Furthermore, with the same network scale, the influence intensity in WS small-world networks is 38.18% and 18.40% lower than that in ER random networks and BA scale-free networks, respectively, due to a lower interaction probability between flows. These results indicate that the macro-structural changes such as network scales and styles will affect the inner propagation behaviors of the bursty flow.

  12. Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis.

    PubMed

    Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H

    2014-05-01

    Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.

  13. Software-defined optical network for metro-scale geographically distributed data centers.

    PubMed

    Samadi, Payman; Wen, Ke; Xu, Junjie; Bergman, Keren

    2016-05-30

    The emergence of cloud computing and big data has rapidly increased the deployment of small and mid-sized data centers. Enterprises and cloud providers require an agile network among these data centers to empower application reliability and flexible scalability. We present a software-defined inter data center network to enable on-demand scale out of data centers on a metro-scale optical network. The architecture consists of a combined space/wavelength switching platform and a Software-Defined Networking (SDN) control plane equipped with a wavelength and routing assignment module. It enables establishing transparent and bandwidth-selective connections from L2/L3 switches, on-demand. The architecture is evaluated in a testbed consisting of 3 data centers, 5-25 km apart. We successfully demonstrated end-to-end bulk data transfer and Virtual Machine (VM) migrations across data centers with less than 100 ms connection setup time and close to full link capacity utilization.

  14. Global efficiency of local immunization on complex networks

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2013-07-01

    Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario.

  15. Global efficiency of local immunization on complex networks.

    PubMed

    Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J

    2013-01-01

    Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario.

  16. Large-scale quantum networks based on graphs

    NASA Astrophysics Data System (ADS)

    Epping, Michael; Kampermann, Hermann; Bruß, Dagmar

    2016-05-01

    Society relies and depends increasingly on information exchange and communication. In the quantum world, security and privacy is a built-in feature for information processing. The essential ingredient for exploiting these quantum advantages is the resource of entanglement, which can be shared between two or more parties. The distribution of entanglement over large distances constitutes a key challenge for current research and development. Due to losses of the transmitted quantum particles, which typically scale exponentially with the distance, intermediate quantum repeater stations are needed. Here we show how to generalise the quantum repeater concept to the multipartite case, by describing large-scale quantum networks, i.e. network nodes and their long-distance links, consistently in the language of graphs and graph states. This unifying approach comprises both the distribution of multipartite entanglement across the network, and the protection against errors via encoding. The correspondence to graph states also provides a tool for optimising the architecture of quantum networks.

  17. Global mean first-passage times of random walks on complex networks.

    PubMed

    Tejedor, V; Bénichou, O; Voituriez, R

    2009-12-01

    We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target and implies a minimal scaling of the GMFPT with the network size. We show that this minimal scaling, which can be arbitrarily slow, is realized under the simple condition that the random walk is transient at the target site and independently of the small-world, scale-free, or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a representative property of the network since the target averaged GMFPT satisfies much more restrictive bounds.

  18. Assessing network scale-up estimates for groups most at risk of HIV/AIDS: evidence from a multiple-method study of heavy drug users in Curitiba, Brazil.

    PubMed

    Salganik, Matthew J; Fazito, Dimitri; Bertoni, Neilane; Abdo, Alexandre H; Mello, Maeve B; Bastos, Francisco I

    2011-11-15

    One of the many challenges hindering the global response to the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) epidemic is the difficulty of collecting reliable information about the populations most at risk for the disease. Thus, the authors empirically assessed a promising new method for estimating the sizes of most at-risk populations: the network scale-up method. Using 4 different data sources, 2 of which were from other researchers, the authors produced 5 estimates of the number of heavy drug users in Curitiba, Brazil. The authors found that the network scale-up and generalized network scale-up estimators produced estimates 5-10 times higher than estimates made using standard methods (the multiplier method and the direct estimation method using data from 2004 and 2010). Given that equally plausible methods produced such a wide range of results, the authors recommend that additional studies be undertaken to compare estimates based on the scale-up method with those made using other methods. If scale-up-based methods routinely produce higher estimates, this would suggest that scale-up-based methods are inappropriate for populations most at risk of HIV/AIDS or that standard methods may tend to underestimate the sizes of these populations.

  19. Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network1[OPEN

    PubMed Central

    Kim, Taehyong; Dreher, Kate; Nilo-Poyanco, Ricardo; Lee, Insuk; Fiehn, Oliver; Lange, Bernd Markus; Nikolau, Basil J.; Sumner, Lloyd; Welti, Ruth; Wurtele, Eve S.; Rhee, Seung Y.

    2015-01-01

    Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes. PMID:25670818

  20. Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2014-01-01

    Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877

  1. Homeostatic Scaling of Excitability in Recurrent Neural Networks

    PubMed Central

    Remme, Michiel W. H.; Wadman, Wytse J.

    2012-01-01

    Neurons adjust their intrinsic excitability when experiencing a persistent change in synaptic drive. This process can prevent neural activity from moving into either a quiescent state or a saturated state in the face of ongoing plasticity, and is thought to promote stability of the network in which neurons reside. However, most neurons are embedded in recurrent networks, which require a delicate balance between excitation and inhibition to maintain network stability. This balance could be disrupted when neurons independently adjust their intrinsic excitability. Here, we study the functioning of activity-dependent homeostatic scaling of intrinsic excitability (HSE) in a recurrent neural network. Using both simulations of a recurrent network consisting of excitatory and inhibitory neurons that implement HSE, and a mean-field description of adapting excitatory and inhibitory populations, we show that the stability of such adapting networks critically depends on the relationship between the adaptation time scales of both neuron populations. In a stable adapting network, HSE can keep all neurons functioning within their dynamic range, while the network is undergoing several (patho)physiologically relevant types of plasticity, such as persistent changes in external drive, changes in connection strengths, or the loss of inhibitory cells from the network. However, HSE cannot prevent the unstable network dynamics that result when, due to such plasticity, recurrent excitation in the network becomes too strong compared to feedback inhibition. This suggests that keeping a neural network in a stable and functional state requires the coordination of distinct homeostatic mechanisms that operate not only by adjusting neural excitability, but also by controlling network connectivity. PMID:22570604

  2. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks

    PubMed Central

    Azad, Ariful; Ouzounis, Christos A; Kyrpides, Nikos C; Buluç, Aydin

    2018-01-01

    Abstract Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times and memory demands. Here, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ∼70 million nodes with ∼68 billion edges in ∼2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license. PMID:29315405

  3. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks

    DOE PAGES

    Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.; ...

    2018-01-05

    Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less

  4. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.

    Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less

  5. Flexible Redistribution in Cognitive Networks.

    PubMed

    Hartwigsen, Gesa

    2018-06-15

    Previous work has emphasized that cognitive functions in the human brain are organized into large-scale networks. However, the mechanisms that allow these networks to compensate for focal disruptions remain elusive. I suggest a new perspective on the compensatory flexibility of cognitive networks. First, I demonstrate that cognitive networks can rapidly change the functional weight of the relative contribution of different regions. Second, I argue that there is an asymmetry in the compensatory potential of different kinds of networks. Specifically, recruitment of domain-general functions can partially compensate for focal disruptions of specialized cognitive functions, but not vice versa. Considering the compensatory potential within and across networks will increase our understanding of functional adaptation and reorganization after brain lesions and offers a new perspective on large-scale neural network (re-)organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Investigating the effects of streamline-based fiber tractography on matrix scaling in brain connective network.

    PubMed

    Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei

    2013-01-01

    Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

  7. Evolution of the social network of scientific collaborations

    NASA Astrophysics Data System (ADS)

    Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.

    2002-08-01

    The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.

  8. Benefits and Challenges of Scaling Up Expansion of Marine Protected Area Networks in the Verde Island Passage, Central Philippines.

    PubMed

    Horigue, Vera; Pressey, Robert L; Mills, Morena; Brotánková, Jana; Cabral, Reniel; Andréfouët, Serge

    2015-01-01

    Locally-established marine protected areas (MPAs) have been proven to achieve local-scale fisheries and conservation objectives. However, since many of these MPAs were not designed to form ecologically-connected networks, their contributions to broader-scale goals such as complementarity and connectivity can be limited. In contrast, integrated networks of MPAs designed with systematic conservation planning are assumed to be more effective--ecologically, socially, and economically--than collections of locally-established MPAs. There is, however, little empirical evidence that clearly demonstrates the supposed advantages of systematic MPA networks. A key reason is the poor record of implementation of systematic plans attributable to lack of local buy-in. An intermediate scenario for the expansion of MPAs is scaling up of local decisions, whereby locally-driven MPA initiatives are coordinated through collaborative partnerships among local governments and their communities. Coordination has the potential to extend the benefits of individual MPAs and perhaps to approach the potential benefits offered by systematic MPA networks. We evaluated the benefits of scaling up local MPAs to form networks by simulating seven expansion scenarios for MPAs in the Verde Island Passage, central Philippines. The scenarios were: uncoordinated community-based establishment of MPAs; two scenarios reflecting different levels of coordinated MPA expansion through collaborative partnerships; and four scenarios guided by systematic conservation planning with different contexts for governance. For each scenario, we measured benefits through time in terms of achievement of objectives for representation of marine habitats. We found that: in any governance context, systematic networks were more efficient than non-systematic ones; systematic networks were more efficient in broader governance contexts; and, contrary to expectations but with caveats, the uncoordinated scenario was slightly more efficient than the coordinated scenarios. Overall, however, coordinated MPA networks have the potential to be more efficient than the uncoordinated ones, especially when coordinated planning uses systematic methods.

  9. Benefits and Challenges of Scaling Up Expansion of Marine Protected Area Networks in the Verde Island Passage, Central Philippines

    PubMed Central

    Horigue, Vera; Pressey, Robert L.; Mills, Morena; Brotánková, Jana; Cabral, Reniel; Andréfouët, Serge

    2015-01-01

    Locally-established marine protected areas (MPAs) have been proven to achieve local-scale fisheries and conservation objectives. However, since many of these MPAs were not designed to form ecologically-connected networks, their contributions to broader-scale goals such as complementarity and connectivity can be limited. In contrast, integrated networks of MPAs designed with systematic conservation planning are assumed to be more effective—ecologically, socially, and economically—than collections of locally-established MPAs. There is, however, little empirical evidence that clearly demonstrates the supposed advantages of systematic MPA networks. A key reason is the poor record of implementation of systematic plans attributable to lack of local buy-in. An intermediate scenario for the expansion of MPAs is scaling up of local decisions, whereby locally-driven MPA initiatives are coordinated through collaborative partnerships among local governments and their communities. Coordination has the potential to extend the benefits of individual MPAs and perhaps to approach the potential benefits offered by systematic MPA networks. We evaluated the benefits of scaling up local MPAs to form networks by simulating seven expansion scenarios for MPAs in the Verde Island Passage, central Philippines. The scenarios were: uncoordinated community-based establishment of MPAs; two scenarios reflecting different levels of coordinated MPA expansion through collaborative partnerships; and four scenarios guided by systematic conservation planning with different contexts for governance. For each scenario, we measured benefits through time in terms of achievement of objectives for representation of marine habitats. We found that: in any governance context, systematic networks were more efficient than non-systematic ones; systematic networks were more efficient in broader governance contexts; and, contrary to expectations but with caveats, the uncoordinated scenario was slightly more efficient than the coordinated scenarios. Overall, however, coordinated MPA networks have the potential to be more efficient than the uncoordinated ones, especially when coordinated planning uses systematic methods. PMID:26288089

  10. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale

    NASA Astrophysics Data System (ADS)

    Seetha, N.; Raoof, Amir; Mohan Kumar, M. S.; Majid Hassanizadeh, S.

    2017-05-01

    Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.

  11. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  12. Bellman Ford algorithm - in Routing Information Protocol (RIP)

    NASA Astrophysics Data System (ADS)

    Krianto Sulaiman, Oris; Mahmud Siregar, Amir; Nasution, Khairuddin; Haramaini, Tasliyah

    2018-04-01

    In a large scale network need a routing that can handle a lot number of users, one of the solutions to cope with large scale network is by using a routing protocol, There are 2 types of routing protocol that is static and dynamic, Static routing is manually route input based on network admin, while dynamic routing is automatically route input formed based on existing network. Dynamic routing is efficient used to network extensively because of the input of route automatic formed, Routing Information Protocol (RIP) is one of dynamic routing that uses the bellman-ford algorithm where this algorithm will search for the best path that traversed the network by leveraging the value of each link, so with the bellman-ford algorithm owned by RIP can optimize existing networks.

