Science.gov

Sample records for scale physical effects

  1. Anomalous physical effects from artificial numerical length scales

    SciTech Connect

    Menikoff, R.; Lackner, K.S.

    1995-09-01

    Shock capturing algorithms are widely used for simulations of compressible fluid flow. Though these algorithms resolve a shock wave within a couple of grid points, the artificial length scale from the numerical shock profile can have side effects. The side effects are similar to physical effects that occur when a relaxation process gives rise to fully or partly dispersed shock waves. Two anomalies due to a non-zero shock width are discussed: (1) in one-dimension, a non-decaying entropy spike results from a transient when a shock profile is formed or changed; (2) in multi-dimensions, front curvature affects the propagation of a shock wave. The authors show that both the entropy anomaly and the curvature effect are a natural consequence of the conservation laws. The same analysis applies both to the continuum equations and to their finite difference approximations in conservation form. Consequently, the artificial length scale inherent in a shock capturing algorithm can mimic real physical effects that are associated with partly dispersed shock waves.

  2. Singlet model interference effects with high scale UV physics

    DOE PAGES

    Dawson, S.; Lewis, I. M.

    2017-01-06

    One of the simplest extensions of the Standard Model (SM) is the addition of a scalar gauge singlet, S . If S is not forbidden by a symmetry from mixing with the Standard Model Higgs boson, the mixing will generate non-SM rates for Higgs production and decays. Generally, there could also be unknown high energy physics that generates additional effective low energy interactions. We show that interference effects between the scalar resonance of the singlet model and the effective field theory (EFT) operators can have significant effects in the Higgs sector. Here, we examine a non- Z 2 symmetric scalarmore » singlet model and demonstrate that a fit to the 125 GeV Higgs boson couplings and to limits on high mass resonances, S , exhibit an interesting structure and possible large cancellations of effects between the resonance contribution and the new EFT interactions, that invalidate conclusions based on the renormalizable singlet model alone.« less

  3. Singlet model interference effects with high scale UV physics

    NASA Astrophysics Data System (ADS)

    Dawson, S.; Lewis, I. M.

    2017-01-01

    One of the simplest extensions of the Standard Model (SM) is the addition of a scalar gauge singlet, S . If S is not forbidden by a symmetry from mixing with the Standard Model Higgs boson, the mixing will generate non-SM rates for Higgs production and decays. In general, there could also be unknown high energy physics that generates additional effective low energy interactions. We show that interference effects between the scalar resonance of the singlet model and the effective field theory (EFT) operators can have significant effects in the Higgs sector. We examine a non-Z2 symmetric scalar singlet model and demonstrate that a fit to the 125 GeV Higgs boson couplings and to limits on high mass resonances, S , exhibit an interesting structure and possible large cancellations of effects between the resonance contribution and the new EFT interactions, that invalidate conclusions based on the renormalizable singlet model alone.

  4. Can basin land use effects on physical characteristics of streams be determined at broad geographic scales?

    USGS Publications Warehouse

    Goldstein, R.M.; Carlisle, D.M.; Meador, M.R.; Short, T.M.

    2007-01-01

    The environmental setting (e.g., climate, topography, geology) and land use affect stream physical characteristics singly and cumulatively. At broad geographic scales, we determined the importance of environmental setting and land use in explaining variation in stream physical characteristics. We hypothesized that as the spatial scale decreased from national to regional, land use would explain more of the variation in stream physical characteristics because environmental settings become more homogeneous. At a national scale, stepwise linear regression indicated that environmental setting was more important in explaining variability in stream physical characteristics. Although statistically discernible, the amount of variation explained by land use was not remarkable due to low partial correlations. At level II ecoregion spatial scales (southeastern USA plains, central USA plains, and a combination of the western Cordillera and the western interior basins and ranges), environmental setting variables were again more important predictors of stream physical characteristics, however, as the spatial scale decreased from national to regional, the portion of variability in stream physical characteristics explained by basin land use increased. Development of stream habitat indicators of land use will depend upon an understanding of relations between stream physical characteristics and environmental factors at multiple spatial scales. Smaller spatial scales will be necessary to reduce the confounding effects of variable environmental settings before the effects of land use can be reliably assessed. ?? Springer Science+Business Media B.V. 2006.

  5. Advanced computations of multi-physics, multi-scale effects in beam dynamics

    SciTech Connect

    Amundson, J.F.; Macridin, A.; Spentzouris, P.; Stern, E.G.; /Fermilab

    2009-01-01

    Current state-of-the-art beam dynamics simulations include multiple physical effects and multiple physical length and/or time scales. We present recent developments in Synergia2, an accelerator modeling framework designed for multi-physics, multi-scale simulations. We summarize recent several recent results in multi-physics beam dynamics, including simulations of three Fermilab accelerators: the Tevatron, the Main Injector and the Debuncher. Early accelerator simulations focused on single-particle dynamics. To a first approximation, the forces on the particles in an accelerator beam are dominated by the external fields due to magnets, RF cavities, etc., so the single-particle dynamics are the leading physical effects. Detailed simulations of accelerators must include collective effects such as the space-charge repulsion of the beam particles, the effects of wake fields in the beam pipe walls and beam-beam interactions in colliders. These simulations require the sort of massively parallel computers that have only become available in recent times. We give an overview of the accelerator framework Synergia2, which was designed to take advantage of the capabilities of modern computational resources and enable simulations of multiple physical effects. We also summarize some recent results utilizing Synergia2 and BeamBeam3d, a tool specialized for beam-beam simulations.

  6. Physical habitat monitoring strategy (PHAMS) for reach-scale restoration effectiveness monitoring

    USGS Publications Warehouse

    Jones, Krista L.; O'Daniel, Scott J.; Beechie, Tim J.; Zakrajsek, John; Webster, John G.

    2015-04-14

    Habitat restoration efforts by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) have shifted from the site scale (1-10 meters) to the reach scale (100-1,000 meters). This shift was in response to the growing scientific emphasis on process-based restoration and to support from the 2007 Accords Agreement with the Bonneville Power Administration. With the increased size of restoration projects, the CTUIR and other agencies are in need of applicable monitoring methods for assessing large-scale changes in river and floodplain habitats following restoration. The goal of the Physical Habitat Monitoring Strategy is to outline methods that are useful for capturing reach-scale changes in surface and groundwater hydrology, geomorphology, hydrologic connectivity, and riparian vegetation at restoration projects. The Physical Habitat Monitoring Strategy aims to avoid duplication with existing regional effectiveness monitoring protocols by identifying complimentary reach-scale metrics and methods that may improve the ability of CTUIR and others to detect instream and riparian changes at large restoration projects.

  7. Scale problem in wormhole physics

    SciTech Connect

    Kim, J. E.; Lee, K.

    1989-07-03

    Wormhole physics from the quantum thoery of gravity coupled to the second-rank antisymmetric tensor or Goldstone-boson fields leads to an effective potential for these fields. The cosmological energy-density bound is shown to put an upper bound on the cosmological constant which wormhole physics can make zero. This upper bound, of order 10/sup 11/ GeV, is far smaller than the Planck scale and barely compatible with the possible cosmological constant arising from grand unified theories. In addition, the effect of wormholes on the axion for the strong /ital CP/ problem is discussed.

  8. Effect of rock fragments on soil physical properties at pore and field scales

    NASA Astrophysics Data System (ADS)

    Gargiulo, Laura; Mele, Giacomo; Coppola, Antonio; De Mascellis, Roberto; Di Matteo, Bruno; Terribile, Fabio; Basile, Angelo

    2016-04-01

    Many soils in Mediterranean area contain high amounts of rock fragments as a result of both natural soil forming processes and human activities. Coarse rock fragments have a controversial role in soils. They are often included as a limiting factor in most Land Evaluation and Land Capability schemes throughout the world, but they also protect against soil erosion and soil physical degradation. Some experiments have showed also that, because of the beneficial effect in reducing bulk density and increasing macroporosity in topsoils, field crushing of stones could be considered a better agricultural practice than removing stones from soils. Although many experimental studies have only focused on the effect of (superficial) rock fragments on hydrological properties, direct measurements using soil image analysis allowed to improve the knowledge of the mechanisms of pore formation due to the presence of rock fragments inside the soil profile. In this work, a lab experimental test with two different soils susceptible to compaction was performed. The soils were added with different concentrations of rock fragments and subjected to several wetting/drying cycles, in order to induce formation of soil structure; then hydrological measurement and soil image analysis were performed. The measured changes in soil pore system and hydro-dispersive properties have been following implemented in simulation models in order to predict the effect of such results at field scale on yields of different crops in variable climatic conditions. Therefore, the aim of this work was to evaluate the effect at different scales (pore vs sample vs field) of rock fragment addition on many processes combining hydrological measurements with soil image analysis and modelling. The obtained results showed the usefulness of the use of image analysis to enhance the parameterization of the hydrological models and allowed to observe the role of different soil types in affecting the effect of rock fragment

  9. Effects of pore-scale physics on uranium geochemistry in Hanford sediments

    SciTech Connect

    Hu, Qinhong; Ewing, Robert P.

    2013-11-25

    Overall, this work examines a key scientific issue, mass transfer limitations at the pore-scale, using both new instruments with high spatial resolution, and new conceptual and modeling paradigms. The complementary laboratory and numerical approaches connect pore-scale physics to macroscopic measurements, providing a previously elusive scale integration. This Exploratory research project produced five peer-reviewed journal publications and eleven scientific presentations. This work provides new scientific understanding, allowing the DOE to better incorporate coupled physical and chemical processes into decision making for environmental remediation and long-term stewardship.

  10. Pore-scale modelling of the combined effect of physical and chemical heterogeneity on reactive flows

    NASA Astrophysics Data System (ADS)

    Oliveira, T. D. S.; Bijeljic, B.; Blunt, M. J.

    2016-12-01

    We perform direct numerical simulations to study the combined impact of physical and chemical heterogeneity in subsurface rock to provide insights into the source of the discrepancy observed between mineral dissolution rates observed in laboratory experiments and in field-scale natural systems. The ultimate goal of this work is to use pore-scale simulation to compute upscaled properties - such as effective reaction rate - for use in larger-scale models.We present a methodology to simulate multispecies reactive flow through pore-space images obtained from micro-tomography. Using the sequential non-iterative approach, we couple the simulation of the transport equations with an advanced geochemical solver designed specifically for applications that require sequential equilibrium calculations. This geochemical solver uses novel numerical methods for the solution of multiphase chemical equilibrium and kinetics problems in a well-stirred batch model. Our model assumes that reactions can be classified into fast reactions, which are considered to be in equilibrium, and slow reactions, considered to be controlled by kinetics. This assumption of partial equilibrium simplifies the problem by replacing differential equations with algebraic ones. We allow for chemical heterogeneity of the solid phase by associating each voxel to a different mineral and reaction rate. A steady-state flow problem is solved in the pore space using a finite volume method to calculate the velocity field. Then we solve an advection-diffusion equation for the concentration and, modelling each liquid voxel as a well-mixed batch with a solid wall where applicable, we calculate reaction using the aforementioned geochemical solver. Both fluid-fluid and fluid-solid reactions are considered, geometry changes due to dissolution and precipitation are taken into account, and the velocity field is updated. We present the validation tests for acidic brine injected into rock for a range of transport (P

  11. Transition physics and scaling overview

    SciTech Connect

    Carlstrom, T.N.

    1995-12-01

    This paper presents an overview of recent experimental progress towards understanding H-mode transition physics and scaling. Terminology and techniques for studying H-mode are reviewed and discussed. The model of shear E x B flow stabilization of edge fluctuations at the L-H transition is gaining wide acceptance and is further supported by observations of edge rotation on a number of new devices. Observations of poloidal asymmetries of edge fluctuations and dephasing of density and potential fluctuations after the transition pose interesting challenges for understanding H-mode physics. Dedicated scans to determine the scaling of the power threshold have now been performed on many machines. A dear B{sub t} dependence is universally observed but dependence on the line averaged density is complicated. Other dependencies are also reported. Studies of the effect of neutrals and error fields on the power threshold are under investigation. The ITER threshold database has matured and offers guidance to the power threshold scaling issues relevant to next-step devices.

  12. Physical capability scale: psychometric testing.

    PubMed

    Resnick, Barbara; Boltz, Marie; Galik, Elizabeth; Wells, Chris

    2013-02-01

    The purpose of this study was to describe the psychometric testing of the Basic Physical Capability Scale. The study was a secondary data analysis of combined data sets from three studies. Study participants included 93 older adults, recruited from 2 acute-care settings and 110 older adults living in long-term care facilities. Rasch analysis was used for the testing of the measurement model. There was some support for construct validity based on the fit of the items to the scale across both samples. In addition, there was support for hypothesis testing as physical function was significantly associated with physical capability. There was evidence for internal consistency (Alpha coefficients of .77-.83) and interrater reliability based on an intraclass correlation of .81. This study provided preliminary support for the reliability and validity of the Basic Physical Capability Scale, and guidance for scale revisions and continued use.

  13. The separate and combined effects of baryon physics and neutrino free streaming on large-scale structure

    NASA Astrophysics Data System (ADS)

    Mummery, Benjamin O.; McCarthy, Ian G.; Bird, Simeon; Schaye, Joop

    2017-10-01

    We use the cosmo-OWLS and bahamas suites of cosmological hydrodynamical simulations to explore the separate and combined effects of baryon physics (particularly feedback from active galactic nuclei, AGN) and free streaming of massive neutrinos on large-scale structure. We focus on five diagnostics: (i) the halo mass function, (ii) halo mass density profiles, (iii) the halo mass-concentration relation, (iv) the clustering of haloes and (v) the clustering of matter, and we explore the extent to which the effects of baryon physics and neutrino free streaming can be treated independently. Consistent with previous studies, we find that both AGN feedback and neutrino free streaming suppress the total matter power spectrum, although their scale and redshift dependences differ significantly. The inclusion of AGN feedback can significantly reduce the masses of groups and clusters, and increase their scale radii. These effects lead to a decrease in the amplitude of the mass-concentration relation and an increase in the halo autocorrelation function at fixed mass. Neutrinos also lower the masses of groups and clusters while having no significant effect on the shape of their density profiles (thus also affecting the mass-concentration relation and halo clustering in a qualitatively similar way to feedback). We show that, with only a small number of exceptions, the combined effects of baryon physics and neutrino free streaming on all five diagnostics can be estimated to typically better than a few per cent accuracy by treating these processes independently (i.e. by multiplying their separate effects).

  14. The effects of visual magnification and physical movement scale on the manipulation of a tool with indirect vision.

    PubMed

    Bohan, Michael; McConnell, Daniel S; Chaparro, Alex; Thompson, Shelby G

    2010-03-01

    Modern tools often separate the visual and physical aspects of operation, requiring users to manipulate an instrument while viewing the results indirectly on a display. This can pose usability challenges particularly in applications, such as laparoscopic surgery, that require a high degree of movement precision. Magnification used to augment the view and, theoretically, enable finer movements, may introduce other visual-motor disruptions due to the apparent speed of the visual motion on screen (i.e., motion scaling). In this research, we sought to better understand the effects of visual magnification on human movement performance and control in operating a tool via indirect vision. Ten adult participants manipulated a computer mouse to direct a pointer to targets on a display. Results (Experiment 1) showed that, despite increased motion scaling, magnification of the view on screen enabled higher precision control of the mouse pointer. However, the relative effectiveness of visual magnification ultimately depended on the scale of the physical movement, and more specifically the precision limits of the whole-hand grip afforded by the mouse. When the physical scale of the hand/mouse movement was reduced (Experiment 2), fine-precision control began to reach its limits, even at full magnification. The role of magnification can thus be understood as "amplifying" the particular skill level afforded by the effecting limb. These findings suggest a fruitful area for future research is the optimization of hand-control interfaces of tools to maximize movement precision.

  15. Scale-free brain dynamics under physical and psychological distress: pre-treatment effects in women diagnosed with breast cancer.

    PubMed

    Churchill, Nathan W; Cimprich, Bernadine; Askren, Mary K; Reuter-Lorenz, Patricia A; Jung, Mi Sook; Peltier, Scott; Berman, Marc G

    2015-03-01

    Stressful life events are related to negative outcomes, including physical and psychological manifestations of distress, and behavioral deficits. Patients diagnosed with breast cancer report impaired attention and working memory prior to adjuvant therapy, which may be induced by distress. In this article, we examine whether brain dynamics show systematic changes due to the distress associated with cancer diagnosis. We hypothesized that impaired working memory is associated with suppression of "long-memory" neuronal dynamics; we tested this by measuring scale-free ("fractal") brain dynamics, quantified by the Hurst exponent (H). Fractal scaling refers to signals that do not occur at a specific time-scale, possessing a spectral power curve P(f)∝ f(-β); they are "long-memory" processes, with significant autocorrelations. In a BOLD functional magnetic resonance imaging study, we scanned three groups during a working memory task: women scheduled to receive chemotherapy or radiotherapy and aged-matched controls. Surprisingly, patients' BOLD signal exhibited greater H with increasing intensity of anticipated treatment. However, an analysis of H and functional connectivity against self-reported measures of psychological distress (Worry, Anxiety, Depression) and physical distress (Fatigue, Sleep problems) revealed significant interactions. The modulation of (Worry, Anxiety) versus (Fatigue, Sleep Problems, Depression) showed the strongest effect, where higher worry and lower fatigue was related to reduced H in regions involved in visuospatial search, attention, and memory processing. This is also linked to decreased functional connectivity in these brain regions. Our results indicate that the distress associated with cancer diagnosis alters BOLD scaling, and H is a sensitive measure of the interaction between psychological versus physical distress.

  16. Effect of Finite Computational Domain on Turbulence Scaling Law in Both Physical and Spectral Spaces

    NASA Technical Reports Server (NTRS)

    Hou, Thomas Y.; Wu, Xiao-Hui; Chen, Shiyi; Zhou, Ye

    1998-01-01

    The well-known translation between the power law of energy spectrum and that of the correlation function or the second order structure function has been widely used in analyzing random data. Here, we show that the translation is valid only in proper scaling regimes. The regimes of valid translation are different for the correlation function and the structure function. Indeed, they do not overlap. Furthermore, in practice, the power laws exist only for a finite range of scales. We show that this finite range makes the translation inexact even in the proper scaling regime. The error depends on the scaling exponent. The current findings are applicable to data analysis in fluid turbulence and other stochastic systems.

  17. Effect of finite computational domain on turbulence scaling law in both physical and spectral spaces

    NASA Astrophysics Data System (ADS)

    Hou, Thomas Y.; Wu, Xiao-Hui; Chen, Shiyi; Zhou, Ye

    1998-11-01

    The well-known translation between the power law of the energy spectrum and that of the correlation function or the second order structure function has been widely used in analyzing random data. Here, we show that the translation is valid only in proper scaling regimes. The regimes of valid translation are different for the correlation function and the structure function. Indeed, they do not overlap. Furthermore, in practice, the power laws exist only for a finite range of scales. We show that this finite range makes the translation inexact even in the proper scaling regime. The error depends on the scaling exponent. The current findings are applicable to data analysis in fluid turbulence and other stochastic systems.

  18. Spatial-scale effects on relative importance of physical habitat predictors of stream health.

    PubMed

    Frimpong, Emmanuel A; Sutton, Trent M; Engel, Bernard A; Simon, Thomas P

    2005-12-01

    A common theme in recent landscape studies is the comparison of riparian and watershed land use as predictors of stream health. The objective of this study was to compare the performance of reach-scale habitat and remotely assessed watershed-scale habitat as predictors of stream health over varying spatial extents. Stream health was measured with scores on a fish index of biotic integrity (IBI) using data from 95 stream reaches in the Eastern Corn Belt Plain (ECBP) ecoregion of Indiana. Watersheds hierarchically nested within the ecoregion were used to regroup sampling locations to represent varying spatial extents. Reach habitat was represented by metrics of a qualitative habitat evaluation index, whereas watershed variables were represented by riparian forest, geomorphology, and hydrologic indices. The importance of reach- versus watershed-scale variables was measured by multiple regression model adjusted-R2 and best subset comparisons in the general linear statistical framework. Watershed models had adjusted-R2 ranging from 0.25 to 0.93 and reach models had adjusted-R2 ranging from 0.09 to 0.86. Better-fitting models were associated with smaller spatial extents. Watershed models explained about 15% more variation in IBI scores than reach models on average. Variety of surficial geology contributed to decline in model predictive power. Results should be interpreted bearing in mind that reach habitat was qualitatively measured and only fish assemblages were used to measure stream health. Riparian forest and length-slope (LS) factor were the most important watershed-scale variables and mostly positively correlated with IBI scores, whereas substrate and riffle-pool quality were the important reach-scale variables in the ECBP.

  19. On physical scales of dark matter halos

    SciTech Connect

    Zemp, Marcel

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  20. Physical limits for scaling of integrated circuits

    NASA Astrophysics Data System (ADS)

    Nawrocki, Waldemar

    2010-11-01

    In this paper we discuss some physical limits for scaling of devices and conducting paths inside of semiconductor integrated circuits (ICs). Since 40 years only a semiconductor technology, mostly the CMOS and the TTL technologies, are used for fabrication of integrated circuits in the industrial scale. Miniaturization of electronic devices in integrated circuits has technological limits and physical limits as well. In 2010 best parameters of commercial ICs shown the dual-core Intel Core i5-670 processor manufactured in the technology of 32 nm. Its clock frequency in turbo mode is 3.73 GHz. A forecast of the development of the semiconductor industry (ITRS 2009) predicts that sizes of electronic devices in ICs circuits will be smaller than 10 nm in the next 10 years. The physical gate length in a MOSFET will even amount 7 nm in the year 2024. At least 5 physical effects should be taken into account if we discuss limits of scaling of integrated circuits.

  1. Overview of Icing Physics Relevant to Scaling

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Tsao, Jen-Ching

    2005-01-01

    An understanding of icing physics is required for the development of both scaling methods and ice-accretion prediction codes. This paper gives an overview of our present understanding of the important physical processes and the associated similarity parameters that determine the shape of Appendix C ice accretions. For many years it has been recognized that ice accretion processes depend on flow effects over the model, on droplet trajectories, on the rate of water collection and time of exposure, and, for glaze ice, on a heat balance. For scaling applications, equations describing these events have been based on analyses at the stagnation line of the model and have resulted in the identification of several non-dimensional similarity parameters. The parameters include the modified inertia parameter of the water drop, the accumulation parameter and the freezing fraction. Other parameters dealing with the leading edge heat balance have also been used for convenience. By equating scale expressions for these parameters to the values to be simulated a set of equations is produced which can be solved for the scale test conditions. Studies in the past few years have shown that at least one parameter in addition to those mentioned above is needed to describe surface-water effects, and some of the traditional parameters may not be as significant as once thought. Insight into the importance of each parameter, and the physical processes it represents, can be made by viewing whether ice shapes change, and the extent of the change, when each parameter is varied. Experimental evidence is presented to establish the importance of each of the traditionally used parameters and to identify the possible form of a new similarity parameter to be used for scaling.

  2. Effects of the environment on galaxies in the Catalogue of Isolated Galaxies: physical satellites and large scale structure

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.

    2014-04-01

    Context. We present a study of the 3D environment for a sample of 386 galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) using the Ninth Data Release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the CIG, as well as the effects of the large-scale structure (LSS). Methods: To recover the physically bound galaxies we first focused on the satellites that are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy were estimated to quantify the effects of the local and LSS environments. We also defined the projected number density parameter at the fifth nearest neighbour to characterise the LSS around the CIG galaxies. Results: Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Following the more conservative Gaussian distribution of physical satellites around the CIG galaxies leads to upper limits. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. When present around a CIG galaxy, the effect of physically bound galaxies largely dominates (typically by more than 90%) the tidal strengths generated by the LSS. Conclusions: The CIG samples a variety of environments, from galaxies with physical satellites to galaxies without neighbours within 3 Mpc. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with probably younger stellar populations and very high star formation compared with older

  3. Developmentally Appropriate Physical Education. A Rating Scale.

    ERIC Educational Resources Information Center

    Stork, Steve; Sanders, Steve

    1996-01-01

    The purpose of elementary physical education is poorly defined, and the public has low expectations and support for the field. The Developmentally Appropriate Physical Education Practices for Children rating scale emphasizes teaching practices that are appropriate to each student's age and ability. The paper describes use of the scale. (SM)

  4. Discussion on possible effects of the Barbero-Immirzi parameter at the TeV-scale particle physics

    NASA Astrophysics Data System (ADS)

    Panza, N.; Rodrigues, H.; Cocuroci, D.; Helayël-Neto, J. A.

    2014-12-01

    In this paper, we analyze a curvature- and torsion-square quantum gravity action with an additional Holst term minimally coupled to a massive Dirac field in four dimensions. The main purpose here is to try to estimate and compare the value of the Barbero-Immirzi parameter with its currently known results. To do that, we work out the physical mass of the fermion as a function of this parameter in a perturbative one-loop calculation, assuming the scenario of a physics at the TeV scale.

  5. Effects of Physical Processes and Sampling Resolution on Fault Displacement Versus Length Scaling: The Case of the Cantarell Complex Oilfield, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Xu, Shunshan; Nieto-Samaniego, Angel F.; Murillo-Muñetón, Gustavo; Alaniz-Álvarez, Susana A.; Grajales-Nishimura, José M.; Velasquillo-Martinez, Luis G.

    2016-04-01

    In this paper, we first review some factors that may alter the fault D max /L ratio and scaling relationship. The three main physical processes are documented as follows: (1) The D max /L ratio increases in an individual segmented fault, whereas it decreases in a fault array consisting of two or more fault segments. This effect occurs at any scale during fault growth and in any type of rock. (2) Vertical restriction decreases the D max /L ratio along the fault strike due to mechanical layers. (3) The D max /L ratio increases or decreases due to fault reactivation depending on the type of reactivation. Thus, using data from the normal faults of the Cantarell oilfield in the southern Gulf of Mexico, we document that the displacement ( D max ) and length ( L) show a weak correlation of linear or power-law scaling, with exponents that are much less than 1 ( n ≈ 0.5). This scaling relation is due to the combination of the physical processes mentioned above, as well as sampling effects, such as technique resolution. These results indicate that sublinear scaling ( n ≈ 0.5) can occur as a result of more than one physical process during faulting in a studied area. In addition to the physical processes associated with brittle deformation in the studied area, the sampling resolution dramatically affects the exponents of the D max - L scaling.

  6. Cosmological texture is incompatible with Planck-scale physics

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Hsu, Stephen D. H.; Kolb, Edward W.; Watkins, Richard; Widrow, Lawrence M.

    1992-01-01

    Nambu-Goldstone modes are sensitive to the effects of physics at energies comparable to the scale of spontaneous symmetry breaking. We show that as a consequence of this the global texture proposal for structure formation requires rather severe assumptions about the nature of physics at the Planck scale.

  7. Effects of small-scale, home-like facilities in dementia care on residents' behavior, and use of physical restraints and psychotropic drugs: a quasi-experimental study.

    PubMed

    Verbeek, Hilde; Zwakhalen, Sandra M G; van Rossum, Erik; Ambergen, Ton; Kempen, Gertrudis I J M; Hamers, Jan P H

    2014-04-01

    Small-scale, home-like care environments are increasingly implemented in institutional nursing care as a model to promote resident-directed care, although evidence on its effects is sparse. This study focuses on the effects of small-scale living facilities on the behavior of residents with dementia and use of physical restraints and psychotropic drugs. A quasi-experimental study was conducted comparing residents in two types of long-term institutional nursing care (i.e., small-scale living facilities and traditional psychogeriatric wards) on three time points: at baseline and follow-ups after six and 12 months. Residents were matched at baseline on cognitive and functional status to increase comparability of groups at baseline. Nurses assessed neuropsychiatric and depressive symptoms, agitation, social engagement, and use of physical restraints using questionnaires. Psychotropic drug use was derived from residents' medical records. In total, 259 residents were included: 124 in small-scale living facilities and 135 controls. Significantly fewer physical restraints and psychotropic drugs were used in small-scale living facilities compared with traditional wards. Residents in small-scale living facilities were significantly more socially engaged, at baseline and after six months follow-up, and displayed more physically non-aggressive behavior after 12 months than residents in traditional wards. No other differences were found. This study suggests positive effects of small-scale living facilities on the use of physical restraints and psychotropic drugs. However, the results for behavior were mixed. More research is needed to gain an insight on the relationship between dementia care environment and other residents' outcomes.

  8. Derivation of physically motivated wind speed scales

    NASA Astrophysics Data System (ADS)

    Dotzek, Nikolai

    A class of new wind speed scales is proposed in which the relevant scaling factors are derived from physical quantities like mass flux density, energy density (pressure), or energy flux density. Hence, they are called Energy- or E-scales, and can be applied to wind speeds of any intensity. It is shown that the Mach scale is a special case of an E-scale. Aside from its foundation in physical quantities which allow for a calibration of the scales, the E-scale concept can help to overcome the present plethora of scales for winds in the range from gale to hurricane intensity. A procedure to convert existing data based on the Fujita-scale or other scales (Saffir-Simpson, TORRO, Beaufort) to their corresponding E-scales is outlined. Even for the large US tornado record, the workload of conversion in case of an adoption of the E-scale would in principle remain manageable (if the necessary metadata to do so were available), as primarily the F5 events would have to be re-rated. Compared to damage scales like the "Enhanced Fujita" or EF-scale concept recently implemented in the USA, the E-scales are based on first principles. They can consistently be applied all over the world for the purpose of climatological homogeneity. To account for international variations in building characteristics, one should not adapt wind speed scale thresholds to certain national building characteristics. Instead, one worldwide applicable wind speed scale based on physical principles should rather be complemented by nationally-adapted damage descriptions. The E-scale concept can provide the basis for such a standardised wind speed scale.

  9. Effect of Home Exercise Program Performance in Patients with Osteoarthritis of the Knee or the Spine on the Visual Analog Scale after Discharge from Physical Therapy

    ERIC Educational Resources Information Center

    Chen, Hamilton; Onishi, Kentaro

    2012-01-01

    The aim of our study was to assess the effect of the frequency of home exercise program (HEP) performance on pain [10-point visual analog scale (VAS)] in patients with osteoarthritis of the spine or knee after more than 6 months discharge from physical therapy (PT). We performed a retrospective chart review of 48 adult patients with a clinical…

  10. Effect of Home Exercise Program Performance in Patients with Osteoarthritis of the Knee or the Spine on the Visual Analog Scale after Discharge from Physical Therapy

    ERIC Educational Resources Information Center

    Chen, Hamilton; Onishi, Kentaro

    2012-01-01

    The aim of our study was to assess the effect of the frequency of home exercise program (HEP) performance on pain [10-point visual analog scale (VAS)] in patients with osteoarthritis of the spine or knee after more than 6 months discharge from physical therapy (PT). We performed a retrospective chart review of 48 adult patients with a clinical…

  11. Physical scale experiments on torrential filter structures

    NASA Astrophysics Data System (ADS)

    Chiari, Michael; Moser, Markus; Trojer, Martin; Hübl, Johannes

    2016-04-01

    In the framework of the INTERREG Project "SedAlp" physical scale model experiments are carried out in the hydraulic laboratory of the Institute of Mountain Risk Engineering at the University of Life Sciences in Vienna in order to optimize torrent protection structures. Two different types of check dams are investigated. A screen-dam with inclined vertical beams is compared with a beam-dam with horizontal beams. The experiments evaluate the variation of sediment transport of these structures including the influence of coarse woody debris. Therefore the distance between the steel elements can be adjusted to show their ability to filter sediment. The physical scale of the experiments is 1:30. All experimental runs are Froude scaled. Both dams are tested in elongated and pear-shaped sediment retention basins in order to investigate the shape effect of the deposition area. For a systematic comparison of the two check dams experiments with fluvial bedload transport are made. First a typical hydrograph for an extreme flood with unlimited sediment supply is modelled. A typical torrential sediment mixture with a wide grain-size distribution is fed by a conveyor belt according the transport capacity of the upstream reach. Then the deposition is scanned with a laser-scan device in order to analyse the deposition pattern and the deposited volume. Afterwards a flood with a lower reoccurrence period without sediment transport from upstream is modelled to investigate the ability of the protection structure for self-emptying. To investigate the influence of driftwood on the deposition behaviour experiments with logs are made. Different log diameters and lengths are added upstream the basin. The results show, that the deposition during the experiments was not controlled by sorting-effects at the location of the dam. The deposition always started from upstream, where the transport capacity was reduced due to the milder slope and the widening of the basin. No grain sorting effects

  12. Effect of Repeated Sterilization Cycles on the Physical Properties of Scaling Instruments: A Scanning Electron Microscopy Study

    PubMed Central

    Porto, Alessandra Nogueira; Borges, Álvaro Henrique; Semenoff-Segundo, Alex; Raslan, Suzane A; Pedro, Fábio Luis Miranda; Jorge, Antônio Olavo Cardoso; Bandeca, Matheus Coelho

    2015-01-01

    Background: Repeated sterilizations cycles cause undesirable alterations in the material properties of the instruments, such as corrosion, alterations in the hardness of the metal and the loss of the cutting sharpness of the instrument. This research examined the effect of repeated dry heat sterilization and autoclaves cycles on carbon steel (CS) and stainless steel (SS) curettes during the scaling and root planning. Materials and Methods: A total of 77 Gracey curettes were used in this study. Of these, 35 were SS and 42 were CS curettes submitted in different process: Dry heat, autoclave, inhibition of corrosion and autoclave, scaling, root planning and dry heat, scaling, root planning, inhibition of corrosion and autoclave. The inhibition of corrosion used on the carbon curettes (prior to sterilization in the autoclave) was sodium nitrite at 2%. The curettes received 10 consecutive cycles of sterilization and after that the cutting edges were examined in the electronic microscope, at 60 and 100 magnification times. Results: The images were evaluated by three independent examiners, who compared the photographs of each group with the control group. Conclusion: The surface corrosion products and a deterioration of the edges were observed and the results showed that the SS curettes suffered little alteration with sterilization, scaling, root planning whereas the CS curettes were visibly affected by sterilization in the autoclave, but when the inhibition of corrosion was used prior to the sterilization, the oxidation was considerably reduced. PMID:26028893

  13. Effect of repeated sterilization cycles on the physical properties of scaling instruments: a scanning electron microscopy study.

    PubMed

    Porto, Alessandra Nogueira; Borges, Álvaro Henrique; Semenoff-Segundo, Alex; Raslan, Suzane A; Pedro, Fábio Luis Miranda; Jorge, Antônio Olavo Cardoso; Bandeca, Matheus Coelho

    2015-05-01

    Repeated sterilizations cycles cause undesirable alterations in the material properties of the instruments, such as corrosion, alterations in the hardness of the metal and the loss of the cutting sharpness of the instrument. This research examined the effect of repeated dry heat sterilization and autoclaves cycles on carbon steel (CS) and stainless steel (SS) curettes during the scaling and root planning. A total of 77 Gracey curettes were used in this study. Of these, 35 were SS and 42 were CS curettes submitted in different process: Dry heat, autoclave, inhibition of corrosion and autoclave, scaling, root planning and dry heat, scaling, root planning, inhibition of corrosion and autoclave. The inhibition of corrosion used on the carbon curettes (prior to sterilization in the autoclave) was sodium nitrite at 2%. The curettes received 10 consecutive cycles of sterilization and after that the cutting edges were examined in the electronic microscope, at 60 and 100 magnification times. The images were evaluated by three independent examiners, who compared the photographs of each group with the control group. The surface corrosion products and a deterioration of the edges were observed and the results showed that the SS curettes suffered little alteration with sterilization, scaling, root planning whereas the CS curettes were visibly affected by sterilization in the autoclave, but when the inhibition of corrosion was used prior to the sterilization, the oxidation was considerably reduced.

  14. Equilibration Time Scales of Physically Relevant Observables

    NASA Astrophysics Data System (ADS)

    García-Pintos, Luis Pedro; Linden, Noah; Malabarba, Artur S. L.; Short, Anthony J.; Winter, Andreas

    2017-07-01

    We address the problem of understanding, from first principles, the conditions under which a quantum system equilibrates rapidly with respect to a concrete observable. On the one hand, previously known general upper bounds on the time scales of equilibration were unrealistically long, with times scaling linearly with the dimension of the Hilbert space. These bounds proved to be tight since particular constructions of observables scaling in this way were found. On the other hand, the computed equilibration time scales for certain classes of typical measurements, or under the evolution of typical Hamiltonians, are unrealistically short. However, most physically relevant situations fall outside these two classes. In this paper, we provide a new upper bound on the equilibration time scales which, under some physically reasonable conditions, give much more realistic results than previously known. In particular, we apply this result to the paradigmatic case of a system interacting with a thermal bath, where we obtain an upper bound for the equilibration time scale independent of the size of the bath. In this way, we find general conditions that single out observables with realistic equilibration times within a physically relevant setup.

  15. Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Ďurech, J.; Brož, M.; Marciniak, A.; Warner, B. D.; Pilcher, F.; Stephens, R.; Behrend, R.; Carry, B.; Čapek, D.; Antonini, P.; Audejean, M.; Augustesen, K.; Barbotin, E.; Baudouin, P.; Bayol, A.; Bernasconi, L.; Borczyk, W.; Bosch, J.-G.; Brochard, E.; Brunetto, L.; Casulli, S.; Cazenave, A.; Charbonnel, S.; Christophe, B.; Colas, F.; Coloma, J.; Conjat, M.; Cooney, W.; Correira, H.; Cotrez, V.; Coupier, A.; Crippa, R.; Cristofanelli, M.; Dalmas, Ch.; Danavaro, C.; Demeautis, C.; Droege, T.; Durkee, R.; Esseiva, N.; Esteban, M.; Fagas, M.; Farroni, G.; Fauvaud, M.; Fauvaud, S.; Del Freo, F.; Garcia, L.; Geier, S.; Godon, C.; Grangeon, K.; Hamanowa, H.; Hamanowa, H.; Heck, N.; Hellmich, S.; Higgins, D.; Hirsch, R.; Husarik, M.; Itkonen, T.; Jade, O.; Kamiński, K.; Kankiewicz, P.; Klotz, A.; Koff, R. A.; Kryszczyńska, A.; Kwiatkowski, T.; Laffont, A.; Leroy, A.; Lecacheux, J.; Leonie, Y.; Leyrat, C.; Manzini, F.; Martin, A.; Masi, G.; Matter, D.; Michałowski, J.; Michałowski, M. J.; Michałowski, T.; Michelet, J.; Michelsen, R.; Morelle, E.; Mottola, S.; Naves, R.; Nomen, J.; Oey, J.; Ogłoza, W.; Oksanen, A.; Oszkiewicz, D.; Pääkkönen, P.; Paiella, M.; Pallares, H.; Paulo, J.; Pavic, M.; Payet, B.; Polińska, M.; Polishook, D.; Poncy, R.; Revaz, Y.; Rinner, C.; Rocca, M.; Roche, A.; Romeuf, D.; Roy, R.; Saguin, H.; Salom, P. A.; Sanchez, S.; Santacana, G.; Santana-Ros, T.; Sareyan, J.-P.; Sobkowiak, K.; Sposetti, S.; Starkey, D.; Stoss, R.; Strajnic, J.; Teng, J.-P.; Trégon, B.; Vagnozzi, A.; Velichko, F. P.; Waelchli, N.; Wagrez, K.; Wücher, H.

    2013-03-01

    Context. The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. Aims: We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. Methods: We used classical dense photometric lightcurves from several sources (Uppsala Asteroid Photometric Catalogue, Palomar Transient Factory survey, and from individual observers) and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. Results: We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetic and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6. Table 3 is available in electronic form at http://www.aanda.org

  16. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, D. R.

    1983-01-01

    Progress in research on the small-scale physics of the ocean is reviewed. The contribution of such research to the understanding of the large scales is addressed and compared for various depth ranges of the ocean. The traditional framework for discussing small-scale measurements and turbulence is outlined, and recent research in the area is reviewed, citing references. Evidence for the existence of salt fingering in oceanic mixing is discussed. Factors that might inhibit the growth of salt fingers are assessed, and the influence of differences between laboratory tank and ocean in studying the fingers is discussed. The role of salt fingers in creating intrusions is examined. Instruments and methods used to measure the smallest scales at which there is appreciable variation and the stability of the patch of ocean in which the small-scale motions take place are considered.

  17. Multi-physics/scale simulations using particles

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros

    2006-03-01

    Particle simulations of continuum and discrete phenomena can be formulated by following the motion of interacting particles that carry the physical properties of the systems that is being approximated (continuum) or modeled (discrete) by the particles. We identify the common computational characteristics of particle methods and emphasize their key properties that enable the formulation of a novel, systematic framework for multiscale simulations, that can be applicable to the simulation of diverse physical problems. We present novel multiresolution particle methods for continuum (fluid/solid) simulations, using adaptive mesh refinement and wavelets, by relaxing the grid-free character of particle methods and discuss the coupling of scales in continuum-atomistic flow simulations.

  18. Economies of scale: The physics basis

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Almerbati, A.; Lorente, S.

    2017-01-01

    Why is size so important? Why are "economies of scale" a universal feature of all flow systems, animate, inanimate, and human made? The empirical evidence is clear: the bigger are more efficient carriers (per unit) than the smaller. This natural tendency is observed across the board, from animal design to technology, logistics, and economics. In this paper, we rely on physics (thermodynamics) to determine the relation between the efficiency and size. Here, the objective is to predict a natural phenomenon, which is universal. It is not to model a particular type of device. The objective is to demonstrate based on physics that the efficiencies of diverse power plants should increase with size. The analysis is performed in two ways. First is the tradeoff between the "external" irreversibilities due to the temperature differences that exist above and below the temperature range occupied by the circuit executed by the working fluid. Second is the allocation of the fluid flow irreversibility between the hot and cold portions of the fluid flow circuit. The implications of this report in economics and design science (scaling up, scaling down) and the necessity of multi-scale design with hierarchy are discussed.

  19. Perspective on TeV-scale physics

    SciTech Connect

    Chanowitz, M.S.

    1989-02-01

    These lectures review theoretical motivations and experimental prospects for the study of TeV-scale physics. Three clues to the importance of TeV physics are discussed: implications of quantum corrections for the masses of a fourth generation quark-lepton family, the gauge hierarchy problem and known solutions, and implications of symmetry and unitarity for the symmetry-breaking sector of the electroweak gauge theory. The experimental prospects are reviewed with emphasis on the multi-TeV pp colliders that may be built in the 1990's. The topics include new phenomena that might occur - e.g., a fourth generation, heavy gauge bosons, composite structure, and supersymmetry - as well as the signals of the unknown SU(2)/sub L/ /times/ U(1)/sub Y/ breaking mechanism that must occur within the TeV domain. 96 refs., 21 figs.

  20. Physical-scale models of engineered log jams in rivers

    USDA-ARS?s Scientific Manuscript database

    Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...

  1. The Effects of Visual Magnification and Physical Movement Scale on the Manipulation of a Tool with Indirect Vision

    ERIC Educational Resources Information Center

    Bohan, Michael; McConnell, Daniel S.; Chaparro, Alex; Thompson, Shelby G.

    2010-01-01

    Modern tools often separate the visual and physical aspects of operation, requiring users to manipulate an instrument while viewing the results indirectly on a display. This can pose usability challenges particularly in applications, such as laparoscopic surgery, that require a high degree of movement precision. Magnification used to augment the…

  2. The Effects of Visual Magnification and Physical Movement Scale on the Manipulation of a Tool with Indirect Vision

    ERIC Educational Resources Information Center

    Bohan, Michael; McConnell, Daniel S.; Chaparro, Alex; Thompson, Shelby G.

    2010-01-01

    Modern tools often separate the visual and physical aspects of operation, requiring users to manipulate an instrument while viewing the results indirectly on a display. This can pose usability challenges particularly in applications, such as laparoscopic surgery, that require a high degree of movement precision. Magnification used to augment the…

  3. The effect of changing micro-scale physical environmental factors on an environment's invitingness for transportation cycling in adults: an exploratory study using manipulated photographs.

    PubMed

    Mertens, Lieze; Van Holle, Veerle; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Salmon, Jo; Nasar, Jack; Van de Weghe, Nico; Van Dyck, Delfien; Van Cauwenberg, Jelle

    2014-08-19

    Previous studies have shown convincing evidence for positive relationships between transportation cycling in adults and macro-scale physical environmental factors. In contrast, relationships are less consistent for more changeable, micro-scale environmental factors. The majority of existing studies used observational study designs, which cannot determine causality. The present mixed-methods study used manipulated photographs to determine causal relationships between micro-scale environmental factors and the environment's invitingness for transportation cycling. Further, interactions among environmental factors and moderating effects of gender, age and educational level were investigated. For this study, panoramic photograph of a street was manipulated on eight environmental factors: traffic, speed bump, general upkeep, evenness of the cycle path, vegetation, separation of motorized traffic, separation with sidewalk and cycle path width. Sixty-six middle-aged adults participated in the study and sorted the manipulated panoramic photographs from least to most inviting to cycle for transportation. Participants also provided qualitative data on how they sorted the streets. Multilevel cross-classified modelling was used to analyse the relationships between the environmental manipulations and the invitingness-scores. The qualitative data were deductively categorized according to the environmental factors. All environmental factors, except for separation with sidewalk, proved to have a significant main effect on the invitingness-score for transportation cycling. Cycle path evenness appeared to have the strongest effect on the invitingness. This effect was even stronger in an environment with good compared to poorly overall upkeep. Another significant interaction effect showed that the invitingness decreased when both separations along the cycle path were present compared to only a separation with traffic. No moderating effects of the demographic factors on these

  4. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    PubMed

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p < 0.05). The in silico multi-scale model established in this study demonstrates that the Young's moduli, Poisson's ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  5. Physically based landslide warning at regional scale

    NASA Astrophysics Data System (ADS)

    Canli, Ekrem; Mergili, Martin; Glade, Thomas

    2017-04-01

    Albeit advancements in the past within the field of geotechnical engineering have led to an increasing in situ damage control in many parts of the world, heavy rainstorms still cause severe damage by triggering landslides. Landslides are usually restricted to the local scale when taking into consideration single events, however, they often tend to occur spatially abundant which makes them a regional phenomenon. This makes the necessity of regional-scale early warning systems (EWS) indispensable. When dealing with landslide EWS, it is impossible to cover all potential early warning situations. Although the calculation of rainfall thresholds is the most common approach for assessing regional landslide early warning, they only represent a simplification of the physical processes involved. In most cases, indeed, there is more than just this one causative factor involved. Here, we present an early prototype for a regional, physically based landslide EWS driven by real-time spatio-temporal rainfall data. Instead of assuming uniform rainfall over a certain area, an automated geostatistical approach is suggested which allows approximating real-time spatially distributed, hourly rainfall predictions based on gauged rainfall data available on the internet. The methodology presented in this study is especially suitable for the implementation in warning systems that contain predefined thresholds and for landslides related to a progressive increase of soil saturation and/or a rising groundwater table. The transient rainfall infiltration and grid-based slope stability (TRIGRS) model is used in a modified way to compute transient pore-pressure changes and associated changes in the factor of safety due to rainfall infiltration. The geotechnical properties involved are probabilistically integrated within certain predefined ranges to account for the inherent spatial uncertainties. The result is an automatically generated probability of failure raster map that is updated hourly based

  6. On nature's scaling effects

    NASA Technical Reports Server (NTRS)

    Wilkins, Dick J.

    1994-01-01

    This presentation afforded the opportunity to look back in the literature to discover scaling effects in nature that might be relevant to composites. Numerous examples were found in nature's approaches to wood, teeth, horns, leaves, eggs, feathers, etc. Nature transmits tensile forces rigidly with cohesive bonds, while dealing with compression forces usually through noncompressible hydraulics. The optimum design scaling approaches for aircraft were also reviewed for comparison with similitude laws. Finally, some historical evidence for the use of Weibull scaling in composites was reviewed.

  7. Physical Origins of Statistical Scale Invariance or Scaling in Peak Flows in Real River Networks

    NASA Astrophysics Data System (ADS)

    Mantilla, R.; Gupta, V. K.; Furey, P.

    2005-12-01

    For nearly forty years, regional flood frequency analyses in unnested and in nested basins have shown that annual peak-flow quantiles can be related to drainage areas as power laws that arise from the property of scale invariance. This empirical feature has instigated a basic hydrologic question: Can power laws be obtained from physical processes governing rainfall-runoff transformations on real channel networks? There has been steady progress in answering this question since 1990. A physical understanding of peak flow scaling requires the time scales of individual rainfall-runoff events as a first step before going to longer time scales. We have used data from two Agriculture Research Service (ARS) experimental basins in the United States to test the physical basis of scaling in peak flows. The first basin is Goodwin Creek in Mississippi (21 km2), and the second one is Walnut Gulch in Arizona (150 km2). We have tested the hypothesis that scaling parameters of individual flood events on Goodwin Creek vary from one event to the next due to the effect of temporal rainfall variability. On the Walnut Gulch, we have tested the hypothesis that scaling in peak flows for short duration rainfall events is controlled by the river network topological and geometric configuration and the downstream hydraulic-geometric properties. Based on these results we present a gauging strategy to investigate peak flow scaling in the 1100 km2 Whitewater basin in Kansas.

  8. Mathematical and physical scaling of triggered lightning

    SciTech Connect

    Ziolkowski, R.W.; Grant, J.B.

    1982-12-01

    As the aircraft industry incorporates current technology in airborne systems, electromagnetic compatibility can decrease. Composite fuselages can be more transparent to EMP, whether nuclear or lightning generated, than metal ones. Solid-state circuitry is sensitive to intense EM fluctuations whereas mechanical controls generally are not. With this increased vulnerability comes increased concern for these dangers. Recently the anxiety over lightning has risen. Answers are sought to such questions as: how do the lightning EM effects couple into the aircraft's interior. Do aircraft trigger lightning, and if so, can the triggering be minimized. An understanding, at least to some extent, of lightning would provide a needed foundation to examine the interaction of aircraft with lightning. A review of the literature on lightning and lightning-aircraft investigations, including triggered lightning, was conducted and is briefly summarized in this paper. In addition to this brief literature review, scaling the lightning event to laboratory size is also discussed. The ability to scale would allow accurate investigation of lightning effects, as well as the triggering phenomena, in scaled experiments.

  9. Understanding the large-scale structure from the cosmic microwave background: shear calibration with CMB lensing; gas physics from the kinematic Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Schaan, Emmanuel

    2017-01-01

    I will present two promising ways in which the cosmic microwave background (CMB) sheds light on critical uncertain physics and systematics of the large-scale structure. Shear calibration with CMB lensing: Realizing the full potential of upcoming weak lensing surveys requires an exquisite understanding of the errors in galaxy shape estimation. In particular, such errors lead to a multiplicative bias in the shear, degenerate with the matter density parameter and the amplitude of fluctuations. Its redshift-evolution can hide the true evolution of the growth of structure, which probes dark energy and possible modifications to general relativity. I will show that CMB lensing from a stage 4 experiment (CMB S4) can self-calibrate the shear for an LSST-like optical lensing survey. This holds in the presence of photo-z errors and intrinsic alignment. Evidence for the kinematic Sunyaev-Zel'dovich (kSZ) effect; cluster energetics: Through the kSZ effect, the baryon momentum field is imprinted on the CMB. I will report significant evidence for the kSZ effect from ACTPol and peculiar velocities reconstructed from BOSS. I will present the prospects for constraining cluster gas profiles and energetics from the kSZ effect with SPT-3G, AdvACT and CMB S4. This will provide constraints on galaxy formation and feedback models.

  10. Effects of Model Resolution and Subgrid-Scale Physics on the Simulation of Daily Precipitation in the Continental United States

    SciTech Connect

    Duffy, P B; Iorio, J P; Govindasamy, B; Thompson, S L; Khairoutdinov, M; Randall, D

    2004-07-28

    We analyze simulations of the global climate performed at a range of spatial resolutions to assess the effects of horizontal spatial resolution on the ability to simulate precipitation in the continental United States. The model investigated is the CCM3 general circulation model. We also preliminarily assess the effect of replacing cloud and convective parameterizations in a coarse-resolution (T42) model with an embedded cloud-system resolving model (CSRM). We examine both spatial patterns of seasonal-mean precipitation and daily-timescale temporal variability of precipitation in the continental United States. For DJF and SON, high-resolution simulations produce spatial patterns of seasonal-mean precipitation that agree more closely with observed precipitation patterns than do results from the same model (CCM3) at coarse resolution. However, in JJA and MAM, there is little improvement in spatial patterns of seasonal-mean precipitation with increasing resolution, particularly in the Southeast. This is owed to the dominance of convective (i.e., parameterized) precipitation in these two seasons. We further find that higher-resolution simulations have more realistic daily precipitation statistics. In particular, the well-known tendency at coarse resolution to have too many days with weak precipitation and not enough intense precipitation is partially eliminated in higher-resolution simulations. However, even at the highest resolution examined here (T239), the simulated intensity of the mean and of high-percentile daily precipitation amounts is too low. This is especially true in the Southeast, where the most extreme events occur. A new GCM, in which a cloud-resolving model (CSRM) is embedded in each grid cell and replaces convective and stratiform cloud parameterizations, solves this problem, and actually produces too much precipitation in the form of extreme events. However, in contrast to high-resolution versions of CCM3, this model produces little improvement in

  11. Initiation and Detonation Physics on Millimeter Scales

    SciTech Connect

    Philllips, D F; Benterou, J J; May, C A

    2012-03-20

    The LLNL Detonation Science Project has a major interest in understanding the physics of detonation on a millimeter scale. This report summarizes the rate stick experiment results of two high explosives. The GO/NO-GO threshold between varying diameters of ultra-fine TATB (ufTATB) and LX-16 were recorded on an electronic streak camera and analyzed. This report summarizes the failure diameters of rate sticks for ufTATB and LX-16. Failure diameter for the ufTATB explosive, with densities at 1.80 g/cc, begin at 2.34 mm (not maintaining detonation velocity over the entire length of the rate stick). ufTATB rate sticks at the larger 3.18 mm diameter maintain a constant detonation velocity over the complete length. The PETN based and LLNL developed explosive, LX-16, with densities at 1.7 g/cc, shows detonation failure between 0.318 mm and 0.365 mm. Additional tests would be required to narrow this failure diameter further. Many of the tested rate sticks were machined using a femtosecond laser focused into a firing tank - in case of accidental detonation.

