Are ecosystem services stabilized by differences among species? A test using crop pollination.
Winfree, Rachael; Kremen, Claire
2009-01-22
Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of 'stabilizing mechanisms.' However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly 'redundant' species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes.
Xiao, Qiang; Zeng, Zhigang
2017-10-01
The existed results of Lagrange stability and finite-time synchronization for memristive recurrent neural networks (MRNNs) are scale-free on time evolvement, and some restrictions appear naturally. In this paper, two novel scale-limited comparison principles are established by means of inequality techniques and induction principle on time scales. Then the results concerning Lagrange stability and global finite-time synchronization of MRNNs on time scales are obtained. Scaled-limited Lagrange stability criteria are derived, in detail, via nonsmooth analysis and theory of time scales. Moreover, novel criteria for achieving the global finite-time synchronization are acquired. In addition, the derived method can also be used to study global finite-time stabilization. The proposed results extend or improve the existed ones in the literatures. Two numerical examples are chosen to show the effectiveness of the obtained results.
Endotoxin Studies And Biosolids Stabilization Research
This presentation has three parts; a review of bench-scale endotoxin research, a review of observations from a field scale endotoxin release study, and discussion of biosolids stabilization and characterization by PLFA/FAME microbial community analysis. Endotoxins are part of th...
Flame Stabilization on Microscopic Scale of Wet Biogas with Microflame
NASA Astrophysics Data System (ADS)
Ida, Tamio; Fuchihata, Manabu; Mizuno, Satoru
Harvesting, transportation, energy conversion and the high-efficient utilization, cascade method and market formation besides become with the indispensable element in order to utilize the biomass resource. There are two type biogases; it is gasified gas from dried biomass by partially combustion and wet biogas from wet biomass by methane fermentation, especially from the livestock excrement resources. This paper discusses an experimental study for flame stabilization on microscopic scale with wet biogas (mainly 0.6CH4+0.4CO2). In this study, the microflame with the wet biogas fuels are formed by the diffusion flame on the coppered straight pipes of inner diameter 0.02mm ˜ 1.5mm. This study is obtained stability mapping on microscopic scale of formed microflame by wet biogas fuels. The flame stability limit conditions on microscopic scale of wet biogas is drawn with blow off and extinction flame double limit lines. It is suggested that minimum mixing spatial scale change by the each mixing ratio of the wet biogas.
Altmann, Tobias; Roth, Marcus
2018-01-01
Self-esteem stability describes fluctuations in the level of self-esteem experienced by individuals over a brief period of time. In recent decades, self-esteem stability has repeatedly been shown to be an important variable affecting psychological functioning. However, measures of self-esteem stability are few and lacking in validity. In this paper, we present the Self-Esteem Stability Scale (SESS), a unidimensional and very brief scale to directly assess self-esteem stability. In four studies (total N = 826), we describe the development of the SESS and present evidence for its validity with respect to individual outcomes (life satisfaction, neuroticism, and vulnerable narcissism) and dyadic outcomes (relationship satisfaction in self- and partner ratings) through direct comparisons with existing measures. The new SESS proved to be a stronger predictor than the existing scales and had incremental validity over and above self-esteem level. The results also showed that all cross-sectional measures of self-esteem stability were only moderately associated with variability in self-esteem levels assessed longitudinally with multiple administrations of the Rosenberg Self-Esteem Scale. We discuss this validity issue, arguing that direct and indirect assessment approaches measure relevant, yet different aspects of self-esteem stability. PMID:29487551
Altmann, Tobias; Roth, Marcus
2018-01-01
Self-esteem stability describes fluctuations in the level of self-esteem experienced by individuals over a brief period of time. In recent decades, self-esteem stability has repeatedly been shown to be an important variable affecting psychological functioning. However, measures of self-esteem stability are few and lacking in validity. In this paper, we present the Self-Esteem Stability Scale (SESS), a unidimensional and very brief scale to directly assess self-esteem stability. In four studies (total N = 826), we describe the development of the SESS and present evidence for its validity with respect to individual outcomes (life satisfaction, neuroticism, and vulnerable narcissism) and dyadic outcomes (relationship satisfaction in self- and partner ratings) through direct comparisons with existing measures. The new SESS proved to be a stronger predictor than the existing scales and had incremental validity over and above self-esteem level. The results also showed that all cross-sectional measures of self-esteem stability were only moderately associated with variability in self-esteem levels assessed longitudinally with multiple administrations of the Rosenberg Self-Esteem Scale. We discuss this validity issue, arguing that direct and indirect assessment approaches measure relevant, yet different aspects of self-esteem stability.
A large-scale, long-term study of scale drift: The micro view and the macro view
NASA Astrophysics Data System (ADS)
He, W.; Li, S.; Kingsbury, G. G.
2016-11-01
The development of measurement scales for use across years and grades in educational settings provides unique challenges, as instructional approaches, instructional materials, and content standards all change periodically. This study examined the measurement stability of a set of Rasch measurement scales that have been in place for almost 40 years. In order to investigate the stability of these scales, item responses were collected from a large set of students who took operational adaptive tests using items calibrated to the measurement scales. For the four scales that were examined, item samples ranged from 2183 to 7923 items. Each item was administered to at least 500 students in each grade level, resulting in approximately 3000 responses per item. Stability was examined at the micro level analysing change in item parameter estimates that have occurred since the items were first calibrated. It was also examined at the macro level, involving groups of items and overall test scores for students. Results indicated that individual items had changes in their parameter estimates, which require further analysis and possible recalibration. At the same time, the results at the total score level indicate substantial stability in the measurement scales over the span of their use.
Stability of large-scale systems.
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1972-01-01
The purpose of this paper is to present the results obtained in stability study of large-scale systems based upon the comparison principle and vector Liapunov functions. The exposition is essentially self-contained, with emphasis on recent innovations which utilize explicit information about the system structure. This provides a natural foundation for the stability theory of dynamic systems under structural perturbations.
NASA Technical Reports Server (NTRS)
Oberg, C. L.
1974-01-01
The combustion stability characteristics of engines applicable to the Space Shuttle Orbit Maneuvering System and the adequacy of acoustic cavities as a means of assuring stability in these engines were investigated. The study comprised full-scale stability rating tests, bench-scale acoustic model tests and analysis. Two series of stability rating tests were made. Acoustic model tests were made to determine the resonance characteristics and effects of acoustic cavities. Analytical studies were done to aid design of the cavity configurations to be tested and, also, to aid evaluation of the effectiveness of acoustic cavities from available test results.
This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...
Biodiversity and ecosystem stability across scales in metacommunities
Wang, Shaopeng; Loreau, Michel
2016-01-01
Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilizing effects for regional ecosystems, through local and spatial insurance effects, respectively. We further show that at the regional scale, the stabilizing effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenization) and biodiversity loss on ecosystem sustainability at large scales. PMID:26918536
Longitudinal Stability of the Leadership Scale for Sports
ERIC Educational Resources Information Center
Fletcher, Richard B.; Roberts, Margaret H.
2013-01-01
This study evaluated the invariance properties of the Leadership Scale for Sport in a sample of 219 female netball players over four time points within a 10-week playing season. Support was found for Chelladurai and Saleh's (1980) hypothesized 5-factor structure of the Leadership Scale for Sport. Furthermore, differential stability and partial…
Conceptualization of preferential flow for hillslope stability assessment
NASA Astrophysics Data System (ADS)
Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip
2018-03-01
This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.
Adjacent bin stability evaluating for feature description
NASA Astrophysics Data System (ADS)
Nie, Dongdong; Ma, Qinyong
2018-04-01
Recent study improves descriptor performance by accumulating stability votes for all scale pairs to compose the local descriptor. We argue that the stability of a bin depends on the differences across adjacent pairs more than the differences across all scale pairs, and a new local descriptor is composed based on the hypothesis. A series of SIFT descriptors are extracted from multiple scales firstly. Then the difference value of the bin across adjacent scales is calculated, and the stability value of a bin is calculated based on it and accumulated to compose the final descriptor. The performance of the proposed method is evaluated with two popular matching datasets, and compared with other state-of-the-art works. Experimental results show that the proposed method performs satisfactorily.
The relationship between the spatial scaling of biodiversity and ecosystem stability
Delsol, Robin; Loreau, Michel; Haegeman, Bart
2018-01-01
Aim Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability. PMID:29651225
ERIC Educational Resources Information Center
Lowe, Patricia A.; Papanastasiou, Elena C.; DeRuyck, Kimberly A.; Reynolds, Cecil R.
2005-01-01
In this study, the authors investigated the temporal stability and construct validity of the Adult Manifest Anxiety Scale-College Version (AMAS-C; C. R. Reynolds, B. O. Richmond, & P. A. Lowe, 2003b) scores. Results indicated that the AMAS-C scores had adequate to excellent test score stability, and evidence supported the construct validity of the…
Interpersonal Development, Stability, and Change in Early Adulthood
Wright, Aidan G. C.; Pincus, Aaron L.; Lenzenweger, Mark F.
2011-01-01
Objective This goal of this research was to explore the development of the interpersonal system mapped by the interpersonal circumplex in early adulthood (Ages 18-22). Method This study uses the Longitudinal Study of Personality Disorders sample (N = 250; 53% Female). Participants completed the Revised Interpersonal Adjective Scales (Wiggins, Trapnell, & Phillips, 1988) in their freshman, sophomore, and senior years of college. Estimates of structural, rank-order, mean, individual, and ipsative stability were calculated for the broad interpersonal dimensions of Dominance and Affiliation, and also the lower-order octant scales. Additionally, the interpersonal profile parameters of differentiation and prototypicality were calculated at each wave and explored longitudinally, and also used as predictors of interpersonal stability. Results We found excellent structural and high rank-order and ipsative stability in the interpersonal scales over this time period. Mean increases on the Affiliation axis, but not on the Dominance axis, were found to mask differential rates of change among the octant scales, along with significant individual variation in the rates of change. Interpersonal differentiation and prototypicality were related to higher stability in overall interpersonal style. Conclusions Results point to evidence of both stability and nuanced change, illuminating some of the features of the structural variables that can be derived from interpersonal circumplex profiles. PMID:22224462
Examining the Stability of the 7-Item Social Physique Anxiety Scale Using a Test-Retest Method
ERIC Educational Resources Information Center
Scott, Lisa A.; Burke, Kevin L.; Joyner, A. Barry; Brand, Jennifer S.
2004-01-01
This study examined the stability of the 7-item Social Physique Anxiety Scale (SPAS-7) using a test-retest method. Collegiate, undergraduate (N = 201) students completed two administrations of the SPAS-7, with a 14-day separation between the administrations. The scale was administered either at the beginning or end of the physical activity class.…
ERIC Educational Resources Information Center
Lowe, Patricia A.; Reynolds, Cecil R.
2006-01-01
The psychometric properties of the Adult Manifest Anxiety Scale-Elderly Version (AMAS-E) scores were evaluated in two studies. In Study 1, the temporal stability and construct validity of the AMAS-E test scores were examined in a group of 226 older adults, aged 60 years and older. Results indicated adequate to excellent temporal stability (2-week…
Fagerberg, Tomas; Söderman, Erik; Petter Gustavsson, J; Agartz, Ingrid; Jönsson, Erik G
2018-02-27
Personality is considered as an important aspect in persons with psychotic disorders. Several studies have investigated personality in schizophrenia. However, no study has investigated stability of personality traits exceeding three years in patients with schizophrenia. This study aims to investigate the stability of personality traits over a five-year period among patients with schizophrenia and non-psychotic individuals and to evaluate case-control differences. Patients with psychotic disorders (n = 36) and non-psychotic individuals (n = 76) completed Swedish universities Scales of Personality (SSP) at two occasions five years apart. SSP scores were analysed for effect of time and case-control differences by multiple analysis of covariance (MANCOVA) and within-subjects correlation. MANCOVA within-subjects analysis did not show any effect of time. Thus, SSP mean scale scores did not significantly vary during the five-year interval. Within subject correlations (Spearman) ranged 0.30-0.68 and 0.54-0.75 for the different SSP scales in patients and controls, respectively. Patients scored higher than controls in SSP scales Somatic Trait Anxiety, Psychic Trait Anxiety, Stress Susceptibility, Lack of Assertiveness, Detachment, Embitterment, and Mistrust. The stability of the SSP personality trait was reasonably high among patients with psychotic disorder, although lower than among non-psychotic individuals, which is in accordance with previous research.
Emotional stability, anxiety, and natural killer activity under examination stress.
Borella, P; Bargellini, A; Rovesti, S; Pinelli, M; Vivoli, R; Solfrini, V; Vivoli, G
1999-08-01
This study was performed to evaluate the relation between a stable personality trait, a mood state and immune response to an examination stress. A self-reported measure of emotional stability (BFQ-ES scale) was obtained in a sample (n = 39) randomly selected from 277 cadets; this personality trait was also investigated by completing a neuroticism scale (Eysenck personality inventory) and a trait-anxiety scale (STAI). Natural killer (NK) cell activity was measured at baseline, long before the examination time and the examination day. The state-anxiety scale evaluated the response to the stressful stimulus. Taking subjects all together, the academic task did not result in significant modification over baseline in NK cell activity. Subjects were then divided into three groups based on emotional stability and state-anxiety scores: high emotional stability/low anxiety, medium, and low emotional stability/high anxiety. Examination stress induced significant increases in NK cell activity in the high emotional stability/low anxiety group, no effect in the medium group, and significant decreases in the low emotional stability/high anxiety group. The repeated-measure ANOVA revealed a significant interaction of group x period (baseline vs. examination) for both lytic units and percent cytolysis. The results did not change after introducing coffee and smoking habits as covariates. Our findings suggest that the state-anxiety acts in concert with a stable personality trait to modulate NK response in healthy subjects exposed to a psychological naturalistic stress. The relation between anxiety and poor immune control has been already described, whereas the ability of emotional stability to associate with an immunoenhancement has not yet reported. The peculiarity of our population, a very homogeneous and healthy group for life style and habits, can have highlighted the role of emotional stability, and may account for the difference with other studies.
Vecchione, Michele; Alessandri, Guido; Barbaranelli, Claudio; Gerbino, Maria
2010-05-01
In this research, we examined the psychometric properties of the Revised Ego Resiliency 89 Scale (ER89-R; Alessandri, Vecchio, Steca, Caprara, & Caprara, 2008), a brief self-report measure of ego resiliency. The scale has been used to assess the development of ego resiliency from late adolescence to emerging adulthood, focusing on different ways to define continuity and change. We analyzed longitudinal self-report data from 267 late adolescents (44% male) using 4 different approaches: factor analysis for testing construct continuity, correlational analysis for examining differential stability, latent growth modeling for analyzing mean level change, and the reliable change index for studying the occurrence of change at the individual level. Converging evidence points to the marked stability of ego resiliency from 16 to 20 years, both for males and females. The scale predicts externalizing and internalizing problems, both concurrently and at 2 and 4 years of distance. Findings suggest that the ER89-R scale represents a valid and reliable instrument that can be fruitfully suited for studying ego resiliency through various developmental stages.
Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology.
Almenningen, Stian; Flatlandsmo, Josef; Kovscek, Anthony R; Ersland, Geir; Fernø, Martin A
2017-11-21
We present an experimental protocol for fast determination of hydrate stability in porous media for a range of pressure and temperature (P, T) conditions. Using a lab-on-a-chip approach, we gain direct optical access to dynamic pore-scale hydrate formation and dissociation events to study the hydrate phase equilibria in sediments. Optical pore-scale observations of phase behavior reproduce the theoretical hydrate stability line with methane gas and distilled water, and demonstrate the accuracy of the new method. The procedure is applicable for any kind of hydrate transitions in sediments, and may be used to map gas hydrate stability zones in nature.
Siira, Virva; Wahlberg, Karl-Erik; Hakko, Helinä; Tienari, Pekka
2013-11-30
Stability has been considered an important aspect of vulnerability to schizophrenia. The temporal stability of the scales in the Minnesota Multiphasic Personality Inventory (MMPI) was examined, using adoptees from the Finnish Adoptive Family Study of Schizophrenia. Adoptees who were high-risk (HR) offspring of biological mothers having a schizophrenia spectrum disorder (n=28) and low-risk (LR) controls (n=46) were evaluated using 15 MMPI scales at the initial assessment (HR, mean age 24 years; LR, mean age 23 years) and at the follow-up assessment after a mean interval of 11 years. Stability of the MMPI scales was also assessed in the groups of adoptees, assigned according to the adoptive parents'(n=44) communication style using Communication Deviance (CD) scale as an environmental factor. Initial Lie, Frequency, Correction, Psychopathic Deviate, Schizophrenia, Manifest Hostility, Hypomania, Phobias, Psychoticism, Religious Fundamentalism, Social Maladjustment, Paranoid Schizophrenia, Golden-Meehl Indicators, Schizophrenia Proneness and 8-6 scale scores significantly predicted the MMPI scores at the follow-up assessment indicating stability in the characteristics of thinking, affective expression, social relatedness and volition. Low CD in the family had an effect on the stabilization of personality traits such as social withdrawal and restricted affectivity assessed by Correction and Hostility. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
On sample size and different interpretations of snow stability datasets
NASA Astrophysics Data System (ADS)
Schirmer, M.; Mitterer, C.; Schweizer, J.
2009-04-01
Interpretations of snow stability variations need an assessment of the stability itself, independent of the scale investigated in the study. Studies on stability variations at a regional scale have often chosen stability tests such as the Rutschblock test or combinations of various tests in order to detect differences in aspect and elevation. The question arose: ‘how capable are such stability interpretations in drawing conclusions'. There are at least three possible errors sources: (i) the variance of the stability test itself; (ii) the stability variance at an underlying slope scale, and (iii) that the stability interpretation might not be directly related to the probability of skier triggering. Various stability interpretations have been proposed in the past that provide partly different results. We compared a subjective one based on expert knowledge with a more objective one based on a measure derived from comparing skier-triggered slopes vs. slopes that have been skied but not triggered. In this study, the uncertainties are discussed and their effects on regional scale stability variations will be quantified in a pragmatic way. An existing dataset with very large sample sizes was revisited. This dataset contained the variance of stability at a regional scale for several situations. The stability in this dataset was determined using the subjective interpretation scheme based on expert knowledge. The question to be answered was how many measurements were needed to obtain similar results (mainly stability differences in aspect or elevation) as with the complete dataset. The optimal sample size was obtained in several ways: (i) assuming a nominal data scale the sample size was determined with a given test, significance level and power, and by calculating the mean and standard deviation of the complete dataset. With this method it can also be determined if the complete dataset consists of an appropriate sample size. (ii) Smaller subsets were created with similar aspect distributions to the large dataset. We used 100 different subsets for each sample size. Statistical variations obtained in the complete dataset were also tested on the smaller subsets using the Mann-Whitney or the Kruskal-Wallis test. For each subset size, the number of subsets were counted in which the significance level was reached. For these tests no nominal data scale was assumed. (iii) For the same subsets described above, the distribution of the aspect median was determined. A count of how often this distribution was substantially different from the distribution obtained with the complete dataset was made. Since two valid stability interpretations were available (an objective and a subjective interpretation as described above), the effect of the arbitrary choice of the interpretation on spatial variability results was tested. In over one third of the cases the two interpretations came to different results. The effect of these differences were studied in a similar method as described in (iii): the distribution of the aspect median was determined for subsets of the complete dataset using both interpretations, compared against each other as well as to the results of the complete dataset. For the complete dataset the two interpretations showed mainly identical results. Therefore the subset size was determined from the point at which the results of the two interpretations converged. A universal result for the optimal subset size cannot be presented since results differed between different situations contained in the dataset. The optimal subset size is thus dependent on stability variation in a given situation, which is unknown initially. There are indications that for some situations even the complete dataset might be not large enough. At a subset size of approximately 25, the significant differences between aspect groups (as determined using the whole dataset) were only obtained in one out of five situations. In some situations, up to 20% of the subsets showed a substantially different distribution of the aspect median. Thus, in most cases, 25 measurements (which can be achieved by six two-person teams in one day) did not allow to draw reliable conclusions.
Atomic-scale studies on the effect of boundary coherency on stability in twinned Cu
NASA Astrophysics Data System (ADS)
Niu, Rongmei; Han, Ke; Su, Yi-Feng; Salters, Vincent J.
2014-01-01
The stored energy and hardness of nanotwinned (NT) Cu are related to interaction between dislocations and {111}-twin boundaries (TBs) studied at atomic scales by high-angle annular dark-field scanning transmission electron microscope. Lack of mobile dislocations at coherent TBs (CTBs) provides as-deposited NT Cu a rare combination of stability and hardness. The introduction of numerous incoherent TBs (ITBs) reduces both the stability and hardness. While storing more energy in their ITBs than in the CTBs, deformed NT Cu also exhibits high dislocation density and TB mobility and therefore has increased the driving force for recovery, coarsening, and recrystallization.
The Structure and Temporal Stability of the Child and Adolescent Perfectionism Scale
ERIC Educational Resources Information Center
O'Connor, Rory C.; Dixon, Diane; Rasmussen, Susan
2009-01-01
In this study, the authors examined the factor structure and temporal stability of the Child and Adolescent Perfectionism Scale (CAPS; G. L. Flett, P. L. Hewitt, D. J. Boucher, L. A. Davidson, & Y. Munro, 1997) in 2 samples of adolescents (15-16 years old). In Sample 1 (n = 624), confirmatory factor analysis did not support a 2-factor structure…
Persistence in soil of Miscanthus biochar in laboratory and field conditions
Budai, Alice; O’Toole, Adam; Ma, Xingzhu; Rumpel, Cornelia; Abiven, Samuel
2017-01-01
Evaluating biochars for their persistence in soil under field conditions is an important step towards their implementation for carbon sequestration. Current evaluations might be biased because the vast majority of studies are short-term laboratory incubations of biochars produced in laboratory-scale pyrolyzers. Here our objective was to investigate the stability of a biochar produced with a medium-scale pyrolyzer, first through laboratory characterization and stability tests and then through field experiment. We also aimed at relating properties of this medium-scale biochar to that of a laboratory-made biochar with the same feedstock. Biochars were made of Miscanthus biomass for isotopic C-tracing purposes and produced at temperatures between 600 and 700°C. The aromaticity and degree of condensation of aromatic rings of the medium-scale biochar was high, as was its resistance to chemical oxidation. In a 90-day laboratory incubation, cumulative mineralization was 0.1% for the medium-scale biochar vs. 45% for the Miscanthus feedstock, pointing to the absence of labile C pool in the biochar. These stability results were very close to those obtained for biochar produced at laboratory-scale, suggesting that upscaling from laboratory to medium-scale pyrolyzers had little effect on biochar stability. In the field, the medium-scale biochar applied at up to 25 t C ha-1 decomposed at an estimated 0.8% per year. In conclusion, our biochar scored high on stability indices in the laboratory and displayed a mean residence time > 100 years in the field, which is the threshold for permanent removal in C sequestration projects. PMID:28873471
Fundamental Scalings of Zonal Flows in a Basic Plasma Physics Experiment
NASA Astrophysics Data System (ADS)
Sokolov, Vladimir; Wei, Xiao; Sen, Amiya K.
2007-11-01
A basic physics experimental study of zonal flows (ZF) associated with ITG (ion temperature gradient) drift modes has been performed in the Columbia Linear Machine (CLM) and ZF has been definitively identified [1]. However, in contrast to most tokamak experiments, the stabilizing effect of ZF shear to ITG appears to be small in CLM. We now report on the study of important scaling behavior of ZF. First and most importantly, we report on the collisional damping scaling of ZF, which is considered to be its saturation mechanism [2]. By varying the sum of ion-ion and ion-neutral collision frequency over nearly half an order of magnitude, we find no change in the amplitude of ZF. Secondly, we study the scaling of ZF amplitude with ITG amplitude via increasing ITG drive though ηi, as well as feedback (stabilizing / destabilizing). We have observed markedly different scaling near and far above marginal stability. [1] V. Sokolov, X. Wei, A.K. Sen and K. Avinash, Plasma Phys.Controlled Fusion 48, S111 (2006). [2] P.H. Diamond, S.-I. Itoh, K.Itoh and T.S. Hahm, Plasma Phys.Controlled Fusion 47, R35 (2005).
Scale dependence of the diversity-stability relationship in a temperate grassland.
Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo
2018-05-01
A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity-stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m 2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m 2 ). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity-area relationship was significantly higher than that of the stability-area relationship, resulting in a decline of the slope of the diversity-stability relationship with increasing area. Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes.
ERIC Educational Resources Information Center
Lowe, Patricia A.; Peyton, Vicki; Reynolds, Cecil R.
2007-01-01
A sample of 79 individuals participated in the present study to evaluate the test score stability (8-week test-retest interval) and construct validity of the scores of the Adult Manifest Anxiety Scale-College Version, a new measure used to assess anxiety in college students, for application to graduate-level students. Results of the study…
Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Poole, Geoffrey C.; Roberts, David W.