  13. Conformity hinders the evolution of cooperation on scale-free networks

    NASA Astrophysics Data System (ADS)

    Peña, Jorge; Volken, Henri; Pestelacci, Enea; Tomassini, Marco

    2009-07-01

    We study the effects of conformity, the tendency of humans to imitate locally common behaviors, in the evolution of cooperation when individuals occupy the vertices of a graph and engage in the one-shot prisoner’s dilemma or the snowdrift game with their neighbors. Two different graphs are studied: rings (one-dimensional lattices with cyclic boundary conditions) and scale-free networks of the Barabási-Albert type. The proposed evolutionary-graph model is studied both by means of Monte Carlo simulations and an extended pair-approximation technique. We find improved levels of cooperation when evolution is carried on rings and individuals imitate according to both the traditional payoff bias and a conformist bias. More importantly, we show that scale-free networks are no longer powerful amplifiers of cooperation when fair amounts of conformity are introduced in the imitation rules of the players. Such weakening of the cooperation-promoting abilities of scale-free networks is the result of a less biased flow of information in scale-free topologies, making hubs more susceptible of being influenced by less-connected neighbors.

  14. Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossa, Nathan, E-mail: bossanathan@gmail.com; INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte; iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence

    2015-01-15

    Pore structure of leached cement pastes (w/c = 0.5) was studied for the first time from micro-scale down to the nano-scale by combining micro- and nano-X-ray computed tomography (micro- and nano-CT). This allowed assessing the 3D heterogeneity of the pore network along the cement profile (from the core to the altered layer) of almost the entire range of cement pore size, i.e. from capillary to gel pores. We successfully quantified an increase of porosity in the altered layer at both resolutions. Porosity is increasing from 1.8 to 6.1% and from 18 to 58% at the micro-(voxel = 1.81 μm) andmore » nano-scale (voxel = 63.5 nm) respectively. The combination of both CT allowed to circumvent weaknesses inherent of both investigation scales. In addition the connectivity and the channel size of the pore network were also evaluated to obtain a complete 3D pore network characterization at both scales.« less

  15. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3+TiBw)/Ti6Al4V composites

    PubMed Central

    Jiao, Y.; Huang, L. J.; Duan, T. B.; Wei, S. L.; Kaveendran, B.; Geng, L.

    2016-01-01

    Novel Ti6Al4V alloy matrix composites with a controllable two-scale network architecture were successfully fabricated by reaction hot pressing (RHP). TiB whiskers (TiBw) were in-situ synthesized around the Ti6Al4V matrix particles, and formed the first-scale network structure (FSNS). Ti5Si3 needles (Ti5Si3) precipitated in the β phase around the equiaxed α phase, and formed the secondary-scale network structure (SSNS). This resulted in increased deformation compatibility accompanied with enhanced mechanical properties. Apart from the reinforcement distribution and the volume fraction, the ratio between Ti5Si3 and TiBw fraction were controlled. The prepared (Ti5Si3 + TiBw)/Ti6Al4V composites showed higher tensile strength and ductility than the composites with a one-scale microstructure, and superior wear resistance over the Ti6Al4V alloy under dry sliding wear conditions at room temperature. PMID:27622992

  16. Multilayer network modeling of integrated biological systems. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio

    2018-03-01

    Biological systems, from a cell to the human brain, are inherently complex. A powerful representation of such systems, described by an intricate web of relationships across multiple scales, is provided by complex networks. Recently, several studies are highlighting how simple networks - obtained by aggregating or neglecting temporal or categorical description of biological data - are not able to account for the richness of information characterizing biological systems. More complex models, namely multilayer networks, are needed to account for interdependencies, often varying across time, of biological interacting units within a cell, a tissue or parts of an organism.

  17. Scaling properties of cosmic (super)string networks

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.

    2014-10-01

    I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.

  18. Non-universal critical exponents in earthquake complex networks

    NASA Astrophysics Data System (ADS)

    Pastén, Denisse; Torres, Felipe; Toledo, Benjamín A.; Muñoz, Víctor; Rogan, José; Valdivia, Juan Alejandro

    2018-02-01

    The problem of universality of critical exponents in complex networks is studied based on networks built from seismic data sets. Using two data sets corresponding to Chilean seismicity (northern zone, including the 2014 Mw = 8 . 2 earthquake in Iquique; and central zone without major earthquakes), directed networks for each set are constructed. Connectivity and betweenness centrality distributions are calculated and found to be scale-free, with respective exponents γ and δ. The expected relation between both characteristic exponents, δ >(γ + 1) / 2, is verified for both data sets. However, unlike the expectation for certain scale-free analytical complex networks, the value of δ is found to be non-universal.

  19. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy.

    PubMed

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J

    2014-08-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. Copyright © 2014 Wiley Periodicals, Inc.

  20. Large-Scale Coronal Heating, Clustering of Coronal Bright Points, and Concentration of Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that on scales larger than a supergranule the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells.

  1. Structural Preferential Attachment: Network Organization beyond the Link

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Allard, Antoine; Marceau, Vincent; Noël, Pierre-André; Dubé, Louis J.

    2011-10-01

    We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.

  2. Using Friends as Sensors to Detect Global-Scale Contagious Outbreaks

    PubMed Central

    Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A.; Fowler, James H.

    2014-01-01

    Recent research has focused on the monitoring of global–scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global–scale networks. PMID:24718030

  3. Using friends as sensors to detect global-scale contagious outbreaks.

    PubMed

    Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A; Fowler, James H

    2014-01-01

    Recent research has focused on the monitoring of global-scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global-scale networks.

  4. Performance of an Abbreviated Version of the Lubben Social Network Scale among Three European Community-Dwelling Older Adult Populations

    ERIC Educational Resources Information Center

    Lubben, James; Blozik, Eva; Gillmann, Gerhard; Iliffe, Steve; von Renteln-Kruse, Wolfgang; Beck, John C.; Stuck, Andreas E.

    2006-01-01

    Purpose: There is a need for valid and reliable short scales that can be used to assess social networks and social supports and to screen for social isolation in older persons. Design and Methods: The present study is a cross-national and cross-cultural evaluation of the performance of an abbreviated version of the Lubben Social Network Scale…

  5. Active Self-Testing Noise Measurement Sensors for Large-Scale Environmental Sensor Networks

    PubMed Central

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-01-01

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10. PMID:24351634

  6. Network-State Modulation of Power-Law Frequency-Scaling in Visual Cortical Neurons

    PubMed Central

    Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves

    2009-01-01

    Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of Vm activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the Vm reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the “effective” connectivity responsible for the dynamical signature of the population signals measured at different integration levels, from Vm to LFP, EEG and fMRI. PMID:19779556

  7. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    PubMed

    El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves

    2009-09-01

    Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured at different integration levels, from Vm to LFP, EEG and fMRI.

  8. Modular synchronization in complex networks.

    PubMed

    Oh, E; Rho, K; Hong, H; Kahng, B

    2005-10-01

    We study the synchronization transition (ST) of a modified Kuramoto model on two different types of modular complex networks. It is found that the ST depends on the type of intermodular connections. For the network with decentralized (centralized) intermodular connections, the ST occurs at finite coupling constant (behaves abnormally). Such distinct features are found in the yeast protein interaction network and the Internet, respectively. Moreover, by applying the finite-size scaling analysis to an artificial network with decentralized intermodular connections, we obtain the exponent associated with the order parameter of the ST to be beta approximately 1 different from beta(MF) approximately 1/2 obtained from the scale-free network with the same degree distribution but the absence of modular structure, corresponding to the mean field value.

  9. Cascading failure in scale-free networks with tunable clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Jun; Gu, Bo; Guan, Xiang-Min; Zhu, Yan-Bo; Lv, Ren-Li

    2016-02-01

    Cascading failure is ubiquitous in many networked infrastructure systems, such as power grids, Internet and air transportation systems. In this paper, we extend the cascading failure model to a scale-free network with tunable clustering and focus on the effect of clustering coefficient on system robustness. It is found that the network robustness undergoes a nonmonotonic transition with the increment of clustering coefficient: both highly and lowly clustered networks are fragile under the intentional attack, and the network with moderate clustering coefficient can better resist the spread of cascading. We then provide an extensive explanation for this constructive phenomenon via the microscopic point of view and quantitative analysis. Our work can be useful to the design and optimization of infrastructure systems.

  10. Energy scaling and reduction in controlling complex networks

    PubMed Central

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  11. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks

    PubMed Central

    Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts. PMID:29051730

  12. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    PubMed

    Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.

  13. Toward the automated generation of genome-scale metabolic networks in the SEED.

    PubMed

    DeJongh, Matthew; Formsma, Kevin; Boillot, Paul; Gould, John; Rycenga, Matthew; Best, Aaron

    2007-04-26

    Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis). We have implemented our tools and database within the SEED, an open-source software environment for comparative genome annotation and analysis. Our method sets the stage for the automated generation of substantially complete metabolic networks for over 400 complete genome sequences currently in the SEED. With each genome that is processed using our tools, the database of common components grows to cover more of the diversity of metabolic pathways. This increases the likelihood that components of reaction networks for subsequently processed genomes can be retrieved from the database, rather than assembled and verified manually.

  14. Treatment effect of methylphenidate on intrinsic functional brain network in medication-naïve ADHD children: A multivariate analysis.

    PubMed

    Yoo, Jae Hyun; Kim, Dohyun; Choi, Jeewook; Jeong, Bumseok

    2018-04-01

    Methylphenidate is a first-line therapeutic option for treating attention-deficit/hyperactivity disorder (ADHD); however, elicited changes on resting-state functional networks (RSFNs) are not well understood. This study investigated the treatment effect of methylphenidate using a variety of RSFN analyses and explored the collaborative influences of treatment-relevant RSFN changes in children with ADHD. Resting-state functional magnetic resonance imaging was acquired from 20 medication-naïve ADHD children before methylphenidate treatment and twelve weeks later. Changes in large-scale functional connectivity were defined using independent component analysis with dual regression and graph theoretical analysis. The amplitude of low frequency fluctuation (ALFF) was measured to investigate local spontaneous activity alteration. Finally, significant findings were recruited to random forest regression to identify the feature subset that best explains symptom improvement. After twelve weeks of methylphenidate administration, large-scale connectivity was increased between the left fronto-parietal RSFN and the left insula cortex and the right fronto-parietal and the brainstem, while the clustering coefficient (CC) of the global network and nodes, the left fronto-parietal, cerebellum, and occipital pole-visual network, were decreased. ALFF was increased in the bilateral superior parietal cortex and decreased in the right inferior fronto-temporal area. The subset of the local and large-scale RSFN changes, including widespread ALFF changes, the CC of the global network and the cerebellum, could explain the 27.1% variance of the ADHD Rating Scale and 13.72% of the Conner's Parent Rating Scale. Our multivariate approach suggests that the neural mechanism of methylphenidate treatment could be associated with alteration of spontaneous activity in the superior parietal cortex or widespread brain regions as well as functional segregation of the large-scale intrinsic functional network.

  15. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    PubMed

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  16. Topology effects on nonaffine behavior of semiflexible fiber networks

    NASA Astrophysics Data System (ADS)

    Hatami-Marbini, H.; Shriyan, V.

    2017-12-01

    Filamentous semiflexible networks define the mechanical and physical properties of many materials such as cytoskeleton. In the absence of a distinct unit cell, the Mikado fiber network model is commonly used algorithm for representing the microstructure of these networks in numerical models. Nevertheless, certain types of filamentous structures such as collagenous tissues, at early stages of their development, are assembled by growth of individual fibers from random nucleation sites. In this work, we develop a computational model to investigate the mechanical response of such networks by characterizing their nonaffine behavior. We show that the deformation of these networks is nonaffine at all length scales. Furthermore, similar to Mikado networks, the degree of nonaffinity in these structures decreases with increasing the probing length scale, the network fiber density, and/or the bending stiffness of constituting filaments. Nevertheless, despite the lower coordination number of these networks, their deformation field is more affine than that of the Mikado networks with the same fiber density and fiber mechanical properties.

  17. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.

    PubMed

    Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y

    2008-08-12

    New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.