  12. Physics Meets Philosophy at the Planck Scale

    NASA Astrophysics Data System (ADS)

    Callender, Craig; Huggett, Nick

    2001-04-01

    Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.

  13. Scale effects in crystal plasticity

    NASA Astrophysics Data System (ADS)

    Padubidri Janardhanachar, Guruprasad

    The goal of this research work is to further the understanding of crystal plasticity, particularly at reduced structural and material length scales. Fundamental understanding of plasticity is central to various challenges facing design and manufacturing of materials for structural and electronic device applications. The development of microstructurally tailored advanced metallic materials with enhanced mechanical properties that can withstand extremes in stress, strain, and temperature, will aid in increasing the efficiency of power generating systems by allowing them to work at higher temperatures and pressures. High specific strength materials can lead to low fuel consumption in transport vehicles. Experiments have shown that enhanced mechanical properties can be obtained in materials by constraining their size, microstructure (e.g. grain size), or both for various applications. For the successful design of these materials, it is necessary to have a thorough understanding of the influence of different length scales and evolving microstructure on the overall behavior. In this study, distinction is made between the effect of structural and material length scale on the mechanical behavior of materials. A length scale associated with an underlying physical mechanism influencing the mechanical behavior can overlap with either structural length scales or material length scales. If it overlaps with structural length scales, then the material is said to be dimensionally constrained. On the other hand, if it overlaps with material length scales, for example grain size, then the material is said to be microstructurally constrained. The objectives of this research work are: (1) to investigate scale and size effects due to dimensional constraints; (2) to investigate size effects due to microstructural constraints; and (3) to develop a size dependent hardening model through coarse graining of dislocation dynamics. A discrete dislocation dynamics (DDD) framework where the

  14. The physics of musical scales: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  15. Lightning Physics and Effects

    NASA Astrophysics Data System (ADS)

    Orville, Richard E.

    2004-03-01

    Lightning Physics and Effects is not a lightning book; it is a lightning encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of lightning, including lightning physics, lightning protection, and the interaction of lightning with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in lightning and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.

  16. Reliability and Validity of the Physical Education Activities Scale

    ERIC Educational Resources Information Center

    Thomason, Diane L.; Feng, Du

    2016-01-01

    Background: Measuring adolescent perceptions of physical education (PE) activities is necessary in understanding determinants of school PE activity participation. This study assessed reliability and validity of the Physical Education Activities Scale (PEAS), a 41-item visual analog scale measuring high school adolescent perceptions of school PE…

  17. Reliability and Validity of the Physical Education Activities Scale

    ERIC Educational Resources Information Center

    Thomason, Diane L.; Feng, Du

    2016-01-01

    Background: Measuring adolescent perceptions of physical education (PE) activities is necessary in understanding determinants of school PE activity participation. This study assessed reliability and validity of the Physical Education Activities Scale (PEAS), a 41-item visual analog scale measuring high school adolescent perceptions of school PE…

  18. Development of an Attitude Scale towards High School Physics Lessons

    ERIC Educational Resources Information Center

    Yavas, Pervin Ünlü; Çagan, Sultan

    2017-01-01

    The aim of this study was to develop a Likert type attitude scale for high school students with regard to high school physics lessons. The research was carried out with high school students who were studying in Ankara. First, the opinions of 105 high school students about physics lessons were obtained and then 55 scale items were determined from…

  19. Development and Validation of the Physics Anxiety Rating Scale

    ERIC Educational Resources Information Center

    Sahin, Mehmet; Caliskan, Serap; Dilek, Ufuk

    2015-01-01

    This study reports the development and validation process for an instrument to measure university students' anxiety in physics courses. The development of the Physics Anxiety Rating Scale (PARS) included the following steps: Generation of scale items, content validation, construct validation, and reliability calculation. The results of construct…

  20. Conjecture on the physical implications of the scale anomaly

    SciTech Connect

    Hill, Christopher T.; /Fermilab

    2005-10-01

    Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, {Lambda}{sub QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, {h_bar}, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.

  1. Cosmological bounds on TeV-scale physics and beyond

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Nelson, Elliot

    2016-04-01

    We study the influence of the fluctuations of a Lorentz-invariant and conserved vacuum on cosmological metric perturbations, and show that they generically blow up in the IR. We compute this effect using the Källén-Lehmann spectral representation of stress correlators in generic quantum field theories, as well as the holographic bound on their entanglement entropy, both leading to an IR cutoff that scales as the fifth power of the highest UV scale (in Planck units). One may view this as analogous to the Heisenberg uncertainty principle, which is imposed on the phase space of gravitational theories by the Einstein constraint equations. The leading effect on cosmological observables comes from anisotropic vacuum stresses which imply: i) any extension of the standard model of particle physics can only have masses (or resonances) ≲24 TeV , and ii) perturbative quantum field theory or quantum gravity become strongly coupled beyond a UV scale of Λ ≲1 PeV . Such a low strong coupling scale is independently motivated by the Higgs hierarchy problem. This result, which we dub the cosmological nonconstant problem, can be viewed as an extension of the cosmological constant (CC) problem, demonstrating the nontrivial UV-IR coupling and (yet another) limitation of effective field theory in gravity. However, it is more severe than the old CC problem, as vacuum fluctuations cannot be tuned to cancel due to the positivity of spectral densities or entropy. We thus predict that future advances in cosmological observations and collider technology will sandwich from above and below, and eventually discover, new (nonperturbative) physics beyond the standard model within the TeV-PeV energy range.

  2. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, Douglas R.

    1987-01-01

    Observations and theoretical models of small-scale phenomena in the oceans are reviewed, with a focus on progress during the period 1983-1986. Topics examined include surface layers, equatorial turbulence, off-equator mixed layers, the scaling of mixing, turbulence concepts, laboratory results, internal waves and mixing, rings, the nature of the bottom layer, double diffusion and intrusions, salt fingers, and biological interactions. Also discussed are developments in instrumentation (fast sampling profilers with upward-profiling capability, deep profilers, ship-motion correction, horizontal samplers, small submersibles, submarines, towed packages, conductivity sensors, dissolved-oxygen sensors, and acoustic Doppler current profilers) and goals for future research.

  3. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, Douglas R.

    1987-01-01

    Observations and theoretical models of small-scale phenomena in the oceans are reviewed, with a focus on progress during the period 1983-1986. Topics examined include surface layers, equatorial turbulence, off-equator mixed layers, the scaling of mixing, turbulence concepts, laboratory results, internal waves and mixing, rings, the nature of the bottom layer, double diffusion and intrusions, salt fingers, and biological interactions. Also discussed are developments in instrumentation (fast sampling profilers with upward-profiling capability, deep profilers, ship-motion correction, horizontal samplers, small submersibles, submarines, towed packages, conductivity sensors, dissolved-oxygen sensors, and acoustic Doppler current profilers) and goals for future research.

  4. New physics at the TeV scale

    NASA Astrophysics Data System (ADS)

    Chakdar, Shreyashi

    The Standard Model of particle physics is assumed to be a low-energy effective theory with new physics theoretically motivated to be around TeV scale. The thesis presents theories with new physics beyond the Standard Model in the TeV scale testable in the colliders. Work done in chapters 2, 3 and 5 in this thesis present some models incorporating different approaches of enlarging the Standard Model gauge group to a grand unified symmetry with each model presenting its unique signatures in the colliders. The study on leptoquarks gauge bosons in reference to TopSU(5) model in chapter 2 showed that their discovery mass range extends up to 1.5 TeV at 14 TeV LHC with luminosity of 100 fb--1. On the other hand, in chapter 3 we studied the collider phenomenology of TeV scale mirror fermions in Left-Right Mirror model finding that the reaches for the mirror quarks goes upto 750 GeV at the 14 TeV LHC with 300 fb--1 luminosity. In chapter 4 we have enlarged the bosonic symmetry to fermi-bose symmetry e.g. supersymmetry and have shown that SUSY with non-universalities in gaugino or scalar masses within high scale SUGRA set up can still be accessible at LHC with 14 TeV. In chapter 5, we performed a study in respect to the e+e-- collider and find that precise measurements of the higgs boson mass splittings up to ˜ 100 MeV may be possible with high luminosity in the International Linear Collider (ILC). In chapter 6 we have shown that the experimental data on neutrino masses and mixings are consistent with the proposed 4/5 parameter Dirac neutrino models yielding a solution for the neutrino masses with inverted mass hierarchy and large CP violating phase delta and thus can be tested experimentally. Chapter 7 of the thesis incorporates a warm dark matter candidate in context of two Higgs doublet model. The model has several testable consequences at colliders with the charged scalar and pseudoscalar being in few hundred GeV mass range. This thesis presents an endeavor to study

  5. Development of a Scale Measuring Trait Anxiety in Physical Education

    ERIC Educational Resources Information Center

    Barkoukis, Vassilis; Rodafinos, Angelos; Koidou, Eirini; Tsorbatzoudis, Haralambos

    2012-01-01

    The aim of the present study was to examine the validity and reliability of a multi-dimensional measure of trait anxiety specifically designed for the physical education lesson. The Physical Education Trait Anxiety Scale was initially completed by 774 high school students during regular school classes. A confirmatory factor analysis supported the…

  6. Development of a Scale Measuring Trait Anxiety in Physical Education

    ERIC Educational Resources Information Center

    Barkoukis, Vassilis; Rodafinos, Angelos; Koidou, Eirini; Tsorbatzoudis, Haralambos

    2012-01-01

    The aim of the present study was to examine the validity and reliability of a multi-dimensional measure of trait anxiety specifically designed for the physical education lesson. The Physical Education Trait Anxiety Scale was initially completed by 774 high school students during regular school classes. A confirmatory factor analysis supported the…

  7. Application of physical scaling towards downscaling climate model precipitation data

    NASA Astrophysics Data System (ADS)

    Gaur, Abhishek; Simonovic, Slobodan P.

    2017-03-01

    Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.

  8. ETHOS - an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark; Zavala, Jesús; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Bringmann, Torsten; Sigurdson, Kris

    2016-08-01

    We present the first simulations within an effective theory of structure formation (ETHOS), which includes the effect of interactions between dark matter and dark radiation on the linear initial power spectrum and dark matter self-interactions during non-linear structure formation. We simulate a Milky Way-like halo in four different dark matter models and the cold dark matter case. Our highest resolution simulation has a particle mass of 2.8 × 104 M⊙ and a softening length of 72.4 pc. We demonstrate that all alternative models have only a negligible impact on large-scale structure formation. On galactic scales, however, the models significantly affect the structure and abundance of subhaloes due to the combined effects of small-scale primordial damping in the power spectrum and late-time self-interactions. We derive an analytic mapping from the primordial damping scale in the power spectrum to the cutoff scale in the halo mass function and the kinetic decoupling temperature. We demonstrate that certain models within this extended effective framework that can alleviate the too-big-to-fail and missing satellite problems simultaneously, and possibly the core-cusp problem. The primordial power spectrum cutoff of our models naturally creates a diversity in the circular velocity profiles, which is larger than that found for cold dark matter simulations. We show that the parameter space of models can be constrained by contrasting model predictions to astrophysical observations. For example, some models may be challenged by the missing satellite problem if baryonic processes were to be included and even oversolve the too-big-to-fail problem; thus ruling them out.

  9. Impact Cratering Physics al Large Planetary Scales

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.

    2007-06-01

    Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).

  10. Effective Physics Major Recruiting

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert

    2005-04-01

    Only the high school students that are in the top 2% in math of those that are college bound do well as physics majors. These students you recruit face to face in April by telling them your program is academically the toughest that they will find at your school. You promise that while crippling their social life and assuring that their lowest grades will be in their physics major, they will get to find out just how good they are. We will discuss:How to get face to face with that top 2% high school student.Why high school teachers and counselors will not help you.Why wait until April to recruit.What parents want to know about your physics program.Which activities are a waste of time when recuiting.By investing 20 hours spread over 2 weeks expect to get about 8 good physics majors.

  11. Scale Development for Perceived School Climate for Girls’ Physical Activity

    PubMed Central

    Birnbaum, Amanda S.; Evenson, Kelly R.; Motl, Robert W.; Dishman, Rod K.; Voorhees, Carolyn C.; Sallis, James F.; Elder, John P.; Dowda, Marsha

    2008-01-01

    Objectives To test an original scale assessing perceived school climate for girls’ physical activity in middle school girls. Methods Confirmatory factor analysis (CFA) and structural equation modeling (SEM). Results CFA retained 5 of 14 original items. A model with 2 correlated factors, perceptions about teachers’ and boys’ behaviors, respectively, fit the data well in both sixth and eighth graders. SEM detected a positive, significant direct association of the teacher factor, but not the boy factor, with girls’ self-reported physical activity. Conclusions School climate for girls’ physical activity is a measurable construct, and preliminary evidence suggests a relationship with physical activity. PMID:15899688

  12. MOS Device and Interconnects Scaling Physics

    NASA Astrophysics Data System (ADS)

    van Rossum, Marc

    The metal-oxide-semiconductor field-effect transistor (MOSFET) is the most common active device in today's integrated circuits. Its basic structure consists of a doped silicon well, with at the opposite ends two highly doped contact regions (the source and drain junctions) allowing the current to pass close to the well surface (Fig. 2.1). In an n-type MOSFET, the well region is p-type doped and the source and drain are n+ doped, whereas the reverse polarity scheme applies for p-type devices. CMOS circuits contain both n-MOS and p-MOS transistors combined to form various logic gates. The transistor body is electrically isolated from the surrounding circuitry by a thick "field" oxide. A third electrode (the gate), to which the input signal is applied, is sitting on top of the well. It consists of an electrical contact layer (usually heavily doped polysilicon with a metallic top layer) separated from the silicon substrate by a thin insulator film made of thermally grown silicon dioxide. The substrate is thus capacitively coupled to the gate electrode, making the MOSFET a nearly ideal switch element due to the high isolation between input and output.

  13. Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34 /Yr18: a disease resistance locus effective against multiple pathogens in wheat.

    PubMed

    Spielmeyer, W; Singh, R P; McFadden, H; Wellings, C R; Huerta-Espino, J; Kong, X; Appels, R; Lagudah, E S

    2008-02-01

    The Lr34/Yr18 locus has contributed to durable, non-race specific resistance against leaf rust (Puccinia triticina) and stripe rust (P. striiformis f. sp. tritici) in wheat (Triticum aestivum). Lr34/Yr18 also cosegregates with resistance to powdery mildew (Pm38) and a leaf tip necrosis phenotype (Ltn1). Using a high resolution mapping family from a cross between near-isogenic lines in the "Thatcher" background we demonstrated that Lr34/Yr18 also cosegregated with stem rust resistance in the field. Lr34/Yr18 probably interacts with unlinked genes to provide enhanced stem rust resistance in "Thatcher". In view of the relatively low levels of DNA polymorphism reported in the Lr34/Yr18 region, gamma irradiation of the single chromosome substitution line, Lalbahadur(Parula7D) that carries Lr34/Yr18 was used to generate several mutant lines. Characterisation of the mutants revealed a range of highly informative genotypes, which included variable size deletions and an overlapping set of interstitial deletions. The mutants enabled a large number of wheat EST derived markers to be mapped and define a relatively small physical region on chromosome 7DS that carried Lr34/Yr18. Fine scale genetic mapping confirmed the physical mapping and identified a genetic interval of less than 0.5 cM, which contained Lr34/Yr18. Both rice and Brachypodium genome sequences provided useful information for fine mapping of ESTs in wheat. Gene order was more conserved between wheat and Brachypodium than with rice but these smaller grass genomes did not reveal sequence information that could be used to identify a candidate gene for rust resistance in wheat. We predict that Lr34/Yr18 is located within a large insertion in wheat not found at syntenic positions in Brachypodium and rice.

  14. Effect of Sintering Temperature to Physical, Magnetic Properties and Crystal Structure on Permanent Magnet BaFe12O19 Prepared From Mill Scale

    NASA Astrophysics Data System (ADS)

    Ramlan; Muljadi; Sardjono, Priyo; Gulo, Fakhili; Setiabudidaya, Dedi

    2017-07-01

    Permanent magnet of Barium hexa Ferrite with formula BaFe12O19 has been made by metallurgy powder method from raw materials : Barium carbonate (BaCO3 E-merck) and Iron Oxide (Fe2O3 from mill scale). Both of raw materials have been mixed with stoichiometry composition by using a ball mill for 24 hours. The fine powder obtained from milling process was formed by using a hydraulic press at pressure 50 MPa and continued with sintering process. The sintering temperature was varied : 1150°C, 1200°C, 1250°C and 1300°C with holding time for 1 hour. The sintered samples were characterized such as : physical properties (bulk density, porosity and shrinkage), magnetic properties (flux density, remanence, coercivity and magnetic saturation) by using VSM and crystal structure by using XRD. According characterization results show that the crystal structure of BaFe12O19 does not change after sintering process, but the grain size tends to increase. The optimum condition is achieved at temperature 1250°C, and at this condition, the sample has characterization such as : bulk density = 4.35 g/cm3, porosity = 1.03% and firing shrinkage = 11.63%, flux density = 681.1 Gauss, remanence (σr) = 20.78 emu/g, coercivity (Hc) = 2058 Oe and magnetic saturation (σs) 45.16 emu/g.

  15. Polymer physics of chromosome large-scale 3D organisation.

    PubMed

    Chiariello, Andrea M; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-07-13

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  16. Polymer physics of chromosome large-scale 3D organisation

    NASA Astrophysics Data System (ADS)

    Chiariello, Andrea M.; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-07-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  17. Scales and scaling in turbulent ocean sciences; physics-biology coupling

    NASA Astrophysics Data System (ADS)

    Schmitt, Francois

    2015-04-01

    Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.

  18. Scale Development for Perceived School Climate for Girls' Physical Activity

    ERIC Educational Resources Information Center

    Birnbaum, Amanda S.; Evenson, Kelly R.; Motl, Robert W.; Dishman, Rod K.; Voorhees, Carolyn C.; Sallis, James F.; Elder, John P.; Dowda, Marsha

    2005-01-01

    Objectives: To test an original scale assessing perceived school climate for girls' physical activity in middle school girls. Methods: Confirmatory factor analysis (CFA) and structural equation modeling (SEM). Results: CFA retained 5 of 14 original items. A model with 2 correlated factors, perceptions about teachers' and boys' behaviors,…

  19. 2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION

    EPA Science Inventory

    A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...

  20. The physical basis of glacier volume-area scaling

    USGS Publications Warehouse

    Bahr, D.B.; Meier, M.F.; Peckham, S.D.

    1997-01-01

    Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship requires four closure choices for the scaling behavior of glacier widths, slopes, side drag and mass balance. Reasonable closures predict a volume-area scaling exponent which is consistent with observations, giving a physical and practical basis for estimating ice volumes. Glacier volume is insensitive to perturbations in the mass balance scaling, but changes in average accumulation area ratios reflect significant changes in the scaling of both mass balance and ice volume. Copyright 1997 by the American Geophysical Union.

  1. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    DeHart, Mark D; Bowman, Stephen M

    2011-01-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  2. Reactor Physics Methods and Analysis Capabilities in SCALE

    SciTech Connect

    Mark D. DeHart; Stephen M. Bowman

    2011-05-01

    The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.

  3. Physical scales in the Wigner–Boltzmann equation

    PubMed Central

    Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.

    2013-01-01

    The Wigner–Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner–Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner–Boltzmann evolution is demonstrated. PMID:23504194

  4. Physical scales in the Wigner-Boltzmann equation.

    PubMed

    Nedjalkov, M; Selberherr, S; Ferry, D K; Vasileska, D; Dollfus, P; Querlioz, D; Dimov, I; Schwaha, P

    2013-01-01

    The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated.

  5. Large-scale simulations of complex physical systems

    NASA Astrophysics Data System (ADS)

    Belić, A.

    2007-04-01

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results. In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  6. Large-scale simulations of complex physical systems

    SciTech Connect

    Belic, A.

    2007-04-23

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results.In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  7. Large-scale physical activity data reveal worldwide activity inequality.

    PubMed

    Althoff, Tim; Sosič, Rok; Hicks, Jennifer L; King, Abby C; Delp, Scott L; Leskovec, Jure

    2017-07-20

    To be able to curb the global pandemic of physical inactivity and the associated 5.3 million deaths per year, we need to understand the basic principles that govern physical activity. However, there is a lack of large-scale measurements of physical activity patterns across free-living populations worldwide. Here we leverage the wide usage of smartphones with built-in accelerometry to measure physical activity at the global scale. We study a dataset consisting of 68 million days of physical activity for 717,527 people, giving us a window into activity in 111 countries across the globe. We find inequality in how activity is distributed within countries and that this inequality is a better predictor of obesity prevalence in the population than average activity volume. Reduced activity in females contributes to a large portion of the observed activity inequality. Aspects of the built environment, such as the walkability of a city, are associated with a smaller gender gap in activity and lower activity inequality. In more walkable cities, activity is greater throughout the day and throughout the week, across age, gender, and body mass index (BMI) groups, with the greatest increases in activity found for females. Our findings have implications for global public health policy and urban planning and highlight the role of activity inequality and the built environment in improving physical activity and health.

  8. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; Kumar, S.; Lapenta, W.; Li, X.; Matsui, T.; Rienecker, M.; Shen, B.W.; Shi, J.J.; Simpson, J.; Zeng, X.

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite

  9. Physics of Multi-scale Convection In The Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Korenaga, J.; Jordan, T. H.

    We investigate the physics of multi-scale convection in the Earth's mantle, character- ized by the coexistence of large-scale mantle circulation associated plate tectonics and small-scale sublithospheric convection. Several basic scaling laws are derived, using a series of 2-D numerical modeling and 3-D linear stability analyses, for the following three distinct phases of sublithospheric convection: (1) onset of convection, (2) lay- ered convection in the upper mantle, and (3) breakdown of layered convection. First, the onset of convection with temperature-dependent viscosity is studied with 2-D con- vection models. A robust scaling law for onset time is derived by a nonlinear scaling analysis based on the concept of the differential Rayleigh number. Next, the planform of sublithospheric convection is studied by a 3-D linear stability analysis of longitu- dinal rolls in the presence of vertical shear. Finally, the temporal and spatial evolu- tion of sublithospheric convection is studied by 2-D whole-mantle convection models with temperature- and depth-dependent viscosity and an endothermic phase transition. Scaling laws for the breakdown of layered convection as well as the strength of con- vection are derived as a function of viscosity layering, the phase buoyancy parameter, and the thermal Rayleigh number. All of these scaling laws are combined to delineate possible dynamic regimes beneath evolving lithosphere.

  10. The Physical Education Predisposition Scale: preliminary development and validation.

    PubMed

    Hilland, Toni A; Stratton, Gareth; Vinson, Don; Fairclough, Stuart

    2009-12-01

    The main aim of this study was to develop and test psychometrically the Physical Education Predisposition Scale, to assess secondary school students' cost-benefit assessment of physical education (PE) participation (PE attitude affective and attitude cognitive) and self-perceptions (PE perceived competence and self-efficacy). Secondary aims were to explore how the two variables were related, and to investigate age and gender differences. Altogether, 315 Year 8 and 9 students (aged 12-14 years) from four North West England schools completed the Physical Education Predisposition Scale. Principal components analysis revealed the presence of a simple two-factor solution explaining 60.7% of the variance. Factor 1 (labelled Perceived PE Worth) reflected attitude affective and attitude cognitive (alpha = 0.91), and factor 2 (Perceived PE Ability) represented perceived competence and self-efficacy (alpha = 0.89). Significant positive correlations were observed between the factors (r = 0.67 to 0.71, P < 0.001). Boys scored significantly higher than girls on Perceived PE Worth (P < 0.001) and Perceived PE Ability (P = 0.02). Similarly, Year 8 students scored significantly higher than Year 9 students on Perceived PE Worth (P = 0.005) and Perceived PE Ability (P < 0.001). Our results support the potential of the Physical Education Predisposition Scale as a concise measurement tool for use in the PE setting, for both teachers and researchers.

  11. Scaling Effect In Trade Network

    NASA Astrophysics Data System (ADS)

    Konar, M.; Lin, X.; Rushforth, R.; Ruddell, B. L.; Reimer, J.

    2015-12-01

    Scaling is an important issue in the physical sciences. Economic trade is increasingly of interest to the scientific community due to the natural resources (e.g. water, carbon, nutrients, etc.) embodied in traded commodities. Trade refers to the spatial and temporal redistribution of commodities, and is typically measured annually between countries. However, commodity exchange networks occur at many different scales, though data availability at finer temporal and spatial resolution is rare. Exchange networks may prove an important adaptation measure to cope with future climate and economic shocks. As such, it is essential to understand how commodity exchange networks scale, so that we can understand opportunities and roadblocks to the spatial and temporal redistribution of goods and services. To this end, we present an empirical analysis of trade systems across three spatial scales: global, sub-national in the United States, and county-scale in the United States. We compare and contrast the network properties, the self-sufficiency ratio, and performance of the gravity model of trade for these three exchange systems.

  12. A Comparison of Two Task Rating Scales of Physical Demand.

    DTIC Science & Technology

    1986-08-01

    Research Report 3/86 0 r=CG RISON OF TwO TASK RATING SCALES CF PHYSICAL CEMAND by Major Robert S. Collyer Commonwealth of Autralia ! August 19g86 This...analysis system . because the wording of the anchor points for the PSE scale made reference to specific weights and heights, it was judged to be an...Air Force Occupational ’,easurement Center. Lindquist, E. F. (1953). Design and analysis of experiments in psychology and education . Boston, l,1A

  13. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  14. Baseflow physical characteristics differ at multiple spatial scales in stream networks across diverse biomes

    Treesearch

    Janine Ruegg; Walter K. Dodds; Melinda D. Daniels; Ken R. Sheehan; Christina L. Baker; William B. Bowden; Kaitlin J. Farrell; Michael B. Flinn; Tamara K. Harms; Jeremy B. Jones; Lauren E. Koenig; John S. Kominoski; William H. McDowell; Samuel P. Parker; Amy D. Rosemond; Matt T. Trentman; Matt Whiles; Wilfred M. Wollheim

    2016-01-01

    ContextSpatial scaling of ecological processes is facilitated by quantifying underlying habitat attributes. Physical and ecological patterns are often measured at disparate spatial scales limiting our ability to quantify ecological processes at broader spatial scales using physical attributes.

  15. Extreme Scale Computing for First-Principles Plasma Physics Research

    SciTech Connect

    Chang, Choogn-Seock

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  16. Validating the Physical Activity and Leisure Motivation Scale (PALMS).

    PubMed

    Molanorouzi, Keyvan; Khoo, Selina; Morris, Tony

    2014-09-03

    Although there is abundant evidence to recommend a physically active lifestyle, adult physical activity (PA) levels have declined over the past two decades. In order to understand why this happens, numerous studies have been conducted to uncover the reasons for people's participation in PA. Often, the measures used were not broad enough to reflect all the reasons for participation in PA. The Physical Activity and Leisure Motivation Scale (PALMS) was created to be a comprehensive tool measuring motives for participating in PA. This 40-item scale related to participation in sport and PA is designed for adolescents and adults. Five items constitute each of the eight sub-scales (mastery, enjoyment, psychological condition, physical condition, appearance, other's expectations, affiliation, competition/ego) reflecting motives for participation in PA that can be categorized as features of intrinsic and extrinsic motivation based on self-determination theory. The aim of the current study was to validate the PALMS in the cultural context of Malaysia, including to assess how well the PALMS captures the same information as the Recreational Exercise Motivation Measure (REMM). To do so, 502 Malaysian volunteer participants, aged 18 to 67 years (mean ± SD; 31.55 ± 11.87 years), from a variety of PA categories, including individual sports, team sports, martial arts and exercise, completed the study. The hypothesized 8-factor model demonstrated a good fit with the data (CMIN/DF = 2.820, NFI = 0.90, CFI = 0.91, RMSEA = 0.06). Cronbach's alpha coefficient (α = 0.79) indicated good internal consistency for the overall measure. Internal consistency for the PALMS subscales was sound, ranging from 0.78 to 0.82. The correlations between each PALMS sub-scale and the corresponding sub-scale on the validated REMM (the 73-item questionnaire from which the PALMS was developed) were also high and varied from 0.79 to 0.95. Also, test-retest reliability for the questionnaire sub-scales was

  17. Aspects of New Physics at the TeV Scale

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin

    The Standard Model, despite its great success, is generally considered as an incomplete theory and various reasons suggest that new physics may appear around the TeV scale. The LHC discovered a Standard Model like Higgs boson at around 126 GeV, but has not observed any evidence of new physics yet. As the tension is increasing between the expectation of the TeV scale new physics and the lack of experimental discovery, it is helpful to consider new model building directions and new search strategies. In this thesis, we present a few studies on different aspects of new physics at the TeV scale. First, we present a composite Higgs model based on the top seesaw mechanism. We show that with an approximate U(3)L chiral symmetry, associated with a vector-like quark and the (t, b)L doublet, the lightest CP-even neutral state of the composite scalar sector is lighter than the top quark and can be identified as the newly discovered Higgs boson. Second, we present two studies of search strategies of the stop particle, with the first one focusing on the semi-leptonic channel and the second one focusing on the di-leptonic channel with compressed signal spectra. In both cases, we introduce new kinematic variables which can substantially improve the signal significance. We also present a mass measurement method at hadron colliders for a decay chain of two steps, which ends with a missing particle. We show that it is possible to extract all three invisible particle masses with reasonable accuracies, which was previously thought to be impossible. With the upgrade of the LHC and the possibilities of new larger colliders in the future, the search for new physics will continue on, and our studies can help.

  18. Probing new physics scales from Higgs and electroweak observables at e + e - Higgs factory

    NASA Astrophysics Data System (ADS)

    Ge, Shao-Feng; He, Hong-Jian; Xiao, Rui-Qing

    2016-10-01

    New physics beyond the standard model (SM) can be model-independently formulated via dimension-6 effective operators, whose coefficients (cutoffs) characterize the scales of new physics. We study the probe of new physics scales from the electroweak precision observables (EWPO) and the Higgs observables (HO) at the future e + e - Higgs factory (such as CEPC). To optimize constraints of new physics from all available observables, we establish a scheme-independent approach. With this formulation, we treat the SM electroweak parameters and the coefficients of dimension-6 operators on equal footing, which can be fitted simultaneously by the same χ 2 function. As deviations from the SM are generally small, we can expand the new physics parameters up to linear order and perform an analytical χ 2 fit to derive the potential reach of the new physics scales. We find that the HO from both Higgs produnction and decay rates can probe the new physics scales up to 10 TeV (and to 44 TeV for the case of gluon-involved operator O_g ), and the new physics scales of Yukawa-type operators can be probed by the precision Higgs coupling measurements up to (13 - 25) TeV. Further including the EWPO can push the limit up to 35 TeV. From this prospect, we demonstrate that the EWPO measured in the early phase of a Higgs factory can be as important as the Higgs observables. These indirect probes of new physics scales at the Higgs factory can mainly cover the energy range to be directly explored by the next generation hadron colliders of pp (50 -100 TeV), such as the SPPC and FCC-hh.

  19. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  20. The fine scale physical attributes of coarse woody debris and effects of surrounding stand structure on its utilization by ants (Hymenoptera: Formicidae) in British Columbia, Canada

    Treesearch

    Robert J. Higgins; B. Staffan Lindgren

    2006-01-01

    Coarse woody debris (CWD) is increasingly recognized in Canada for its contribution toward biodiversity. It is a particularly vital resource in subboreal forests as nesting habitat for ants (Formicidae). Wood, which has low specific heat, provides a thermally favorable environment in this cool climate. Ants contribute to the physical breakdown of wood, and colonies are...

  1. New physics at the weak scale: axigluon models, scale invariance and naturalness, and interacting dark matter

    NASA Astrophysics Data System (ADS)

    Tavares, Gustavo Marques

    The Standard Model of particle physics describes all known elementary particles and their interactions. Despite its great experimental success, we know that the Standard Model is not a complete description of Nature and therefore new phenomena should be observed at higher energies. In the coming years the Large Hadron Collider will test the Standard Model by colliding protons with center of mass energies of up to 14 TeV providing some of the most stringent tests on the Standard Model. Experimental searches for Dark Matter provide a complementary program to test physics at the weak scale. In the near future new experimental data coming from direct detection experiments, and from satellites and telescopes will drastically improve our sensitivity to weak scale dark matter. This could lead to the first direct observation of dark matter, and thus of physics beyond the Standard Model. In this thesis I propose different extensions of the Standard Model and discuss their experimental consequences. I first discuss models for Axigluons, which are spin one particles in the adjoint representation of the SU(3) color gauge group. These models were motivated by the measurement of higher than predicted forward-backward asymmetry in top quark pair production at the Tevatron. I study different scenarios for Axigluon models that can explain the Tevatron result and explore their signatures at the Large Hadron Collider. Second I discuss the implications of ultraviolet scale invariance for the Standard Model, which has been advocated as a solution to the hierarchy problem. I show that in order to solve the hierarchy problem with scale invariance, new physics is required not far from the weak scale. In the last part of this thesis I propose a new model for dark matter, in which dark matter is charged under a hidden non-Abelian gauge group. This leads to modifications in the sensitivity of the usual experimental searches for dark matter in addition to distinct signatures in the Cosmic

  2. Comparing the Hydrologic and Watershed Processes between a Full Scale Stochastic Model Versus a Scaled Physical Model of Bell Canyon

    NASA Astrophysics Data System (ADS)

    Hernandez, K. F.; Shah-Fairbank, S.

    2016-12-01

    The San Dimas Experimental Forest has been designated as a research area by the United States Forest Service for use as a hydrologic testing facility since 1933 to investigate watershed hydrology of the 27 square mile land. Incorporation of a computer model provides validity to the testing of the physical model. This study focuses on San Dimas Experimental Forest's Bell Canyon, one of the triad of watersheds contained within the Big Dalton watershed of the San Dimas Experimental Forest. A scaled physical model was constructed of Bell Canyon to highlight watershed characteristics and each's effect on runoff. The physical model offers a comprehensive visualization of a natural watershed and can vary the characteristics of rainfall intensity, slope, and roughness through interchangeable parts and adjustments to the system. The scaled physical model is validated and calibrated through a HEC-HMS model to assure similitude of the system. Preliminary results of the physical model suggest that a 50-year storm event can be represented by a peak discharge of 2.2 X 10-3 cfs. When comparing the results to HEC-HMS, this equates to a flow relationship of approximately 1:160,000, which can be used to model other return periods. The completion of the Bell Canyon physical model can be used for educational instruction in the classroom, outreach in the community, and further research using the model as an accurate representation of the watershed present in the San Dimas Experimental Forest.

  3. Relativistic Fluid Dynamics: Physics for Many Different Scales

    NASA Astrophysics Data System (ADS)

    Andersson, Nils; Comer, Gregory L.

    2007-12-01

    The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple) fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion) interesting and relevant applications of the general theory.

  4. Modeling Physical Processes at Galactic Scales and Above

    SciTech Connect

    Gnedin, Nickolay Y.

    2014-12-16

    What should these lectures be? The subject is so broad that many books can be written about it. I decided to prepare these lectures as if I were teaching my own graduate student. Given my research interests, I selected what the student would need to know to be able to discuss science with me and to work on joint research projects. So, the story presented below is both personal and incomplete, but it does cover several subjects that are poorly represented in the existing textbooks (if at all). Some of topics I focus on below are closely connected, others are disjoint, some are just side detours on specific technical questions. There is an overlapping theme, however. Our goal is to follow the cosmic gas from large scales, low densities, (relatively) simple physics to progressively smaller scales, higher densities, closer relation to galaxies, and more complex and uncertain physics. We follow a "yellow brick road" from the gas well beyond any galaxy confines to the actual sites of star formation and stellar feedback. On the way we will stop at some places for a tour and run without looking back through some others. So, the road will be uneven. The organization of the material is as follows: physics of the intergalactic medium, from intergalactic medium to circumgalactic medium, interstellar medium: gas in galaxies, star formation, and stellar feedback.

  5. Probing colloidal physics on the nanometer length scale

    NASA Astrophysics Data System (ADS)

    Sainis, Sunil; Vollmer, Frank

    2009-03-01

    The sharp spectral features associated with ultra-high Q microresonator modes are sensitive to changes in the local environment and surface of the resonator [1]. Microresonator cavities have been used to detect the binding of single molecules [2] and viruses in an aqueous medium. We report on recent experiments that use microresonators to access colloidal physics on the nanometer length scale. We examine shifts in the resonator as a function of bulk ionic strengths and surface adsorption in a colloid. [3pt] [1] S. Arnold et al., Nature Methods 5, 591 - 596 (2008)[0pt] [2] A. M. Armani, et al. Science 317, 783-787 (2007).

  6. Role of the subgrid-scale physical processes in supermodelling

    NASA Astrophysics Data System (ADS)

    Yano, J.

    2011-12-01

    The basic ides of supermodelling is in overcoming deficits of existing models by combining them together to improve our ability of climate simulations and prediction. However, in order to exploit this method better, we have to pay special attention to the common defects of the current climate models. Representation of subgrid-scale physical processes is such a particular example. . The present talk presents the author's point of view on representation of subgrid-scale processes in the above general question in mind. The focus of the talk will be on interplay between traditional parameterizations and recently proposed superparameterization (also often called "multiscale modelling"), but it also covers the issues of downscaling as well as possibilities of introducing mesh-refinement approaches into the context of subgrid-scale modelling. The author's main perspective is that the subgrid-scale parameterization should not be considered as a distinguished approach in contrast to explicit (more direct) modelling, such as superparameterization, but a hierarchy of modelling approaches should be constructed by taking various intermediate approaches. The mass-flux convection parameterization is taken as an example in order to make this point. It will be shown that at the most basic level, the mass-flux parameterization is equivalent to a finite-volume numerical approach, though various additional approximations and hypotheses must be introduced in order to arrive at a classical mass-flux parameterization. At the mathematical level, the multiresolution analysis based on wavelet provides a basic source of inspirations for developing this general perspective. From this perspective, the issue of parameterization is considered as "compression" of a full explicit model in the same sense as the wavelet can be used for the image compression. This perspective also leads to a concept of compression of physics. Compression of cloud microphysics would be the most urgent issue

  7. Relation of Physical Form to Spatial Knowledge in Large-Scale Virtual Environments

    ERIC Educational Resources Information Center

    Cubukcu, Ebru; Nasar, Jack L.

    2005-01-01

    This study used a desktop virtual environmental simulation of 18 large-scale residential environments to test effects of plan layout complexity, physical differentiation, and gender on acquired spatial knowledge. One hundred sixty people (95 males and 65 females) were assigned at random to the different conditions. After a learning phase,…

  8. Soil physical properties of agricultural systems in a large-scale study

    USDA-ARS?s Scientific Manuscript database

    A large-scale field study was performed to determine the effects of agricultural management systems on soil physical properties, including their spatial and temporal variations. Replicates were established in 1998 at the Center for Environmental Farming Systems, Goldsboro, North Carolina; replicates...

  9. Responder definition of the Multiple Sclerosis Impact Scale physical impact subscale for patients with physical worsening

    PubMed Central

    Wyrwich, Kathleen W; Guo, Shien; Medori, Rossella; Altincatal, Arman; Wagner, Linda; Elkins, Jacob

    2014-01-01

    Background: The 29-item Multiple Sclerosis Impact Scale (MSIS-29) was developed to examine the impact of multiple sclerosis (MS) on physical and psychological functioning from a patient’s perspective. Objective: To determine the responder definition (RD) of the MSIS-29 physical impact subscale (PHYS) in a group of patients with relapsing–remitting MS (RRMS) participating in a clinical trial. Methods: Data from the SELECT trial comparing daclizumab high-yield process with placebo in patients with RRMS were used. Physical function was evaluated in SELECT using three patient-reported outcomes measures and the Expanded Disability Status Scale (EDSS). Anchor- and distribution-based methods were used to identify an RD for the MSIS-29. Results: Results across the anchor-based approach suggested MSIS-29 PHYS RD values of 6.91 (mean), 7.14 (median) and 7.50 (mode). Distribution-based RD estimates ranged from 6.24 to 10.40. An RD of 7.50 was selected as the most appropriate threshold for physical worsening based on corresponding changes in the EDSS (primary anchor of interest). Conclusion: These findings indicate that a ≥7.50 point worsening on the MSIS-29 PHYS is a reasonable and practical threshold for identifying patients with RRMS who have experienced a clinically significant change in the physical impact of MS. PMID:24740371

  10. Responder definition of the Multiple Sclerosis Impact Scale physical impact subscale for patients with physical worsening.

    PubMed

    Phillips, Glenn A; Wyrwich, Kathleen W; Guo, Shien; Medori, Rossella; Altincatal, Arman; Wagner, Linda; Elkins, Jacob

    2014-11-01

    The 29-item Multiple Sclerosis Impact Scale (MSIS-29) was developed to examine the impact of multiple sclerosis (MS) on physical and psychological functioning from a patient's perspective. To determine the responder definition (RD) of the MSIS-29 physical impact subscale (PHYS) in a group of patients with relapsing-remitting MS (RRMS) participating in a clinical trial. Data from the SELECT trial comparing daclizumab high-yield process with placebo in patients with RRMS were used. Physical function was evaluated in SELECT using three patient-reported outcomes measures and the Expanded Disability Status Scale (EDSS). Anchor- and distribution-based methods were used to identify an RD for the MSIS-29. Results across the anchor-based approach suggested MSIS-29 PHYS RD values of 6.91 (mean), 7.14 (median) and 7.50 (mode). Distribution-based RD estimates ranged from 6.24 to 10.40. An RD of 7.50 was selected as the most appropriate threshold for physical worsening based on corresponding changes in the EDSS (primary anchor of interest). These findings indicate that a ≥7.50 point worsening on the MSIS-29 PHYS is a reasonable and practical threshold for identifying patients with RRMS who have experienced a clinically significant change in the physical impact of MS. © The Author(s), 2014.

  11. Probing the scale of New Physics at the LHC: The example of Higgs data

    NASA Astrophysics Data System (ADS)

    Fichet, Sylvain

    2014-07-01

    We present a technique to determine the scale of New Physics (NP) compatible with any set of data, relying on well-defined credibility intervals. Our approach relies on the statistical view of the effective field theory capturing New Physics at low energy. We introduce formally the notion of testable NP and show that it ensures integrability of the posterior distribution. We apply our method to the Standard Model Higgs sector in light of recent LHC data, considering two generic scenarios. In the scenario of democratic higher-dimensional operators generated at one-loop, we find the testable NP scale to lie within [10,260] TeV at 95% Bayesian credibility level. In the scenario of loop-suppressed field strength-Higgs operators, the testable NP scale is within [28,1200] TeV at 95% Bayesian credibility level. More specific UV models are necessary to allow lower values of the NP scale.

  12. Lattice physics capabilities of the SCALE code system using TRITON

    SciTech Connect

    DeHart, M. D.

    2006-07-01

    This paper describes ongoing calculations used to validate the TRITON depletion module in SCALE for light water reactor (LWR) fuel lattices. TRITON has been developed to provide improved resolution for lattice physics mixed-oxide fuel assemblies as programs to burn such fuel in the United States begin to come online. Results are provided for coupled TRITON/PARCS analyses of an LWR core in which TRITON was employed for generation of appropriately weighted few-group nodal cross-sectional sets for use in core-level calculations using PARCS. Additional results are provided for code-to-code comparisons for TRITON and a suite of other depletion packages in the modeling of a conceptual next-generation boiling water reactor fuel assembly design. Results indicate that the set of SCALE functional modules used within TRITON provide an accurate means for lattice physics calculations. Because the transport solution within TRITON provides a generalized-geometry capability, this capability is extensible to a wide variety of non-traditional and advanced fuel assembly designs. (authors)

  13. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  14. Numerical anomalies mimicking physical effects

    SciTech Connect

    Menikoff, R.

    1995-09-01

    Numerical simulations of flows with shock waves typically use finite-difference shock-capturing algorithms. These algorithms give a shock a numerical width in order to generate the entropy increase that must occur across a shock wave. For algorithms in conservation form, steady-state shock waves are insensitive to the numerical dissipation because of the Hugoniot jump conditions. However, localized numerical errors occur when shock waves interact. Examples are the ``excess wall heating`` in the Noh problem (shock reflected from rigid wall), errors when a shock impacts a material interface or an abrupt change in mesh spacing, and the start-up error from initializing a shock as a discontinuity. This class of anomalies can be explained by the entropy generation that occurs in the transient flow when a shock profile is formed or changed. The entropy error is localized spatially but under mesh refinement does not decrease in magnitude. Similar effects have been observed in shock tube experiments with partly dispersed shock waves. In this case, the shock has a physical width due to a relaxation process. An entropy anomaly from a transient shock interaction is inherent in the structure of the conservation equations for fluid flow. The anomaly can be expected to occur whenever heat conduction can be neglected and a shock wave has a non-zero width, whether the width is physical or numerical. Thus, the numerical anomaly from an artificial shock width mimics a real physical effect.

  15. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2008-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. The following is presented in this report: (1) a brief review of the GCE model and its applications on the impact of aerosols on deep precipitation processes, (2) the Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) a discussion on the Goddard WRF version (its developments and applications).

  16. Scaling, scattering, and blackbody radiation in classical physics

    NASA Astrophysics Data System (ADS)

    Boyer, Timothy H.

    2017-07-01

    Here we discuss blackbody radiation within the context of classical theory. We note that nonrelativistic classical mechanics and relativistic classical electrodynamics have contrasting scaling symmetries which influence the scattering of radiation. Also, nonrelativistic mechanical systems can be accurately combined with relativistic electromagnetic radiation only provided the nonrelativistic mechanical systems are the low-velocity limits of fully relativistic systems. Application of the no-interaction theorem for relativistic systems limits the scattering mechanical systems for thermal radiation to relativistic classical electrodynamic systems, which involve the Coulomb potential. Whereas the naive use of nonrelativistic scatterers or nonrelativistic classical statistical mechanics leads to the Rayleigh-Jeans spectrum, the use of fully relativistic scatterers leads to the Planck spectrum for blackbody radiation within classical physics.

  17. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems. In addition, high - resolution (spatial. 2km, and temporal, I minute) visualization showing the model results will be presented.

  18. Hospital for Special Surgery Pediatric Functional Activity Brief Scale predicts physical fitness testing performance.

    PubMed

    Fabricant, Peter D; Robles, Alex; McLaren, Son H; Marx, Robert G; Widmann, Roger F; Green, Daniel W

    2014-05-01

    An eight-item activity scale was recently developed and validated for use as a prognostic tool in clinical research in children and adolescents. It is unclear, however, if this brief questionnaire is predictive of quantitative metrics of physical activity and fitness. The purposes of this study were to prospectively administer the Hospital for Special Surgery Pediatric Functional Activity Brief Scale to a large cohort of healthy adolescents to determine (1) if the activity scale exhibits any floor or ceiling effects; (2) if scores on the activity scale are correlated with standardized physical fitness metrics; and if so, (3) to determine the discrimination ability of the activity scale to differentiate between adolescents with healthy or unhealthy levels of aerobic capacity and calculate an appropriate cutoff value for its use as a screening tool. One hundred eighty-two adolescents (mean, 15.3 years old) prospectively completed the activity scale and four standardized metrics of physical fitness: pushups, sit-ups, shuttle run exercise (Progressive Aerobic Cardiovascular Endurance Run), and calculated VO2-max. Age, sex, and body mass index were also recorded. Pearson correlations, regression analyses, and receiver operating characteristic analyses were used to evaluate activity scale performance. The activity scale did not exhibit any floor or ceiling effects. Pushups (ρ = 0.28), sit-ups (ρ = 0.23), performance on the Progressive Aerobic Cardiovascular Endurance Run (ρ = 0.44), and VO2-max (ρ = 0.43) were all positively correlated with the activity scale score (Pearson correlations, all p < 0.001). Receiver operating characteristic analysis revealed that those with an activity score of ≤ 14 were at higher risk of having low levels of aerobic capacity. In the current study, activity score was free of floor and ceiling effects and predictive of all four physical fitness metrics. An activity score of ≤ 14 was associated with at-risk aerobic capacity previously

  19. Physical Modeling of Scaled Water Distribution System Networks.

    SciTech Connect

    O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  20. The Physical Character of Small-Scale Interstellar Structures

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the multiple interstellar absorption lines of H2 toward the members of 3 resolvable binary/multiple star systems to explore the physical conditions in known interstellar small-scale structures. Each of the selected systems was meant to address a different aspect of the models for the origin of these structures: 1) The stars HD 32039/40 were meant to probe a temporally varying component which probed a cloud with an inferred size of tens to a few hundreds of AU. The goal was to see if there was any significant H2 associated with this component; 2) The star HD 36408B and its companion HD 36408A (observed as part of FUSE GTO program P119) show significant spatial and temporal (proper motion induced) Na I column variations in a strong, relatively isolated component, as well as a relatively simple component structure. The key goal here was to identify any differences in H2 or C I excitation between the sightlines, and to measure the physical conditions (primarily density and temperature) in the temporally varying component; 3) The stars HD 206267C and HD 206267D are highly reddened sightlines which showed significant variations in K I and molecular absorption lines in multiple velocity components. Coupled with FUSE GTO observations of HD 206267A (program P116), the goal was to study the variations in H2 along sightlines which are significantly more distant, with larger separations, and with greater extinctions than the other selected binary systems.

  1. The Physical Origin of Galaxy Morphologies and Scaling Laws

    NASA Technical Reports Server (NTRS)

    Steinmetz, Matthias; Navarro, Julio F.

    2002-01-01

    We propose a numerical study designed to interpret the origin and evolution of galaxy properties revealed by space- and ground-based imaging and spectroscopical surveys. Our aim is to unravel the physical processes responsible for the development of different galaxy morphologies and for the establishment of scaling laws such as the Tully-Fisher relation for spirals and the Fundamental Plane of ellipticals. In particular, we plan to address the following major topics: (1) The morphology and observability of protogalaxies, and in particular the relationship between primordial galaxies and the z approximately 3 'Ly-break' systems identified in the Hubble Deep Field and in ground-based searches; (2) The origin of the disk and spheroidal components in galaxies, the timing and mode of their assembly, the corresponding evolution in galaxy morphologies and its sensitivity to cosmological parameters; (3) The origin and redshift evolution of the scaling laws that link the mass, luminosity size, stellar content, and metal abundances of galaxies of different morphological types. This investigation will use state-of-the-art N-body/gasdynamical codes to provide a spatially resolved description of the galaxy formation process in hierarchically clustering universes. Coupled with population synthesis techniques. our models can be used to provide synthetic 'observations' that can be compared directly with observations of galaxies both nearby and at cosmologically significant distances. This study will thus provide insight into the nature of protogalaxies and into the formation process of galaxies like our own Milky Way. It will also help us to assess the cosmological significance of these observations within the context of hierarchical theories of galaxy formation and will supply a theoretical context within which current and future observations can be interpreted.

  2. The Development of a Student's Behaviors' Self-Evaluation Scale (SBSS) in Multicultural Physical Education Class Settings

    ERIC Educational Resources Information Center

    Kellis I.; Vernadakis N.; Albanidis E.; Derri V.; Kourtesses T.