2017-01-01
The alteration of rivers by anthropogenic bank stabilization to prevent the erosion of economically valuable lands and structures has become commonplace. However, such alteration has ambiguous consequences for fish assemblages, especially in large rivers. Because most large, temperate rivers have impoundments, it can be difficult to separate the influences of bank stabilization structures from those of main-stem impoundments, especially because both stabilization structures and impoundments can cause side-channel loss. Few large rivers are free flowing and retain extensive side channels, but the Yellowstone River (our study area) is one such river. We hypothesized that in this river (1) bank stabilization has changed fish assemblage structure by altering habitats, (2) side-channel availability has influenced fish assemblage structure by providing habitat heterogeneity, and (3) the influences of bank stabilization and side channels on fish assemblages were spatially scale dependent. We developed a spatially explicit framework to test these hypotheses. Fish assemblage structure varied with the extent of bank stabilization and the availability of side channels; however, not all assemblage subsets were influenced. Nevertheless, bank stabilization and side channels had different and sometimes opposite influences on the fish assemblage. The effects of side channels on fish were more consistent and widespread than those of bank stabilization; the catches of more fishes were positively correlated with side-channel availability than with the extent of bank stabilization. The influences of bank stabilization and side channels on the relative abundances of fish also varied, depending on species and river bend geomorphology. The variation in river morphology probably contributed to the assemblage differences between stabilized and reference river bends; stabilized alluvial pools were deeper than reference alluvial pools, but the depths of stabilized and reference bluff pools did not differ. The strengths of the relationships among fish assemblages, bank stabilization, and side channels were spatially scale dependent; optimum spatial scales ranged from less than 200 m to 3,200 m up- and downstream, suggesting that bank stabilization and side channels influenced fish assemblages across multiple spatial scales.
Measurement of perceived competence in Dutch children with mild intellectual disabilities.
Elias, C; Vermeer, A; 't Hart, H
2005-04-01
Little research has been conducted on the perceived competence of children with mild intellectual disabilities (MID). One of the reasons for the marked absence of research appears to be the lack of reliable and clearly valid measurement instruments for this particular group of children. In the present study, it was examined whether a pictorial scale originally designed to measure perceived competence in typically developing children could successfully be used with children with MID. The pictorial scale was administered to a group of 106 children with MID. The construct validity, reliability and stability of the scale were investigated. The results of the exploratory factor analyses and the confirmatory factor analyses supported the conceptual framework proposed. The construct validity was also supported by the pattern of intercorrelations between the subscales. The scale had adequate internal consistency and the stability analyses showed sufficient stability across a 4-month period. The findings show the psychometric properties of the pictorial scale to justify its use with children with MID.
ERIC Educational Resources Information Center
Guo, Hongwen; Liu, Jinghua; Curley, Edward; Dorans, Neil
2012-01-01
This study examines the stability of the "SAT Reasoning Test"™ score scales from 2005 to 2010. A 2005 old form (OF) was administered along with a 2010 new form (NF). A new conversion for OF was derived through direct equipercentile equating. A comparison of the newly derived and the original OF conversions showed that Critical Reading…
Space shuttle pogo studies. [systems stability
NASA Technical Reports Server (NTRS)
Coppolino, R. N.; Lock, M. H.; Rubin, S.
1977-01-01
Topics covered include: (1) pogo suppression for main propulsion subsystem operation; (2) application of quarter-scale low pressure oxidizer turbopump transfer functions; (3) pogo stability during orbital maneuvering subsystem operation; and (4) errors in frequency response measurements.
NASA Technical Reports Server (NTRS)
Mchugh, F. J.; Eason, W.; Alexander, H. R.; Mutter, H.
1973-01-01
Wind tunnel test data obtained from a 1/4.622 Froude scale Boeing Model 222 with a full span, two prop, tilt rotor, powered model in the Boeing V/STOL wind tunnel are reported. Data were taken in transition and cruise flight conditions and include performance, stability and control and blade loads information. The effects of the rotors, tail surfaces and airframe on the performance and stability are isolated as are the effects of the airframe on the rotors.
McMahon, R C; Richards, S K
1996-01-01
This study examined the MCMI-II in samples of cocaine-dependent subjects who were receiving treatment in three separate residential facilities. Profile characteristics, patterns of scale stability, and change are reported. MCMI-II elevations are found in all three samples on the Antisocial, Aggressive/Sadistic, Narcissistic, Passive-Aggressive, Borderline, Drug Dependence, and Alcohol Dependence scales at both intake into treatment and discharge. Moderate stability coefficients are found on Basic Personality, Pathological Personality, and Symptom scales. Although some statistically significant mean scale changes between intake and discharge are noted in each sample, few involve change from clinically elevated to below clinical levels.
Scale dependence of the diversity–stability relationship in a temperate grassland
Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo
2018-01-01
A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity–stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m2). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity–area relationship was significantly higher than that of the stability–area relationship, resulting in a decline of the slope of the diversity–stability relationship with increasing area.Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes. PMID:29725139
Long-Term IQ Stability Using the WISC-IV and WAIS-IV among a Sample of Special Education Students
ERIC Educational Resources Information Center
Spector, Hayley
2013-01-01
The present study investigated the stability of scores on the WISC-IV and WAIS-IV over an approximate six-year period. Previous research using older versions of the WISC and WAIS have suggested that these scales demonstrate strong stability of scores. Since research that has compared the stability of scores between the WISC-IV and the WAIS-IV is…
NASA Technical Reports Server (NTRS)
Straub, F. K.; Johnston, R. A.
1987-01-01
A 27% dynamically scaled model of the YAH-64 Advanced Attack Helicopter main rotor and hub has been designed and fabricated. The model will be tested in the NASA Langley Research Center V/STOL wind tunnel using the General Rotor Model System (GRMS). This report documents the studies performed to ensure dynamic similarity of the model with its full scale parent. It also contains a preliminary aeroelastic and aeromechanical substantiation for the rotor installation in the wind tunnel. From the limited studies performed no aeroelastic stability or load problems are projected. To alleviate a projected ground resonance problem, a modification of the roll characteristics of the GRMS is recommended.
Stability of Rasch Scales over Time
ERIC Educational Resources Information Center
Taylor, Catherine S.; Lee, Yoonsun
2010-01-01
Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items.…
The Relationship Between the ATDP and ATHI Scales for Assessing Attitudes.
ERIC Educational Resources Information Center
Stodden, Robert; And Others
Studied was the relationship between the Attitude Toward Disabled Persons (ATDP) scale and the Attitude Towards Handicapped Individuals (ATHI) scale. These scales were administered to 82 college students. Also determined was the coefficient of stability of the ATHI using a test-retest after 2 weeks with 54 Ss. The ATHI scale was thought to be more…
Temporal Stability of the Ford Insomnia Response to Stress Test (FIRST).
Jarrin, Denise C; Chen, Ivy Y; Ivers, Hans; Drake, Christopher L; Morin, Charles M
2016-10-15
The Ford Insomnia Response to Stress Test (FIRST) is a self-report tool that measures sleep reactivity (i.e., vulnerability to experience situational insomnia under stressful conditions). Sleep reactivity has been termed a "trait-like" vulnerability; however, evidence of its long-term stability is lacking. The main objective of the current psychometric study was to investigate the temporal stability of the FIRST over two 6-mo intervals in a population-based sample of adults with and without insomnia. The temporal stability of the FIRST was also compared with the temporal stability of other scales associated with insomnia (trait-anxiety, arousability). Participants included 1,122 adults (mean age = 49.9 y, standard deviation = 14.8; 38.8% male) presenting with an insomnia syndrome (n = 159), insomnia symptoms (n = 152), or good sleep (n = 811). Participants completed the FIRST, the State-Trait Anxiety Inventory (trait-anxiety), and the Arousal Predisposition Scale (arousability) on three different occasions: baseline and at 6- and 12-mo follow-up. Intraclass correlation coefficients (ICCs) were computed for all scales (baseline to 6 mo and 6 to 12 mo). The FIRST yielded strong temporal stability from baseline to 6 mo among those with insomnia syndrome (ICC = 0.81), symptoms (ICC = 0.78), and good sleep (ICC = 0.81). Similar results were observed for 6 to 12 mo among those with insomnia syndrome (ICC = 0.74), insomnia symptoms (ICC = 0.82), and good sleep (ICC = 0.84). The stability of the FIRST was not comparable with the stability of trait-anxiety, but was somewhat comparable with the stability of arousability. Overall, the FIRST is a temporally reliable stable scale over 6-mo intervals. Future research is needed to corroborate the stability and trait-like measures of sleep reactivity with physiological, behavioural and personality measures. © 2016 American Academy of Sleep Medicine
NASA Technical Reports Server (NTRS)
Erickson, G. E.
1982-01-01
Six degree of freedom studies were utilized to extract a band of yawing and rolling moment coefficients from the F/A-18 aircraft flight records. These were compared with 0.06 scale model data obtained in a 16T wind tunnel facility. The results, indicate the flight test yawing moment data exhibit an improvement over the wind tunnel data to near neutral stability and a significant reduction in lateral stability (again to anear neutral level). These data are consistent with the flight test results since the motion was characterized by a relatively slo departure. Flight tests repeated the slow yaw departure at M 0.3. Only 0.16 scale model wind tunnel data showed levels of lateral stability similar to the flight test results. Accordingly, geometric modifications were investigated on the 0.16 scale model in the 30x60 foot wind tunnel to improve high angle of attack lateral stability.
Stability and UV completion of the Standard Model
NASA Astrophysics Data System (ADS)
Branchina, Vincenzo; Messina, Emanuele
2017-03-01
The knowledge of the electroweak vacuum stability condition is of the greatest importance for our understanding of beyond Standard Model physics. It is widely believed that new physics that lives at very high-energy scales should have no impact on the stability analysis. This expectation has been recently challenged, but the results were controversial as new physics was given in terms of non-renormalizable higher-order operators. Here we consider for the first time new physics at extremely high-energy scales (say close to the Planck scale) in terms of renormalizable operators, in other words we consider a sort of toy UV completion of the Standard Model, and definitely show that its presence can be crucial in determining the vacuum stability condition. This result has important phenomenological consequences, as it provides useful guidance in studying beyond Standard Model theories. Moreover, it suggests that very popular speculations based on the so-called “criticality” of the Standard Model do not appear to be well founded.
The influence of cosmic rays on the stability and large-scale dynamics of the interstellar medium
NASA Astrophysics Data System (ADS)
Kuznetsov, V. D.
1986-06-01
The diffusion-convection formulation is used to study the influence of galactic cosmic rays on the stability and dynamics of the interstellar medium which is supposedly kept in equilibrium by the gravitational field of stars. It is shown that the influence of cosmic rays on the growth rate of MHD instability depends largely on a dimensionless parameter expressing the ratio of the characteristic acoustic time scale to the cosmic-ray diffusion time. If this parameter is small, the cosmic rays will decelerate the build-up of instabilities, thereby stabilizing the system; in contrast, if the parameter is large, the system will be destabilized.
Stabilizing Conditional Standard Errors of Measurement in Scale Score Transformations
ERIC Educational Resources Information Center
Moses, Tim; Kim, YoungKoung
2017-01-01
The focus of this article is on scale score transformations that can be used to stabilize conditional standard errors of measurement (CSEMs). Three transformations for stabilizing the estimated CSEMs are reviewed, including the traditional arcsine transformation, a recently developed general variance stabilization transformation, and a new method…
NASA Astrophysics Data System (ADS)
Wu, Qiujie; Tan, Liu; Xu, Sen; Liu, Dabin; Min, Li
2018-04-01
Numerous accidents of emulsion explosive (EE) are attributed to uncontrolled thermal decomposition of ammonium nitrate emulsion (ANE, the intermediate of EE) and EE in large scale. In order to study the thermal decomposition characteristics of ANE and EE in different scales, a large-scale test of modified vented pipe test (MVPT), and two laboratory-scale tests of differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC) were applied in the present study. The scale effect and water effect both play an important role in the thermal stability of ANE and EE. The measured decomposition temperatures of ANE and EE in MVPT are 146°C and 144°C, respectively, much lower than those in DSC and ARC. As the size of the same sample in DSC, ARC, and MVPT successively increases, the onset temperatures decrease. In the same test, the measured onset temperature value of ANE is higher than that of EE. The water composition of the sample stabilizes the sample. The large-scale test of MVPT can provide information for the real-life operations. The large-scale operations have more risks, and continuous overheating should be avoided.
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Porté-Agel, Fernando
2014-05-01
In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the turbulence intensity alone is not sufficient to describe the impact of atmospheric stability on the wind-turbine wakes.
Gikanga, Benson; Turok, Robert; Hui, Ada; Bowen, Mayumi; Stauch, Oliver B; Maa, Yuh-Fun
2015-01-01
Spray-dried monoclonal antibody (mAb) powders may offer applications more versatile than the freeze-dried cake, including preparing high-concentration formulations for subcutaneous administration. Published studies on this topic, however, are generally scarce. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple mAbs in consideration of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. Under similar conditions, both dryers produced powders of similar properties-for example, water content, particle size and morphology, and mAb stability profile-despite a 4-fold faster output by the pilot-scale unit. All formulations containing arginine salt or a combination of arginine salt and trehalose were able to be spray-dried with high powder collection efficiency (>95%), but yield was adversely affected in formulations with high trehalose content due to powder sticking to the drying chamber. Spray-drying production output was dictated by the size of the dryer operated at an optimal liquid feed rate. Spray-dried powders could be reconstituted to high-viscosity liquids, >300 cP, substantially beyond what an ultrafiltration process can achieve. The molar ratio of trehalose to mAb needed to be reduced to 50:1 in consideration of isotonicity of the formulation with mAb concentration at 250 mg/mL. Even with this low level of sugar protection, long-term stability of spray-dried formulations remained superior to their liquid counterparts based on size variant and potency data. This study offers a commercially viable spray-drying process for biological bulk storage and an option for high-concentration mAb manufacturing. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple monoclonal antibodies (mAbs) from the perspective of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. The data demonstrated that there is no process limitation in solution viscosity when high-concentration mAb formulations are prepared from spray-dried powder reconstitution compared with concentration via the conventional ultrafiltration process. This study offers a commercially viable spray-drying process for biological bulk storage and a high-concentration mAb manufacturing option for subcutaneous administration. The outcomes of this study will benefit scientists and engineers who develop high-concentration mAb products by providing a viable manufacturing alternative. © PDA, Inc. 2015.
Zhao, Jianye; Zhang, Yaolin; Lu, Haoyuan; Hou, Dong; Zhang, Shuangyou; Wang, Zhong
2016-07-01
We present a long-term chip scale stabilization scheme for optoelectronic oscillators (OEOs) based on a rubidium coherent population trapping (CPT) atomic resonator. By locking a single mode of an OEO to the (85)Rb 3.035-GHz CPT resonance utilizing an improved phase-locked loop (PLL) with a PID regulator, we achieved a chip scale frequency stabilization system for the OEO. The fractional frequency stability of the stabilized OEO by overlapping Allan deviation reaches 6.2 ×10(-11) (1 s) and ∼ 1.45 ×10 (-11) (1000 s). This scheme avoids a decrease in the extra phase noise performance induced by the electronic connection between the OEO and the microwave reference in common injection locking schemes. The total physical package of the stabilization system is [Formula: see text] and the total power consumption is 400 mW, which provides a chip scale and portable frequency stabilization approach with ultra-low power consumption for OEOs.
Double-tilt in situ TEM holder with ultra-high stability.
Xu, Mingjie; Dai, Sheng; Blum, Thomas; Li, Linze; Pan, Xiaoqing
2018-05-06
A double tilting holder with high stability is essential for acquiring atomic-scale information by transmission electron microscopy (TEM), but the availability of such holders for in situ TEM studies under various external stimuli is limited. Here, we report a unique design of seal-bearing components that provides ultra-high stability and multifunctionality (including double tilting) in an in situ TEM holder. The seal-bearing subsystem provides superior vibration damping and electrical insulation while maintaining excellent vacuum sealing and small form factor. A wide variety of in situ TEM applications including electrical measurement, STM mapping, photovoltaic studies, and CL spectroscopy can be performed on this platform with high spatial resolution imaging and electrical sensitivity at the pA scale. Copyright © 2018 Elsevier B.V. All rights reserved.
Khandelwal, Gaurav; Mathur, R K; Shukla, Sumit; Maheshwari, Ankur
2011-01-01
To compare the intensity of pain and duration of return to normal activity in patients with rib fractures treated with surgical stabilization with plating versus conventional treatment modalities. This study was conducted over a 12 month period. Patients with rib fractures were assessed by numerical pain scale. Patients having pain scale less than 5 were excluded from study. Patients having pain scale of 5 or more than 5 were treated with conventional treatment for next 10 days. On 11th day patients were again assessed by numerical pain scale and patients having score less than 5 were excluded from study. Patients having pain scale of 5, 6, and 7 were treated with conventional treatment and patients having pain scale of 8, 9, and 10 were selected for operative management. Operative and control group were compared on basis of intensity of pain and duration of return to normal activity. Follow up was done on 5, 15, and 30 post operative day. There was less pain in operative group as compared to control group. Mean rib fracture pain in operative group was 9.15, 2.31, 1.12 as compared to 6.25, 5.96, 4.50 in control group on 5, 15 and 30 post operative days. Also there was early return to normal activity in operative group. Surgical stabilization of rib fracture, an underutilized intervention is better than conventional conservative management in terms of both, decrease in intensity of pain and early return to normal activity. Copyright © 2011 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Reliability and Concurrent Validity of Dynamic Rotator Stability Test-A Cross Sectional study.
Binoy Mathew, K V; Eapen, Charu; Kumar, P Senthil
2012-01-01
To find intra rater and inter rater reliability of Dynamic Rotator Stability Test (DRST) and to find concurrent validity of Dynamic Rotator Stability Test (DRST) with University of Pennsylvania Shoulder Score (PENN) Scale. 40 subjects of either gender between the age group of 18-70 with painful shoulder conditions of musculoskeletal origin was selected through convenient sampling. Tester 1 and tester 2 administered DRST and PENN scale randomly. In a subgroup of 20 subjects DRST was administered by both the testers to find the inter rater reliability. 180° Standard Universal Goniometer was used to take measurements. For intra-rater reliability, all the test variables were showing highly significant correlation (p=.94 - 1). For inter -rater, with tester 2, test variables like position, ROM, force, direction of abnormal translation, pain during the test, compensatory movement during test were found to be significant (p=.71-1).only some variables of DRST showed significant correlation with PENN scale (P=.320-.450). Dynamic Rotator Stability Test has good intra rater and moderate inter rater reliability. Concurrent validity of Dynamic Rotator Stability Test was found to be poor when compared to PENN Shoulder Score.
A polarization converting device for an interfering enhanced CPT atomic clock.
Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong
2017-11-01
With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87 Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.
A polarization converting device for an interfering enhanced CPT atomic clock
NASA Astrophysics Data System (ADS)
Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong
2017-11-01
With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.
An invariability-area relationship sheds new light on the spatial scaling of ecological stability.
Wang, Shaopeng; Loreau, Michel; Arnoldi, Jean-Francois; Fang, Jingyun; Rahman, K Abd; Tao, Shengli; de Mazancourt, Claire
2017-05-19
The spatial scaling of stability is key to understanding ecological sustainability across scales and the sensitivity of ecosystems to habitat destruction. Here we propose the invariability-area relationship (IAR) as a novel approach to investigate the spatial scaling of stability. The shape and slope of IAR are largely determined by patterns of spatial synchrony across scales. When synchrony decays exponentially with distance, IARs exhibit three phases, characterized by steeper increases in invariability at both small and large scales. Such triphasic IARs are observed for primary productivity from plot to continental scales. When synchrony decays as a power law with distance, IARs are quasilinear on a log-log scale. Such quasilinear IARs are observed for North American bird biomass at both species and community levels. The IAR provides a quantitative tool to predict the effects of habitat loss on population and ecosystem stability and to detect regime shifts in spatial ecological systems, which are goals of relevance to conservation and policy.
N = 2 → 0 super no-scale models and moduli quantum stability
NASA Astrophysics Data System (ADS)
Kounnas, Costas; Partouche, Hervé
2017-06-01
We consider a class of heterotic N = 2 → 0 super no-scale Z2-orbifold models. An appropriate stringy Scherk-Schwarz supersymmetry breaking induces tree level masses to all massless bosons of the twisted hypermultiplets and therefore stabilizes all twisted moduli. At high supersymmetry breaking scale, the tachyons that occur in the N = 4 → 0 parent theories are projected out, and no Hagedorn-like instability takes place in the N = 2 → 0 models (for small enough marginal deformations). At low supersymmetry breaking scale, the stability of the untwisted moduli is studied at the quantum level by taking into account both untwisted and twisted contributions to the 1-loop effective potential. The latter depends on the specific branch of the gauge theory along which the background can be deformed. We derive its expression in terms of all classical marginal deformations in the pure Coulomb phase, and in some mixed Coulomb/Higgs phases. In this class of models, the super no-scale condition requires having at the massless level equal numbers of untwisted bosonic and twisted fermionic degrees of freedom. Finally, we show that N = 1 → 0 super no-scale models are obtained by implementing a second Z2 orbifold twist on N = 2 → 0 super no-scale Z2-orbifold models.
Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment
NASA Astrophysics Data System (ADS)
Weed, Jonathan Robert
The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.
Continuity of character neurosis from childhood to adulthood. A prospective longitudinal study.
Parnas, J; Teasdale, T W; Schulsinger, H
1982-12-01
In a prospective longitudinal study, stability of personality traits was examined between the age of 15 and the age of 25. Scales, derived from an Adjective Check List, intending to predict obsessive-compulsive character neurosis, anti-aggressive character neurosis and non-neurotic personality have been utilized. Temporal stability of the examined personality traits was demonstrated.
Models for small-scale structure on cosmic strings. II. Scaling and its stability
NASA Astrophysics Data System (ADS)
Vieira, J. P. P.; Martins, C. J. A. P.; Shellard, E. P. S.
2016-11-01
We make use of the formalism described in a previous paper [Martins et al., Phys. Rev. D 90, 043518 (2014)] to address general features of wiggly cosmic string evolution. In particular, we highlight the important role played by poorly understood energy loss mechanisms and propose a simple Ansatz which tackles this problem in the context of an extended velocity-dependent one-scale model. We find a general procedure to determine all the scaling solutions admitted by a specific string model and study their stability, enabling a detailed comparison with future numerical simulations. A simpler comparison with previous Goto-Nambu simulations supports earlier evidence that scaling is easier to achieve in the matter era than in the radiation era. In addition, we also find that the requirement that a scaling regime be stable seems to notably constrain the allowed range of energy loss parameters.
Stability of the MCMI-III in a substance-abusing inpatient sample.
Craig, R J; Olson, R
1998-12-01
The stability of the MCMI-III personality disorder and clinical syndrome scales was assessed in a substance-abusing inpatient sample of 35 African-American men over an average test-retest interval of 6 mo. Estimates were higher for the personality pattern scales than for the clinical syndrome scales. The Dependent personality pattern scale (.83) and the Narcissistic personality pattern scale (.80) were reliable after about six months, whereas Drug Abuse, Somatoform, and Major Depression showed lower stability. As in previous research using the MCMI-I/II, estimates were lower than those reported in the test manual.
Asymptotic stability and instability of large-scale systems. [using vector Liapunov functions
NASA Technical Reports Server (NTRS)
Grujic, L. T.; Siljak, D. D.
1973-01-01
The purpose of this paper is to develop new methods for constructing vector Lyapunov functions and broaden the application of Lyapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. By redefining interconnection functions among the subsystems according to interconnection matrices, the same mathematical machinery can be used to determine connective asymptotic stability of large-scale systems under arbitrary structural perturbations.
NASA Astrophysics Data System (ADS)
Barreiro-Argüelles, Denisse; Ramos-Ortiz, Gabriel; Maldonado, José-Luis L.; Romero-Borja, Daniel; Meneses-Nava, Marco-Antonio; Pérez-Gutiérrez, Enrique
2017-08-01
The PV performance and aging/stability of organic photovoltaic (OPV) devices based on the well-known system PTB7:[70]PCBM and an alternative air-stable electrode deposited at room conditions are fully studied when the active area is scaled by a factor of 25. On the other hand, the aging/stability processes were also studied through single diode model, impedance spectroscopy and light-beam induced current (LBIC) measurements in accordance with the established ISOS-D1 (dark storage) and ISOS-L1 (illumination conditions) protocols. Results are a good indication that the alternative cathode Field's metal (FM) cathode works as an encapsulating material and provides excellent PV performance comparable with the common and costly high-vacuum evaporated Al cathode.
Stability of large-scale systems with stable and unstable subsystems.
NASA Technical Reports Server (NTRS)
Grujic, Lj. T.; Siljak, D. D.
1972-01-01
The purpose of this paper is to develop new methods for constructing vector Liapunov functions and broaden the application of Liapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. With minor technical adjustments, the same criterion can be used to determine connective asymptotic stability of large-scale systems subject to structural perturbations. By redefining the constraints imposed on the interconnections among the subsystems, the considered class of systems is broadened in an essential way to include composite systems with unstable subsystems. In this way, the theory is brought substantially closer to reality since stability of all subsystems is no longer a necessary assumption in establishing stability of the overall composite system.
2012-01-01
Background Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. Methods In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 ± 9.8 nm and the drug loading was determined to be 10.32 ± 1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. Conclusions A successful effort towards formulating, optimizing and scaling up PLGA-CURC by using Solid-Oil/Water emulsion technique was demonstrated. The process used CCD-RSM for optimization and further scaled up to produce 5 g of PLGA-CURC with almost similar physicochemical characteristics as that of the primary formulated batch. PMID:22937885
Ranjan, Amalendu P; Mukerjee, Anindita; Helson, Lawrence; Vishwanatha, Jamboor K
2012-08-31
Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5±9.8 nm and the drug loading was determined to be 10.32±1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. A successful effort towards formulating, optimizing and scaling up PLGA-CURC by using Solid-Oil/Water emulsion technique was demonstrated. The process used CCD-RSM for optimization and further scaled up to produce 5 g of PLGA-CURC with almost similar physicochemical characteristics as that of the primary formulated batch.