  18. Neocortical dynamics due to axon propagation delays in cortico-cortical fibers: EEG traveling and standing waves with implications for top-down influences on local networks and white matter disease

    PubMed Central

    Nunez, Paul L.; Srinivasan, Ramesh

    2013-01-01

    The brain is treated as a nested hierarchical complex system with substantial interactions across spatial scales. Local networks are pictured as embedded within global fields of synaptic action and action potentials. Global fields may act top-down on multiple networks, acting to bind remote networks. Because of scale-dependent properties, experimental electrophysiology requires both local and global models that match observational scales. Multiple local alpha rhythms are embedded in a global alpha rhythm. Global models are outlined in which cm-scale dynamic behaviors result largely from propagation delays in cortico-cortical axons and cortical background excitation level, controlled by neuromodulators on long time scales. The idealized global models ignore the bottom-up influences of local networks on global fields so as to employ relatively simple mathematics. The resulting models are transparently related to several EEG and steady state visually evoked potentials correlated with cognitive states, including estimates of neocortical coherence structure, traveling waves, and standing waves. The global models suggest that global oscillatory behavior of self-sustained (limit-cycle) modes lower than about 20 Hz may easily occur in neocortical/white matter systems provided: Background cortical excitability is sufficiently high; the strength of long cortico-cortical axon systems is sufficiently high; and the bottom-up influence of local networks on the global dynamic field is sufficiently weak. The global models provide "entry points" to more detailed studies of global top-down influences, including binding of weakly connected networks, modulation of gamma oscillations by theta or alpha rhythms, and the effects of white matter deficits. PMID:24505628

  19. SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation.

    PubMed

    Xue, Yuan; Xu, Tao; Zhang, Han; Long, L Rodney; Huang, Xiaolei

    2018-05-03

    Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN's discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L 1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.

  20. Design of a sensor network for structural health monitoring of a full-scale composite horizontal tail

    NASA Astrophysics Data System (ADS)

    Gao, Dongyue; Wang, Yishou; Wu, Zhanjun; Rahim, Gorgin; Bai, Shengbao

    2014-05-01

    The detection capability of a given structural health monitoring (SHM) system strongly depends on its sensor network placement. In order to minimize the number of sensors while maximizing the detection capability, optimal design of the PZT sensor network placement is necessary for structural health monitoring (SHM) of a full-scale composite horizontal tail. In this study, the sensor network optimization was simplified as a problem of determining the sensor array placement between stiffeners to achieve the desired the coverage rate. First, an analysis of the structural layout and load distribution of a composite horizontal tail was performed. The constraint conditions of the optimal design were presented. Then, the SHM algorithm of the composite horizontal tail under static load was proposed. Based on the given SHM algorithm, a sensor network was designed for the full-scale composite horizontal tail structure. Effective profiles of cross-stiffener paths (CRPs) and uncross-stiffener paths (URPs) were estimated by a Lamb wave propagation experiment in a multi-stiffener composite specimen. Based on the coverage rate and the redundancy requirements, a seven-sensor array-network was chosen as the optimal sensor network for each airfoil. Finally, a preliminary SHM experiment was performed on a typical composite aircraft structure component. The reliability of the SHM result for a composite horizontal tail structure under static load was validated. In the result, the red zone represented the delamination damage. The detection capability of the optimized sensor network was verified by SHM of a full-scale composite horizontal tail; all the diagnosis results were obtained in two minutes. The result showed that all the damage in the monitoring region was covered by the sensor network.

  1. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function.

    PubMed

    Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A

    2014-05-01

    Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. To test the hypothesis that the strength of coupling among 3 large-scale brain networks--salience, executive control, and default mode--will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. Twenty-four hours of abstinence vs smoking satiety. Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = -0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = -0.66, P = .003; posterior cingulate cortex, r = -0.65, P = .001). Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence.

  2. Evolution of regulatory networks towards adaptability and stability in a changing environment

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  3. ProMotE: an efficient algorithm for counting independent motifs in uncertain network topologies.

    PubMed

    Ren, Yuanfang; Sarkar, Aisharjya; Kahveci, Tamer

    2018-06-26

    Identifying motifs in biological networks is essential in uncovering key functions served by these networks. Finding non-overlapping motif instances is however a computationally challenging task. The fact that biological interactions are uncertain events further complicates the problem, as it makes the existence of an embedding of a given motif an uncertain event as well. In this paper, we develop a novel method, ProMotE (Probabilistic Motif Embedding), to count non-overlapping embeddings of a given motif in probabilistic networks. We utilize a polynomial model to capture the uncertainty. We develop three strategies to scale our algorithm to large networks. Our experiments demonstrate that our method scales to large networks in practical time with high accuracy where existing methods fail. Moreover, our experiments on cancer and degenerative disease networks show that our method helps in uncovering key functional characteristics of biological networks.

  4. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    NASA Astrophysics Data System (ADS)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  5. Scale-free models for the structure of business firm networks.

    PubMed

    Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H Eugene

    2010-03-01

    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.

  6. Multiscale Embedded Gene Co-expression Network Analysis

    PubMed Central

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778

  7. Multiscale Embedded Gene Co-expression Network Analysis.

    PubMed

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  8. DISRUPTION OF LARGE-SCALE NEURAL NETWORKS IN NON-FLUENT/AGRAMMATIC VARIANT PRIMARY PROGRESSIVE APHASIA ASSOCIATED WITH FRONTOTEMPORAL DEGENERATION PATHOLOGY

    PubMed Central

    Grossman, Murray; Powers, John; Ash, Sherry; McMillan, Corey; Burkholder, Lisa; Irwin, David; Trojanowski, John Q.

    2012-01-01

    Non-fluent/agrammatic primary progressive aphasia (naPPA) is a progressive neurodegenerative condition most prominently associated with slowed, effortful speech. A clinical imaging marker of naPPA is disease centered in the left inferior frontal lobe. We used multimodal imaging to assess large-scale neural networks underlying effortful expression in 15 patients with sporadic naPPA due to frontotemporal lobar degeneration (FTLD) spectrum pathology. Effortful speech in these patients is related in part to impaired grammatical processing, and to phonologic speech errors. Gray matter (GM) imaging shows frontal and anterior-superior temporal atrophy, most prominently in the left hemisphere. Diffusion tensor imaging reveals reduced fractional anisotropy in several white matter (WM) tracts mediating projections between left frontal and other GM regions. Regression analyses suggest disruption of three large-scale GM-WM neural networks in naPPA that support fluent, grammatical expression. These findings emphasize the role of large-scale neural networks in language, and demonstrate associated language deficits in naPPA. PMID:23218686

  9. Revealing the Hidden Relationship by Sparse Modules in Complex Networks with a Large-Scale Analysis

    PubMed Central

    Jiao, Qing-Ju; Huang, Yan; Liu, Wei; Wang, Xiao-Fan; Chen, Xiao-Shuang; Shen, Hong-Bin

    2013-01-01

    One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others. PMID:23762457

  10. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry.

    PubMed

    Pflieger, Delphine; Gonnet, Florence; de la Fuente van Bentem, Sergio; Hirt, Heribert; de la Fuente, Alberto

    2011-01-01

    Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks. Copyright © 2010 Wiley Periodicals, Inc.

  11. Monitoring air quality in mountains: Designing an effective network

    USGS Publications Warehouse

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  12. Improving subthreshold swing to thermionic emission limit in carbon nanotube network film-based field-effect

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyi; Zhong, Donglai; Qiu, Chenguang; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2018-01-01

    In this letter, we explore the vertical scaling-down behavior of carbon nanotube (CNT) network film field-effect transistors (FETs) and show that by using a high-efficiency gate insulator, we can substantially improve the subthreshold swing (SS) and its uniformity. By using an HfO2 layer with a thickness of 7.3 nm as the gate insulator, we fabricated CNT network film FETs with a long channel (>2 μm) that exhibit an SS of approximately 60 mV/dec. The preferred thickness of HfO2 as the gate insulator in a CNT network FET is between 7 nm and 10 nm, simultaneously yielding an excellent SS (<80 mV/decade) and low gate leakage. However, because of the statistical fluctuations of the network CNT channel, the lateral scaling of CNT network film-based FETs is more difficult than that of conventional FETs. Experiments suggest that excellent SS is difficult to achieve statistically in CNT network film FETs with a small channel length (smaller than the mean length of the CNTs), which eventually limits the further scaling down of this kind of CNT FET to the sub-micrometer regime.

  13. Multiplex congruence network of natural numbers.

    PubMed

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-31

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  14. Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models

    PubMed Central

    Cowley, Benjamin R.; Doiron, Brent; Kohn, Adam

    2016-01-01

    Recent studies have applied dimensionality reduction methods to understand how the multi-dimensional structure of neural population activity gives rise to brain function. It is unclear, however, how the results obtained from dimensionality reduction generalize to recordings with larger numbers of neurons and trials or how these results relate to the underlying network structure. We address these questions by applying factor analysis to recordings in the visual cortex of non-human primates and to spiking network models that self-generate irregular activity through a balance of excitation and inhibition. We compared the scaling trends of two key outputs of dimensionality reduction—shared dimensionality and percent shared variance—with neuron and trial count. We found that the scaling properties of networks with non-clustered and clustered connectivity differed, and that the in vivo recordings were more consistent with the clustered network. Furthermore, recordings from tens of neurons were sufficient to identify the dominant modes of shared variability that generalize to larger portions of the network. These findings can help guide the interpretation of dimensionality reduction outputs in regimes of limited neuron and trial sampling and help relate these outputs to the underlying network structure. PMID:27926936

  15. Multiplex congruence network of natural numbers

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-01

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  16. Scaling in Transportation Networks

    PubMed Central

    Louf, Rémi; Roth, Camille; Barthelemy, Marc

    2014-01-01

    Subway systems span most large cities, and railway networks most countries in the world. These networks are fundamental in the development of countries and their cities, and it is therefore crucial to understand their formation and evolution. However, if the topological properties of these networks are fairly well understood, how they relate to population and socio-economical properties remains an open question. We propose here a general coarse-grained approach, based on a cost-benefit analysis that accounts for the scaling properties of the main quantities characterizing these systems (the number of stations, the total length, and the ridership) with the substrate's population, area and wealth. More precisely, we show that the length, number of stations and ridership of subways and rail networks can be estimated knowing the area, population and wealth of the underlying region. These predictions are in good agreement with data gathered for about subway systems and more than railway networks in the world. We also show that train networks and subway systems can be described within the same framework, but with a fundamental difference: while the interstation distance seems to be constant and determined by the typical walking distance for subways, the interstation distance for railways scales with the number of stations. PMID:25029528

  17. Root Systems Biology: Integrative Modeling across Scales, from Gene Regulatory Networks to the Rhizosphere1

    PubMed Central

    Hill, Kristine; Porco, Silvana; Lobet, Guillaume; Zappala, Susan; Mooney, Sacha; Draye, Xavier; Bennett, Malcolm J.

    2013-01-01

    Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment. PMID:24143806

  18. Compendium of Anomaly Detection and Reaction Tools and Projects

    DTIC Science & Technology

    2000-05-17

    identify changes to the risk levels of business network functions based on proposed modifications. Expert can model networks as well (see special...can easily scale to support any size network from departmental systems to enterprise-wide environments. ACX is scaled with the use of a Policy Model ...Defender is a host-based intrusion detector designed for use on home or small business systems. It scans all inbound and outbound Internet traffic for

  19. Group Centric Networking: Large Scale Over the Air Testing of Group Centric Networking

    DTIC Science & Technology

    2016-11-01

    protocol designed to support groups of devices in a local region [4]. It attempts to use the wireless medium to broadcast minimal control information...1) Group Discovery: The goal of the group discovery algo- rithm is to find group nodes without globally flooding control messages. To facilitate this...Large Scale Over-the-Air Testing of Group Centric Networking Logan Mercer, Greg Kuperman, Andrew Hunter, Brian Proulx MIT Lincoln Laboratory

  20. Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition.