    2010-01-01

    The purpose of this study is to develop and validate the structural validity and reliability of a student's behaviors' self-evaluation scale (SBSS) in the physical education class. The SBSS was created in order to evaluate the effect of a physical education program in the context of the multicultural composition of the student population in the…

  3. Scale effects in gas nano flows

    NASA Astrophysics Data System (ADS)

    Barisik, Murat; Beskok, Ali

    2014-05-01

    Most previous studies on gas transport in nano-scale confinements assume dynamic similarity with rarefied gas flows, and employ kinetic theory based models. This approach is incomplete, since it neglects the van der Waals forces imposed on gas molecules by the surfaces. Using three-dimensional molecular dynamics (MD) simulations of force driven gas flows, we show the significance of wall force field in nano-scale confinements by defining a new dimensionless parameter (B) as the ratio of the wall force-penetration length to the channel height. Investigation of gas transport in different nano-channels at various Knudsen numbers show the importance of wall force field for finite B values, where the dynamic similarity between the rarefied and nano-scale gas flows break down. Comparison of MD results employing molecularly structured three-dimensional walls versus reflection of gas molecules from a two-dimensional planar surface with Maxwell distribution show that the nano-confinement effects cannot be resolved by the latter approach, frequently used in kinetic theory calculations. Molecularly structured walls determine the bulk flow physics by setting a proper tangential momentum accommodation coefficient, and they also determine the transport in the near wall region. Gas nano-flows with finite B exhibit significant differences in the local density and velocity profiles, affecting the mass flow rate and the formation of Knudsen's minimum in nano-channels.

  4. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the ph ysical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  5. The Assessment of Denial and Physical Complaints: The Validity of the Hy Scale and Associated MMPI Signs.

    ERIC Educational Resources Information Center

    McGrath, Robert E.; O'Malley, W. Brian

    1986-01-01

    Using samples of psychiatric, medical, and chronic pain patients, the effectiveness of the Hysteria scale and of various combinations of Minnesota Multiphasic Personality Inventory scales as predictors of the simultaneous occurrence of two characteristics was evaluated: denial of psychological problems and admission of physical problems. The value…

  6. Effects of gauge theory based number scaling on geometry

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    2013-05-01

    Effects of local availability of mathematics (LAM) and space time dependent number scaling on physics and, especially, geometry are described. LAM assumes separate mathematical systems as structures at each space time point. Extension of gauge theories to include freedom of choice of scaling for number structures, and other structures based on numbers, results in a space time dependent scaling factor based on a scalar boson field. Scaling has no effect on comparison of experimental results with one another or with theory computations. With LAM all theory expressions are elements of mathematics at some reference point. Changing the reference point introduces (external) scaling. Theory expressions with integrals or derivatives over space or time include scaling factors (internal scaling) that cannot be removed by reference point change. Line elements and path lengths, as integrals over space and/or time, show the effect of scaling on geometry. In one example, the scaling factor goes to 0 as the time goes to 0, the big bang time. All path lengths, and values of physical quantities, are crushed to 0 as t goes to 0. Other examples have spherically symmetric scaling factors about some point, x. In one type, a black scaling hole, the scaling factor goes to infinity as the distance, d, between any point y and x goes to 0. For scaling white holes, the scaling factor goes to 0 as d goes to 0. For black scaling holes, path lengths from a reference point, z, to y become infinite as y approaches x. For white holes, path lengths approach a value much less than the unscaled distance from z to x.

  7. Scheme-Independent Predictions in QCD: Commensurate Scale Relations and Physical Renormalization Schemes

    SciTech Connect

    Brodsky, Stanley J.

    1998-12-04

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scale, such as the ''generalized Crewther relation'', which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e{sup +}e{sup {minus}} annihilation cross section. All non-conformal effects are absorbed by fixing the ratio of the respective momentum transfer and energy scales. In the case of fixed-point theories, commensurate scale relations relate both the ratio of couplings and the ratio of scales as the fixed point is approached. The relations between the observables are independent of the choice of intermediate renormalization scheme or other theoretical conventions. Commensurate scale relations also provide an extension of the standard minimal subtraction scheme, which is analytic in the quark masses, has non-ambiguous scale-setting properties, and inherits the physical properties of the effective charge {alpha}{sub V}(Q{sup 2}) defined from the heavy quark potential. The application of the analytic scheme to the calculation of quark-mass-dependent QCD corrections to the Z width is also reviewed.

  8. Optimizing rating scale category effectiveness.

    PubMed

    Linacre, John M

    2002-01-01

    Rating scales are employed as a means of extracting more information out of an item than would be obtained from a mere "yes/no", "right/wrong" or other dichotomy. But does this additional information increase measurement accuracy and precision? Eight guidelines are suggested to aid the analyst in optimizing the manner in which rating scales categories cooperate in order to improve the utility of the resultant measures. Though these guidelines are presented within the context of Rasch analysis, they reflect aspects of rating scale functioning which impact all methods of analysis. The guidelines feature rating-scale-based data such as category frequency, ordering, rating-to-measure inferential coherence, and the quality of the scale from measurement and statistical perspectives. The manner in which the guidelines prompt recategorization or reconceptualization of the rating scale is indicated. Utilization of the guidelines is illustrated through their application to two published data sets.

  9. Scaling effect and its impact on wavelength-scale microlenses

    NASA Astrophysics Data System (ADS)

    Kim, Myun-Sik; Scharf, Toralf; Herzig, Hans Peter; Voelkel, Reinhard

    2017-02-01

    We revisit the scaling laws in micro-optical systems to highlight new phenomena arising beyond a conventional optical regime, especially when the size of the system approaches to the operational wavelength. Our goal is to visualize the impact of the scaling effect in the micrometer-sized domain. First, we will show where the conventional optical regime fades away and unexpected responses arise. We will show this by using a ball-lens as an example. Second, we discuss the scaling effect in the Fresnel number of lens systems. Moving toward wavelength-scale microlenses, a specific value of Fresnel numbers leads to a giant focal shift with strong focal power. Our study will give comprehensive insights into the birth of unanticipated phenomena in miniaturized optical systems.

  10. Scale effect on overland flow connectivity at the plot scale

    NASA Astrophysics Data System (ADS)

    Peñuela, A.; Javaux, M.; Bielders, C. L.

    2012-06-01

    A major challenge in present-day hydrological sciences is to enhance the performance of existing distributed hydrological models through a better description of subgrid processes, in particular the subgrid connectivity of flow paths. The relative surface connection function (RSC) was proposed by Antoine et al. (2009) as a functional indicator of runoff flow connectivity. For a given area, it expresses the percentage of the surface connected to the outflow boundary (C) as a function of the degree of filling of the depression storage. This function explicitly integrates the flow network at the soil surface and hence provides essential information regarding the flow paths' connectivity. It has been shown that this function could help improve the modeling of the hydrogram at the square meter scale, yet it is unknown how the scale affects the RSC function, and whether and how it can be extrapolated to other scales. The main objective of this research is to study the scale effect on overland flow connectivity (RSC function). For this purpose, digital elevation data of a real field (9 × 3 m) and three synthetic fields (6 × 6 m) with contrasting hydrological responses were used, and the RSC function was calculated at different scales by changing the length (l) or width (w) of the field. Border effects, at different extents depending on the microtopography, were observed for the smaller scales, when decreasing l or w, which resulted in a strong decrease or increase of the maximum depression storage, respectively. There was no scale effect on the RSC function when changing w. On the contrary, a remarkable scale effect was observed in the RSC function when changing l. In general, for a given degree of filling of the depression storage, C decreased as l increased. This change in C was inversely proportional to the change in l. This observation applied only up to approx. 50-70% (depending on the hydrological response of the field) of filling of depression storage, after which

  11. Scale effect on overland flow connectivity at the plot scale

    NASA Astrophysics Data System (ADS)

    Peñuela, A.; Javaux, M.; Bielders, C. L.

    2013-01-01

    A major challenge in present-day hydrological sciences is to enhance the performance of existing distributed hydrological models through a better description of subgrid processes, in particular the subgrid connectivity of flow paths. The Relative Surface Connection (RSC) function was proposed by Antoine et al. (2009) as a functional indicator of runoff flow connectivity. For a given area, it expresses the percentage of the surface connected to the outflow boundary (C) as a function of the degree of filling of the depression storage. This function explicitly integrates the flow network at the soil surface and hence provides essential information regarding the flow paths' connectivity. It has been shown that this function could help improve the modeling of the hydrograph at the square meter scale, yet it is unknown how the scale affects the RSC function, and whether and how it can be extrapolated to other scales. The main objective of this research is to study the scale effect on overland flow connectivity (RSC function). For this purpose, digital elevation data of a real field (9 × 3 m) and three synthetic fields (6 × 6 m) with contrasting hydrological responses were used, and the RSC function was calculated at different scales by changing the length (l) or width (w) of the field. To different extents depending on the microtopography, border effects were observed for the smaller scales when decreasing l or w, which resulted in a strong decrease or increase of the maximum depression storage, respectively. There was no scale effect on the RSC function when changing w, but a remarkable scale effect was observed in the RSC function when changing l. In general, for a given degree of filling of the depression storage, C decreased as l increased, the change in C being inversely proportional to the change in l. However, this observation applied only up to approx. 50-70% (depending on the hydrological response of the field) of filling of depression storage, after which no

  12. Scale effect on overland flow connectivity, at the interill scale

    NASA Astrophysics Data System (ADS)

    Penuela Fernandez, A.; Bielders, C.; Javaux, M.

    2012-04-01

    The relative surface connection function (RSC) was proposed by Antoine et al. (2009) as a functional indicator of runoff flow connectivity. For a given area, it expresses the percentage of the surface connected to the outlet (C) as a function of the degree of filling of the depression storage. This function explicitly integrates the flow network at the soil surface and hence provides essential information regarding the flow paths' connectivity. It has been shown that this function could help improve the modeling of the hydrogram at the square meter scale, yet it is unknown how the scale affects the RSC function, and whether and how it can be extrapolated to other scales. The main objective of this research is to study the scale effect on overland flow connectivity (RSC function). For this purpose, digital elevation data of a real field (9 x 3 m) and three synthetic fields (6 x 6 m) with contrasting hydrological responses was used, and the RSC function was calculated at different scales by changing the length (L) or width (l) of the field. Border effects were observed for the smaller scales. In most of cases, for L or l smaller than 750mm, increasing L or l, resulted in a strong increase or decrease of the maximum depression storage, respectively. There was no scale effect on the RSC function when changing l. On the contrary, a remarkable scale effect was observed in the RSC function when changing L. In general, for a given degree of filling of the depression storage, C decreased as L increased. This change in C was inversely proportional to the change in L. This observation applied only up to approx. 50-70% (depending on the hydrological response of the field) of filling of depression storage, after which no correlation was found between C and L. The results of this study help identify the critical scale to study overland flow connectivity. At scales larger than the critical scale, the RSC function showed a great potential to be extrapolated to other scales.

  13. Quality physical education: a commentary on effective physical education teaching.

    PubMed

    Dyson, Ben

    2014-06-01

    In my commentary in response to the 3 articles (McKenzie & Lounsbery, 2013; Rink, 2013; Ward, 2013), I focus on 3 areas: (a) content knowledge, (b) a holistic approach to physical education, and (c) policy impact. I use the term quality teaching rather than "teacher effectiveness." Quality teaching is a term with the potential to move our attention beyond a focus merely on issues of effectiveness relating to the achievement of prespecified objectives. I agree with Ward that teacher content knowledge is limited in physical education, and I argue that if the student does not have a connection to or relationship with the content, this will diminish their learning gains. I also argue for a more holistic approach to physical education coming from a broader conception. Physical educators who teach the whole child advocate for a plethora of physical activity, skills, knowledge, and positive attitudes that foster healthy and active playful lifestyles. Play is a valuable educational experience. I also endorse viewing assessment from different perspectives and discuss assessment through a social-critical political lens. The 3 articles also have implications for policy. Physical education is much broader than just physical activity, and we harm the future potential of our field if we adopt a narrow agenda. Looking to the future, I propose that we broaden the kinds of research that we value, support, and appreciate in our field.

  14. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  15. Development of scales to assess children's perceptions of friend and parental influences on physical activity

    PubMed Central

    Jago, Russell; Fox, Kenneth R; Page, Angie S; Brockman, Rowan; Thompson, Janice L

    2009-01-01

    Background Many children do not meet physical activity guidelines. Parents and friends are likely to influence children's physical activity but there is a shortage of measures that are able to capture these influences. Methods A new questionnaire with the following three scales was developed: 1) Parental influence on physical activity; 2) Motives for activity with friends scale; and 3) Physical activity and sedentary group normative values. Content for each scale was informed by qualitative work. One hundred and seventy three, 10-11 year old children completed the new questionnaire twice, one week apart. Participants also wore an accelerometer for 5 days and mean minutes of moderate to vigorous physical activity, light physical activity and sedentary time per day were obtained. Test-retest reliability of the items was calculated and Principal Component analysis of the scales performed and sub-scales produced. Alphas were calculated for main scales and sub-scales. Correlations were calculated among sub-scales. Correlations between each sub-scale and accelerometer physical activity variables were calculated for all participants and stratified by sex. Results The Parental influence scale yielded four factors which accounted for 67.5% of the variance in the items and had good (α > 0.7) internal consistency. The Motives for physical activity scale yielded four factors that accounted for 66.1% and had good internal consistency. The Physical activity norms scale yielded 4 factors that accounted for 67.4% of the variance, with good internal consistency for the sub-scales and alpha of .642 for the overall scale. Associations between the sub-scales and physical activity differed by sex. Although only 6 of the 11 sub-scales were significantly correlated with physical activity there were a number of associations that were positively correlated >0.15 indicating that these factors may contribute to the explanation of children's physical activity. Conclusion Three scales that

  16. Universality and scaling in the N-body sector of Efimov physics

    NASA Astrophysics Data System (ADS)

    Gattobigio, Mario

    2014-05-01

    In this talk I will illustrate the universal behavior that we have found inside the window of Efimov physics for systems made of N <= 6 particles. We have solved the Schrödinger equation of the few-body systems using different potentials, and we have changed the potential parameters in such a way to explore a range of two-body scattering length, a, around the unitary limit, | a | --> ∞ . The ground- (EN0) and excited-state (EN1) energies have been analyzed by means of a recent-developed method which allows to remove finite-range effects. In this way we show that the calculated ground- and excited-state energies collapse over the same universal curve obtained in the zero-range three-body systems. Universality and scaling are reminiscent of critical phenomena; in that framework, the critical point is mapped onto a fixed point of the Renormalization Group (RG) where the system displays scale-invariant (SI) symmetry. A consequence of SI symmetry is the scaling of the observables: for different materials, in the same class of universality, a selected observable can be represented as a function of the control parameter and, provided that both the observable and the control parameter are scaled by some material-dependent factor, all representations collapse onto a single universal curve. Efimov physics is a more recent example of universality, but in this case the physics is governed by a limit cycle on the RG flow with the emergence of a discrete scale invariance (DSI). The scaling of the few-body energies can be interpreted as follow: few-body systems (at least up to N = 6), inside the Efimov window, belong to the same class of universality, which is governed by the limit cycle. These results can be summarized by the following formula ENn/E2 =tan2 ξκNnaB +ΓNn = e- Δ (ξ) / 2s0 cosξ . where the function Δ (ξ) is universal and it is determined by the three-body physics, and s0 = 1 . 00624 . The parameter κNn appears as a scale parameter and the shift ΓnN is a

  17. Full-scale physical model of landslide triggering

    NASA Astrophysics Data System (ADS)

    Lora, M.; Camporese, M.; Salandin, P.

    2013-12-01

    Landslide triggering induced by high-intensity rainfall infiltration in hillslopes is a complex phenomenon that involves hydrological processes operating at different spatio-temporal scales. Empirical methods give rough information about landslide-prone areas, without investigating the theoretical framework needed to achieve an in-depth understanding of the involved physical processes. In this study, we tackle this issue through physical experiments developed in an artificial hillslope realized in the Department of Civil, Environmental and Architectural Engineering of the University of Padua. The structure consists of a reinforced concrete box containing a soil prism with the following maximum dimensions: 3.5 m high, 6 m long, and 2 m wide. In order to analyze and examine the triggered failure state, the experiments are carried out with intensive monitoring of pore water pressure and moisture content response. Subsurface monitoring instruments are installed at several locations and depths to measure downward infiltration and/or a rising groundwater table. We measure the unsaturated soil water pressure as well as positive pore pressures preceding failure in each experiments with six tensiometers. The volumetric water content is determined through six Time Domain Reflectometry probes. Two pressure transducers are located in observation wells to determine the position of the water table in time. Two stream gauges are positioned at the toeslope, for measuring both runoff and subsurface outflow. All data are collected and recorded by an acquisition data system from Campbell Scientific. The artificial hillslope is characterized by well-known and controlled conditions, which are designed to reproduce an ideal set-up susceptible to heavy rainfall landslide. The hydrologic forcing is generated by a rainfall simulator realized with nozzles from Sprying System and. specifically designed to produce a spatially uniform rainfall of intensity ranging from 50 to 150 mm/h. The aim

  18. Cavitation erosion size scale effects

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1984-01-01

    Size scaling in cavitation erosion is a major problem confronting the design engineers of modern high speed machinery. An overview and erosion data analysis presented in this paper indicate that the size scale exponent n in the erosion rate relationship as a function of the size or diameter can vary from 1.7 to 4.9 depending on the type of device used. There is, however, a general agreement as to the values of n if the correlations are made with constant cavitation number.

  19. Physical self-confidence levels of adolescents: Scale reliability and validity.

    PubMed

    McGrane, Bronagh; Belton, SarahJane; Powell, Danielle; Woods, Catherine B; Issartel, Johann

    2016-07-01

    To establish reliability, content validity and concurrent validity of the physical self-confidence scale among adolescents. Demonstrate the use of this scale to assess the physical self-confidence of adolescents across genders at performing specific fundamental movement skills (FMS). Three hundred and seventy six adolescents were involved in this study. A 15 item scale was developed to assess physical self-confidence. The scale was developed based on 15 specific FMS. Experts in the field reviewed the scale to ensure content validity. The reliability of the scale was assessed on a sub-sample of 67 participants who answered the scale 7-days apart. Concurrent validity was assessed on the sub-sample using the Physical Self-Perception Profile (PSPP) as a comparative tool. 376 adolescents completed the physical self-confidence scale (mean age=13.78, SD=±1.21, males n=193) to assess gender differences, and also their levels of physical self-confidence across all skills. An Intra Class Correlation indicated excellent test retest reliability for the scale with an overall r=0.92. Content validity and concurrent validity were also good, with the scale achieving a correlation coefficient of 0.72 with the PSPP. Males possess significantly higher physical self-confidence than females across all items. This scale is the first reliable and valid tool which specifically measures physical self-confidence in performing FMS among adolescents. The results highlight gender differences in physical self-confidence and emphasise the importance of measuring this at skill level as differences were task specific. This scale will facilitate future research examining the relationship between self-confidence, FMS proficiency and physical activity participation. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Validation of psychosocial scales for physical activity in university students

    PubMed Central

    Tassitano, Rafael Miranda; de Farias, José Cazuza; Rech, Cassiano Ricardo; Tenório, Maria Cecília Marinho; Cabral, Poliana Coelho; da Silva, Giselia Alves Pontes

    2015-01-01

    OBJECTIVE Translate the Patient-centered Assessment and Counseling for Exercise questionnaire, adapt it cross-culturally and identify the psychometric properties of the psychosocial scales for physical activity in young university students. METHODS The Patient-centered Assessment and Counseling for Exercise questionnaire is made up of 39 items divided into constructs based on the social cognitive theory and the transtheoretical model. The analyzed constructs were, as follows: behavior change strategy (15 items), decision-making process (10), self-efficacy (6), support from family (4), and support from friends (4). The validation procedures were conceptual, semantic, operational, and functional equivalences, in addition to the equivalence of the items and of measurements. The conceptual, of items and semantic equivalences were performed by a specialized committee. During measurement equivalence, the instrument was applied to 717 university students. Exploratory factor analysis was used to verify the loading of each item, explained variance and internal consistency of the constructs. Reproducibility was measured by means of intraclass correlation coefficient. RESULTS The two translations were equivalent and back-translation was similar to the original version, with few adaptations. The layout, presentation order of the constructs and items from the original version were kept in the same form as the original instrument. The sample size was adequate and was evaluated by the Kaiser-Meyer-Olkin test, with values between 0.72 and 0.91. The correlation matrix of the items presented r < 0.8 (p < 0.05). The factor loadings of the items from all the constructs were satisfactory (> 0.40), varying between 0.43 and 0.80, which explained between 45.4% and 59.0% of the variance. Internal consistency was satisfactory (α ≥ 0.70), with support from friends being 0.70 and 0.92 for self-efficacy. Most items (74.3%) presented values above 0.70 for the reproducibility test

  1. Validation of psychosocial scales for physical activity in university students.

    PubMed

    Tassitano, Rafael Miranda; de Farias Júnior, José Cazuza; Rech, Cassiano Ricardo; Tenório, Maria Cecília Marinho; Cabral, Poliana Coelho; da Silva, Giselia Alves Pontes

    2015-01-01

    OBJECTIVE Translate the Patient-centered Assessment and Counseling for Exercise questionnaire, adapt it cross-culturally and identify the psychometric properties of the psychosocial scales for physical activity in young university students. METHODS The Patient-centered Assessment and Counseling for Exercise questionnaire is made up of 39 items divided into constructs based on the social cognitive theory and the transtheoretical model. The analyzed constructs were, as follows: behavior change strategy (15 items), decision-making process (10), self-efficacy (6), support from family (4), and support from friends (4). The validation procedures were conceptual, semantic, operational, and functional equivalences, in addition to the equivalence of the items and of measurements. The conceptual, of items and semantic equivalences were performed by a specialized committee. During measurement equivalence, the instrument was applied to 717 university students. Exploratory factor analysis was used to verify the loading of each item, explained variance and internal consistency of the constructs. Reproducibility was measured by means of intraclass correlation coefficient. RESULTS The two translations were equivalent and back-translation was similar to the original version, with few adaptations. The layout, presentation order of the constructs and items from the original version were kept in the same form as the original instrument. The sample size was adequate and was evaluated by the Kaiser-Meyer-Olkin test, with values between 0.72 and 0.91. The correlation matrix of the items presented r < 0.8 (p < 0.05). The factor loadings of the items from all the constructs were satisfactory (> 0.40), varying between 0.43 and 0.80, which explained between 45.4% and 59.0% of the variance. Internal consistency was satisfactory (α ≥ 0.70), with support from friends being 0.70 and 0.92 for self-efficacy. Most items (74.3%) presented values above 0.70 for the reproducibility test

  2. Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations.

    PubMed

    Bershtein, Shimon; Serohijos, Adrian Wr; Shakhnovich, Eugene I

    2017-02-01

    Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology.

  3. Validity of Three Rating Scales for Measuring Pain Intensity in Youths with Physical Disabilities

    PubMed Central

    Miró, Jordi; Castarlenas, Elena; de la Vega, Rocío; Solé, Ester; Tomé-Pires, Catarina; Jensen, Mark P.; Engel, Joyce M.; Racine, Mélanie

    2015-01-01

    Background There is growing evidence confirming that youths with physical disabilities are at risk for chronic pain. Although many scales for assessing pain intensity exist, it is unclear whether they are all equally suitable for youths. The aim of this study was to address this knowledge gap by comparing the validity of the Numerical Rating Scale (NRS-11), the Wong Baker FACES Pain Rating Scale (FACES), and a 6-point categorical Verbal Rating Scale (VRS-6) for assessing pain intensity among youths (aged 8 to 20) with physical disabilities. Methods One hundred and thirteen youths (mean age= 14.19 years; SD = 2.9) were interviewed and asked to rate their current pain intensity and recalled (in the past week) worst, least, and average pain with the NRS-11 and the FACES. Participants were also asked to rate their average pain intensity during the past 4 weeks using a VRS-6, and were administered measures assessing pain interference, disability and psychological functioning. Results Analyses showed that all of the pain intensity measures were associated positively with each other. Nevertheless, the NRS-11 appeared to out-perform both the VRS-6 and in particular the FACES scale with respect to: (1) the associations with the validity criterion (i.e., pain interference, disability and psychological functioning) and (2) a lack of any moderating effect of age on the association between the measure and the criterion variables. Conclusions The findings support the validity of the NRS-11 for assessing pain intensity in youths with physical disabilities between the ages of 8 and 20 years. PMID:25833415

  4. Physical properties of a two-component system at the Fermi and Sharvin length scales

    NASA Astrophysics Data System (ADS)

    Armstrong, Jason N.; Gande, Eric M.; Vinti, John W.; Hua, Susan Z.; Deep Chopra, Harsh

    2012-11-01

    Previously, we have reported the measurement of various physical properties at the Fermi and Sharvin length scales in pure elements (1-component systems). In the present study, the evolution of physical properties is mapped in a 2-component system at these length scales, using Au-Ag alloys. These alloys are well known to have complete solubility in each other at all compositions in the bulk and an ideal system to vary the surface energy of the alloy simply by changing the alloy composition. At sample sizes where surface effects dominate (less than ˜2-3 nm), varying the alloy composition is found to cause dramatic changes in force required to rupture the bonds (strength) as well as atomic cohesion (modulus) and can be directly attributed to segregation of higher surface energy Au from the lower surface energy Ag. In other words, the Au-Ag system with complete solubility in the bulk exhibits segregation at these length scales. This breakdown of bulk solubility rules for alloying (the so-called Hume-Rothery rules) even in near-ideal solid solutions has consequences for future atomic-scale devices.

  5. The Physical Properties and Effective Temperature Scale of O-Type Stars as a Function of Metallicity. II. Analysis of 20 More Magellanic Cloud Stars and Results from the Complete Sample

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Puls, Joachim; Pauldrach, A. W. A.; Bresolin, Fabio; Kudritzki, Rolf P.; Simon, Theodore

    2005-07-01

    In order to determine the physical properties of the hottest and most luminous stars and understand how these properties change as a function of metallicity, we have analyzed HST/UV and high-S/N optical spectra of an additional 20 Magellanic Cloud stars, doubling the sample presented in the first paper in this series. Our analysis uses non-LTE line-blanketed models that include spherical extension and the hydrodynamics of the stellar wind. In addition, our data set includes FUSE observations of O VI and HST near-UV He I and He II lines to test for consistency of our derived stellar properties for a few stars. The results from the complete sample are as follows: (1) We present an effective temperature scale for O stars as a function of metallicity. We find that the SMC O3-7 dwarfs are 4000 K hotter than Galactic stars of the same spectral type. The difference is in the sense expected due to the decreased significance of line blanketing and wind blanketing at the lower metallicities that characterize the SMC. The temperature difference between the SMC and Milky Way O dwarfs decreases with decreasing temperature, becoming negligible by spectral type B0, in accord with the decreased effects of stellar winds at lower temperatures and luminosities. The temperatures of the LMC stars appear to be intermediate between that of the Milky Way and SMC, as expected based on their metallicities. Supergiants show a similar effect but are roughly 3000-4000 K cooler than dwarfs for early O stars, also with a negligible difference by B0. The giants appear to have the same effective temperature scale as dwarfs, consistent with there being little difference in the surface gravities. When we compare our scale to other recent modeling efforts, we find good agreement with some CMFGEN results, while other CMFGEN studies are discordant, although there are few individual stars in common. WM-BASIC modeling by others has resulted in significantly cooler effective temperatures than what we find

  6. Quality Physical Education: A Commentary on Effective Physical Education Teaching

    ERIC Educational Resources Information Center

    Dyson, Ben

    2014-01-01

    In my commentary in response to the 3 articles (McKenzie & Lounsbery, 2013; Rink, 2013; Ward, 2013), I focus on 3 areas: (a) content knowledge, (b) a holistic approach to physical education, and (c) policy impact. I use the term "quality teaching" rather than "teacher effectiveness." Quality teaching is a term with the…

  7. Quality Physical Education: A Commentary on Effective Physical Education Teaching

    ERIC Educational Resources Information Center

    Dyson, Ben

    2014-01-01

    In my commentary in response to the 3 articles (McKenzie & Lounsbery, 2013; Rink, 2013; Ward, 2013), I focus on 3 areas: (a) content knowledge, (b) a holistic approach to physical education, and (c) policy impact. I use the term "quality teaching" rather than "teacher effectiveness." Quality teaching is a term with the…

  8. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  9. Identification of the impact of crime on physical activity depends upon neighbourhood scale: multilevel evidence from 203,883 Australians.

    PubMed

    Astell-Burt, Thomas; Feng, Xiaoqi; Kolt, Gregory S

    2015-01-01

    Equivocal findings on crime as a deterrent for physical activity may be due to effects of geographic scale on exposure measurement. To investigate this hypothesis, physical activity was measured in 203,883 Australians and linked to standardised crime counts within small ('Census Collection Districts'; approx. 330 residents) and larger areas ('Statistical Local Areas'; approx. 32,000 residents). A median rate ratio of 2.26 indicated substantive geographic variation in moderate-to-vigorous physical activity (MVPA). Adjusting for confounders, multilevel negative binomial regression reported lower MVPA with more crime consistently in small, but not in larger areas. Reducing small pockets of local crime may encourage more physically active lifestyles.

  10. [Probing Planck-scale Physics with a Ne-21/He-3 Zeeman Maser

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Ne-21/He-3 Zeeman maser is a recently developed device which employs co-located ensembles of Ne-21 and He-3 atoms to provide sensitive differential measurements of the noble gas nuclear Zeeman splittings as a function of time, thereby greatly attenuating common-mode systematic effects such as uniform magnetic field variations. The Ne-21 maser will serve as a precision magnetometer to stabilize the system's static magnetic field, while the He-3 maser is used as a sensitive probe for violations of CPT and Lorentz symmetry by searching for small variations in the 3He maser frequency as the spatial orientation of the apparatus changes due to the rotation of the Earth (or placement on a rotating table). In the context of a general extension of the Standard Model of particle physics, the Ne-21/He-3 maser will provide the most sensitive search to date for CPT and Lorentz violation of the neutron: better than 10(exp -32) GeV, an improvement of more than an order of magnitude over past experiments. This exceptional precision will offer a rare opportunity to probe physics at the Planck scale. A future space-based Ne-21/He-3 maser or related device could provide even greater sensitivity to violations of CPT and Lorentz symmetry, and hence to Planck-scale physics, because of isolation from dominant systematic effects associated with ground-based operation, and because of access to different positions in space-time.

  11. [Probing Planck-scale Physics with a Ne-21/He-3 Zeeman Maser

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Ne-21/He-3 Zeeman maser is a recently developed device which employs co-located ensembles of Ne-21 and He-3 atoms to provide sensitive differential measurements of the noble gas nuclear Zeeman splittings as a function of time, thereby greatly attenuating common-mode systematic effects such as uniform magnetic field variations. The Ne-21 maser will serve as a precision magnetometer to stabilize the system's static magnetic field, while the He-3 maser is used as a sensitive probe for violations of CPT and Lorentz symmetry by searching for small variations in the 3He maser frequency as the spatial orientation of the apparatus changes due to the rotation of the Earth (or placement on a rotating table). In the context of a general extension of the Standard Model of particle physics, the Ne-21/He-3 maser will provide the most sensitive search to date for CPT and Lorentz violation of the neutron: better than 10(exp -32) GeV, an improvement of more than an order of magnitude over past experiments. This exceptional precision will offer a rare opportunity to probe physics at the Planck scale. A future space-based Ne-21/He-3 maser or related device could provide even greater sensitivity to violations of CPT and Lorentz symmetry, and hence to Planck-scale physics, because of isolation from dominant systematic effects associated with ground-based operation, and because of access to different positions in space-time.

  12. [Development of Autogenic Training Clinical Effectiveness Scale (ATCES)].

    PubMed

    Ikezuki, Makoto; Miyauchi, Yuko; Yamaguchi, Hajime; Koshikawa, Fusako

    2002-02-01

    The purpose of the present study was to develop a scale measuring clinical effectiveness of autogenic training. In Study 1, 167 undergraduates completed a survey of items concerning physical and mental states, which were thought to vary in the course of autogenic training. With item and factor analyses, 20 items were selected, and the resulting scale (ATCES) had high discrimination and clear factor structure. In Study 2, reliability and concurrent and clinical validity of the scale were examined with three groups of respondents: 85 mentally healthy, 31 control, 13 clinical persons. The scale showed a high test-retest correlation (r = .83) and alpha coefficient (alpha = .86). ATCES had a Pearson correlation coefficient of r = .56 with General Health Questionnaire (GHQ-12), and r = .73 with trait anxiety (STAI-T). And ATCES successfully discriminated the mentally healthy and clinical groups in terms of clinical effectiveness. These results demonstrated high reliability and sufficient concurrent and clinical validity of the new scale.

  13. Physical meaning of one-machine and multimachine tokamak scalings

    SciTech Connect

    Dnestrovskij, Yu. N. Danilov, A. V.; Dnestrovskij, A. Yu.; Lysenko, S. E.; Ongena, J.

    2013-04-15

    Specific features of energy confinement scalings constructed using different experimental databases for tokamak plasmas are considered. In the multimachine database, some pairs of engineering variables are collinear; e.g., the current I and the input power P both increase with increasing minor radius a. As a result, scalings derived from this database are reliable only for discharges in which such ratios as I/a{sup 2} or P/a{sup 2} are close to their values averaged over the database. The collinearity of variables allows one to exclude the normalized Debye radius d* from the scaling expressed in a nondimensional form. In one-machine databases, the dimensionless variables are functionally dependent, which allow one to cast a scaling without d*. In a database combined from two devices, the collinearity may be absent, so the Debye radius cannot generally be excluded from the scaling. It is shown that the experiments performed in support of the absence of d* in the two-machine scaling are unconvincing. Transformation expressions are given that allow one to compare experiments for the determination of scaling in any set of independent variables.

  14. Effects of Recreational Drugs on Physical Activity

    PubMed Central

    Millis, Richard M.

    1987-01-01

    The literature relating to the effects of recreational drugs on physical work and endurance is reviewed. Interactions between muscular coordination and cognitive function make it difficult to formulate overall conclusions about the effect of these drugs on physical performance. PMID:3546707

  15. Size scale effect in cavitation erosion

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Rao, B. C.; Buckley, D. H.

    1982-01-01

    An overview and data analyses pertaining to cavitation erosion size scale effects are presented. The exponents n in the power law relationship are found to vary from 1.7 to 4.9 for venturi and rotating disk devices supporting the values reported in the literature. Suggestions for future studies were made to arrive at further true scale effects.

  16. Developing a Rasch Measurement Physical Fitness Scale for Hong Kong Primary School-Aged Students

    ERIC Educational Resources Information Center

    Yan, Zi; Bond, Trevor G.

    2011-01-01

    The main purpose of this study was to develop a Rasch Measurement Physical Fitness Scale (RMPFS) based on physical fitness indicators routinely used in Hong Kong primary schools. A total of 9,439 records of students' performances on physical fitness indicators, retrieved from the database of a Hong Kong primary school, were used to develop the…

  17. Developing a Rasch Measurement Physical Fitness Scale for Hong Kong Primary School-Aged Students

    ERIC Educational Resources Information Center

    Yan, Zi; Bond, Trevor G.

    2011-01-01

    The main purpose of this study was to develop a Rasch Measurement Physical Fitness Scale (RMPFS) based on physical fitness indicators routinely used in Hong Kong primary schools. A total of 9,439 records of students' performances on physical fitness indicators, retrieved from the database of a Hong Kong primary school, were used to develop the…

  18. Biology meets physics: Reductionism and multi-scale modeling of morphogenesis.

    PubMed

    Green, Sara; Batterman, Robert

    2017-02-01

    A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back in asking whether bottom-up modeling is feasible even when modeling simple physical systems across scales. By comparing examples of multi-scale modeling in physics and biology, we argue that the "tyranny of scales" problem presents a challenge to reductive explanations in both physics and biology. The problem refers to the scale-dependency of physical and biological behaviors that forces researchers to combine different models relying on different scale-specific mathematical strategies and boundary conditions. Analyzing the ways in which different models are combined in multi-scale modeling also has implications for the relation between physics and biology. Contrary to the assumption that physical science approaches provide reductive explanations in biology, we exemplify how inputs from physics often reveal the importance of macro-scale models and explanations. We illustrate this through an examination of the role of biomechanical modeling in developmental biology. In such contexts, the relation between models at different scales and from different disciplines is neither reductive nor completely autonomous, but interdependent.

  19. Large-scale structure topology in non-standard cosmologies: impact of dark sector physics

    NASA Astrophysics Data System (ADS)

    Watts, Andrew L.; Elahi, Pascal J.; Lewis, Geraint F.; Power, Chris

    2017-06-01

    Even as our measurements of cosmological parameters improve, the physical nature of the dark sector of the universe largely remains a mystery. Many effects of dark sector models are most prominent at very large scales and will rely on future galaxy surveys to elucidate. In this paper, we compare the topological properties of the large-scale dark matter distribution in a number of cosmological models using hydrodynamical simulations and the cosmological genus statistic. Genus curves are computed from z = 11 to 0 for Λ cold dark matter (ΛCDM), quintessence and warm dark matter (WDM) models, over a scale range of 1-20 h-1 Mpc. The curves are analysed in terms of their Hermite spectra to describe the power contained in non-Gaussian deformations to the cosmological density field. We find that the ΛCDM and ΛWDM models produce nearly identical genus curves indicating no topological differences in structure formation. The quintessence model, which differs solely in its expansion history, produces significant differences in the strength and redshift evolution of non-Gaussian modes associated with higher cluster abundances and lower void abundances. These effects are robust to cosmic variance and are characteristically different from those produced by tweaking the parameters of a ΛCDM model. Given the simplicity and similarity of the models, detecting these discrepancies represents a promising avenue for understanding the effect of non-standard cosmologies on large-scale structure.

  20. Scaling up Effects in the Organic Laboratory

    ERIC Educational Resources Information Center

    Persson, Anna; Lindstrom, Ulf M.

    2004-01-01

    A simple and effective way of exposing chemistry students to some of the effects of scaling up an organic reaction is described. It gives the student an experience that may encounter in an industrial setting.

  1. Effective field theory in nuclear physics

    SciTech Connect

    Martin J. Savage

    2000-12-12

    I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.

  2. Cross-Scale Effects in Solar-Wind Turbulence

    SciTech Connect

    Valentini, F.; Veltri, P.; Califano, F.; Mangeney, A.

    2008-07-11

    The understanding of the small-scale termination of the turbulent energy cascade in collisionless plasmas is nowadays one of the outstanding problems in space physics. In the absence of collisional viscosity, the dynamics at small scales is presumably kinetic in nature; the identification of the physical mechanism which replaces energy dissipation and establishes the link between macroscopic and microscopic scales would open a new scenario in the study of turbulent heating in space plasmas. We present a numerical analysis of kinetic effects along the turbulent energy cascade in solar-wind plasmas which provides an effective unified interpretation of a wide set of spacecraft observations and shows that, simultaneously with an increase in the ion perpendicular temperature, strong bursts of electrostatic activity in the form of ion-acoustic turbulence are produced together with accelerated beams in the ion distribution function.

  3. Searching for Traces of Planck-Scale Physics with High Energy Neutrinos

    NASA Astrophysics Data System (ADS)

    Stecker, Floyd; Scully, Sean; Liberati, Stefano; Mattingly, David

    2017-01-01

    Some Planck-scale physics and quantum gravity models predict a slight violation of Lorentz invariance (LIV) at high energies. High-energy cosmic neutrino observations can be used to test for such LIV. Operators in an effective field theory (EFT) can be used to describe the effects of LIV. They can be used to calculate kinematically allowed energy losses of possible superluminal neutrinos. These losses can be caused by both vacuum pair emission (VPE) and neutrino splitting. Assuming a reasonable distribution of extragalactic neutrino sources, we determined the resulting after-loss neutrino spectra using Monte Carlo propagation calculations. We then compared them with the neutrino spectrum observed by IceCube to determine the implications of our results regarding Planck-scale physics. If the drop off in the observed IceCube neutrino flux above 2 PeV is caused by LIV, a potentially significant pileup effect would be produced just below the drop-off energy in the case of CPT-even operator dominance. However, such a clear drop off effect would not be observed if a CPT-odd, CPT-violating term dominates.

  4. Evolving desiderata for validating engineered-physics systems without full-scale testing

    SciTech Connect

    Langenbrunner, James R; Booker, Jane M; Hemez, Francois M; Ross, Timothy J

    2010-01-01

    Theory and principles of engineered-physics designs do not change over time, but the actual engineered product does evolve. Engineered components are prescient to the physics and change with time. Parts are never produced exactly as designed, assembled as designed, or remain unperturbed over time. For this reason, validation of performance may be regarded as evolving over time. Desired use of products evolves with time. These pragmatic realities require flexibility, understanding, and robustness-to-ignorance. Validation without full-scale testing involves engineering, small-scale experiments, physics theory and full-scale computer-simulation validation. We have previously published an approach to validation without full-scale testing using information integration, small-scale tests, theory and full-scale simulations [Langenbrunner et al. 2008]. This approach adds value, but also adds complexity and uncertainty due to inference. We illustrate a validation example that manages evolving desiderata without full-scale testing.

  5. Fishermen Follow Fine-scaled Physical Ocean Features For Finance

    NASA Astrophysics Data System (ADS)

    Fuller, E.; Watson, J. R.; Samhouri, J.; Castruccio, F. S.

    2016-12-01

    The seascapes on which many millions of people make their living and secure food have complex and dynamic spatial features - the figurative hills and valleys - that control where and how people work at sea. Here, we quantify the physical mosaic of the surface ocean by identifying Lagrangian Coherent Structures for a whole seascape - the California Current - and assess their impact on the spatial distribution of fishing. We show that there is a mixed response: some fisheries track these physical features, and others avoid them. This spatial behavior maps to economic impacts: we find that tuna fishermen can expect to make three times more revenue per trip if fishing occurs on strong coherent structures. These results highlight a connection between the physical state of the oceans, the spatial patterns of human activity and ultimately the economic prosperity of coastal communities.

  6. Scaling and Single Event Effects (SEE) Sensitivity

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.

    2003-01-01

    This paper begins by discussing the potential for scaling down transistors and other components to fit more of them on chips in order to increasing computer processing speed. It also addresses technical challenges to further scaling. Components have been scaled down enough to allow single particles to have an effect, known as a Single Event Effect (SEE). This paper explores the relationship between scaling and the following SEEs: Single Event Upsets (SEU) on DRAMs and SRAMs, Latch-up, Snap-back, Single Event Burnout (SEB), Single Event Gate Rupture (SEGR), and Ion-induced soft breakdown (SBD).

  7. Process Chains in Microforming Technology Using Scaling Effects

    NASA Astrophysics Data System (ADS)

    Kuhfuss, Bernd; Moumi, Eric; Tracht, Kirsten; Weikert, Florian; Vollertsen, Frank; Stephen, Andreas

    2011-05-01

    Cold formed micro parts with dimensions <1 mm show in some aspects characteristics due to scaling effects that can be positively used in process chains. Whereas aspect ratios in upsetting processes are limited to l0/d0<2 in the macro scale, a laser induced free-forming process generates droplet shaped pre-forms for consecutive calibrating processes, i.e. micro rotary swaging. Scale effects on establishing and shortening of process chains like free-form heading/rotary swaging/heat treatment are discussed. On the other hand a geometric scale-up approach in the macro range is described to overcome the specific handling problems of miniature parts. This is achieved by leaving the parts in a physical linkage during the processing steps. An effective application of linked micro parts requires intensive modeling and simulation work.

  8. Electrodynamic Similitude and Physical Scale Modeling. Part 1. Nondispersive Targets.

    DTIC Science & Technology

    1986-04-01

    Properties of Solids ," In: Solid State Physics, Vol. 15, F. Seitz and D. Turnbull, Eds., Academic Press, New 140 York (1963), Ch. 4, pp. 299-408. 21...Jackson, J.D., Classical Electroivna ics, Second Edition, John Wiley & Sons, New York (1975). 20. Stern, F., "Elementary Theory of the Optical

  9. Intrinsic effective mobility extraction with extremely scaled gate dielectrics

    NASA Astrophysics Data System (ADS)

    Liu, Zuoguang; Guo, Dechao; Xiu, Kai; Henson, William Kirklen; Oldiges, Philip J.

    2010-07-01

    We propose a mobility extraction methodology for metal-oxide-semiconductor field effect transistors with extremely scaled equivalent oxide thickness (EOT) below 1 nm. In conventional split C-V method, extracted mobility shows strong dependence on drain bias. As EOT scales to the requirements of 22 nm node and beyond, the phenomenon becomes more pronounced and causes bigger errors in mobility determination. We studied the physical origin of the extracted mobility dependence on drain bias by technology computer aided design electrostatics modeling and electrical characterization. A methodology is proposed and verified for intrinsic effective mobility determination for devices with EOT down to 0.6 nm.

  10. Teacher effectiveness in physical education-consensus?

    PubMed

    Rink, Judith

    2014-09-01

    This article synthesizes the series of manuscripts on teacher effectiveness in physical education recently published by the Research Quarterly for Exercise and Sport and highlights both the consensus and points of disagreement. Although there is much agreement as to the mission to develop a physically active lifestyle, there is a great deal of disagreement on how to get there, which makes the task of measuring effectiveness difficult. The current reform effort in education to measure teacher effectiveness makes it essential that professionals in physical education at all levels be participants in this process.

  11. The Sport Motivation Scale for Children: preliminary analysis in physical education classes.

    PubMed

    Zahariadis, Panayotis N; Tsorbatzoudis, Haralambos; Grouios, George

    2005-08-01

    This study was done to test the psychometric properties of the modified version of the Sport Motivation Scale adapted for children in physical education. Participants were elementary school students (N = 452, M(age) = 13.9 +/- 1.04) who responded to the Sport Motivation Scale for Children. The scale assesses three types of motivation at the contextual level, namely, Intrinsic Motivation, Extrinsic Motivation, and Amotivation. Results supported the construct validity (CFI = .95), and internal consistency of the scale (Cronbach alpha > .65). Correlations indicated Sport Motivation Scale for Children simplex pattern exhibiting higher correlations among adjacent subscales than subscales farther apart. The concurrent validity, examined through correlations with scores on the Physical Self-description Questionnaire was satisfactory. Sex differences were examined to assess the discriminant validity. Boys were more intrinsically motivated than girls. Overall, the scale seems a useful one for assessment of motivation in physical education.

  12. The Other Hall Effect: College Board Physics

    ERIC Educational Resources Information Center

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  13. The Other Hall Effect: College Board Physics

    ERIC Educational Resources Information Center

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  14. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  15. The effective field theory of cosmological large scale structures

    SciTech Connect

    Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  16. Physical training effects in renal transplant recipients.

    PubMed

    Romano, G; Simonella, R; Falleti, E; Bortolotti, N; Deiuri, E; Antonutto, G; De Vita, S; Ferraccioli, G F; Montanaro, D

    2010-01-01

    Several studies demonstrated the benefits of rehabilitation in uraemic patients. This study evaluates physical and psychosocial effects of exercise on renal transplant recipients (RTRs). Eight RTRs were evaluated before and after an exercise training consisting of thirty 40-minute sessions, three times a week, performed with the interval training technique. Hospital Anxiety and Depression Scale (HADS) significantly decreased (p<0.04 and <0.008, respectively). Quality of life mean scores (SF-36 test) significantly increased (p<0.000). No differences were recorded for muscle and fat mass, maximal explosive power of the lower limbs, alkaline and acid phosphatase, parathormone (PTH), myoglobin, lipoprotein-A, glomerular filtration rate (GFR), at rest heart rate, and cardiac troponin. IL-6 decreased from 2.8±0.6 to 1.7±0.5 pg/mL (p<0.01). Resting MAP fell from 112±4 to 99±3 mmHg (p<0.02). The metabolic threshold rose from 33±4 to 43±5% (p<0.033). The blood lactate level at peak exercise increased from 5.2±0.9 to 6.2±0.7 mmol/L (p<0.012). The maximum oxygen uptake increased from 1200±210 to 1359±202 mL/min (p<0.05), iso-load oxygen uptake decreased from 1110±190 to 1007±187 mL/min (p<0.034). The maximum working capacity increased from 90±14 to 115±15 watts (p<0.000). This study suggests that an appropriate dose of physical training is a useful, safe and non-pharmacologic contribution to RTR treatment. © 2009 John Wiley & Sons A/S.

  17. Psychometric properties of the Physical Activity Scale for the Elderly in Chinese patients with COPD

    PubMed Central

    Tao, Yan-xia; Wang, Lan; Dong, Xiao-yan; Zheng, Hong; Zheng, Ya-shu; Tang, Xing-yue; Zhao, Yue; Zhang, Qing

    2017-01-01

    Background For patients with COPD, physical activity (PA) is recommended as the core component of pulmonary rehabilitation, but there is lack of a validated questionnaire for assessing the PA effectively. Aim To evaluate the reliability and validity of the Chinese version of Physical Activity Scale for the Elderly (PASE-C) in patients with COPD. Methods A cross-sectional study was conducted with 167 outpatients aged 60 years or older with COPD. Test−retest reliability and internal consistency were calculated by intraclass correlation coefficient (ICC) and Cronbach’s coefficient α, respectively. Validity was evaluated by correlation with the International Physical Activity Questionnaire-Short (IPAQ-S), data of pedometer, Self-Efficacy for Managing Chronic Disease 6-Item Scale (SES6), Hospital Anxiety and Depression Scale (HADS), Medical Outcomes Study 36-Item Short Form Health Survey (SF-36), grip strength, and disease characteristics. Results The PASE-C had an excellent seven-day test−retest reliability (ICC=0.98) and an acceptable internal consistency (Cronbach’s α=0.71). The content validity was supported by an item-content validity index, a scale-content validity index/universal agreement, and a scale-content validity index/average value of 0.70–1, 0.70, and 0.93, respectively. Concurrent validity was tested by correlation with IPAQ-S (r=0.651). Criterion validity was confirmed by correlation with the walking steps (r=0.611) and energy expenditure (r=0.493). For construct validity, PASE-C had correlations with SES6 (r=0.396), HADS for depression (r=−0.234), seven subscales of SF-36 (r=0.182–0.525), grip strength (r=0.341), and disease characteristics including the duration of COPD (r=−0.215), modified British Medical Research Council scale (r=−0.354), forced expiratory volume in one second as percentage of predicted (r=0.307), and Global Initiative for Chronic Obstructive Lung Disease grade (r=−0.264), with a good construct validity (all P

  18. Effects of participation in the Physical Conditioning Platoon.

    PubMed

    Hoiberg, A

    1978-04-01

    Designed to assess the effects of Marine recruits' participation in the Physical Conditioning Platoon during 1975 (N - 635). Comparisons (t-values) of pre and post measures of an attitude questionnaire, the Comrey Personality Scales, and a self-evaluation scale indicated that significant increases in favorability of perceptions occurred during training for 12 of the 13 scales. During a stay of approximately 30 days, overweight recruits lost an average of 26 pounds. The most powerful predictors of graduation from PCP and recruit training included the Affiliation (with the Marine Corps) scale and a composite of 10 Activity Scale items. These two variables may be useful in selection of PCP participants by reducing the 36% PCP attrition rate.

  19. Fundamental Scalings of Zonal Flows in a Basic Plasma Physics Experiment

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir; Wei, Xiao; Sen, Amiya K.

    2007-11-01

    A basic physics experimental study of zonal flows (ZF) associated with ITG (ion temperature gradient) drift modes has been performed in the Columbia Linear Machine (CLM) and ZF has been definitively identified [1]. However, in contrast to most tokamak experiments, the stabilizing effect of ZF shear to ITG appears to be small in CLM. We now report on the study of important scaling behavior of ZF. First and most importantly, we report on the collisional damping scaling of ZF, which is considered to be its saturation mechanism [2]. By varying the sum of ion-ion and ion-neutral collision frequency over nearly half an order of magnitude, we find no change in the amplitude of ZF. Secondly, we study the scaling of ZF amplitude with ITG amplitude via increasing ITG drive though ηi, as well as feedback (stabilizing / destabilizing). We have observed markedly different scaling near and far above marginal stability. [1] V. Sokolov, X. Wei, A.K. Sen and K. Avinash, Plasma Phys.Controlled Fusion 48, S111 (2006). [2] P.H. Diamond, S.-I. Itoh, K.Itoh and T.S. Hahm, Plasma Phys.Controlled Fusion 47, R35 (2005).

  20. Effective theories and thresholds in particle physics

    SciTech Connect

    Gaillard, M.K.

    1991-06-07

    The role of effective theories in probing a more fundamental underlying theory and in indicating new physics thresholds is discussed, with examples from the standard model and more speculative applications to superstring theory. 38 refs.

  1. Physical effects in wormholes and time machines

    SciTech Connect

    Frolov, V.P. P. N. Lebedev, Physical Institute, Moscow ); Novikov, I.D. )

    1990-08-15

    Physical effects in a spacetime with a traversable wormhole are considered. It is shown that the interaction of a wormhole with the surrounding matter and with the external gravitational field almost inevitably transforms it into a time machine.