Multiple scales in metapopulations of public goods producers
NASA Astrophysics Data System (ADS)
Bauer, Marianne; Frey, Erwin
2018-04-01
Multiple scales in metapopulations can give rise to paradoxical behavior: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilized in the well-mixed limit due to the mere existence of these scales. The scales in this model involve a length scale corresponding to separate patches, coupled by mobility, and separate time scales for reproduction and interaction with a local environment. Contrary to the well-mixed high mobility limit, we find that for low mobilities, the interaction rate progressively stabilizes this species due to stochastic effects, and that the formation of spatial patterns is not crucial for this stabilization.
NASA Technical Reports Server (NTRS)
Paulson, John W.; Johnson, Joseph L.
1947-01-01
At the request of the Air Material Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a jet propelled, parasite fighter with a 34 deg sweepback at the wing quarter chord. It was designed to be carried in a bomb bay of the B-36 air plane. The first portion of the investigation consists of a preliminary evaluation of the stability and control characteristics of the airplane from force and fight tests of an unballasted 1/5-scale model. The second portion of the investigation consists of test of a properly balasted 1/10-scale model which will include a study of the stability of the Xp-85 when attached to the trapeze for retraction into the B-36 bomb bay. The results of the preliminary test with the 1/5-scale model are presented herein. This portion fo the investigation included tests of the model with various center fin arrangements. Both the design nose flap and a stall control vane were investigated.
Yasuhara, Moriaki; Doi, Hideyuki; Wei, Chih-Lin; Danovaro, Roberto; Myhre, Sarah E
2016-05-19
The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet. © 2016 The Author(s).
An optimal modification of a Kalman filter for time scales
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
2003-01-01
The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.
Self-Perceived Stability and Change in Children's Competence
ERIC Educational Resources Information Center
Vandenplas-Holper, Christiane; Roskam, Isabelle; Fontaine, Anne-Marie
2010-01-01
Using Harter's ("Child Dev" 53(1):87-97, 1982) perceived competence scale, this study integrates several paradigms related to the issues of self-perceived competence, stability or change and attributional theory. It examines how 268 Belgian and Portuguese fifth graders consider their scholastic, social and physical competence at present…
LONG TERM STABILITY STUDY AT FNAL AND SLAC USING BINP DEVELOPED HYDROSTATIC LEVEL SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seryi, Andrei
2003-05-28
Long term ground stability is essential for achieving the performance goals of the Next Linear Collider. To characterize ground motion on relevant time scales, measurements have been performed at three geologically different locations using a hydrostatic level system developed specifically for these studies. Comparative results from the different sites are presented in this paper.
Chopra, Amit; Abulseoud, Osama A; Sampson, Shirlene; Lee, Kendall H; Klassen, Bryan T; Fields, Julie A; Matsumoto, Joseph Y; Adams, Andrea C; Stoppel, Cynthia J; Geske, Jennifer R; Frye, Mark A
2014-01-01
Deep brain stimulation for Parkinson disease has been associated with psychiatric adverse effects including anxiety, depression, mania, psychosis, and suicide. The purpose of this study was to evaluate the safety of deep brain stimulation in a large Parkinson disease clinical practice. Patients approved for surgery by the Mayo Clinic deep brain stimulation clinical committee participated in a 6-month prospective naturalistic follow-up study. In addition to the Unified Parkinson's Disease Rating Scale, stability and psychiatric safety were measured using the Beck Depression Inventory, Hamilton Depression Rating Scale, and Young Mania Rating scale. Outcomes were compared in patients with Parkinson disease who had a psychiatric history to those with no co-morbid psychiatric history. The study was completed by 49 of 54 patients. Statistically significant 6-month baseline to end-point improvement was found in motor and mood scales. No significant differences were found in psychiatric outcomes based on the presence or absence of psychiatric comorbidity. Our study suggests that patients with Parkinson disease who have a history of psychiatric co-morbidity can safely respond to deep brain stimulation with no greater risk of psychiatric adverse effect occurrence. A multidisciplinary team approach, including careful psychiatric screening ensuring mood stabilization and psychiatric follow-up, should be viewed as standard of care to optimize the psychiatric outcome in the course of deep brain stimulation treatment. © 2013 Published by The Academy of Psychosomatic Medicine on behalf of The Academy of Psychosomatic Medicine.
Optical binding with cold atoms
NASA Astrophysics Data System (ADS)
Máximo, C. E.; Bachelard, R.; Kaiser, R.
2018-04-01
Optical binding is a form of light-mediated forces between elements of matter which emerge in response to the collective scattering of light. Such a phenomenon has been studied mainly in the context of the equilibrium stability of dielectric sphere arrays which move amid dissipative media. In this article, we demonstrate that optically bounded states of a pair of cold atoms can exist, in the absence of nonradiative damping. We study the scaling laws for the unstable-stable phase transition at negative detuning and the unstable-metastable one for positive detuning. In addition, we show that angular momentum can lead to dynamical stabilization with infinite-range scaling.
Holloway, Jamie M; Long, Toby M; Biasini, Fred
2018-05-02
The purpose of this study was to examine the relationship between gross motor skills and social function in young boys with autism spectrum disorder. Twenty-one children with autism spectrum disorder participated in the study. The Peabody Developmental Motor Scales Second Edition and the Miller Function and Participation Scales were used to assess gross motor skills. The Social Skills Improvement System Rating Scales was used to assess social function. Moderately high correlations were found between overall gross motor and social skills (r = 0.644) and between the core stability motor subtest and overall social skills (r = -0.672). Specific motor impairments in stability, motor accuracy, and object manipulation scores were predictive of social function. This study suggests that motor skills and social function are related in young boys with autism. Implications for physical therapy intervention are also discussed.
Evolution of regulatory networks towards adaptability and stability in a changing environment
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
Temporal Stability of Gifted Children's Intelligence.
ERIC Educational Resources Information Center
Spangler, Robert S.; Sabatino, David A.
1995-01-01
The longitudinal stability of the Wechsler Intelligence Scale for Children-Revised was examined for consistency in determining eligibility for gifted programs among 66 elementary children. All subtest scales except one remained extremely stable, producing less than one scale score point difference across three test administrations. Children…
NASA Technical Reports Server (NTRS)
Grana, David C.; Shanks, Robert E.
1952-01-01
As part of a program to determine the feasibility of using a fighter airplane as a parasite in combination with a Consolidated Vultee RB-36 for long-range reconnaissance missions (project FICON), an experimental investigation has been made in the Langley free-flight tunnel to determine the dynamic stability and control characteristics of a 1/17.5-scale model of a Chance Vought F7U-3 airplane in several tow configurations. The investigation consisted of flight tests in which the model was towed from a strut in the tunnel by a towline and by a direct coupling which provided complete angular freedom. The tests with the direct coupling also included a study of the effect of spring restraint in roll in order to simulate approximately the proposed full-scale arrangement in which the only freedom is that permitted by the flexibility of the launching and retrieving trapeze carried by the-bomber. For the tow configurations in which a towline was used (15 and 38 feet full scale), the model had a very unstable lateral oscillation which could not be controlled. The stability was also unsatisfactory for the tow configuration in Which the model was coupled directly to the strut with complete angular freedom. When spring restraint in roll was added, however, the stability was satisfactory. The use of the yaw damper which increased the damping in yaw to about six times the normal value of the model appeared to have no appreciable effect on the lateral oscillations in the towline configurations, but produced a slight improvement in the case of the direct coupling configurations. The longitudinal stability was satisfactory for those cases in which the lateral stability was good enough to permit study of longitudinal motions.
Fernández, L; Scher, H; VanderGheynst, J S
2015-12-01
Prior research has demonstrated that microalgae can be stored for extended periods of time at room temperature in water-in-oil (W/O) emulsions stabilized by surface modified silica nanoparticles. However, little research has been done to examine the impact of nanoparticle concentration on emulsion stability. Such information is important for large-scale production of emulsions for microalgae storage and delivery. Studies were done to examine the impact of silica nanoparticle concentration on emulsion stability and identify the lower limit for nanoparticle concentration. Emulsion physical stability was determined using internal phase droplet size measurements and biological stability was evaluated using cell density measurements. The results demonstrate that nanoparticle concentrations as low as 0·5wt% in the oil phase can be used without significant losses in emulsion stability and microalgae viability. Stabilization technologies are needed for long-term storage and application of microalgae in agricultural-scale systems. While prior work has demonstrated that water-in-oil emulsions containing silica nanoparticles offer a promising solution for long-term microalgae storage at room temperature, little research has been done to examine the impact of nanoparticle concentration on emulsion stability. Here, we show the effects of silica nanoparticle concentration on maintaining physical stability of emulsions and sustaining viable cells. The results enable informed decisions to be made regarding production of emulsions containing silica nanoparticles and associated impacts on stabilization of microalgae. © 2015 The Society for Applied Microbiology.
Characterizing gravitational instability in turbulent multicomponent galactic discs
NASA Astrophysics Data System (ADS)
Agertz, Oscar; Romeo, Alessandro B.; Grisdale, Kearn
2015-05-01
Gravitational instabilities play an important role in galaxy evolution and in shaping the interstellar medium (ISM). The ISM is observed to be highly turbulent, meaning that observables like the gas surface density and velocity dispersion depend on the size of the region over which they are measured. In this work, we investigate, using simulations of Milky Way-like disc galaxies with a resolution of ˜ 9 pc, the nature of turbulence in the ISM and how this affects the gravitational stability of galaxies. By accounting for the measured average turbulent scalings of the density and velocity fields in the stability analysis, we can more robustly characterize the average level of stability of the galaxies as a function of scale, and in a straightforward manner identify scales prone to fragmentation. Furthermore, we find that the stability of a disc with feedback-driven turbulence can be well described by a `Toomre-like' Q stability criterion on all scales, whereas the classical Q can formally lose its meaning on small scales if violent disc instabilities occur in models lacking pressure support from stellar feedback.
A review of dynamic stability of repulsive-force maglev suspension systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Rote, D.M.
1998-07-01
Vehicle dynamics and the need to satisfy ride quality requirements have long been recognized as crucial to the commercial success of passenger-carrying transportation systems. Design concepts for maglev systems are no exception. Early maglev investigators and designers were well aware of the importance of ride quality and took care to ensure that their designs would meet acceptable ride quality standards. In contrast, the dynamic stability of electrodynamic suspension (EDS) systems, which has obvious implications for system safety and cost as well as for ride quality, has not received nearly as much attention. Because of the well-known under-damped nature of EDSmore » suspension systems and the observation of instabilities in laboratory-scale model systems, it is prudent to develop a better understanding of vehicle stability characteristics. The work reported in this was undertaken with the intention of summarizing information that has been accumulated worldwide and that is relevant to dynamic stability of repulsive-force maglev suspension systems, assimilating that information, and gaining an understanding of the factors that influence that stability. Included in the paper is a discussion and comparison of results acquired from some representative tests of large-scale vehicles on linear test tracks, together with analytical and laboratory-scale investigations of stability and dynamics of EDS systems. This paper will also summarize the R and D activities at Argonne National Laboratory (ANL) since 1991 to study the nature of the forces that are operative in an EDS system and the dynamic stability of such systems.« less
EFFECTS OF STORAGE ON STABILITY AND PATHOGEN REDUCTION IN BIOSOLIDS
Storage can be an effective means of stabilizing small quantities of wastewater sludge. This paper summarizes the performance of two laboratory-scale sludge storage units and that of four full-scale tanks sampled at four treatment facilities in eastern Nebraska. The bench-scale u...
ERIC Educational Resources Information Center
Romer, Natalie; Merrell, Kenneth W.
2013-01-01
This study focused on evaluating the temporal stability of self-reported and teacher-reported perceptions of students' social and emotional skills and assets. We used a test-retest reliability procedure over repeated administrations of the child, adolescent, and teacher versions of the "Social-Emotional Assets and Resilience Scales".…
The Stability of Rater Severity in Large-Scale Assessment Programs.
ERIC Educational Resources Information Center
Congdon, Peter J.; McQueen, Joy
2000-01-01
Studied the stability of rater severity over an extended rating period by applying multifaceted Rasch analysis to ratings of 16 raters of writing performances of 8,285 elementary school students. Findings cast doubt on the practice of using a single calibration of rate severity as the basis for adjustment of person measures. (SLD)
Jørgensen, Kasper W; Rasmussen, Michael; Buus, Søren; Nielsen, Morten
2014-01-01
Major histocompatibility complex class I (MHC-I) molecules play an essential role in the cellular immune response, presenting peptides to cytotoxic T lymphocytes (CTLs) allowing the immune system to scrutinize ongoing intracellular production of proteins. In the early 1990s, immunogenicity and stability of the peptide–MHC-I (pMHC-I) complex were shown to be correlated. At that time, measuring stability was cumbersome and time consuming and only small data sets were analysed. Here, we investigate this fairly unexplored area on a large scale compared with earlier studies. A recent small-scale study demonstrated that pMHC-I complex stability was a better correlate of CTL immunogenicity than peptide–MHC-I affinity. We here extended this study and analysed a total of 5509 distinct peptide stability measurements covering 10 different HLA class I molecules. Artificial neural networks were used to construct stability predictors capable of predicting the half-life of the pMHC-I complex. These predictors were shown to predict T-cell epitopes and MHC ligands from SYFPEITHI and IEDB to form significantly more stable MHC-I complexes compared with affinity-matched non-epitopes. Combining the stability predictions with a state-of-the-art affinity predictions NetMHCcons significantly improved the performance for identification of T-cell epitopes and ligands. For the HLA alleles included in the study, we could identify distinct sub-motifs that differentiate between stable and unstable peptide binders and demonstrate that anchor positions in the N-terminal of the binding motif (primarily P2 and P3) play a critical role for the formation of stable pMHC-I complexes. A webserver implementing the method is available at http://www.cbs.dtu.dk/services/NetMHCstab. PMID:23927693
Stability of Two Piagetian Scales with Severely and Profoundly Retarded Children.
ERIC Educational Resources Information Center
Silverstein, A. B.; And Others
1981-01-01
Corman and Escalona's scales for Object Permanence and Spatial Relationships were administered to 98 severely and profoundly retarded children on three occasions, with intervals of six months between successive administrations. The findings demonstrated the high stability of the scales when environmental conditions are themselves highly stable.…
Biodiversity and ecosystem stability across scales in metacommunities.
Wang, Shaopeng; Loreau, Michel
2016-05-01
Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales. © 2016 John Wiley & Sons Ltd/CNRS.
Wardrop, J; Jaber, A B; Ayres, J W
1998-08-01
The purpose of this study was to produce novel multiple-layer, compression-coated, chewable tablet formulations containing amoxicillin trihydrate, and clavulanic acid as potassium clavulanate, and to test in vitro dissolution characteristics and the effect of humidity stability compared to Augmentin chewable tablets as a reference. Double- and triple-layer tablets were manufactured on a laboratory scale by multiple-layer dry compression, and dissolution profiles of both active ingredients were determined. Tablets were subjected to stability evaluation in laboratory-scale humidity tanks maintained at constant humidity. Assay of content was determined by HPLC or UV spectroscopy. Physical characteristics of the powder mixture, such as angle of repose, and of tablets for hardness and friability, were also determined. Chewable tablets showed similar dissolution profiles in vitro for both active ingredients, compared to the marketed reference, Augmentin. The stability of clavulanic acid, but not amoxicillin, was increased in the novel triple or bilayer formulation. The tablets showed suitable friability, hardness, and angle of repose for starting materials to suggest that industrial scale-up is feasible. This approach to formulation of drugs containing multiple or moisture-sensitive ingredients has been shown to increase the stability of the central core drug without changing the dissolution pattern of the active ingredients. This formulation is expected to be bioequivalent in vivo based on these in vitro results.
Stability of vocational interests after recent spinal cord injury.
Krause, James S; Clark, Jillian M R
2014-08-01
We sought to identify the stability of vocational interests among persons with spinal cord injury (SCI) first assessed during inpatient rehabilitation. Initial assessments were completed during inpatient rehabilitation an average of 50 days after SCI onset (n = 521). Follow-up measures, collected by mail, were obtained an average of 16.6 months postinjury (n = 190) and 29.1 months postinjury (n = 296). Participants (n = 135) completed all 3 assessments. Participants completed the 1994 Strong Interest Inventory (Campbell, 1971; Harmon, Hansen, Borgen, & Hammer, 1994), Form T317, a 317-item measure of vocational interests. Comparison of scale means across 3 times of measurement indicated significant changes in 2 of 6 general occupational themes (GOT), 8 basic interest scales (BIS), and 2 special scales (leadership style, risk taking/adventure). With 1 exception, a linear trend indicating an increase in reported interests accounted for observed relationships. An age by time interaction occurred with 1 GOT and 3 BIS. The average stability coefficient was 0.61 for the GOT, 0.59 for the BIS, and 0.70 for the special scales. The average coefficients were somewhat lower for the oldest participants. Interests do not appear to be static when first measured during inpatient rehabilitation after SCI. Rather, they evolve with average increases on select themes more compatible with the limitations of SCI. Stability coefficients suggest that interests are likely to change more than indicated in earlier studies.
NASA Astrophysics Data System (ADS)
Larsen, G. C.; Larsen, T. J.; Chougule, A.
2017-05-01
The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine the classical Dynamic Wake Meandering model with a fundamental conjecture stating: Atmospheric boundary layer stability affects primary wake meandering dynamics driven by large turbulent scales, whereas wake expansion in the meandering frame of reference is hardly affected. Inclusion of stability (i.e. buoyancy) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load recordings, is available for model validation. For a multitude of wake situations this data set displays a considerable scatter, which to a large degree seems to be caused by atmospheric boundary layer stability effects. Notable is also that rotating wind turbine components predominantly experience high fatigue loading for stable stratification with significant shear, whereas high fatigue loading of non-rotating wind turbine components are associated with unstable atmospheric boundary layer stratification.
Gardner, Ann; Hällström, Tore
2004-01-01
The main aim of the present study was to investigate mean levels and long-term stability of three scales from the Karolinska Scales of Personality (KSP), assessing somatic components of anxiety proneness in selected patients with chronic depressive symptoms. The KSP was filled in by 84 patients (26 men and 58 women) with a history of or ongoing major depression and audiological, or other comorbid somatic, symptoms. Mean scores for the Somatic Anxiety, Muscular Tension and Psychasthenia scales were above two standard deviations compared to a normative group sampled from the population. The KSP was filled in at follow-up by 65 patients. The mean interval between the ratings was 3.5 years. Comparisons between the ratings of the three scales revealed no significant mean score differences, and quite high individual stability. The mean scores were significantly increased in comparisons with depressed patients in primary care suggesting that these patients with chronic depression may comprise a depressive sub-type characterized by high "somatic distress". A putative origin for the high and stable scores in the presented sub-group of depressed patients, and the concept of "personality trait" in use even for pronounced symptoms, are discussed.
Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae
2015-01-01
[Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo WiiTM Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls. PMID:26157228
Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae
2015-05-01
[Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo Wii(TM) Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls.
Long-Term High-Level Defense-Waste technology
NASA Astrophysics Data System (ADS)
1982-07-01
In the residual liquid solidification effort, the primary alternative studied is the wiped film evaporator approach to solidifying salt well pumped liquids and returning the molten material to single shell tanks for microwave final stabilization to a hard dry product. Both systems analysis and experimental work are proceeding to evaluate this approach. The primary alternative for in situ stabilization of in-tank wastes is microwave drying of wet salt cake and unpumped sludges. Experimental work was successfully conducted on a 1/12 scale tank containing wet synthetic salt cake. Related systems analysis of a full scale system was initiated.
NASA Astrophysics Data System (ADS)
Kayler, Z. E.; Nitzsche, K. N.; Gessler, A.; Kaiser, M. L.; Hoffmann, C.; Premke, K.; Ellerbrock, R.
2016-12-01
Steep environmental gradients develop across the interface between terrestrial and aquatic domains that influence organic matter (OM) retention. In NE Germany, kettle holes are small water bodies found in high density across managed landscapes. Kettle hole water budgets are generally fed through precipitation and overland flow and are temporarily connected to groundwater resulting in distinct hydroperiods. We took advantage of the range of environmental conditions created by the fluctuating shoreline to investigate patterns of OM stability along transects spanning from hilltops to sediments within a single kettle hole. We physically and chemically separated OM fractions that are expected to be loosely bound, such as particulate organic matter, to those that are tightly bound, such as OM associated with mineral or metal surfaces. The study design allowed us to investigate stabilization processes at the aggregate, transect, and kettle hole catchment scale. At the aggregate scale, we analyzed soil characteristics (texture, pH, extractable Al, Fe, Ca) to contribute to our understanding of OM stabilization. At the transect scale, we compared isotopic trends in the different fractions against a simple Rayleigh distillation model to infer disruption of the transfer of material, for example erosion, by land management such as tillage or the addition of OM through fertilization. At the kettle hole catchment scale, we correlated our findings with plant productivity, landform properties, and soil wetness proxies. Aggregate scale patterns of OM 13C and 15N were fraction dependent; however, we observed a convergence in isotopic patterns with soil properties from OM of more stabilized fractions. At the transect scale, loosely bound fractions did not conform to the simple model, suggesting these fractions are more dynamic and influenced by land management. The stabilized fractions did follow the Rayleigh model, which implies that transfer processes play a larger role in these fractions. At the kettle hole catchment scale, we found that the terrestrial-aquatic transition zone and other areas with high soil moisture correlated with isotopic patterns of the OM fractions. Kettle hole sediment OM fraction patterns were consistently different despite receiving substantial material from the surrounding landscape.
NASA Technical Reports Server (NTRS)
Graham, A. B.
1977-01-01
Small- and large-scale models of supersonic cruise fighter vehicles were used to determine the effectiveness of airframe/propulsion integration concepts for improved low-speed performance and stability and control characteristics. Computer programs were used for engine/airframe sizing studies to yield optimum vehicle performance.
Interpreting Popov criteria in Lure´ systems with complex scaling stability analysis
NASA Astrophysics Data System (ADS)
Zhou, J.
2018-06-01
The paper presents a novel frequency-domain interpretation of Popov criteria for absolute stability in Lure´ systems by means of what we call complex scaling stability analysis. The complex scaling technique is developed for exponential/asymptotic stability in LTI feedback systems, which dispenses open-loop poles distribution, contour/locus orientation and prior frequency sweeping. Exploiting the technique for alternatively revealing positive realness of transfer functions, re-interpreting Popov criteria is explicated. More specifically, the suggested frequency-domain stability conditions are conformable both in scalar and multivariable cases, and can be implemented either graphically with locus plotting or numerically without; in particular, the latter is suitable as a design tool with auxiliary parameter freedom. The interpretation also reveals further frequency-domain facts about Lure´ systems. Numerical examples are included to illustrate the main results.
Nonlinear time series analysis of normal and pathological human walking
NASA Astrophysics Data System (ADS)
Dingwell, Jonathan B.; Cusumano, Joseph P.
2000-12-01
Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed.
Fundamental and applied studies in nanoparticle biomedical imaging, stabilization, and processing
NASA Astrophysics Data System (ADS)
Pansare, Vikram J.
Nanoparticle carrier systems are gaining importance in the rapidly expanding field of biomedical whole animal imaging where they provide long circulating, real time imaging capability. This thesis presents a new paradigm in imaging whereby long wavelength fluorescent or photoacoustically active contrast agents are embedded in the hydrophobic core of nanocarriers formed by Flash NanoPrecipitation. The long wavelength allows for improved optical penetration depth. Compared to traditional contrast agents where fluorophores are placed on the surface, this allows for improved signal, increased stability, and molecular targeting capabilities. Several types of long wavelength hydrophobic dyes based on acene, cyanine, and bacteriochlorin scaffolds are utilized and animal results obtained for nanocarrier systems used in both fluorescent and photoacoustic imaging modes. Photoacoustic imaging is particularly promising due to its high resolution, excellent penetration depth, and ability to provide real-time functional information. Fundamental studies in nanoparticle stabilization are also presented for two systems: model alumina nanoparticles and charge stabilized polystyrene nanoparticles. Motivated by the need for stable suspensions of alumina-based nanocrystals for security printing applications, results are presented for the adsorption of various small molecule charged hydrophobes onto the surface of alumina nanoparticles. Results are also presented for the production of charge stabilized polystyrene nanoparticles via Flash NanoPrecipitation, allowing for the independent control of polymer molecular weight and nanoparticle size, which is not possible by traditional emulsion polymerization routes. Lastly, methods for processing nanoparticle systems are explored. The increasing use of nanoparticle therapeutics in the pharmaceutical industry has necessitated the development of scalable, industrially relevant processing methods. Ultrafiltration is particularly well suited for concentrating and purifying macromolecular suspensions. Processing parameters are defined and optimized for PEGylated nanoparticles, charge stabilized latices, and solutions of albumin. The fouling characteristics are compared and scale-up recommendations made. Finally, a pilot scale spray drying system to produce stable nanocrystalline powders of highly crystalline drugs which cannot be stably formulated by traditional spray drying methods is presented. To accomplish this, a novel mixing device was developed and implemented at pilot scale, demonstrating feasibility beyond the lab scale.
ERIC Educational Resources Information Center
Lander, Jenny
2010-01-01
The present investigation explored the stability of scores on the Wechsler Intelligence Scale for Children-IV (WISC-IV) over approximately a three-year period. Previous research has suggested that some children with Learning Disabilities (LD) do not demonstrate long-term stability of intelligence. Legally, school districts are no longer required…
Microbial Activity and Depositional System Dynamics: Linking Scales With The Aid of New Technology
NASA Astrophysics Data System (ADS)
Defew, E. C.; Hagerthey, S. E.; Honeywill, C.; Perkins, R. G.; Black, K. S.; Paterson, D. M.