    PubMed

    Hébert-Dufresne, Laurent; Grochow, Joshua A; Allard, Antoine

    2016-08-18

    We introduce a network statistic that measures structural properties at the micro-, meso-, and macroscopic scales, while still being easy to compute and interpretable at a glance. Our statistic, the onion spectrum, is based on the onion decomposition, which refines the k-core decomposition, a standard network fingerprinting method. The onion spectrum is exactly as easy to compute as the k-cores: It is based on the stages at which each vertex gets removed from a graph in the standard algorithm for computing the k-cores. Yet, the onion spectrum reveals much more information about a network, and at multiple scales; for example, it can be used to quantify node heterogeneity, degree correlations, centrality, and tree- or lattice-likeness. Furthermore, unlike the k-core decomposition, the combined degree-onion spectrum immediately gives a clear local picture of the network around each node which allows the detection of interesting subgraphs whose topological structure differs from the global network organization. This local description can also be leveraged to easily generate samples from the ensemble of networks with a given joint degree-onion distribution. We demonstrate the utility of the onion spectrum for understanding both static and dynamic properties on several standard graph models and on many real-world networks.

  1. Reverse engineering and analysis of large genome-scale gene networks

    PubMed Central

    Aluru, Maneesha; Zola, Jaroslaw; Nettleton, Dan; Aluru, Srinivas

    2013-01-01

    Reverse engineering the whole-genome networks of complex multicellular organisms continues to remain a challenge. While simpler models easily scale to large number of genes and gene expression datasets, more accurate models are compute intensive limiting their scale of applicability. To enable fast and accurate reconstruction of large networks, we developed Tool for Inferring Network of Genes (TINGe), a parallel mutual information (MI)-based program. The novel features of our approach include: (i) B-spline-based formulation for linear-time computation of MI, (ii) a novel algorithm for direct permutation testing and (iii) development of parallel algorithms to reduce run-time and facilitate construction of large networks. We assess the quality of our method by comparison with ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) and GeneNet and demonstrate its unique capability by reverse engineering the whole-genome network of Arabidopsis thaliana from 3137 Affymetrix ATH1 GeneChips in just 9 min on a 1024-core cluster. We further report on the development of a new software Gene Network Analyzer (GeNA) for extracting context-specific subnetworks from a given set of seed genes. Using TINGe and GeNA, we performed analysis of 241 Arabidopsis AraCyc 8.0 pathways, and the results are made available through the web. PMID:23042249

  2. Systemic risk on different interbank network topologies

    NASA Astrophysics Data System (ADS)

    Lenzu, Simone; Tedeschi, Gabriele

    2012-09-01

    In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.

  3. Coherence analysis of a class of weighted networks

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; He, Jiaojiao; Zong, Yue; Ju, Tingting; Sun, Yu; Su, Weiyi

    2018-04-01

    This paper investigates consensus dynamics in a dynamical system with additive stochastic disturbances that is characterized as network coherence by using the Laplacian spectrum. We introduce a class of weighted networks based on a complete graph and investigate the first- and second-order network coherence quantifying as the sum and square sum of reciprocals of all nonzero Laplacian eigenvalues. First, the recursive relationship of its eigenvalues at two successive generations of Laplacian matrix is deduced. Then, we compute the sum and square sum of reciprocal of all nonzero Laplacian eigenvalues. The obtained results show that the scalings of first- and second-order coherence with network size obey four and five laws, respectively, along with the range of the weight factor. Finally, it indicates that the scalings of our studied networks are smaller than other studied networks when 1/√{d }

  4. Building and measuring a high performance network architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning.more » The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.« less

  5. Imaging complex nutrient dynamics in mycelial networks.

    PubMed

    Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L

    2008-08-01

    Transport networks are vital components of multi-cellular organisms, distributing nutrients and removing waste products. Animal cardiovascular and respiratory systems, and plant vasculature, are branching trees whose architecture is thought to determine universal scaling laws in these organisms. In contrast, the transport systems of many multi-cellular fungi do not fit into this conceptual framework, as they have evolved to explore a patchy environment in search of new resources, rather than ramify through a three-dimensional organism. These fungi grow as a foraging mycelium, formed by the branching and fusion of threadlike hyphae, that gives rise to a complex network. To function efficiently, the mycelial network must both transport nutrients between spatially separated source and sink regions and also maintain its integrity in the face of continuous attack by mycophagous insects or random damage. Here we review the development of novel imaging approaches and software tools that we have used to characterise nutrient transport and network formation in foraging mycelia over a range of spatial scales. On a millimetre scale, we have used a combination of time-lapse confocal imaging and fluorescence recovery after photobleaching to quantify the rate of diffusive transport through the unique vacuole system in individual hyphae. These data then form the basis of a simulation model to predict the impact of such diffusion-based movement on a scale of several millimetres. On a centimetre scale, we have used novel photon-counting scintillation imaging techniques to visualize radiolabel movement in small microcosms. This approach has revealed novel N-transport phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional transport, abrupt switching between different pre-existing transport routes, and a strong pulsatile component to transport in some species. Analysis of the pulsatile transport component using Fourier techniques shows that as the colony forms, it self-organizes into well demarcated domains that are identifiable by differences in the phase relationship of the pulses. On the centimetre to metre scale, we have begun to use techniques borrowed from graph theory to characterize the development and dynamics of the network, and used these abstracted network models to predict the transport characteristics, resilience, and cost of the network.

  6. Parallel Mutual Information Based Construction of Genome-Scale Networks on the Intel® Xeon Phi™ Coprocessor.

    PubMed

    Misra, Sanchit; Pamnany, Kiran; Aluru, Srinivas

    2015-01-01

    Construction of whole-genome networks from large-scale gene expression data is an important problem in systems biology. While several techniques have been developed, most cannot handle network reconstruction at the whole-genome scale, and the few that can, require large clusters. In this paper, we present a solution on the Intel Xeon Phi coprocessor, taking advantage of its multi-level parallelism including many x86-based cores, multiple threads per core, and vector processing units. We also present a solution on the Intel® Xeon® processor. Our solution is based on TINGe, a fast parallel network reconstruction technique that uses mutual information and permutation testing for assessing statistical significance. We demonstrate the first ever inference of a plant whole genome regulatory network on a single chip by constructing a 15,575 gene network of the plant Arabidopsis thaliana from 3,137 microarray experiments in only 22 minutes. In addition, our optimization for parallelizing mutual information computation on the Intel Xeon Phi coprocessor holds out lessons that are applicable to other domains.

  7. Evidence for dynamically organized modularity in the yeast protein-protein interaction network

    NASA Astrophysics Data System (ADS)

    Han, Jing-Dong J.; Bertin, Nicolas; Hao, Tong; Goldberg, Debra S.; Berriz, Gabriel F.; Zhang, Lan V.; Dupuy, Denis; Walhout, Albertha J. M.; Cusick, Michael E.; Roth, Frederick P.; Vidal, Marc

    2004-07-01

    In apparently scale-free protein-protein interaction networks, or `interactome' networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the `hubs', interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: `party' hubs, which interact with most of their partners simultaneously, and `date' hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes-or modules -to each other, whereas party hubs function inside modules.

  8. Sign: large-scale gene network estimation environment for high performance computing.

    PubMed

    Tamada, Yoshinori; Shimamura, Teppei; Yamaguchi, Rui; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru

    2011-01-01

    Our research group is currently developing software for estimating large-scale gene networks from gene expression data. The software, called SiGN, is specifically designed for the Japanese flagship supercomputer "K computer" which is planned to achieve 10 petaflops in 2012, and other high performance computing environments including Human Genome Center (HGC) supercomputer system. SiGN is a collection of gene network estimation software with three different sub-programs: SiGN-BN, SiGN-SSM and SiGN-L1. In these three programs, five different models are available: static and dynamic nonparametric Bayesian networks, state space models, graphical Gaussian models, and vector autoregressive models. All these models require a huge amount of computational resources for estimating large-scale gene networks and therefore are designed to be able to exploit the speed of 10 petaflops. The software will be available freely for "K computer" and HGC supercomputer system users. The estimated networks can be viewed and analyzed by Cell Illustrator Online and SBiP (Systems Biology integrative Pipeline). The software project web site is available at http://sign.hgc.jp/ .

  9. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jo, Hang-Hyun

    2015-05-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.

  10. States of mind: emotions, body feelings, and thoughts share distributed neural networks.

    PubMed

    Oosterwijk, Suzanne; Lindquist, Kristen A; Anderson, Eric; Dautoff, Rebecca; Moriguchi, Yoshiya; Barrett, Lisa Feldman

    2012-09-01

    Scientists have traditionally assumed that different kinds of mental states (e.g., fear, disgust, love, memory, planning, concentration, etc.) correspond to different psychological faculties that have domain-specific correlates in the brain. Yet, growing evidence points to the constructionist hypothesis that mental states emerge from the combination of domain-general psychological processes that map to large-scale distributed brain networks. In this paper, we report a novel study testing a constructionist model of the mind in which participants generated three kinds of mental states (emotions, body feelings, or thoughts) while we measured activity within large-scale distributed brain networks using fMRI. We examined the similarity and differences in the pattern of network activity across these three classes of mental states. Consistent with a constructionist hypothesis, a combination of large-scale distributed networks contributed to emotions, thoughts, and body feelings, although these mental states differed in the relative contribution of those networks. Implications for a constructionist functional architecture of diverse mental states are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Food-web structure and network theory: The role of connectance and size

    PubMed Central

    Dunne, Jennifer A.; Williams, Richard J.; Martinez, Neo D.

    2002-01-01

    Networks from a wide range of physical, biological, and social systems have been recently described as “small-world” and “scale-free.” However, studies disagree whether ecological networks called food webs possess the characteristic path lengths, clustering coefficients, and degree distributions required for membership in these classes of networks. Our analysis suggests that the disagreements are based on selective use of relatively few food webs, as well as analytical decisions that obscure important variability in the data. We analyze a broad range of 16 high-quality food webs, with 25–172 nodes, from a variety of aquatic and terrestrial ecosystems. Food webs generally have much higher complexity, measured as connectance (the fraction of all possible links that are realized in a network), and much smaller size than other networks studied, which have important implications for network topology. Our results resolve prior conflicts by demonstrating that although some food webs have small-world and scale-free structure, most do not if they exceed a relatively low level of connectance. Although food-web degree distributions do not display a universal functional form, observed distributions are systematically related to network connectance and size. Also, although food webs often lack small-world structure because of low clustering, we identify a continuum of real-world networks including food webs whose ratios of observed to random clustering coefficients increase as a power–law function of network size over 7 orders of magnitude. Although food webs are generally not small-world, scale-free networks, food-web topology is consistent with patterns found within those classes of networks. PMID:12235364

  12. Deformation analysis of the unified lunar control networks

    NASA Astrophysics Data System (ADS)

    Iz, H. Bâki; Chen, Yong Qi; King, Bruce Anthony; Ding, Xiaoli; Wu, Chen

    2009-12-01

    This study compares the latest Unified Lunar Control Network, ULCN 2005, solution with the earlier ULCN 1994 solution at global and local scales. At the global scale, the relative rotation, translation, and deformation (normal strains and shears) parameters between the two networks are estimated as a whole using their colocated station Cartesian coordinate differences. At the local scale, the network station coordinate differences are examined in local topocentric coordinate systems whose origins are located at the geometric center of quadrangles and tetrahedrons. This study identified that the omission of the topography in the old ULCN solutions shifted the geometric center of the lunar figure up to 5 km in the lunar equatorial plane and induced a few hundred-meter level global rotations of the ULCN 1994 reference frame with respect to ULCN 2005. The displacements between the old and new control networks are less than ± 2 km on the average at the local scale, which behave like translations, caused by the omission of lunar topography in the earlier solution. The contribution of local rigid body rotations and dilatational and compressional components to the local displacements are approximately ± 100 m for a quadrangle/tetrahedron of an average side length of 10 km.

  13. The Multi-Scale Network Landscape of Collaboration.

    PubMed

    Bae, Arram; Park, Doheum; Ahn, Yong-Yeol; Park, Juyong

    2016-01-01

    Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena--which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists.

  14. Synchronization in scale-free networks: The role of finite-size effects

    NASA Astrophysics Data System (ADS)

    Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.

    2015-06-01

    Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.

  15. The Multi-Scale Network Landscape of Collaboration

    PubMed Central

    Ahn, Yong-Yeol; Park, Juyong

    2016-01-01

    Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena—which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists. PMID:26990088

  16. Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation.

    PubMed

    Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y

    2016-03-01

    Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.