  2. Combination of statistical and physically based methods to assess shallow slide susceptibility at the basin scale

    NASA Astrophysics Data System (ADS)

    Oliveira, Sérgio C.; Zêzere, José L.; Lajas, Sara; Melo, Raquel

    2017-07-01

    Approaches used to assess shallow slide susceptibility at the basin scale are conceptually different depending on the use of statistical or physically based methods. The former are based on the assumption that the same causes are more likely to produce the same effects, whereas the latter are based on the comparison between forces which tend to promote movement along the slope and the counteracting forces that are resistant to motion. Within this general framework, this work tests two hypotheses: (i) although conceptually and methodologically distinct, the statistical and deterministic methods generate similar shallow slide susceptibility results regarding the model's predictive capacity and spatial agreement; and (ii) the combination of shallow slide susceptibility maps obtained with statistical and physically based methods, for the same study area, generate a more reliable susceptibility model for shallow slide occurrence. These hypotheses were tested at a small test site (13.9 km2) located north of Lisbon (Portugal), using a statistical method (the information value method, IV) and a physically based method (the infinite slope method, IS). The landslide susceptibility maps produced with the statistical and deterministic methods were combined into a new landslide susceptibility map. The latter was based on a set of integration rules defined by the cross tabulation of the susceptibility classes of both maps and analysis of the corresponding contingency tables. The results demonstrate a higher predictive capacity of the new shallow slide susceptibility map, which combines the independent results obtained with statistical and physically based models. Moreover, the combination of the two models allowed the identification of areas where the results of the information value and the infinite slope methods are contradictory. Thus, these areas were classified as uncertain and deserve additional investigation at a more detailed scale.

  3. Artificial intelligence and large scale computation: A physics perspective

    NASA Astrophysics Data System (ADS)

    Hogg, Tad; Huberman, B. A.

    1987-12-01

    We study the macroscopic behavior of computation and examine both emergent collective phenomena and dynamical aspects with an emphasis on software issues, which are at the core of large scale distributed computation and artificial intelligence systems. By considering large systems, we exhibit novel phenomena which cannot be foreseen from examination of their smaller counterparts. We review both the symbolic and connectionist views of artificial intelligence, provide a number of examples which display these phenomena, and resort to statistical mechanics, dynamical systems theory and the theory of random graphs to elicit the range of possible behaviors.

  4. Compact wire array sources: power scaling and implosion physics.

    SciTech Connect

    Serrano, Jason Dimitri; Chuvatin, Alexander S.; Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V.; Esaulov, Andrey A.; Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Rudakov, L. I.; Jones, Brent Manley; Safronova, Alla S.; Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  5. The application of computational fluid dynamics and small-scale physical models to assess the effects of operational practices on the risk to public health within large indoor swimming pools.

    PubMed

    Lewis, Lowell; Chew, John; Woodley, Iain; Colbourne, Jeni; Pond, Katherine

    2015-12-01

    Swimming pools provide an excellent facility for exercise and leisure but are also prone to contamination from microbial pathogens. The study modelled a 50-m × 20-m swimming pool using both a small-scale physical model and computational fluid dynamics to investigate how water and pathogens move around a pool in order to identify potential risk spots. Our study revealed a number of lessons for pool operators, designers and policy-makers: disinfection reaches the majority of a full-scale pool in approximately 16 minutes operating at the maximum permissible inlet velocity of 0.5 m/s. This suggests that where a pool is designed to have 15 paired inlets it is capable of distributing disinfectant throughout the water body within an acceptable time frame. However, the study also showed that the exchange rate of water is not uniform across the pool tank and that there is potential for areas of the pool tank to retain contaminated water for significant periods of time. 'Dead spots' exist at either end of the pool where pathogens could remain. This is particularly significant if there is a faecal release into the pool by bathers infected with Cryptosporidium parvum, increasing the potential for waterborne disease transmission.

  6. Extending Higgs inflation with TeV scale new physics

    SciTech Connect

    He, Hong-Jian; Xianyu, Zhong-Zhi

    2014-10-10

    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2σ deviations, and generally gives a negligible tensor-to-scalar ratio r∼10{sup −3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S . The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)−O(10{sup −3}) , consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s}≃0.96 . It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.

  7. Extending Higgs inflation with TeV scale new physics

    SciTech Connect

    He, Hong-Jian; Xianyu, Zhong-Zhi E-mail: xianyuzhongzhi@gmail.com

    2014-10-01

    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2σ deviations, and generally gives a negligible tensor-to-scalar ratio r ∼ 10{sup -3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark T and a real scalar S. The presence of singlets (T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1)-O(10{sup -3}), consistent with the favored r values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index n{sub s} ≅ 0.96. It allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark T and scalar S at the LHC and future high energy pp colliders.

  8. Psychometric assessment of the Adolescent Physical Activity Perceived Benefits and Barriers Scales.

    PubMed

    Robbins, Lorraine B; Wu, Tsu-Yin; Sikorskii, Alla; Morley, Blair

    2008-01-01

    The purpose of this study was to psychometrically test the Adolescent Physical Activity Perceived Benefits and Barriers Scales developed for middle-school-age youth. A total of 206 racially diverse 6th, 7th, and 8th graders completed questionnaires at two time points (2 weeks apart). For the 10-item Perceived Benefits Scale and the 9-item Perceived Barriers Scale, test-retest reliability (r = .70; r = .71, respectively) and internal consistency (Cronbach's alpha was .80 and .79, respectively, at time 1) were supported. Principal components analysis with Varimax rotation was employed to assess construct validity. A 2-factor solution emerged for each scale as predicted. The relationship between both scale scores and self-reported physical activity provided additional evidence of validity. Both instruments were found to be reliable and valid for measuring the perceived benefits of and barriers to physical activity in middle school youth.

  9. Technologies for large-scale physical mapping of human chromosomes

    SciTech Connect

    Beugelsdijk, T.J.

    1994-12-01

    Since its inception 6 years ago, the Human Genome Project has made rapid progress towards its ultimate goal of developing the complete sequence of all human chromosomes. This progress has been made possible through the development of automated devices by laboratories throughout the world that aid the molecular biologist in various phases of the project. The initial phase involves the generation of physical and genetic maps of each chromosome. This task is nearing completion at a low resolution level with several instances of very high detailed maps being developed for isolated chromosomes. In support of the initial mapping thrust of this program, the robotics and automation effort at Los Alamos National Laboratory has developed DNA gridding technologies along with associated database and user interface systems. This paper will discuss these systems in detail and focus on the formalism developed for subsystems which allow for facile system integration.

  10. Seismic-Scale Rock Physics of Methane Hydrate

    SciTech Connect

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  11. Physical activity in physical education: teacher or technology effects.

    PubMed

    Grissom, Traci; Ward, Phillip; Martin, Beth; Leenders, Nicole Y J M

    2005-01-01

    This study assessed if wearing a heart rate monitor influenced student activity levels in elementary physical education. Data were analyzed for 4 students using an alternating treatment design to assess differential effects between accelerometer activity counts obtained from students when wearing the heart rate monitor and when they were not wearing the monitor. Results show that (a) there was no difference in activity counts between the 2 conditions, (b) boys had higher means than girls, and (c) the variance between more and less active boys was greater than the variance among the girls.

  12. Effective Temperature and Universal Conductivity Scaling in Organic Semiconductors

    PubMed Central

    Abdalla, Hassan; van de Ruit, Kevin; Kemerink, Martijn

    2015-01-01

    We investigate the scalability of the temperature- and electric field-dependence of the conductivity of disordered organic semiconductors to ‘universal’ curves by two different but commonly employed methods; by so-called universal scaling and by using the effective temperature concept. Experimentally both scaling methods were found to be equally applicable to the out-of-plane charge transport in PEDOT:PSS thin films of various compositions. Both methods are shown to be equivalent in terms of functional dependence and to have identical limiting behavior. The experimentally observed scaling behavior can be reproduced by a numerical nearest-neighbor hopping model, accounting for the Coulomb interaction, the high charge carrier concentration and the energetic disorder. The underlying physics can be captured in a simple empirical model, describing the effective temperature of the charge carrier distribution as the outcome of a heat balance between Joule heating and (effective) temperature-dependent energy loss to the lattice. PMID:26581975

  13. Development and Initial Validation of the Chinese Version of Psychological Needs Thwarting Scale in Physical Education

    ERIC Educational Resources Information Center

    Liu, Jing Dong; Chung, Pak-Kwong

    2015-01-01

    The current study presents the development process and initial validation of a measure designed for assessing psychological needs thwarting (frustration) in a secondary school physical education context (Psychological Needs Thwarting Scale in Physical Education, PNTSPE). Secondary school students (grades 7-9) from Hong Kong (N = 1258) were invited…

  14. The running spectral index as a probe of physics at high scales

    NASA Astrophysics Data System (ADS)

    Ballesteros, G.; Casas, J. A.; Espinosa, J. R.

    2006-03-01

    The WMAP results on the scalar spectral index n and its running with scale, though preliminary, open a very interesting window to physics at very high energies. We address the problem of finding inflaton potentials well motivated by particle physics which can accommodate WMAP data. We make a model independent analysis of a large class of models: those with flat tree-level potentials lifted by radiative corrections, which cause the slow rolling of the inflaton and the running of n. This includes typical hybrid inflation models. In the small coupling regime the predictions for the size and running of n are remarkably neat, e.g. -\\rmd n/\\rmd \\ln k=(n-1)^2\\ll 1 , and n does not cross n = 1, contrary to WMAP indications. On the other hand, n can run significantly if the couplings are stronger, but at the price of having a small number of e-folds, Ne. We also examine the effect of mass thresholds crossed during inflation. Finally, we show that the presence of non-renormalizable operators for the inflaton, suppressed by a mass scale above the inflationary range, is able to give both \\rmd n/\\rmd \\ln k\\sim {\\cal O}(-0.05) and Ne~50.

  15. A survey of physically-based catchment-scale modeling over the last half century

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Putti, Mario

    2015-04-01

    Integrated, process-based based numerical models in hydrology and connected disciplines (ecohydrology, hydrometeorology, hydrogeomorphology, biogeochemistry, hydrogeophysics, etc) are rapidly evolving, spurred by advances in computer technology, numerical algorithms, and environmental observation, and by the need to better understand the potential impacts of population, land use, and climate change on water and other natural resources. At the catchment scale, simulation models are commonly based on conservation principles for surface and subsurface water flow and mass transport (e.g., the Richards, St. Venant, and advection-dispersion-reaction equations, and approximations thereof), and need to be resolved by robust numerical techniques for space and time discretization, linearization, interpolation, etc. Model development through the years has continually faced physical and numerical challenges arising from heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process interactions and interface dynamics; and complex or poorly known boundary conditions and initial system states. We give an historical perspective (past 50 years) on some of the key developments in physically-based hydrological modeling, examining how these various challenges have been addressed and providing some insight on future directions as catchment modeling enters a highly interdisciplinary era.

  16. A physical scaling model for aggregation and disaggregation of field-scale surface soil moisture dynamics.

    PubMed

    Ojha, Richa; Govindaraju, Rao S

    2015-07-01

    Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderings-with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture.

  17. Effects of physical activity on cancer prevention.

    PubMed

    Na, Hye-Kyung; Oliynyk, Sergiy

    2011-07-01

    Results of most epidemiological and laboratory studies suggest an inverse relationship between regular exercise and the risk of certain malignancies, such as intestinal, colon, pancreatic, breast, lung, skin, mammary, endometrial, and prostate cancer. However, physical activity can have different influence on carcinogenesis, depending on energy supply and the age of the subject as well as strength, frequency, and length of exercise. The biochemical and molecular basis of the interaction between aerobic physical activity and tumorigenic processes remains poorly understood. Physical activity may generate reactive oxygen species (ROS) to a different extent. Mild oxidative stress caused by moderate physical activity can activate cellular stress response signaling and potentiate cellular antioxidant defense capacity. However, accumulation of relatively large amounts of ROS as a consequence of exhaustive exercise can either directly damage DNA, causing mutation, or promote tumorigenesis by activating proinflammatory signaling. This review highlights the effects of physical activity on various malignancies in the context of redox status modulated during exercise.

  18. Improved responsiveness and reduced sample size requirements of PROMIS physical function scales with item response theory.

    PubMed

    Fries, James F; Krishnan, Eswar; Rose, Matthias; Lingala, Bharathi; Bruce, Bonnie

    2011-01-01

    The Health Assessment Questionnaire Disability Index (HAQ) and the SF-36 PF-10, among other instruments, yield sensitive and valid Disability (Physical Function) endpoints. Modern techniques, such as Item Response Theory (IRT), now enable development of more precise instruments using improved items. The NIH Patient Reported Outcomes Measurement Information System (PROMIS) is charged with developing improved IRT-based tools. We compared the ability to detect change in physical function using original (Legacy) instruments with Item-Improved and PROMIS IRT-based instruments. We studied two Legacy (original) Physical Function/Disability instruments (HAQ, PF-10), their item-improved derivatives (Item-Improved HAQ and PF-10), and the IRT-based PROMIS Physical Function 10- (PROMIS PF 10) and 20-item (PROMIS PF 20) instruments. We compared sensitivity to detect 12-month changes in physical function in 451 rheumatoid arthritis (RA) patients and assessed relative responsiveness using P-values, effect sizes (ES), and sample size requirements. The study sample was 81% female, 87% Caucasian, 65 years of age, had 14 years of education, and had moderate baseline disability. All instruments were sensitive to detecting change (< 0.05) in physical function over one year. The most responsive instruments in these patients were the Item-Improved HAQ and the PROMIS PF 20. IRT-improved instruments could detect a 1.2% difference with 80% power, while reference instruments could detect only a 2.3% difference (P < 0.01). The best IRT-based instruments required only one-quarter of the sample sizes of the Legacy (PF-10) comparator (95 versus 427). The HAQ outperformed the PF-10 in more impaired populations; the reverse was true in more normal populations. Considering especially the range of severity measured, the PROMIS PF 20 appears the most responsive instrument. Physical Function scales using item improved or IRT-based items can result in greater responsiveness and precision across a

  19. On physics at the Planck scale: Space as a network

    NASA Astrophysics Data System (ADS)

    Prokhorov, L. V.

    2007-05-01

    It is shown that the one-dimensional quantum field theory can be modeled as a chain of classical oscillators in a thermal bath provided that the Gibbs measure is identified with the phase-space volume measure, the chain being in a nonequilibrium state. Quantized strings and p-branes are also modeled by ordered systems of oscillators. The model of a one-dimensional superspace is constructed. It is shown that the Ramond-Neveu-Schwarz superstring is modeled by a helix formed of a bosonic-string in a multidimensional space. The physical 3D space is represented by a superstring structure (3D “network”), which is described by some Lagrangian. Thus, the unified description of all interactions including gravity is achieved because the superstring excitations involve all fields. In view of the discrete character of the initial structure, the theory is free of ultraviolet divergences. The essential element of the model is the occurrence of the cosmological constant in the gravity equations. A black hole model giving reasonable values for its temperature and entropy is proposed.

  20. Rotating space elevators: Physics of celestial scale spinning strings

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven; Golubović, Leonardo

    2014-11-01

    We explore classical and statistical mechanics of a novel dynamical system, the Rotating Space Elevator (RSE) (L. Golubović, S. Knudsen, EPL 86, 34001 (2009)). The RSE is a double rotating floppy string reaching extraterrestrial locations. Objects sliding along the RSE string (climbers) do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in space elevator science, which is how to supply energy to the climbers moving along space elevator strings. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in a double rotating frame associated with the RSE. This dynamical equilibrium is achieved by a special ("magical") form of the RSE mass line density derived in this paper. The RSE exhibits a variety of interesting dynamical phenomena explored here by numerical simulations. Thanks to its special design, the RSE exhibits everlasting double rotating motion. Under some conditions, however, we find that the RSE may undergo a morphological transition to a chaotic state reminiscent of fluctuating directed polymers in the realm of the statistical physics of strings and membranes.

  1. The karst permeability scale effect of Sete Lagoas, MG, Brazil

    NASA Astrophysics Data System (ADS)

    Galvão, Paulo; Halihan, Todd; Hirata, Ricardo

    2016-01-01

    Collecting and interpreting permeability data in karst systems is considered complicated due to three distinct properties of these systems. First, the distribution of high permeability features may be one-dimensional features difficult to detect with wells, or may be so high in the wells the upper measurement limit is encountered during aquifer testing. Secondly, turbulent flow may make the application of continuum hydraulic principles difficult. Finally, permeability in these systems commonly increases with the scale of measurement. The aquifer for Sete Lagoas, Brazil, was used to evaluate a permeability combination methodology testing the permeability structure across a range of spatial scales in order to develop a quantitative model of hydraulically active features consistent across all scales of measurement, from matrix properties to regional-scale flow. The aquifer in this study has some wells without measurable drawdown during pumping due to high permeability. Data indicated an increase in permeability from the small- to the well-scale and a decrease from the well- to regional-scale due to the localized development of a karst bedding plane dissolution in one structurally controlled region of the aquifer. The matrix permeability in the region is very low and the secondary porosity is mostly filled by secondary precipitation of calcite. Based on measurement technique, the permeability data vary over many orders of magnitude, while the physical size of permeable features of the aquifer are consistent across the scales of data collection. The geometry provides a quantitative understanding of the scale effects of permeability measurements.

  2. Physical Analysis and Scaling of a Jet and Vortex Actuator

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Yao, Chung-Sheng; Joslin, Ronald D.

    2004-01-01

    Our previous studies have shown that the Jet and Vortex Actuator generates free-jet, wall-jet, and near- wall vortex flow fields. That is, the actuator can be operated in different modes by simply varying the driving frequency and/or amplitude. For this study, variations are made in the actuator plate and wide-slot widths and sine/asymmetrical actuator plate input forcing (drivers) to further study the actuator induced flow fields. Laser sheet flow visualization, particle- image velocimetry, and laser velocimetry are used to measure and characterize the actuator induced flow fields. Laser velocimetry measurements indicate that the vortex strength increases with the driver repetition rate for a fixed actuator geometry (wide slot and plate width). For a given driver repetition rate, the vortex strength increases as the plate width decreases provided the wide-slot to plate-width ratio is fixed. Using an asymmetric plate driver, a stronger vortex is generated for the same actuator geometry and a given driver repetition rate. The nondimensional scaling provides the approximate ranges for operating the actuator in the free jet, wall jet, or vortex flow regimes. Finally, phase-locked velocity measurements from particle image velocimetry indicate that the vortex structure is stationary, confirming previous computations. Both the computations and the particle image velocimetry measurements (expectantly) show unsteadiness near the wide-slot opening, which is indicative of mass ejection from the actuator.

  3. Effective Temperature Scale and Bolometric Corrections

    NASA Astrophysics Data System (ADS)

    Gray, R.; Murdin, P.

    2000-11-01

    The conversion from an observational quantity, such as the color index or the spectral type, to the effective temperature (Teff) of a star is known as the effective TEMPERATURE SCALE. Bolometric corrections are required in the calculation of the luminosity of a star if the flux from the star has not been observed over the entire ELECTROMAGNETIC SPECTRUM....

  4. Neutrino physics with multi-ton scale liquid xenon detectors

    NASA Astrophysics Data System (ADS)

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Marrodán Undagoitia, T.; Schumann, M.

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~ 2 × 10-48 cm2 and WIMP masses around 50 GeVṡc-2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~ 6 GeVṡc-2 to cross sections above ~ 4 × 10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6 × 1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  5. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodán; Schumann, M. E-mail: alfredo.ferella@lngs.infn.it E-mail: aaronm@ucdavis.edu E-mail: marc.schumann@lhep.unibe.ch

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ∼ 2 × 10{sup −48} cm{sup 2} and WIMP masses around 50 GeV⋅c{sup −2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ∼ 6 GeV⋅c{sup −2} to cross sections above ∼ 4 × 10{sup −45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 × 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  6. Effective Teaching in Physical Education: Slovenian Perspective

    ERIC Educational Resources Information Center

    Pišot, Rado; Plevnik, Matej; Štemberger, Vesna

    2014-01-01

    Regular quality physical education (PE) contributes to the harmonized biopsychosocial development of a young person--to relaxation, neutralization of negative effects of sedentary hours, and other unhealthy habits/behaviors. The evaluation approach to PE effectiveness provides important information to PE teachers and also to students. However,…

  7. Effective Teaching in Physical Education: Slovenian Perspective

    ERIC Educational Resources Information Center

    Pišot, Rado; Plevnik, Matej; Štemberger, Vesna

    2014-01-01

    Regular quality physical education (PE) contributes to the harmonized biopsychosocial development of a young person--to relaxation, neutralization of negative effects of sedentary hours, and other unhealthy habits/behaviors. The evaluation approach to PE effectiveness provides important information to PE teachers and also to students. However,…

  8. Effects of a scalar scaling field on quantum mechanics

    SciTech Connect

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.

  9. Effects of a scalar scaling field on quantum mechanics

    DOE PAGES

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less

  10. Effects of a scalar scaling field on quantum mechanics

    SciTech Connect

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.

  11. Human cortical bone: Computer method for physical behavior at nano scale constant pressure assumption.

    PubMed

    Racila, M; Crolet, J M

    2006-01-01

    It is well known that long term behavior of implants depends on bone remodeling. In the absence of a model of this phenomenon, few numerical simulations take into account bone remodeling. Some laws have been proposed but they cannot be used in the essential area surrounding the implant. We propose a multi-scale approach: cortical bone is structured in a hierarchical way consisting of five levels. The cortical part of a given bone is made up of various areas having different physical properties adapted to locally existing conditions. A Bony Elementary Volume denotes the elementary part of such a zone which constitutes our first level. The other levels are in conformity with our previous studies: osteon, lamella, fibre and fibril. This latter is composed by collagen and hydroxyapatite (Hap) occurring in a viscous liquid containing mineral ions. Mathematical homogenisation theory is used to determine equivalent macroscopic properties of a BEV, knowing the physical properties of collagen and Hap and the architectural description of this bony structure. For improving the performance of our simulation software, a new behavior law has been introduced with no continuity between the various levels. The effect of the fluid at the nanoscopic scale is modeled by a constant pressure. Recent developments allow us to determine the magnitude of various entities at nanoscopic scale from information at the macroscopic level. Realized simulations show that the assumption of constant pressure is not sufficient to characterize the nanoscopic mechanical behaviour. This point needs a more complex model with the introduction of a coupling between structure and fluid. This aspect is in development.

  12. Psychometric Properties of the Attitudes toward Physical Activity Scale: A Rasch Analysis Based on Data From Five Locations.

    PubMed

    Mok, Magdalena Mo Ching; Chin, Ming Kai; Chen, Shihui; Emeljanovas, Arunas; Mieziene, Brigita; Bronikowski, Michal; Laudanska-Krzeminska, Ida; Milanovic, Ivana; Pasic, Milan; Balasekaran, Govindasamy; Phua, Kia Wang; Makaza, Daga

    2015-01-01

    This article describes the development and validation of the Attitudes toward Physical Activity Scale (APAS) to measure the attitudes, beliefs, and self-efficacy toward physical activity by children at the primary school level. The framework included: physical fitness, self-efficacy, personal best goal orientation in physical activity, interest in physical activity, importance of physical activity, benefits of physical activity, contributions of video exercise to learning in school subjects, contributions of video exercise to learning about health and environmental support. The sample comprised of 630 school students between grades 1 and 7 from five countries, namely Lithuania (29%), Poland (26%), Serbia (19%), Singapore (16%) and Zimbabwe (11%). Rasch analysis found empirical evidence in support of measurement validity of the APAS in terms of Rasch item reliabilities, unidimensionality, effectiveness of response categories, and absence of gender differential item functioning (DIF). The validation of the APAS according to the Rasch model meant that a dependable tool was established for gauging programme effectiveness of intervention programs on physical activity of primary school children in classroom settings at various geographical locations globally.

  13. Regionalization of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based numerical simulations at hillslope scale

    SciTech Connect

    Ali, Melkamu; Ye, Sheng; Li, Hongyi; Huang, Maoyi; Leung, Lai-Yung R.; Fiori, Aldo; Sivapalan, Murugesu

    2014-07-19

    Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurface flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must

  14. Social Support and Peer Norms Scales for Physical Activity in Adolescents

    PubMed Central

    Ling, Jiying; Robbins, Lorraine B.; Resnicow, Ken; Bakhoya, Marion

    2015-01-01

    Objectives To evaluate psychometric properties of a Social Support and Peer Norms Scale in 5th-7th grade urban girls. Methods Baseline data from 509 girls and test-retest data from another 94 girls in the Midwestern US were used. Results Cronbach's alpha was .83 for the Social Support Scale and .72 for the Peer Norms Scale, whereas test-re-test reliability was .78 for both scales. Exploratory factor analysis suggested a single factor structure for the Social Support Scale, and a 3-factor structure for the Peer Norms Scale. Social support was correlated with accelerometer-measured physical activity (r = .13, p = .006), and peer norms (r = .50, p < .0001). Conclusions Both scales have adequate psychometric properties. PMID:25207514

  15. The effect of retirement on physical health.

    PubMed Central

    Ekerdt, D J; Baden, L; Bossé, R; Dibbs, E

    1983-01-01

    This prospective study compared pre- to post-retirement changes in physical health among male retirees with changes among age peers who continued to work. The 229 retirees and 409 workers aged 55-73 at follow-up were all participants in the Veterans Administration Normative Aging Study. Physical health at baseline and follow-up (three to four years apart) was rated on a four-point scale according to the findings of medical examinations. Although physical health declined generally over time, regression analyses showed no significant difference between eventual retirees and continuing workers on health change, after controlling for age and excluding men who retired due to illness or disability. Among retirees alone, pre- to post-retirement health change was also not significantly associated with several circumstances which purportedly make the retirement transition more stressful, such as mandatory retirement or retirement to a reduced standard of living. The results of this study of physical health, which corroborate those of other studies based on self-reported health measures and mortality data, support the conclusion that the event of retirement does not influence the risk of health deterioration. PMID:6859363

  16. The Colorado Haemophilia Paediatric Joint Physical Examination Scale: normal values and interrater reliability.

    PubMed

    Hacker, M R; Funk, S M; Manco-Johnson, M J

    2007-01-01

    Persons with haemophilia often experience their first joint haemorrhage in early childhood. Recurrent bleeding into a joint may lead to significant morbidity, specifically haemophilic arthropathy. Early identification of the onset and progression of joint damage is critical to preserving joint structure and function. Physical examination is the most feasible approach to monitor joint health. Our group developed the Colorado Haemophilia Paediatric Joint Physical Examination Scale to identify earlier signs of joint degeneration and incorporate developmentally appropriate tasks for assessing joint function in young children. This study's objectives were to establish normal ranges for this scale and assess interrater reliability. The ankles, knees and elbows of 72 healthy boys aged 1 through 7 years were evaluated by a physical therapist to establish normal ranges. Exactly 10 boys in each age category from 2 to 7 years were evaluated by a second physical therapist to determine interrater reliability. The original scale was modified to account for the finding that mild angulation in the weight-bearing joints is developmentally normal. The interrater reliability of the scale ranged from fair to good, underscoring the need for physical therapists to have specific training in the orthopaedic assessment of very young children and the measurement error inherent in the goniometer. Modifications to axial alignment scoring will allow the scale to distinguish healthy joints from those suffering frequent haemarthroses.

  17. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    NASA Astrophysics Data System (ADS)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-01-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment (M 0) and rupture area (A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0-A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0-A scaling relations for strike-slip earthquakes.

  18. Scaling Effects on Materials Tribology: From Macro to Micro Scale

    PubMed Central

    Stoyanov, Pantcho; Chromik, Richard R.

    2017-01-01

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale. PMID:28772909

  19. African-American college student attitudes toward physics and their effect on achievement

    NASA Astrophysics Data System (ADS)

    Drake, Carl Timothy

    The purpose of this study was to investigate factors affecting the attitudes that African-American college students have towards introductory college physics. The population targeted for this study consisted of African-American males and females enrolled in introductory college physics classes at an urban public historical black college or university (HBCU) located in the southeastern United States. Nine of the Fennema-Sherman Mathematics Attitude Scales, modified for physics, were used to analyze the attitudes of the 135 participants enrolled in an introductory college physics class. The nine scales used to measure the students' attitudes were Attitude Toward Success in Physics Scale (AS), The Physics as a Male Domain Scale (MD), The Mother Scale (M), The Father Scale (F), The Teacher Scale (T), The Confidence in Learning Physics Scale (C), The Physics Anxiety Scale (A), The Effectance Motivation Scale in Physics (E), and The Physics Usefulness Scale (U). Hypothesis I states that there is a significant difference in the domain scores of African-American college students in the Fennema-Sherman Math Attitudes Scales adapted for physics. It was found using a repeated measures ANOVA that there was a significant difference between the attitudes of African-Americans on the nine attitude scales of the Fennema-Sherman Math Attitude Scales, F(8,992) = 43.09, p < .001. Hypothesis II states that there is a statistically significant difference in domain scores between African-American males and African-American females in the Fennema-Sherman Attitude Scales. It was found using a MANOVA that there was not a significant difference between the domain scores of African-American males and African-American females, F(8, 116) = .38, p > .05. Hypothesis III states that there is a statistically significant relationship between attitude towards physics and achievement for African-American students. The students with good attitudes toward physics would have a higher level of achievement

  20. Response set of social desirability in relation to the Mental, Physical and Spiritual Well-Being Scale.

    PubMed

    Vella-Brodrick, D A; White, V

    1997-08-01

    This study examined the relationship of the Mental, Physical and Spiritual Well-being Scale to the response set of social desirability. Social desirability was assessed by correlating the Mental, Physical and Spiritual Well-being Scale responses of 178 participants with scores on the Marlowe-Crowne Social Desirability Scale. Pearson product-moment correlations were not significant and indicated that the Mental, Physical and Spiritual Well-being Scale did not elicit socially desirable responses.

  1. Validation and factorial invariance of children's attraction to physical activity (CAPA) scale in Portugal.

    PubMed

    Seabra, Ana C; Malina, Robert M; Parker, Melissa; Seabra, André; Brustad, Robert; Maia, José A; Fonseca, António M

    2014-01-01

    The Children's Attraction to Physical Activity (CAPA) scale assesses interest in and attraction to the physical activity (PA) of children of elementary school age. The original (25 items) and shorter versions (15 items) of the scale were developed and validated with American children. The purpose of this study was to cross-validate the shorter version of the CAPA scale for use with Portuguese schoolchildren and to examine the invariance of the multidimensional factor structure of the scale in two samples. The sample comprised 683 children (7-10 years) from public primary schools. The sample was divided into calibration and cross-validation samples. The scale was translated into Portuguese and underwent forward translation, synthesis of the translation and backward translation and was then subjected to expert committee review, pretest and reliability assessment. Internal consistency for each of the five subscales within the a priori 5-factor structure of the CAPA scale was evaluated through Cronbach's alpha, followed by a series of confirmatory factor analyses (CFAs) for both the calibration and cross-validation samples. The maximum likelihood robust estimation method was used. The CFA demonstrated that a 5-factor structural model of the Portuguese translation of the CAPA scale was invariant. The construct analysed had the same basic meaning and structural and item differences within the two samples. The results indicated that the CAPA scale is appropriate for use with Portuguese schoolchildren. The availability of a valid and reliable scale should enhance opportunities for further understanding of children's involvement in PA.

  2. Probing the frontiers of particle physics with tabletop-scale experiments.

    PubMed

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Modeling Small-Scale Physics of Waves and Ice in the MIZ

    NASA Astrophysics Data System (ADS)

    Orzech, M.; Veeramony, J.; Shi, F.; Bateman, S. P.; Calantoni, J.

    2016-02-01

    The physics of wave attenuation and ice edge retreat in the marginal ice zone (MIZ) is investigated at small (O(m)) scales with a coupled model system. Waves are simulated with the phase-dependent, finite-volume/finite-difference model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of individually tracked smaller particles using the discrete element method in LIGGGHTS (Kloss et al., 2012). The physical and mechanical properties of fluid and ice are recreated as authentically as possible, with the aim of creating a system that can supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. In general, small-scale mechanisms for the dissipation of energy in waves passing through the MIZ remain poorly understood and have not been well delineated or measured. The wave-ice virtual experiments include a range of scenarios, each of which investigates a specific, varying property or process of waves or ice while keeping other parameters fixed. For all cases, the exchange of energy and momentum between waves and ice is tracked and recorded throughout the experiment. Simulation results shed light on the relative importance of processes such as ice floe collisions, fracturing, and drag, in comparison to properties such as wave energy levels, ice floe size distribution and material strength, and wave/floe length-scale ratios. Discussion will focus on how the coupled system will be used to test existing wave-ice parameterizations for large-scale climate models and to develop new, improved alternatives. References:>Kloss, C., et al. (2012). Prog. in Comp. Fluid Dyn. 12(2/3), 140-152.>Ma, G., et al. (2012). Oc. Mod. 43-44, 22-35.

  4. The effects of the "physical BEMER® vascular therapy", a method for the physical stimulation of the vasomotion of precapillary microvessels in case of impaired microcirculation, on sleep, pain and quality of life of patients with different clinical pictures on the basis of three scientifically validated scales.

    PubMed

    Bohn, Wolfgang; Hess, Lorenzo; Burger, Ralph

    2013-01-01

    As part of the statutory market monitoring of certified medical devices, 658 valid patient questionnaires were evaluated between April 2011 and March 2013. The questions consisted mainly of three scientifically recognized scales for assessing the changes of sleep, pain and quality of life in patients who had used the "physical BEMER® vascular therapy" for different diseases over 6 weeks. The result clearly shows that there are significant improvements in all areas surveyed through the application of this complementary treatment option, regardless of the underlying disease.

  5. The butterfly effect for physics laboratories

    NASA Astrophysics Data System (ADS)

    Claycomb, James R.; Valentine, John H.

    2015-03-01

    A low-cost chaos dynamics lab is developed for quantitative demonstration of the butterfly effect using a magnetic pendulum. Chaotic motion is explored by recording magnetic time series. Students analyze the data in Excel® to investigate the butterfly effect as well as the reconstruction of the strange attractor using time delay plots. The lab exercise is suitable for junior-level modern physics laboratories, or as an extension to traditional first-year laboratories exploring pendulum motion.

  6. Probing the scale of new physics by Advanced LIGO/VIRGO

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mazumdar, A.

    2016-05-01

    We show that if the new physics beyond the standard model is associated with a first-order phase transition around 107- 108 GeV , the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.

  7. GENASIS Basics: Object-oriented utilitarian functionality for large-scale physics simulations (Version 2)

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2017-05-01

    GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.

  8. Psychometric Evaluation of the Physical Activity Enjoyment Scale in Adults with Functional Limitations.

    PubMed

    Murrock, Carolyn J; Bekhet, Abir; Zauszniewski, Jaclene A

    2016-01-01

    Enjoyment is an important construct for understanding physical activity participation, and it has not been examined in adults with functional limitations. This secondary analysis reported the reliability and validity of the Physical Activity Enjoyment Scale (PACES) in a convenience sample of 40 adults with functional limitations. The participants completed the PACES, Center for Epidemiological Studies Depression Scale (CES-D), and the Late Life Function and Disability Instrument (LLFDI) prior to beginning a 12-week feasibility dance intervention study. Results indicated reliability as Cronbach's alpha was .95 and mean inter-item correlation was .52. To further support reliability, homogeneity of the instrument was evaluated using item-to-total scale correlations. Homogeneity was supported as all items had corrected item-to-total correlations greater than .30. For validity, the PACES was significantly related to only the Physical Function component of the LLFDI (r = .38, p = .02), but not the CES-D. Exploratory factor analysis revealed a 3-factor structure that accounted for 73.76% of the variance. This feasibility intervention dance study represented the first attempt to examine the psychometric properties of the PACES in adults with functional limitations. The findings demonstrate support for the scale's reliability and validity among adults with functional limitations. Results are informative as further psychometric testing of the PACES is recommended using randomized clinical trials with larger sample sizes. Enjoyment for physical activity is an important construct for understanding physical activity participation in adults with functional limitations.

  9. Scale Effects in Moral Relevance Assessment.

    PubMed

    Nagel, Jonas; Rybak, Andrej

    2017-03-01

    Research on moral judgment often employs bipolar rating scales to assess whether the difference between two contrasted options is judged to be morally relevant. We give an account of how different numbers of response options provided on such scales (odd vs. even) change the meaning of the test question by communicating different implicit presuppositions. We demonstrate experimentally that these changes can qualitatively affect the moral relevance judgments that subjects express in response to a given judgment problem. Several alternative explanations in terms of trivial measurement distortion are tested and refuted, and we present suggestive evidence as to what kind of factors might be prone to scale effects. The findings underscore that expressed moral judgments are constructed ad hoc and do not necessarily reflect the content of underlying stable moral commitments. We discuss implications for theories and methodology in moral psychology and in judgment and decision-making research more generally.

  10. High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer-scale.

    PubMed

    Newns, Dennis M; Elmegreen, Bruce G; Liu, Xiao-Hu; Martyna, Glenn J

    2012-07-17

    Field effect transistors are reaching the limits imposed by the scaling of materials and the electrostatic gating physics underlying the device. In this Communication, a new type of switch based on different physics, which combines known piezoelectric and piezoresistive materials, is described and is shown by theory and simulation to achieve gigahertz digital switching at low voltage (0.1 V).

  11. Scalable WIM: effective exploration in large-scale astrophysical environments.

    PubMed

    Li, Yinggang; Fu, Chi-Wing; Hanson, Andrew J

    2006-01-01

    Navigating through large-scale virtual environments such as simulations of the astrophysical Universe is difficult. The huge spatial range of astronomical models and the dominance of empty space make it hard for users to travel across cosmological scales effectively, and the problem of wayfinding further impedes the user's ability to acquire reliable spatial knowledge of astronomical contexts. We introduce a new technique called the scalable world-in-miniature (WIM) map as a unifying interface to facilitate travel and wayfinding in a virtual environment spanning gigantic spatial scales: Power-law spatial scaling enables rapid and accurate transitions among widely separated regions; logarithmically mapped miniature spaces offer a global overview mode when the full context is too large; 3D landmarks represented in the WIM are enhanced by scale, positional, and directional cues to augment spatial context awareness; a series of navigation models are incorporated into the scalable WIM to improve the performance of travel tasks posed by the unique characteristics of virtual cosmic exploration. The scalable WIM user interface supports an improved physical navigation experience and assists pragmatic cognitive understanding of a visualization context that incorporates the features of large-scale astronomy.

  12. Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing.

    PubMed

    Meacham, J Mark; Durvasula, Kiranmai; Degertekin, F Levent; Fedorov, Andrei G

    2014-02-01

    Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems.

  13. Physical Methods for Intracellular Delivery: Practical Aspects from Laboratory Use to Industrial-Scale Processing

    PubMed Central

    Meacham, J. Mark; Durvasula, Kiranmai; Degertekin, F. Levent; Fedorov, Andrei G.

    2015-01-01

    Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems. PMID:23813915

  14. [Validity and reliability of a scale to assess self-efficacy for physical activity in elderly].

    PubMed

    Borges, Rossana Arruda; Rech, Cassiano Ricardo; Meurer, Simone Teresinha; Benedetti, Tânia Rosane Bertoldo

    2015-04-01

    This study aimed to analyze the confirmatory factor validity and reliability of a self-efficacy scale for physical activity in a sample of 118 elderly (78% women) from 60 to 90 years of age. Mplus 6.1 was used to evaluate the confirmatory factor analysis. Reliability was tested by internal consistency and temporal stability. The original scale consisted of five items with dichotomous answers (yes/no), independently for walking and moderate and vigorous physical activity. The analysis excluded the item related to confidence in performing physical activities when on vacation. Two constructs were identified, called "self-efficacy for walking" and "self-efficacy for moderate and vigorous physical activity", with a factor load ≥ 0.50. Internal consistency was adequate both for walking (> 0.70) and moderate and vigorous physical activity (> 0.80), and temporal stability was adequate for all the items. In conclusion, the self-efficacy scale for physical activity showed adequate validity, reliability, and internal consistency for evaluating this construct in elderly Brazilians.

  15. Physics of intense, high energy radiation effects.

    SciTech Connect

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  16. Psychometric properties of the Revised Physical and Social Anhedonia Scales in non-clinical young adults.

    PubMed

    Fonseca-Pedrero, Eduardo; Paino, Mercedes; Lemos-Giráldez, Serafín; García-Cueto, Eduardo; Villazón-García, Ursula; Bobes, Julio; Muñiz, José

    2009-11-01

    Anhedonia, a central dimension within the schizotypy construct, has been considered to be a promising vulnerability marker for schizophrenia-spectrum disorders. The Revised Physical Anhedonia Scale (RPhA) and Revised Social Anhedonia Scale (RSAS) are two self-reports widely used in the assessment of anhedonia; however, they psychometric characteristics have been scarcely investigated in Spanish population. The objective of the current work was to study the psychometric properties of the Revised Physical and Social Anhedonia Scales in non-clinical young adults. The sample was composed of 728 college students with a mean age of 20.1 years (SD = 2.5). The data indicated that the scales showed adequate psychometric characteristics. The Cronbach alpha was 0.95 (RSAS) and 0.92 (RPhA) respectively. The confirmatory factor analysis carried out on the matrix of tetrachoric correlations showed that both scales presented an essentially unidimensional solution. The Revised Physical and Social Anhedonia Scales seem to be adequate for psychosis-risk assessment in non-clinical populations. Future research should further investigate the construct validity in other populations and cultures as well as study its relation to emotional aspects and cognitive endophenotypes.

  17. Local scale effects of disease on biodiversity.

    PubMed

    Smith, Katherine F; Behrens, Michael D; Sax, Dov F

    2009-06-01

    To date, ecologists and conservation biologists have focused much of their attention on the population and ecosystem effects of disease at regional scales and the role that diseases play in global species extinction. Far less research has been dedicated to identifying the effects that diseases can have on local scale species assemblages. We examined the role of infectious disease in structuring local biodiversity. Our intention was to illustrate how variable outcomes can occur by focusing on three case studies: the influence of chestnut blight on forest communities dominated by chestnut trees, the influence of red-spot disease on urchin barrens and kelp forests, and the influence of sylvatic plague on grassland communities inhabited by prairie dogs. Our findings reveal that at local scales infectious disease seems to play an important, though unpredictable, role in structuring species diversity. Through our case studies, we have shown that diseases can cause drastic population declines or local extirpations in keystone species, ecosystem engineers, and otherwise abundant species. These changes in local diversity may be very important, particularly when considered alongside potentially corresponding changes in community structure and function, and we believe that future efforts to understand the importance of disease to species diversity should have an increased focus on these local scales.

  18. Effects of scaling on centrifugal blood pumps.

    PubMed

    Wong, Yew Wah; Chan, Weng Kong; Yu, S C M; Chua, Leok Poh

    2002-11-01

    Experimental studies on the effects of scaling on the performance of centrifugal blood pumps were conducted in a closed-loop test rig. For the prototype, eight different impellers of the same outer diameter of 25 mm were tested at 1,500, 2,000, and 2,500 revolutions per minute (rpm) using blood analog as fluid medium. This corresponds to Reynolds numbers (Re) of 25,900, 34,500, and 43,200, respectively. The results indicated that the nondimensional pump characteristic is a function of Re. This is understandable since the typical operating Re for centrifugal blood pumps is less than 100,000. Thus, the effects of scaling cannot be ignored for centrifugal blood pumps. Experiments on a 5x scaled-up model have also indicated that the scaled-up model is more efficient than the prototype model. Our results showed that in the range of Re tested, the nondimensional head versus flow curve is a function of Re to the power of approximately 0.25. It is observed that the nondimensional head versus flow is a function of diameter ratio to the power of 0.2.

  19. Seebeck effect at the atomic scale.

    PubMed

    Lee, Eui-Sup; Cho, Sanghee; Lyeo, Ho-Ki; Kim, Yong-Hyun

    2014-04-04

    The atomic variations of electronic wave functions at the surface and electron scattering near a defect have been detected unprecedentedly by tracing thermoelectric voltages given a temperature bias [Cho et al., Nat. Mater. 12, 913 (2013)]. Because thermoelectricity, or the Seebeck effect, is associated with heat-induced electron diffusion, how the thermoelectric signal is related to the atomic-scale wave functions and what the role of the temperature is at such a length scale remain very unclear. Here we show that coherent electron and heat transport through a pointlike contact produces an atomic Seebeck effect, which is described by the mesoscopic Seebeck coefficient multiplied by an effective temperature drop at the interface. The mesoscopic Seebeck coefficient is approximately proportional to the logarithmic energy derivative of local density of states at the Fermi energy. We deduced that the effective temperature drop at the tip-sample junction could vary at a subangstrom scale depending on atom-to-atom interaction at the interface. A computer-based simulation method of thermoelectric images is proposed, and a point defect in graphene was identified by comparing experiment and the simulation of thermoelectric imaging.

  20. Seebeck Effect at the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Lee, Eui-Sup; Cho, Sanghee; Lyeo, Ho-Ki; Kim, Yong-Hyun

    2014-04-01

    The atomic variations of electronic wave functions at the surface and electron scattering near a defect have been detected unprecedentedly by tracing thermoelectric voltages given a temperature bias [Cho et al., Nat. Mater. 12, 913 (2013)]. Because thermoelectricity, or the Seebeck effect, is associated with heat-induced electron diffusion, how the thermoelectric signal is related to the atomic-scale wave functions and what the role of the temperature is at such a length scale remain very unclear. Here we show that coherent electron and heat transport through a pointlike contact produces an atomic Seebeck effect, which is described by the mesoscopic Seebeck coefficient multiplied by an effective temperature drop at the interface. The mesoscopic Seebeck coefficient is approximately proportional to the logarithmic energy derivative of local density of states at the Fermi energy. We deduced that the effective temperature drop at the tip-sample junction could vary at a subangstrom scale depending on atom-to-atom interaction at the interface. A computer-based simulation method of thermoelectric images is proposed, and a point defect in graphene was identified by comparing experiment and the simulation of thermoelectric imaging.

  1. Brief scales to assess physical activity and sedentary equipment in the home

    PubMed Central

    2010-01-01

    Background Sedentary behaviors such as TV viewing are associated with childhood obesity, while physical activity promotes healthy weight. The role of the home environment in shaping these behaviors among youth is poorly understood. The study purpose was to examine the reliability of brief parental proxy-report and adolescent self-report measures of electronic equipment and physical activity equipment in the home and to assess the construct validity of these scales by examining their relationship to physical activity, sedentary behavior, and weight status of children and adolescents. Methods Participants were adolescents (n = 189; mean age = 14.6), parents of adolescents (n = 171; mean age = 45.0), and parents of younger children (n = 116; parents mean age = 39.6; children's mean age = 8.3) who completed two surveys approximately one month apart. Measures included a 21-item electronic equipment scale (to assess sedentary behavior facilitators in the home, in the child or adolescent's bedroom, and portable electronics) and a 14-item home physical activity equipment scale. Home environment factors were examined as correlates of children's and adolescents' physical activity, sedentary behavior, and weight status after adjusting for child age, sex, race/ethnicity, household income, and number of children in the home. Results Most scales had acceptable test-retest reliability (intraclass correlations were .54 - .92). Parent and adolescent reports were correlated. Electronic equipment in adolescents' bedrooms was positively related to sedentary behavior. Activity equipment in the home was inversely associated with television time in adolescents and children, and positively correlated with adolescents' physical activity. Children's BMI z-score was positively associated with having a television in their bedroom. Conclusions The measures of home electronic equipment and activity equipment were similarly reliable when reported by parents and by adolescents. Home environment

  2. Psychometric Properties of the “Sport Motivation Scale (SMS)” Adapted to Physical Education

    PubMed Central

    Granero-Gallegos, Antonio; Baena-Extremera, Antonio; Gómez-López, Manuel; Sánchez-Fuentes, José Antonio; Abraldes, J. Arturo

    2014-01-01

    The aim of this study was to investigate the factor structure of a Spanish version of the Sport Motivation Scale adapted to physical education. A second aim was to test which one of three hypothesized models (three, five and seven-factor) provided best model fit. 758 Spanish high school students completed the Sport Motivation Scale adapted for Physical Education and also completed the Learning and Performance Orientation in Physical Education Classes Questionnaire. We examined the factor structure of each model using confirmatory factor analysis and also assessed internal consistency and convergent validity. The results showed that all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model (χ2/gl = 2.73; ECVI = 1.38) as it produces better values when adapted to physical education, that five-factor model (χ2/gl = 2.82; ECVI = 1.44) and three-factor model (χ2/gl = 3.02; ECVI = 1.53). Key Points Physical education research conducted in Spain has used the version of SMS designed to assess motivation in sport, but validity reliability and validity results in physical education have not been reported. Results of the present study lend support to the factorial validity and internal reliability of three alternative factor structures (3, 5, and 7 factors) of SMS adapted to Physical Education in Spanish. Although all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model. PMID:25435772

  3. Validity of the German Version of the Continuous-Scale Physical Functional Performance 10 Test

    PubMed Central

    Bridenbaugh, Stephanie A.; Kressig, Reto W.

    2017-01-01

    Background The Continuous-Scale Physical Functional Performance 10 Test (CS-PFP 10) quantitatively assesses physical functional performance in older adults who have a broad range of physical functional ability. This study assessed the validity and reliability of the CS-PFP 10 German version. Methods Forward-translations and backtranslations as well as cultural adaptions of the test were conducted. Participants were German-speaking Swiss community-dwelling adults aged 64 and older. Concurrent validity was assessed using Pearson correlation coefficients between CS-PFP 10 and gait velocity, Timed Up and Go Test, hand grip strength, SF-36 physical function domain, and Freiburger Physical Activity Questionnaire. Internal consistency was calculated by Cronbach's alpha. Results Backtranslation and cultural adaptions were accepted by the CS-PFP 10 developer. CS-PFP 10 total score and subscores (upper body strength, upper body flexibility, lower body strength, balance and coordination, and endurance) correlated significantly with all measures of physical function tested. Internal consistency was high (Cronbach's alpha 0.95–0.98). Conclusion The CS-PFP 10 German version is valid and reliable for measuring physical functional performance in German-speaking Swiss community-dwelling older adults. Quantifying physical function is essential for clinical practice and research and provides meaningful insight into physical functional performance of older adults. This trial is registered with ClinicalTrials.gov NCT01539200. PMID:28775900

  4. [Physical activity and aging: opposing physiologic effects].

    PubMed

    Charansonney, O

    2012-11-01

    The benefits of physical activity in preventing premature mortality have been established by a large set of epidemiological studies. These benefits have been shown both in middle-aged and elderly individuals. Furthermore, the reduction of acute events such as myocardial infarction observed with higher levels of physical activity together with the increase in disease-free life expectancy among the most active individuals supports physical activity's antiaging effect. This review highlights two models supporting this effect. The first model describes the path to frailty and the second explains that immobilization is a stressor which triggers stress-responses responsible for many chronic diseases. Aging reduces the physiological reserve and can lead to frailty when this reserve cannot allow an appropriate adaptation of the aging body to environmental challenges. The components of this physiological reserve can easily be measured by cardiorespiratory testing. Among them are heart rate reserve and VO(2)max, the maximal body oxygen consumption. The opposite effects of exercise training and aging on the physiological reserve are detailed. Sedentary lifestyle accelerates the effects of aging in susceptible individuals. Sedentary lifestyle induces mechanisms which lead to risk factors of chronic diseases and, eventually, to premature death. These inappropriate mechanisms and their consequences constitute the sedentary lifestyle syndrome. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Development of four self-report measures of job stressors and strain: Interpersonal Conflict at Work Scale, Organizational Constraints Scale, Quantitative Workload Inventory, and Physical Symptoms Inventory.

    PubMed

    Spector, P E; Jex, S M

    1998-10-01

    Despite the widespread use of self-report measures of both job-related stressors and strains, relatively few carefully developed scales for which validity data exist are available. In this article, we discuss 3 job stressor scales (Interpersonal Conflict at Work Scale, Organizational Constraints Scale, and Quantitative Workload Inventory) and 1 job strain scale (Physical Symptoms Inventory). Using meta-analysis, we combined the results of 18 studies to provide estimates of relations between our scales and other variables. Data showed moderate convergent validity for the 3 job stressor scales, suggesting some objectively to these self-reports. Norms for each scale are provided.

  6. Affective Response to Physical Activity: Testing for Measurement Invariance of the Physical Activity Affect Scale across Active and Non-Active Individuals

    ERIC Educational Resources Information Center

    Carpenter, Laura C.; Tompkins, Sara Anne; Schmiege, Sarah J.; Nilsson, Renea; Bryan, Angela

    2010-01-01

    Affective responses to physical activity are assumed to play a role in exercise initiation and maintenance. The Physical Activity Affect Scale measures four dimensions of an individual's affective response to exercise. Group differences in the interpretation of scale items can impact the interpretability of mean differences, underscoring the need…

  7. Introduction to SCALE-UP: Student-Centered Activities for Large Enrollment University Physics.

    ERIC Educational Resources Information Center

    Beichner, Robert J.; Saul, Jeffery M.; Allain, Rhett J.; Deardorff, Duane L.; Abbott, David S.