The dynamics of estuarine depositional systems are influenced by sediment-dwelling microphytobenthic assemblages. These assemblages produce extracellular polymeric substances (EPS), which are known to be important in the process of sediment biosta- bilisation. However, these communities are generally studied on very small spatial scales making the prediction of primary productivity and their importance in terms of sediment stability over large areas uncertain. Recent advances in our knowledge of the biostabilisation process have allowed the establishment of links between EPS produc- tion, spatial distribution of algal biomass and their primary productivity over much larger spatial scales. For example, during the multidisciplinary BIOPTIS project, re- mote sensing (RS) was combined with ground-truthing measurements of physical and biological parameters to produce synoptic maps leading to a better understanding of system dynamics and the potential effects of environmental perturbations such as cli- mate change. Recent work using low-temperature scanning electron microscopy (LT- SEM) and in-line laser holography has measured the influence of EPS on the erosional behaviour of sediment flocs and particles and has shown that an increase in the con- centration of EPS determines the nature of the eroded floc material and the critical threshold for sediment erosion. This provides the mechanistic link required between EPS concentration and sediment stability. Whilst it is not yet possible to discern EPS concentration directly by RS studies, we know that EPS concentrations in sediments co-vary with chlorophyll a content, and are closely related to algal productivity. There- fore, RS studies which provide large-scale spatial information of chlorophyll a distri- bution may be used to model the stability and productivity of intertidal depositional systems. This paper introduces the basis of these linkages from the cellular level (in situ chlorophyll fluorescence), the ground-truthing approach (sediment stability, struc- ture, pigment distribution, in situ chlorophyll fluorescence) and investigates the poten- tial of a RS approach in a case study of a Scottish Estuary.
Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.
2006-01-01
Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.
Test-Retest Reliability of the Salutogenic Wellness Promotion Scale (SWPS)
ERIC Educational Resources Information Center
Anderson, L. M.; Moore, J. B.; Hayden, B. M.; Becker, C. M.
2014-01-01
Objective: This study examined the temporal stability (i.e. test-retest reliability) of the Salutogenic Wellness Promotion Scale (SWPS) using intraclass correlation coefficients (ICC). Current intraclass results were also compared to previously published interclass correlations to support the use of the intraclass method for test-retest…
Trajanović, Nikola N; Djurić, Vladimir; Latas, Milan; Milovanović, Srdjan; Jovanović, Aleksandar A; Djurić, Dusan
2013-01-01
Since inception of the alexithymia construct in 1970's, there has been a continuous effort to improve both its theoretical postulates and the clinical utility through development, standardization and validation of assessment scales. The aim of this study was to validate the Serbian translation of the 20-item Toronto Alexithymia Scale (TAS-20) and to propose a new method of translation of scales with a property of temporal stability. The scale was expertly translated by bilingual medical professionals and a linguist, and given to a sample of bilingual participants from the general population who completed both the English and the Serbian version of the scale one week apart. The findings showed that the Serbian version of the TAS-20 had a good internal consistency reliability regarding total scale (alpha=0.86), and acceptable reliability of the three factors (alpha=0.71-0.79). The analysis confirmed the validity and consistency of the Serbian translation of the scale, with observed weakness of the factorial structure consistent with studies in other languages. The results also showed that the method of utilizing a self-control bilingual subject is a useful alternative to the back-translation method, particularly in cases of linguistically and structurally sensitive scales, or in cases where a larger sample is not available. This method, dubbed as 'forth-translation' could be used to translate psychometric scales measuring properties which have temporal stability over the period of at least several weeks.
Ryan, D; Shephard, S; Kelly, F L
2016-09-01
This study investigates temporal stability in the scale microchemistry of brown trout Salmo trutta in feeder streams of a large heterogeneous lake catchment and rates of change after migration into the lake. Laser-ablation inductively coupled plasma mass spectrometry was used to quantify the elemental concentrations of Na, Mg, Mn, Cu, Zn, Ba and Sr in archived (1997-2002) scales of juvenile S. trutta collected from six major feeder streams of Lough Mask, County Mayo, Ireland. Water-element Ca ratios within these streams were determined for the fish sampling period and for a later period (2013-2015). Salmo trutta scale Sr and Ba concentrations were significantly (P < 0·05) correlated with stream water sample Sr:Ca and Ba:Ca ratios respectively from both periods, indicating multi-annual stability in scale and water-elemental signatures. Discriminant analysis of scale chemistries correctly classified 91% of sampled juvenile S. trutta to their stream of origin using a cross-validated classification model. This model was used to test whether assumed post-depositional change in scale element concentrations reduced correct natal stream classification of S. trutta in successive years after migration into Lough Mask. Fish residing in the lake for 1-3 years could be reliably classified to their most likely natal stream, but the probability of correct classification diminished strongly with longer lake residence. Use of scale chemistry to identify natal streams of lake S. trutta should focus on recent migrants, but may not require contemporary water chemistry data. © 2016 The Fisheries Society of the British Isles.
ERIC Educational Resources Information Center
Beard, Courtney; Rodriguez, Benjamin F.; Weisberg, Risa B.; Perry, Ashley; Keller, Martin B.
2012-01-01
The Liebowitz Social Anxiety Scale (LSAS) is one of the most commonly used measures of social anxiety symptoms. To date, no study has examined its psychometric properties in a Latino sample. The authors examined the reliability, temporal stability, and convergent validity of the LSAS in 73 Latinos diagnosed with an anxiety disorder. The original…
Investigation of aeroelastic stability phenomena of a helicopter by in-flight shake test
NASA Technical Reports Server (NTRS)
Miao, W. L.; Edwards, T.; Brandt, D. E.
1976-01-01
The analytical capability of the helicopter stability program is discussed. The parameters which are found to be critical to the air resonance characteristics of the soft in-plane hingeless rotor systems are detailed. A summary of two model test programs, a 1/13.8 Froude-scaled BO-105 model and a 1.67 meter (5.5 foot) diameter Froude-scaled YUH-61A model, are presented with emphasis on the selection of the final parameters which were incorporated in the full scale YUH-61A helicopter. Model test data for this configuration are shown. The actual test results of the YUH-61A air resonance in-flight shake test stability are presented. Included are a concise description of the test setup, which employs the Grumman Automated Telemetry System (ATS), the test technique for recording in-flight stability, and the test procedure used to demonstrate favorable stability characteristics with no in-plane damping augmentation (lag damper removed). The data illustrating the stability trend of air resonance with forward speed and the stability trend of ground resonance for percent airborne are presented.
Asynchrony among local communities stabilises ecosystem function of metacommunities.
Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai
2017-12-01
Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
A multi-scale Q1/P0 approach to langrangian shock hydrodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shashkov, Mikhail; Love, Edward; Scovazzi, Guglielmo
A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed techniquemore » is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.« less
NASA Astrophysics Data System (ADS)
Guala, M.; Hu, S. J.; Chamorro, L. P.
2011-12-01
Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.
Study of neoclassical effects on the pedestal structure in ELMy H-mode plasmas
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.; Snyder, P. B.
2009-11-01
The neoclassical effects on the H-mode pedestal structure are investigated in this study. First principles' kinetic simulations of the neoclassical pedestal dynamics are combined with the MHD stability conditions for triggering ELM crashes that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [1] is used to produce systematic scans over plasma parameters including plasma current, elongation, and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD stability ELITE code [2]. The scalings of the pedestal width and height are presented as a function of the scanned plasma parameters. Simulations with the XGC0 code, which include coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. Differences in the electron and ion pedestal scalings are investigated. [1] C.S. Chang et al, Phys. Plasmas 11 (2004) 2649. [2] P.B. Snyder et al, Phys. Plasmas, 9 (2002) 2037.
Stabilizing canonical-ensemble calculations in the auxiliary-field Monte Carlo method
NASA Astrophysics Data System (ADS)
Gilbreth, C. N.; Alhassid, Y.
2015-03-01
Quantum Monte Carlo methods are powerful techniques for studying strongly interacting Fermi systems. However, implementing these methods on computers with finite-precision arithmetic requires careful attention to numerical stability. In the auxiliary-field Monte Carlo (AFMC) method, low-temperature or large-model-space calculations require numerically stabilized matrix multiplication. When adapting methods used in the grand-canonical ensemble to the canonical ensemble of fixed particle number, the numerical stabilization increases the number of required floating-point operations for computing observables by a factor of the size of the single-particle model space, and thus can greatly limit the systems that can be studied. We describe an improved method for stabilizing canonical-ensemble calculations in AFMC that exhibits better scaling, and present numerical tests that demonstrate the accuracy and improved performance of the method.
Psychometric Properties of the Psychological Vulnerability Scale in Higher Education Students.
Nogueira, Maria José; Barros, Luisa; Sequeira, Carlos
2017-05-01
Psychological vulnerability is related to cognitive beliefs that reflect dependence on one's sense of self-worth and to maladaptive functioning. It is a disadvantage that renders people less protected to face negative life experiences. The purpose of this study was to adapt and test the psychometric properties of the Psychological Vulnerability Scale in a sample of 267 Portuguese higher education students. A psychometric study of the Psychological Vulnerability Scale, after translation into Portuguese, was performed with a convenience sample of higher education students. Participants were asked to fill in the sociodemographic questionnaire, the Psychological Vulnerability Scale, the Brief Symptom Inventory, and a one-item question about the Perception of Vulnerability. The mean age of the participants was 20.5 years ( SD = 3.3). A factor analysis confirmed the original one-factor structure, explaining 42.9% of the total variance. The Psychological Vulnerability Scale showed adequate internal consistency and excellent test-retest stability. Convergent validity was confirmed by positive correlations with the Brief Symptom Inventory and Perception of Vulnerability. Overall, the Psychological Vulnerability Scale showed good validity, reliability, and stability over time. The Psychological Vulnerability Scale is now ready to be used by practitioners and researchers to measure the psychological vulnerability among Portuguese higher education students. These data add to the body of knowledge of psychiatric and mental health nursing and provides support for the use of the Psychological Vulnerability Scale in higher education students.
Multi-Scale Porous Ultra High Temperature Ceramics
2015-01-08
different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble...the porosity, pore size, shape and morphology . X-Ray Tomography was used to study their 3D microstructure. The 3D microstructures captured with...four different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble
Daley, Kelly B; Wodrich, David L; Hasan, Khalid
2006-02-01
To determine whether stabilizing serum glucose, via introduction of an insulin pump, improves classroom attention among children with type-1 diabetes mellitus. Four boys having type-1 diabetes mellitus with unstable serum glucose were observed in their classroom for 10 baseline days. An insulin pump was placed and serum glucose stabilized, and they were then observed again for 10 days. A modified multiple baseline design was used to determine if improved on-task and off-task behavior was associated with better glycemic control. Rating scales and a laboratory measure of attention, measures of secondary interest, were also administered before and after pump introduction, and potential improvement in individuals' scores was evaluated. All boys had apparent improvement in on-task and off-task behavior as observed in their classrooms. Improvements were substantial, averaging 20% in on-task behavior and 34% in off-task behavior. However, no changes were detected on rating scales or laboratory measures. This study offers preliminary evidence that stabilizing serum glucose improves classroom attention, although the effect was detected only by observation of classroom behavior using highly structured techniques. Consequently, use of direct observation techniques may be important in studying the effects of chronic illness on classroom functioning.
Carl, Adrian; Bannuscher, Anne; von Klitzing, Regine
2015-02-10
Nanoparticles can be efficient foaming agents. Yet, the detailed mechanisms of foam stabilization by these particles remain unclear. In most cases, the foamability and foam stability of a system have to be determined empirically. We used a multiscale approach to reveal how the microscopic properties of the nanoparticle dispersion are translated into their foaming behavior at the macroscopic scale. As a model system we used silica nanoparticles that were hydrophobized by the in situ adsorption of short-chain alkylamines of chain length C5 to C8. We used fluorescence spectroscopy and electrophoretic mobility measurements to characterize the bulk behavior of the nanoparticles with adsorbed amines. The interfacial behavior was probed by compressing particle monolayers while monitoring the surface tension. The macroscopic foamability and foam stability were evaluated. There are strong correlations between the system properties at all length scales. The most prominent effects are observed at a critical bulk concentration of amines at which the nanoparticles start to aggregate due to hydrophobic interactions. Our study shows how the foam properties are related to the features of the bulk dispersions and to the ordering of particles at the air/water interface. The present results help to understand the surfactant concentration dependent stages of foaming behavior of in situ hydrophobized nanoparticles.
Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem
2013-11-01
Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate longterm thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.
Cross-cultural Adaptation of the Self-care of Hypertension Inventory Into Brazilian Portuguese.
Silveira, Luana Claudia Jacoby; Rabelo-Silva, Eneida Rejane; Ávila, Christiane Whast; Beltrami Moreira, Leila; Dickson, Victoria Vaughan; Riegel, Barbara
Lifestyle changes and treatment adherence still constitute a challenge to healthcare providers involved in the care of persons with hypertension. The lack of validated instruments measuring the ability of hypertensive patients to manage their disease has slowed research progress in this area. The Self-care of Hypertension Inventory, originally developed in the United States, consists of 23 items divided across 3 scales: Self-care Maintenance, Self-care Management, and Self-care Confidence. These scales measure how well patients with hypertension adhere to treatment and manage elevated blood pressure, as well as their confidence in their ability to perform self-care. A rigorous cross-cultural adaptation and validation process is required before this instrument can be used in other countries. The aims of this study were to translate the Self-care of Hypertension Inventory into Brazilian Portuguese with cross-cultural adaptation and to evaluate interobserver reliability and temporal stability. This methodological study involved forward translation, synthesis of forward translations, back-translation, synthesis of back-translations, expert committee review, and pretesting. Interobserver agreement and the temporal stability of the scales were assessed. The expert committee proposed semantic and cultural modifications to some items and the addition of guidance statements to facilitate administration of the scale. Interobserver analysis demonstrated substantial agreement. Analysis of temporal stability showed near-perfect agreement. Cross-cultural adaptation of the Self-care of Hypertension Inventory successfully produced a Portuguese-language version of the instrument for further evaluation of psychometric properties. Once that step is completed, the scale can be used in Brazil.
Trends in the thermodynamic stability of ultrathin supported oxide films
Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua; ...
2016-05-05
The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua
The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less
Assessment of Self-Reported Anger Expression in Youth.
ERIC Educational Resources Information Center
Musante, Linda; Treiber, Frank A.; Davis, Harry C.; Thompson, William O.; Waller, Jennifer L.
1999-01-01
Findings related to internal consistency, temporal stability, and principal components structures suggest that the Anger Expression Scale (C. Spielberger and others, 1985) and the Pediatric Anger Expression Scale (G. Jacobs and others, 1989), studied with a sample of 415 youth with a mean age of 14.7 years are acceptably reliable. (SLD)
Development of a Scaling Technique for Sociometric Data.
ERIC Educational Resources Information Center
Peper, John B.; Chansky, Norman M.
This study explored the stability and interjudge agreements of a sociometric scaling device to which children could easily respond, which teachers could easily administer and score, and which provided scores that researchers could use in parametric statistical analyses. Each student was paired with every other member of his class. He voted on each…
Measuring Perceived Competence and Social Acceptance in Individuals with Intellectual Disabilities
ERIC Educational Resources Information Center
Vermeer, Adri; Lijnse, Margot; Lindhout, Marleen
2004-01-01
The results of a study examining the psychometric quality of a pictorial scale to measure perceived physical competence, perceived cognitive competence and perceived social acceptance by peers and caregivers in individuals with intellectual disabilities are reported. The scale was administered twice to 100 subjects. The stability of the scale…
Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS.
Traffano-Schiffo, Maria Victoria; Castro-Giraldez, Marta; Fito, Pedro J; Perullini, Mercedes; Santagapita, Patricio R
2018-01-01
Previous works show that the addition of trehalose and gums in β-galactosidase (lactase) Ca(II)-alginate encapsulation systems improved its intrinsic stability against freezing and dehydration processes in the pristine state. However, there is no available information on the evolution in microstructure due to the constraints imposed by the operational conditions. The aim of this research is to study the time course of microstructural changes of Ca(II)-alginate matrices driven by the presence of trehalose, arabic and guar gums as excipients and to discuss how these changes influence the diffusional transport (assessed by LF-NMR) and the enzymatic activity of the encapsulated lactase. The structural modifications at different scales were assessed by SAXS. The incorporation of gums as second excipients induces a significant stabilization in the microstructure not only at the rod scale, but also in the characteristic size and density of alginate dimers (basic units of construction of rods) and the degree of interconnection of rods at a larger scale, improving the performance in terms of lactase activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction
NASA Astrophysics Data System (ADS)
Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.
2017-12-01
Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.
ERIC Educational Resources Information Center
Lane, Kathleen Lynne; Oakes, Wendy P.; Ennis, Robin Parks; Cox, Meredith Lucille; Schatschneider, Christopher; Lambert, Warren
2013-01-01
This study reports findings from a validation study of the Student Risk Screening Scale for use with 9th- through 12th-grade students (N = 1854) attending a rural fringe school. Results indicated high internal consistency, test-retest stability, and inter-rater reliability. Predictive validity was established across two academic years, with Spring…
Occlusal stabilization splint therapy in orofacial pain and tension-type headache.
Kostrzewa-Janicka, J; Mierzwinska-Nastalska, E; Rolski, D; Szczyrek, P
2013-01-01
Studies suggest an association between orofacial pain, accompanying temporomandibular disorders of myogenous origin, and headache, especially its tension-type. The occlusal appliance therapy is one of the options for the treatment of orofacial pain due to masticatory muscles tenderness. The aim of the present study was to assess the effectiveness of occlusal stabilization splint therapy in myofascial pain and tension-type headache in patients with sleep-disordered breathing. Forty three such patients were enrolled into the study group. The patients were treated with stabilization occlusal splint of vertical thickness at vertical jaw separation, established individually for each patient using a cephalometric analysis. The intensity of orofacial pain (numeric rating scale) and headache (analog rating scale), frequency of headache (%), and jaw qualitative function were assessed at baseline and after 2 and 6 months. Medians of headache and orofacial pain intensity were reduced after 6 months of treatment compared with baseline: 6.0 vs. 2.0 (p < 0.0001) and 6.0 vs. 1.0 (p < 0.0001), respectively. Pain decreased below 3 score points in 61.8 % of the patients with headache (p = 0.23) and in 85.3 % of patients with orofacial pain (p < 0.0001). Overall, the improvement in both signs and symptoms of orofacial pain was observed 81.4 % of patients after using occlusal stabilization splint for 6 months. We conclude that occlusal stabilization splint was effective in reducing painful symptoms of temporomandibular disorders of myogenous origin, a frequent feature of sleep disordered breathing.
Importance of stability study of continuous systems for ethanol production.
Paz Astudillo, Isabel Cristina; Cardona Alzate, Carlos Ariel
2011-01-10
Fuel ethanol industry presents different problems during bioreactors operation. One of them is the unexpected variation in the output ethanol concentration from the bioreactor or a drastic fall in the productivity. In this paper, a compilation of concepts and relevant results of several experimental and theoretical studies about dynamic behavior of fermentation systems for bioethanol production with Saccharomyces cerevisiae and Zymomonas mobilis is done with the purpose of understanding the stability phenomena that could affect the productivity of industries producing fuel ethanol. It is shown that the design of high scale biochemical processes for fuel ethanol production must be done based on stability studies. © 2010 Elsevier B.V. All rights reserved.
Diabetes screening anxiety and beliefs.
Skinner, T C; Davies, M J; Farooqi, A M; Jarvis, J; Tringham, J R; Khunti, K
2005-11-01
This study assesses the impact of screening for diabetes on anxiety levels in an ethnically mixed population in the UK, and explores whether beliefs about Type 2 diabetes account for these anxiety levels. This cross-sectional study recruited individuals who were identified at high risk of developing diabetes through general practitioners' (GPs) lists or through public media recruitment. Participants completed an oral glucose tolerance test (OGTT). Between blood tests, participants completed the Spielberger State Anxiety Scale Short Form, the Emotional Stability Scale of the Big Five Inventory 44 and three scales from the Diabetes Illness Representations Questionnaire, revised for this study. Of the 1339 who completed the OGTT and questionnaire booklet, 54% were female, with 21% from an Asian background. Forty-five per cent of participants reported little to moderate amounts of anxiety at screening (mean 35.2; sd = 11.6). There was no significant effect of family history of diabetes, ethnic group or recruitment method on anxiety. The only variable significantly associated (negatively) with anxiety was the personality trait of emotional stability. Of responders, 64% and 61% agreed that diabetes was caused by diet or hereditary factors, respectively. Only 155 individuals (12%) agreed that diabetes was serious, shortens life and causes complications. The results of this study replicate that of previous studies, indicating that screening for diabetes does not induce significant anxiety. Bivariate analysis indicated that individuals who perceived diabetes to be serious, life shortening and resulting in complications had higher anxiety scores, the personality trait of emotional stability being the strongest predictor of anxiety.
Wilberg, Theresa; Karterud, Sigmund; Pedersen, Geir; Urnes, Øyvind; Costa, Paul T
2009-03-01
We lack knowledge of the temporal stability of major personality dimensions in patients with personality disorders (PDs). The Revised NEO Personality Inventory (NEO-PI-R) is a self-report instrument that operationalizes the Five-Factor Model of personality. This study investigated the relative stability, mean level stability, and individual level stability of the NEO-PI-R scores in patients with PDs (n = 393) and patients with symptom disorders only (n = 131). The NEO-PI-R was administered at admission to short-term day treatment and after an average of 19 months. The results showed a moderate to high degree of stability of NEO-PI-R scale scores with no substantial difference in stability between patients with and without PD. Changes in NEO-PI-R scores were associated with changes in symptom distress. Neuroticism was the least stable domain. The study indicates that the Five-Factor Model of personality dimensions and traits are fairly stable in patients with PDs. The lower stability of Neuroticism may partly be explained by its inherent state aspects.
Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes
NASA Technical Reports Server (NTRS)
Menon, Suresh
1983-01-01
A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case, lack of experimental data made direct comparison difficult. It was determined that the growth rate of the disturbance amplitude is lower for reactive case. The results indicate that the reactive flow stability is in qualitative agreement with experimental observation.
Baier, Sina; Damsgaard, Christian D; Klumpp, Michael; Reinhardt, Juliane; Sheppard, Thomas; Balogh, Zoltan; Kasama, Takeshi; Benzi, Federico; Wagner, Jakob B; Schwieger, Wilhelm; Schroer, Christian G; Grunwaldt, Jan-Dierk
2017-06-01
When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.
NASA Astrophysics Data System (ADS)
Takemi, T.; Nomura, S.; Oku, Y.; Ishikawa, H.
2011-12-01
Understanding and forecasting of convective rain due to intense thunderstorms, which develop under conditions both with and without significant synoptic-scale and/or mesoscale forcings, are critical in dealing with disaster prevention/mitigation and developing urban planning appropriate for disaster management. Thunderstorms rapidly develop even during the daytimes of fair weather conditions without any external forcings, and sometimes become strong enough to induce local-scale meteorological disasters such as torrential rain, flush flooding, high winds, and tornadoes/gusts. With the growing interests in climate change, future changes in the behavior of such convectively generated extreme events have gained scientific and societal interests. This study conducted the regional-scale evaluations on the environmental stability conditions for convective rain that develops under synoptically undisturbed, summertime conditions by using the outputs of super-high-resolution AGCM simulations, at a 20-km resolution, for the present, the near-future, and the future climates under global warming with IPCC A1B emission scenario. The GCM, MRI-AGCM3.2S, was developed by Meteorological Research Institute of Japan Meteorological Agency under the KAKUSHIN program funded by the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The climate simulation outputs that were used in this study corresponded to three 25-year periods: 1980-2004 for the present climate; 2020-2044 for the near-future climate; and 2075-2099 for the future climate. The Kanto Plain that includes the Tokyo metropolitan area was chosen as the study area, since the Tokyo metropolitan area is one of the largest metropolises in the world and is vulnerable to extreme weather events. Therefore, one of the purposes of this study was to examine how regional-scale evaluations are performed from the super-high-resolution GCM outputs. After verifying the usefulness of the GCM present-climate outputs with observations and operational mesoscale analyses, we examined, as another purpose of this study, the future changes in the environmental stability for convective rain. To diagnose the environmental conditions, some of the commonly used stability parameters and indices were examined. In the future climates, temperature lapse rate decreased in the lower troposphere, while water vapor mixing ratio increased throughout the deep troposphere. The changes in the temperature and moisture profiles resulted in the increase in both precipitable water vapor and convective available potential energy. These projected changes will be enhanced with the future period. Furthermore, the statistical analyses for the differences of the stability parameters between no-rain and rain days under the synoptically undisturbed condition in each simulated climate period indicated that the environmental conditions in terms of the stability parameters that distinguish no-rain and rain events are basically unchanged between the present and the future climates. This result suggests that the environmental characteristics favorable for afternoon rain events in the synoptically undisturbed environments will not change under global warming.
Vacuum Stability in Split SUSY and Little Higgs Models
NASA Astrophysics Data System (ADS)
Datta, Alakabha; Zhang, Xinmin
We study the stability of the effective Higgs potential in the split supersymmetry and Little Higgs models. In particular, we study the effects of higher dimensional operators in the effective potential on the Higgs mass predictions. We find that the size and sign of the higher dimensional operators can significantly change the Higgs mass required to maintain vacuum stability in Split SUSY models. In the Little Higgs models the effects of higher dimensional operators can be large because of a relatively lower cutoff scale. Working with a specific model we find that a contribution from the higher dimensional operator with coefficient of O(1) can destabilize the vacuum.