  17. Statistical mechanics of scale-free gene expression networks

    NASA Astrophysics Data System (ADS)

    Gross, Eitan

    2012-12-01

    The gene co-expression networks of many organisms including bacteria, mice and man exhibit scale-free distribution. This heterogeneous distribution of connections decreases the vulnerability of the network to random attacks and thus may confer the genetic replication machinery an intrinsic resilience to such attacks, triggered by changing environmental conditions that the organism may be subject to during evolution. This resilience to random attacks comes at an energetic cost, however, reflected by the lower entropy of the scale-free distribution compared to the more homogenous, random network. In this study we found that the cell cycle-regulated gene expression pattern of the yeast Saccharomyces cerevisiae obeys a power-law distribution with an exponent α = 2.1 and an entropy of 1.58. The latter is very close to the maximal value of 1.65 obtained from linear optimization of the entropy function under the constraint of a constant cost function, determined by the average degree connectivity . We further show that the yeast's gene expression network can achieve scale-free distribution in a process that does not involve growth but rather via re-wiring of the connections between nodes of an ordered network. Our results support the idea of an evolutionary selection, which acts at the level of the protein sequence, and is compatible with the notion of greater biological importance of highly connected nodes in the protein interaction network. Our constrained re-wiring model provides a theoretical framework for a putative thermodynamically driven evolutionary selection process.

  18. Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation

    NASA Astrophysics Data System (ADS)

    Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y.

    2016-03-01

    Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.

  19. An improved global dynamic routing strategy for scale-free network with tunable clustering

    NASA Astrophysics Data System (ADS)

    Sun, Lina; Huang, Ning; Zhang, Yue; Bai, Yannan

    2016-08-01

    An efficient routing strategy can deliver packets quickly to improve the network capacity. Node congestion and transmission path length are inevitable real-time factors for a good routing strategy. Existing dynamic global routing strategies only consider the congestion of neighbor nodes and the shortest path, which ignores other key nodes’ congestion on the path. With the development of detection methods and techniques, global traffic information is readily available and important for the routing choice. Reasonable use of this information can effectively improve the network routing. So, an improved global dynamic routing strategy is proposed, which considers the congestion of all nodes on the shortest path and incorporates the waiting time of the most congested node into the path. We investigate the effectiveness of the proposed routing for scale-free network with different clustering coefficients. The shortest path routing strategy and the traffic awareness routing strategy only considering the waiting time of neighbor node are analyzed comparatively. Simulation results show that network capacity is greatly enhanced compared with the shortest path; congestion state increase is relatively slow compared with the traffic awareness routing strategy. Clustering coefficient increase will not only reduce the network throughput, but also result in transmission average path length increase for scale-free network with tunable clustering. The proposed routing is favorable to ease network congestion and network routing strategy design.

  20. A Three-Dimensional Computational Model of Collagen Network Mechanics

    PubMed Central

    Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi

    2014-01-01

    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649

  1. Network geometry with flavor: From complexity to quantum geometry

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .

  2. Network geometry with flavor: From complexity to quantum geometry.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.

  3. Spatial-pattern-induced evolution of a self-replicating loop network.

    PubMed

    Suzuki, Keisuke; Ikegami, Takashi

    2006-01-01

    We study a system of self-replicating loops in which interaction rules between individuals allow competition that leads to the formation of a hypercycle-like network. The main feature of the model is the multiple layers of interaction between loops, which lead to both global spatial patterns and local replication. The network of loops manifests itself as a spiral structure from which new kinds of self-replicating loops emerge at the boundaries between different species. In these regions, larger and more complex self-replicating loops live for longer periods of time, managing to self-replicate in spite of their slower replication. Of particular interest is how micro-scale interactions between replicators lead to macro-scale spatial pattern formation, and how these macro-scale patterns in turn perturb the micro-scale replication dynamics.

  4. Scaling of Directed Dynamical Small-World Networks with Random Responses

    NASA Astrophysics Data System (ADS)

    Zhu, Chen-Ping; Xiong, Shi-Jie; Tian, Ying-Jie; Li, Nan; Jiang, Ke-Sheng

    2004-05-01

    A dynamical model of small-world networks, with directed links which describe various correlations in social and natural phenomena, is presented. Random responses of sites to the input message are introduced to simulate real systems. The interplay of these ingredients results in the collective dynamical evolution of a spinlike variable S(t) of the whole network. The global average spreading length s and average spreading time s are found to scale as p-αln(N with different exponents. Meanwhile, S(t) behaves in a duple scaling form for N≫N*: S˜f(p-βqγt˜), where p and q are rewiring and external parameters, α, β, and γ are scaling exponents, and f(t˜) is a universal function. Possible applications of the model are discussed.

  5. Drainage fracture networks in elastic solids with internal fluid generation

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Galland, Olivier; Renard, François; Meakin, Paul; Jamtveit, Bjørn; Dysthe, Dag K.

    2013-06-01

    Experiments in which CO2 gas was generated by the yeast fermentation of sugar in an elastic layer of gelatine gel confined between two glass plates are described and analyzed theoretically. The CO2 gas pressure causes the gel layer to fracture. The gas produced is drained on short length scales by diffusion and on long length scales by flow in a fracture network, which has topological properties that are intermediate between river networks and hierarchical-fracture networks. A simple model for the experimental system with two parameters that characterize the disorder and the intermediate (river-fracture) topology of the network was developed and the results of the model were compared with the experimental results.

  6. Stability and Topology of Scale-Free Networks under Attack and Defense Strategies

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Cohen, Reuven; Argyrakis, Panos; Bunde, Armin; Havlin, Shlomo

    2005-05-01

    We study tolerance and topology of random scale-free networks under attack and defense strategies that depend on the degree k of the nodes. This situation occurs, for example, when the robustness of a node depends on its degree or in an intentional attack with insufficient knowledge of the network. We determine, for all strategies, the critical fraction pc of nodes that must be removed for disintegrating the network. We find that, for an intentional attack, little knowledge of the well-connected sites is sufficient to strongly reduce pc. At criticality, the topology of the network depends on the removal strategy, implying that different strategies may lead to different kinds of percolation transitions.

  7. VISUALIZATION AND SIMULATION OF NON-AQUEOUS PHASE LIQUIDS SOLUBILIZATION IN PORE NETWORKS

    EPA Science Inventory

    The design of in-situ remediation of contaminated soils is mostly based on a description at the macroscopic scale using a averaged quantities. These cannot address issues at the pore and pore network scales. In this paper, visualization experiments and numerical simulations in ...

  8. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  9. The social brain: scale-invariant layering of Erdős-Rényi networks in small-scale human societies.

    PubMed

    Harré, Michael S; Prokopenko, Mikhail

    2016-05-01

    The cognitive ability to form social links that can bind individuals together into large cooperative groups for safety and resource sharing was a key development in human evolutionary and social history. The 'social brain hypothesis' argues that the size of these social groups is based on a neurologically constrained capacity for maintaining long-term stable relationships. No model to date has been able to combine a specific socio-cognitive mechanism with the discrete scale invariance observed in ethnographic studies. We show that these properties result in nested layers of self-organizing Erdős-Rényi networks formed by each individual's ability to maintain only a small number of social links. Each set of links plays a specific role in the formation of different social groups. The scale invariance in our model is distinct from previous 'scale-free networks' studied using much larger social groups; here, the scale invariance is in the relationship between group sizes, rather than in the link degree distribution. We also compare our model with a dominance-based hierarchy and conclude that humans were probably egalitarian in hunter-gatherer-like societies, maintaining an average maximum of four or five social links connecting all members in a largest social network of around 132 people. © 2016 The Author(s).

  10. Abelian Higgs cosmic strings: Small-scale structure and loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil

    2009-06-15

    Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less

  11. Emergence of Super Cooperation of Prisoner’s Dilemma Games on Scale-Free Networks

    PubMed Central

    Li, Angsheng; Yong, Xi

    2015-01-01

    Recently, the authors proposed a quantum prisoner’s dilemma game based on the spatial game of Nowak and May, and showed that the game can be played classically. By using this idea, we proposed three generalized prisoner’s dilemma (GPD, for short) games based on the weak Prisoner’s dilemma game, the full prisoner’s dilemma game and the normalized Prisoner’s dilemma game, written by GPDW, GPDF and GPDN respectively. Our games consist of two players, each of which has three strategies: cooperator (C), defector (D) and super cooperator (denoted by Q), and have a parameter γ to measure the entangled relationship between the two players. We found that our generalised prisoner’s dilemma games have new Nash equilibrium principles, that entanglement is the principle of emergence and convergence (i.e., guaranteed emergence) of super cooperation in evolutions of our generalised prisoner’s dilemma games on scale-free networks, that entanglement provides a threshold for a phase transition of super cooperation in evolutions of our generalised prisoner’s dilemma games on scale-free networks, that the role of heterogeneity of the scale-free networks in cooperations and super cooperations is very limited, and that well-defined structures of scale-free networks allow coexistence of cooperators and super cooperators in the evolutions of the weak version of our generalised prisoner’s dilemma games. PMID:25643279

  12. Living in a network of scaling cities and finite resources.

    PubMed

    Qubbaj, Murad R; Shutters, Shade T; Muneepeerakul, Rachata

    2015-02-01

    Many urban phenomena exhibit remarkable regularity in the form of nonlinear scaling behaviors, but their implications on a system of networked cities has never been investigated. Such knowledge is crucial for our ability to harness the complexity of urban processes to further sustainability science. In this paper, we develop a dynamical modeling framework that embeds population-resource dynamics-a generalized Lotka-Volterra system with modifications to incorporate the urban scaling behaviors-in complex networks in which cities may be linked to the resources of other cities and people may migrate in pursuit of higher welfare. We find that isolated cities (i.e., no migration) are susceptible to collapse if they do not have access to adequate resources. Links to other cities may help cities that would otherwise collapse due to insufficient resources. The effects of inter-city links, however, can vary due to the interplay between the nonlinear scaling behaviors and network structure. The long-term population level of a city is, in many settings, largely a function of the city's access to resources over which the city has little or no competition. Nonetheless, careful investigation of dynamics is required to gain mechanistic understanding of a particular city-resource network because cities and resources may collapse and the scaling behaviors may influence the effects of inter-city links, thereby distorting what topological metrics really measure.

  13. Spreading dynamics of a SIQRS epidemic model on scale-free networks

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yuanmei; Guan, Zhi-Hong

    2014-03-01

    In order to investigate the influence of heterogeneity of the underlying networks and quarantine strategy on epidemic spreading, a SIQRS epidemic model on the scale-free networks is presented. Using the mean field theory the spreading dynamics of the virus is analyzed. The spreading critical threshold and equilibria are derived. Theoretical results indicate that the critical threshold value is significantly dependent on the topology of the underlying networks and quarantine rate. The existence of equilibria is determined by threshold value. The stability of disease-free equilibrium and the permanence of the disease are proved. Numerical simulations confirmed the analytical results.

  14. Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Posse, Christian

    2005-09-15

    The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabási-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using other methods and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.

  15. Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Posse, Christian

    2005-09-15

    The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabasi-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using standard power engineering methods, and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.

  16. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    PubMed

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  17. Naming Game with Multiple Hearers

    NASA Astrophysics Data System (ADS)

    Li, Bing; Chen, Guanrong; Chow, Tommy W. S.

    2013-05-01

    A new model called Naming Game with Multiple Hearers (NGMH) is proposed in this paper. A naming game over a population of individuals aims to reach consensus on the name of an object through pair-wise local interactions among all the individuals. The proposed NGMH model describes the learning process of a new word, in a population with one speaker and multiple hearers, at each interaction towards convergence. The characteristics of NGMH are examined on three types of network topologies, namely ER random-graph network, WS small-world network, and BA scale-free network. Comparative analysis on the convergence time is performed, revealing that the topology with a larger average (node) degree can reach consensus faster than the others over the same population. It is found that, for a homogeneous network, the average degree is the limiting value of the number of hearers, which reduces the individual ability of learning new words, consequently decreasing the convergence time; for a scale-free network, this limiting value is the deviation of the average degree. It is also found that a network with a larger clustering coefficient takes longer time to converge; especially a small-word network with smallest rewiring possibility takes longest time to reach convergence. As more new nodes are being added to scale-free networks with different degree distributions, their convergence time appears to be robust against the network-size variation. Most new findings reported in this paper are different from that of the single-speaker/single-hearer naming games documented in the literature.

  18. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.