    SCALE-UP is an extension of the highly successful IMPEC (Integrated Math, Physics, Engineering, and Chemistry) project, one of North Carolina State's curricular reform efforts undertaken as part of the SUCCEED coalition. The authors utilize the interactive, collaboratively based instruction that worked well in smaller class settings and find ways…

  8. Reliability and Construct Validity of Turkish Version of Physical Education Activities Scale

    ERIC Educational Resources Information Center

    Memis, Ugur Altay

    2013-01-01

    This research was conducted to examine the reliability and construct validity of Turkish version of physical education activities scale (PEAS) which was developed by Thomason (2008). Participants in this study included 313 secondary and high school students from 7th to 11th grades. To analyse the data, confirmatory factor analysis, post hoc…

  9. Physical Education Teacher Attitudes toward Fitness Tests Scale: Cross-Revalidation and Modification

    ERIC Educational Resources Information Center

    Keating, Xiaofen D.; Guan, Jianmin; Ferguson, Robert H.; Chen, Li; Bridges, Dwan M.

    2008-01-01

    This study aimed to provide further evidence of validity and reliability for the Physical Education Teacher Attitudes toward Fitness Tests Scale (PETAFTS), which consisted of affective and cognitive domains. There were two subdomains in the affective domain (i.e., enjoyment of implementing fitness tests and enjoyment of using test results) and one…

  10. Retrospective Assessment of Childhood Sexual and Physical Abuse: A Comparison of Scaled and Behaviorally Specific Approaches

    ERIC Educational Resources Information Center

    DiLillo, David; Fortier, Michelle A.; Hayes, Sarah A.; Trask, Emily; Perry, Andrea R.; Messman-Moore, Terri; Fauchier, Angele; Nash, Cindy

    2006-01-01

    This study compared retrospective reports of childhood sexual and physical abuse as assessed by two measures: the Childhood Trauma Questionnaire (CTQ), which uses a Likert-type scaling approach, and the Computer Assisted Maltreatment Inventory (CAMI), which employs a behaviorally specific means of assessment. Participants included 1,195…

  11. Retrospective Assessment of Childhood Sexual and Physical Abuse: A Comparison of Scaled and Behaviorally Specific Approaches

    ERIC Educational Resources Information Center

    DiLillo, David; Fortier, Michelle A.; Hayes, Sarah A.; Trask, Emily; Perry, Andrea R.; Messman-Moore, Terri; Fauchier, Angele; Nash, Cindy

    2006-01-01

    This study compared retrospective reports of childhood sexual and physical abuse as assessed by two measures: the Childhood Trauma Questionnaire (CTQ), which uses a Likert-type scaling approach, and the Computer Assisted Maltreatment Inventory (CAMI), which employs a behaviorally specific means of assessment. Participants included 1,195…

  12. The Psychometric Properties of the Physical Education Lesson Attitude Scale for Preservice Classroom Teachers

    ERIC Educational Resources Information Center

    Oncu, Erman

    2013-01-01

    The purpose of this study was to examine the psychometric properties of the Physical Education Attitude Scale for Preservice Classroom Teachers (PEAS-PCT). The study was conducted on 561 Turkish preservice classroom teachers at the end of the 2011-2012 Fall Semester. Exploratory and confirmatory factor analyses were conducted to ascertain the…

  13. Reliability and Construct Validity of Turkish Version of Physical Education Activities Scale

    ERIC Educational Resources Information Center

    Memis, Ugur Altay

    2013-01-01

    This research was conducted to examine the reliability and construct validity of Turkish version of physical education activities scale (PEAS) which was developed by Thomason (2008). Participants in this study included 313 secondary and high school students from 7th to 11th grades. To analyse the data, confirmatory factor analysis, post hoc…

  14. Physical Education Teacher Attitudes toward Fitness Tests Scale: Cross-Revalidation and Modification

    ERIC Educational Resources Information Center

    Keating, Xiaofen D.; Guan, Jianmin; Ferguson, Robert H.; Chen, Li; Bridges, Dwan M.

    2008-01-01

    This study aimed to provide further evidence of validity and reliability for the Physical Education Teacher Attitudes toward Fitness Tests Scale (PETAFTS), which consisted of affective and cognitive domains. There were two subdomains in the affective domain (i.e., enjoyment of implementing fitness tests and enjoyment of using test results) and one…

  15. The Children's Perceived Locus of Causality Scale for Physical Education

    ERIC Educational Resources Information Center

    Pannekoek, Linda; Piek, Jan P.; Hagger, Martin S.

    2014-01-01

    A mixed methods design was applied to evaluate the application of the Perceived Locus of Causality scale (PLOC) to preadolescent samples in physical education settings. Subsequent to minor item adaptations to accommodate the assessment of younger samples, qualitative pilot tests were performed (N = 15). Children's reports indicated the need…

  16. Evaluation of Social Cognitive Scaling Response Options in the Physical Activity Domain

    ERIC Educational Resources Information Center

    Rhodes, Ryan E.; Matheson, Deborah Hunt; Mark, Rachel

    2010-01-01

    The purpose of this study was to compare the reliability, variability, and predictive validity of two common scaling response formats (semantic differential, Likert-type) and two numbers of response options (5-point, 7-point) in the physical activity domain. Constructs of the theory of planned behavior were chosen in this analysis based on its…

  17. Reliability and Validity of the Commitment to Physical Activity Scale for Adolescents.

    PubMed

    Robbins, Lorraine B; Ling, Jiying; Wesolek, Stacey M; Kazanis, Anamaria S; Bourne, Kelly A; Resnicow, Ken

    2016-01-05

    Purpose . To examine psychometric properties of a Commitment to Physical Activity Scale for Adolescents (CPASA). Design . Two test-retest studies and a prospective study, approved by a university institutional review board, were conducted in midwestern U.S. urban areas. Setting . The first test-retest study occurred in four community centers, the second test-retest study took place in a community school, and the prospective study occurred in eight middle schools. Subjects . To measure commitment at baseline and 1 week later, 51 girls in the first test-retest study completed an original 26-item scale, and 91 in the second test-retest study completed a revised 11-item scale. In the prospective study, 503 girls completed the 11-item scale. Measures . Commitment was measured via the CPASA. After completing the CPASA, girls in the prospective study wore ActiGraph GT3X-plus accelerometers that measured light, moderate, and vigorous physical activity (LMVPA) and moderate to vigorous physical activity (MVPA). Analysis . Internal consistency and test-retest reliability were estimated. Both exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were conducted to cross-validate the factor structure. Results . For the 11-item CPASA, Cronbach α ranged from .81 to .82, and test-retest reliability was .88. Both EFA and CFA indicated a single factor. The scale was significantly correlated with LMVPA (r = .10) and MVPA (r = .11). Conclusion . The 11-item CPASA demonstrated acceptable reliability and validity with girls.

  18. Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel

    2017-01-01

    We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.

  19. Neutrino Physics from the Cosmic Microwave Background and Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork N.; Kaplinghat, Manoj

    2016-10-01

    Cosmology and neutrino physics have converged into a recent discovery era. The success of the standard model of cosmology in explaining the cosmic microwave background and cosmological large-scale structure data allows for the possibility of measuring the absolute neutrino mass and providing exquisite constraints on the number of light degrees of freedom, including neutrinos. This sensitivity to neutrino physics requires the validity of some of the assumptions, including general relativity, inflationary cosmology, and standard thermal history, many of which can be tested with cosmological data. This sensitivity is also predicated on the robust handling of systematic uncertainties associated with different cosmological observables. We review several past, current, and future measurements of the cosmic microwave background and cosmological large-scale structure that allow us to do fundamental neutrino physics with cosmology.

  20. Physics and Dynamics Coupling Across Scales in the Next Generation CESM. Final Report

    SciTech Connect

    Bacmeister, Julio T.

    2015-06-12

    This project examines physics/dynamics coupling, that is, exchange of meteorological profiles and tendencies between an atmospheric model’s dynamical core and its various physics parameterizations. Most model physics parameterizations seek to represent processes that occur on scales smaller than the smallest scale resolved by the dynamical core. As a consequence a key conceptual aspect of parameterizations is an assumption about the subgrid variability of quantities such as temperature, humidity or vertical wind. Most existing parameterizations of processes such as turbulence, convection, cloud, and gravity wave drag make relatively ad hoc assumptions about this variability and are forced to introduce empirical parameters, i.e., “tuning knobs” to obtain realistic simulations. These knobs make systematic dependences on model grid size difficult to quantify.

  1. Physical attractiveness, physical effectiveness, and self-concept in late adolescents.

    PubMed

    Lerner, R M; Orlos, J B; Knapp, J R

    1976-01-01

    The differential role of various body attitudes in predicting the self-concepts of late adolescents (124 males and 218 females), enrolled in introductory psychology courses, was assessed. Subjects rated 24 body characteristics in terms of 1) how physically attractive they assumed these parts of their bodies were, and 2) how physically effective they assumed them to be; subjects also responded to a short self-concept scale. In accordance with the theory of Erikson (1968) and of McCandless (1970), it was expected that attractiveness attitudes should contribute more to the self-concepts of females than should effectiveness attitudes, while a reverse pattern of interrelatedness was expected for males. Results indicated a higher correspondence between what are seen as attractive body parts and what are viewed as effective body components for males than for females. Moreover, findings from step-wise multiple regression analyses of each sex group's ratings of the body parts for attractiveness and effectiveness, respectively, each with the criterion variable constituting mean self-concept score, were consistent with expectations. For females, the multiple correlation between attractiveness ratings and self-concept was greater than the multiple correlation between effectiveness ratings and self-concept, and more attractiveness variables than effectiveness variables were significant predictors of self-concept. The converse of these findings were obtained with the males' data. The relevance of these results for theories of personality development were discussed.

  2. Monitoring Physical and Biogeochemical Dynamics of Uranium Bioremediation at the Intermediate Scale

    NASA Astrophysics Data System (ADS)

    Tarrell, A. N.; Figueroa, L. A.; Rodriguez, D.; Haas, A.; Revil, A.

    2011-12-01

    Subsurface uranium above desired levels for aquifer use categories exists naturally and from historic mining and milling practices. In situ bioimmobilization offers a cost effective alternative to conventional pump and treat methods by stimulating growth of microorganisms that lead to the reduction and precipitation of uranium. Vital to the long-term success of in situ bioimmobilization is the ability to successfully predict and demonstrate treatment effectiveness to assure that regulatory goals are met. However, successfully monitoring the progress over time is difficult and requires long-term stewardship to ensure effective treatment due to complex physical and biogeochemical heterogeneity. In order to better understand these complexities and the resultant effect on uranium immobilization, innovative systematic monitoring approaches with multiple performance indicators must be investigated. A key issue for uranium bioremediation is the long term stability of solid-phase reduction products. It has been shown that a combination of data from electrode-based monitoring, self-potential monitoring, oxidation reduction potential (ORP), and water level sensors provides insight for identifying and localizing bioremediation activity and can provide better predictions of deleterious biogeochemical change such as pore clogging. In order to test the proof-of-concept of these sensing techniques and to deconvolve redox activity from other electric potential changing events, an intermediate scale 3D tank experiment has been developed. Well-characterized materials will be packed into the tank and an artificial groundwater will flow across the tank through a constant-head boundary. The experiment will utilize these sensing methods to image the electrical current produced by bacteria as well as indications of when and where electrical activity is occurring, such as with the reduction of radionuclides. This work will expand upon current knowledge by exploring the behavior of uranium

  3. Scaling of impulsive and long duration solar flares: different physics or different statistics?

    NASA Astrophysics Data System (ADS)

    Veselovsky, Igor

    Physically different phenomena, by their definition, should have different scaling in the generalized physical space of independent characteristic parameters (length, time, density, temperature, magnetic and electric fields etc.). For example, sound waves, electromagnetic waves and radiation, Alfv`n waves, convective flows, electric currents are physically different processes. e They are non-linearly coupled in solar flares. Statistical distributions do not always should obey these restrictions imposed by physics. They can demonstrate one or many populations of the same or different physical nature just because of similar geometry size, duration and amplitude scaling in ordinary 3D space. We apply the methods of dimensionless scaling analysis based on dissipative MHD and kinetic formulations for the classification of solar flares according to their duration. Impulsive and long duration flares are well represented by one statistical population described by the log normal distribution. Missing physical information about potential electric fields, openness degree and total radiation during flare events prevents complete classification. It will be related to the dimensionless parameters F (Faraday number), T (Trieste number) and the velocity-emission ratio Ve correspondingly. These three parameters characterize 1) the ratio between inductive and potential Coulomb electric fields, 2) opening degree of the flare volume against energy, momentum and mass transport and 3) the ratio between flare-like and CME-like energy release in solar eruptions. Examples will be presented and discussed. This study was supported by the RFBR grants 07-02-00147, 06-05-64500, INTAS 03-51-6202 and MSU Interdisciplinary Scientific Project. It is also fulfilled as a part of the Programs of the Russian Academy of Sciences: "Origin and evolution of stars and galaxies" (P-04), "Solar activity and physical processes in the Sun-Earth system" (P-16, Part 3) and "Plasma processes in the Solar system

  4. Effective wavelength scaling for optical antennas.

    PubMed

    Novotny, Lukas

    2007-06-29

    In antenna theory, antenna parameters are directly related to the wavelength lambda of incident radiation, but this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we show that antenna designs can be transferred to the optical frequency regime by replacing lambda by a linearly scaled effective wavelength lambda(eff)=n(1)+n(2)lambda/lambda(p), with lambda(p) being the plasma wavelength and n(1), n(2) being coefficients that depend on geometry and material properties. It is assumed that the antenna is made of linear segments with radii R < lambda. Optical antennas hold great promise for increasing the efficiency of photovoltaics, light-emitting devices, and optical sensors.

  5. The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales.

    PubMed

    Silva, Déborah R O; Ligeiro, Raphael; Hughes, Robert M; Callisto, Marcos

    2016-06-01

    Taxonomic richness is one of the most important measures of biological diversity in ecological studies, including those with stream macroinvertebrates. However, it is impractical to measure the true richness of any site directly by sampling. Our objective was to evaluate the effect of sampling effort on estimates of macroinvertebrate family and Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera richness at two scales: basin and stream site. In addition, we tried to determine which environmental factors at the site scale most influenced the amount of sampling effort needed. We sampled 39 sites in the Cerrado biome (neotropical savanna). In each site, we obtained 11 equidistant samples of the benthic assemblage and multiple physical habitat measurements. The observed basin-scale richness achieved a consistent estimation from Chao 1, Jack 1, and Jack 2 richness estimators. However, at the site scale, there was a constant increase in the observed number of taxa with increased number of samples. Models that best explained the slope of site-scale sampling curves (representing the necessity of greater sampling effort) included metrics that describe habitat heterogeneity, habitat structure, anthropogenic disturbance, and water quality, for both macroinvertebrate family and EPT genera richness. Our results demonstrate the importance of considering basin- and site-scale sampling effort in ecological surveys and that taxa accumulation curves and richness estimators are good tools for assessing sampling efficiency. The physical habitat explained a significant amount of the sampling effort needed. Therefore, future studies should explore the possible implications of physical habitat characteristics when developing sampling objectives, study designs, and calculating the needed sampling effort.

  6. Regional scale landslide risk assessment with a dynamic physical model - development, application and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Luna, Byron Quan; Vidar Vangelsten, Bjørn; Liu, Zhongqiang; Eidsvig, Unni; Nadim, Farrokh

    2013-04-01

    Landslide risk must be assessed at the appropriate scale in order to allow effective risk management. At the moment, few deterministic models exist that can do all the computations required for a complete landslide risk assessment at a regional scale. This arises from the difficulty to precisely define the location and volume of the released mass and from the inability of the models to compute the displacement with a large amount of individual initiation areas (computationally exhaustive). This paper presents a medium-scale, dynamic physical model for rapid mass movements in mountainous and volcanic areas. The deterministic nature of the approach makes it possible to apply it to other sites since it considers the frictional equilibrium conditions for the initiation process, the rheological resistance of the displaced flow for the run-out process and fragility curve that links intensity to economic loss for each building. The model takes into account the triggering effect of an earthquake, intense rainfall and a combination of both (spatial and temporal). The run-out module of the model considers the flow as a 2-D continuum medium solving the equations of mass balance and momentum conservation. The model is embedded in an open source environment geographical information system (GIS), it is computationally efficient and it is transparent (understandable and comprehensible) for the end-user. The model was applied to a virtual region, assessing landslide hazard, vulnerability and risk. A Monte Carlo simulation scheme was applied to quantify, propagate and communicate the effects of uncertainty in input parameters on the final results. In this technique, the input distributions are recreated through sampling and the failure criteria are calculated for each stochastic realisation of the site properties. The model is able to identify the released volumes of the critical slopes and the areas threatened by the run-out intensity. The obtained final outcome is the estimation

  7. Increase in ocean stratification reduces the aggregation power of fine-scale physical structure

    NASA Astrophysics Data System (ADS)

    Grados, D.; Fablet, R.; Colas, F.; Chaigneau, A.; Echevin, V.; Vasquez, L.; Castillo, R.; Bertrand, A.

    2016-02-01

    The near-surface ocean dynamics includes a variety of processes spanning characteristic horizontal scales from internal waves (IW) to submesoscale and mesoscale features. Recent works based on acoustic data showed that the vertical displacements of the oxycline depth, which separates the well-mixed oxygenated surface layer from the less oxygenated deeper ocean, provide a robust proxy of isopycnals displacements over a wide range of horizontal scales. Using a high-resolution acoustic data set in the Northern Humboldt Current System (NHCS) off Peru, the impact of fine-scale to mesoscale upper ocean dynamics over zooplankton and fish patchiness is investigated. The analysis reveals the existence of distinct features for the fine-scale range below 2-3 km, and clearly points out the existence of intense IW and submesoscale activity over the entire NCHS region. We also address the potential impact of climate variability on fine-scale oases for life that are created by upper ocean turbulence. Indeed stratification changes induced by climate variability could impact both the number and intensity of physical structures and, consequently, distribution patterns of marine life. Using 12 scientific surveys conducted between 2002 and 2011 off Peru, we show that fine-scale structures aggregate fewer organisms when the stratification increases. Climate variability might thus reduces the number and intensity of physical structures, and consequently, size and density of organisms patches with a potential negative impact on resultant trophic interactions.

  8. Modeling small-scale physical non-equilibrium and large-scale preferential fluid and solute transport in a structured soil

    SciTech Connect

    Gwo, J.P.; Jardine, P.M.; Wilson, G.V.; Yeh, G.-T.

    1994-09-01

    The deviation of non-reactive solute transport from that predicted by classical convection-dispersion equations is usually attributed to physical non-equilibrium caused by small- and large-scale pore structures in porous media. Diffusion of fluid and solute into micropores or rock matrix may occur locally, while fluid and solutes can also be channeled preferentially through interconnected macropores or fractures. A multiple-pore-region (MPR) approach with local advective-diffusive mass exchange is adopted to simulate soil column tracer breakthrough and field-scale tracer releases in the Melton Branch Subsurface Transport Facility within the Oak Ridge Reservation, Tennessee. The soil column simulation indicates that both inter-region mass exchange and intra-region convection-dispersion contribute to small-scale solute transport in approximately the same order of magnitude. The field-scale study suggests that advective mass exchange has minor effect on subsurface hydrographs, and that large diffusive mass exchange may retain tracers near the source area. Comparison of modeling results and field data suggests that subsurface bedding planes on the field site may be the cause of large-scale heterogeneity and preferential mass transport.

  9. Designing and Implementing Effective Adapted Physical Education Programs

    ERIC Educational Resources Information Center

    Kelly, Luke E.

    2011-01-01

    "Designing and Implementing Effective Adapted Physical Education Programs" was written to assist adapted and general physical educators who are dedicated to ensuring that the physical and motor needs of all their students are addressed in physical education. While it is anticipated that adapted physical educators, where available, will typically…

  10. Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations

    NASA Astrophysics Data System (ADS)

    Locatelli, R.; Bousquet, P.; Saunois, M.; Chevallier, F.; Cressot, C.

    2015-09-01

    With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modeling are gaining additional constraining data but facing new challenges. The chemical transport model (CTM) linking the flux space to methane mixing ratio space must be able to represent these different types of atmospheric constraints for providing consistent flux estimations. Here we quantify the impact of sub-grid-scale physical parameterization errors on the global methane budget inferred by inverse modeling. We use the same inversion setup but different physical parameterizations within one CTM. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer (PBL) are tested. Different atmospheric methane data sets are used as constraints (surface observations or satellite retrievals). At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid-scale parameterizations. Inversions using satellite total-column mixing ratios retrieved by GOSAT are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradients in methane emissions, indicating a slower interhemispheric exchange. At regional scale, the use of different sub-grid-scale parameterizations induces uncertainties ranging from 1.2 % (2.7 %) to 9.4 % (14.2 %) of methane emissions when using only surface measurements from a background (or an extended) surface network. Moreover, spatial distribution of methane emissions at regional scale can be very different, depending on both the physical parameterizations used for the modeling of the atmospheric transport and the observation data sets used to constrain the inverse

  11. Testing Higgs Coupling Precision and New Physics Scales at Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Ge, Shao-Feng; He, Hong-Jian; Xiao, Rui-Qing

    The next-generation lepton colliders, such as CEPC, FCC-ee, and ILC will make precision measurement of the Higgs boson properties. We first extract the Higgs coupling precision from Higgs observables at CEPC to illustrate the potential of future lepton colliders. Depending on the related event rates, the precision can reach percentage level for most couplings. Then, we try to estimate the new physics scales that can be indirectly probed with Higgs and electroweak precision observables. The Higgs observables, together with the existing electroweak precision observables, can probe new physics up to 10 TeV (40 TeV for the gluon-related operator 𝓞g) at 95% C.L. Including the Z/W mass measurements and Z-pole observables at CEPC further pushes the limit up to 35 TeV. Although Z-pole running is originally for the purpose of machine calibration, it can be as important as the Higgs observables for probing the new physics scales indirectly. The indirect probe of new physics scales at lepton colliders can mainly cover the energy range to be explored by the following hadron colliders of pp (50-100 TeV), such as SPPC and FCC-hh.

  12. Testing Higgs coupling precision and new physics scales at lepton colliders

    NASA Astrophysics Data System (ADS)

    Ge, Shao-Feng; He, Hong-Jian; Xiao, Rui-Qing

    2016-10-01

    The next-generation lepton colliders, such as CEPC, FCC-ee, and ILC will make precision measurement of the Higgs boson properties. We first extract the Higgs coupling precision from Higgs observables at CEPC to illustrate the potential of future lepton colliders. Depending on the related event rates, the precision can reach percentage level for most couplings. Then, we try to estimate the new physics scales that can be indirectly probed with Higgs and electroweak precision observables. The Higgs observables, together with the existing electroweak precision observables, can probe new physics up to 10 TeV (40 TeV for the gluon-related operator 𝒪g) at 95% C.L. Including the Z/W mass measurements and Z-pole observables at CEPC further pushes the limit up to 35 TeV. Although Z-pole running is originally for the purpose of machine calibration, it can be as important as the Higgs observables for probing the new physics scales indirectly. The indirect probe of new physics scales at lepton colliders can mainly cover the energy range to be explored by the following hadron colliders of pp (50-100 TeV), such as SPPC and FCC-hh.

  13. The Effect of Physical Education Climates on Elementary Students' Physical Activity Behaviors

    ERIC Educational Resources Information Center

    Wadsworth, Danielle D.; Robinson, Leah E.; Rudisill, Mary E.; Gell, Nancy

    2013-01-01

    Background: With the growing need for children from underserved populations to be physically active it is imperative to create developmentally appropriate and enjoyable physical education programs that promote physical activity. The purpose of this study was to determine the effects of mastery and performance climates on physical activity during…

  14. Effectiveness of School-Initiated Physical Activity Program on Secondary School Students' Physical Activity Participation

    ERIC Educational Resources Information Center

    Gråstén, Arto; Yli-Piipari, Sami; Watt, Anthony; Jaakkola, Timo; Liukkonen, Jarmo

    2015-01-01

    Background: The promotion of physical activity and health has become a universal challenge. The Sotkamo Physical Activity as Civil Skill Program was implemented to increase students' physical activity by promoting supportive psychological and physical school environment. The aim of this study was to evaluate the effectiveness of the…

  15. Effectiveness of School-Initiated Physical Activity Program on Secondary School Students' Physical Activity Participation

    ERIC Educational Resources Information Center

    Gråstén, Arto; Yli-Piipari, Sami; Watt, Anthony; Jaakkola, Timo; Liukkonen, Jarmo

    2015-01-01

    Background: The promotion of physical activity and health has become a universal challenge. The Sotkamo Physical Activity as Civil Skill Program was implemented to increase students' physical activity by promoting supportive psychological and physical school environment. The aim of this study was to evaluate the effectiveness of the…

  16. Physical-chemical treatment of rainwater runoff in recovery and recycling companies: Pilot-scale optimization.

    PubMed

    Blondeel, Evelyne; Depuydt, Veerle; Cornelis, Jasper; Chys, Michael; Verliefde, Arne; Van Hulle, Stijin Wim Henk

    2015-01-01

    Pilot-scale optimisation of different possible physical-chemical water treatment techniques was performed on the wastewater originating from three different recovery and recycling companies in order to select a (combination of) technique(s) for further full-scale implementation. This implementation is necessary to reduce the concentration of both common pollutants (such as COD, nutrients and suspended solids) and potentially toxic metals, polyaromatic hydrocarbons and poly-chlorinated biphenyls frequently below the discharge limits. The pilot-scale tests (at 250 L h(-1) scale) demonstrate that sand anthracite filtration or coagulation/flocculation are interesting as first treatment techniques with removal efficiencies of about 19% to 66% (sand anthracite filtration), respectively 18% to 60% (coagulation/flocculation) for the above mentioned pollutants (metals, polyaromatic hydrocarbons and poly chlorinated biphenyls). If a second treatment step is required, the implementation of an activated carbon filter is recommended (about 46% to 86% additional removal is obtained).

  17. Neutron electric dipole moment and probe of PeV scale physics

    NASA Astrophysics Data System (ADS)

    Aboubrahim, Amin; Ibrahim, Tarek; Nath, Pran

    2015-05-01

    The experimental limit on the neutron electric dipole moment is used as a possible probe of new physics beyond the standard model. Within the minimal supersymmetric standard model (MSSM), we use the current experimental limit on the neutron EDM and possible future improvement as a probe of high-scale supersymmetry (SUSY). Quantitative analyses show that scalar masses as large as a PeV and larger could be probed in an improved experiment far above the scales accessible at future colliders. We also discuss the neutron EDM as a probe of new physics models beyond MSSM. Specifically, we consider an MSSM extension with a particle content including a vectorlike multiplet. Such an extension brings in new sources of charge conjugation and parity (C P ) violation beyond those in the MSSM. These C P phases contribute to the EDM of the quarks and to the neutron EDM. These contributions are analyzed in this work where we include the supersymmetric loop diagrams involving the neutralinos, charginos, and the gluino, squark and mirror squark exchange diagrams at the one-loop level. We also take into account the contributions from the W , Z , quark and mirror quark exchanges arising from the mixings of the vectorlike generation with the three generations. It is shown that the experimental limit on the neutron EDM can be used to probe such new physics models. In the future, one expects the neutron EDM to improve an order of magnitude or more allowing one to extend the probe of high-scale SUSY and of new physics models. For the MSSM, the probe of high scales could go up to and beyond PeV scale masses.

  18. SCALE-UP Your Astronomy and Physics Undergraduate Courses to Incorporate Heliophysics

    NASA Astrophysics Data System (ADS)

    Al-Rawi, Ahlam N.; Cox, Amanda; Hoshino, Laura; Fitzgerald, Cullen; Cebulka, Rebecca; Rodriguez Garrigues, Alvar; Montgomery, Michele; Velissaris, Chris; Flitsiyan, Elena

    2016-01-01

    Although physics and astronomy courses include heliophysics topics, students still leave these courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program of incorporating heliophysics into undergraduate curriculum, UCF Physics has modified courses such as Astronomy (for non-science majors), Astrophysics, and SCALE-UP: Electricity and Magnetism for Engineers and Scientists to incorporate heliophysics topics. In this presentation, we discuss these incorporations and give examples that have been published in NASA Wavelength. In an associated poster, we present data on student learnin

  19. Physical processes affecting turbidity in a tidal marsh across a range of time scales

    NASA Astrophysics Data System (ADS)

    Arnold, W.; Poindexter, C.

    2016-12-01

    The direction of net suspended sediment flux, whether into or out of a tidal marsh, can determine whether a marsh is aggrading or eroding. Measuring net suspended sediment fluxes or attributing trends in these fluxes to a particular physical processes is challenging because suspended sediment concentrations are highly variable in time. We used singular spectrum analysis for time series with missing data (SSAM) to observe the relative effects on turbidity of physical processes occurring on different time scales at the Rush Ranch Open Space Preserve. This Preserve covers the largest contiguous area of full-tidal marsh remaining within Suisun Bay, the eastern most subembayment of San Francisco Bay. A long-term monitoring station at First Mallard Slough within the Preserve measures turbidity. Our analysis of of this turbidity record isolated the contribution to total variance from different tides and from annual cycles of San Francisco Bay freshwater inflow, sediment deposition and wind-driven sediment resuspension. Surprisingly, the contribution from diurnal and semidiurnal tidal constituents (30%) was smaller than the contribution from annual cycles of freshwater inflow, sediment deposition and resuspension (38%). This result contrasts with the original implementation of SSAM to suspended sediment concentration, which was conducted in the central San Francisco Bay. This previous work indicated a significant yet smaller contribution (13%) to total suspended sediment concentration variance from annual cycles (Schoellhamer, D. H., 2002, Continental Shelf Research., 22, 1857-1866). The reason for the contrast relates in part to the location of the First Mallard Slough more than 10 km along the tidal channel network from Suisun Bay. At this location, the lowest frequency variation in suspended sediment is accentuated. Annual peaks in turbidity at First Mallard depend not only on spring and summer wind-driven resuspension of sediment in San Pablo Bay but also its co

  20. Spatial scaling of the binocular capture effect.

    PubMed

    Raghunandan, Avesh; Anderson, Coleman S; Saladin, James J

    2009-03-01

    Binocular "capture" occurs when the perceived visual direction of a monocular stimulus is displaced in the direction of the cyclopean visual direction of nearby binocular targets. This effect increases with the vertical separation of broadband monocular stimuli. The present study investigated whether the "capture" effect exhibits a systematic relationship with the spatial frequency composition of monocular lines and vertical separation. Subjects judged the horizontal misalignment of 66 arc min vertical spatial frequency ribbons that were temporally interleaved with a random dot depth edge (3.2 degrees) for 108 ms. Spatial frequency ribbons were constructed from horizontal cosine gratings windowed by a 4 arc min vertical Gaussian envelope. The bottom half of the depth edge was presented with zero relative disparity, whereas the top half was presented with 10 arc min of crossed or uncrossed relative disparity. Four vertical separations (8, 16, 30, and 60 arc min) and three ribbon spatial frequencies (1, 4, and 8 cpd) were tested. The horizontal ribbon offset corresponding to 50% performance was calculated for each combination of depth condition, ribbon spatial frequency, and vertical separation. The magnitude of the "capture" effect was consistently larger for higher spatial frequency ribbons and decreased with decreasing vertical separation. When vertical separation was expressed as multiples of spatial periods of the respective ribbon spatial frequency, the magnitude of effect was significantly larger for separations greater than about one spatial period. The systematic scaling of the "capture" effect with spatial frequency and vertical separation is strongly suggestive of the operation of multiple spatial scale mechanisms; similar to those advocated for the processing of relative positional acuity with increasing vertical separation of monocular targets.

  1. A tomographic physical phantom of the newborn child with real-time dosimetry. II. Scaling factors for calculation of mean organ dose in pediatric radiography

    SciTech Connect

    Staton, Robert J.; Jones, A. Kyle; Lee, Choonik; Hintenlang, David E.; Arreola, Manuel M.; Williams, Jonathon L.; Bolch, Wesley E.

    2006-09-15

    Following the recent completion of a tomographic physical newborn dosimetry phantom with incorporated metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system, it was necessary to derive scaling factors in order to calculate organ doses in the physical phantom given point dose measurements via the MOSFET dosimeters (preceding article in this issue). In this study, we present the initial development of scaling factors using projection radiograph data. These point-to-organ dose scaling factors (SF{sub POD}) were calculated using a computational phantom created from the same data set as the physical phantom, but which also includes numerous segmented internal organs and tissues. The creation of these scaling factors is discussed, as well as the errors associated when using only point dose measurements to calculate mean organ doses and effective doses in physical phantoms. Scaling factors for various organs ranged from as low as 0.70 to as high as 1.71. Also, the ability to incorporate improvements in the computational phantom into the physical phantom using scaling factors is discussed. An comprehensive set of SF{sub POD} values is presented in this article for application in pediatric radiography of newborn patients.

  2. The effects of exergaming on physical activity in a third-grade physical education class.

    PubMed

    Shayne, Rachel K; Fogel, Victoria A; Miltenberger, Raymond G; Koehler, Shannon

    2012-01-01

    We compared the effects of exergaming and traditional physical education on physical activity among 4 active children who were not overweight and who had experience with the exergaming activities prior to the study. Results showed that exergaming produced substantially higher percentages of physical activity and opportunity to engage in physical activity. In addition, an evaluation of the exergaming equipment showed that exergaming stations were associated with differential levels of physical activity across participants.

  3. Scaling and correlation of human movements in cyberspace and physical space.

    PubMed

    Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2014-11-01

    Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit 〈f〉 and its fluctuation σ:σ∼〈f〉^{β} with β≈1.2. The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

  4. Scaling and correlation of human movements in cyberspace and physical space

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2014-11-01

    Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit and its fluctuation σ :σ ˜β with β ≈1.2 . The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

  5. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  6. Validity and reliability of Physical Activity Enjoyment Scale questionnaire (PACES) in children with asthma.

    PubMed

    Latorre Román, Pedro Ángel; García Pinillos, Felipe; Navarro Martínez, Ana Vanesa; Izquierdo Rus, Tomás

    2014-08-01

    The aim of this study is to test the psychometric properties of the Physical Activity Enjoyment Scale (PACES) in children with asthma. Participants included 185 children (age = 11.38 ± 1.12 years; body mass index = 20.66 ± 4.13 kg/m(2)): 107 children with asthma and 78 healthy children. To test the enjoyment of physical activity, PACES of Motl et al. was used in its Spanish version. In addition, the Physical Activity Questionnaire for Children (PAQ-C), Paediatric Asthma Quality of Life Questionnaire (PAQLQ) and Physical Self-Concept Questionnaire (CAF) have been used. The results have shown a two-factor structure corresponding to the model whose settings have been good. PACES internal consistency was very high (Cronbach's alpha = 0.906). The PACES test-retest reliability indicates a good temporal concordance (Spearman rho = 0.868, p < 0.001). This presents an adequate concurrent validity with the total PAQLQ, the PAQ-C as well as with ability, fitness, attractiveness, strength and general physical self-concept. The findings confirm that PACES is a valid and reliable measure of physical activity enjoyment in children with asthma.

  7. Multi-Scale Modeling, Design Strategies and Physical Properties of 2D Composite Sheets

    DTIC Science & Technology

    2015-01-15

    of Pennsylvania. The breakthrough results obtained are 1) prediction and subsequent experimental observation of strain induced changes in electronic...structure of TMD materials 2) Prediction and experimental observation of using defects in 2D materials to enhance charge storage capacity and 3...221 Philadelphia , PA 19104 -6205 4-Mar-2014 ABSTRACT Final Report: 9.4: Multi-scale modeling, design strategies and physical properties of 2D

  8. Physics-Based Multi-Scale Modeling of Shear Initiated Reactions in Energetic and Reactive Materials

    DTIC Science & Technology

    2010-04-01

    Physics-based Multi-scale Modeling of Shear Initiated Reactions in Energetic and Reactive Materials by John K. Brennan, Müge Fermen -Coker...Energetic and Reactive Materials John K. Brennan and Müge Fermen -Coker Weapons and Materials Research Directorate, ARL and Linhbao Tran Shock...Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) John K. Brennan, Müge Fermen -Coker, and Linhbao Tran 5d

  9. Materials Science and Physics at Micro/Nano-Scales. FINAL REPORT

    SciTech Connect

    Wu, Judy Z.

    2009-09-07

    The scope of this project is to study nanostructures of semiconductors and superconductors, which have been regarded as promising building blocks for nanoelectronic and nanoelectric devices. The emphasis of this project is on developing novel synthesis approaches for fabrication of nanostructures with desired physical properties. The ultimate goal is to achieve a full control of the nanostructure growth at microscopic scales. The major experimental achievements obtained are summarized

  10. Strong Predictability Of Spatially Distributed Physical Habitat Preferences For O. Mykiss Spawning Across Three Spatial Scales

    NASA Astrophysics Data System (ADS)

    Kammel, L.; Pasternack, G. B.; Wyrick, J. R.; Massa, D.; Bratovich, P.; Johnson, T.

    2012-12-01

    Currently accepted perception assumes Oncorhynchus mykiss prefer different ranges of similar physical habitat elements for spawning than Chinook salmon (Oncorhynchus tshawytscha), taking into account their difference in size. While there is increasing research interest regarding O. mykiss habitat use and migratory behavior, research conducted to date distinguishing the physical habitat conditions utilized for O. mykiss spawning has not provided quantified understanding of their spawning habitat preferences. The purpose of this study was to use electivity indices and other measures to assess the physical habitat characteristics preferred for O. mykiss spawning in terms of both 1-m scale microhabitat attributes, and landforms at different spatial scales from 0.1-100 times channel width. The testbed for this study was the 37.5-km regulated gravel-cobble Lower Yuba River (LYR). Using spatially distributed 2D hydrodynamic model results, substrate mapping, and a census of O. mykiss redds from two years of observation, micro- and meso-scale representations of physical habitat were tested for their ability to predict spawning habitat preference and avoidance. Overall there was strong stratification of O. mykiss redd occurrence for all representation types of physical habitat. A strong preference of hydraulic conditions was shown for mean water column velocities of 1.18-2.25 ft/s, and water depths of 1.25-2.76 ft. There was a marked preference for the two most upstream alluvial reaches of the LYR (out of 8 total reaches), accounting for 92% of all redds observed. The preferred morphological units (MUs) for O. mykiss spawning were more variable than for Chinook salmon and changed with increasing discharge, demonstrating that O. mykiss shift spawning to different MUs in order to utilize their preferred hydraulic conditions. The substrate range preferred for O. mykiss spawning was within 32-90 mm. Overall, O. mykiss spawning behavior was highly predictable and required a

  11. Sensitivity of the recent methane budget to LMDz sub-grid scale physical parameterizations

    NASA Astrophysics Data System (ADS)

    Locatelli, R.; Bousquet, P.; Saunois, M.; Chevallier, F.; Cressot, C.

    2015-04-01

    With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modelling face new challenges. Indeed, the chemical transport model used to link the flux space with the mixing ratio space must be able to represent these different types of constraints for providing consistent flux estimations. Here we quantify the impact of sub-grid scale physical parameterization errors on the global methane budget inferred by inverse modelling using the same inversion set-up but different physical parameterizations within one chemical-transport model. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer are tested. Different atmospheric methane datasets are used as constraints (surface observations or satellite retrievals). At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid scale parameterizations. Inversions using satellite total-column retrieved by GOSAT satellite are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradient in methane emissions. At regional scale, the use of different sub-grid scale parameterizations induces uncertainties ranging from 1.2 (2.7%) to 9.4% (14.2%) of methane emissions in Africa and Eurasia Boreal respectively when using only surface measurements from the background (extended) surface network. When using only satellite data, we show that the small biases found in inversions using GOSAT-CH4 data and a coarser version of the transport model were actually masking a poor representation of the stratosphere-troposphere gradient in the model. Improving the stratosphere-troposphere gradient reveals a larger

  12. Gauge Physics of Spin Hall Effect.

    PubMed

    Tan, Seng Ghee; Jalil, Mansoor B A; Ho, Cong Son; Siu, Zhuobin; Murakami, Shuichi

    2015-12-22

    Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, time-momentum elucidation, which provides a general SHE equation of motion, that unifies under one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be [formula in text] instead of [formula in text], and Rashba heavy hole [formula in text] instead of [formula in text]. This renewed treatment suggests a need to re-derive and re-calculate previously studied SHE conductivity.

  13. Gauge Physics of Spin Hall Effect

    PubMed Central

    Tan, Seng Ghee; Jalil, Mansoor B. A.; Ho, Cong Son; Siu, Zhuobin; Murakami, Shuichi

    2015-01-01

    Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, time-momentum elucidation, which provides a general SHE equation of motion, that unifies under one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be instead of −, and Rashba heavy hole instead of −. This renewed treatment suggests a need to re-derive and re-calculate previously studied SHE conductivity. PMID:26689260

  14. Gauge Physics of Spin Hall Effect

    NASA Astrophysics Data System (ADS)

    Tan, Seng Ghee; Jalil, Mansoor B. A.; Ho, Cong Son; Siu, Zhuobin; Murakami, Shuichi

    2015-12-01

    Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, time-momentum elucidation, which provides a general SHE equation of motion, that unifies under one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be instead of -, and Rashba heavy hole instead of -. This renewed treatment suggests a need to re-derive and re-calculate previously studied SHE conductivity.

  15. Scaling statistics in a critical, nonlinear physical model of tropical oceanic rainfall

    NASA Astrophysics Data System (ADS)

    Nordstrom, K. M.; Gupta, V. K.

    Over the last two decades, concepts of scale invariance have come to the fore in both modeling and data analysis in hydrological precipitation research. With the advent of the use of the multiplicative random cascade model, these concepts have become increasingly more important. However, unifying this statistical view of the phenomenon with the physics of rainfall has proven to be a rather nontrivial task. In this paper, we present a simple model, developed entirely from qualitative physical arguments, without invoking any statistical assumptions, to represent tropical atmospheric convection over the ocean. The model is analyzed numerically. It shows that the data from the model rainfall look very spiky, as if generated from a random field model. They look qualitatively similar to real rainfall data sets from Global Atmospheric Research Program (GARP) Atlantic Tropical Experiment (GATE). A critical point is found in a model parameter corresponding to the Convective Inhibition (CIN), at which rainfall changes abruptly from non-zero to a uniform zero value over the entire domain. Near the critical value of this parameter, the model rainfall field exhibits multifractal scaling determined from a fractional wetted area analysis and a moment scaling analysis. It therefore must exhibit long-range spatial correlations at this point, a situation qualitatively similar to that shown by multiplicative random cascade models and GATE rainfall data sets analyzed previously (Over and Gupta, 1994; Over, 1995). However, the scaling exponents associated with the model data are different from those estimated with real data. This comparison identifies a new theoretical framework for testing diverse physical hypotheses governing rainfall based in empirically observed scaling statistics.

  16. GENASIS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-11-01

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes compose the Basics division of our developing astrophysics simulation code GENASIS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

  17. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    DOE PAGES

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less

  18. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    SciTech Connect

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

  19. High-Fidelity Lattice Physics Capabilities of the SCALE Code System Using TRITON

    SciTech Connect

    DeHart, Mark D

    2007-01-01

    Increasing complexity in reactor designs suggests a need to reexamine of methods applied in spent-fuel characterization. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as space reactors and Generation IV power reactors also require calculational methods that provide accurate prediction of the isotopic inventory. New high-fidelity physics methods will be required to better understand the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light-water reactor designs. The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for reactor physics analysis. This paper provides a detailed description of TRITON in terms of its key components used in reactor calculations.

  20. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    SciTech Connect

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-02-06

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator.

  1. Effective Lagrangian for low-scale technicolor

    SciTech Connect

    Lane, Kenneth; Martin, Adam

    2009-12-01

    We present an effective Lagrangian for low-scale technicolor. It describes the interactions at energies < or approx. M{sub {rho}{sub T}} of the lowest-lying bound states of the lightest technifermion doublet--the spin-one {rho}{sub T}, {omega}{sub T}, a{sub T}, f{sub T}, and the corresponding technipions {pi}{sub T}. This Lagrangian is intended to put on firmer ground the technicolor straw man phenomenology used for collider searches of low-scale technicolor. The technivectors are described using the hidden local symmetry (HLS) formalism of Bando, et al. The Lagrangian is based on SU(2) x U(1) x U(2){sub L} x U(2){sub R}, where SU(2) x U(1) is the electroweak gauge group and U(2){sub L} x U(2){sub R} is the HLS gauge group. Special attention is paid to the higher-derivative standard HLS and Wess-Zumino-Witten interactions needed to describe radiative and other decays of a{sub T} and {rho}{sub T}/{omega}{sub T}, respectively.

  2. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport.

    PubMed

    Leung, Juliana Y; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  3. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    NASA Astrophysics Data System (ADS)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  4. ['Walkability' and physical activity - results of empirical studies based on the 'Neighbourhood Environment Walkability Scale (NEWS)'].

    PubMed

    Rottmann, M; Mielck, A

    2014-02-01

    'Walkability' is mainly assessed by the NEWS questionnaire (Neighbourhood Environment Walkability Scale); in Germany this questionnaire is widely unknown. We now try to fill this gap by providing a systematic overview of empirical studies based on the NEWS. A systematic review was conducted concerning original papers including empirical analyses based on the NEWS. The results are summarised and presented in tables. Altogether 31 publications could be identified. Most of them focus on associations with the variable 'physical activity', and they often report significant associations with at least some of the scales included in the NEWS. Due to methodological differences between the studies it is difficult to compare the results. The concept of 'walkability' should also be established in the German public health discussion. A number of methodological challenges remain to be solved, such as the identification of those scales and items in the NEWS that show the strongest associations with individual health behaviours. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Crocodile head scales are not developmental units but emerge from physical cracking.

    PubMed

    Milinkovitch, Michel C; Manukyan, Liana; Debry, Adrien; Di-Poï, Nicolas; Martin, Samuel; Singh, Daljit; Lambert, Dominique; Zwicker, Matthias

    2013-01-04

    Various lineages of amniotes display keratinized skin appendages (feathers, hairs, and scales) that differentiate in the embryo from genetically controlled developmental units whose spatial organization is patterned by reaction-diffusion mechanisms (RDMs). We show that, contrary to skin appendages in other amniotes (as well as body scales in crocodiles), face and jaws scales of crocodiles are random polygonal domains of highly keratinized skin, rather than genetically controlled elements, and emerge from a physical self-organizing stochastic process distinct from RDMs: cracking of the developing skin in a stress field. We suggest that the rapid growth of the crocodile embryonic facial and jaw skeleton, combined with the development of a very keratinized skin, generates the mechanical stress that causes cracking.

  6. A Validation and Reliability Study of the Physical Activity and Healthy Food Efficacy Scale for Children (PAHFE)

    ERIC Educational Resources Information Center

    Perry, Christina M.; De Ayala, R. J.; Lebow, Ryan; Hayden, Emily

    2008-01-01

    The purpose of this study was to obtain validity evidence for the Physical Activity and Healthy Food Efficacy Scale for Children (PAHFE). Construct validity evidence identifies four subscales: Goal-Setting for Physical Activity, Goal-Setting for Healthy Food Choices, Decision-Making for Physical Activity, and Decision-Making for Healthy Food…

  7. A Validation and Reliability Study of the Physical Activity and Healthy Food Efficacy Scale for Children (PAHFE)

    ERIC Educational Resources Information Center

    Perry, Christina M.; De Ayala, R. J.; Lebow, Ryan; Hayden, Emily

    2008-01-01

    The purpose of this study was to obtain validity evidence for the Physical Activity and Healthy Food Efficacy Scale for Children (PAHFE). Construct validity evidence identifies four subscales: Goal-Setting for Physical Activity, Goal-Setting for Healthy Food Choices, Decision-Making for Physical Activity, and Decision-Making for Healthy Food…

  8. Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow

    NASA Astrophysics Data System (ADS)

    Gerszewski, Daniel James

    Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present

  9. Precision Higgs Physics, Effective Field Theory, and Dark Matter

    NASA Astrophysics Data System (ADS)

    Henning, Brian Quinn

    The recent discovery of the Higgs boson calls for detailed studies of its properties. As precision measurements are indirect probes of new physics, the appropriate theoretical framework is effective field theory. In the first part of this thesis, we present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on the UV model concerned. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. The covariant derivative expansion dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of renormalization group running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. With a detailed understanding of how to use the SM EFT, we then turn to applications and study in detail two well-motivated test cases. The first is singlet scalar field that enables the first-order electroweak phase transition for baryogenesis; the second example is due to scalar tops in the MSSM. We find both Higgs and electroweak measurements are sensitive probes of these cases. The second part of this thesis centers around dark matter, and consists of two studies. In the first, we examine the effects of relic dark matter annihilations on big bang nucleosynthesis (BBN). The magnitude of these effects scale simply with the dark matter mass and annihilation cross-section, which we derive. Estimates based on these scaling behaviors indicate that BBN severely constrains hadronic and radiative dark

  10. Universal scaling of the anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Wang, Wei; Wang, Kejie; Niu, Wei; Lai, Bolin; Maltby, Nick; Yang, Mao; Gao, Ming; Liu, Wenqing; He, Liang; Zhang, Rong; Xu, Yongbing

    2017-04-01

    We have undertaken a detailed study of the magneto-transport properties of ultra-thin Fe films epitaxially grown on GaAs (1 0 0). A metal–semiconductor transition has been observed with a critical thickness of 1.25 nm, which was thought to be related to the thermally activated tunneling between metallic clusters. By fitting {ρ\\text{AH}} versus ρ xx2 with the TYJ equation (Tian et al 2009 Phys. Rev. Lett. 103 087206), we found that the magnetization is negligible for the scaling of the anomalous Hall effect in ultra-thin Fe films. Furthermore, the intrinsic term, which is acquired by the linear fitting of {ρ\\text{AH}} versus ρ xx2 , shows an obvious decrease when the film thickness drops below 1.25 nm, which was thought to be related to the fading of the Berry curvature in the ultra-thin film limit.

  11. Teachers' and Students' Perceptions of Effective Physics Teacher Characteristics

    ERIC Educational Resources Information Center

    Korur, Fikret; Eryilmaz, Ali

    2012-01-01

    Problem Statement: What do teachers and students in Turkey perceive as the common characteristics of effective physics teachers? Purpose of Study: The first aim was to investigate the common characteristics of effective physics teachers by asking students and teachers about the effects of teacher characteristics on student physics achievement and…

  12. Scaling thermal effects in radial flow

    NASA Astrophysics Data System (ADS)

    Hudspeth, R. T.; Guenther, R. B.; Roley, K. L.; McDougal, W. G.

    To adequately evaluate the environmental impact of siting nuclear waste repositories in basalt aquicludes, it is essential to know the effects on parameter identification algorithms of thermal gradients that exist in these basaltic aquicludes. Temperatures of approximately 60°C and pressures of approximately 150 atm can be expected at potential repository sites located at depths of approximately 1000 m. The phenomenon of over-recovery has been observed in some pumping tests conducted at the Hanford Nuclear Reservation located in the Pasco Basin adjacent to the Columbia River in the state of Washington, USA. This over-recovery phenomenon may possibly be due to variations in the fluid density caused by thermal gradients. To assess the potential effects of these thermal gradients on indirect parameter identification algorithms, a systematic scaling of the governing field equations is required in order to obtain dimensionless equations based on the principle of similarity. The constitutive relationships for the specific weight of the fluid and for the porosity of the aquiclude are shown to be exponentially dependent on the pressure gradient. The dynamic pressure is converted to the piezometric head and the flow equation for the piezometric head is then scaled in radial coordinates. Order-of-magnitude estimates are made for all variables in unsteady flow for a typical well test in a basaltic aquiclude. Retaining all nonlinear terms, the parametric dependency of the flow equation on the classical dimensionless thermal and hydraulic parameters is demonstrated. These classical parameters include the Batchelor, Fourier, Froude, Grashof, and Reynolds Numbers associated with thermal flows. The flow equation is linearized from order-of-magnitude estimates based on these classical parameters for application in parameter identification algorithms.

  13. Web-based encyclopedia on physical effects

    NASA Astrophysics Data System (ADS)

    Papliatseyeu, Andrey; Repich, Maryna; Ilyushonak, Boris; Hurbo, Aliaksandr; Makarava, Katerina; Lutkovski, Vladimir M.

    2004-07-01

    Web-based learning applications open new horizons for educators. In this work we present the computer encyclopedia designed to overcome drawbacks of traditional paper information sources such as awkward search, low update rate, limited copies count and high cost. Moreover, we intended to improve access and search functions in comparison with some Internet sources in order to make it more convenient. The system is developed using modern Java technologies (Jave Servlets, Java Server Pages) and contains systemized information about most important and explored physical effects. It also may be used in other fields of science. The system is accessible via Intranet/Internet networks by means of any up-to-date Internet browser. It may be used for general learning purposes and as a study guide or tutorial for performing laboratory works.