Stability and transport of commercial metal oxide nanoparticles in aquatic systems
The use of nano-technology and the application of products containing nano-scale particles have been increasing. When nano-scale particles are released to the environment, their stability, transport properties and interaction with other pollutants and natural organic matter play ...
Lukowicz, Malgorzata; Zalewski, Pawel; Bulatowicz, Irena; Buszko, Katarzyna; Klawe, Jacek J.
2011-01-01
Summary Background The purpose of our experiment was to determine whether laser stimulation can improve microcirculation in the posterior regions of the brain in patients with vertebrobasilar insufficiency (VBI). Material/Methods We studied 25 patients (20 female, 5 male, mean age 64) diagnosed with chronic VBI. All were evaluated using the De Klyn test, followed by qualitative assessment of stability using a Berg Balance Scale and evaluation of global stability using an electronic balance platform. A CTL-1100 low power laser was used with standard parameters. We established a protocol for laser irradiation at 5 points along the vertebral artery in the cervical region bilaterally. Irradiation was performed 10 times over two weeks. Results Significant improvement occurred after therapy in headache (p=0.0005), vertigo (p<0.0000), and tinnitus (p=0.0387). No significant differences were observed in nausea or nystagmus caused by head rotation. The Berg Balance Scale results showed significant differences in almost all features. There was a tendency towards improved stability in all parameters, and statistically significant differences in the total surface of support and the spread surface of support for the left foot. Conclusions Laser stimulation as applied in this study can be useful in the treatment of patients with VBI. The main reason for improvement in global stability, balance, and other VBI symptoms is better blood perfusion. PMID:21873949
Low, Yin Fen; Trenado, Carlos; Delb, Wolfgang; Corona-Strauss, Farah I; Strauss, Daniel J
2007-01-01
Large-scale neural correlates of the tinnitus decompensation have been identified by using wavelet phase stability criteria of single sweep sequences of auditory late responses (ALRs). The suggested measure provided an objective quantification of the tinnitus decompensation and allowed for a reliable discrimination between a group of compensated and decompensated tinnitus patients. By interpreting our results with an oscillatory tinnitus model, our synchronization stability measure of ALRs can be linked to the focus of attention on the tinnitus signal. In the following study, we examined in detail the correlates of this attentional mechanism in healthy subjects. The results support our previous findings of the phase synchronization stability measure that reflected neural correlates of the fixation of attention to the tinnitus signal. In this case, enabling the differentiation between the attended and unattended conditions. It is concluded that the wavelet phase synchronization stability of ALRs single sweeps can be used as objective tinnitus decompensation measure and can be interpreted in the framework of the Jastreboff tinnitus model and adaptive resonance theory. Our studies confirm that the synchronization stability in ALR sequences is linked to attention. This measure is not only able to serve as objective quantification of the tinnitus decompensation, but also can be applied in all online and real time neurofeedback therapeutic approach where a direct stimulus locked attention monitoring is compulsory as if it based on a single sweeps processing.
Steps Towards Understanding Large-scale Deformation of Gas Hydrate-bearing Sediments
NASA Astrophysics Data System (ADS)
Gupta, S.; Deusner, C.; Haeckel, M.; Kossel, E.
2016-12-01
Marine sediments bearing gas hydrates are typically characterized by heterogeneity in the gas hydrate distribution and anisotropy in the sediment-gas hydrate fabric properties. Gas hydrates also contribute to the strength and stiffness of the marine sediment, and any disturbance in the thermodynamic stability of the gas hydrates is likely to affect the geomechanical stability of the sediment. Understanding mechanisms and triggers of large-strain deformation and failure of marine gas hydrate-bearing sediments is an area of extensive research, particularly in the context of marine slope-stability and industrial gas production. The ultimate objective is to predict severe deformation events such as regional-scale slope failure or excessive sand production by using numerical simulation tools. The development of such tools essentially requires a careful analysis of thermo-hydro-chemo-mechanical behavior of gas hydrate-bearing sediments at lab-scale, and its stepwise integration into reservoir-scale simulators through definition of effective variables, use of suitable constitutive relations, and application of scaling laws. One of the focus areas of our research is to understand the bulk coupled behavior of marine gas hydrate systems with contributions from micro-scale characteristics, transport-reaction dynamics, and structural heterogeneity through experimental flow-through studies using high-pressure triaxial test systems and advanced tomographical tools (CT, ERT, MRI). We combine these studies to develop mathematical model and numerical simulation tools which could be used to predict the coupled hydro-geomechanical behavior of marine gas hydrate reservoirs in a large-strain framework. Here we will present some of our recent results from closely co-ordinated experimental and numerical simulation studies with an objective to capture the large-deformation behavior relevant to different gas production scenarios. We will also report on a variety of mechanically relevant test scenarios focusing on effects of dynamic changes in gas hydrate saturation, highly uneven gas hydrate distributions, focused fluid migration and gas hydrate production through depressurization and CO2 injection.
Assessing Temporal Stability for Coarse Scale Satellite Moisture Validation in the Maqu Area, Tibet
Bhatti, Haris Akram; Rientjes, Tom; Verhoef, Wouter; Yaseen, Muhammad
2013-01-01
This study evaluates if the temporal stability concept is applicable to a time series of satellite soil moisture images so to extend the common procedure of satellite image validation. The area of study is the Maqu area, which is located in the northeastern part of the Tibetan plateau. The network serves validation purposes of coarse scale (25–50 km) satellite soil moisture products and comprises 20 stations with probes installed at depths of 5, 10, 20, 40, 80 cm. The study period is 2009. The temporal stability concept is applied to all five depths of the soil moisture measuring network and to a time series of satellite-based moisture products from the Advance Microwave Scanning Radiometer (AMSR-E). The in-situ network is also assessed by Pearsons's correlation analysis. Assessments by the temporal stability concept proved to be useful and results suggest that probe measurements at 10 cm depth best match to the satellite observations. The Mean Relative Difference plot for satellite pixels shows that a RMSM pixel can be identified but in our case this pixel does not overlay any in-situ station. Also, the RMSM pixel does not overlay any of the Representative Mean Soil Moisture (RMSM) stations of the five probe depths. Pearson's correlation analysis on in-situ measurements suggests that moisture patterns over time are more persistent than over space. Since this study presents first results on the application of the temporal stability concept to a series of satellite images, we recommend further tests to become more conclusive on effectiveness to broaden the procedure of satellite validation. PMID:23959237
Gustafsson, Margareta; Blomberg, Karin; Holmefur, Marie
2015-07-01
The Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) scale evaluates the student nurses' perception of the learning environment and supervision within the clinical placement. It has never been tested in a replication study. The aim of the present study was to evaluate the test-retest reliability of the CLES + T scale. The CLES + T scale was administered twice to a group of 42 student nurses, with a one-week interval. Test-retest reliability was determined by calculations of Intraclass Correlation Coefficients (ICCs) and weighted Kappa coefficients. Standard Error of Measurements (SEM) and Smallest Detectable Difference (SDD) determined the precision of individual scores. Bland-Altman plots were created for analyses of systematic differences between the test occasions. The results of the study showed that the stability over time was good to excellent (ICC 0.88-0.96) in the sub-dimensions "Supervisory relationship", "Pedagogical atmosphere on the ward" and "Role of the nurse teacher". Measurements of "Premises of nursing on the ward" and "Leadership style of the manager" had lower but still acceptable stability (ICC 0.70-0.75). No systematic differences occurred between the test occasions. This study supports the usefulness of the CLES + T scale as a reliable measure of the student nurses' perception of the learning environment within the clinical placement at a hospital. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Taber, Keith S.
2009-01-01
This paper reports evidence that learners commonly develop a notion of chemical stability that, whilst drawing upon ideas taught in the curriculum, is nevertheless inconsistent with basic scientific principles. A series of related small-scale studies show that many college-level students consider a chemical species with an octet structure, or a…
Stability of diameter distributions in a managed uneven-aged oak forest in the Ozark Highlands
Zhiming Wang; Paul S. Johnson; H. E. Garrett; Stephen R. Shifley
1997-01-01
We studied a privately owned 156,000-acre oak-dominated forest in the Ozark Highlands of southern Missouri. The forest has been managed by the single-tree selection method since 1952. Using 40 years of continuous forest inventory records, we analyzed the stability of the shape of tree diameter distributions at the forest-wide scale. Results show that for trees ...
Edge fires drive the shape and stability of tropical forests.
Hébert-Dufresne, Laurent; Pellegrini, Adam F A; Bhat, Uttam; Redner, Sidney; Pacala, Stephen W; Berdahl, Andrew M
2018-06-01
In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Radiative Kähler moduli stabilization
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Omoto, Naoya; Otsuka, Hajime; Tatsuishi, Takuya H.
2018-05-01
We propose a new type of Kähler moduli stabilization mechanisms in type IIB superstring theory on Calabi-Yau manifolds with the positive Euler number. The overall Kähler modulus can be perturbatively stabilized by radiative corrections due to sparticles. Its minimum is the anti-de Sitter vacuum, where supersymmetry is broken. We can uplift it to the de Sitter vacuum by introducing anti-D-branes, keeping the modulus stabilized. Although our numerical results depend on the choice of the cutoff scale and degeneracies of sparticles, at any rate there exist the parameter spaces where the masses of Kaluza-Klein and stringy modes are larger than the cutoff scale. Furthermore, this stabilization scenario predicts an ultralight axion.
Alternative experiments using the geophysical fluid flow cell
NASA Technical Reports Server (NTRS)
Hart, J. E.
1984-01-01
This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.
WIDE RANGE ACHIEVEMENT TEST IN AUTISM SPECTRUM DISORDER: TEST-RETEST STABILITY.
Jantz, Paul B; Bigler, Erin D; Froehlich, Alyson L; Prigge, Molly B D; Cariello, Annahir N; Travers, Brittany G; Anderson, Jeffrey; Zielinski, Brandon A; Alexander, Andrew L; Lange, Nicholas; Lainhart, Janet E
2015-06-01
The principal goal of this descriptive study was to establish the test-retest stability of the Reading, Spelling, and Arithmetic subtest scores of the Wide Range Achievement Test (WRAT-3) across two administrations in individuals with autism spectrum disorder. Participants (N = 31) were males ages 6-22 years (M = 15.2, SD = 4.0) who were part of a larger ongoing longitudinal study of brain development in children and adults with autism spectrum disorder (N = 185). Test-retest stability for all three subtests remained consistent across administration periods (M = 31.8 mo., SD = 4.1). Age at time of administration, time between administrations, and test form did not significantly influence test-retest stability. Results indicated that for research involving individuals with autism spectrum disorder with a full scale intelligence quotient above 75, the WRAT-3 Spelling and Arithmetic subtests have acceptable test-retest stability over time and the Reading subtest has moderate test-retest stability over time.
NASA Astrophysics Data System (ADS)
Maud, L. T.; Tilanus, R. P. J.; van Kempen, T. A.; Hogerheijde, M. R.; Schmalzl, M.; Yoon, I.; Contreras, Y.; Toribio, M. C.; Asaki, Y.; Dent, W. R. F.; Fomalont, E.; Matsushita, S.
2017-09-01
The Atacama Large millimetre/submillimetre Array (ALMA) makes use of water vapour radiometers (WVR), which monitor the atmospheric water vapour line at 183 GHz along the line of sight above each antenna to correct for phase delays introduced by the wet component of the troposphere. The application of WVR derived phase corrections improve the image quality and facilitate successful observations in weather conditions that were classically marginal or poor. We present work to indicate that a scaling factor applied to the WVR solutions can act to further improve the phase stability and image quality of ALMA data. We find reduced phase noise statistics for 62 out of 75 datasets from the long-baseline science verification campaign after a WVR scaling factor is applied. The improvement of phase noise translates to an expected coherence improvement in 39 datasets. When imaging the bandpass source, we find 33 of the 39 datasets show an improvement in the signal-to-noise ratio (S/N) between a few to 30 percent. There are 23 datasets where the S/N of the science image is improved: 6 by <1%, 11 between 1 and 5%, and 6 above 5%. The higher frequencies studied (band 6 and band 7) are those most improved, specifically datasets with low precipitable water vapour (PWV), <1 mm, where the dominance of the wet component is reduced. Although these improvements are not profound, phase stability improvements via the WVR scaling factor come into play for the higher frequency (>450 GHz) and long-baseline (>5 km) observations. These inherently have poorer phase stability and are taken in low PWV (<1 mm) conditions for which we find the scaling to be most effective. A promising explanation for the scaling factor is the mixing of dry and wet air components, although other origins are discussed. We have produced a python code to allow ALMA users to undertake WVR scaling tests and make improvements to their data.
MHD Instability and Turbulence in the Tachocline
NASA Technical Reports Server (NTRS)
Werne, Joe; Wagner, William J. (Technical Monitor)
2003-01-01
The focus of this project was to study the physical processes that govern tachocline dynamics and structure. Specific features explored included stratification, shear, waves, and toroidal and poloidal background fields. In order to address recent theoretical work on anisotropic mixing and dynamics in the tachocline, we were particularly interested in such anisotropic mixing for the specific tachocline processes studied. Transition to turbulence often shapes the largest-scale features that appear spontaneously in a flow during the development of turbulence. The resulting large-scale straining field can control the subsequent dynamics; therefore, anticipation of the large-scale straining field that results for individual realizations of the transition to turbulence can be important for subsequent dynamics, flow morphology, and transport characteristics. As a result, we paid particular attention to the development of turbulence in the stratified and sheared environment of the tachocline. This is complicated by the fact that the linearly stability of sheared MHD flows is non-self-adjoint, implying that normal asymptotic linear stability theory may not be relevant.
ERIC Educational Resources Information Center
Lane, Kathleen Lynne; Bruhn, Allison L.; Eisner, Shanna L.; Kalberg, Jemma Robertson
2010-01-01
In this article, the authors examine the psychometric properties of the "Student Risk Screening Scale" (SRSS) for use in urban middle schools. Results of Studies 1 and 2 suggest strong internal consistency and test-retest stability. Study 1 supports the predictive validity of the SRSS, with students at low risk being able to be differentiated from…
NASA Technical Reports Server (NTRS)
Luoma, Arvo A.
1954-01-01
The longitudinal stability and control characteristics of a 1/30-scale model of the Republic XF-103 airplane were investigated in the Langley 8-foot transonic tunnel. The effect of speed brakes located at the end of the fuselage was also investigated. The main part of the investigation was made with internal flow in the model, but some data were obtained with no internal flow. The longitudinal stability and control at transonic-speeds appeared satisfactory. The transonic drag rise was small. The speed brakes had no adverse effects on longitudinal stability.
Longitudinal Invariance of the Satisfaction with Life Scale for Individuals with Schizophrenia
ERIC Educational Resources Information Center
Lee, Karen Kyeunghae; Brekke, John S.; Yamada, Ann-Marie; Chou, Chih-Ping
2010-01-01
Objectives: This study examined the longitudinal structural stability of a subjective quality of life measure in an ethnically diverse sample of 331 adults with schizophrenia. Methods: Participants completed the Satisfaction With Life (SWL) scale at entry to community-based mental health services and again at 6 and 12 months. Five types of…
[Study on preparation of composite nano-scale Fe3O4 for phosphorus control].
Li, Lei; Pan, Gang; Chen, Hao
2010-03-01
Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.
An experimental test of a fundamental food web motif.
Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia
2010-06-07
Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities.
Strauss, Daniel J; Delb, Wolfgang; D'Amelio, Roberto; Low, Yin Fen; Falkai, Peter
2008-02-01
Large-scale neural correlates of the tinnitus decompensation might be used for an objective evaluation of therapies and neurofeedback based therapeutic approaches. In this study, we try to identify large-scale neural correlates of the tinnitus decompensation using wavelet phase stability criteria of single sweep sequences of late auditory evoked potentials as synchronization stability measure. The extracted measure provided an objective quantification of the tinnitus decompensation and allowed for a reliable discrimination between a group of compensated and decompensated tinnitus patients. We provide an interpretation for our results by a neural model of top-down projections based on the Jastreboff tinnitus model combined with the adaptive resonance theory which has not been applied to model tinnitus so far. Using this model, our stability measure of evoked potentials can be linked to the focus of attention on the tinnitus signal. It is concluded that the wavelet phase stability of late auditory evoked potential single sweeps might be used as objective tinnitus decompensation measure and can be interpreted in the framework of the Jastreboff tinnitus model and adaptive resonance theory.
Emergence of microstructure and oxygen diffusion in yttrium-stabilized cubic zirconia
NASA Astrophysics Data System (ADS)
Yang, C.; Trachenko, K.; Hull, S.; Todorov, I. T.; Dove, M. T.
2018-05-01
Large-scale molecular dynamics simulations have been used to study the microstructure in Y-doped ZrO2. From simulations performed as a function of composition the dependence of microstructure on composition is quantified, showing how it is formed from two coexisting phases, and the transformation to the stabilized cubic form is observed at higher concentrations of yttrium and higher temperatures. The effect of composition and temperature on oxygen diffusion is also studied, showing strong correlations between microstructure and diffusion.
Poisson denoising on the sphere
NASA Astrophysics Data System (ADS)
Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.
2009-08-01
In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.
Ghorbanpour, Arsalan; Azghani, Mahmoud Reza; Taghipour, Mohammad; Salahzadeh, Zahra; Ghaderi, Fariba; Oskouei, Ali E
2018-04-01
[Purpose] The aim of this study was to compare the effects of "McGill stabilization exercises" and "conventional physiotherapy" on pain, functional disability and active back flexion and extension range of motion in patients with chronic non-specific low back pain. [Subjects and Methods] Thirty four patients with chronic non-specific low back pain were randomly assigned to McGill stabilization exercises group (n=17) and conventional physiotherapy group (n=17). In both groups, patients performed the corresponding exercises for six weeks. The visual analog scale (VAS), Quebec Low Back Pain Disability Scale Questionnaire and inclinometer were used to measure pain, functional disability, and active back flexion and extension range of motion, respectively. [Results] Statistically significant improvements were observed in pain, functional disability, and active back extension range of motion in McGill stabilization exercises group. However, active back flexion range of motion was the only clinical symptom that statistically increased in patients who performed conventional physiotherapy. There was no significant difference between the clinical characteristics while compared these two groups of patients. [Conclusion] The results of this study indicated that McGill stabilization exercises and conventional physiotherapy provided approximately similar improvement in pain, functional disability, and active back range of motion in patients with chronic non-specific low back pain. However, it appears that McGill stabilization exercises provide an additional benefit to patients with chronic non-specific low back, especially in pain and functional disability improvement.
NASA Astrophysics Data System (ADS)
Albaid, Abdelhamid; Dine, Michael; Draper, Patrick
2015-12-01
Solutions to the strong CP problem typically introduce new scales associated with the spontaneous breaking of symmetries. Absent any anthropic argument for small overline{θ} , these scales require stabilization against ultraviolet corrections. Supersymmetry offers a tempting stabilization mechanism, since it can solve the "big" electroweak hierarchy problem at the same time. One family of solutions to strong CP, including generalized parity models, heavy axion models, and heavy η' models, introduces {Z}_2 copies of (part of) the Standard Model and an associated scale of {Z}_2 -breaking. We review why, without additional structure such as supersymmetry, the {Z}_2 -breaking scale is unacceptably tuned. We then study "SUZ2" models, supersymmetric theories with {Z}_2 copies of the MSSM. We find that the addition of SUSY typically destroys the {Z}_2 protection of overline{θ}=0 , even at tree level, once SUSY and {Z}_2 are broken. In theories like supersymmetric completions of the twin Higgs, where {Z}_2 addresses the little hierarchy problem but not strong CP, two axions can be used to relax overline{θ}.
[Validity and reliability of a scale to assess self-efficacy for physical activity in elderly].
Borges, Rossana Arruda; Rech, Cassiano Ricardo; Meurer, Simone Teresinha; Benedetti, Tânia Rosane Bertoldo
2015-04-01
This study aimed to analyze the confirmatory factor validity and reliability of a self-efficacy scale for physical activity in a sample of 118 elderly (78% women) from 60 to 90 years of age. Mplus 6.1 was used to evaluate the confirmatory factor analysis. Reliability was tested by internal consistency and temporal stability. The original scale consisted of five items with dichotomous answers (yes/no), independently for walking and moderate and vigorous physical activity. The analysis excluded the item related to confidence in performing physical activities when on vacation. Two constructs were identified, called "self-efficacy for walking" and "self-efficacy for moderate and vigorous physical activity", with a factor load ≥ 0.50. Internal consistency was adequate both for walking (> 0.70) and moderate and vigorous physical activity (> 0.80), and temporal stability was adequate for all the items. In conclusion, the self-efficacy scale for physical activity showed adequate validity, reliability, and internal consistency for evaluating this construct in elderly Brazilians.
Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.
Alfaro, N; Cano, R; Fdz-Polanco, F
2014-10-01
Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin
2011-01-01
Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799
Kurtz, J E; Lee, P A; Sherker, J L
1999-06-01
This study examines the internal consistency and temporal stability of informant ratings from two widely used instruments for normal personality assessment, the revised NEO Personality Inventory (NEO PI-R) and the Interpersonal Adjective Scales (IAS). Well-known adult targets were selected by 109 undergraduate students and rated on two occasions separated by a 6-month interval. With few exceptions, estimates of internal consistency are adequate to good for both instruments. NEO PI-R domain scores yield coefficient alphas ranging from .89 to .96, with a median of .80 for the 30 facet scales. IAS octant scales show coefficient alphas ranging from .83 to .92. Retest Pearson correlations are above .70 for each of the NEO PI-R domain scores and both IAS axis coordinates, and intraclass correlations are above .60 for all scales from both instruments. Score changes were small but statistically significant for three of the five NEO PI-R domains at retest. The retest stability of IAS type classifications varies as a function of the extremity of the associated octant scores.
Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales
Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias
2016-01-01
Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625
NASA Astrophysics Data System (ADS)
Bankhead, N.; Simon, A.
2008-12-01
Several complex interactions occur between riparian vegetation and bank stability processes. Although there are both positive and negative effects of riparian vegetation on streambank stability, a link between increased vegetation density and decreased bank erosion and lateral migration rates of channels has generally been recorded. The ability of vegetation to promote increased bank stability leads to a positive feedback, in which bank stability then allows the growth and establishment of more vegetation. To study interactions between vegetation density and channel planform, past flume studies have used alfalfa sprouts (Medicago sativa), seeded over the entire floodplain in varying densities. Such studies have observed reductions in braiding intensity with increased alfalfa density. It has been assumed in these studies that the alfalfa sprouts increase the resistance of the bank material to lateral erosion. When alfalfa sprouts are scaled up they simulate mature riparian trees well. However, the geotechnical properties of alfalfa roots, and quantification of the increase in resistance provided to the banks under different densities of alfalfa have thus far been ignored. It is therefore unknown if the resistance provided by the alfalfa roots also scales well to real-world root-reinforcement values. To quantify additional bank strength, alfalfa sprouts were grown in sand and the roots tested at regular intervals to measure tensile strength. Results of tensile-strength measurements for alfalfa sprouts displayed the typical non-linear decrease of tensile strength (in MPa) with increasing root diameter. Values for the additional cohesion provided by alfalfa roots were calculated by inputting alfalfa tensile-strength and root density data to the root-reinforcement model, RipRoot, resulting in root-reinforcement values of 0 to 11.8 kPa. These values are similar to those that would be expected under field conditions. The root-cohesion values calculated for alfalfa sprouts were then used in conjunction with the Bank Stability and Toe Erosion Model (BSTEM), and a series of laboratory experiments, to evaluate if the factor of safety (FS) of experimental channels lined with different densities of alfalfa could be predicted. Sand banks ranging in height from 1.25 to 3.75 cm were modeled and tested experimentally for cases with different groundwater heights and flow depths in the channel, and with cohesion due to roots being scaled appropriately using a length reduction factor. Model results showed that for alfalfa stem densities ranging from 0 to 10 stems/cm2, bank FS ranged from 0.60 to 1.87 and from 0.60 to 1.12 for 1.25 cm and 3.75 cm-high banks respectively. Preliminary results of the laboratory experiments have successfully shown that if cohesion due to roots calculated from the RipRoot model is scaled appropriately, the stability of experimental channels lined with alfalfa of different densities can be predicted. By quantifying the geotechnical resistance of banks during such studies, more accurate predictions of the conditions necessary to create meandering versus braided channel planforms, and the feedback between channel planform and vegetation density in both experimental and real-world scenarios may now be possible.
Romero-García, Marta; de la Cueva-Ariza, Laura; Benito-Aracil, Llucia; Lluch-Canut, Teresa; Trujols-Albet, Joan; Martínez-Momblan, Maria Antonia; Juvé-Udina, Maria-Eulàlia; Delgado-Hito, Pilar
2018-06-01
The aim of this study was to develop and validate the Nursing Intensive-Care Satisfaction Scale to measures satisfaction with nursing care from the critical care patient's perspective. Instruments that measure satisfaction with nursing cares have been designed and validated without taking the patient's perspective into consideration. Despite the benefits and advances in measuring satisfaction with nursing care, none instrument is specifically designed to assess satisfaction in intensive care units. Instrument development. The population were all discharged patients (January 2013 - January 2015) from three Intensive Care Units of a third level hospital (N = 200). All assessment instruments were given to discharged patients and 48 hours later, to analyse the temporal stability, only the questionnaire was given again. The validation process of the scale included the analysis of internal consistency, temporal stability; validity of construct through a confirmatory factor analysis; and criterion validity. Reliability was 0.95. The intraclass correlation coefficient for the total scale was 0.83 indicating a good temporal stability. Construct validity showed an acceptable fit and factorial structure with four factors, in accordance with the theoretical model, being Consequences factor the best correlated with other factors. Criterion validity, presented a correlation between low and high (range: 0.42-0.68). The scale has been designed and validated incorporating the perspective of critical care patients. Thanks to its reliability and validity, this questionnaire can be used both in research and in clinical practice. The scale offers a possibility to assess and develop interventions to improve patient satisfaction with nursing care. © 2018 John Wiley & Sons Ltd.