    PubMed

    Zheng, Guangyong; Xu, Yaochen; Zhang, Xiujun; Liu, Zhi-Ping; Wang, Zhuo; Chen, Luonan; Zhu, Xin-Guang

    2016-12-23

    A gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which vertexes and edges stand for genes and their regulatory interactions respectively. Reconstruction of gene regulatory networks, in particular, genome-scale networks, is essential for comparative exploration of different species and mechanistic investigation of biological processes. Currently, most of network inference methods are computationally intensive, which are usually effective for small-scale tasks (e.g., networks with a few hundred genes), but are difficult to construct GRNs at genome-scale. Here, we present a software package for gene regulatory network reconstruction at a genomic level, in which gene interaction is measured by the conditional mutual information measurement using a parallel computing framework (so the package is named CMIP). The package is a greatly improved implementation of our previous PCA-CMI algorithm. In CMIP, we provide not only an automatic threshold determination method but also an effective parallel computing framework for network inference. Performance tests on benchmark datasets show that the accuracy of CMIP is comparable to most current network inference methods. Moreover, running tests on synthetic datasets demonstrate that CMIP can handle large datasets especially genome-wide datasets within an acceptable time period. In addition, successful application on a real genomic dataset confirms its practical applicability of the package. This new software package provides a powerful tool for genomic network reconstruction to biological community. The software can be accessed at http://www.picb.ac.cn/CMIP/ .

  19. Topological and Historical Considerations for Infectious Disease Transmission among Injecting Drug Users in Bushwick, Brooklyn (USA)

    PubMed Central

    Dombrowski, Kirk; Curtis, Richard; Friedman, Samuel; Khan, Bilal

    2014-01-01

    Recent interest by physicists in social networks and disease transmission factors has prompted debate over the topology of degree distributions in sexual networks. Social network researchers have been critical of “scale-free” Barabasi-Albert approaches, and largely rejected the preferential attachment, “rich-get-richer” assumptions that underlie that model. Instead, research on sexual networks has pointed to the importance of homophily and local sexual norms in dictating degree distributions, and thus disease transmission thresholds. Injecting Drug User (IDU) network topologies may differ from the emerging models of sexual networks, however. Degree distribution analysis of a Brooklyn, NY, IDU network indicates a different topology than the spanning tree configurations discussed for sexual networks, instead featuring comparatively short cycles and high concurrency. Our findings suggest that IDU networks do in some ways conform to a “scale-free” topology, and thus may represent “reservoirs” of potential infection despite seemingly low transmission thresholds. PMID:24672745

  20. Structure-preserving model reduction of large-scale logistics networks. Applications for supply chains

    NASA Astrophysics Data System (ADS)

    Scholz-Reiter, B.; Wirth, F.; Dashkovskiy, S.; Makuschewitz, T.; Schönlein, M.; Kosmykov, M.

    2011-12-01

    We investigate the problem of model reduction with a view to large-scale logistics networks, specifically supply chains. Such networks are modeled by means of graphs, which describe the structure of material flow. An aim of the proposed model reduction procedure is to preserve important features within the network. As a new methodology we introduce the LogRank as a measure for the importance of locations, which is based on the structure of the flows within the network. We argue that these properties reflect relative importance of locations. Based on the LogRank we identify subgraphs of the network that can be neglected or aggregated. The effect of this is discussed for a few motifs. Using this approach we present a meta algorithm for structure-preserving model reduction that can be adapted to different mathematical modeling frameworks. The capabilities of the approach are demonstrated with a test case, where a logistics network is modeled as a Jackson network, i.e., a particular type of queueing network.

  1. Scaling of flow distance in random self-similar channel networks

    USGS Publications Warehouse

    Troutman, B.M.

    2005-01-01

    Natural river channel networks have been shown in empirical studies to exhibit power-law scaling behavior characteristic of self-similar and self-affine structures. Of particular interest is to describe how the distribution of distance to the outlet changes as a function of network size. In this paper, networks are modeled as random self-similar rooted tree graphs and scaling of distance to the root is studied using methods in stochastic branching theory. In particular, the asymptotic expectation of the width function (number of nodes as a function of distance to the outlet) is derived under conditions on the replacement generators. It is demonstrated further that the branching number describing rate of growth of node distance to the outlet is identical to the length ratio under a Horton-Strahler ordering scheme as order gets large, again under certain restrictions on the generators. These results are discussed in relation to drainage basin allometry and an application to an actual drainage network is presented. ?? World Scientific Publishing Company.

  2. Effects of the underlying topology on perturbation spreading in the Axelrod model for cultural dissemination

    NASA Astrophysics Data System (ADS)

    Kim, Yup; Cho, Minsoo; Yook, Soon-Hyung

    2011-10-01

    We study the effects of the underlying topologies on a single feature perturbation imposed to the Axelrod model of consensus formation. From the numerical simulations we show that there are successive updates which are similar to avalanches in many self-organized criticality systems when a perturbation is imposed. We find that the distribution of avalanche size satisfies the finite-size scaling (FSS) ansatz on two-dimensional lattices and random networks. However, on scale-free networks with the degree exponent γ≤3 we show that the avalanche size distribution does not satisfy the FSS ansatz. The results indicate that the disordered configurations on two-dimensional lattices or on random networks are still stable against the perturbation in the limit N (network size) →∞. However, on scale-free networks with γ≤3 the perturbation always drives the disordered phase into an ordered phase. The possible relationship between the properties of phase transition of the Axelrod model and the avalanche distribution is also discussed.

  3. Multilayer Brain Networks

    NASA Astrophysics Data System (ADS)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  4. Evolution of Controllability in Interbank Networks

    NASA Astrophysics Data System (ADS)

    Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido

    2013-04-01

    The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected ``hub'' institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies.

  5. Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation.

    PubMed

    Detto, Matteo; Muller-Landau, Helene C; Mascaro, Joseph; Asner, Gregory P

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10-1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30-600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20-300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling.

  6. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.

    PubMed

    Hyde, Eoin R; Michler, Christian; Lee, Jack; Cookson, Andrew N; Chabiniok, Radek; Nordsletten, David A; Smith, Nicolas P

    2013-05-01

    Experimental data and advanced imaging techniques are increasingly enabling the extraction of detailed vascular anatomy from biological tissues. Incorporation of anatomical data within perfusion models is non-trivial, due to heterogeneous vessel density and disparate radii scales. Furthermore, previous idealised networks have assumed a spatially repeating motif or periodic canonical cell, thereby allowing for a flow solution via homogenisation. However, such periodicity is not observed throughout anatomical networks. In this study, we apply various spatial averaging methods to discrete vascular geometries in order to parameterise a continuum model of perfusion. Specifically, a multi-compartment Darcy model was used to provide vascular scale separation for the fluid flow. Permeability tensor fields were derived from both synthetic and anatomically realistic networks using (1) porosity-scaled isotropic, (2) Huyghe and Van Campen, and (3) projected-PCA methods. The Darcy pressure fields were compared via a root-mean-square error metric to an averaged Poiseuille pressure solution over the same domain. The method of Huyghe and Van Campen performed better than the other two methods in all simulations, even for relatively coarse networks. Furthermore, inter-compartment volumetric flux fields, determined using the spatially averaged discrete flux per unit pressure difference, were shown to be accurate across a range of pressure boundary conditions. This work justifies the application of continuum flow models to characterise perfusion resulting from flow in an underlying vascular network.

  7. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.

    PubMed

    Nair, Govind; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2017-02-01

    Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives. To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock. PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.

  8. Large-Scale Networked Virtual Environments: Architecture and Applications

    ERIC Educational Resources Information Center

    Lamotte, Wim; Quax, Peter; Flerackers, Eddy

    2008-01-01

    Purpose: Scalability is an important research topic in the context of networked virtual environments (NVEs). This paper aims to describe the ALVIC (Architecture for Large-scale Virtual Interactive Communities) approach to NVE scalability. Design/methodology/approach: The setup and results from two case studies are shown: a 3-D learning environment…

  9. Critical Branching Neural Networks

    ERIC Educational Resources Information Center

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  10. The Comet Halley archive: Summary volume

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek (Editor); Fry, Lori (Editor)

    1991-01-01

    The contents are as follows: The Organizational History of the International Halley Watch; Operations of the International Halley Watch from a Lead Center Perspective; The Steering Group; Astrometry Network; Infrared Studies Network; Large-Scale Phenomena Network; Meteor Studies Network; Near-Nucleus Studies Network; Photometry and Polarimetry Network; Radio Science Network; Spectroscopy and Spectrophotometry Network; Amateur Observation Network; Use of the CD-ROM Archive; The 1986 Passage of Comet Halley; and Recent Observations of Comet Halley.

  11. Scaling of average weighted shortest path and average receiving time on weighted expanded Koch networks

    NASA Astrophysics Data System (ADS)

    Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng

    2014-04-01

    Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.

  12. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    PubMed Central

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior. PMID:29535614

  13. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    PubMed

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior.

  14. Anticipating flash-floods: Multi-scale aspects of the social response

    NASA Astrophysics Data System (ADS)

    Lutoff, Céline; Creutin, Jean-Dominique; Ruin, Isabelle; Borga, Marco

    2016-10-01

    This paper aims at exploring the anticipation phase before a flash flood, corresponding to the time between the first climatic signs and the peak-flow. We focus the analysis on people's behaviors observing how they use this period to organize themselves for facing the event. The analysis is made through the definition of three specific scales: the timeliness scale, an analytical scale of anticipatory actions and the scale of human response network. Using a cross-scale and cross level analysis enables to define different phases in the anticipation period where different kind of environmental precursors are mobilized by the actors in order to make sense of the situation and adapt. Three main points deserve attention at the end: firstly, the concepts of timeliness, anticipatory actions and crisis network scales enable to understand differently what happens both physically and socially during an extreme event; secondly, analyzing the precursors shows that each level of crisis network uses different kinds of signs for estimating the situation, organizing and reacting; thirdly, there is a potential for improvement in observation on both social and physical processes at different scales, for verifying the theory of the anticipatory phases.

  15. The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity

    PubMed Central

    Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.

    2012-01-01

    The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406

  16. Exhaustive identification of steady state cycles in large stoichiometric networks

    PubMed Central

    Wright, Jeremiah; Wagner, Andreas

    2008-01-01

    Background Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. Results We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. Conclusion The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable. PMID:18616835

  17. An Examination of Not-For-Profit Stakeholder Networks for Relationship Management: A Small-Scale Analysis on Social Media.

    PubMed

    Wyllie, Jessica; Lucas, Benjamin; Carlson, Jamie; Kitchens, Brent; Kozary, Ben; Zaki, Mohamed

    2016-01-01

    Using a small-scale descriptive network analysis approach, this study highlights the importance of stakeholder networks for identifying valuable stakeholders and the management of existing stakeholders in the context of mental health not-for-profit services. We extract network data from the social media brand pages of three health service organizations from the U.S., U.K., and Australia, to visually map networks of 579 social media brand pages (represented by nodes), connected by 5,600 edges. This network data is analyzed using a collection of popular graph analysis techniques to assess the differences in the way each of the service organizations manage stakeholder networks. We also compare node meta-information against basic topology measures to emphasize the importance of effectively managing relationships with stakeholders who have large external audiences. Implications and future research directions are also discussed.

  18. A mixing evolution model for bidirectional microblog user networks

    NASA Astrophysics Data System (ADS)

    Yuan, Wei-Guo; Liu, Yun

    2015-08-01

    Microblogs have been widely used as a new form of online social networking. Based on the user profile data collected from Sina Weibo, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. We then build two microblog user networks with real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we find both of their community scales follow an exponential distribution. Based on the empirical analysis, we present a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, nearest neighbor interconnected in the same community, and global random associations in different communities. The simulation results show that our model is consistent with real network in many topology features.

  19. Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2015-09-01

    In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.

  20. Systems Proteomics for Translational Network Medicine

    PubMed Central

    Arrell, D. Kent; Terzic, Andre

    2012-01-01

    Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016

  1. A Novel BA Complex Network Model on Color Template Matching

    PubMed Central

    Han, Risheng; Yue, Guangxue; Ding, Hui

    2014-01-01

    A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching. PMID:25243235

  2. A novel BA complex network model on color template matching.

    PubMed

    Han, Risheng; Shen, Shigen; Yue, Guangxue; Ding, Hui

    2014-01-01

    A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching.