  14. Effect of physical activity on body composition

    SciTech Connect

    Zanzi, I; Ellis, K J; Aloia, J; Cohn, S H

    1980-01-01

    It has been noted that the deleterious effects on bone calcium of prolonged periods of inactivity, such as bed rest, are halted following resumption of activity. It would seem possible in light of the observations that have been made, that exercise may stimulate bone formation and perhaps counter, to some extent, bone loss as observed in the osteoporosis of aging. The present study was designed to determine the relation between total body calcium, total body potassium and bone mineral content of the radius to the degree of physical activity in a population of normal subjects. Measurement of the calcium was made by in-vivo total body neutron activation analysis. Bone mineral content of the radius and total body potassium, (an index of lean body mass) were measured by photon absorptiometry and the whole body counter, respectively.

  15. Effects of scale on internal blast measurements

    NASA Astrophysics Data System (ADS)

    Granholm, R.; Sandusky, H.; Lee, R.

    2014-05-01

    This paper presents a comparative study between large and small-scale internal blast experiments with the goal of using the small-scale analog for energetic performance evaluation. In the small-scale experiment, highly confined explosive samples <0.5 g were subjected to the output from a PETN detonator while enclosed in a 3-liter chamber. Large-scale tests up to 23 kg were unconfined and released in a chamber with a factor of 60,000 increase in volume. The comparative metric in these experiments is peak quasi-static overpressure, with the explosive sample expressed as sample energy/chamber volume, which normalizes measured pressures across scale. Small-scale measured pressures were always lower than the large-scale measurements, because of heat-loss to the high confinement inherent in the small-scale apparatus. This heat-loss can be quantified and used to correct the small-scale pressure measurements. In some cases the heat-loss was large enough to quench reaction of lower energy samples. These results suggest that small-scale internal blast tests do correlate with their large-scale counterparts, provided that heat-loss to confinement can be measured, and that less reactive or lower energy samples are not quenched by heat-loss.

  16. Exergames: Increasing Physical Activity through Effective Instruction

    ERIC Educational Resources Information Center

    Rudella, Jennifer L.; Butz, Jennifer V.

    2015-01-01

    Due to the growing obesity epidemic in the United States, educators must consider new ways to increase physical activity in an effort to address obesity. There are a variety of ways educators can increase physical activity in the classroom, and exergames--video games that require physical movement in order to play--are a modern-day approach to…

  17. Exergames: Increasing Physical Activity through Effective Instruction

    ERIC Educational Resources Information Center

    Rudella, Jennifer L.; Butz, Jennifer V.

    2015-01-01

    Due to the growing obesity epidemic in the United States, educators must consider new ways to increase physical activity in an effort to address obesity. There are a variety of ways educators can increase physical activity in the classroom, and exergames--video games that require physical movement in order to play--are a modern-day approach to…

  18. An Examination of the Reliability and Factor Structure of the Physical Activity Scale for Individuals With Physical Disabilities (PASIPD) Among Individuals Living With Parkinson's Disease.

    PubMed

    Jimenez-Pardo, J; Holmes, J D; Jenkins, M E; Johnson, A M

    2015-07-01

    Physical activity is generally thought to be beneficial to individuals with Parkinson's disease (PD). There is, however, limited information regarding current rates of physical activity among individuals with PD, possibly due to a lack of well-validated measurement tools. In the current study we sampled 63 individuals (31 women) living with PD between the ages of 52 and 87 (M = 70.97 years, SD = 7.53), and evaluated the amount of physical activity in which they engaged over a 7-day period using a modified form of the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD). The PASIPD was demonstrated to be a reliable measure within this population, with three theoretically defensible factors: (1) housework and home-based outdoor activities; (2) recreational and fitness activities; and (3) occupational activities. These results suggest that the PASIPD may be useful for monitoring physical activity involvement among individuals with PD, particularly within large-scale questionnaire-based studies.

  19. Geothermal alteration of Kamchatka rock physical properties: experimental and pore-scale modeling study

    NASA Astrophysics Data System (ADS)

    Shanina, Violetta; Gerke, Kirill; Bichkov, Andrey; Korost, Dmitry

    2013-04-01

    X-ray microtomography prior to any alteration and after the experiments. 3D images were used to quantify structural changes and to determine permeability values using a pore-scale modeling approach, as laboratory measurements with through flow are known to have a potential to modify the pore structure. Chemical composition and local mineral formations were investigated using a «Spectroscan Max GV» spectrometer and scanning electron microscope imaging. Our study revealed significant relationships between structure modifications, physical properties and alteration conditions. Main results and conclusions include: 1) initial porosity and its connectivity have substantial effect on alteration dynamics, rocks with higher porosity values and connected pore space exhibit more pronounced alterations; 2) under similar experimental conditions (pressure, temperature, duration) pH plays an important role, acidic conditions result in significant new mineral formation; 3) almost all physical properties, including porosity, permeability, and elastic properties, were seriously modified in the modeled geothermal processes within short (from geological point of view) time frames; 4) X-ray microtomography was found useful for mineral phases distribution and the pore-scale modeling approach was found to be a promising technique to numerically obtain rock properties based on 3D scans; 5) we conclude that alteration and change of reservoir rocks should be taken into account for re-injecting well and geothermal power-plant design.

  20. Parton physics from large-momentum effective field theory

    NASA Astrophysics Data System (ADS)

    Ji, XiangDong

    2014-07-01

    Parton physics, when formulated as light-front correlations, are difficult to study non-perturbatively, despite the promise of light-front quantization. Recently an alternative approach to partons have been proposed by re-visiting original Feynman picture of a hadron moving at asymptotically large momentum. Here I formulate the approach in the language of an effective field theory for a large hadron momentum P in lattice QCD, LaMET for short. I show that using this new effective theory, parton properties, including light-front parton wave functions, can be extracted from lattice observables in a systematic expansion of 1/ P, much like that the parton distributions can be extracted from the hard scattering data at momentum scales of a few GeV.

  1. Retention of Learned Skills. The Effects of Physical Practice and Mental/Physical Practice.

    ERIC Educational Resources Information Center

    Cooper, Phyllis S.

    1985-01-01

    A study evaluated the retention level of three gymnastics skills learned by health and physical education students using either physical practice or a combination of mental and physical practice. Mental practice was found to have a positive effect on skill retention. Results and recommendations are offered. (DF)

  2. The Effects of Exergaming on Physical Activity in a Third-Grade Physical Education Class

    ERIC Educational Resources Information Center

    Shayne, Rachel K.; Fogel, Victoria A.; Miltenberger, Raymond G.; Koehler, Shannon

    2012-01-01

    We compared the effects of exergaming and traditional physical education on physical activity among 4 active children who were not overweight and who had experience with the exergaming activities prior to the study. Results showed that exergaming produced substantially higher percentages of physical activity and opportunity to engage in physical…

  3. Effects of a Physical Education Supportive Curriculum and Technological Devices on Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily Dean; Sullivan, Eileen C.; Ciccomascolo, Lori E.

    2015-01-01

    The purpose of this study was to examine the effects of a physical education supportive curriculum and technological devices, heart rate monitor (HRM) and pedometer (PED), on physical activity. A single-subject ABAB research design was used to examine amount and level of participation in physical activity among 106 suburban fourth and fifth…

  4. Effects of a Physical Education Supportive Curriculum and Technological Devices on Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily Dean; Sullivan, Eileen C.; Ciccomascolo, Lori E.

    2015-01-01

    The purpose of this study was to examine the effects of a physical education supportive curriculum and technological devices, heart rate monitor (HRM) and pedometer (PED), on physical activity. A single-subject ABAB research design was used to examine amount and level of participation in physical activity among 106 suburban fourth and fifth…

  5. The Effects of Exergaming on Physical Activity in a Third-Grade Physical Education Class

    ERIC Educational Resources Information Center

    Shayne, Rachel K.; Fogel, Victoria A.; Miltenberger, Raymond G.; Koehler, Shannon

    2012-01-01

    We compared the effects of exergaming and traditional physical education on physical activity among 4 active children who were not overweight and who had experience with the exergaming activities prior to the study. Results showed that exergaming produced substantially higher percentages of physical activity and opportunity to engage in physical…

  6. Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale

    PubMed Central

    Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key Points This study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories. The statistical fit of the four-factor model of the

  7. Factorial validity and internal consistency of the motivational climate in physical education scale.

    PubMed

    Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key PointsThis study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories.The statistical fit of the four-factor model of the

  8. Similitude of ice dynamics against scaling of geometry and physical parameters

    NASA Astrophysics Data System (ADS)

    Feldmann, Johannes; Levermann, Anders

    2016-08-01

    The concept of similitude is commonly employed in the fields of fluid dynamics and engineering but rarely used in cryospheric research. Here we apply this method to the problem of ice flow to examine the dynamic similitude of isothermal ice sheets in shallow-shelf approximation against the scaling of their geometry and physical parameters. Carrying out a dimensional analysis of the stress balance we obtain dimensionless numbers that characterize the flow. Requiring that these numbers remain the same under scaling we obtain conditions that relate the geometric scaling factors, the parameters for the ice softness, surface mass balance and basal friction as well as the ice-sheet intrinsic response time to each other. We demonstrate that these scaling laws are the same for both the (two-dimensional) flow-line case and the three-dimensional case. The theoretically predicted ice-sheet scaling behavior agrees with results from numerical simulations that we conduct in flow-line and three-dimensional conceptual setups. We further investigate analytically the implications of geometric scaling of ice sheets for their response time. With this study we provide a framework which, under several assumptions, allows for a fundamental comparison of the ice-dynamic behavior across different scales. It proves to be useful in the design of conceptual numerical model setups and could also be helpful for designing laboratory glacier experiments. The concept might also be applied to real-world systems, e.g., to examine the response times of glaciers, ice streams or ice sheets to climatic perturbations.

  9. DAG Software Architectures for Multi-Scale Multi-Physics Problems at Petascale and Beyond

    NASA Astrophysics Data System (ADS)

    Berzins, Martin

    2015-03-01

    The challenge of computations at Petascale and beyond is to ensure how to make possible efficient calculations on possibly hundreds of thousands for cores or on large numbers of GPUs or Intel Xeon Phis. An important methodology for achieving this is at present thought to be that of asynchronous task-based parallelism. The success of this approach will be demonstrated using the Uintah software framework for the solution of coupled fluid-structure interaction problems with chemical reactions. The layered approach of this software makes it possible for the user to specify the physical problems without parallel code, for that specification to be translated into a parallel set of tasks. These tasks are executed using a runtime system that executes tasks asynchronously and sometimes out-of-order. The scalability and portability of this approach will be demonstrated using examples from large scale combustion problems, industrial detonations and multi-scale, multi-physics models. The challenges of scaling such calculations to the next generations of leadership class computers (with more than a hundred petaflops) will be discussed. Thanks to NSF, XSEDE, DOE NNSA, DOE NETL, DOE ALCC and DOE INCITE.

  10. The methodology of semantic analysis for extracting physical effects

    NASA Astrophysics Data System (ADS)

    Fomenkova, M. A.; Kamaev, V. A.; Korobkin, D. M.; Fomenkov, S. A.

    2017-01-01

    The paper represents new methodology of semantic analysis for physical effects extracting. This methodology is based on the Tuzov ontology that formally describes the Russian language. In this paper, semantic patterns were described to extract structural physical information in the form of physical effects. A new algorithm of text analysis was described.

  11. Effect of Graph Scale on Risky Choice: Evidence from Preference and Process in Decision-Making

    PubMed Central

    Sun, Yan; Li, Shu; Bonini, Nicolao; Liu, Yang

    2016-01-01

    We investigate the effect of graph scale on risky choices. By (de)compressing the scale, we manipulate the relative physical distance between options on a given attribute in a coordinate graphical context. In Experiment 1, the risky choice changes as a function of the scale in the graph. In Experiment 2, we show that the type of graph scale also affects decision times. In Experiment 3, we examine the graph scale effect by using real money among students who have taken statistics courses. Consequently, the scale effects still appear even when we control the variations in calculation ability and increase the gravity with which participants view the consequence of their decisions. This finding is inconsistent with descriptive invariance of preference. The theoretical implications and practical applications of the findings are discussed. PMID:26771530

  12. Physical effects of thermal pollution in lakes

    NASA Astrophysics Data System (ADS)

    Râman Vinnâ, Love; Wüest, Alfred; Bouffard, Damien

    2017-05-01

    Anthropogenic heat emissions into inland waters influence water temperature and affect stratification, heat and nutrient fluxes, deep water renewal, and biota. Given the increased thermal stress on these systems by growing cooling demands of riparian/coastal infrastructures in combination with climate warming, the question arises on how to best monitor and manage these systems. In this study, we investigate local and system-wide physical effects on the medium-sized perialpine Lake Biel (Switzerland), influenced by point-source cooling water emission from an upstream nuclear power plant (heat emission ˜700 MW, ˜18 W m-2 lake wide). We use one-dimensional (SIMSTRAT) and three-dimensional (Delft3D-Flow) hydrodynamic numerical simulations and provide model resolution guidelines for future studies of thermal pollution. The effects on Lake Biel by the emitted excess heat are summarized as: (i) clear seasonal trend in temperature increase, locally up to 3.4°C and system-wide volume mean ˜0.3°C, which corresponds to one decade of regional surface water climate warming; (ii) the majority of supplied thermal pollution (˜60%) leaves this short residence time (˜58 days) system via the main outlet, whereas the remaining heat exits to the atmosphere; (iii) increased length of stratified period due to the stabilizing effects of additional heat; (iv) system-wide effects such as warmer temperature, prolonged stratified period, and river-caused epilimnion flushing are resolved by both models whereas local raised temperature and river short circuiting was only identifiable with the three-dimensional model approach. This model-based method provides an ideal tool to assess man-made impacts on lakes and their downstream outflows.

  13. ["My scale armor protects me"! The personality image and physical disability of psoriasis patients].

    PubMed

    Gieler, U; Ernst, R; Fritz, J

    1986-04-15

    With the help of the Giessen-test and the Giessen-complaint form, 28 patients suffering from psoriasis were analysed regarding their personality image and physical disabilities. In comparison with controls (n = 1587), psoriasis patients believed themselves to have "negative social appeal" (p less than or equal to 0.05) and being "reserved" (p less than or equal to 0.01); however, they complained of less physical troubles than healthy controls or psychosomatic patients (p less than or equal to 0.01). Evaluation of these items pointed to depth psychological conflicts of the "not accepted body image" kind, which may precede the disease; the scales might serve as a barrier to psychological troubles.

  14. Reliability and Validity of the Supports Intensity Scale (SIS) Measured in Adults with Physical Disabilities.

    PubMed

    Smit, William; Sabbe, Bart; Prinzie, Peter

    2011-08-01

    The objective of this study was to investigate the internal consistency and the construct validity of the Dutch version of the Supports Intensity Scale (SIS-NL1.0; Buntinx 2006) in individuals with physical disabilities (N = 65). To investigate the construct validity, the relationship between SIS subscales and practical skills (Barthel Index; BI) was calculated. Support was provided for the internal consistency. The SIS subscales (except Behavior) had moderate to high intercorrelations and the SIS was able to discriminate between groups with different number of disabilities. However, weak relationships were found between the BI and four out of eight SIS subscales. For people with physical disabilities, future revisions of the SIS should also take into consideration limitations in practical skills in other support domains.

  15. Development of an evaluation scale for self-management behavior related to physical activity of patients with coronary heart disease.

    PubMed

    Tokunaga-Nakawatase, Yuri; Taru, Chiemi; Miyawaki, Ikuko

    2012-06-01

    To provide patients with effective self-management education that takes their lifestyle into account, medical personnel need to provide education and evaluation of self-management behaviors which patients can apply to their daily life. This study aimed to assess the reliability and validity of the evaluation scale for self-management behavior related to physical activity of patients with coronary heart disease (ES-SMBPA-CHD). Outpatients with coronary heart disease (n = 76) completed a self-administered questionnaire supported by a previous study of ours. The ES-SMBPA-CHD was divided into two domains, the first dealing with self-management behavior to enhance physical activity in daily life and the second with behavior to maintain the level of physical activity. Factor analysis showed that the first part comprised four factors and the second five. The ES-SMBPA-CHD was associated with the International Physical Activity Questionnaire (IPAQ) subscales and activity energy expenditure (measured by Lifecorder EX). Cronbach's α coefficient was between 0.71 and 0.90. The intraclass test-retest correlation coefficient of the subscale was between 0.75 and 0.93. The ES-SMBPA-CHD is reasonably reliable and valid and is expected to prove useful for the assessment of patients' self-management behavior and for individualized instruction.

  16. Using Micro-Scale Observations to Understand Large-Scale Geophysical Phenomena: Examples from Seismology and Mineral Physics

    NASA Astrophysics Data System (ADS)

    Lockridge, Jeffrey

    Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to provide important constraints on models for a range of large-scale geophysical phenomena within the crust and mantle. The Great Basin (GB) in the western U.S. is part of the diffuse North American-Pacific plate boundary. The interior of the GB occasionally produces large earthquakes, yet the current distribution of regional seismic networks poorly samples it. The EarthScope USArray Transportable Array provides unprecedented station density and data quality for the central GB. I use this dataset to develop an earthquake catalog for the region that is complete to M 1.5. The catalog contains small-magnitude seismicity throughout the interior of the GB. The spatial distribution of earthquakes is consistent with recent regional geodetic studies, confirming that the interior of the GB is actively deforming everywhere and all the time. Additionally, improved event detection thresholds reveal that swarms of temporally-clustered repeating earthquakes occur throughout the GB. The swarms are not associated with active volcanism or other swarm triggering mechanisms, and therefore, may represent a common fault behavior. Enstatite (Mg,Fe)SiO3 is the second most abundant mineral within subducting lithosphere. Previous studies suggest that metastable enstatite within subducting slabs may persist to the base of the mantle transition zone (MTZ) before transforming to high-pressure polymorphs. The metastable persistence of enstatite has been proposed as a potential cause for both deep-focus earthquakes and the stagnation of slabs at the base of the MTZ. I show that natural Al- and Fe-bearing enstatite

  17. Extracting physical properties of arbitrarily shaped laser-doped micro-scale areas in semiconductors

    SciTech Connect

    Heinrich, Martin; Kluska, Sven; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2013-12-23

    We present a method that allows the extraction of relevant physical properties such as sheet resistance and dopant profile from arbitrarily shaped laser-doped micro-scale areas formed in semiconductors with a focused pulsed laser beam. The key feature of the method is to use large laser-doped areas with an identical average number of laser pulses per area (laser pulse density) as the arbitrarily shaped areas. The method is verified using sheet resistance measurements on laser-doped silicon samples. Furthermore, the method is extended to doping with continuous-wave lasers by using the average number of passes per area or density of passes.

  18. A natural hierarchy and a low new physics scale from a bulk Higgs

    NASA Astrophysics Data System (ADS)

    Vecchi, Luca

    2011-11-01

    We show that a bulk Higgs with a mass saturating the Breitenlohner-Freedman bound can naturally generate and stabilize an exponential hierarchy on an asymptotically AdS background provided appropriate UV boundary conditions are chosen. Such a framework is dual to a strongly coupled, large N CFT deformed by a marginally relevant Higgs mass operator. On the gravity side, the marginally relevant nature of the Higgs mass operator implies that the Higgs VEV is maximally spread in the bulk. This feature significantly decreases the lower bound on the new physics scale in models that address the SM flavor problem. In this framework the radion has a mass strictly lighter than the Kaluza-Klein scale, and the collider phenomenology resembles that of composite Higgs models.

  19. Scale and Sampling Effects on Floristic Quality

    PubMed Central

    2016-01-01

    Floristic Quality Assessment (FQA) is increasingly influential for making land management decisions, for directing conservation policy, and for research. But, the basic ecological properties and limitations of its metrics are ill defined and not well understood–especially those related to sample methods and scale. Nested plot data from a remnant tallgrass prairie sampled annually over a 12-year period, were used to investigate FQA properties associated with species detection rates, species misidentification rates, sample year, and sample grain/area. Plot size had no apparent effect on Mean C (an area’s average Floristic Quality level), nor did species detection levels above 65% detection. Simulated species misidentifications only affected Mean C values at greater than 10% in large plots, when the replaced species were randomly drawn from the broader county-wide species pool. Finally, FQA values were stable over the 12-year study, meaning that there was no evidence that the metrics exhibit year effects. The FQA metric Mean C is demonstrated to be robust to varied sample methodologies related to sample intensity (plot size, species detection rate), as well as sample year. These results will make FQA measures even more appealing for informing land-use decisions, policy, and research for two reasons: 1) The sampling effort needed to generate accurate and consistent site assessments with FQA measures is shown to be far lower than what has previously been assumed, and 2) the stable properties and consistent performance of metrics with respect to sample methods will allow for a remarkable level of comparability of FQA values from different sites and datasets compared to other commonly used ecological metrics. PMID:27489959

  20. Scale and Sampling Effects on Floristic Quality.

    PubMed

    Spyreas, Greg

    2016-01-01

    Floristic Quality Assessment (FQA) is increasingly influential for making land management decisions, for directing conservation policy, and for research. But, the basic ecological properties and limitations of its metrics are ill defined and not well understood-especially those related to sample methods and scale. Nested plot data from a remnant tallgrass prairie sampled annually over a 12-year period, were used to investigate FQA properties associated with species detection rates, species misidentification rates, sample year, and sample grain/area. Plot size had no apparent effect on Mean C (an area's average Floristic Quality level), nor did species detection levels above 65% detection. Simulated species misidentifications only affected Mean C values at greater than 10% in large plots, when the replaced species were randomly drawn from the broader county-wide species pool. Finally, FQA values were stable over the 12-year study, meaning that there was no evidence that the metrics exhibit year effects. The FQA metric Mean C is demonstrated to be robust to varied sample methodologies related to sample intensity (plot size, species detection rate), as well as sample year. These results will make FQA measures even more appealing for informing land-use decisions, policy, and research for two reasons: 1) The sampling effort needed to generate accurate and consistent site assessments with FQA measures is shown to be far lower than what has previously been assumed, and 2) the stable properties and consistent performance of metrics with respect to sample methods will allow for a remarkable level of comparability of FQA values from different sites and datasets compared to other commonly used ecological metrics.

  1. Scale effects on Wells air turbine

    SciTech Connect

    Raghunathan, S.; Mitchell, D.; Gillan, M.; Tease, K.

    1996-12-31

    The main difference in aerodynamic forces between a small and a large scale is due to the lack of dynamic similarity of viscous fluid motion, which is a ratio of inertia forces to viscous forces on a body in a moving fluid. In recent years there has been considerable interest in this area, particularly to aerodynamicists. There have been methodologies developed for simulation of flow over large scale bodies with small scale tests. An objective of this paper is to highlight these methodologies for Wells turbine researchers. A comparison of tests on the Wells turbine at several scales and using some of the simulation methodologies are also discussed. The paper shows the need for considerable research effort in this area considering the prediction of the performance of large scale Wells turbines for wave energy conversion is a key issue at present.

  2. Depressive Symptoms Negate the Beneficial Effects of Physical Activity on Mortality Risk

    ERIC Educational Resources Information Center

    Lee, Pai-Lin

    2013-01-01

    The aim of this study is to: (1) compare the association between various levels of physical activity (PA) and mortality; and (2) examine the potential modifying effect of depressive symptoms on the PA-mortality associations. Previous large scale randomized studies rarely assess the association in conjunction with modifying effects of depressive…

  3. Effects of Classroom-Based Energizers on Primary Grade Students' Physical Activity Levels

    ERIC Educational Resources Information Center

    Bailey, Catherine Goffreda; DiPerna, James Clyde

    2015-01-01

    The primary aim of this study was to determine the effects of classroom-based exercise breaks (Energizers; Mahar, Kenny, Shields, Scales, & Collins, 2006) on students' physical activity levels during the school day. A multiple baseline design across first grade (N = 3) and second grade (N = 3) classrooms was used to examine the effects of the…

  4. Effects of Classroom-Based Energizers on Primary Grade Students' Physical Activity Levels

    ERIC Educational Resources Information Center

    Bailey, Catherine Goffreda; DiPerna, James Clyde

    2015-01-01

    The primary aim of this study was to determine the effects of classroom-based exercise breaks (Energizers; Mahar, Kenny, Shields, Scales, & Collins, 2006) on students' physical activity levels during the school day. A multiple baseline design across first grade (N = 3) and second grade (N = 3) classrooms was used to examine the effects of the…

  5. Electron electric dipole moment as a sensitive probe of PeV scale physics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Tarek; Itani, Ahmad; Nath, Pran

    2014-09-01

    We give a quantitative analysis of the electric dipole moments as a probe of high scale physics. We focus on the electric dipole moment of the electron since the limit on it is the most stringent. Further, theoretical computations of it are free of QCD uncertainties. The analysis presented here first explores the probe of high scales via electron electric dipole moment (EDM) within minimal supersymmetric standard model where the contributions to the EDM arise from the chargino and the neutralino exchanges in loops. Here it is shown that the electron EDM can probe mass scales from tens of TeV into the PeV range. The analysis is then extended to include a vectorlike generation which can mix with the three ordinary generations. Here new CP phases arise and it is shown that the electron EDM now has not only a supersymmetric (SUSY) contribution from the exchange of charginos and neutralinos but also a nonsupersymmetric contribution from the exchange of W and Z bosons. It is further shown that the interference of the supersymmetric and the nonsupersymmetric contribution leads to the remarkable phenomenon where the electron EDM as a function of the slepton mass first falls and become vanishingly small and then rises again as the slepton mass increases. This phenomenon arises as a consequence of cancellation between the SUSY and the non-SUSY contribution at low scales while at high scales the SUSY contribution dies out and the EDM is controlled by the non-SUSY contribution alone. The high mass scales that can be probed by the EDM are far in excess of what accelerators will be able to probe. The sensitivity of the EDM to CP phases both in the SUSY and the non-SUSY sectors are also discussed.

  6. Towards physics responsible for large-scale Lyman-α forest bias parameters

    SciTech Connect

    Agnieszka M. Cieplak; Slosar, Anze

    2016-03-08

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (bδ) and velocity gradient (bη) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermal broadening and linear redshift-space distortions. We also show that his bη formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of bη and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. Lastly, we find that large-scale biases derived from the smoothed total matter field are within 10–20% to those based on hydrodynamical quantities, in line with other measurements in the literature.

  7. Towards physics responsible for large-scale Lyman-α forest bias parameters

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.; Slosar, Anže

    2016-03-01

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (bδ) and velocity gradient (bη) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermal broadening and linear redshift-space distortions. We also show that his bη formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of bη and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. We find that large-scale biases derived from the smoothed total matter field are within 10-20% to those based on hydrodynamical quantities, in line with other measurements in the literature.

  8. Towards physics responsible for large-scale Lyman-α forest bias parameters

    DOE PAGES

    Agnieszka M. Cieplak; Slosar, Anze

    2016-03-08

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (bδ) and velocity gradient (bη) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermalmore » broadening and linear redshift-space distortions. We also show that his bη formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of bη and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. Lastly, we find that large-scale biases derived from the smoothed total matter field are within 10–20% to those based on hydrodynamical quantities, in line with other measurements in the literature.« less

  9. Towards physics responsible for large-scale Lyman-α forest bias parameters

    SciTech Connect

    Cieplak, Agnieszka M.; Slosar, Anže E-mail: anze@bnl.gov

    2016-03-01

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (b{sub δ}) and velocity gradient (b{sub η}) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermal broadening and linear redshift-space distortions. We also show that his b{sub η} formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of b{sub η} and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. We find that large-scale biases derived from the smoothed total matter field are within 10–20% to those based on hydrodynamical quantities, in line with other measurements in the literature.

  10. The effects of exergaming on physical activity among inactive children in a physical education classroom.

    PubMed

    Fogel, Victoria A; Miltenberger, Raymond G; Graves, Rachel; Koehler, Shannon

    2010-01-01

    Childhood obesity, which is due in part to lack of physical activity, is a serious concern that requires the attention of the behavioral community. Although excessive video game play has been noted in the literature as a contributor to childhood obesity, newer video gaming technology, called exergaming, has been designed to capitalize on the reinforcing effects of video games to increase physical activity in children. This study evaluated the effects of exergaming on physical activity among 4 inactive children in a physical education (PE) classroom. Results showed that exergaming produced substantially more minutes of physical activity and more minutes of opportunity to engage in physical activity than did the standard PE program. In addition, exergaming was socially acceptable to both the students and the PE teacher. Exergaming appears to hold promise as a method for increasing physical activity among inactive children and might be a possible intervention for childhood obesity.

  11. Assessment of apathy independent of physical disability: validation of the Dimensional Apathy Scale in Italian healthy sample.

    PubMed

    Santangelo, Gabriella; Raimo, Simona; Siciliano, Mattia; D'Iorio, Alfonsina; Piscopo, Fausta; Cuoco, Sofia; Bottone, Marianna; Trojsi, Francesca; Grossi, Dario; Trojano, Luigi

    2017-02-01

    Apathy is well described in neurodegenerative diseases characterized by motor disability; therefore, assessment of apathy avoiding possible confounding effects of motor impairments is necessary in neurological diseases. Recently, the Dimensional Apathy Scale (DAS) was developed to assess apathy as multifaceted construct, independent of physical disability. We developed the Italian version of the Dimensional Apathy Scale (I-DAS) and explored its psychometric properties in a sample of 309 healthy individuals. Participants also completed Apathy Evaluation Scale, Beck Depression Inventory-II and Addenbrooke's Cognitive Examination-Revised. The I-DAS showed high internal consistency, good convergent and divergent validity. The I-DAS had a three-factor structure, such as the original scale. The I-DAS scored was significantly correlated with individuals' education, but not with age or gender. We, therefore, computed correction factor for education and provided percentile distribution of the adjusted scores to identify individuals with high levels of apathy. The I-DAS showed good psychometric properties and can be a valid and reliable tool to assess multidimensional apathy.

  12. Differential Physical and Psychological Effects of Exercise.

    ERIC Educational Resources Information Center

    Wilfley, Denise; Kunce, Joseph

    1986-01-01

    Evaluated the physical and psychological benefits of an individualized exercise program for "normal" adults. Differences between program completers and dropouts on persistence, fitness, and physical self-concept are reprinted. A number of special strategies to motivate clients who may benefit most from therapeutic exercise programs as an adjunct…

  13. Effects of physical and mental health on health-state preferences.

    PubMed

    Veit, C T; Rose, B J; Ware, J E

    1982-04-01

    Studies concerned with measuring values and preferences for health states and health status components have typically employed "direct" scaling techniques that require conclusions to be based on definition. Problems and limitations of direct scaling are discussed. The algebraic modeling approach is new to health services research; it emphasizes testing models of how respondents combine stimulus information. The model specifies the causal relationship between the stimulus information and the responses. Subjective stimulus and response scales are derived from the model when the data satisfy the model's predictions. Thus, the validity of the subjective scale values rests on the validity of the model. In the present research, university students judged preferences between health states, each described by a physical (degree of physical activity) and mental (level of happiness/depression) component. The object of the research was to determine the subjective trade-offs between physical and mental health values in these preference judgments. For all respondents, preference judgments were consistent with the predictions of a preference model that yielded interval scales of the health states. Also, there were systematic interactions between physical and mental values, so that when a health state was bad on one component (e.g., poor physical health), the other component had less of an effect. However, results revealed individual differences in emphasis placed on the physical and mental health components. Advantages of replacing presently used measurement techniques with the algebraic modeling approach in general population studies are discussed.

  14. [PHYSICAL EXERCISE AFTER STROKE: EFFECTS, RECOMMENDATIONS AND BARRIERS].

    PubMed

    Barak, Sharon; Hutzler, Yeshayahu; Dubnov-Razi, Gal

    2016-06-01

    This review summarizes the knowledge regarding the effects and recommendations for physical training (PTr) post-stroke. In addition, perceived benefits/barriers to PTr post-stroke are reviewed. PTr is an important post-stroke rehabilitation goal. Before beginning a PTr program it is recommended to conduct a physical examination. There is evidence that aerobic training post-stroke has a positive effect on gait and on risk factors for recurrent stroke. Similarly, strength training is also safe and effective. However, this training modality does not improve.gait functions. Neuromuscular training post-stroke is also a recommended training method. In the various studies conducted, there was diversity with regard to duration and frequency of PTr. It is recommended that individuals post-stroke engage in aerobic training 3-5 days a week. During the acute phase, the rating of perceived exertion should be "fairly light" (less or equal to 11 on the Borg scale, which ranges 6-20). In more advanced phases of recovery, one ca exercise at a higher intensity of up to "somewhat hard" (rating of perceived exertion 11-14; 55-80% of maximal heart rate). It is also recommended to conduct strength training (2-3 days per week, 1-3 sets of 10-15 repetitions), and flexibility and neuromuscular training (2-3 days per week). In order to encourage individuals post-stroke to conduct PTr there is a need for social support (from caregivers and family) and to provide PTr consultation. PTr barriers consist of both personal (e.g., depression, knowledge regarding physical activity centers) and environmental (e.g., lack of transportation) factors.

  15. [Effect of physical activity on longevity].

    PubMed

    Wilczek, Mateusz M; Krupienicz, Andrzej

    2016-11-25

    Multiple population studies have reported a positive correlation between higher levels of physical activity (PA) and longer lifespan. It has been generally accepted that it occurs due to PA having a direct effect on longevity. However, this idea is negated by experiments on animal models and an observational study on a twin cohort published recently by Karvinen et al. This unique study includes a pairwise comparison of monozygotic twins discordant for PA, therefore eliminating any influence of genetic factors on both mortality and tendency to take up exercise. The intriguing lack of differences in lifespan in such pairs implies that PA is not an important life prolonging factor. This discovery casts doubt on the validity of PA recommendations found in numerous medical guidelines. Nevertheless, the mentioned results apply only to the plain PA - longevity relation. They do not consider health benefits of PA, for which solid evidence exists. In particular, PA clearly reduces the risk of obesity-related diseases. This may indirectly yet significantly affect the length and quality of life, even if the direct relationship between PA and lifespan will be proven false in further research.

  16. Lifetime of the electroweak vacuum and sensitivity to Planck scale physics

    NASA Astrophysics Data System (ADS)

    Branchina, Vincenzo; Messina, Emanuele; Sher, Marc

    2015-01-01

    If the Standard Model (SM) is valid up to extremely high energy scales, then the Higgs potential becomes unstable at approximately 1 011 GeV . However, calculations of the lifetime of the SM vacuum have shown that it vastly exceeds the age of the Universe. It was pointed out by two of us (V. B., E. M.) that these calculations are extremely sensitive to effects from Planck scale higher-dimensional operators and, without knowledge of these operators, firm conclusions about the lifetime of the SM vacuum cannot be drawn. The previous paper used analytical approximations to the potential and, except for Higgs contributions, ignored loop corrections to the bounce action. In this work, we do not rely on any analytical approximations and consider all contributions to the bounce action, confirming the earlier result. It is surprising that the Planck scale operators can have such a large effect when the instability is at 1 011 GeV . There are two reasons for the size of this effect. In typical tunneling calculations, the value of the field at the center of the critical bubble is much larger than the point of the instability; in the SM case, this turns out to be numerically within an order of magnitude of the Planck scale. In addition, tunneling is an inherently nonperturbative phenomenon and may not be as strongly suppressed by inverse powers of the Planck scale. We include effective Φ6 and Φ8 Planck-scale operators and show that they can have an enormous effect on the tunneling rate.

  17. How Gamification Affects Physical Activity: Large-scale Analysis of Walking Challenges in a Mobile Application

    PubMed Central

    Shameli, Ali; Althoff, Tim; Saberi, Amin; Leskovec, Jure

    2017-01-01

    Gamification represents an effective way to incentivize user behavior across a number of computing applications. However, despite the fact that physical activity is essential for a healthy lifestyle, surprisingly little is known about how gamification and in particular competitions shape human physical activity. Here we study how competitions affect physical activity. We focus on walking challenges in a mobile activity tracking application where multiple users compete over who takes the most steps over a predefined number of days. We synthesize our findings in a series of game and app design implications. In particular, we analyze nearly 2,500 physical activity competitions over a period of one year capturing more than 800,000 person days of activity tracking. We observe that during walking competitions, the average user increases physical activity by 23%. Furthermore, there are large increases in activity for both men and women across all ages, and weight status, and even for users that were previously fairly inactive. We also find that the composition of participants greatly affects the dynamics of the game. In particular, if highly unequal participants get matched to each other, then competition suffers and the overall effect on the physical activity drops significantly. Furthermore, competitions with an equal mix of both men and women are more effective in increasing the level of activities. We leverage these insights to develop a statistical model to predict whether or not a competition will be particularly engaging with significant accuracy. Our models can serve as a guideline to help design more engaging competitions that lead to most beneficial behavioral changes.

  18. Physical and Chemical Signals That Promote Vascularization of Capillary-Scale Channels

    PubMed Central

    Linville, Raleigh M.; Boland, Nelson F.; Covarrubias, Gil; Price, Gavrielle M.; Tien, Joe

    2016-01-01

    Proper vascularization remains critical to the clinical application of engineered tissues. To engineer microvessels in vitro, we and others have delivered endothelial cells through preformed channels into patterned extracellular matrix-based gels. This approach has been limited by the size of endothelial cells in suspension, and results in plugging of channels below ~30 μm in diameter. Here, we examine physical and chemical signals that can augment direct seeding, with the aim of rapidly vascularizing capillary-scale channels. By studying tapered microchannels in type I collagen gels under various conditions, we establish that stiff scaffolds, forward pressure, and elevated cyclic AMP levels promote endothelial stability and that reverse pressure promotes endothelial migration. We applied these results to uniform 20-μm-diameter channels and optimized the magnitudes of pressure, flow, and shear stress to best support endothelial migration and vascular stability. This vascularization strategy is able to form millimeter-long perfusable capillaries within three days. Our results indicate how to manipulate the physical and chemical environment to promote rapid vascularization of capillary-scale channels within type I collagen gels. PMID:27110295

  19. Physical and Chemical Signals That Promote Vascularization of Capillary-Scale Channels.

    PubMed

    Linville, Raleigh M; Boland, Nelson F; Covarrubias, Gil; Price, Gavrielle M; Tien, Joe

    2016-03-01

    Proper vascularization remains critical to the clinical application of engineered tissues. To engineer microvessels in vitro, we and others have delivered endothelial cells through preformed channels into patterned extracellular matrix-based gels. This approach has been limited by the size of endothelial cells in suspension, and results in plugging of channels below ~30 μm in diameter. Here, we examine physical and chemical signals that can augment direct seeding, with the aim of rapidly vascularizing capillary-scale channels. By studying tapered microchannels in type I collagen gels under various conditions, we establish that stiff scaffolds, forward pressure, and elevated cyclic AMP levels promote endothelial stability and that reverse pressure promotes endothelial migration. We applied these results to uniform 20-μm-diameter channels and optimized the magnitudes of pressure, flow, and shear stress to best support endothelial migration and vascular stability. This vascularization strategy is able to form millimeter-long perfusable capillaries within three days. Our results indicate how to manipulate the physical and chemical environment to promote rapid vascularization of capillary-scale channels within type I collagen gels.

  20. Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees

    NASA Astrophysics Data System (ADS)

    Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.

    2012-06-01

    In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).

  1. Five months of physical exercise in hemodialysis patients: effects on aerobic capacity, physical function and self-rated health.

    PubMed

    Molsted, Stig; Eidemak, Inge; Sorensen, Helle Tauby; Kristensen, Jens Halkjaer

    2004-01-01

    The number of chronic renal failure patients treated by hemodialysis (HD) is continuously increasing. Most patients have reduced physical capacity and have a high risk of cardiac and vascular diseases. The aim of this study was to determine the effects of 5 months physical exercise of HD patients' physical capacity, self-rated health and risk factors for cardiovascular disease. 33 HD patients were included in the study. HD for more than 3 months, age >18 years. Diabetes mellitus, symptomatic cardiovascular disease, musculoskeletal limitations, severe peripheral polyneuropathy, inability to speak Danish or English, dementia or other mental disorders. The patients were randomly assigned to an exercise group (EG, n = 22) or a control group (CG, n = 11). Prior to randomization, baseline testing was performed. The effects were measured by aerobic capacity, '2-min stair climbing', 'squat test', self-rated health (SF36), blood pressure and lipids. All tests were carried out by blinded testers. The intervention consisted of 1 h of physical exercise twice a week for 5 months. 20 patients completed the intervention. Attendance was 74% of all sessions. There were no dropouts caused by complications related to the intervention. The EG had a significant increase in aerobic capacity, 'squat test' and Physical Function and Physical Component Scale (SF36). No significant changes were observed in any of the parameters in the CG. Physical exercise twice a week for 5 months increases physical function and aerobic capacity in HD patients. An exercise program with only two exercise sessions per week seems easy to implement in clinical practice with high attendance among participants. Further investigation is needed to determine the effects on blood pressure and lipids. There were no medical complications related to the exercise program. Copyright 2004 S. Karger AG, Basel

  2. Effects of Number Scaling on Entangled States in Quantum Mechanics

    SciTech Connect

    Benioff, Paul

    2016-05-19

    A summary of number structure scaling is followed by a description of the effects of number scaling in nonrelativistic quantum mechanics. The description extends earlier work to include the effects on the states of two or more interacting particles. Emphasis is placed on the effects on entangled states. The resulting scaling field is generalized to describe the effects on these states. It is also seen that one can use fiber bundles with fibers associated with single locations of the underlying space to describe the effects of scaling on arbitrary numbers of particles.

  3. Towards a physically-based multi-scale ecohydrological simulator for semi-arid regions

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; Josefik, Zoltan; Hinz, Christoph

    2017-04-01

    The use of numerical models as tools for describing and understanding complex ecohydrological systems has enabled to test hypothesis and propose fundamental, process-based explanations of the system system behaviour as a whole as well as its internal dynamics. Reaction-diffusion equations have been used to describe and generate organized pattern such as bands, spots, and labyrinths using simple feedback mechanisms and boundary conditions. Alternatively, pattern-matching cellular automaton models have been used to generate vegetation self-organization in arid and semi-arid regions also using simple description of surface hydrological processes. A key question is: How much physical realism is needed in order to adequately capture the pattern formation processes in semi-arid regions while reliably representing the water balance dynamics at the relevant time scales? In fact, redistribution of water by surface runoff at the hillslope scale occurs at temporal resolution of minutes while the vegetation development requires much lower temporal resolution and longer times spans. This generates a fundamental spatio-temporal multi-scale problem to be solved, for which high resolution rainfall and surface topography are required. Accordingly, the objective of this contribution is to provide proof-of-concept that governing processes can be described numerically at those multiple scales. The requirements for a simulating ecohydrological processes and pattern formation with increased physical realism are, amongst others: i. high resolution rainfall that adequately captures the triggers of growth as vegetation dynamics of arid regions respond as pulsed systems. ii. complex, natural topography in order to accurately model drainage patterns, as surface water redistribution is highly sensitive to topographic features. iii. microtopography and hydraulic roughness, as small scale variations do impact on large scale hillslope behaviour iv. moisture dependent infiltration as temporal

  4. Conformal Symmetry as a Template:Commensurate Scale Relations and Physical Renormalization Schemes

    SciTech Connect

    Brodsky, Stanley J.

    1999-06-09

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scale, such as the ''generalized Crewther relation'', which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e{sup +}e{sup {minus}} annihilation cross section. We show how conformal symmetry provides a template for such QCD predictions, providing relations between observables which are present even in theories which are not scale invariant. All non-conformal effects are absorbed by fixing the ratio of the respective momentum transfer and energy scales. In the case of fixed-point theories, commensurate scale relations relate both the ratio of couplings and the ratio of scales as the fixed point is approached. In the case of the {alpha}{sub V} scheme defined from heavy quark interactions, virtual corrections due to fermion pairs are analytically incorporated into the Gell-Mann Low function, thus avoiding the problem of explicitly computing and resuming quark mass corrections related to the running of the coupling. Applications to the decay width of the Z boson, the BFKL pomeron, and virtual photon scattering are discussed.

  5. Scaling effects in direct shear tests

    USGS Publications Warehouse

    Orlando, A.D.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    Laboratory experiments of the direct shear test were performed on spherical particles of different materials and diameters. Results of the bulk friction vs. non-dimensional shear displacement are presented as a function of the non-dimensional particle diameter. Simulations of the direct shear test were performed using the Discrete Element Method (DEM). The simulation results show Considerable differences with the physical experiments. Particle level material properties, such as the coefficients of static friction, restitution and rolling friction need to be known a priori in order to guarantee that the simulation results are an accurate representation of the physical phenomenon. Furthermore, laboratory results show a clear size dependency on the results, with smaller particles having a higher bulk friction than larger ones. ?? 2009 American Institute of Physics.

  6. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications

    NASA Astrophysics Data System (ADS)

    Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2012-07-01

    Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.

  7. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    SciTech Connect

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  8. Numerical Simulations of Vortical Mode Stirring: Effects of Large Scale Shear and Strain

    DTIC Science & Technology

    2015-09-30

    goal of this effort is to develop scalable, physically based parameterizations for lateral mixing in the stratified ocean on scales of 0.1-10 km that...can be implemented in larger-scale ocean models. These parameterizations will incorporate the effects of local ambient conditions including latitude...in the ocean stratified interior. OBJECTIVES The objectives are to work collaboratively with modelers and observationalists involved in the LatMix

  9. Cooperative Learning: Exploring Its Effectiveness in the Physics Classroom

    ERIC Educational Resources Information Center

    Ho, Fui Fong; Boo, Hong Kwen

    2007-01-01

    This paper reports on the results of an action research to explore the effectiveness of using cooperative learning strategies on students' academic achievement, their understanding of physics concepts and their motivation to learn in the physics classroom. The study involved a secondary four express physics class of 41 students in a neighbourhood…

  10. Effects of Vigorous Intensity Physical Activity on Mathematics Test Performance

    ERIC Educational Resources Information Center

    Phillips, David S.; Hannon, James C.; Castelli, Darla M.

    2015-01-01

    The effect of an acute bout of physical activity on academic performance in school-based settings is under researched. The purpose of this study was to examine associations between a single, vigorous (70-85%) bout of physical activity completed during physical education on standardized mathematics test performance among 72, eighth grade students…

  11. Effects of Vigorous Intensity Physical Activity on Mathematics Test Performance

    ERIC Educational Resources Information Center

    Phillips, David S.; Hannon, James C.; Castelli, Darla M.

    2015-01-01

    The effect of an acute bout of physical activity on academic performance in school-based settings is under researched. The purpose of this study was to examine associations between a single, vigorous (70-85%) bout of physical activity completed during physical education on standardized mathematics test performance among 72, eighth grade students…

  12. Enhancing Transfer of Knowledge in Physics through Effective Teaching Strategies

    ERIC Educational Resources Information Center

    Akinbobola, Akinyemi Olufunminiyi

    2015-01-01

    The study assessed the enhancement of transfer of knowledge in physics through the use of effective teaching strategies in Nigerian senior secondary schools. Non-randomized pretest-posttest control group design was adopted for the study. A total of 278 physics students took part in the study. Transfer of Knowledge Test in Physics (TKTP) with the…

  13. Cooperative Learning: Exploring Its Effectiveness in the Physics Classroom

    ERIC Educational Resources Information Center

    Ho, Fui Fong; Boo, Hong Kwen

    2007-01-01

    This paper reports on the results of an action research to explore the effectiveness of using cooperative learning strategies on students' academic achievement, their understanding of physics concepts and their motivation to learn in the physics classroom. The study involved a secondary four express physics class of 41 students in a neighbourhood…

  14. Effective Computer Use in Physics Education

    ERIC Educational Resources Information Center

    Bork, Alfred M.

    1975-01-01

    Illustrates a sample remedial program in mathematics for physics students. Describes two computer games with successful instructional strategies and programs which help mathematically unsophisticated students to grasp the notion of a differential equation. (GH)

  15. Effects of Physical Training on Mood

    ERIC Educational Resources Information Center

    Folkins, Carlyle H.

    1976-01-01

    Presents further evidence for the relationship between improvements in physical fitness and psychological fitness in a group of infirm adult males. The men in the group under study were at high risk of CHD (coronary heart disease). (Author/RK)

  16. Effects of Physical Training on Mood

    ERIC Educational Resources Information Center

    Folkins, Carlyle H.

    1976-01-01

    Presents further evidence for the relationship between improvements in physical fitness and psychological fitness in a group of infirm adult males. The men in the group under study were at high risk of CHD (coronary heart disease). (Author/RK)

  17. Evaluating Introductory Physics Classes in Light of the ABET Criteria: An Example from the SCALE-UP Project.

    ERIC Educational Resources Information Center

    Saul, Jeffery M.; Deardorff, Duane L.; Abbott, David S.; Allain, Rhett J.; Beichner, Robert J.

    The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project at North Carolina State University (NCSU) is developing a curriculum to promote learning through in-class group activities in introductory physics classes up to 100 students. The authors are currently in Phase II of the project using a specially designed…

  18. Inflation physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

    2015-03-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5 σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  19. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    NASA Technical Reports Server (NTRS)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; Calabrese, E.; Carlstrom, J.E.; Carvalho, C.S.; Chang, C.L.; Chiang, H.C.; Church, S.; Cooray, A.; Crawford, T.M.; Crill, B.P.; Dawson, K.S.; Das, S.; Devline, M.J.; Dobbs, M.; Dodelson, S; Wollack, E. J.

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  20. Accelerating efforts to prevent childhood obesity: spreading, scaling, and sustaining healthy eating and physical activity.

    PubMed

    Chang, Debbie I; Gertel-Rosenberg, Allison; Snyder, Kim

    2014-12-01

    During the past decade, progress has been made in addressing childhood obesity through policy and practice changes that encourage increased physical activity and access to healthy food. With the implementation of these strategies, an understanding of what works to prevent childhood obesity is beginning to emerge. The task now is to consider how best to spread, scale, and sustain promising childhood obesity prevention strategies. In this article we examine a project led by Nemours, a children's health system, to address childhood obesity. We describe Nemours's conceptual approach to spreading, scaling, and sustaining a childhood obesity prevention intervention. We review a component of a Nemours initiative in Delaware that focused on early care and education settings and its expansion to other states through the National Early Care and Education Learning Collaborative to prevent childhood obesity. We also discuss lessons learned. Focusing on the spreading, scaling, and sustaining of promising strategies has the potential to increase the reach and impact of efforts in obesity prevention and help ensure their impact on population health. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Inflation physics from the cosmic microwave background and large scale structure

    SciTech Connect

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C. -L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

    2015-03-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments—the theory of cosmic inflation—and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B -mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  2. Micrometer-Scale Physical Structure and Microbial Composition of Soil Macroaggregates

    SciTech Connect

    Bailey, Vanessa L.; McCue, Lee Ann; Fansler, Sarah J.; Boyanov, Maxim I.; DeCarlo, F.; Kemner, Kenneth M.; Konopka, Allan

    2013-10-01

    Soil macroaggregates are discrete, separable units of soil that we hypothesize contain smaller assemblages of microorganisms than bulk soil, and represent a scale potentially consistent with naturally occurring microbial communities. We posed two questions to explore microbial community composition in the context of the macroaggregate: 1) Is there a relationship between macroaggregate physical structure and microbial community composition in individual macroaggregates? And, 2) How similar are the bacterial communities in individual sub-millimeter soil macroaggregates sampled from the same 5-cm core? To address these questions, individual macroaggregates of three arbitrary size classes (250–425, 425–841, and 841–1000 μm) were sampled from a grassland field. The physical structures of 14 individual macroaggregates were characterized using synchrotron-radiation based transmission X-ray tomography, revealing that a greater proportion of the pore space in the small- and medium-sized macroaggregates is as relatively smaller pores, resulting in greater overall porosity and pore–mineral interface area in these smaller macroaggregates. Microbial community composition was characterized using 16S rRNA pyrosequencing data. Rarefaction analyses indicated that the membership of each macroaggregate was sufficiently sampled with only a few thousand sequences; in addition, the community membership varied widely between macroaggregates and the structure varied from those communities strongly dominated by a few phylotypes to communities that were evenly distributed among several phylotypes. We found no strong relationship of physical structure with community membership; this may be due to the low number of aggregates (10) for which we have both physical and biological data. Our results do support our initial expectation that individual macroaggregate communities were significantly less diverse than bulk soil from the same grassland field site.

  3. A Scale for Home Visiting Nurses to Identify Risks of Physical Abuse and Neglect among Mothers with Newborn Infants

    ERIC Educational Resources Information Center

    Grietens, Hans; Geeraert, Liesl; Hellinckx, Walter

    2004-01-01

    Objective: The aim was to construct and test the reliability (utility, internal consistency, interrater agreement) and the validity (internal validity, concurrent validity) of a scale for home visiting social nurses to identify risks of physical abuse and neglect in mothers with a newborn child. Method: A 71-item scale was constructed based on a…

  4. A Scale for Home Visiting Nurses to Identify Risks of Physical Abuse and Neglect among Mothers with Newborn Infants

    ERIC Educational Resources Information Center

    Grietens, Hans; Geeraert, Liesl; Hellinckx, Walter

    2004-01-01

    Objective: The aim was to construct and test the reliability (utility, internal consistency, interrater agreement) and the validity (internal validity, concurrent validity) of a scale for home visiting social nurses to identify risks of physical abuse and neglect in mothers with a newborn child. Method: A 71-item scale was constructed based on a…

  5. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  6. No-scale supergravity inflation: A bridge between string theory and particle physics?