Sexual compulsivity scale: adaptation and validation in the spanish population.
Ballester-Arnal, Rafael; Gómez-Martínez, Sandra; Llario, M Dolores-Gil; Salmerón-Sánchez, Pedro
2013-01-01
Sexual compulsivity has been studied in relation to high-risk behavior for sexually transmitted infections. The aim of this study was the adaptation and validation of the Sexual Compulsivity Scale to a sample of Spanish young people. This scale was applied to 1,196 (891 female, 305 male) Spanish college students. The results of principal components factor analysis using a varimax rotation indicated a two-factor solution. The reliability of the Sexual Compulsivity Scale was found to be high. Moreover, the scale showed good temporal stability. External correlates were examined through Pearson correlations between the Sexual Compulsivity Scale and other constructs related with HIV prevention. The authors' results suggest that the Sexual Compulsivity Scale is an appropriate measure for assessing sexual compulsivity, showing adequate psychometric properties in the Spanish population.
Rauk, Adam P; Guo, Kevin; Hu, Yanling; Cahya, Suntara; Weiss, William F
2014-08-01
Defining a suitable product presentation with an acceptable stability profile over its intended shelf-life is one of the principal challenges in bioproduct development. Accelerated stability studies are routinely used as a tool to better understand long-term stability. Data analysis often employs an overall mass action kinetics description for the degradation and the Arrhenius relationship to capture the temperature dependence of the observed rate constant. To improve predictive accuracy and precision, the current work proposes a least-squares estimation approach with a single nonlinear covariate and uses a polynomial to describe the change in a product attribute with respect to time. The approach, which will be referred to as Arrhenius time-scaled (ATS) least squares, enables accurate, precise predictions to be achieved for degradation profiles commonly encountered during bioproduct development. A Monte Carlo study is conducted to compare the proposed approach with the common method of least-squares estimation on the logarithmic form of the Arrhenius equation and nonlinear estimation of a first-order model. The ATS least squares method accommodates a range of degradation profiles, provides a simple and intuitive approach for data presentation, and can be implemented with ease. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Tropical cyclones in a stabilized 1.5 and 2 degree warmer world.
NASA Astrophysics Data System (ADS)
Wehner, M. F.; Stone, D. A.; Loring, B.; Krishnan, H.
2017-12-01
We present an ensemble of very high resolution global climate model simulations of a stabilized 1.5oC and 2oC warmer climate as envisioned by the Paris COP21 agreement. The resolution of this global climate model (25km) permits simulated tropical cyclones up to Category Five on the Saffir-Simpson scale Projected changes in tropical cyclones are significant. Tropical cyclones in the two stabilization scenarios are less frequent but more intense than in simulations of the present. Output data from these simulations is freely available to all interested parties and should prove a useful resource to those interested in studying the impacts of stabilized global warming.
Study on Nonlinear Lateral Parameter Bifurcation Characteristic of Soft Footbridge
NASA Astrophysics Data System (ADS)
Chen, Zhou; Deng, De-Yuan; Yan, Quan-Sheng; Lu, Jin-Zhong; Lu, Jian-Xin
2018-03-01
With the trend of large span in the development of footbridge, its nonlinear characteristic is more and more obvious. Bifurcation has a great influence on the nonstationary trivial solution and its boundary stability of nonlinear vibration. Based on the Millennium Bridge in London, this paper deduces its nonlinear transverse vibration equation. Also, the method of Galerkin and multi-scale method is used to obtain the judgment condition of nonstationary trivial stability. Based on the bifurcation theory, the influence of nonlinear behavior on nontrivial solution as well as its stability is studied in the paper under two situations, a 1 ‑ σ bifurcation and a 1 ‑ ζ2 bifurcation of parameter plane respectively.
A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization
Okoniewski, Stephen R.; Carter, Ashley R.; Perkins, Thomas T.
2017-01-01
Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (i) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (ii) minimizing sample motion relative to the optical trap using a 3-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03–2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging. PMID:27844426
Perspectives on the geographic stability and mobility of people in cities
Hanson, Susan
2005-01-01
A class of questions in the human environment sciences focuses on the relationship between individual or household behavior and local geographic context. Central to these questions is the nature of people's geographic mobility as well as the duration of their locational stability at varying spatial and temporal scales. The problem for researchers is that the processes of mobility/stability are temporally and spatially dynamic and therefore difficult to measure. Whereas time and space are continuous, analysts must select levels of aggregation for both length of time in place and spatial scale of place that fit with the problem in question. Previous work has emphasized mobility and suppressed stability as an analytic category. I focus here on stability and show how analyzing individuals' stability requires also analyzing their mobility. Through an empirical example centered on the relationship between entrepreneurship and place, I demonstrate how a spotlight on stability illuminates a resolution to the measurement problem by highlighting the interdependence between the time and space dimensions of stability/mobility. PMID:16230616
The influence of family stability on self-control and adjustment.
Malatras, Jennifer Weil; Israel, Allen C
2013-07-01
The aim of the present study was to replicate previous evidence for a model in which self-control mediates the relationship between family stability and internalizing symptoms, and to evaluate a similar model with regard to externalizing problems. Participants were 155 female and 134 male undergraduates--mean age of 19.03 years. Participants completed measures of stability in the family of origin (Stability of Activities in the Family Environment), self-control (Self-Control scale), current externalizing (Adult Self-Report), and internalizing problems (Beck Depression Inventory II and Beck Anxiety Inventory). Multiple regression analyses largely support the proposed model for both the externalizing and internalizing domains. Family stability may foster the development of self-control and, in turn, lead to positive adjustment. © 2012 Wiley Periodicals, Inc.
Infant Temperament: Stability by Age, Gender, Birth Order, Term Status, and SES
Bornstein, Marc H.; Putnick, Diane L.; Gartstein, Maria A.; Hahn, Chun-Shin; Auestad, Nancy; O’Connor, Deborah L.
2015-01-01
Two complementary studies focused on stability of infant temperament across the first year and considered infant age, gender, birth order, term status, and socioeconomic status (SES) as moderators. Study 1 consisted of 73 mothers of firstborn term girls and boys queried at 2, 5, and 13 months of age. Study 2 consisted of 335 mothers of infants of different gender, birth order, term status, and SES queried at 6 and 12 months. Consistent positive and negative affectivity factors emerged at all time-points across both studies. Infant temperament proved stable and robust across gender, birth order, term status, and SES. Stability coefficients for temperament factors and scales were medium to large for shorter (<9 months) inter-assessment intervals and small to medium for longer (>10 months) intervals. PMID:25865034
Fujishima-Hachiya, Asami; Inoue, Tomoko
2012-12-01
Although the detection rate for unruptured intracranial aneurysm (UIA) has improved since the 1990s, the quality of life and psychosocial status of patients living with UIA have been negatively affected. However, a comprehensive assessment tool for UIA patients is still awaited. This study aimed to develop and validate a disease-specific scale to assess UIA patients' psychosocial well-being in their daily lives. On the basis of previous qualitative research, 52 items on a six-dimension scale were generated. After a pilot study, statistical analysis was conducted to examine construct validity-including convergent validity, discriminant and known-group validity, and internal reliability. Between 2010 and 2011, 124 patients across three hospitals in Japan were tested using a tentative scale. As a result of exploratory factor analysis, we identified 25 items based on five conceptually derived dimensions (psychological stability, trust in healthcare resources, satisfaction with the decision-making process, positive perception of self-management, and confidence in UIA knowledge) as a final psychosocial well-being scale for UIA patients (UIA-PW scale). Cronbach's alpha coefficients for each subscale ranged between .76 and .90, with .83 for the total score, which indicated satisfactory internal consistency. The total score for the UIA-PW scale correlated significantly with the existing quality of life and mental health scales, but it is important to note that psychological stability and positive perception of self-management were negatively correlated. Although additional investigation is needed, the UIA-PW scale shows reasonable validity and reliability in assessing psychosocial well-being of patients living with UIA.
Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence
NASA Astrophysics Data System (ADS)
Belli, Emily Ann
Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the enhancement of zonal flows with shaping, which is observed with the GS2 simulations. Finally, a local linear trial function-based gyrokinetic code is developed to aid in fast scoping studies of gyrokinetic linear stability. This code is successfully benchmarked with the full GS2 code in the collisionless, electrostatic limit, as well as in the more general electromagnetic description with higher-order Hermite basis functions.
Hrad, Marlies; Huber-Humer, Marion
2017-05-01
By converting anaerobic landfills into a biologically stabilized state through accelerating aerobic organic matter degradation, the effort and duration necessary for post-closure procedures can be shortened. In Austria, the first full-scale application of in-situ landfill aeration by means of low pressure air injection with simultaneous off-gas collection and treatment was implemented on an old MSW-landfill and operated between 2007 and 2013. Besides complementary laboratory investigations, which included waste sampling from the landfill site prior to aeration start, a comprehensive field monitoring program was conducted to assess the influence of the aeration measure on the emission behavior of the landfilled waste during the aeration period as well as after aeration completion. Although the initial waste material was described as rather stable, the lab-scale aeration tests indicated a significant improvement of the leachate quality and even the biological solid waste stability. However, the aeration success was less pronounced for the application at the landfill site, mainly due to technical limitations in the full-scale operation. In this paper main performance data of the field investigation are compared to four other scientifically documented case studies along with stability indicators for solid waste and leachate characteristics in order to evaluate the success of aeration as well as the progress of a landfill towards completion and end of post-closure care. A number of quantitative benchmarks and relevant context information for the performance assessment of the five hitherto conducted international aeration projects are proposed aiming to support the systematization and harmonization of available results from diverse field studies and full-scale applications in future. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H. L.; Shah, S. A. A.; Hao, Y. L.
It is well-known that the body centered cubic (bcc) crystal in titanium alloys reaches its stability limit as the electron-to-atom (e/a) ratio of the alloy drops down to ~4.24. This critical value, however, is much higher than that of a multifunctional bcc type alloy (e/a = 4.15). Here we demonstrate that a nano-scale concentration modulation created by spinodal decomposition is what stabilizes the bcc crystal of the alloy. Aided by such a nano-scale concentration heterogeneity, unexpected properties from its chemically homogeneous counterpart are obtained. This provides a new strategy to design functional titanium alloys by tuning the spinodal decomposition.
Exploring stability of entropy analysis for signal with different trends
NASA Astrophysics Data System (ADS)
Zhang, Yin; Li, Jin; Wang, Jun
2017-03-01
Considering the effects of environment disturbances and instrument systems, the actual detecting signals always are carrying different trends, which result in that it is difficult to accurately catch signals complexity. So choosing steady and effective analysis methods is very important. In this paper, we applied entropy measures-the base-scale entropy and approximate entropy to analyze signal complexity, and studied the effect of trends on the ideal signal and the heart rate variability (HRV) signals, that is, linear, periodic, and power-law trends which are likely to occur in actual signals. The results show that approximate entropy is unsteady when we embed different trends into the signals, so it is not suitable to analyze signal with trends. However, the base-scale entropy has preferable stability and accuracy for signal with different trends. So the base-scale entropy is an effective method to analyze the actual signals.
A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty
Huang, Shu-Wei; Yang, Jinghui; Yu, Mingbin; McGuyer, Bart H.; Kwong, Dim-Lee; Zelevinsky, Tanya; Wong, Chee Wei
2016-01-01
Optical frequency combs—coherent light sources that connect optical frequencies with microwave oscillations—have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state microresonators has recently demonstrated promising features as alternative platforms. The advance not only fosters studies of chip-scale frequency metrology but also extends the realm of optical frequency combs. We report the full stabilization of chip-scale optical frequency combs. The microcomb’s two degrees of freedom, one of the comb lines and the native 18-GHz comb spacing, are simultaneously phase-locked to known optical and microwave references. Active comb spacing stabilization improves long-term stability by six orders of magnitude, reaching a record instrument-limited residual instability of 3.6mHz/τ. Comparing 46 nitride frequency comb lines with a fiber laser frequency comb, we demonstrate the unprecedented microcomb tooth-to-tooth relative frequency uncertainty down to 50 mHz and 2.7 × 10−16, heralding novel solid-state applications in precision spectroscopy, coherent communications, and astronomical spectrography. PMID:27152341
Assessing indicators of rangeland health with remote sensing in southeast Arizona
Jared Buono; Philip Heilman; David Williams; Phillip Guertin
2005-01-01
The goal of this study was to scale up ground-based range assessments to ranch and landscape scales in southeast Arizona using remote sensing and minimum amount of field data collection. Remotely sensed metrics of canopy cover, biomass, and mesquite composition were used to assess soil and site stability and biotic integrity. Ground-based assessments were conducted on...
Multiple Linking in Equating and Random Scale Drift. Research Report. ETS RR-11-46
ERIC Educational Resources Information Center
Guo, Hongwen; Liu, Jinghua; Dorans, Neil; Feigenbaum, Miriam
2011-01-01
Maintaining score stability is crucial for an ongoing testing program that administers several tests per year over many years. One way to stall the drift of the score scale is to use an equating design with multiple links. In this study, we use the operational and experimental SAT® data collected from 44 administrations to investigate the effect…
ERIC Educational Resources Information Center
Niklas, Frank; Nguyen, Cuc; Cloney, Daniel S.; Tayler, Collette; Adams, Raymond
2016-01-01
Favourable home learning environments (HLEs) support children's literacy, numeracy and social development. In large-scale research, HLE is typically measured by self-report survey, but there is little consistency between studies and many different items and latent constructs are observed. Little is known about the stability of these items and…
Docx, Lise; Sabbe, Bernard; Provinciael, Pieter; Merckx, Niel; Morrens, Manuel
2013-01-01
The aim of the present study was to investigate the predictive value of qualitative psychomotor performance levels and subaspects of the negative syndrome for quantitative motor activity levels in patients with schizophrenia. Twenty-seven stabilized patients with schizophrenia and 22 age- and sex-matched healthy controls were included in the study. An extensive battery of psychomotor performance tests (Finger Tapping Test, Purdue Pegboard Test, Line Copying Test, Neurological Evaluation Scale, Salpêtrière Retardation Rating Scale), clinical rating scales (Positive and Negative Syndrome Scale) and 24-hour actigraphy were administered to all participants. Correlational analyses showed that motor activity levels were associated with avolition as well as clinically assessed psychomotor slowing. However, in a regression model, only avolition was found to be a significant predictor for motor activity levels in patients with schizophrenia; none of the psychomotor performance tests nor the severity of emotional expressivity deficits contributed to the model. Qualitative and quantitative psychomotor deficits seem to be independent phenomena in stabilized patients with schizophrenia. The diminishing in motor activity in patients with schizophrenia is related to a loss of drive and not to problems in the quality of movement execution. © 2013 S. Karger AG, Basel.
Lateral stability analysis for X-29A drop model using system identification methodology
NASA Technical Reports Server (NTRS)
Raney, David L.; Batterson, James G.
1989-01-01
A 22-percent dynamically scaled replica of the X-29A forward-swept-wing airplane has been flown in radio-controlled drop tests at the NASA Langley Research Center. A system identification study of the recorded data was undertaken to examine the stability and control derivatives that influence the lateral behavior of this vehicle with particular emphasis on an observed wing rock phenomenon. All major lateral stability derivatives and the damping-in-roll derivative were identified for angles of attack from 5 to 80 degrees by using a data-partitioning methodology and a modified stepwise regression algorithm.
NASA Technical Reports Server (NTRS)
Buchholz, R. E.
1972-01-01
The results are presented that were obtained from a wind tunnel tests to improve space shuttle booster baseline lateral-directional stability, control characteristics, and cruise engine location optimization. Tests were conducted in a 7 x 10-foot transonic wind tunnel. The model employed was a 0.015-scale replica of a space shuttle booster. The three major objectives of this test were to determine the following: (1) force, static stability, and control effectiveness characteristics for varying angles of positive and negative wing dihedral and various combinations of wing tip and centerline dorsal fins; (2) force and static stability characteristics of cruise engines location on the body below the high aerodynamic canard; and (3) control effectiveness for the low-mounted wing configuration. The wing dihedral study was conducted at a cruise Mach number of 0.40 and simulated altitude of 10,000 feet. Portions of the test were conducted to determine the control surfaces stability and control characteristics over the Mach number range of 0.4 to 1.2. The aerodynamic characteristics determined are based on a unit Reynolds number of approximately 2 million per foot. Boundary layer trip strips were employed to induce boundary layer transition.
Hypomanic personality, stability of self-esteem and response styles to negative mood.
Bentall, Richard P; Myin-Germeys, Inez; Smith, Angela; Knowles, Rebecca; Jones, Steven H; Smith, Talya; Tai, Sara J
2011-01-01
This paper aims to study dysfunctional self-schematic processes, abnormal coping styles, over-responsiveness to reward stimuli (indicative of an over-sensitive behavioural activation system) and stability of self-esteem in relation to subclinical hypomania. Three cross-sectional studies were conducted on selected students on the basis of their scores on the Hypomanic Personality Scale (HPS) (study 1) and on elevated HPS and Dysfunctional Attitude Scale scores (studies 2 and 3). In studies 1 and 2, participants completed questionnaires and kept a self-esteem diary for 6 days. In study 3, the experience sampling method was used to assess momentary self-esteem, emotion and use of different coping styles over a 6-day period. Study 1 demonstrated that hypomanic traits are associated with high fluctuations in self-esteem. In study 2, high scores on both the HPS and the Dysfunctional Attitude Scale, but not the HPS alone, were associated with bipolar spectrum symptoms. These participants showed more evidence of alcohol and substance abuse, greater self-esteem fluctuation and dysfunctional coping styles (rumination and risk-taking) compared with controls. Changes in self-esteem were related to the use of these strategies. Vulnerability to bipolar disorder is associated with a combination of depression-related and reward-related processes. Copyright © 2011 John Wiley & Sons, Ltd.
A Multi-Domain Self-Report Measure of Coparenting
Feinberg, Mark E.; Brown, Louis D.; Kan, Marni L.
2012-01-01
SYNOPSIS Objective This study reports the psychometric properties of a multi-domain measure of the coparenting relationship in dual-parent families. Method 152 couples participating in a transition to parenthood study completed the Coparenting Relationship Scale and additional measures during home visits at child age 6 months, 1 year, and 3 years. Results Psychometric and construct validity assessments indicated the measure performed satisfactorily. The 35-item measure demonstrated good reliability and strong stability. Subscales measuring theoretically and empirically important aspects of coparenting (coparenting agreement, coparenting closeness, exposure of child to conflict, coparenting support, coparenting undermining, endorsement of partner’s parenting, and division of labor) demonstrated good reliability as well. A 14-item brief overall measure showed very strong associations with the overall measure. Relations of the full scale with a measure of social desirability were weak, and the full scale was positively associated with positive dimensions of the dyadic couple relationship (love, sex/romance, couple efficacy) and inversely associated with negative dimensions (conflict, ineffective arguing)—as expected. Conclusions This initial examination of the Coparenting Relationship Scale suggests that it possesses good psychometric properties (reliability, stability, construct validity, and inter-rater agreement), can be flexibly administered in short and long forms, and is positioned to promote further conceptual and methodological progress in the study of coparenting. PMID:23166477
De Sitter and scaling solutions in a higher-order modified teleparallel theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paliathanasis, Andronikos, E-mail: anpaliat@phys.uoa.gr
The existence and the stability conditions for some exact relativistic solutions of special interest are studied in a higher-order modified teleparallel gravitational theory. The theory with the use of a Lagrange multiplier is equivalent with that of General Relativity with a minimally coupled noncanonical field. The conditions for the existence of de Sitter solutions and ideal gas solutions in the case of vacuum are studied as also the stability criteria. Furthermore, in the presence of matter the behaviour of scaling solutions is given. Finally, we discuss the degrees of freedom of the field equations and we reduce the field equationsmore » in an algebraic equation, where in order to demonstrate our result we show how this noncanonical scalar field can reproduce the Hubble function of Λ-cosmology.« less
Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Andraka, C. E.; Moss, T. A.
During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.
Needham, I; Abderhalden, C; Dassen, T; Haug, H J; Fischer, J E
2004-02-01
Patient aggression is a serious problem in psychiatric nursing. Nurses' attitudes towards aggression have been identified as mediating the choice of nursing interventions. To date, investigations are lacking which elucidate the stability of one of the few scales for measuring the attitude of aggression. This study aimed to investigate the test-retest stability of the Perception of Aggression Scale and to derive a shortened version. In order to test the reliability of the Perception of Aggression Scale items, three groups of psychiatric nurses were requested to fill in the Perception of Aggression Scale twice (30 student nurses after 4 days, 32 qualified nurses after 14 days and 36 qualified nurses after 70 days). We derived the shortened version from an independent data set obtained from 729 psychiatry nurses using principal component analysis, aiming to maximize parsimony and Cronbach's alpha. Amongst competing short versions, we selected those with the highest reliability at 70 or 14 day retest. A scale using 12 of the original 32 items was derived yielding alphas of r = 0.69 and r = 0.67 for the two POAS factors with retest reliabilities of r = 0.76 and r = 0.77. The shortened scale offers a practical and viable alternative to the longer version.
NASA Technical Reports Server (NTRS)
McKann, Robert; Coffee, Claude W.; Abrabian, Donald D.
1949-01-01
The take-off stability characteristics of a Consolidated Vultee Aircraft Corporation Skate 7 seaplane were determined in the Langley tank no. 2. Trim limits of stability, trim tracks, and elevator limits of stability are presented.
Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin
2017-06-09
The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H₂S/CO₂ environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H₂S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni₃S₂, NiS, or Ni₃S₄, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.
Poisson denoising on the sphere: application to the Fermi gamma ray space telescope
NASA Astrophysics Data System (ADS)
Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I.
2010-07-01
The Large Area Telescope (LAT), the main instrument of the Fermi gamma-ray Space telescope, detects high energy gamma rays with energies from 20 MeV to more than 300 GeV. The two main scientific objectives, the study of the Milky Way diffuse background and the detection of point sources, are complicated by the lack of photons. That is why we need a powerful Poisson noise removal method on the sphere which is efficient on low count Poisson data. This paper presents a new multiscale decomposition on the sphere for data with Poisson noise, called multi-scale variance stabilizing transform on the sphere (MS-VSTS). This method is based on a variance stabilizing transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has a quasi constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. MS-VSTS consists of decomposing the data into a sparse multi-scale dictionary like wavelets or curvelets, and then applying a VST on the coefficients in order to get almost Gaussian stabilized coefficients. In this work, we use the isotropic undecimated wavelet transform (IUWT) and the curvelet transform as spherical multi-scale transforms. Then, binary hypothesis testing is carried out to detect significant coefficients, and the denoised image is reconstructed with an iterative algorithm based on hybrid steepest descent (HSD). To detect point sources, we have to extract the Galactic diffuse background: an extension of the method to background separation is then proposed. In contrary, to study the Milky Way diffuse background, we remove point sources with a binary mask. The gaps have to be interpolated: an extension to inpainting is then proposed. The method, applied on simulated Fermi LAT data, proves to be adaptive, fast and easy to implement.