  3. An Examination of Not-For-Profit Stakeholder Networks for Relationship Management: A Small-Scale Analysis on Social Media

    PubMed Central

    Carlson, Jamie; Kitchens, Brent; Kozary, Ben; Zaki, Mohamed

    2016-01-01

    Using a small-scale descriptive network analysis approach, this study highlights the importance of stakeholder networks for identifying valuable stakeholders and the management of existing stakeholders in the context of mental health not-for-profit services. We extract network data from the social media brand pages of three health service organizations from the U.S., U.K., and Australia, to visually map networks of 579 social media brand pages (represented by nodes), connected by 5,600 edges. This network data is analyzed using a collection of popular graph analysis techniques to assess the differences in the way each of the service organizations manage stakeholder networks. We also compare node meta-information against basic topology measures to emphasize the importance of effectively managing relationships with stakeholders who have large external audiences. Implications and future research directions are also discussed. PMID:27711236

  4. Physics of soft hyaluronic acid-collagen type II double network gels

    NASA Astrophysics Data System (ADS)

    Morozova, Svetlana; Muthukumar, Murugappan

    2015-03-01

    Many biological hydrogels are made up of multiple interpenetrating, charged components. We study the swelling, elastic diffusion, mechanical, and optical behaviors of 100 mol% ionizable hyaluronic acid (HA) and collagen type II fiber networks. Dilute, 0.05-0.5 wt% hyaluronic acid networks are extremely sensitive to solution salt concentration, but are stable at pH above 2. When swelled in 0.1M NaCl, single-network hyaluronic acid gels follow scaling laws relevant to high salt semidilute solutions; the elastic shear modulus G' and diffusion constant D scale with the volume fraction ϕ as G' ~ϕ 9 / 4 and D ~ϕ 3 / 4 , respectively. With the addition of a collagen fiber network, we find that the hyaluronic acid network swells to suspend the rigid collagen fibers, providing extra strength to the hydrogel. Results on swelling equilibria, elasticity, and collective diffusion on these double network hydrogels will be presented.

  5. Network bandwidth utilization forecast model on high bandwidth networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wuchert; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  6. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  7. Networked high-speed auroral observations combined with radar measurements for multi-scale insights

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Semeter, J. L.

    2015-12-01

    Networks of ground-based instruments to study terrestrial aurora for the purpose of analyzing particle precipitation characteristics driving the aurora have been established. Additional funding is pouring into future ground-based auroral observation networks consisting of combinations of tossable, portable, and fixed installation ground-based legacy equipment. Our approach to this problem using the High Speed Tomography (HiST) system combines tightly-synchronized filtered auroral optical observations capturing temporal features of order 10 ms with supporting measurements from incoherent scatter radar (ISR). ISR provides a broader spatial context up to order 100 km laterally on one minute time scales, while our camera field of view (FOV) is chosen to be order 10 km at auroral altitudes in order to capture 100 m scale lateral auroral features. The dual-scale observations of ISR and HiST fine-scale optical observations may be coupled through a physical model using linear basis functions to estimate important ionospheric quantities such as electron number density in 3-D (time, perpendicular and parallel to the geomagnetic field).Field measurements and analysis using HiST and PFISR are presented from experiments conducted at the Poker Flat Research Range in central Alaska. Other multiscale configuration candidates include supplementing networks of all-sky cameras such as THEMIS with co-locations of HiST-like instruments to fuse wide FOV measurements with the fine-scale HiST precipitation characteristic estimates. Candidate models for this coupling include GLOW and TRANSCAR. Future extensions of this work may include incorporating line of sight total electron count estimates from ground-based networks of GPS receivers in a sensor fusion problem.

  8. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.

  9. Scale-free characteristics of random networks: the topology of the world-wide web

    NASA Astrophysics Data System (ADS)

    Barabási, Albert-László; Albert, Réka; Jeong, Hawoong

    2000-06-01

    The world-wide web forms a large directed graph, whose vertices are documents and edges are links pointing from one document to another. Here we demonstrate that despite its apparent random character, the topology of this graph has a number of universal scale-free characteristics. We introduce a model that leads to a scale-free network, capturing in a minimal fashion the self-organization processes governing the world-wide web.

  10. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  11. Scale-free models for the structure of business firm networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H. Eugene

    2010-03-01

    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a “nucleus,” which is a small well-connected subgraph, “tendrils,” which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a “bulk body,” which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution λ increases, and disappear for λ≥3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.

  12. Population size estimation of men who have sex with men through the network scale-up method in Japan.

    PubMed

    Ezoe, Satoshi; Morooka, Takeo; Noda, Tatsuya; Sabin, Miriam Lewis; Koike, Soichi

    2012-01-01

    Men who have sex with men (MSM) are one of the groups most at risk for HIV infection in Japan. However, size estimates of MSM populations have not been conducted with sufficient frequency and rigor because of the difficulty, high cost and stigma associated with reaching such populations. This study examined an innovative and simple method for estimating the size of the MSM population in Japan. We combined an internet survey with the network scale-up method, a social network method for estimating the size of hard-to-reach populations, for the first time in Japan. An internet survey was conducted among 1,500 internet users who registered with a nationwide internet-research agency. The survey participants were asked how many members of particular groups with known population sizes (firepersons, police officers, and military personnel) they knew as acquaintances. The participants were also asked to identify the number of their acquaintances whom they understood to be MSM. Using these survey results with the network scale-up method, the personal network size and MSM population size were estimated. The personal network size was estimated to be 363.5 regardless of the sex of the acquaintances and 174.0 for only male acquaintances. The estimated MSM prevalence among the total male population in Japan was 0.0402% without adjustment, and 2.87% after adjusting for the transmission error of MSM. The estimated personal network size and MSM prevalence seen in this study were comparable to those from previous survey results based on the direct-estimation method. Estimating population sizes through combining an internet survey with the network scale-up method appeared to be an effective method from the perspectives of rapidity, simplicity, and low cost as compared with more-conventional methods.

  13. Error-correcting codes on scale-free networks

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hoon; Ko, Young-Jo

    2004-06-01

    We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.

  14. Entropy of network ensembles

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  15. Dominating Scale-Free Networks Using Generalized Probabilistic Methods

    PubMed Central

    Molnár,, F.; Derzsy, N.; Czabarka, É.; Székely, L.; Szymanski, B. K.; Korniss, G.

    2014-01-01

    We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods. PMID:25200937

  16. Network topology analysis approach on China's QFII stock investment behavior

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjie; Cao, Xing; He, Feng; Zhang, Wei

    2017-05-01

    In this paper, the investment behavior of QFII in China stock market from 2004 to 2015 is studied with the network topology method. Based on the nodes topological characteristics, stock holding fluctuations correlation is studied from the micro network level. We conclude that the QFII mutual stock holding network have both scale free and small world properties, which presented mainly small world characteristics from 2005 to 2011, and scale free characteristics from 2012 to 2015. Moreover, fluctuations correlation is different with different nodes topological characteristics. In different economic periods, QFII represented different connection patterns and they reacted to the market crash spontaneously. Thus, this paper provides the first evidence of complex network research on QFII' investment behavior in China as an emerging market.

  17. Constraints and entropy in a model of network evolution

    NASA Astrophysics Data System (ADS)

    Tee, Philip; Wakeman, Ian; Parisis, George; Dawes, Jonathan; Kiss, István Z.

    2017-11-01

    Barabási-Albert's "Scale Free" model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the "Scale Free" model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the "Scale Free" and "constraints" model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics.

  18. Evolutionary Computation with Spatial Receding Horizon Control to Minimize Network Coding Resources

    PubMed Central

    Leeson, Mark S.

    2014-01-01

    The minimization of network coding resources, such as coding nodes and links, is a challenging task, not only because it is a NP-hard problem, but also because the problem scale is huge; for example, networks in real world may have thousands or even millions of nodes and links. Genetic algorithms (GAs) have a good potential of resolving NP-hard problems like the network coding problem (NCP), but as a population-based algorithm, serious scalability and applicability problems are often confronted when GAs are applied to large- or huge-scale systems. Inspired by the temporal receding horizon control in control engineering, this paper proposes a novel spatial receding horizon control (SRHC) strategy as a network partitioning technology, and then designs an efficient GA to tackle the NCP. Traditional network partitioning methods can be viewed as a special case of the proposed SRHC, that is, one-step-wide SRHC, whilst the method in this paper is a generalized N-step-wide SRHC, which can make a better use of global information of network topologies. Besides the SRHC strategy, some useful designs are also reported in this paper. The advantages of the proposed SRHC and GA for the NCP are illustrated by extensive experiments, and they have a good potential of being extended to other large-scale complex problems. PMID:24883371

  19. Organizing product innovation: hierarchy, market or triple-helix networks?

    PubMed

    Fitjar, Rune Dahl; Gjelsvik, Martin; Rodríguez-Pose, Andrés

    This paper assesses the extent to which the organization of the innovation effort in firms, as well as the geographical scale at which this effort is pursued, affects the capacity to benefit from product innovations. Three alternative modes of organization are studied: hierarchy, market and triple-helix-type networks. Furthermore, we consider triple-helix networks at three geographical scales: local, national and international. These relationships are tested on a random sample of 763 firms located in five urban regions of Norway which reported having introduced new products or services during the preceding 3 years. The analysis shows that firms exploiting internal hierarchy or triple-helix networks with a wide range of partners managed to derive a significantly higher share of their income from new products, compared to those that mainly relied on outsourcing within the market. In addition, the analysis shows that the geographical scale of cooperation in networks, as well as the type of partner used, matters for the capacity of firms to benefit from product innovation. In particular, firms that collaborate in international triple-helix-type networks involving suppliers, customers and R&D institutions extract a higher share of their income from product innovations, regardless of whether they organize the processes internally or through the network.

  20. Superframe Duration Allocation Schemes to Improve the Throughput of Cluster-Tree Wireless Sensor Networks

    PubMed Central

    Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    The use of Wireless Sensor Network (WSN) technologies is an attractive option to support wide-scale monitoring applications, such as the ones that can be found in precision agriculture, environmental monitoring and industrial automation. The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable topology to build wide-scale WSNs. Despite some of its known advantages, including timing synchronisation and duty-cycle operation, cluster-tree networks may suffer from severe network congestion problems due to the convergecast pattern of its communication traffic. Therefore, the careful adjustment of transmission opportunities (superframe durations) allocated to the cluster-heads is an important research issue. This paper proposes a set of proportional Superframe Duration Allocation (SDA) schemes, based on well-defined protocol and timing models, and on the message load imposed by child nodes (Load-SDA scheme), or by number of descendant nodes (Nodes-SDA scheme) of each cluster-head. The underlying reasoning is to adequately allocate transmission opportunities (superframe durations) and parametrize buffer sizes, in order to improve the network throughput and avoid typical problems, such as: network congestion, high end-to-end communication delays and discarded messages due to buffer overflows. Simulation assessments show how proposed allocation schemes may clearly improve the operation of wide-scale cluster-tree networks. PMID:28134822

  1. Mean field approximation for biased diffusion on Japanese inter-firm trading network.

    PubMed

    Watanabe, Hayafumi

    2014-01-01

    By analysing the financial data of firms across Japan, a nonlinear power law with an exponent of 1.3 was observed between the number of business partners (i.e. the degree of the inter-firm trading network) and sales. In a previous study using numerical simulations, we found that this scaling can be explained by both the money-transport model, where a firm (i.e. customer) distributes money to its out-edges (suppliers) in proportion to the in-degree of destinations, and by the correlations among the Japanese inter-firm trading network. However, in this previous study, we could not specifically identify what types of structure properties (or correlations) of the network determine the 1.3 exponent. In the present study, we more clearly elucidate the relationship between this nonlinear scaling and the network structure by applying mean-field approximation of the diffusion in a complex network to this money-transport model. Using theoretical analysis, we obtained the mean-field solution of the model and found that, in the case of the Japanese firms, the scaling exponent of 1.3 can be determined from the power law of the average degree of the nearest neighbours of the network with an exponent of -0.7.