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2016-07-01

    The plethora of recent and forthcoming data on the cosmic microwave background (CMB) data are stimulating a new wave of inflationary model-building. Naturalness suggests that the appropriate framework for models of inflation is supersymmetry. This should be combined with gravity in a supergravity theory, whose specific no-scale version has much to commend it, e.g. its derivation from string theory and the flat directions in its effective potential. Simple no-scale supergravity models yield predictions similar to those of the Starobinsky R + R2 model, though some string-motivated versions make alternative predictions. Data are beginning to provide interesting constraints on the rate of inflaton decay into Standard Model particles. In parallel, LHC and other data provide significant constraints on no-scale supergravity models, which suggest that some sparticles might have masses close to present experimental limits.

  7. Multi-scale Drivers of Variations in Atmospheric Evaporative Demand Based on Observations and Physically-based Modeling

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.; Li, D.

    2015-12-01

    Evapotranspiration (ET) is a key link between the availability of water resources and climate change and climate variability. Variability of ET has important environmental and socioeconomic implications for managing hydrological hazards, food and energy production. Although there have been many observational and modeling studies of ET, how ET has varied and the drivers of the variations at different temporal scales remain elusive. Much of the uncertainty comes from the atmospheric evaporative demand (AED), which is the combined effect of radiative and aerodynamic controls. The inconsistencies among modeled AED estimates and the limited observational data may originate from multiple sources including the limited time span and uncertainties in the data. To fully investigate and untangle the intertwined drivers of AED, we present a spectrum analysis to identify key controls of AED across multiple temporal scales. We use long-term records of observed pan evaporation for 1961-2006 from 317 weather stations across China and physically-based model estimates of potential evapotranspiration (PET). The model estimates are based on surface meteorology and radiation derived from reanalysis, satellite retrievals and station data. Our analyses show that temperature plays a dominant role in regulating variability of AED at the inter-annual scale. At the monthly and seasonal scales, the primary control of AED shifts from radiation in humid regions to humidity in dry regions. Unlike many studies focusing on the spatial pattern of ET drivers based on a traditional supply and demand framework, this study underlines the importance of temporal scales when discussing controls of ET variations.

  8. Scale Development for Measuring and Predicting Adolescents’ Leisure Time Physical Activity Behavior

    PubMed Central

    Ries, Francis; Romero Granados, Santiago; Arribas Galarraga, Silvia

    2009-01-01

    The aim of this study was to develop a scale for assessing and predicting adolescents’ physical activity behavior in Spain and Luxembourg using the Theory of Planned Behavior as a framework. The sample was comprised of 613 Spanish (boys = 309, girls = 304; M age =15.28, SD =1.127) and 752 Luxembourgish adolescents (boys = 343, girls = 409; M age = 14.92, SD = 1.198), selected from students of two secondary schools in both countries, with a similar socio-economic status. The initial 43-items were all scored on a 4-point response format using the structured alternative format and translated into Spanish, French and German. In order to ensure the accuracy of the translation, standardized parallel back-translation techniques were employed. Following two pilot tests and subsequent revisions, a second order exploratory factor analysis with oblimin direct rotation was used for factor extraction. Internal consistency and test-retest reliabilities were also tested. The 4-week test-retest correlations confirmed the items’ time stability. The same five factors were obtained, explaining 63.76% and 63.64% of the total variance in both samples. Internal consistency for the five factors ranged from α = 0.759 to α = 0. 949 in the Spanish sample and from α = 0.735 to α = 0.952 in the Luxembourgish sample. For both samples, inter-factor correlations were all reported significant and positive, except for Factor 5 where they were significant but negative. The high internal consistency of the subscales, the reported item test-retest reliabilities and the identical factor structure confirm the adequacy of the elaborated questionnaire for assessing the TPB-based constructs when used with a population of adolescents in Spain and Luxembourg. The results give some indication that they may have value in measuring the hypothesized TPB constructs for PA behavior in a cross-cultural context. Key points When using the structured alternative format, weak internal consistency was obtained

  9. What is the scale of new physics behind the B-flavour anomalies?

    NASA Astrophysics Data System (ADS)

    Di Luzio, Luca; Nardecchia, Marco

    2017-08-01

    Motivated by the recent hints of lepton flavour non-universality in B-meson semi-leptonic decays, we study the constraints of perturbative unitarity on the new physics interpretation of the anomalies in b → c ℓ \\bar{ν } and b → s ℓ \\bar{ℓ } transitions. Within an effective field theory approach we find that 2 → 2 fermion scattering amplitudes saturate the unitarity bound below 9 and 80 TeV, respectively for b → c ℓ \\bar{ν } and b → s ℓ \\bar{ℓ } transitions. Stronger bounds, up to few TeV, are obtained when the leading effective operators are oriented in the direction of the third generation, as suggested by flavour models. We finally address unitarity constraints on simplified models explaining the anomalies and show that the new physics interpretation is ruled out in a class of perturbative realizations.

  10. Orbital and physical characteristics of meter-scale impactors from airburst observations

    NASA Astrophysics Data System (ADS)

    Brown, P.; Wiegert, P.; Clark, D.; Tagliaferri, E.

    2016-03-01

    We have analyzed the orbits and ablation characteristics in the atmosphere of 59 Earth-impacting fireballs, produced by meteoroids 1 m in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. This is in contrast to earlier suggestions by Ceplecha (Ceplecha, Z. [1994]. Astron. Astrophys. 286, 967-970) that the majority of meter-tens of meter sized meteoroids are ;… cometary bodies of the weakest known structure;. We find a lower limit of ∼10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two events, Sumava and USG 20131121, have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though both were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several events in our population with the Taurid meteoroid complex; no other major meteoroid streams show probable linkages to the orbits of our meter-scale population. Our impactors cover almost four orders of magnitude in mass, but

  11. Effects of Daily Physical Education on Physical Fitness and Weight Status in Middle School Adolescents

    ERIC Educational Resources Information Center

    Erfle, Stephen E.; Gamble, Abigail

    2014-01-01

    Background: In 2009, the Pennsylvania Department of Health developed the Active Schools Program (ASP) which required 30?minutes of daily physical education (PE) in middle schools to reduce childhood obesity. This investigation evaluated the ASP effects on physical fitness and weight status in middle school adolescents throughout 1 academic year.…

  12. Effects of Daily Physical Education on Physical Fitness and Weight Status in Middle School Adolescents

    ERIC Educational Resources Information Center

    Erfle, Stephen E.; Gamble, Abigail

    2014-01-01

    Background: In 2009, the Pennsylvania Department of Health developed the Active Schools Program (ASP) which required 30?minutes of daily physical education (PE) in middle schools to reduce childhood obesity. This investigation evaluated the ASP effects on physical fitness and weight status in middle school adolescents throughout 1 academic year.…

  13. Effects of a Classroom-Based Physical Activity Program on Children's Physical Activity Levels

    ERIC Educational Resources Information Center

    Goh, Tan Leng; Hannon, James; Webster, Collin Andrew; Podlog, Leslie William; Brusseau, Timothy; Newton, Maria

    2014-01-01

    High levels of physical inactivity are evident among many American children. To address this problem, providing physical activity (PA) during the school day within the CSPAP framework, is one strategy to increase children's PA. Thus, the purpose of this study was to examine the effects of a classroom-based PA program on children's PA. Two hundred…

  14. Power countings versus physical scalings in disordered elastic systems—case study of the one-dimensional interface

    NASA Astrophysics Data System (ADS)

    Agoritsas, Elisabeth; Lecomte, Vivien

    2017-03-01

    We study the scaling properties of a one-dimensional interface at equilibrium, at finite temperature and in a disordered environment with a finite disorder correlation length. We focus our approach on the scalings of its geometrical fluctuations as a function of its length. At large lengthscales, the roughness of the interface, defined as the variance of its endpoint fluctuations, follows a power-law behaviour whose exponent characterises its superdiffusive behaviour. In 1+1 dimensions, the roughness exponent is known to be the characteristic 2/3 exponent of the Kardar–Parisi–Zhang (KPZ) universality class. An important feature of the model description is that its Flory exponent, obtained by a power counting argument on its Hamiltonian, is equal to 3/5 and thus does not yield the correct KPZ roughness exponent. In this work, we review the available power-counting options, and relate the physical validity of the exponent values that they predict, to the existence (or not) of well-defined optimal trajectories in a large-size or low-temperature asymptotics. We identify the crucial role of the ‘cut-off’ lengths of the problem (the disorder correlation length and the system size), which one has to carefully follow throughout the scaling analysis. To complement the latter, we device a novel Gaussian variational method (GVM) scheme to compute the roughness, taking into account the effect of a large but finite interface length. Interestingly, such a procedure yields the correct KPZ roughness exponent, instead of the Flory exponent usually obtained through the GVM approach for an infinite interface. We explain the physical origin of this improvement of the GVM procedure and discuss possible extensions of this work to other disordered systems.

  15. A Confirmatory Study of Rating Scale Category Effectiveness for the Coaching Efficacy Scale

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Feltz, Deborah L.; Wolfe, Edward W.

    2008-01-01

    This study extended validity evidence for measures of coaching efficacy derived from the Coaching Efficacy Scale (CES) by testing the rating scale categorizations suggested in previous research. Previous research provided evidence for the effectiveness of a four-category (4-CAT) structure for high school and collegiate sports coaches; it also…

  16. Characterizing the effects of scale and heating rate on micro-scale explosive ignition criteria.

    SciTech Connect

    Hafenrichter, Everett Shingo; Pahl, Robert J.

    2005-01-01

    Laser diode ignition experiments were conducted in an effort to characterize the effects of scale and heating rate on micro-scale explosive ignition criteria. Over forty experiments were conducted with various laser power densities and laser spot sizes. In addition, relatively simple analytical and numerical calculations were performed to assist with interpretation of the experimental data and characterization of the explosive ignition criteria.

  17. The Effect of Scale Tailoring for Cross-Cultural Application on Scale Reliability and Construct Validity.

    ERIC Educational Resources Information Center

    Arce-Ferrer, Alvaro J.; Ketterer, John J.

    2002-01-01

    Findings for high school students in Mexico (n=3,153 and n=400) administered a career decision making self-efficacy scale show that tailoring the scale with the best etic and emic items neither improved recovery of the factor-structure nor reduced the effects of the extreme-response style variable. (SLD)

  18. A Confirmatory Study of Rating Scale Category Effectiveness for the Coaching Efficacy Scale

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Feltz, Deborah L.; Wolfe, Edward W.

    2008-01-01

    This study extended validity evidence for measures of coaching efficacy derived from the Coaching Efficacy Scale (CES) by testing the rating scale categorizations suggested in previous research. Previous research provided evidence for the effectiveness of a four-category (4-CAT) structure for high school and collegiate sports coaches; it also…

  19. Some aspects of wind tunnel magnetic suspension systems with special application at large physical scales

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1983-01-01

    Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.

  20. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    NASA Astrophysics Data System (ADS)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  1. Adaptation and Validation of the Psychological Need Thwarting Scale in Spanish Physical Education Teachers.

    PubMed

    Cuevas, Ricardo; Sánchez-Oliva, David; Bartholomew, Kimberley J; Ntoumanis, Nikos; García-Calvo, Tomás

    2015-07-20

    Drawing from self-determination theory (SDT; Deci & Ryan, 1985; Ryan & Deci, 2002), the aim of the study was to adapt and validate a Spanish version of the Psychological Need Thwarting Scale (PNTS; Bartholomew, Ntoumanis, Ryan, & Thørgersen-Ntoumani, 2011) in the educational domain. Psychological need thwarting and burnout were assessed in 619 physical education teachers from several high schools in Spain. Overall, the adapted measure demonstrated good content, factorial (χ2/gl = 4.87, p < .01, CFI = .95, IFI = .96, TLI = .94, RMSEA = .08, SRMR = .05), and external validity, as well as internal consistency (α ≥ .81) and invariance across gender. Moreover, burnout was strongly predicted by teachers' perceptions of competence (β = .53, p ≤ .01), autonomy (β = .34, p ≤ .01), and relatedness (β = .31, p ≤ .01) need thwarting. In conclusion, these results support the Spanish version of the PNTS as a valid and reliable instrument for assessing the understudied concept of psychological need thwarting in teachers.

  2. Effect of primary hypohydration on physical work capacity

    NASA Astrophysics Data System (ADS)

    Pichan, G.; Gauttam, R. K.; Tomar, O. S.; Bajaj, A. C.

    1988-09-01

    Physical work capacity (PWC180) was assessed with different levels of hypohydration in 25 heat-acclimatized male volunteers in hot dry (45°C DB, 30% RH) and hot humid (39°C DB, 60% RH) conditions equated to a heat stress level of 34°C on the WBGT scale. Heat acclimatization was carried out by exposing the subjects for 8 consecutive days in a climatic chamber with moderate work for two 50 min work cycles and 10 min intervening rest pauses. Acclimatization resulted in significant decreases in heart rate (27 bpm), oral temperature (0.8°C), mean skin temperature (1.2°C) and a significant increase in sweating rate (120 g h-1 m-2). Day-to-day variations in body hypohydration levels during heat acclimatization were not significantly different, although water intake was found to increase significantly from day 3 onwards when the subjects were in ad lib water intake state. The heat acclimatized subjects were then hypohydrated to varying degrees, viz. 1%, 2% and 3% body weight deficit, with moderate work in heat in the climatic chamber and after successful recovery from the effects of thermal stress and exercise; their physical work capacity was assessed individually. Physical work capacity was found to decrease significantly with hypohydration as compared to controls. The decrease was of the order of 9%, 11% and 22% in the hot dry condition and 6%, 8% and 20% in the hot humid condition with hypohydration levels of 1%, 2% and 3% respectively. The decrease was more pronounced during 3% hypohydration level under both heat stress conditions. This decrease was in spite of significant increases in maximal ventilation. However, the PWC180 under the two heat stress conditions, when compared, did not reveal any significant difference. It was concluded that the heat stress vehicle did not adversely affect the physical work capacity. On the other hand, the decreases in physical work capacity were found to be closely related to the primary hypohydration level in heat

  3. Scaling and shadowing effects in ballistic aggregation

    NASA Astrophysics Data System (ADS)

    Joag, P. S.; Limaye, A. V.; Amritkar, R. E.

    1987-10-01

    We have studied the scaling and shadowing properties of two-dimensional off-lattice ballistic aggregation on a seed. The computer simulations show that the limiting semivertical cone angle is about 15.5°. The density as a function of distance from the seed tends to a constant value showing a basic two-dimensional nature of the aggregates and has a correction with a metadimension of about 0.56. The density as a function of angle near the edges of the cone is found to obey a scaling relation similar to the on-lattice case. The probabilities for the fingers of different lengths which shadow the particle near the edge are determined in the computer experiment and also determined analytically.

  4. Class Management Behaviors of Effective Physical Educators

    ERIC Educational Resources Information Center

    Arbogast, Gary; Chandler, Judy P.

    2005-01-01

    All teachers desire to keep their students on task and focused on meeting lesson objectives. Classroom management, perhaps the most critical factor involved in a lesson's success, includes several considerations. In this article, the authors, who are physical education teacher educators themselves, discuss the five management practices, which they…

  5. Impact of precipitation and physical characteristics spatial variabilities on hydrological response at large catchment scale

    NASA Astrophysics Data System (ADS)

    Rouhier, Laura; Garavaglia, Federico; Le Lay, Matthieu; Le Moine, Nicolas; Ribstein, Pierre; Hendrickx, Frédéric

    2017-04-01

    The spatial variability of the hydrological response is controlled by the interaction of two spatial variabilities: (i) meteorological forcing and (ii) physical characteristics. This work aims at evaluating their relative impact on streamflow modeling throughout a catchment. To tackle the issue, a spatially distributed rainfall-runoff model, named MORDOR-TS, is used. It is a distributed version of the conceptual rainfall-runoff model currently used at Électricité de France (EDF, French electric utility company) for operational applications. The analysis is conducted at large catchment scale, on the French Loire catchment at Gien (35 707 km2) discretised at the maximum into 387 hydrological meshes of about 100km2. Within this one, 106 streamflow time series are available between 1980 and 2012. According to a spatial split-sample test scheme, the data is split into two similar parts: a calibration and a validation sample of 53 gauges each. For a model calibrated on the catchment outlet only, the impact of the rainfall pattern is assessed by testing several aggregations of the precipitation field, from uniform to mesh scale. Then, the spatial physical information is added in two steps. Firstly, the valuable information about interior gauges is taken into account by calibrating a uniform set of parameters on the whole calibration sample. Secondly, the parameters are spatialised to represent the physiographic and pedologic spatial variabilities. Dividing the catchment into sub-basins, there could be as many parameter sets calibrated as there are calibration sites. Regarding the validation sample, the worst performance is provided by a unique lumped model, while the best is given by a set of 53 independent distributed models calibrated on each validation station. The main progress from the worst towards the best case is obtained with the precipitation spatial variability (around 85% of the total progress). Interior gauges and parameters spatialisation bring some

  6. Scaling Effects on Stern Flap Performance. Progress Report

    DTIC Science & Technology

    2009-09-01

    prototype stern flap on the USS RAMAGE ( DDG 61), the 11th destroyer of the DDG 51 Class, with associated stern flap evaluation trials, has provided...TERMS Stern flap scaling effects; DDG 61 stern flap performance trials; geosim model experiments 16. SECURITY CLASSIFICATION OF: a. REPORT...GUIDANCE FOR PROJECTING FULL-SCALE STERN FLAP PERFORMANCE 12 CONTINUED RESEARCH 17 DDG 51 Stern Flap Scaling Effects Study 17 Application to Other

  7. Structurally Dynamic Cellular Networks as Models for Planck Scale Physics and the Quantum Vacuum

    NASA Astrophysics Data System (ADS)

    Requardt, Manfred

    Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of our ordinary continuum physics and mathematics. We regard these continuum concepts and continuum space-time (S-T) in particular as being emergent, coarse-grained and derived relative to an underlying erratic and disordered microscopic substratum which is expected to play by quite different rules. A central role in our analysis is played by a geometric renormalization group which creates (among other things) a kind of sparse translocal network of correlations in classical continuous space-time and underlies in our view such mysterious phenomena as holography and the black hole entropy-area law. The same point of view holds for quantum theory which we also regard as a low-energy, coarse-grained continuum theory, being emergent from something more fundamental.

  8. Neighborhood Environment Walkability Scale for Youth (NEWS-Y): reliability and relationship with physical activity.

    PubMed

    Rosenberg, Dori; Ding, Ding; Sallis, James F; Kerr, Jacqueline; Norman, Gregory J; Durant, Nefertiti; Harris, Sion K; Saelens, Brian E

    2009-01-01

    To examine the psychometric properties of the Neighborhood Environment Walkability Scale-Youth (NEWS-Y) and explore its associations with context-specific and overall physical activity (PA) among youth. In 2005, parents of children ages 5-11 (n=116), parents of adolescents ages 12-18 (n=171), and adolescents ages 12-18 (n=171) from Boston, Cincinnati, and San Diego, completed NEWS-Y surveys regarding perceived land use mix-diversity, recreation facility availability, pedestrian/automobile traffic safety, crime safety, aesthetics, walking/cycling facilities, street connectivity, land use mix-access, and residential density. A standardized neighborhood environment score was derived. Self-reported activity in the street and in parks, and walking to parks, shops, school, and overall physical activity were assessed. The NEWS-Y subscales had acceptable test-retest reliability (ICC range .56-.87). Being active in a park, walking to a park, walking to shops, and walking to school were related to multiple environmental attributes in all three participant groups. Total neighborhood environment, recreation facilities, walking and cycling facilities, and land use mix-access had the most consistent relationships with specific types of activity. The NEWS-Y has acceptable reliability and subscales were significantly correlated with specific types of youth PA. The NEWS-Y can be used to examine neighborhood environment correlates of youth PA.

  9. Prediction of full-scale dewatering results of sewage sludges by the physical water distribution.

    PubMed

    Kopp, J; Dichtl, N

    2001-01-01

    The dewaterability of sewage sludge can be described by the total solids concentration of the sludge cake and the polymer-demand for conditioning. The total solids concentration of the sludge cake depends on the physical water distribution. The various types of water in sewage sludge are mainly distinguished by the type and the intensity of their physical bonding to the solids. In a sewage sludge suspension four different types of water can be distinguished. These are the free water, which is not bound to the particles, the interstitial water, which is bound by capillary forces between the sludge flocs, the surface water, which is bound by adhesive forces and intracellular water. Only the share of free water can be separated during mechanical dewatering. It can be shown, that by thermo-gravimeteric measurement of the free water content, an exact prediction of full-scale dewatering results is possible. By separation of all free water during centrifugation the maximum dewatering result is reached. Polymer conditioning increases the velocity of the sludge water release, but the free water content is not influenced by this process. Furthermore it is not possible, to replace the measuring of the water distribution by other individual parameters such as ignition loss.

  10. Body attention, ignorance and awareness scale: assessing relevant concepts for physical and psychological functioning in psoriasis.

    PubMed

    van Beugen, Sylvia; Ograczyk, Alicja; Ferwerda, Maaike; Smit, Jurgen V; Zeeuwen-Franssen, Manon E J; Kroft, Elisabeth B M; de Jong, Elke M G J; Zalewska-Janowska, Anna; Donders, A Rogier; van de Kerkhof, Peter C M; van Middendorp, Henriët; Evers, Andrea W M

    2015-04-01

    A certain level of attention to bodily signals may be adaptive in the management of chronic skin conditions, as a lack of attention may lead to inadequate self-care behaviour and, consequently, may affect functioning and treatment outcomes. The purpose of this study was to develop a body awareness questionnaire and to investigate its psychometric properties and physical and psychological correlates in a cross-sectional study in patients with psoriasis (n = 475). The 16-item Body Attention, Ignorance and Awareness Scale demonstrated a 3-factor structure that could be interpreted as body ignorance, body attention, and body awareness (Cronbach's α of 0.73, 0.74, and 0.68, respectively). Higher body ignorance was significantly related to more physical symptoms and worse psychological functioning. Body attention and body awareness showed small significant correlations with coping and personality. Given the negative influence of impaired psychological functioning on treatment outcomes, it may be clinically important to screen for theses constructs of body awareness in chronic skin conditions.

  11. Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model

    NASA Astrophysics Data System (ADS)

    Stone, T. W.; Horstemeyer, M. F.

    2012-09-01

    The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.

  12. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    SciTech Connect

    Chang, Y.C.; Mani, V.; Mohanty, K.K.

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  13. Anomalous scaling of stochastic processes and the Moses effect.

    PubMed

    Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  14. Anomalous scaling of stochastic processes and the Moses effect

    NASA Astrophysics Data System (ADS)

    Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  15. Scaling of hollow cathode magnetrons for ionized metal physical vapor deposition

    SciTech Connect

    Vyas, Vivek; Kushner, Mark J.

    2006-09-15

    Ionized metal physical vapor deposition is being increasingly used to deposit diffusion barriers and Cu seed layers into high aspect ratio trenches for microelectronics fabrication. Hollow cathode magnetrons (HCMs) represent a technology capable of depositing metal over large areas at pressures of a few millitorrs. The fundamental mechanisms of these devices are not well understood and so their optimization is difficult. In this article, results from a two-dimensional computational investigation of HCMs are discussed to illuminate scaling issues. The hybrid model incorporates algorithms whereby transport coefficients for use in fluid equations are derived using a kinetic simulation. The goal is to enable the fluid algorithms in the model to be able to more accurately represent low pressure operation. The consequences of power, pressure, and magnitude and orientation of applied magnetic fields were investigated. The authors found that the magnetic field configuration significantly affects the magnitude and distribution of fluxes incident on the substrate. A study of the Cu seed layer deposition process, carried out using a feature scale model, correlates changes in plasma properties with conformal deposition into trenches.

  16. Two-time scale subordination in physical processes with long-term memory

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2008-03-01

    We describe dynamical processes in continuous media with a long-term memory. Our consideration is based on a stochastic subordination idea and concerns two physical examples in detail. First we study a temporal evolution of the species concentration in a trapping reaction in which a diffusing reactant is surrounded by a sea of randomly moving traps. The analysis uses the random-variable formalism of anomalous diffusive processes. We find that the empirical trapping-reaction law, according to which the reactant concentration decreases in time as a product of an exponential and a stretched exponential function, can be explained by a two-time scale subordination of random processes. Another example is connected with a state equation for continuous media with memory. If the pressure and the density of a medium are subordinated in two different random processes, then the ordinary state equation becomes fractional with two-time scales. This allows one to arrive at the Bagley-Torvik type of state equation.

  17. Physics-based scaling laws for confined and unconfined transverse jets

    NASA Astrophysics Data System (ADS)

    Forliti, D. J.; Salazar, D. V.; Bishop, A. J.

    2015-02-01

    An experimental study was conducted to explore the mixing properties of single and multiple confined transverse jets. A new physics-based scaling law variable was developed based on unconfined transverse jet trajectories. This variable accounts for both entrainment and drag momentum transport mechanisms that cause the jet deflection. The utility of this parameter under confined conditions was considered. It was observed that this new scaling parameter does correlate both qualitative and quantitative measures of the mean mixture properties, in particular prior to any jet-wall interactions. It was found that no local optimum mixing condition was present for two and three jets. For six jets, the behavior changed dramatically, with the emergence of a local optimum mixing state that is consistent with previous data collected for gas turbine geometries (Holdeman in Prog Energy Combust Sci 19:31-70, 1993). It is apparent that the local optimum observed for six jets involves jet penetration to a finite radial position while spreading in the cross plane, leading to the jets blending together resulting in a highly uniform mean mixture fraction distribution. When the number of jets is three or less, this blending process cannot occur due to the excessive distance between the jets. Jet impaction at the pipe center facilitates mixing for two and three jets, while degrading uniformity for six jets.

  18. Relationship of Physical Attractiveness to Students' Ratings of Teaching Effectiveness.

    ERIC Educational Resources Information Center

    O'Reilly, Maria T.

    1987-01-01

    A study found that the physical attractiveness of a dental school teacher affected the student's opinion of teaching effectiveness, regardless of the student's sex, with effectiveness ratings correlating with pleasing appearance. (MSE)

  19. Subgrid-scale physical parameterization in atmospheric modeling: How can we make it consistent?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2016-07-01

    Approaches to subgrid-scale physical parameterization in atmospheric modeling are reviewed by taking turbulent combustion flow research as a point of reference. Three major general approaches are considered for its consistent development: moment, distribution density function (DDF), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in geophysics and engineering. The DDF (commonly called PDF) approach is intuitively appealing as it deals with a distribution of variables in subgrid scale in a more direct manner. Mode decomposition was originally applied by Aubry et al (1988 J. Fluid Mech. 192 115-73) in the context of wall boundary-layer turbulence. It is specifically designed to represent coherencies in compact manner by a low-dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (empirical orthogonal functions) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. Among those, wavelet is a particularly attractive alternative. The mass-flux formulation that is currently adopted in the majority of atmospheric models for parameterizing convection can also be considered a special case of mode decomposition, adopting segmentally constant modes for the expansion basis. This perspective further identifies a very basic but also general geometrical constraint imposed on the massflux formulation: the segmentally-constant approximation. Mode decomposition can, furthermore, be understood by analogy with a Galerkin method in numerically modeling. This analogy suggests that the subgrid parameterization may be re-interpreted as a type of mesh-refinement in numerical modeling. A link between the subgrid parameterization and downscaling problems is also pointed out.

  20. Large-Scale Physical Modelling of Complex Tsunami-Generated Currents

    NASA Astrophysics Data System (ADS)

    Lynett, P. J.; Kalligeris, N.; Ayca, A.

    2014-12-01

    For tsunamis passing through sharp bathymetric variability, such as a shoal or a harbor entrance channel, z-axis vortical motions are created. These structures are often characterized by a horizontal length scale that is much greater than the local depth and are herein called shallow turbulent coherent structures (TCS). These shallow TCS can greatly increase the drag force on affected infrastructure and the ability of the flow to transport debris and floating objects. Shallow TCS typically manifest as large "whirlpools" during tsunamis, very commonly in ports and harbors. Such structures have been observed numerous times in the tsunamis over the past decade, and are postulated as the cause of large vessels parting their mooring lines due to yaw induced by the rotational eddy. Through the NSF NEES program, a laboratory study to examine a shallow TCS was performed during the summer of 2014. To generate this phenomenon, a 60 second period long wave was created and then interacted with a breakwater in the basin, forcing the generation of a large and stable TCS. The model scale is 1:30, equating to a 5.5 minute period and 0.5 m amplitude in the prototype scale. Surface tracers, dye studies, AVD's, wave gages, and bottom pressure sensors are used to characterize the flow. Complex patterns of surface convergence and divergence are easily seen in the data, indicating three-dimensional flow patterns. Dye studies show areas of relatively high and low spatial mixing. Model vessels are placed in the basin such that ship motion in the presence of these rapidly varying currents might be captured. The data obtained from this laboratory study should permit a better physical understanding of the nearshore currents that tsunamis are known to generate, as well as provide a benchmark for numerical modelers who wish to simulate currents.

  1. Physical appearance as a measure of social ranking: the role of a new scale to understand the relationship between weight and dieting.

    PubMed

    Ferreira, Cláudia; Pinto-Gouveia, José; Duarte, Cristiana

    2013-01-01

    This study presents the development of a new self-report instrument to assess how an individual perceives himself as social agent within his group having physical appearance as a reference, the Social Comparison through Physical Appearance Scale (SCPAS). This scale adds to the existent measures by assessing the social ranking based on one's physical appearance, and not the tendency to make comparisons of the general physical appearance or specific body parts. Its psychometric characteristics are investigated in a sample of 828 female participants from normal population. Principal components analysis was conducted for each part of the instrument: the Part A: peers shows a 2-factor structure (Attractiveness/Rank and Group Fit) explaining 72.142% of the variance; the Part B: models presents a one-dimensional structure that explains 69.191% of the variance. Findings show very good internal consistency coefficients and test-retest reliability. The two parts of the SCPAS are significantly associated to social comparison and shame measures, to anxiety, depression and stress indicators, and to eating disorders symptomatology. The scale discriminates between a clinical sample of 91 patients with an eating disorder and a non-clinical sample of 102 participants. Regression analyses pointed out that social comparison through physical appearance with peers and models partially mediates the effect of the dissatisfaction with current weight on disordered eating, namely drive for thinness. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Characterizing scale- and location-dependent correlation of water retention parameters with soil physical properties using wavelet techniques.

    PubMed

    Shu, Qiaosheng; Liu, Zuoxin; Si, Bingcheng

    2008-01-01

    Understanding the correlation between soil hydraulic parameters and soil physical properties is a prerequisite for the prediction of soil hydraulic properties from soil physical properties. The objective of this study was to examine the scale- and location-dependent correlation between two water retention parameters (alpha and n) in the van Genuchten (1980) function and soil physical properties (sand content, bulk density [Bd], and organic carbon content) using wavelet techniques. Soil samples were collected from a transect from Fuxin, China. Soil water retention curves were measured, and the van Genuchten parameters were obtained through curve fitting. Wavelet coherency analysis was used to elucidate the location- and scale-dependent relationships between these parameters and soil physical properties. Results showed that the wavelet coherence between alpha and sand content was significantly different from red noise at small scales (8-20 m) and from a distance of 30 to 470 m. Their wavelet phase spectrum was predominantly out of phase, indicating negative correlation between these two variables. The strong negative correlation between alpha and Bd existed mainly at medium scales (30-80 m). However, parameter n had a strong positive correlation only with Bd at scales between 20 and 80 m. Neither of the two retention parameters had significant wavelet coherency with organic carbon content. These results suggested that location-dependent scale analyses are necessary to improve the performance for soil water retention characteristic predictions.

  3. Sense of coherence and physical health. A cross-sectional study using a new scale (SOC II).

    PubMed

    Flensborg-Madsen, Trine; Ventegodt, Søren; Merrick, Joav

    2006-10-09

    In this study, we constructed a new sense of coherence scale (SOC II), where we eliminated the notion of predictability (that life is meant to be predictable), which was present in the original SOC scale developed by Aaron Antonovsky (1923-1994) (SOC-29 and SOC-13). Our hypothesis was that SOC II would show a higher degree of association with physical health than the original SOC scale. In order to test this idea, we used a cross-sectional study including 4,648 Danes and used the three different health measures: self-evaluated physical health, physical symptoms, and self-evaluated psychological health. We found that SOC II was positively associated with all three health measures with the correlation coefficients 0.338, 0.282, and 0.578, respectively. Furthermore, we found dose response tendencies for all three health measures across groups of SOC, since health improved with a higher SOC. By means of regression analysis, we found that SOC was significantly associated with all three health measures after stratifying for demographic variables, life style variables, life form variables, and attitude variables, respectively. We conclude from this study that the SOC II scale we developed seems better associated with physical health than found with the original SOC scale. We also postulate that the concept of predictability was irrelevant, or even disturbing, and should not be included in the SOC scale.

  4. [Construction and validation of a short scale of perception of barriers for the physical activity in adolescents].

    PubMed

    Cabanas-Sánchez, Verónica; Tejero-González, Carlos M; Veiga, Oscar L

    2012-01-01

    One of the main problems of health in the first world is the increase of physical inactivity. In this respect, adolescence has been identified as a critic period with high decline of physical activity. Therefore, a relevant line of research is the understanding of this social phenomenon. The aim of this study was to design a scale to assess perceived barriers to physical activity on adolescents. A convenience sample of 160 Spanish adolescents (84 girls), between 12 and 18 years old, was recruited for this study. Firstly, there were designed 40 items whose pertinence was evaluated through content validation by experts. Later, the participants were divided in two randomized groups, and Exploratory Factor Analysis and Confirmatory Factor Analysis were performed to define a short scale of 12 items. Cronbach Alfa Coefficent was used to evaluate internal consistence of the instrument. The scale reports four dimensions: incompatibility barriers (2 items), self-concept barriers (4 items), amotivation barriers (4 items) and social barriers (2 items). The scale showed enough construct validity (χ2=60.78; d.f.=48; p=0.100; GFI=0.88; CFI=0.94; RMSEA=0.58) and high internal reliability (α=0.80). Moreover, the scale was able to explain 67% of the data variance. The Short Scale of Perceived Barriers to Physical Activity in Adolescents is a valid and reliable instrument.

  5. The effect of physical activity homework on physical activity among college students.

    PubMed

    Claxton, David; Wells, Gayle M

    2009-03-01

    This study examined the effect of using physical activity homework on physical activity levels of college students. Students in randomly assigned sections of a university health course were assigned 30 minutes of physical activity homework 3 days a week or no homework for 12 weeks. Participants completed self-reports of physical activity before the homework intervention and again at the conclusion of the 12 weeks of physical activity homework. Participants in all course sections reported significant increases in the number of days per week of moderate and vigorous physical activity. Participants in homework sections additionally showed significant increases in the days they engaged in muscular strength/endurance training and activities to manage weight. Participants in sections without homework showed a significant increase in the number of days engaged in flexibility training. Comparison of gain scores showed statistically significant increases by the homework group in the days they participated in activities designed to manage weight. Physical activity homework was deemed to be an effective method of increasing college students' levels of physical activity.

  6. Low-scale SUSY breaking and the (s)goldstino physics

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.; Ghilencea, D. M.

    2013-05-01

    For a 4D N = 1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K (Φi , Φj†) and superpotential W (Φi) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino) superconformal symmetry breaking chiral superfield X. In the presence of more sources of supersymmetry breaking, we verify the conjecture that the goldstino superfield is the (infrared) limit of X for zero-momentum and Λ → ∞ (Λ is the effective cut-off scale). We then study the constraint X2 = 0, which in the one-field case is known to decouple a massive sgoldstino and thus provide an effective superfield description of the Akulov-Volkov action for the goldstino. In the presence of additional fields that contribute to SUSY breaking we identify conditions for which X2 = 0 remains valid, in the effective theory below a large but finite sgoldstino mass. The conditions ensure that the effective expansion (in 1 / Λ) of the initial Lagrangian is not in conflict with the decoupling limit of the sgoldstino (1 /msgoldstino ∼ Λ / f, f <Λ2).

  7. Effects of degree correlation on scale-free gradient networks

    NASA Astrophysics Data System (ADS)

    Pan, Gui-Jun; Yan, Xiao-Qing; Ma, Wei-Chuan; Luo, Yi-Hui; Huang, Zhong-Bing

    2010-05-01

    We have studied the effects of degree correlation on congestion pressure in scale-free gradient networks. It is observed that the jamming coefficient J is insensitive to the degree correlation coefficient r for assortative and strongly disassortative scale-free networks, and J markedly decreases with an increase in r for weakly disassortative scale-free networks. We have also investigated the effects of degree correlation on the topology structure of scale-free gradient networks, and discussed the relation between the topology structure properties and transport efficiency of gradient networks.

  8. Exploring mass-scaling physics and outflow geometry in accreting black holes

    NASA Astrophysics Data System (ADS)

    Connors, Riley Michael Thomas

    2017-01-01

    One of the main tasks facing studies of black hole accretion in both black hole X-ray binaries (XRB) and Active Galactic Nuclei (AGN) is to break spectral model-fitting degeneracies. We explore two methods of simultaneous spectral modelling to reduce these degeneracies: (a) simultaneous fitting of XRBs and AGN, and (b) folding in timing properties in a novel way to better understand the outflow evolution of XRBs during outburst.It is a long-standing idea that AGN are scaled up versions of XRBs, such that the physics of accretion cares only about accretion rate, and not the black hole mass. We show that this principle of scale-invariance may provide us with a way to break degeneracies in broadband spectral modelling of both XRBs and AGN, focusing primarily on low-luminosity sources where degeneracies are more prevalent. We simultaneously model the broadband spectra of the two most quiescent (LX ~ 10-9 LEdd) accreting black holes on opposite ends of the mass scale, the XRB A0620-00 and Sgr A*, the Galactic centre supermassive black hole (during bright flaring). We use an outflow-dominated model capable of reproducing the broadband spectrum from radio to X-ray frequencies, co-evolving parameters that are representative of the mass-scaling properties. Such a method reduces the degeneracies in our model parameters, contributing to answering this question regarding the dominant emission mechanisms.We adopt a similar technique to investigate how spatial parameters of an XRB outflow can be better understood by tracking our model parameters as a function of the XRB variability properties during outburst, focusing in particular on GX 339-4. I shall discuss how utilising a novel characterisation of the timing properties of XRBs allows us to do this in a simple, quantitative way.We are currently developing our models further to incorporate the most up-to-date disc reflection routines in order to describe the jet/disc interaction more accurately. I shall briefly discuss this

  9. Full-color large-scaled computer-generated holograms for physical and non-physical objects

    NASA Astrophysics Data System (ADS)

    Matsushima, Kyoji; Tsuchiyama, Yasuhiro; Sonobe, Noriaki; Masuji, Shoya; Yamaguchi, Masahiro; Sakamoto, Yuji

    2017-05-01

    Several full-color high-definition CGHs are created for reconstructing 3D scenes including real-existing physical objects. The field of the physical objects are generated or captured by employing three techniques; 3D scanner, synthetic aperture digital holography, and multi-viewpoint images. Full-color reconstruction of high-definition CGHs is realized by RGB color filters. The optical reconstructions are presented for verifying these techniques.

  10. Multi-Scale Effects in the Strength of Ceramics

    PubMed Central

    Cook, Robert F.

    2016-01-01

    Multiple length-scale effects are demonstrated in indentation-strength measurements of a range of ceramic materials under inert and reactive conditions. Meso-scale effects associated with flaw disruption by lateral cracking at large indentation loads are shown to increase strengths above the ideal indentation response. Micro-scale effects associated with toughening by microstructural restraints at small indentation loads are shown to decrease strengths below the ideal response. A combined meso-micro-scale analysis is developed that describes ceramic inert strength behaviors over the complete indentation flaw size range. Nano-scale effects associated with chemical equilibria and crack velocity thresholds are shown to lead to invariant minimum strengths at slow applied stressing rates under reactive conditions. A combined meso-micro-nano-scale analysis is developed that describes the full range of reactive and inert strength behaviors as a function of indentation load and applied stressing rate. Applications of the multi-scale analysis are demonstrated for materials design, materials selection, toughness determination, crack velocity determination, bond-rupture parameter determination, and prediction of reactive strengths. The measurements and analysis provide strong support for the existence of sharp crack tips in ceramics such that the nano-scale mechanisms of discrete bond rupture are separate from the larger scale crack driving force mechanics characterized by continuum-based stress-intensity factors. PMID:27563150

  11. Multi-Scale Effects in the Strength of Ceramics.

    PubMed

    Cook, Robert F

    2015-10-01

    Multiple length-scale effects are demonstrated in indentation-strength measurements of a range of ceramic materials under inert and reactive conditions. Meso-scale effects associated with flaw disruption by lateral cracking at large indentation loads are shown to increase strengths above the ideal indentation response. Micro-scale effects associated with toughening by microstructural restraints at small indentation loads are shown to decrease strengths below the ideal response. A combined meso-micro-scale analysis is developed that describes ceramic inert strength behaviors over the complete indentation flaw size range. Nano-scale effects associated with chemical equilibria and crack velocity thresholds are shown to lead to invariant minimum strengths at slow applied stressing rates under reactive conditions. A combined meso-micro-nano-scale analysis is developed that describes the full range of reactive and inert strength behaviors as a function of indentation load and applied stressing rate. Applications of the multi-scale analysis are demonstrated for materials design, materials selection, toughness determination, crack velocity determination, bond-rupture parameter determination, and prediction of reactive strengths. The measurements and analysis provide strong support for the existence of sharp crack tips in ceramics such that the nano-scale mechanisms of discrete bond rupture are separate from the larger scale crack driving force mechanics characterized by continuum-based stress-intensity factors.

  12. Scale models: A proven cost-effective tool for outage planning

    SciTech Connect

    Lee, R.; Segroves, R.

    1995-03-01

    As generation costs for operating nuclear stations have risen, more nuclear utilities have initiated efforts to improve cost effectiveness. Nuclear plant owners are also being challenged with lower radiation exposure limits and new revised radiation protection related regulations (10 CFR 20), which places further stress on their budgets. As source term reduction activities continue to lower radiation fields, reducing the amount of time spent in radiation fields becomes one of the most cost-effective ways of reducing radiation exposure. An effective approach for minimizing time spent in radiation areas is to use a physical scale model for worker orientation planning and monitoring maintenance, modifications, and outage activities. To meet the challenge of continued reduction in the annual cumulative radiation exposures, new cost-effective tools are required. One field-tested and proven tool is the physical scale model.

  13. The physics of non-volcanic tremor: insights from laboratory-scale earthquakes

    NASA Astrophysics Data System (ADS)

    di Toro, G.; Meredith, P.

    2012-04-01

    Due to his extensive early experience in field structural geology, Luigi Burlini's experimental research was always aimed at using laboratory techniques and simulations to improve our understanding of the physics of natural rock deformation. Here we present an example of collaborative work from the later part of his scientific career in which the main goal was unravelling the physics of non-volcanic tremor in subduction zones. This was achieved by deforming typical source rocks (serpentinites) under conditions (300 MPa and 600oC) that approach those expected in nature (up to 1 GPa and 500oC). The main technical challenge was to capture deformation-induced microseismicity (in the form of acoustic emissions) released under such extreme conditions by means of in-situ transducers designed to work at only modest temperatures (up to 200oC). The main scientific challenges were (1) to link the acoustic emission output to specific physical processes, such as cracking, fluid flow or fluid-crack interactions, by means of waveform and microstructural analysis; and (2) to extrapolate the laboratory acoustic emission signals (kHz to MHz frequency) associated with mm to cm-scale processes, to natural seismicity (0.1-1 Hz frequency) associated with km-scale rock volumes by means of frequency scaling (Aki and Richards, 1980). Episodic tremor and slip (ETS) has been correlated with rupture phenomena in subducting oceanic lithosphere at 30 to 45 km depth, where high Vp/Vs ratios, suggestive of high-fluid pressure, have also been observed. ETS, by accommodating slip in the down-dip portion of the subduction zone, may trigger megathrust earthquakes up-dip in the locked section. In our experiments we measured the output of acoustic emissions during heating of serpentinite samples to beyond their equilibrium dehydration temperature. Experiments were performed on cores samples 15 mm in diameter by 30 mm long under hydrostatic stresses of 200 or 300 MPa in a Paterson high

  14. Psychometric Properties of Physical Activity and Leisure Motivation Scale in Farsi: an International Collaborative Project on Motivation for Physical Activity and Leisure.

    PubMed

    Zarei, Sahar; Memari, Amir-Hossein; Moshayedi, Pouria; Mosayebi, Fatolla; Mansournia, Mohammad Ali; Khoo, Selina; Morris, Tony

    2016-10-01

    Given the importance of regular physical activity, it is crucial to evaluate the factors favoring participation in physical activity. We aimed to report the psychometric analysis of the Farsi version of the Physical Activity and Leisure Motivation Scale (PALMS). The Farsi version of PALMS was completed by 406 healthy adult individuals to test its factor structure and concurrent validity and reliability. Conducting the exploratory factor analysis revealed nine factors that accounted for 64.6% of the variances. The PALMS reliability was supported with a high internal consistency of 0.91 and a high test-retest reliability of 0.97 (95% CI: 0.97-0.98). The association between the PALMS and its previous version Recreational Exercise Motivation Measure scores was strongly significant (r= 0.86, P < 0.001). We have shown that the Farsi version of the PALMS appears to be a valuable instrument to measure motivation for physical activity and leisure.

  15. Length Scale of the Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Kehlberger, Andreas; Ritzmann, Ulrike; Hinzke, Denise; Guo, Er-Jia; Cramer, Joel; Jakob, Gerhard; Onbasli, Mehmet C.; Kim, Dong Hun; Ross, Caroline A.; Jungfleisch, Matthias B.; Hillebrands, Burkard; Nowak, Ulrich; Kläui, Mathias

    2015-08-01

    We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50 μ m at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allows us to trace the origin of the observed signals to genuine bulk magnonic spin currents due to the spin Seebeck effect ruling out an interface origin and allowing us to gauge the reach of thermally excited magnons in this system for different temperatures. At low temperature, even quantitative agreement with the simulations is found.

  16. Length Scale of the Spin Seebeck Effect.

    PubMed

    Kehlberger, Andreas; Ritzmann, Ulrike; Hinzke, Denise; Guo, Er-Jia; Cramer, Joel; Jakob, Gerhard; Onbasli, Mehmet C; Kim, Dong Hun; Ross, Caroline A; Jungfleisch, Matthias B; Hillebrands, Burkard; Nowak, Ulrich; Kläui, Mathias

    2015-08-28

    We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50  μm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allows us to trace the origin of the observed signals to genuine bulk magnonic spin currents due to the spin Seebeck effect ruling out an interface origin and allowing us to gauge the reach of thermally excited magnons in this system for different temperatures. At low temperature, even quantitative agreement with the simulations is found.

  17. Scale dependency of the effective matrix diffusion coefficient

    SciTech Connect

    Liu, H.H.; Bodvarsson, G.S.; Zhang, G.

    2003-05-30

    It has been recognized that matrix diffusion is an important process for retarding solute transport in fractured rock. Based on analyses of tracer transport data from a number of field tests, we demonstrate for the first time that the effective matrix-diffusion coefficient may be scale dependent and generally increases with test scale. A preliminary theoretical explanation of this scale dependency is also presented, based on the hypothesis that solute travel paths within a fracture network are fractals.

  18. Chiral-scale effective theory including a dilatonic meson

    NASA Astrophysics Data System (ADS)

    Li, Yan-Ling; Ma, Yong-Liang; Rho, Mannque

    2017-06-01

    A scale-invariant chiral effective Lagrangian is constructed for octet pions and a dilaton figuring, as Nambu-Goldstone bosons, with vector mesons incorporated as hidden gauge fields. The Lagrangian is built to the next-to-leading order in chiral-scale counting without baryon fields and then to leading order including baryons. The resulting theory is hidden scale symmetric and local symmetric. We also discuss some possible applications of the present Lagrangian.

  19. Physical and psychological effects from supervised aerobic music exercise.

    PubMed

    Madison, Guy; Paulin, Johan; Aasa, Ulrika

    2013-11-01

    To assess the physical and psychological effects across 11 weeks of music-exercise sessions, the participants' training experience, and attitudes towards physical activity. The effect of different music information was also investigated. Overall, 146 sedentary volunteers were randomized into 4 exercise groups and each group received different music information. Physical capacity and psychological measures were obtained. Increased performance in oxygen uptake and flexibility and decreased blood pressure was found. Participants reported increased wellbeing and body-awareness, and an intention to remain physically active. No differences between groups were found. Music-exercise can be recommended to promote physical activity among sedentary individuals. The amount of musical information in synchronous music seems not to have any effects on self-selected intensity or physiological benefits.

  20. Life-Space Assessment and Physical Activity Scale for the Elderly: validity of proxy informant responses.

    PubMed

    Cavanaugh, James T; Crawford, Kelley

    2014-08-01

    To validate the administration of the Life-Space Assessment (LSA) and Physical Activity Scale for the Elderly (PASE) surveys to proxy informants, as would be necessary when measuring long-term outcomes in acutely ill, hospitalized older adults who are initially incapacitated but eventually return to the community. Cross-sectional study. General community. Convenience sample of dyads (N=40) composed of an ambulatory older adult and a familiar companion. Dyads completed the LSA and PASE surveys on 1 occasion. Companions based their responses on the recent mobility and physical activity of the older adult. Paired total scores for each instrument. At a group level, the difference between older adult and companion mean scores for each instrument was not significant (P>.05). Standardized mean difference values were small (d<0.1). Paired scores were significantly yet moderately associated: intraclass correlation coefficient(1,1)=.84 to .88; P<.01. Difference in scores was not associated with time spent together (P>.05) or older adult gait speed (P>.05). At an individual level, older adults and companions agreed more closely on the LSA than on the PASE. However, disagreement in excess of estimated measurement error occurred in 40% of the dyads for the LSA and in none of the dyads for the PASE. Older adults and companions collectively provided similar responses on each instrument. Nonetheless, varying levels of agreement within individual dyads suggested that proxy responses should be considered carefully. Implications for clinical research and practice research are discussed. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. A Physically-Based Two-dimensional Rainfall-Runoff Model for Small-Scale Watersheds

    NASA Astrophysics Data System (ADS)

    Chen, L.; Young, M. H.

    2006-12-01

    The goal of this research was to integrate physically-based and distributed modeling technique to develop a model for understanding the physical mechanisms as well as spatial variability of near-surface hydrological processes. This new model consists of two major components: rainfall infiltration and surface runoff routing. The infiltration module employs the analytical solution of the Green-Ampt model in every computational cell. Two unique features of the infiltration module include the impact of slope on infiltration, and the use of a newly- developed, improved algorithm to handle unsteady rainfall distribution. The two-dimensional surface runoff module routes excess rainwater from cell to cell in two directions using a common computational fluid dynamics (CFD) approach. The governing equation for runoff routing is the two-dimensional diffusion wave equation, which is necessary when treating complicated topography. The equation was derived using a decomposing approach that maintains internal consistency and avoids non-numerical errors. The second-order McCormack scheme is applied in this module to achieve satisfactory accuracy both in space and time. The infiltration and runoff modules thus work together to deal with complicated spatially-variable infiltration and runoff cases. The model also employs a staggered computational grid for complicated topography, and can provide detailed results of spatial distribution for infiltration amount and runoff depth with higher resolution output. The model has been applied to a small-scale subbasin of Walnut Gulch watershed in Arizona. One single-peak storm and one multi-peak storm at Lucky Hill 104, a 4.5 ha subbasin, were simulated using 2m×2m high grid resolution. The modeling results agree well with the recorded hydrograph, both in peak runoff value and in total volume. The results are superior to simulation results from other compared models.

  2. Moose: An Open-Source Framework to Enable Rapid Development of Collaborative, Multi-Scale, Multi-Physics Simulation Tools

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Permann, C.; Peterson, J. W.; Gaston, D.; Andrs, D.; Miller, J.