Méndez, Lídice; González, Nemecio; Parra, Francisco; Martín-Alonso, José M.; Limonta, Miladys; Sánchez, Kosara; Cabrales, Ania; Estrada, Mario P.; Rodríguez-Mallón, Alina; Farnós, Omar
2013-01-01
Recombinant virus-like particles (VLP) antigenically similar to rabbit hemorrhagic disease virus (RHDV) were recently expressed at high levels inside Pichia pastoris cells. Based on the potential of RHDV VLP as platform for diverse vaccination purposes we undertook the design, development and scale-up of a production process. Conformational and stability issues were addressed to improve process control and optimization. Analyses on the structure, morphology and antigenicity of these multimers were carried out at different pH values during cell disruption and purification by size-exclusion chromatography. Process steps and environmental stresses in which aggregation or conformational instability can be detected were included. These analyses revealed higher stability and recoveries of properly assembled high-purity capsids at acidic and neutral pH in phosphate buffer. The use of stabilizers during long-term storage in solution showed that sucrose, sorbitol, trehalose and glycerol acted as useful aggregation-reducing agents. The VLP emulsified in an oil-based adjuvant were subjected to accelerated thermal stress treatments. None to slight variations were detected in the stability of formulations and in the structure of recovered capsids. A comprehensive analysis on scale-up strategies was accomplished and a nine steps large-scale production process was established. VLP produced after chromatographic separation protected rabbits against a lethal challenge. The minimum protective dose was identified. Stabilized particles were ultimately assayed as carriers of a foreign viral epitope from another pathogen affecting a larger animal species. For that purpose, a linear protective B-cell epitope from Classical Swine Fever Virus (CSFV) E2 envelope protein was chemically coupled to RHDV VLP. Conjugates were able to present the E2 peptide fragment for immune recognition and significantly enhanced the peptide-specific antibody response in vaccinated pigs. Overall these results allowed establishing improved conditions regarding conformational stability and recovery of these multimers for their production at large-scale and potential use on different animal species or humans. PMID:23460801
Thermostability of In Vitro Evolved Bacillus subtilis Lipase A: A Network and Dynamics Perspective
Srivastava, Ashutosh; Sinha, Somdatta
2014-01-01
Proteins in thermophilic organisms remain stable and function optimally at high temperatures. Owing to their important applicability in many industrial processes, such thermostable proteins have been studied extensively, and several structural factors attributed to their enhanced stability. How these factors render the emergent property of thermostability to proteins, even in situations where no significant changes occur in their three-dimensional structures in comparison to their mesophilic counter-parts, has remained an intriguing question. In this study we treat Lipase A from Bacillus subtilis and its six thermostable mutants in a unified manner and address the problem with a combined complex network-based analysis and molecular dynamic studies to find commonality in their properties. The Protein Contact Networks (PCN) of the wild-type and six mutant Lipase A structures developed at a mesoscopic scale were analyzed at global network and local node (residue) level using network parameters and community structure analysis. The comparative PCN analysis of all proteins pointed towards important role of specific residues in the enhanced thermostability. Network analysis results were corroborated with finer-scale molecular dynamics simulations at both room and high temperatures. Our results show that this combined approach at two scales can uncover small but important changes in the local conformations that add up to stabilize the protein structure in thermostable mutants, even when overall conformation differences among them are negligible. Our analysis not only supports the experimentally determined stabilizing factors, but also unveils the important role of contacts, distributed throughout the protein, that lead to thermostability. We propose that this combined mesoscopic-network and fine-grained molecular dynamics approach is a convenient and useful scheme not only to study allosteric changes leading to protein stability in the face of negligible over-all conformational changes due to mutations, but also in other molecular networks where change in function does not accompany significant change in the network structure. PMID:25122499
Fish scale-derived collagen patch promotes growth of blood and lymphatic vessels in vivo.
Wang, Jun Kit; Yeo, Kim Pin; Chun, Yong Yao; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Angeli, Véronique; Choong, Cleo
2017-11-01
In this study, Type I collagen was extracted from fish scales asa potential alternative source of collagen for tissue engineering applications. Since unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo, additional methylation modification and 1,4-butanediol diglycidyl ether (BDE) crosslinking steps were used to improve the physicochemical properties of fish scale-derived collagen. Subsequently, in vivo studies using a murine model demonstrated the biocompatibility of the different fish scale-derived collagen patches. In general, favorable integration of the collagen patches to the surrounding tissues, with good infiltration of cells, blood vessels (BVs) and lymphatic vessels (LVs) were observed under growth factor-free conditions. Interestingly, significantly higher (p<0.05) number of LVs was found to be more abundant around collagen patches with methylation modification and BDE crosslinking. Overall, we have demonstrated the potential application of fish scale-derived collagen as a promising scaffolding material for various biomedical applications. Currently the most common sources of collagen are of bovine and porcine origins, although the industrial use of collagen obtained from non-mammalian species is growing in importance, particularly since they have a lower risk of disease transmission and are not subjected to any cultural or religious constraints. However, unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo. Hence, in this study, Type I collagen was successfully extracted from fish scales and chemically modified and crosslinked. In vitro studies showed overall improvement in the physicochemical properties of the material, whilst in vivo implantation studies showed improvements in the growth of blood and lymphatic host vessels in the vicinity of the implants. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport
NASA Astrophysics Data System (ADS)
Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.
2011-12-01
Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.
NASA Technical Reports Server (NTRS)
Wolhart, Walter D.; Thomas, David F., Jr.
1955-01-01
An experimental investigation has been made in the Langley stability tunnel to determine the low-speed yawing, pitching, and static stability characteristics of a 1/10-scale model of the Grumman F9F-9 airplane. Tests were made to determine the effects of duct-entrance-fairing plugs on the static lateral and longitudinal stability characteristics of the complete model in the clean condition. The remaining tests were concerned with determining tail contributions as well as the effect of duct-entrance-fairing plugs, slats, flaps, and landing gear on the yawing and pitching stability derivatives. These data are presented without analysis in order to expedite distribution.
NASA Technical Reports Server (NTRS)
Wolhart, Walter D.; Thomas, David F., Jr.
1955-01-01
An experimental investigation has been made in the Langley stability tunnel to determine the low-speed yawing, pitching, and static stability characteristics of a 1/10-scale model of the Grumman F9F-9 airplane. Tests were made to determine the effects of duct-entrance-fairing plugs on the static lateral and longitudinal stability characteristics of the complete model in the clean condition. The remaining tests were concerned with determining tail contributions as well as the effect of duct-entrance-fairing plugs, slats, flaps, and landing gear on the yawing and pitching stability derivatives. These data are presented without analysis in order to expedite distribution.
Towards the 1 mm/y stability of the radial orbit error at regional scales
NASA Astrophysics Data System (ADS)
Couhert, Alexandre; Cerri, Luca; Legeais, Jean-François; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel
2015-01-01
An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West “order-1” pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.
Ayala, Alba; Bilbao, Amaia; Garcia-Perez, Sonia; Escobar, Antonio; Forjaz, Maria João
2018-03-01
The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) measures the quality of life of patients with osteoarthritis (OA), and there is a specific scale for the physical functioning dimension, the short version with seven items WOMAC-pf. This study describes the application of the Rasch model to explore scale invariance and response stability of the WOMAC-pf short version across affected joint and over time. A sample of 884 patients with OA, from 15 hospitals in Spain, completed the WOMAC-pf before surgery (baseline) and at 3, 6 and 12 months post-surgery of hip or knee. The invariance by joint was explored through the differential item functioning (DIF) analysis of the Rasch model using baseline data, and time stability (DIF by time) were evaluated in stack data (each participant is represented four times, one by time point). Mean age of the patients was of 69.13 years (SD 10.01), 59.3% of them were women (n = 524), 59.2% had knee OA (n = 523) and 40.8% hip OA (n = 361). Item "putting on socks" showed DIF by joint and time. Fit to the Rasch model using stack data improved when this item was removed. Good reliability for individual use, local independency and unidimensionality of the models were confirmed. WOMAC-pf 7-item short version was invariant over time and joint when item "putting on socks" was removed. Researchers should carefully evaluate this item as it presents problems in scale invariance and stability, which could affect results when comparing data by joint or when computing change scores.
Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales
NASA Technical Reports Server (NTRS)
Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel
2015-01-01
An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.
Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales
NASA Technical Reports Server (NTRS)
Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel
2014-01-01
An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS,SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.
Experimental parametric studies of transonic T-tail flutter. [wind tunnel tests
NASA Technical Reports Server (NTRS)
Ruhlin, C. L.; Sandford, M. C.
1975-01-01
Wind-tunnel tests of the T-tail of a wide-body jet airplane were made at Mach numbers up to 1.02. The model consisted of a 1/13-size scaled version of the T-tail, fuselage, and inboard wing of the airplane. Two interchangeable T-tails were tested, one with design stiffness for flutter-clearance studies and one with reduced stiffness for flutter-trend studies. Transonic antisymmetric-flutter boundaries were determined for the models with variations in: (1) fin-spar stiffness, (2) stabilizer dihedral angle (-5 deg and 0 deg), (3) wing and forward-fuselage shape, and (4) nose shape of the fin-stabilizer juncture. A transonic symmetric-flutter boundary and flutter trends were established for variations in stabilizer pitch stiffness. Photographs of the test configurations are shown.
Moreno-Murcia, Juan A; Martínez-Galindo, Celestina; Moreno-Pérez, Víctor; Marcos, Pablo J.; Borges, Fernanda
2012-01-01
This study aimed to cross-validate the psychometric properties of the Basic Psychological Needs in Exercise Scale (BPNES) by Vlachopoulos and Michailidou, 2006 in a Spanish context. Two studies were conducted. Confirmatory factor analysis results confirmed the hypothesized three-factor solution In addition, we documented evidence of reliability, analysed as internal consistency and temporal stability. Future studies should analyse the scale's validity and reliability with different populations and check their experimental effect. Key pointsThe Basic Psychological Needs in Exercise Scale (BPNES) is valid and reliable for measuring basic psychological needs in healthy physical exercise in the Spanish context.The factor structure of three correlated factors has shown minimal invariance across gender. PMID:24149130
Effects of scale and Froude number on the hydraulics of waste stabilization ponds.
Vieira, Isabela De Luna; Da Silva, Jhonatan Barbosa; Ide, Carlos Nobuyoshi; Janzen, Johannes Gérson
2018-01-01
This paper presents the findings from a series of computational fluid dynamics simulations to estimate the effect of scale and Froude number on hydraulic performance and effluent pollutant fraction of scaled waste stabilization ponds designed using Froude similarity. Prior to its application, the model was verified by comparing the computational and experimental results of a model scaled pond, showing good agreement and confirming that the model accurately reproduces the hydrodynamics and tracer transport processes. Our results showed that the scale and the interaction between scale and Froude number has an effect on the hydraulics of ponds. At 1:5 scale, the increase of scale increased short-circuiting and decreased mixing. Furthermore, at 1:10 scale, the increase of scale decreased the effluent pollutant fraction. Since the Reynolds effect cannot be ignored, a ratio of Reynolds and Froude numbers was suggested to predict the effluent pollutant fraction for flows with different Reynolds numbers.
NASA Astrophysics Data System (ADS)
Hassanzadeh, H.; Jafari Raad, S. M.
2017-12-01
Linear stability analysis is conducted to study the onset of buoyancy-driven convection involved in solubility trapping of CO2 into deep fractured aquifers. In this study, the effect of fracture network physical properties on the stability criteria in a brine-rich fractured porous layer is investigated using dual porosity concept for both single and variable matrix block size distributions. Linear stability analysis results show that both fracture interporosity flow and fracture storativity factors play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in a fractured rock with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations that relate the onset of convective instability in fractured aquifers. These findings improve our understanding of buoyancy driven flow in fractured aquifers and are particularly important in estimation of potential storage capacity, risk assessment, and storage sites characterization and screening.Keywords: CO2 sequestration; fractured rock; buoyancy-driven convection; stability analysis
Villafañe, Jorge H; Pirali, Caterina; Buraschi, Riccardo; Arienti, Chiara; Corbellini, Camilo; Negrini, Stefano
2015-12-01
We investigated the effectiveness of three different rehabilitative programs: group exercise, individual core stability or balance training intervention with a stabilometric platform to improve balance ability in elderly hospitalized patients. We used a prospective quasi-experimental study design. Twenty-eight patients, 39.3% women [age (mean±SD) 72.4±6.5 years], known to have had at least a fall in the last 12 months, were consecutively assigned to one of the following three groups: group exercise intervention, individual core stability or balance training with a stabilometric platform (five sessions a week for 3 weeks in each group). Outcomes were collected at baseline and immediately following the intervention period. In each intervention group, patients showed improvement in balance and mobility, shown as an improvement in the three functional tests score (the Tinetti scale, the Berg Balance Scale, and the Time Up and Go test) (all, P<0.05), whereas, generally, the changes in the score of the test of the stabilometric platform (Postural Stability Test and Fall Risk Test) were not significant for all the interventions. No significant group-by-time interaction was detected for any of the intervention groups, which suggests that the groups improved in the same way. These findings indicate that participation in an exercise program can improve balance and functional mobility, which might contribute toward the reductions of the falls of elderly hospitalized patients and the subsequent fall-related costs. Functional scales might be more appropriate than an instrumental test (Postural Stability Test and Fall Risk Test of the Biodex Balance System) in detecting the functional improvement because of a rehabilitative intervention.
Oliveira, Crystian B; Negrão Filho, Ruben F; Franco, Márcia R; Morelhão, Priscila K; Araujo, Amanda C; Pinto, Rafael Z
2017-06-01
Study Design A prospective cohort study. Background Motor control dysfunctions have been commonly reported in patients with chronic nonspecific low back pain (LBP). Physical therapists need clinical tools with adequate psychometric properties to assess such patients in clinical practice. The deep muscle contraction (DMC) scale is a clinical rating scale for assessing patients' ability to voluntarily contract deep abdominal muscles. Objectives To investigate the intrarater reliability, floor and ceiling effects, internal and external responsiveness, and correlation analysis (with ultrasound measures) of the DMC scale in patients with chronic nonspecific LBP undergoing a lumbar stabilization exercise program. Methods Sixty-two patients with chronic nonspecific LBP were included. At baseline, self-report questionnaires were administered to patients and a trained assessor evaluated abdominal muscle recruitment with the DMC scale and ultrasound imaging. Four ratios of the change in abdominal muscle thickness between the resting and contracted states were calculated through the ultrasound measures. After 1 week, the same ultrasound measures and DMC scale were collected again for the reliability analysis. The proportions of patients with the lowest and highest scores on the DMC scale were calculated to investigate floor and ceiling effects. All patients underwent a lumbar stabilization program, administered twice a week for 8 weeks. After the treatment period, all measures were collected again, with the addition of the global perceived effect scale, to assess the internal and external responsiveness of the measures. Correlation coefficients between ultrasound ratios and DMC scale total and subscale scores were also calculated. Results The intrarater reliability of the DMC scale and the 4 ratios of abdominal muscle thickness varied from moderate to excellent. The DMC scale showed no floor or ceiling effects. Results for internal responsiveness of the DMC scale showed large effect sizes (2.26; 84% confidence interval [CI]: 2.06, 2.45), whereas the external responsiveness was below the proposed threshold (area under the curve = 0.54; 95% CI: 0.39, 0.68). Fair and significant correlations between some ultrasound ratios and DMC subscales were found. Conclusion The DMC scale was demonstrated to be a reliable tool, with no ceiling and floor effects, and to detect change in the ability to contract the deep abdominal muscles after a lumbar stabilization exercise program, but with low accuracy for estimating patient-perceived clinical outcome. J Orthop Sports Phys Ther 2017;47(6):432-441. doi:10.2519/jospt.2017.7140.
Influence of toroidal rotation on tearing modes
NASA Astrophysics Data System (ADS)
Cai, Huishan; Cao, Jintao; Li, Ding
2017-10-01
Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.
NASA Astrophysics Data System (ADS)
Zamani, P.; Borzouei, M.
2016-12-01
This paper addresses issue of sensitivity of efficiency classification of variable returns to scale (VRS) technology for enhancing the credibility of data envelopment analysis (DEA) results in practical applications when an additional decision making unit (DMU) needs to be added to the set being considered. It also develops a structured approach to assisting practitioners in making an appropriate selection of variation range for inputs and outputs of additional DMU so that this DMU be efficient and the efficiency classification of VRS technology remains unchanged. This stability region is simply specified by the concept of defining hyperplanes of production possibility set of VRS technology and the corresponding halfspaces. Furthermore, this study determines a stability region for the additional DMU within which, in addition to efficiency classification, the efficiency score of a specific inefficient DMU is preserved and also using a simulation method, a region in which some specific efficient DMUs become inefficient is provided.
The 2-year stability of parental perceptions of child vulnerability and parental overprotection.
Thomasgard, M; Metz, W P
1996-08-01
Clinicians often identify parent-child relationships that are believed to be problematic for the child's future emotional growth, yet there are minimal outcome data on which to base anticipatory guidance. This 2-year follow-up study examined the stability and child behavioral correlates of parental perceptions of increased child vulnerability and parental overprotection. Of 192 potential participants, 114 parents (93% mothers, 86% white, 75% married, 90% middle-upper socioeconomic status) with children age 4 to 7 years successfully completed the Parent Protection Scale, Child Vulnerability Scale, Child Behavior Checklist 4-18, and the Parental Bonding Instrument. The 2-year stability of high parental overprotection was 37%; for high parental perception of child vulnerability, it was 31%. High perceived vulnerability at enrollment was significantly associated with both internalizing (somatic complaints, anxious/depressed) and externalizing (aggressive) behaviors at follow-up. A history of overprotection in the parent's childhood was not associated with current parental report of overprotective behaviors toward the child.
Shin, Ji-won; Song, Gui-bin; Ko, Jooyeon
2017-01-01
[Purpose] The purpose of this case series was to examination the effects of trunk and neck stabilization exercise on the static, dynamic trunk balance abilities of children with cerebral palsy. [Subjects and Methods] The study included 11 school aged children diagnosed with paraplegia due to a premature birth. Each child engaged in exercise treatments twice per week for eight weeks; each treatment lasted for 45 minutes. After conducting a preliminary assessment, exercise treatments were designed based on each child’s level of functioning. Another assessment was conducted after the eight weeks of treatment. [Results] The Trunk Control Measurement Scale evaluation showed that the exercise treatments had a significant effect on static sitting balance, selective movement control, dynamic reaching, and total Trunk Control Measurement Scale scores. [Conclusion] The results indicate that neck and trunk stabilization exercises that require children’s active participation are helpful for improving static and dynamic balance ability among children diagnosed with cerebral palsy. PMID:28533628
ELM Suppression and Pedestal Structure in I-Mode Plasmas
NASA Astrophysics Data System (ADS)
Walk, John
2013-10-01
The I-mode regime is characterized by the formation of a temperature pedestal and enhanced energy confinement (H98 up to 1.2), without an accompanying density pedestal or drop in particle transport. Unlike ELMy H-modes, I-mode operation appears to have naturally-occurring suppression of large ELMs in addition to its highly favorable scalings of pedestal structure (and therefore overall performance). Instead, continuous Weakly Coherent Modes help to regulate density. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Peeling-ballooning MHD calculations are completed using the ELITE code, showing I-mode pedestals to be generally MHD-stable. Under certain conditions, intermittent ELMs are observed in I-mode at reduced field, typically triggered by sawtooth crashes; modification of the temperature pedestal (and therefore the pressure profile stability) by sawtooth heat pulses is being examined in ELITE. Modeled stability to KBM turbulence in I-mode and ELMy H-mode suggests that typical I-modes are stable against KBM turbulence. Measured I-mode pedestals are significantly wider (more stable) than the width scaling with the square root of poloidal beta characteristic of the KBM-limited pedestals in ELMy H-mode. Finally, we explore scalings of pedestal structure with engineering parameters compared to ELMy H-modes on C-Mod. In particular, we focus on scalings of the pressure pedestal with heating power (and its relation to the favorable scaling of confinement with power in I-mode) and on relationships between heat flux and pedestal temperature gradients. This work is supported by DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by DOE agreement DE-FG02-99ER54309.
Multiscale System for Environmentally-Driven Infectious Disease with Threshold Control Strategy
NASA Astrophysics Data System (ADS)
Sun, Xiaodan; Xiao, Yanni
A multiscale system for environmentally-driven infectious disease is proposed, in which control measures at three different scales are implemented when the number of infected hosts exceeds a certain threshold. Our coupled model successfully describes the feedback mechanisms of between-host dynamics on within-host dynamics by employing one-scale variable guided enhancement of interventions on other scales. The modeling approach provides a novel idea of how to link the large-scale dynamics to small-scale dynamics. The dynamic behaviors of the multiscale system on two time-scales, i.e. fast system and slow system, are investigated. The slow system is further simplified to a two-dimensional Filippov system. For the Filippov system, we study the dynamics of its two subsystems (i.e. free-system and control-system), the sliding mode dynamics, the boundary equilibrium bifurcations, as well as the global behaviors. We prove that both subsystems may undergo backward bifurcations and the sliding domain exists. Meanwhile, it is possible that the pseudo-equilibrium exists and is globally stable, or the pseudo-equilibrium, the disease-free equilibrium and the real equilibrium are tri-stable, or the pseudo-equilibrium and the real equilibrium are bi-stable, or the pseudo-equilibrium and disease-free equilibrium are bi-stable, which depends on the threshold value and other parameter values. The global stability of the pseudo-equilibrium reveals that we may maintain the number of infected hosts at a previously given value. Moreover, the bi-stability and tri-stability indicate that whether the number of infected individuals tends to zero or a previously given value or other positive values depends on the parameter values and the initial states of the system. These results highlight the challenges in the control of environmentally-driven infectious disease.
Natural Resource Management at Four Social Scales: Psychological Type Matters
NASA Astrophysics Data System (ADS)
Allison, Helen; Hobbs, Richard
2010-03-01
Understanding organisation at different social scales is crucial to learning how social processes play a role in sustainable natural resource management. Research has neglected the potential role that individual personality plays in decision making in natural resource management. In the past two decades natural resource management across rural Australia has increasingly come under the direct influence of voluntary participatory groups, such as Catchment Management Authorities. The greater complexity of relationships among all stakeholders is a serious management challenge when attempting to align their differing aspirations and values at four social institutional scales—local, regional, state and national. This is an exploratory study on the psychological composition of groups of stakeholders at the four social scales in natural resource management in Australia. This article uses the theory of temperaments and the Myers-Briggs Type Indicator (MBTI®) to investigate the distribution of personality types. The distribution of personality types in decision-making roles in natural resource management was markedly different from the Australian Archive sample. Trends in personality were found across social scales with Stabilizer temperament more common at the local scale and Theorist temperament more common at the national scale. Greater similarity was found at the state and national scales. Two temperaments comprised between 76 and 90% of participants at the local and regional scales, the common temperament type was Stabilizer. The dissimilarity was Improviser (40%) at the local scale and Theorist (29%) at the regional scale. Implications for increasing participation and bridging the gap between community and government are discussed.
In-Flight Stability Analysis of the X-48B Aircraft
NASA Technical Reports Server (NTRS)
Regan, Christopher D.
2008-01-01
This report presents the system description, methods, and sample results of the in-flight stability analysis for the X-48B, Blended Wing Body Low-Speed Vehicle. The X-48B vehicle is a dynamically scaled, remotely piloted vehicle developed to investigate the low-speed control characteristics of a full-scale blended wing body. Initial envelope clearance was conducted by analyzing the stability margin estimation resulting from the rigid aircraft response during flight and comparing it to simulation data. Short duration multisine signals were commanded onboard to simultaneously excite the primary rigid body axes. In-flight stability analysis has proven to be a critical component of the initial envelope expansion.
Kibria, Md Golam; Qiao, Ruimin; Yang, Wanli; Boukahil, Idris; Kong, Xianghua; Chowdhury, Faqrul Alam; Trudeau, Michel L; Ji, Wei; Guo, Hong; Himpsel, F J; Vayssieres, Lionel; Mi, Zetian
2016-10-01
The atomic-scale origin of the unusually high performance and long-term stability of wurtzite p-GaN oriented nanowire arrays is revealed. Nitrogen termination of both the polar (0001¯) top face and the nonpolar (101¯0) side faces of the nanowires is essential for long-term stability and high efficiency. Such a distinct atomic configuration ensures not only stability against (photo) oxidation in air and in water/electrolyte but, as importantly, also provides the necessary overall reverse crystal polarization needed for efficient hole extraction in p-GaN. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA hydrogen maser accuracy and stability in relation to world standards
NASA Technical Reports Server (NTRS)
Peters, H. E.; Percival, D. B.
1973-01-01
Frequency comparisons were made among five NASA hydrogen masers in 1969 and again in 1972 to a precision of one part in 10 to the 13th power. Frequency comparisons were also made between these masers and the cesium-beam ensembles of several international standards laboratories. The hydrogen maser frequency stabilities as related to IAT were comparable to the frequency stabilities of individual time scales with respect to IAT. The relative frequency variations among the NASA masers, measured after the three-year interval, were 2 + or - 2 parts in 10 to the 13th power. Thus time scales based on hydrogen masers would have excellent long-term stability and uniformity.
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.; Goodson, Kenneth W.; Kuhn, Richard E.
1947-01-01
Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The basic lateral stability characteristics of the complete model with undeflected control surfaces are presented in the present report with a very limited analysis of the results.
Landslide Hazard Probability Derived from Inherent and Dynamic Determinants
NASA Astrophysics Data System (ADS)
Strauch, Ronda; Istanbulluoglu, Erkan
2016-04-01
Landslide hazard research has typically been conducted independently from hydroclimate research. We unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach combines an empirical inherent landslide probability with a numerical dynamic probability, generated by combining routed recharge from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model run in a Monte Carlo simulation. Landslide hazard mapping is advanced by adjusting the dynamic model of stability with an empirically-based scalar representing the inherent stability of the landscape, creating a probabilistic quantitative measure of geohazard prediction at a 30-m resolution. Climatology, soil, and topography control the dynamic nature of hillslope stability and the empirical information further improves the discriminating ability of the integrated model. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex, a rugged terrain with nearly 2,700 m (9,000 ft) of vertical relief, covering 2757 sq km (1064 sq mi) in northern Washington State, U.S.A.
Elzinga, Michael J; van Breugel, Floris; Dickinson, Michael H
2014-06-01
The ability to regulate forward speed is an essential requirement for flying animals. Here, we use a dynamically-scaled robot to study how flapping insects adjust their wing kinematics to regulate and stabilize forward flight. The results suggest that the steady-state lift and thrust requirements at different speeds may be accomplished with quite subtle changes in hovering kinematics, and that these adjustments act primarily by altering the pitch moment. This finding is consistent with prior hypotheses regarding the relationship between body pitch and flight speed in fruit flies. Adjusting the mean stroke position of the wings is a likely mechanism for trimming the pitch moment at all speeds, whereas changes in the mean angle of attack may be required at higher speeds. To ensure stability, the flapping system requires additional pitch damping that increases in magnitude with flight speed. A compensatory reflex driven by fast feedback of pitch rate from the halteres could provide such damping, and would automatically exhibit gain scheduling with flight speed if pitch torque was regulated via changes in stroke deviation. Such a control scheme would provide an elegant solution for stabilization across a wide range of forward flight speeds.