  2. Robust-yet-fragile nature of interdependent networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Xia, Yongxiang; Wei, Zhi

    2015-05-01

    Interdependent networks have been shown to be extremely vulnerable based on the percolation model. Parshani et al. [Europhys. Lett. 92, 68002 (2010), 10.1209/0295-5075/92/68002] further indicated that the more intersimilar networks are, the more robust they are to random failures. When traffic load is considered, how do the coupling patterns impact cascading failures in interdependent networks? This question has been largely unexplored until now. In this paper, we address this question by investigating the robustness of interdependent Erdös-Rényi random graphs and Barabási-Albert scale-free networks under either random failures or intentional attacks. It is found that interdependent Erdös-Rényi random graphs are robust yet fragile under either random failures or intentional attacks. Interdependent Barabási-Albert scale-free networks, however, are only robust yet fragile under random failures but fragile under intentional attacks. We further analyze the interdependent communication network and power grid and achieve similar results. These results advance our understanding of how interdependency shapes network robustness.

  3. Effects of behavioral patterns and network topology structures on Parrondo’s paradox

    PubMed Central

    Ye, Ye; Cheong, Kang Hao; Cen, Yu-wan; Xie, Neng-gang

    2016-01-01

    A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed. PMID:27845430

  4. Exploring the spiral of silence in adjustable social networks

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Du, Ya-Jun; Li, Xian-Yong; Chen, Xiao-Liang

    2015-03-01

    This study extends the understanding of the spiral of silence theory by taking into account four factors, including the topology of networks, the time factor of information transmission, the node degree of individuals and the freedom of expression. Simulation experiments analyze the silencers, public opinion in steady state and relaxation time in small-world networks, scale-free networks and community-structured networks by adjusting the initial conditions. Results highlight that individuals are easier to keep silent in scale-free network, especially when the individual with big degree and minority opinion starts the discussion. Conversely, there are only a few individuals keep silent in the community-structured network when the two communities hold opposite opinions. Moreover, the number of silencers grows as the degree of coupling increases, and it decreases as the freedom of expression goes up. By analyzing the public opinion evolution, we also find some important conditions, such as the network topology, the potential public opinion distribution, and the status and sides of the first speaker, can drive the minority reversal.

  5. Effects of behavioral patterns and network topology structures on Parrondo’s paradox

    NASA Astrophysics Data System (ADS)

    Ye, Ye; Cheong, Kang Hao; Cen, Yu-Wan; Xie, Neng-Gang

    2016-11-01

    A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed.

  6. GENERAL: Epidemic spreading on networks with vaccination

    NASA Astrophysics Data System (ADS)

    Shi, Hong-Jing; Duan, Zhi-Sheng; Chen, Guan-Rong; Li, Rong

    2009-08-01

    In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not immunity) on scale-free networks are discussed. Both theoretical and numerical analyses are presented. The epidemic thresholds related to the vaccination rate, the vaccination-invalid rate and the vaccination success rate on scale-free networks are demonstrated, showing different results from the reported observations. This reveals that whether or not the epidemic can spread over a network under vaccination control is determined not only by the network structure but also by the medicine's effective duration. Moreover, for a given infective rate, the proportion of individuals to vaccinate can be calculated theoretically for the case that the recovered nodes have immunity. Finally, simulated results are presented to show how to control the disease prevalence.

  7. Fiber networks amplify active stress

    PubMed Central

    Ronceray, Pierre; Broedersz, Chase P.

    2016-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  8. SmallTool - a toolkit for realizing shared virtual environments on the Internet

    NASA Astrophysics Data System (ADS)

    Broll, Wolfgang

    1998-09-01

    With increasing graphics capabilities of computers and higher network communication speed, networked virtual environments have become available to a large number of people. While the virtual reality modelling language (VRML) provides users with the ability to exchange 3D data, there is still a lack of appropriate support to realize large-scale multi-user applications on the Internet. In this paper we will present SmallTool, a toolkit to support shared virtual environments on the Internet. The toolkit consists of a VRML-based parsing and rendering library, a device library, and a network library. This paper will focus on the networking architecture, provided by the network library - the distributed worlds transfer and communication protocol (DWTP). DWTP provides an application-independent network architecture to support large-scale multi-user environments on the Internet.

  9. Large-scale functional networks connect differently for processing words and symbol strings.

    PubMed

    Liljeström, Mia; Vartiainen, Johanna; Kujala, Jan; Salmelin, Riitta

    2018-01-01

    Reconfigurations of synchronized large-scale networks are thought to be central neural mechanisms that support cognition and behavior in the human brain. Magnetoencephalography (MEG) recordings together with recent advances in network analysis now allow for sub-second snapshots of such networks. In the present study, we compared frequency-resolved functional connectivity patterns underlying reading of single words and visual recognition of symbol strings. Word reading emphasized coherence in a left-lateralized network with nodes in classical perisylvian language regions, whereas symbol processing recruited a bilateral network, including connections between frontal and parietal regions previously associated with spatial attention and visual working memory. Our results illustrate the flexible nature of functional networks, whereby processing of different form categories, written words vs. symbol strings, leads to the formation of large-scale functional networks that operate at distinct oscillatory frequencies and incorporate task-relevant regions. These results suggest that category-specific processing should be viewed not so much as a local process but as a distributed neural process implemented in signature networks. For words, increased coherence was detected particularly in the alpha (8-13 Hz) and high gamma (60-90 Hz) frequency bands, whereas increased coherence for symbol strings was observed in the high beta (21-29 Hz) and low gamma (30-45 Hz) frequency range. These findings attest to the role of coherence in specific frequency bands as a general mechanism for integrating stimulus-dependent information across brain regions.

  10. A method of examining the structure and topological properties of public-transport networks

    NASA Astrophysics Data System (ADS)

    Dimitrov, Stavri Dimitri; Ceder, Avishai (Avi)

    2016-06-01

    This work presents a new method of examining the structure of public-transport networks (PTNs) and analyzes their topological properties through a combination of computer programming, statistical data and large-network analyses. In order to automate the extraction, processing and exporting of data, a software program was developed allowing to extract the needed data from General Transit Feed Specification, thus overcoming difficulties occurring in accessing and collecting data. The proposed method was applied to a real-life PTN in Auckland, New Zealand, with the purpose of examining whether it showed characteristics of scale-free networks and exhibited features of ;small-world; networks. As a result, new regression equations were derived analytically describing observed, strong, non-linear relationships among the probabilities of randomly chosen stops in the PTN to be serviced by a given number of routes. The established dependence is best fitted by an exponential rather than a power-law function, showing that the PTN examined is neither random nor scale-free, but a mixture of the two. This finding explains the presence of hubs that are not typical of exponential networks and simultaneously not highly connected to the other nodes as is the case with scale-free networks. On the other hand, the observed values of the topological properties of the network show that although it is highly clustered, owing to its representation as a directed graph, it differs slightly from ;small-world; networks, which are characterized by strong clustering and a short average path length.

  11. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    PubMed

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  12. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model

    PubMed Central

    van Albada, Sacha J.; Rowley, Andrew G.; Senk, Johanna; Hopkins, Michael; Schmidt, Maximilian; Stokes, Alan B.; Lester, David R.; Diesmann, Markus; Furber, Steve B.

    2018-01-01

    The digital neuromorphic hardware SpiNNaker has been developed with the aim of enabling large-scale neural network simulations in real time and with low power consumption. Real-time performance is achieved with 1 ms integration time steps, and thus applies to neural networks for which faster time scales of the dynamics can be neglected. By slowing down the simulation, shorter integration time steps and hence faster time scales, which are often biologically relevant, can be incorporated. We here describe the first full-scale simulations of a cortical microcircuit with biological time scales on SpiNNaker. Since about half the synapses onto the neurons arise within the microcircuit, larger cortical circuits have only moderately more synapses per neuron. Therefore, the full-scale microcircuit paves the way for simulating cortical circuits of arbitrary size. With approximately 80, 000 neurons and 0.3 billion synapses, this model is the largest simulated on SpiNNaker to date. The scale-up is enabled by recent developments in the SpiNNaker software stack that allow simulations to be spread across multiple boards. Comparison with simulations using the NEST software on a high-performance cluster shows that both simulators can reach a similar accuracy, despite the fixed-point arithmetic of SpiNNaker, demonstrating the usability of SpiNNaker for computational neuroscience applications with biological time scales and large network size. The runtime and power consumption are also assessed for both simulators on the example of the cortical microcircuit model. To obtain an accuracy similar to that of NEST with 0.1 ms time steps, SpiNNaker requires a slowdown factor of around 20 compared to real time. The runtime for NEST saturates around 3 times real time using hybrid parallelization with MPI and multi-threading. However, achieving this runtime comes at the cost of increased power and energy consumption. The lowest total energy consumption for NEST is reached at around 144 parallel threads and 4.6 times slowdown. At this setting, NEST and SpiNNaker have a comparable energy consumption per synaptic event. Our results widen the application domain of SpiNNaker and help guide its development, showing that further optimizations such as synapse-centric network representation are necessary to enable real-time simulation of large biological neural networks. PMID:29875620

  13. Evolution of Controllability in Interbank Networks

    PubMed Central

    Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido

    2013-01-01

    The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected “hub” institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies. PMID:23568033

  14. Unravelling daily human mobility motifs

    PubMed Central

    Schneider, Christian M.; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C.

    2013-01-01

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These networks, called here motifs, are sufficient to capture up to 90 per cent of the population in surveys and mobile phone datasets for different countries. Each individual exhibits a characteristic motif, which seems to be stable over several months. Consequently, daily human mobility can be reproduced by an analytically tractable framework for Markov chains by modelling periods of high-frequency trips followed by periods of lower activity as the key ingredient. PMID:23658117

  15. Social networks and health-related quality of life: a population based study among older adults.

    PubMed

    Gallegos-Carrillo, Katia; Mudgal, Jyoti; Sánchez-García, Sergio; Wagner, Fernando A; Gallo, Joseph J; Salmerón, Jorge; García-Peña, Carmen

    2009-01-01

    To examine the relationship between components of social networks and health-related quality of life (HRQL) in older adults with and without depressive symptoms. Comparative cross-sectional study with data from the cohort study 'Integral Study of Depression', carried out in Mexico City during 2004. The sample was selected through a multi-stage probability design. HRQL was measured with the SF-36. Geriatric Depression Scale (GDS) and the Short Anxiety Screening Test (SAST) determined depressive symptoms and anxiety. T-test and multiple linear regressions were conducted. Older adults with depressive symptoms had the lowest scores in all HRQL scales. A larger network of close relatives and friends was associated with better HRQL on several scales. Living alone did not significantly affect HRQL level, in either the study or comparison group. A positive association between some components of social networks and good HRQL exists even in older adults with depressive symptoms.

  16. Brain modularity controls the critical behavior of spontaneous activity.

    PubMed

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  17. Emerging hierarchies in dynamically adapting webs

    NASA Astrophysics Data System (ADS)

    Katifori, Eleni; Graewer, Johannes; Magnasco, Marcelo; Modes, Carl

    Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. We quantify the hierarchical organization of the networks by developing an algorithm that decomposes the architecture to multiple scales and analyzes how the organization in each scale relates to that of the scale above and below it. The methodologies developed in this work are applicable to a wide range of systems including the slime mold physarum polycephalum, human microvasculature, and force chains in granular media.

  18. Using regional bird density distribution models to evaluate protected area networks and inform conservation planning

    Treesearch

    John D. Alexander; Jaime L. Stephens; Sam Veloz; Leo Salas; Josée S. Rousseau; C. John Ralph; Daniel A. Sarr

    2017-01-01

    As data about populations of indicator species become available, proactive strategies that improve representation of biological diversity within protected area networks should consider finer-scaled evaluations, especially in regions identified as important through course-scale analyses. We use density distribution models derived from a robust regional bird...

  19. Naming games in two-dimensional and small-world-connected random geometric networks.

    PubMed

    Lu, Qiming; Korniss, G; Szymanski, B K

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  20. Loosening the shackles of scientific disciplines with network science. Reply to comments on "Network science of biological systems at different scales: A review"

    NASA Astrophysics Data System (ADS)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Rupnik, Marjan Slak; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    We would like to thank all the experts for their insightful and very interesting comments that have been submitted in response to our review "Network science of biological systems at different scales" [1]. We are delighted with the number of comments that have been written, and even more so with the positive opinions that these comments communicate to the wider audience [2-9]. Although methods of network science have long proven their value in relevantly addressing various challenges in the biological sciences, such interdisciplinary research often still struggles for funding and recognition at many academic levels.

Top