    2014-12-01

    The Idaho National Laboratory (INL)-developed Multiphysics Object Oriented Simulation Environment (MOOSE; www.mooseframework.org), is an open-source, parallel computational framework for enabling the solution of complex, fully implicit multiphysics systems. MOOSE provides a set of computational tools that scientists and engineers can use to create sophisticated multiphysics simulations. Applications built using MOOSE have computed solutions for chemical reaction and transport equations, computational fluid dynamics, solid mechanics, heat conduction, mesoscale materials modeling, geomechanics, and others. To facilitate the coupling of diverse and highly-coupled physical systems, MOOSE employs the Jacobian-free Newton-Krylov (JFNK) method when solving the coupled nonlinear systems of equations arising in multiphysics applications. The MOOSE framework is written in C++, and leverages other high-quality, open-source scientific software packages such as LibMesh, Hypre, and PETSc. MOOSE uses a "hybrid parallel" model which combines both shared memory (thread-based) and distributed memory (MPI-based) parallelism to ensure efficient resource utilization on a wide range of computational hardware. MOOSE-based applications are inherently modular, which allows for simulation expansion (via coupling of additional physics modules) and the creation of multi-scale simulations. Any application developed with MOOSE supports running (in parallel) any other MOOSE-based application. Each application can be developed independently, yet easily communicate with other applications (e.g., conductivity in a slope-scale model could be a constant input, or a complete phase-field micro-structure simulation) without additional code being written. This method of development has proven effective at INL and expedites the development of sophisticated, sustainable, and collaborative simulation tools.

  3. Physical Education Teacher Effectiveness in a Public Health Context

    ERIC Educational Resources Information Center

    McKenzie, Thomas L.; Lounsbery, Monica A. F.

    2013-01-01

    The health benefits of physical activity are well documented, and the important role that schools and physical education (PE) can play in reducing sedentary behavior and contributing to population health has been identified. Although effective teaching is ultimately judged by student achievement, a major component of teacher and school…

  4. Physical Education Teacher Effectiveness in a Public Health Context

    ERIC Educational Resources Information Center

    McKenzie, Thomas L.; Lounsbery, Monica A. F.

    2013-01-01

    The health benefits of physical activity are well documented, and the important role that schools and physical education (PE) can play in reducing sedentary behavior and contributing to population health has been identified. Although effective teaching is ultimately judged by student achievement, a major component of teacher and school…

  5. The Effects of Physical Restraint on Self-Injurious Behaviour.

    ERIC Educational Resources Information Center

    Singh, N. N.; And Others

    1981-01-01

    Brief (one minute) response contingent physical restraint was shown in two experiments with a 16-year-old profoundly retarded institutionalized girl to be more effective in controlling self-injurious behavior (SIB) than three minute physical restraint, which in the first study produced an increase in SIB. (CL)

  6. Teacher Effectiveness in Physical Education: Profession Vs Discipline.

    ERIC Educational Resources Information Center

    Paese, Paul C.

    This study sought to determine if a professional course of study during teacher preparation in physical education had more influence on teaching effectiveness than a discipline-oriented course of study. The subjects were 41 undergraduates involved in two different physical education programs. The discipline-oriented course contained such subjects…

  7. Effective Use of Interpreters in General Physical Education.

    ERIC Educational Resources Information Center

    Best, Carah; Lieberman, Lauren; Arndt, Katrina

    2002-01-01

    Emphasizes the importance of effective communication in ensuring that deaf children have an appropriate and successful physical education experience, looking at issues related to the psychomotor abilities of deaf children, discussing the need for educational interpreters in the physical education class, and explaining the communication…

  8. Effective Teaching Methods--Project-based Learning in Physics

    ERIC Educational Resources Information Center

    Holubova, Renata

    2008-01-01

    The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project. Project-based physics teaching and learning…

  9. The Perceived Relationship between Physical Attractiveness and Social Influence Effectiveness.

    ERIC Educational Resources Information Center

    Longo, Laura C.; Ashmore, Richard D.

    The power of beauty has been contemplated by writers, poets, and philosophers for centuries. The link between the target physical attractiveness and perceived social influence effectiveness has not been directly and systematically investigated. The goal of this study was to assess whether physically attractive (versus unattractive) individuals are…

  10. Neutron star cooling: effects of envelope physics

    SciTech Connect

    Van Riper, K.A.

    1982-01-01

    Neutron star cooling calculations are reported which employ improved physics in the calculation of the temperature drop through the atmosphere. The atmosphere microphysics is discussed briefly. The predicted neutron star surface temperatures, in the interesting interval 200 less than or equal to t (yr) less than or equal to 10/sup 5/, do not differ appreciably from the earlier results of Van Riper and Lamb (1981) for a non-magnetic star; for a magnetic star, the surface temperature is lower than in the previous work. Comparison with observational limits show that an exotic cooling mechanism, such as neutrino emission from a pion condensate or in the presence of percolating quarks, is not required unless the existence of a neutron star in the Tycho or SN1006 SNRs is established.

  11. Energy, entropy and mass scaling relations for elliptical galaxies. Towards a physical understanding of their photometric properties

    NASA Astrophysics Data System (ADS)

    Márquez, I.; Lima Neto, G. B.; Capelato, H.; Durret, F.; Lanzoni, B.; Gerbal, D.

    2001-12-01

    In the present paper, we show that elliptical galaxies (Es) obey a scaling relation between potential energy and mass. Since they are relaxed systems in a post violent-relaxation stage, they are quasi-equilibrium gravitational systems and therefore they also have a quasi-constant specific entropy. Assuming that light traces mass, these two laws imply that in the space defined by the three Sérsic law parameters (intensity Sigma0 , scale a and shape nu ), elliptical galaxies are distributed on two intersecting 2-manifolds: the Entropic Surface and the Energy-Mass Surface. Using a sample of 132 galaxies belonging to three nearby clusters, we have verified that ellipticals indeed follow these laws. This also implies that they are distributed along the intersection line (the Energy-Entropy line), thus they constitute a one-parameter family. These two physical laws (separately or combined), allow to find the theoretical origin of several observed photometrical relations, such as the correlation between absolute magnitude and effective surface brightness, and the fact that ellipticals are located on a surface in the [log Reff, -2.5 log Sigma0, log nu ] space. The fact that elliptical galaxies are a one-parameter family has important implications for cosmology and galaxy formation and evolution models. Moreover, the Energy-Entropy line could be used as a distance indicator.

  12. Modified Medical Research Council Dyspnea Scale in GOLD Classification Better Reflects Physical Activities of Daily Living.

    PubMed

    Munari, Anelise B; Gulart, Aline A; Dos Santos, Karoliny; Venâncio, Raysa S; Karloh, Manuela; Mayer, Anamaria F

    2017-09-05

    In multidimensional Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification, the choice of the symptom assessment instrument (modified Medical Research Council dyspnea scale [mMRC] or COPD assessment test [CAT]) can lead to a different distribution of patients in each quadrant. Considering that physical activities of daily living (PADL) is an important functional outcome in COPD, the objective of this study was to determine which symptom assessment instrument is more strongly associated with and differentiates better the PADL of patients with COPD. The study included 115 subjects with COPD (GOLD 2-4), who were submitted to spirometry, the mMRC, the CAT, and monitoring of PADL (triaxial accelerometer). Subjects were divided into 2 groups using the cutoffs proposed by the multidimensional GOLD classification: mMRC <2and ≥2 and CAT <10 and ≥10. Both mMRC and CAT reflected the PADL of COPD subjects. Subjects with mMRC <2 and CAT <10 spent less time in physical activities <1.5 metabolic equivalents of task (METs) (mean of the difference [95% CI] = -62.9 [-94.4 to -31.4], P < .001 vs -71.0 [-116 to -25.9], P = .002) and had a higher number of steps (3,076 [1,999-4,153], P < .001 vs 2,688 [1,042-4,333], P = .002) than subjects with mMRC >2 and CAT >10, respectively. Physical activities ≥3 METs differed only between mMRC <2 and mMRC ≥2 (39.2 [18.8-59.6], P < .001). Furthermore, only the mMRC was able to predict the PADL alone (time active, r(2) = 0.16; time sedentary, r(2) = 0.12; time ≥ 3 METs, r(2) = 0.12) and associated with lung function (number of steps, r(2) = 0.35; walking time, r(2) = 0.37; time <1.5 METs, r(2) = 0.25). The mMRC should be adopted as the classification criterion for symptom assessment in the GOLD ABCD system when focusing on PADL. Copyright © 2017 by Daedalus Enterprises.

  13. Scaling-up an efficacious school-based physical activity intervention: Study protocol for the 'Internet-based Professional Learning to help teachers support Activity in Youth' (iPLAY) cluster randomized controlled trial and scale-up implementation evaluation.

    PubMed

    Lonsdale, Chris; Sanders, Taren; Cohen, Kristen E; Parker, Philip; Noetel, Michael; Hartwig, Tim; Vasoncellos, Diego; Kirwan, Morwenna; Morgan, Philip; Salmon, Jo; Moodie, Marj; McKay, Heather; Bennie, Andrew; Plotnikoff, Ron; Cinelli, Renata L; Greene, David; Peralta, Louisa R; Cliff, Dylan P; Kolt, Gregory S; Gore, Jennifer M; Gao, Lan; Lubans, David R

    2016-08-24

    Despite the health benefits of regular physical activity, most children are insufficiently active. Schools are ideally placed to promote physical activity; however, many do not provide children with sufficient in-school activity or ensure they have the skills and motivation to be active beyond the school setting. The aim of this project is to modify, scale up and evaluate the effectiveness of an intervention previously shown to be efficacious in improving children's physical activity, fundamental movement skills and cardiorespiratory fitness. The 'Internet-based Professional Learning to help teachers support Activity in Youth' (iPLAY) study will focus largely on online delivery to enhance translational capacity. The intervention will be implemented at school and teacher levels, and will include six components: (i) quality physical education and school sport, (ii) classroom movement breaks, (iii) physically active homework, (iv) active playgrounds, (v) community physical activity links and (vi) parent/caregiver engagement. Experienced physical education teachers will deliver professional learning workshops and follow-up, individualized mentoring to primary teachers (i.e., Kindergarten - Year 6). These activities will be supported by online learning and resources. Teachers will then deliver the iPLAY intervention components in their schools. We will evaluate iPLAY in two complementary studies in primary schools across New South Wales (NSW), Australia. A cluster randomized controlled trial (RCT), involving a representative sample of 20 schools within NSW (1:1 allocation at the school level to intervention and attention control conditions), will assess effectiveness and cost-effectiveness at 12 and 24 months. Students' cardiorespiratory fitness will be the primary outcome in this trial. Key secondary outcomes will include students' moderate-to-vigorous physical activity (via accelerometers), fundamental movement skill proficiency, enjoyment of physical education and

  14. The Random-Effect Generalized Rating Scale Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Wu, Shiu-Lien

    2011-01-01

    Rating scale items have been widely used in educational and psychological tests. These items require people to make subjective judgments, and these subjective judgments usually involve randomness. To account for this randomness, Wang, Wilson, and Shih proposed the random-effect rating scale model in which the threshold parameters are treated as…

  15. The Random-Effect Generalized Rating Scale Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Wu, Shiu-Lien

    2011-01-01

    Rating scale items have been widely used in educational and psychological tests. These items require people to make subjective judgments, and these subjective judgments usually involve randomness. To account for this randomness, Wang, Wilson, and Shih proposed the random-effect rating scale model in which the threshold parameters are treated as…

  16. Physical activity and its mechanistic effects on prostate cancer.

    PubMed

    Wekesa, A; Harrison, M; Watson, R W

    2015-09-01

    Beneficial effects of physical activity have been illustrated in numerous aspects of health. With the increasing incidence of prostate cancer and changes in physical activity of men, understanding the link between the two has important implications for changing this cancer burden. Both positive and negative associations between physical activity and prostate cancer have been previously demonstrated in observational epidemiological studies. Elucidating the biological mechanisms would lead to a better understanding of how physical activity influences the progression of prostate cancer. This review was undertaken to: (1) identify evidence in literature that demonstrates the effects of physical activity on skeletal muscle secretomes, (2) indicate the plausible signaling pathways these proteins might activate, and (3) identify evidence in literature that demonstrates the roles of the signaling pathways in prostate cancer progression and regression. We also discuss proposed biological mechanisms and signaling pathways by which physical activity may prevent the development and progression of prostate cancer. We discuss proteins involved in the normal and aberrant growth and development of the prostate gland that may be affected by physical activity. We further identify future directions for research, including a better understanding of the biological mechanisms, the need to standardize physical activity and identify mechanistic end points of physical activity that can then be correlated with outcomes.

  17. The Butterfly Effect for Physics Laboratories

    ERIC Educational Resources Information Center

    Claycomb, James R.; Valentine, John H.

    2015-01-01

    A low-cost chaos dynamics lab is developed for quantitative demonstration of the butterfly effect using a magnetic pendulum. Chaotic motion is explored by recording magnetic time series. Students analyze the data in Excel® to investigate the butterfly effect as well as the reconstruction of the strange attractor using time delay plots. The lab…

  18. The Butterfly Effect for Physics Laboratories

    ERIC Educational Resources Information Center

    Claycomb, James R.; Valentine, John H.

    2015-01-01

    A low-cost chaos dynamics lab is developed for quantitative demonstration of the butterfly effect using a magnetic pendulum. Chaotic motion is explored by recording magnetic time series. Students analyze the data in Excel® to investigate the butterfly effect as well as the reconstruction of the strange attractor using time delay plots. The lab…

  19. Photoacoustic Effect and the Physics of Waves.

    ERIC Educational Resources Information Center

    McDonald, F. Alan

    1980-01-01

    Discussions are presented for implementing photoacoustic spectroscopy as a technique for describing the photoacoustic effect. This technique makes it possible to study optical absorption in samples which are usually difficult to study. It is suggested that this approach makes understanding of the photoacoustic effect accessible even at the…

  20. Adaptation and reliability of neighborhood environment walkability scale (NEWS) for Iran: A questionnaire for assessing environmental correlates of physical activity

    PubMed Central

    Hakimian, Pantea; Lak, Azadeh

    2016-01-01

    Background: In spite of the increased range of inactivity and obesity among Iranian adults, insufficient research has been done on environmental factors influencing physical activity. As a result adapting a subjective (self-report) measurement tool for assessment of physical environment in Iran is critical. Accordingly, in this study Neighborhood Environment Walkability Scale (NEWS) was adapted for Iran and also its reliability was evaluated. Methods: This study was conducted using a systematic adaptation method consisting of 3 steps: translate-back translation procedures, revision by a multidisciplinary panel of local experts and a cognitive study. Then NEWS-Iran was completed among adults aged 18 to 65 years (N=19) with an interval of 15 days. Intra-Class Coefficient (ICC) was used to evaluate the reliability of the adapted questionnaire. Results: NEWS-Iran is an adapted version of NEWS-A (abbreviated) and in the adaptation process five items were added from other versions of NEWS, two subscales were significantly modified for a shorter and more effective questionnaire, and five new items were added about climate factors and site-specific uses. NEWS-Iran showed almost perfect reliability (ICCs: more than 0.8) for all subscales, with items having moderate to almost perfect reliability scores (ICCs: 0.56-0.96). Conclusion: This study introduced NEWS-Iran, which is a reliable version of NEWS for measuring environmental perceptions related to physical activity behavior adapted for Iran. It is the first adapted version of NEWS which demonstrates a systematic adaptation process used by earlier studies. It can be used for other developing countries with similar environmental, social and cultural context. PMID:28210592

  1. Adaptation and reliability of neighborhood environment walkability scale (NEWS) for Iran: A questionnaire for assessing environmental correlates of physical activity.

    PubMed

    Hakimian, Pantea; Lak, Azadeh

    2016-01-01

    Background: In spite of the increased range of inactivity and obesity among Iranian adults, insufficient research has been done on environmental factors influencing physical activity. As a result adapting a subjective (self-report) measurement tool for assessment of physical environment in Iran is critical. Accordingly, in this study Neighborhood Environment Walkability Scale (NEWS) was adapted for Iran and also its reliability was evaluated. Methods: This study was conducted using a systematic adaptation method consisting of 3 steps: translate-back translation procedures, revision by a multidisciplinary panel of local experts and a cognitive study. Then NEWS-Iran was completed among adults aged 18 to 65 years (N=19) with an interval of 15 days. Intra-Class Coefficient (ICC) was used to evaluate the reliability of the adapted questionnaire. Results: NEWS-Iran is an adapted version of NEWS-A (abbreviated) and in the adaptation process five items were added from other versions of NEWS, two subscales were significantly modified for a shorter and more effective questionnaire, and five new items were added about climate factors and site-specific uses. NEWS-Iran showed almost perfect reliability (ICCs: more than 0.8) for all subscales, with items having moderate to almost perfect reliability scores (ICCs: 0.56-0.96). Conclusion: This study introduced NEWS-Iran, which is a reliable version of NEWS for measuring environmental perceptions related to physical activity behavior adapted for Iran. It is the first adapted version of NEWS which demonstrates a systematic adaptation process used by earlier studies. It can be used for other developing countries with similar environmental, social and cultural context.

  2. Effects of Music on Physical Activity Rates of Elementary Physical Education Students

    ERIC Educational Resources Information Center

    Barney, David; Prusak, Keven A.

    2015-01-01

    Music is a pervasive presence in society and is routinely used to influence human behavior in a variety of settings and for a variety of purposes including exercise behaviors and physical education (PE) classes. However, little evidence exists to support what effect, if any, music has on learner outcomes in PE. The effects that playing music…

  3. Effects of Music on Physical Activity Rates of Elementary Physical Education Students

    ERIC Educational Resources Information Center

    Barney, David; Prusak, Keven A.

    2015-01-01

    Music is a pervasive presence in society and is routinely used to influence human behavior in a variety of settings and for a variety of purposes including exercise behaviors and physical education (PE) classes. However, little evidence exists to support what effect, if any, music has on learner outcomes in PE. The effects that playing music…

  4. The physical education predisposition scale: Preliminary tests of reliability and validity in Australian students.

    PubMed

    Hilland, Toni A; Brown, Trent D; Fairclough, Stuart J

    2017-03-30

    The main aim of this study was to psychometrically test the Physical Education Predisposition Scale (PEPS) with a cohort of Australian students, to assess secondary school students' perceived PE ability and PE worth. Secondary aims were to explore how the two variables were related and to investigate age and gender differences. Altogether, 266 Year 7, 8, 9 and 10 students (aged 12-16 years), from four schools within the South Eastern region of Melbourne, completed the PEPS at both time points. Principal components analysis revealed the presence of a simple two-factor structure explaining 66.9% of the variance. Factor 1 (labelled perceived PE worth) reflected enjoyment and attitude (α = .91), and factor 2 (labelled perceived PE ability) represented perceptions of competence and self-efficacy (α = .92). Significant positive correlations were observed between the two factors (r = .50-.82, P < .001). Boys scored significantly higher than girls on perceived PE ability (P = .01), and year 7 students scored significantly higher compared to Year 9 students (P = .002). Our results support the potential of the PEPS as a concise measurement tool for use in the PE setting, for both teachers and researchers.

  5. Cosmic ray knee and new physics at the TeV scale

    SciTech Connect

    Barceló, Roberto; Masip, Manuel; Mastromatteo, Iacopo E-mail: masip@ugr.es

    2009-06-01

    We analyze the possibility that the cosmic ray knee appears at an energy threshold where the proton-dark matter cross section becomes large due to new TeV physics. It has been shown that such interactions could break the proton and produce a diffuse gamma ray flux consistent with MILAGRO observations. We argue that this hypothesis implies knees that scale with the atomic mass for the different nuclei, as KASKADE data seem to indicate. We find that to explain the change in the spectral index in the flux from E{sup −2.7} to E{sup −3.1} the cross section must grow like E{sup 0.4+β} above the knee, where β = 0.3–0.6 parametrizes the energy dependence of the age (τ∝E{sup −β}) of the cosmic rays reaching the Earth. The hypothesis also requires mbarn cross sections (that could be modelled with TeV gravity) and large densities of dark matter (that could be clumped around the sources of cosmic rays). We argue that neutrinos would also exhibit a threshold at E = (m{sub χ}/m{sub p}) E{sub knee} ≈ 10{sup 8} GeV where their interaction with a nucleon becomes strong. Therefore, the observation at ICECUBE or ANITA of standard neutrino events above this threshold would disprove the scenario.

  6. Climbing towards recovery: investigating physically injured combat veterans' psychosocial response to scaling Mt. Kilimanjaro.

    PubMed

    Burke, S M; Utley, A

    2013-05-01

    To explore physically injured combat veterans' psychosocial response to scaling Mt. Kilimanjaro. Participants (n = 4) were male and ranged in age from 22 to 44 years. They had all been wounded as a result of active duty in Afghanistan between 15 and 42 months (M = 27.25) before the study. Data were collected throughout a 9-day climb on Mt. Kilimanjaro using multiple sources of ethnographic data collection techniques including semi-structured interviews and detailed observations. Data were analyzed using cross case analysis. The findings are divided into themes that were drawn out of the data to illustrate the participants' psychosocial response to their experience of climbing on Mt. Kilimanjaro. Key themes of self-determination, active coping and social support were identified from the data. Support for those in recovery from trauma should foster psychosocial resources needed for healthy functioning. Future research should explore the role of meaningful and challenging activities as a way of improving the experience of recovery following serious injury.

  7. Scale effects of nitrate sinks and sources in stream networks

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Weiler, Markus; Gascuel-Odoux, Chantal

    2014-05-01

    Increasing N-fertilizer applications in agricultural catchments are considered as one of the major sources for dissolved nitrate-nitrogen (NO3-N) in surface water. While NO3-N mobilization pathways depend on catchment's pedological and hydrogeological characteristics and its runoff generation processes, in-stream retention and removal processes depend on local/reach-scale conditions such as weather, discharge, channel morphology, vegetation, shading or hyporheic exchange and others. However, knowledge is still limited to scale up locally observable retention and removal processes to larger stream networks to understand the spatial and temporal dynamics of in-stream NO3-N concentrations. Relevant processes to consider explicitly are the effects of 'hot spots', dominant NO3-N sources (e.g. sub-catchments, 'critical source areas') or specific NO3-N sinks (e.g. riparian wetlands and stream reaches with high biogeochemical activity). We studied these processes in a 1.7 km2 agricultural headwater catchment, where distinct locations of groundwater inflow (a dense artificial drainage network) and a predominantly impervious streambed allowed separating mixing and dilution processes as well as in-stream retention and removal processes. During two summer seasons we conducted a set (25) of stream network wide (stream water and drainage water) synoptic sampling campaigns including climate parameters, discharge, channel geomorphology, vegetation, stream water chemistry and physical water parameters (dissolved oxygen concentration, water temperatures, electrical conductivity, pH). Analyzing these data sets we were able to determine a) time variant NO3-N concentrations and loads for all sub-catchments (sources), b) time variant in-stream removal rates for all stream reaches (sinks) and c) the hierarchical order of all contributing NO3-N sinks and sources and their time variant influence on total NO3-N export. Climate parameters, discharge, channel geomorphology, vegetation, stream

  8. Item response theory methods can improve the measurement of physical function by combining the modified health assessment questionnaire and the SF-36 physical function scale.

    PubMed

    Martin, Marie; Kosinski, Mark; Bjorner, Jakob B; Ware, John E; Maclean, Ross; Li, Tracy

    2007-05-01

    To compare the measurement properties of the Modified Health Assessment Questionnaire [MHAQ], the SF-36((R)) Health Survey 10 item Physical Functioning scale [PF10], and scores from an item response theory (IRT) based scale combining the two measures. Rheumatoid arthritis (RA) patients (n = 339) enrolled in a multi-center, randomized, double-blind, placebo-controlled trial completed the MHAQ and the SF-36 pre- and post-treatment. Psychometric analyses used confirmatory factor analysis and IRT models. Analyses of variance were used to assess sensitivity to changes in disease severity (defined by the American College of Rheumatism (ACR)) using change scores in MHAQ, PF10, and IRT scales. Analyses of covariance were used to assess treatment responsiveness. For the entire score range, the 95% confidence interval around individual patient scores was smaller for the combined (total) IRT based scale than for other measures. The MHAQ and PF10 were about 70% and 50% as efficient as the total IRT score of physical functioning in discriminating among ACR groups, respectively. The MHAQ and PF10 were also less efficient than the total IRT score in discriminating among treatment groups. Combining scales from the two short forms yields a more powerful tool with greater sensitivity to treatment response.

  9. The Effects of Scales on Autorotation of Monarch Butterfly Forewings

    NASA Astrophysics Data System (ADS)

    Dechello, Nicole; Lang, Amy

    2014-11-01

    The wings of Monarch butterflies (Danus plexippus) have scales of approximately 100 micrometers that cover their wings in a roof-shingle pattern, and these scales are hypothesized to help improve flight efficiency for their long migration. The aerodynamic effects of the scales, particularly involving the leading edge vortex formation and resulting lift, were investigated by observing the natural autorotation of forewing specimen when dropped in quiescent air. A high-speed camera recorded drop tests of 32 forewings both with scales and after removal of the scales. It was found that the scales, on average, comprised 17% of the forewing mass. Tracking software was used to analyze the videos for several parameters, including descent speed and radius of rotation. NSF ECE Grant #1358991 supported the first author as an research experience for undergraduate (REU) student.

  10. Effect of New Physics in Astrophysical Neutrino Flavor.

    PubMed

    Argüelles, Carlos A; Katori, Teppei; Salvado, Jordi

    2015-10-16

    Astrophysical neutrinos are powerful tools for investigating the fundamental properties of particle physics through their flavor content. In this Letter, we perform the first general new physics study on ultrahigh energy neutrino flavor content by introducing effective operators. We find that, at the current limits on these operators, new physics terms cause maximal effects on the flavor content; however, the flavor content on the Earth is confined to a region related to the assumed initial flavor content. Furthermore, we conclude that a precise measure of the flavor content on the Earth will provide orders of magnitude improvement on new physics bounds. Finally, we discuss the current best fits of flavor content of the IceCube data and their interplay with new physics scenarios.

  11. Sill effects on physical dynamics in eastern Long Island Sound

    NASA Astrophysics Data System (ADS)

    Whitney, Michael M.; Jia, Yan; McManus, Pearse M.; Kunz, Christopher J.

    2014-03-01

    This study investigates how Mattituck Sill influences circulation patterns and physical dynamics in eastern Long Island Sound, a major estuary on the U.S. east coast. Observations show there is pronounced across-estuary transport in the area and suggest there may be subtidal anticyclonic flow around the sill. Model runs, with and without sill bathymetry, exhibit this across-estuary transport and anticyclonic circulation. Comparison between these runs indicates that the sill intensifies the anticyclonic circulation. This study finds the sill does not exert internal hydraulic control during neap, mean, or spring tidal conditions. Nevertheless, along-estuary exchange is reduced over the sill and across-estuary fluxes are increased. The Connecticut River plume enters close to the estuary mouth. The sill deflects more of the plume waters towards the mouth, causing less freshwater to take the long looping route through the estuary. The subtidal circulation balance around the sill indicates a barotropic balance between the tidal advection of tidal vorticity and friction. The subtidal vorticity balance indicates the net effect of tidal advection of relative vorticity is balanced with frictional curl associated with lateral speed gradients and vorticity dissipation. Previously developed scalings based on the circulation balance (Nature 290:549-555, 1981), frictional vorticity generation mechanisms (Deep-Sea Res 28:195-212, 1981), and tidal diffusion of potential vorticity (J Phys Oceanogr 29:821-827, 1999) are applicable to Mattituck Sill and predict circulation with a similar magnitudes to model results.

  12. Blood pressure circadian pattern and physical exercise assessment by accelerometer and 7-day physical activity recall scale.

    PubMed

    García-Ortiz, Luis; Recio-Rodríguez, José I; Puig-Ribera, Anna; Lema-Bartolomé, Jorge; Ibáñez-Jalón, Elisa; González-Viejo, Natividad; Guenaga-Saenz, Nahia; Agudo-Conde, Cristina; Patino-Alonso, Maria C; Gomez-Marcos, Manuel A

    2014-05-01

    The relationship between regular physical activity, measured objectively and by self-report, and the circadian pattern of 24-hour ambulatory arterial blood pressure (BP) has not been clarified. We performed a cross-sectional study in a cohort of healthy patients. We included 1,345 patients from the EVIDENT study (mean age 55 ± 14 years; 59.3% women). Physical activity was assessed using the 7-day physical activity recall (PAR) questionnaire (metabolic equivalents (MET)/hour/week) and the Actigraph GT3X accelerometer (counts/minute) for 7 days; ambulatory arterial BP was measured with a radial tonometer (B-pro device). The dipper-pattern patients showed a higher level of activity than nondipper patients, as assessed by accelerometer and 7-day PAR. Physical activity measures correlated positively with the percent drop in systolic BP (SBP; ρ = 0.19 to 0.11; P < 0.01) and negatively with the systolic and diastolic sleep to wake ratios (ρ = -0.10 to -0.18; P < 0.01) and heart rate (ρ = -0.13; P < 0.01). In logistic regression, considering the circadian pattern (1, dipper; 0, nondipper) as the dependent variable, the odds ratio of the third tertile of counts/minute was 1.79 (95% confidence interval [CI], 1.35-2.38; P < 0.01) and of MET/hour/week was 1.33 (95% CI, 1.01-1.75; P = 0.04) after adjustment for confounding variables. Physical activity, as evaluated by both the accelerometer and the 7-day PAR, was associated with a more marked nocturnal BP dip and, accordingly, a lower SBP and diastolic BP sleep to wake ratio. Clinical Trials.gov Identifier: NCT01083082.

  13. A confirmatory study of rating scale category effectiveness for the Coaching Efficacy Scale.

    PubMed

    Myers, Nicholas D; Feltz, Deborah L; Wolfe, Edward W

    2008-09-01

    This study extended validity evidence for measures of coaching efficacy derived from the Coaching Efficacy Scale (CES) by testing the rating scale categorizations suggested in previous research. Previous research provided evidence for the effectiveness of a four-category (4-CAT) structure for high school and collegiate sports coaches; it also suggested that a five-category (5-CAT) structure may be effective for youth sports coaches, because they may be more likely to endorse categories on the lower end of the scale. Coaches of youth sports (N = 492) responded to the CES items with a 5-CAT structure. Across rating scale category effectiveness guidelines, 32 of 34 evidences (94%) provided support for this structure. Data were condensed to a 4-CAT structure by collapsing responses in Category 1 (CAT-1) and Category 2 (CAT-2). Across rating scale category effectiveness guidelines, 25 of 26 evidences (96%) provided support for this structure. Findings provided confirmatory, cross-validation evidence for both the 5-CAT and 4-CAT structures. For empirical, theoretical, and practical reasons, the authors concluded that the 4-CAT structure was preferable to the 5-CAT when CES items are used to measure coaching efficacy. This conclusion is based on the findings of this confirmatory study and the more exploratory findings of Myers, Wolfe, and Feltz (2005).

  14. Physical Mechanisms and Scaling Laws of K-Shell Double Photoionization

    SciTech Connect

    Hoszowska, J.; Dousse, J.-Cl.; Berset, M.; Cao, W.; Fennane, K.; Kayser, Y.; Szlachetko, J.; Szlachetko, M.; Kheifets, A. K.; Bray, I.; Kavcic, M.

    2009-02-20

    We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

  15. Physical Mechanisms and Scaling Laws of K-Shell Double Photoionization

    NASA Astrophysics Data System (ADS)

    Hoszowska, J.; Kheifets, A. K.; Dousse, J.-Cl.; Berset, M.; Bray, I.; Cao, W.; Fennane, K.; Kayser, Y.; Kavčič, M.; Szlachetko, J.; Szlachetko, M.

    2009-02-01

    We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

  16. Integrating Delta Building Physics & Economics: Optimizing the Scale of Engineered Avulsions in the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Mohrig, D.; Hobbs, B. F.; Parker, G.

    2011-12-01

    Land loss in the Mississippi River Delta caused by subsidence and erosion has resulted in habitat loss, interference with human activities, and increased exposure of New Orleans and other settled areas to storm surge risks. Prior to dam and levee building and oil and gas production in the 20th century, the long term rates of land building roughly balanced land loss through subsidence. Now, however, sediment is being deposited at dramatically lower rates in shallow areas in and adjacent to the Delta, with much of the remaining sediment borne by the Mississippi being lost to the deep areas of the Gulf of Mexico. A few projects have been built in order to divert sediment from the river to areas where land can be built, and many more are under consideration as part of State of Louisiana and Federal planning processes. Most are small scale, although there have been some proposals for large engineered avulsions that would divert a significant fraction of the remaining available sediment (W. Kim, et al. 2009, EOS). However, there is debate over whether small or large diversions are the economically optimally and socially most acceptable size of such land building projects. From an economic point of view, the optimal size involves tradeoffs between scale economies in civil work construction, the relationship between depth of diversion and sediment concentration in river water, effects on navigation, and possible diminishing returns to land building at a single location as the edge of built land progresses into deeper waters. Because land building efforts could potentially involve billions of dollars of investment, it is important to gain as much benefit as possible from those expenditures. We present the result of a general analysis of scale economies in land building from engineered avulsions. The analysis addresses the question: how many projects of what size should be built at what time in order to maximize the amount of land built by a particular time? The analysis

  17. IRRADIATION EFFECTS ON THE PHYSICAL CHARACTERISTICS OF SEWAGE SLUDGE

    SciTech Connect

    Lee, M-J.; Lee, J-K.; Yoo, D-H.; Ho, K.

    2004-10-05

    The radiation effects on the physical characteristic of the sewage sludge were studied in order to obtain information which will be used for study on the enhancement of the sludge's dewaterability. Water contents, capillary suction time, zeta potential, irradiation dose, sludge acidity, total solid concentration, sludge particle size and microbiology before and after irradiation were investigated. Irradiation gave an effect on physical characteristics sludge. Water content in sludge cake could be reduced by irradiation at the dose of 10kGy.

  18. Uranium and technetium bio-immobilization in intermediate-scale physical models of an in situ bio-barrier.

    PubMed

    Michalsen, Mandy M; Goodman, Bernard A; Kelly, Shelly D; Kemner, Kenneth M; McKinley, James P; Stucki, Joseph W; Istok, Jonathan D

    2006-11-15

    We investigated the long-term effects of ethanol addition on U and Tc mobility in groundwater flowing through intermediate-scale columns packed with uncontaminated sediments. The columns were operated above-ground at a contaminated field site to serve as physical models of an in situ bio-barrierfor U and Tc removal from groundwater. Groundwater containing 4 microM U and 520 pM Tc was pumped through the columns for 20 months. One column received additions of ethanol to stimulate activity of indigenous microorganisms; a second column received no ethanol and served as a control. U(VI) and Tc(VII) removal was sustained for 20 months (approximately 189 pore volumes) in the stimulated column under sulfate- and Fe(III)-reducing conditions. Less apparent microbial activity and only minor removal of U(VI) and Tc(VII) were observed in the control. Sequential sediment extractions and XANES spectra confirmed that U(IV) was present in the stimulated column, although U(IV) was also detected in the control; extremely low concentrations precluded detection of Tc(IV) in any sample. These results provide additional evidence that bio-immobilization may be effective for removing U and Tc from groundwater. However, long-term effectiveness of bio-immobilization may be limited by hydraulic conductivity reductions or depletion of bioavailable Fe(III).

  19. Effect on physical fitness of a 10-year physical activity intervention in primary health care settings.

    PubMed

    Nakamura, Priscila M; Papini, Camila B; Teixeira, Inaian P; Chiyoda, Alberto; Luciano, Eliete; Cordeira, Kelly Lynn; Kokubun, Eduardo

    2015-01-01

    Interventions in primary health care settings have been effective in increasing physical fitness. In 2001, the Programa de Exercício Físico em Unidades de Saúde (Physical Exercise in Health Primary Care Program-PEHPCP) was launched in Rio Claro City, Brazil. The intervention consisted of biweekly, 60-minute group sessions in all primary health care settings in the city. This study evaluated the effect of PEHPCP on physical fitness and on the aging process after a decade of ongoing implementation. There were 409 women (50 ± 26 y old) and 31 men (64 ± 10 y old) who were eligible for this study. Every 4 months, participants completed the American Alliance for Health, Physical Education, Recreation and Dance standardized tests. Program participation was associated with a reduced effect, compared with baseline, of the natural decline of physical fitness caused by aging, as represented by changes in the following measures: coordination test time, -0.44 seconds; agility and dynamic balance test time; -1.81 seconds; aerobic capacity test time, 3.57 seconds; and muscle strength exercises, +0.60 repetitions. No significant effect on flexibility was found. The PEHPCP showed potential in improving muscle strength, coordination, aerobic capacity, and agility and dynamic balance in participants and in maintaining flexibility in participants.

  20. Making access to TV contingent on physical activity: effects on liking and relative reinforcing value of TV and physical activity in overweight and obese children.

    PubMed

    Goldfield, Gary S

    2012-02-01

    This study examined the effects of making access to television (TV) viewing contingent on physical activity on the liking and reinforcing value of TV and attitudes towards physical activity in overweight and obese children. Secondary data analysis from a randomized controlled trial designed to increase physical activity and reduce TV viewing in 30, 8-12 years old overweight or obese children by making access to TV contingent on physical activity (intervention) or free access to TV (control). Liking of TV and physical activity was measured by a 100 point visual analog scale, while the relative reinforcing value of TV in relation to physical activity was assessed using a questionnaire based on behavioural choice paradigm that provided children an opportunity to work (button presses) to gain access to TV or physical activity according to a progressive ratio schedule of reinforcement. Enjoyment, Adequacy, Predilection and Motivation for physical activity was assessed by self-report questionnaire. Making access to TV contingent on physical activity showed a trend that approached statistical significance towards increased enjoyment of physical activity and did not adversely affect change in the liking or the relative reinforcing value of TV viewing. Making access to TV contingent on physical activity had no adverse effects on the liking or reinforcing value of TV and even showed a suggestive effect of increased enjoyment of physical activity. Thus, given this intervention markedly increased physical activity and reduced TV viewing in overweight and obese children, long-term evaluations of this interventions to assess sustainability of these behavioral changes and associated health benefits are warranted.

  1. The Effect of Physical Activity on Science Competence and Attitude towards Science Content

    NASA Astrophysics Data System (ADS)

    Klinkenborg, Ann Maria

    This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one instructional method to consider. Researchers have typically focused on integration with English/language arts (ELA) and mathematics. The purpose of this study was to determine the effect of physical activity on science competence and attitude towards science. Fifty-three third grade children participated in this investigation; one group received science instruction with a physical activity intervention while the other group received traditional science instruction. Participants in both groups completed a modified version of What I Really Think of Science attitude scale (Pell & Jarvis, 2001) and a physical science test of competence prior to and following the intervention. Children were videotaped during science instruction and their movement coded to measure the proportion of time spent in MVPA. Results revealed that children in the intervention group demonstrated greater MVPA during the instructional period. A moderate to large effect size (partial eta squared = .091) was seen in the intervention group science competence post-test indicating greater understanding of force, motion, work, and simple machines concepts than that of the control group who were less physically active. There was no statistically significant attitude difference between the intervention and control groups post-test, (F(1,51) = .375, p = .543). These results provide evidence that integration can effectively present physical science content and have a positive impact on the number of minutes of health-enhancing physical activity in a school day.

  2. Sub-ion scale intermittency and the development of filamentary current structures from the Hall effect

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Kiyani, K. H.; Meyrand, R.; Sahraoui, F.; Osman, K.

    2014-12-01

    The distinct quantitative nature of the intermittency seen on fluid and kinetic scales in solar wind plasma turbulence is now well documented from an observational point of view. The classic high-order statistical signature rapidly transitions to a monoscaling signature as one crosses to sub-ion scales. How this scaling depends upon plasma conditions, and the underlying physical implications have yet to be fully explored. We present a study focusing on 28 intervals of solar wind magnetic field data from the Cluster spacecraft sampling a broad range of plasma parameters. We show how the scaling properties vary between these intervals and more importantly, if there are any correlations between the scaling exponents and the plasma parameter variations. We supplement this observational study with a computational investigation where we study spatial samples from an 1024^3 EMHD simulation -- a model for sub-ion scale magnetic field dynamics consisting solely of the Hall effect. From this, we show that the Hall-term can generate a topological change from current sheets at fluid scales to current filaments at sub-ion scales. We conjecture that this fundamental change in the coherent structures comprising the turbulence is also responsible for the change in the intermittency that we see from our observations; and which could also be responsible for dissipation at these scales.

  3. Web-Based Assessments of Physical Activity in Youth: Considerations for Design and Scale Calibration

    PubMed Central

    2014-01-01

    This paper describes the design and methods involved in calibrating a Web-based self-report instrument to estimate physical activity behavior. The limitations of self-report measures are well known, but calibration methods enable the reported information to be equated to estimates obtained from objective data. This paper summarizes design considerations for effective development and calibration of physical activity self-report measures. Each of the design considerations is put into context and followed by a practical application based on our ongoing calibration research with a promising online self-report tool called the Youth Activity Profile (YAP). We first describe the overall concept of calibration and how this influences the selection of appropriate self-report tools for this population. We point out the advantages and disadvantages of different monitoring devices since the choice of the criterion measure and the strategies used to minimize error in the measure can dramatically improve the quality of the data. We summarize strategies to ensure quality control in data collection and discuss analytical considerations involved in group- vs individual-level inference. For cross-validation procedures, we describe the advantages of equivalence testing procedures that directly test and quantify agreement. Lastly, we introduce the unique challenges encountered when transitioning from paper to a Web-based tool. The Web offers considerable potential for broad adoption but an iterative calibration approach focused on continued refinement is needed to ensure that estimates are generalizable across individuals, regions, seasons and countries. PMID:25448192

  4. Web-based assessments of physical activity in youth: considerations for design and scale calibration.

    PubMed

    Saint-Maurice, Pedro F; Welk, Gregory J

    2014-12-01

    This paper describes the design and methods involved in calibrating a Web-based self-report instrument to estimate physical activity behavior. The limitations of self-report measures are well known, but calibration methods enable the reported information to be equated to estimates obtained from objective data. This paper summarizes design considerations for effective development and calibration of physical activity self-report measures. Each of the design considerations is put into context and followed by a practical application based on our ongoing calibration research with a promising online self-report tool called the Youth Activity Profile (YAP). We first describe the overall concept of calibration and how this influences the selection of appropriate self-report tools for this population. We point out the advantages and disadvantages of different monitoring devices since the choice of the criterion measure and the strategies used to minimize error in the measure can dramatically improve the quality of the data. We summarize strategies to ensure quality control in data collection and discuss analytical considerations involved in group- vs individual-level inference. For cross-validation procedures, we describe the advantages of equivalence testing procedures that directly test and quantify agreement. Lastly, we introduce the unique challenges encountered when transitioning from paper to a Web-based tool. The Web offers considerable potential for broad adoption but an iterative calibration approach focused on continued refinement is needed to ensure that estimates are generalizable across individuals, regions, seasons and countries.

  5. The physical origin of hydrophobic effects

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2017-03-01

    From the structural studies on water and air/water interface, hydration free energy is derived, and used to investigate the origin of hydrophobic effects. As a solute is dissolved into water, hydration free energy increases, and is divided into initial and hydrophobic solvation processes. In the initial process, hydration free energy is dominated by hydrogen bonding in interfacial water (topmost water layer at solute/water interface). For hydrophobic process, hydration free energy is related to the hydrogen bonding in bulk and interfacial water. Therefore, hydrophobic effects originate from the structural competition between hydrogen bonding in bulk water and that in interfacial water.

  6. Long-term physical and psychological effects of the Vajont disaster

    PubMed Central

    Zaetta, Cristina; Santonastaso, Paolo; Favaro, Angela

    2011-01-01

    Background Few studies to date investigated the long-term consequences of disasters on physical health. Objective The aim of the present report was to study the consequence on physical health of exposure to the Vajont disaster after 40 years. We also explored the effects of severity of trauma, posttraumatic stress disorder (PTSD), and major depression disorder on physical health and health-related quality of life. Method Sixty survivors of the Vajont disaster and 48 control subjects of similar gender, education, and age participated in the study. Physician-reported and subjective measures of physical health have been employed. Results Survivors reported a greater number of physical complaints than controls (p<0.001), and some type of diseases showed a significant relationship with PTSD or PTSD symptoms. Quality of life differed between the two groups as regards the perception of physical health. The number of intrusive PTSD symptoms showed a significant negative effect on the quality of life of survivors. Conclusions Our study shows that large-scale disasters such as the Vajont one may have deleterious effects on both psychological and physical health. PMID:22893826

  7. Promoting Leisure Physical Activity Participation among Adults with Intellectual Disabilities: Validation of Self-Efficacy and Social Support Scales

    ERIC Educational Resources Information Center

    Peterson, Jana J.; Peterson, N. Andrew; Lowe, John B.; Nothwehr, Faryle K.

    2009-01-01

    Background: Many individuals with intellectual disabilities are not sufficiently active for availing health benefits. Little is known about correlates of physical activity among this population on which to build health promotion interventions. Materials and Methods: We developed scales for measurement of self-efficacy and social support for…

  8. Cohort Profile of the Goals Study: A Large-Scale Research of Physical Activity in Dutch Students

    ERIC Educational Resources Information Center

    de Groot, Renate H. M.; van Dijk, Martin L.; Kirschner, Paul A.

    2015-01-01

    The GOALS study (Grootschalig Onderzoek naar Activiteiten van Limburgse Scholieren [Large-scale Research of Activities in Dutch Students]) was set up to investigate possible associations between different forms of physical activity and inactivity with cognitive performance, academic achievement and mental well-being. It was conducted at a…

  9. Cohort Profile of the Goals Study: A Large-Scale Research of Physical Activity in Dutch Students

    ERIC Educational Resources Information Center

    de Groot, Renate H. M.; van Dijk, Martin L.; Kirschner, Paul A.

    2015-01-01

    The GOALS study (Grootschalig Onderzoek naar Activiteiten van Limburgse Scholieren [Large-scale Research of Activities in Dutch Students]) was set up to investigate possible associations between different forms of physical activity and inactivity with cognitive performance, academic achievement and mental well-being. It was conducted at a…

  10. A Job-Seeking Self-Efficacy Scale for People with Physical Disabilities: Preliminary Development and Psychometric Testing.

    ERIC Educational Resources Information Center

    Barlow, Julie; Wright, Chris; Cullen, Lesley

    2002-01-01

    Study sought to develop and conduct preliminary testing of the psychometric properties of a job-seeking self-efficacy (JSS) scale that reflected the experiences of people with physical disabilities. Greater job seeking self-efficacy and perceived ability to manage disability at interview were associated with more positive psychological well-being.…

  11. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  12. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  13. The Moire Effect in Physics Teaching.

    ERIC Educational Resources Information Center

    Bernero, Bruce

    1989-01-01

    The Moire pattern is the shimmering pattern which looks like an odd interference pattern in window screens or folds of nylon shower curtain. Illustrates some of the ways the effect may be used, including demonstration of wave interference, detection of small displacement, persistence of vision, contour measurement, beats, and optical clearness.…

  14. The Moire Effect in Physics Teaching.

    ERIC Educational Resources Information Center

    Bernero, Bruce

    1989-01-01

    The Moire pattern is the shimmering pattern which looks like an odd interference pattern in window screens or folds of nylon shower curtain. Illustrates some of the ways the effect may be used, including demonstration of wave interference, detection of small displacement, persistence of vision, contour measurement, beats, and optical clearness.…

  15. Physical Health Effects of Intimate Partner Abuse

    ERIC Educational Resources Information Center

    Sillito, Carrie LeFevre

    2012-01-01

    Although intimate partner violence has been recognized as both a social problem and health issue, the extent to which it is a health issue for both males and females in the general population is largely unknown. This longitudinal research uses data from the National Survey of Family and Households (1987-2003). Random effects logistic regression…

  16. Physical Health Effects of Intimate Partner Abuse

    ERIC Educational Resources Information Center

    Sillito, Carrie LeFevre

    2012-01-01

    Although intimate partner violence has been recognized as both a social problem and health issue, the extent to which it is a health issue for both males and females in the general population is largely unknown. This longitudinal research uses data from the National Survey of Family and Households (1987-2003). Random effects logistic regression…

  17. The Effects of Stress on Physical Activity and Exercise

    PubMed Central

    Stults-Kolehmainen, Matthew A.; Sinha, Rajita

    2013-01-01

    Background Psychological stress and physical activity (PA) are believed to be reciprocally related; however, most research examining the relationship between these constructs is devoted to the study of exercise and/or PA as an instrument to mitigate distress. Objective The aim of this paper was to review the literature investigating the influence of stress on indicators of PA and exercise. Methods A systematic search of Web of Science, Pub-Med, and SPORTDiscus was employed to find all relevant studies focusing on human participants. Search terms included “stress”, “exercise”, and “physical activity”. A rating scale (0–9) modified for this study was utilized to assess the quality of all studies with multiple time points. Results The literature search found 168 studies that examined the influence of stress on PA. Studies varied widely in their theoretical orientation and included perceived stress, distress, life events, job strain, role strain, and work–family conflict but not lifetime cumulative adversity. To more clearly address the question, prospective studies (n = 55) were considered for further review, the majority of which indicated that psychological stress predicts less PA (behavioral inhibition) and/or exercise or more sedentary behavior (76.4 %). Both objective (i.e., life events) and subjective (i.e., distress) measures of stress related to reduced PA. Prospective studies investigating the effects of objective markers of stress nearly all agreed (six of seven studies) that stress has a negative effect on PA. This was true for research examining (a) PA at periods of objectively varying levels of stress (i.e., final examinations vs. a control time point) and (b) chronically stressed populations (e.g., caregivers, parents of children with a cancer diagnosis) that were less likely to be active than controls over time. Studies examining older adults (>50 years), cohorts with both men and women, and larger sample sizes (n > 100) were more likely

  18. The effects of stress on physical activity and exercise.

    PubMed

    Stults-Kolehmainen, Matthew A; Sinha, Rajita

    2014-01-01

    Psychological stress and physical activity (PA) are believed to be reciprocally related; however, most research examining the relationship between these constructs is devoted to the study of exercise and/or PA as an instrument to mitigate distress. The aim of this paper was to review the literature investigating the influence of stress on indicators of PA and exercise. A systematic search of Web of Science, PubMed, and SPORTDiscus was employed to find all relevant studies focusing on human participants. Search terms included "stress", "exercise", and "physical activity". A rating scale (0-9) modified for this study was utilized to assess the quality of all studies with multiple time points. The literature search found 168 studies that examined the influence of stress on PA. Studies varied widely in their theoretical orientation and included perceived stress, distress, life events, job strain, role strain, and work-family conflict but not lifetime cumulative adversity. To more clearly address the question, prospective studies (n = 55) were considered for further review, the majority of which indicated that psychological stress predicts less PA (behavioral inhibition) and/or exercise or more sedentary behavior (76.4 %). Both objective (i.e., life events) and subjective (i.e., distress) measures of stress related to reduced PA. Prospective studies investigating the effects of objective markers of stress nearly all agreed (six of seven studies) that stress has a negative effect on PA. This was true for research examining (a) PA at periods of objectively varying levels of stress (i.e., final examinations vs. a control time point) and (b) chronically stressed populations (e.g., caregivers, parents of children with a cancer diagnosis) that were less likely to be active than controls over time. Studies examining older adults (>50 years), cohorts with both men and women, and larger sample sizes (n > 100) were more likely to show an inverse association. 85.7 % of higher

  19. Scaling up of physical activity interventions in Brazil: how partnerships and research evidence contributed to policy action.

    PubMed

    Parra, Diana C; Hoehner, Christine M; Hallal, Pedro C; Reis, Rodrigo S; Simoes, Eduardo J; Malta, Deborah C; Pratt, Michael; Brownson, Ross C

    2013-12-01

    The global health burden due to physical inactivity is enormous and growing. There is a need to consider new ways of generating evidence and to identify the role of government in promoting physical activity at the population level. In this paper, we summarize key findings from a large-scale cross-national collaboration to understand physical activity promotion in Brazil. We describe the main aspects of the partnership of Project GUIA (Guide for Useful Interventions for Activity in Brazil and Latin America) that sustained the collaborative effort for eight years and describe how the evidence gathered from the collaboration triggered political action in Brazil to scale up a physical activity intervention at the national level. Project GUIA is a cross-national multidisciplinary research partnership designed to understand and evaluate current efforts for physical activity promotion at the community level in Latin America. This example of scaling up is unprecedented for promoting health in the region and is an example that must be followed and evaluated.

  20. Scaling up of physical activity interventions in Brazil: how partnerships and research evidence contributed to policy action

    PubMed Central

    Hoehner, Christine M.; Hallal, Pedro C.; Reis, Rodrigo S.; Simoes, Eduardo J.; Malta, Deborah C.; Pratt, Michael; Brownson, Ross C.

    2013-01-01

    The global health burden due to physical inactivity is enormous and growing. There is a need to consider new ways of generating evidence and to identify the role of government in promoting physical activity at the population level. In this paper, we summarize key findings from a large-scale cross-national collaboration to understand physical activity promotion in Brazil. We describe the main aspects of the partnership of Project GUIA (Guide for Useful Interventions for Activity in Brazil and Latin America) that sustained the collaborative effort for eight years and describe how the evidence gathered from the collaboration triggered political action in Brazil to scale up a physical activity intervention at the national level. Project GUIA is a cross-national multidisciplinary research partnership designed to understand and evaluate current efforts for physical activity promotion at the community level in Latin America. This example of scaling up is unprecedented for promoting health in the region and is an example that must be followed and evaluated. PMID:24323944