Slope stability and bearing capacity of landfills and simple on-site test methods.
Yamawaki, Atsushi; Doi, Yoichi; Omine, Kiyoshi
2017-07-01
This study discusses strength characteristics (slope stability, bearing capacity, etc.) of waste landfills through on-site tests that were carried out at 29 locations in 19 sites in Japan and three other countries, and proposes simple methods to test and assess the mechanical strength of landfills on site. Also, the possibility of using a landfill site was investigated by a full-scale eccentric loading test. As a result of this, landfills containing more than about 10 cm long plastics or other fibrous materials were found to be resilient and hard to yield. An on-site full scale test proved that no differential settlement occurs. The repose angle test proposed as a simple on-site test method has been confirmed to be a good indicator for slope stability assessment. The repose angle test suggested that landfills which have high, near-saturation water content have considerably poorer slope stability. The results of our repose angle test and the impact acceleration test were related to the internal friction angle and the cohesion, respectively. In addition to this, it was found that the air pore volume ratio measured by an on-site air pore volume ratio test is likely to be related to various strength parameters.
Aeroelastic loads and stability investigation of a full-scale hingeless rotor
NASA Technical Reports Server (NTRS)
Peterson, Randall L.; Johnson, Wayne
1991-01-01
An analytical investigation was conducted to study the influence of various parameters on predicting the aeroelastic loads and stability of a full-scale hingeless rotor in hover and forward flight. The CAMRAD/JA (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Johnson Aeronautics) analysis code is used to obtain the analytical predictions. Data are presented for rotor blade bending and torsional moments as well as inplane damping data obtained for rotor operation in hover at a constant rotor rotational speed of 425 rpm and thrust coefficients between 0.0 and 0.12. Experimental data are presented from a test in the wind tunnel. Validation of the rotor system structural model with experimental rotor blade loads data shows excellent correlation with analytical results. Using this analysis, the influence of different aerodynamic inflow models, the number of generalized blade and body degrees of freedom, and the control-system stiffness at predicted stability levels are shown. Forward flight predictions of the BO-105 rotor system for 1-G thrust conditions at advance ratios of 0.0 to 0.35 are presented. The influence of different aerodynamic inflow models, dynamic inflow models and shaft angle variations on predicted stability levels are shown as a function of advance ratio.
Stability and dynamical properties of material flow systems on random networks
NASA Astrophysics Data System (ADS)
Anand, K.; Galla, T.
2009-04-01
The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.
NASA Technical Reports Server (NTRS)
Jordan, Frank L., Jr.; Hahne, David E.
1992-01-01
An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.
MATLAB Stability and Control Toolbox Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis
2012-01-01
MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.
A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization.
Okoniewski, Stephen R; Carter, Ashley R; Perkins, Thomas T
2017-01-01
Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (1) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (2) minimizing sample motion relative to the optical trap using a three-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03-2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging.
Kraeutler, Matthew J.; Aberle, Nicholas S.; Brown, Colin C.; Ptasinski, Joseph J.; McCarty, Eric C.
2018-01-01
Background: Glenohumeral instability is a common abnormality, especially among athletes. Previous studies have evaluated outcomes after arthroscopic stabilization in patients with anterior or posterior shoulder instability but have not compared outcomes between groups. Purpose: To compare return-to-sport and other patient-reported outcomes in patients after primary arthroscopic anterior, posterior, and combined anterior and posterior shoulder stabilization. Study Design: Cohort study; Level of evidence, 3. Methods: Patients who underwent primary arthroscopic anterior, posterior, or combined anterior and posterior shoulder stabilization were contacted at a minimum 2-year follow-up. Patients completed a survey that consisted of return-to-sport outcomes as well as the Western Ontario Shoulder Instability Index (WOSI), Single Assessment Numeric Evaluation (SANE), American Shoulder and Elbow Sur’geons (ASES) score, and Shoulder Activity Scale. Results: A total of 151 patients were successfully contacted (anterior: n = 81; posterior: n = 22; combined: n = 48) at a mean follow-up of 3.6 years. No significant differences were found between the groups with regard to age at the time of surgery or time to follow-up. No significant differences were found between the groups in terms of WOSI (anterior: 76; posterior: 70; combined: 78; P = .28), SANE (anterior: 87; posterior: 85; combined: 87; P = .79), ASES (anterior: 88; posterior: 83; combined: 91; P = .083), or Shoulder Activity Scale (anterior: 12.0; posterior: 12.5; combined: 12.5; P = .74) scores. No significant difference was found between the groups in terms of the rate of return to sport (anterior: 73%; posterior: 68%; combined: 75%; P = .84). Conclusion: Athletes undergoing arthroscopic stabilization of anterior, posterior, or combined shoulder instability can be expected to share a similar prognosis. High patient-reported outcome scores and moderate to high rates of return to sport were achieved by all groups. PMID:29637085
Assortativeness and information in scale-free networks
NASA Astrophysics Data System (ADS)
Piraveenan, M.; Prokopenko, M.; Zomaya, A. Y.
2009-02-01
We analyze Shannon information of scale-free networks in terms of their assortativeness, and identify classes of networks according to the dependency of the joint remaining degree distribution on the assortativeness. We conjecture that these classes comprise minimalistic and maximalistic networks in terms of Shannon information. For the studied classes, the information is shown to depend non-linearly on the absolute value of the assortativeness, with the dominant term of the relationship being a power-law. We exemplify this dependency using a range of real-world networks. Optimization of scale-free networks according to information they contain depends on the landscape of parameters’ search-space, and we identify two regions of interest: a slope region and a stability region. In the slope region, there is more freedom to generate and evaluate candidate networks since the information content can be changed easily by modifying only the assortativeness, while even a small change in the power-law’s scaling exponent brings a reward in a higher rate of information change. This feature may explain why the exponents of real-world scale-free networks are within a certain range, defined by the slope and stability regions.
Stability analysis in tachyonic potential chameleon cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farajollahi, H.; Salehi, A.; Tayebi, F.
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
NASA Technical Reports Server (NTRS)
1981-01-01
Active controls improve airplane performance by stabilizing its flight, reducing departures from stable flight, and alleviating loads imposed by external forces such as gusts, turbulence, or maneuvers. Some uses for active control systems, the design of redundant and reliable stability augmentation systems, digital fly-by-wire, and NASA assessments of the technology of sensors and actuators are discussed. A series of trade-off studies to better define optimum flight control systems, and research by drone and full-scale models are described.
Characterization of flame stabilization technologies
NASA Astrophysics Data System (ADS)
Bush, Scott Matthew
To experimentally explore and characterize a V-gutter stabilized flame, this research study developed a Combustion Wind Tunnel Test Facility capable of effectively simulating the freestream Mach #'s and temperatures achieved within the back end of a gas turbine jet engine. After validating this facility, it was then used to gain a better understanding of the flow dynamics and combustion dynamics associated with the V-gutter configuration. The motivation for studying the V-gutter stabilized flame is due to the concern in industry today with combustion instabilities that are encountered in military aircraft. To gain a better understanding of the complex flow field associated with the V-gutter stabilized flame, this research study utilized Particle Image Velocimetry to capture both non-reacting and reacting instantaneous and mean flow structures formed in the wake region of the three dimensional V-gutter bluff body. The results of this study showed significant differences between the non-reacting and reacting flow fields. The non-reacting case resulted in asymmetric shedding of large scale vortices from the V-gutter edges while the reacting case resulted in a combination of both symmetric and asymmetric shedding of smaller scale vortical structures. A comparison of the mean velocity components shows that the reacting case results in a larger region of reversed flow, experiences an acceleration of the freestream flow due to combustion, and results in a slower dissipation of the wake region. Simultaneous dynamic pressure and CH* chemiluminescence measurements were also recorded to determine the coupling between the flow dynamics and combustion dynamics. The results of this study showed that only low frequency combustion instabilities were encountered at various conditions within the envelope of stable operation because of the interaction between longitudinal acoustic waves and unsteady heat release. When approaching rich blow out, rms pressure amplitudes were as high as 2 psi, and approaching lean blow out lead to rms pressure amplitudes around 0.2 psi. These studies also showed the instability frequency increasing with increases in either inlet temperature or inlet Mach #. Additionally, increasing the inlet velocity or the DeZubay parameter reduced the stability limits of operation for the V-gutter stabilized flame.
Passive stability and actuation of micro aerial vehicles
NASA Astrophysics Data System (ADS)
Piccoli, Matthew
Micro Aerial Vehicles (MAVs) have increased in popularity in recent years. The most common platform, the quadrotor, has surpassed other MAVs like traditional helicopters and ornithopters in popularity mainly due to their simplicity. Yet the quadrotor design is a century old and was intended to carry people. We set out to design a MAV that is designed specifically to be a MAV, i.e. a vehicle not intended to carry humans as a payload. With this constraint lifted the vehicle can continuously rotate, which would dizzy a human, can sustain larger forces, which would damage a human, or can take advantage of scaling properties, where it may not work at human scale. Furthermore, we aim for simplicity by removing vehicle controllers and reducing the number of actuators, such that the vehicle can be made cost effective, if not disposable. We begin by studying general equations of motion for hovering MAVs. We search for vehicle configurations that exhibit passive stability, allowing the MAV to operate without a controller or actuators to apply control, ideally a single actuator. The analysis suggests two distinct types of passively stabilized MAVs and we create test vehicles for both. With simple hovering achieved, we concentrate on controlled motion with an emphasis on doing so without adding actuators. We find we can attain three degree of freedom control using separation of time scales with our actuator via low frequency for control in the vertical direction and high frequency for control in the horizontal plane. We explore techniques for achieving high frequency actuator control, which also allow the compensation of motor defects, specifically cogging torque. We combine passive stability with the motion control into two vehicles, UNO and Piccolissimo. UNO, the Underactuated-propeller Naturally-stabilized One-motor vehicle, demonstrates the capabilities of simple vehicles by performing maneuvers like conventional quadrotors. Piccolissimo, Italian for very little, demonstrates the merits of passive stability and single actuator control by being the smallest, self-powered, controllable MAV.
Influence of foam on the stability characteristics of immiscible flow in porous media
NASA Astrophysics Data System (ADS)
van der Meer, J. M.; Farajzadeh, R.; Rossen, W. R.; Jansen, J. D.
2018-01-01
Accurate field-scale simulations of foam enhanced oil recovery are challenging, due to the sharp transition between gas and foam. Hence, unpredictable numerical and physical behavior is often observed, casting doubt on the validity of the simulation results. In this paper, a thorough stability analysis of the foam model is presented to validate the simulation results. We study the effect of a strongly non-monotonous total mobility function arising from foam models on the stability characteristics of the flow. To this end, we apply the linear stability analysis to nearly discontinuous relative permeability functions and compare the results with those of highly accurate numerical simulations. In addition, we present a qualitative analysis of the effect of different reservoir and fluid properties on the foam fingering behavior. In particular, we consider the effect of heterogeneity of the reservoir, injection rates, and foam quality. Relative permeability functions play an important role in the onset of fingering behavior of the injected fluid. Hence, we can deduce that stability properties are highly dependent on the non-linearity of the foam transition. The foam-water interface is governed by a very small total mobility ratio, implying a stable front. The transition between gas and foam, however, exhibits a huge total mobility ratio, leading to instabilities in the form of viscous fingering. This implies that there is an unstable pattern behind the front. We deduce that instabilities are able to grow behind the front but are later absorbed by the expanding wave. Moreover, the stability analysis, validated by numerical simulations, provides valuable insights about the important scales and wavelengths of the foam model. In this way, we remove the ambiguity regarding the effect of grid resolution on the convergence of the solutions. This insight forms an essential step toward the design of a suitable computational solver that captures all the appropriate scales, while retaining computational efficiency.
NASA Astrophysics Data System (ADS)
Calvo, Marta; Hinderer, Jacques; Rosat, Severine; Legros, Hilaire; Boy, Jean-Paul; Ducarme, Bernard; Zürn, Walter
2014-10-01
Long gravity records are of great interest when performing tidal analyses. Indeed, long series enable to separate contributions of near-frequency waves and also to detect low frequency signals (e.g. long period tides and polar motion). In addition to the length of the series, the quality of the data and the temporal stability of the noise are also very important. We study in detail some of the longest gravity records available in Europe: 3 data sets recorded with spring gravimeters in Black Forest Observatory (Germany, 1980-2012), Walferdange (Luxemburg, 1980-1995) and Potsdam (Germany, 1974-1998) and several superconducting gravimeters (SGs) data sets, with at least 9 years of continuous records, at different European GGP (Global Geodynamics Project) sites (Bad Homburg, Brussels, Medicina, Membach, Moxa, Vienna, Wettzell and Strasbourg). The stability of each instrument is investigated using the temporal variations of tidal parameters (amplitude factor and phase difference) for the main tidal waves (O1, K1, M2 and S2) as well as the M2/O1 factor ratio, the later being insensitive to the instrumental calibration. The long term stability of the tidal observations is also dependent on the stability of the scale factor of the relative gravimeters. Therefore we also check the time stability of the scale factor for the superconducting gravimeter C026 installed at the J9 Gravimetric Observatory of Strasbourg (France), using numerous calibration experiments carried out by co-located absolute gravimeter (AG) measurements during the last 15 years. The reproducibility of the scale factor and the achievable precision are investigated by comparing the results of different calibration campaigns. Finally we present a spectrum of the 25 years of SG records at J9 Observatory, with special attention to small amplitude tides in the semi-diurnal and diurnal bands, as well as to the low frequency part.
Vrbova, Kristyna; Prasko, Jan; Ociskova, Marie; Holubova, Michaela; Kantor, Krystof; Kolek, Antonin; Grambal, Aleš; Slepecky, Milos
2018-01-01
Patients who have schizophrenia are more prone to suicidal behavior than the general population. This study aimed to find connections between suicidality and self-stigma, hope, and personality traits in patients with schizophrenia. Forty-eight stabilized outpatients with schizophrenia attended this cross-sectional study. Patients were diagnosed by the Mini International Neuropsychiatric Interview (MINI) using the ICD-10 research diagnostic criteria. The assessments included Positive and Negative Syndrome Scale, objective and subjective Clinical Global Impression, Liebowitz Social Anxiety Scale, Beck Depression Inventory-second edition, Internalized Stigma of Mental Illness, the Temperament and Character Inventory, and Adult Dispositional Hope Scale. The individual rate of suicidality (suicidal index from MINI) strongly positively correlated with self-stigma, level of depression, social anxiety, and harm-avoidance, and negatively correlated with hope, self-directedness, and stigma resistance. Individuals with additional symptoms of depression, social anxiety, trait-like anxiety, and self-stigma should be carefully monitored for suicidal ideation. On the opposite side, patients with sufficient hope, self-esteem, and goal-directed attitudes are less likely to have suicidal thoughts and may potentially be role models in group rehabilitation programs, motivating more distressed colleagues and showing them ways to cope.
Effects of plasma shaping on nonlinear gyrokinetic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belli, E. A.; Hammett, G. W.; Dorland, W.
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W. M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on bothmore » the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of {chi}{approx}{kappa}{sup -1.5} or {kappa}{sup -2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.« less
Collisionless relaxation in spiral galaxy models
NASA Technical Reports Server (NTRS)
Hohl, F.
1974-01-01
The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.
Rahafar, Arash; Randler, Christoph; Díaz-Morales, Juan F; Kasaeian, Ali; Heidari, Zeinab
2017-01-01
Morningness-Eveningness Stability Scale improved (MESSi) is a newly constructed measure to assess circadian types and amplitude. In this study, we applied this measure to participants from three different countries: Germany, Spain and Iran. Confirmatory factorial analysis (CFA) of MESSi displayed mediocre fit in the three countries. Comparing increasingly stringent models using multigroup confirmatory factor analyses indicated at least partial measurement invariance (metric invariance) by country for Morning Affect and Distinctness subscales. Age was positively related to Morning Affect (MA), and negatively related to Eveningness (EV) and Distinctness (DI). Men reported higher MA than women, whereas women reported higher DI than men. Regarding country effect, Iranian participants reported highest MA compared to Spaniards and Germans, whereas Germans reported higher DI compared to Iranians and Spaniards. As a conclusion, our study corroborated the validity and reliability of MESSi across three different countries with different geographical and cultural characteristics.
Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane
NASA Technical Reports Server (NTRS)
Leland, T. J. W.; Thompson, W. C.
1975-01-01
An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.
Kavussanu, Maria; Stanger, Nicholas; Boardley, Ian D
2013-01-01
The purpose of this research was to provide further evidence for the construct validity (i.e., convergent, concurrent, and discriminant validity) of the Prosocial and Antisocial Behaviour in Sport Scale (PABSS), an instrument that has four subscales measuring prosocial and antisocial behaviour toward teammates and opponents. We also investigated test-retest reliability and stability of the PABSS. We conducted three studies using athletes from a variety of team sports. In Study 1, participants (N = 129) completed the PABSS and measures of physical and verbal aggression, hostility, anger, moral identity, and empathy; a sub-sample (n = 111) also completed the PABSS one week later. In Study 2, in addition to the PABSS, participants (N = 89) completed measures of competitive aggressiveness and anger, moral attitudes, moral disengagement, goal orientation, and anxiety. In Study 3, participants (N = 307) completed the PABSS and a measure of social goals. Across the three studies, the four subscales evidenced the hypothesised relationships with a number of variables. Correlations were large between the two antisocial behaviours and small between the two prosocial behaviours. Overall, the findings supported the convergent, concurrent, and discriminant validity of the scale, provided evidence for its test-retest reliability and stability, and suggest that the instrument is a valid and reliable measure of prosocial and antisocial behaviour in sport.
Almousa, S; Lamprianidou, E; Kitsoulis, G
2018-01-01
Pelvic girdle pain is a common musculoskeletal disorder which affects women during pregnancy and the postpartum period. In previous years, physiotherapists have focused on managing pelvic girdle pain through stabilizing exercises. The aim of this study was to systematically review studies investigating the effectiveness of the stabilizing exercises for pelvic girdle pain during pregnancy and the postpartum period. The following electronic databases were utilized to search for eligible studies: MEDLINE, EMBASE, CINAHL, Physiotherapy Evidence Database, and Cochrane Library. Inclusion and exclusion criteria were defined a priori. The quality assessment was performed by the two reviewers independently using the PEDro scale (Physiotherapy Evidence-based Database). Six studies were identified as eligible with the inclusion and exclusion criteria. All studies evaluated the pain as an outcome measure. The evidence conflicted between the studies. Two studies showed that stabilizing exercises decrease pain and improve the quality of life for pregnant women when they are carried out on a regular basis. There is some limited evidence that stabilizing exercises decrease pain for postpartum women too. In summary, there is limited evidence for the clinician to conclude on the effectiveness of stabilizing exercises in treating pelvic girdle pain during pregnancy and the postpartum periods. Copyright © 2017 John Wiley & Sons, Ltd.
Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin
2017-01-01
The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H2S/CO2 environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H2S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni3S2, NiS, or Ni3S4, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate. PMID:28772995
The Psychometric Parameters of the Farsi Form of the Arabic Scale of Death Anxiety
Abdel-Khalek, Ahmed M.; Lester, David
2017-01-01
The aim of this study was to describe the psychometric properties of the Farsi Form of the Arabic Scale of Death Anxiety (ASDA). The original scale was first translated into Farsi by language experts using the back translation procedure and then administered to a total of 252 Iranian college students and 52 psychiatric outpatients from psychiatric and psychological clinics. The one-week test-retest reliability of the Farsi version in a sample of college students was 0.78, indicating good temporal stability and corroborating the trait-like nature of scores. Cronbach's α was 0.90 for the college students and 0.92 for the psychiatric outpatients, indicating high internal consistency. Scale scores correlated 0.46 with Death Obsession Scale scores, 0.56 with Death Depression Scale scores, 0.41 with Death Anxiety Scale scores, and 0.40 with Wish to be Dead Scale scores, indicating good construct and criterion-related validity. A principal component analysis with a Varimax rotation yielded four factors in the sample of Iranian college students, indicating a lack of homogeneity in the content of the scale. Male students obtained a significant higher mean score than did females. It was concluded that the Farsi ASDA had good internal consistency, temporal stability, criterion-related validity, and a factor structure reflecting important features of death anxiety. In general, the Farsi ASDA could be recommended for use in research on death anxiety among Iranian college students and psychiatric outpatients. PMID:28698887
The Psychometric Parameters of the Farsi Form of the Arabic Scale of Death Anxiety.
Dadfar, Mahboubeh; Abdel-Khalek, Ahmed M; Lester, David; Atef Vahid, Mohammad Kazem
2017-01-01
The aim of this study was to describe the psychometric properties of the Farsi Form of the Arabic Scale of Death Anxiety (ASDA). The original scale was first translated into Farsi by language experts using the back translation procedure and then administered to a total of 252 Iranian college students and 52 psychiatric outpatients from psychiatric and psychological clinics. The one-week test-retest reliability of the Farsi version in a sample of college students was 0.78, indicating good temporal stability and corroborating the trait-like nature of scores. Cronbach's α was 0.90 for the college students and 0.92 for the psychiatric outpatients, indicating high internal consistency. Scale scores correlated 0.46 with Death Obsession Scale scores, 0.56 with Death Depression Scale scores, 0.41 with Death Anxiety Scale scores, and 0.40 with Wish to be Dead Scale scores, indicating good construct and criterion-related validity. A principal component analysis with a Varimax rotation yielded four factors in the sample of Iranian college students, indicating a lack of homogeneity in the content of the scale. Male students obtained a significant higher mean score than did females. It was concluded that the Farsi ASDA had good internal consistency, temporal stability, criterion-related validity, and a factor structure reflecting important features of death anxiety. In general, the Farsi ASDA could be recommended for use in research on death anxiety among Iranian college students and psychiatric outpatients.
NASA Technical Reports Server (NTRS)
Maki, Ralph L.
1959-01-01
Blowing boundary-layer control was applied to the leading- and trailing-edge flaps of a 45 deg sweptback-wing complete model in a full-scale low-speed wind-tunnel study. The principal purpose of the study was to determine the effects of leading-edge flap deflection and boundary-layer control on maximum lift and longitudinal stability. Leading-edge flap deflection alone was sufficient to maintain static longitudinal stability without trailing-edge flaps. However, leading-edge flap blowing was required to maintain longitudinal stability by delaying leading-edge flow separation when trailing-edge flaps were deflected either with or without blowing. Partial-span leading-edge flaps deflected 60 deg with moderate blowing gave the major increase in maximum lift, although higher deflection and additional blowing gave some further increase. Inboard of 0.4 semispan leading-edge flap deflection could be reduced to 40 deg and/or blowing could be omitted with only small loss in maximum lift. Trailing-edge flap lift increments were increased by boundary-layer control for deflections greater than 45 deg. Maximum lift was not increased with deflected trailing-edge flaps with blowing.
Stability diagram for dense suspensions of model colloidal Al2O3 particles in shear flow.
Hecht, Martin; Harting, Jens; Herrmann, Hans J
2007-05-01
In Al2O3 suspensions, depending on the experimental conditions, very different microstructures can be found, comprising fluidlike suspensions, a repulsive structure, and a clustered microstructure. For technical processing in ceramics, the knowledge of the microstructure is of importance, since it essentially determines the stability of a workpiece to be produced. To enlighten this topic, we investigate these suspensions under shear by means of simulations. We observe cluster formation on two different length scales: the distance of nearest neighbors and on the length scale of the system size. We find that the clustering behavior does not depend on the length scale of observation. If interparticle interactions are not attractive the particles form layers in the shear flow. The results are summarized in a stability diagram.
Raman spectroscopy analysis of air grown oxide scale developed on pure zirconium substrate
NASA Astrophysics Data System (ADS)
Kurpaska, L.; Favergeon, J.; Lahoche, L.; El-Marssi, M.; Grosseau Poussard, J.-L.; Moulin, G.; Roelandt, J.-M.
2015-11-01
Using Raman spectroscopy technique, external and internal parts of zirconia oxide films developed at 500 °C and 600 °C on pure zirconium substrate under air at normal atmospheric pressure have been examined. Comparison of Raman peak positions of tetragonal and monoclinic zirconia phases, recorded during the oxide growth at elevated temperature, and after cooling at room temperature have been presented. Subsequently, Raman peak positions (or shifts) were interpreted in relation with the stress evolution in the growing zirconia scale, especially closed to the metal/oxide interface, where the influence of compressive stress in the oxide is the biggest. Reported results, for the first time show the presence of a continuous layer of tetragonal zirconia phase developed in the proximity of pure zirconium substrate. Based on the Raman peak positions we prove that this tetragonal layer is stabilized by the high compressive stress and sub-stoichiometry level. Presence of the tetragonal phase located in the outer part of the scale have been confirmed, yet its Raman characteristics suggest a stress-free tetragonal phase, therefore different type of stabilization mechanism. Presented study suggest that its stabilization could be related to the lattice defects introduced by highstoichiometry of zirconia or presence of heterovalent cations.
Analysis of protein stability and ligand interactions by thermal shift assay.
Huynh, Kathy; Partch, Carrie L
2015-02-02
Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. Copyright © 2015 John Wiley & Sons, Inc.
Consistent use of the standard model effective potential.
Andreassen, Anders; Frost, William; Schwartz, Matthew D
2014-12-12
The stability of the standard model is determined by the true minimum of the effective Higgs potential. We show that the potential at its minimum when computed by the traditional method is strongly dependent on the gauge parameter. It moreover depends on the scale where the potential is calculated. We provide a consistent method for determining absolute stability independent of both gauge and calculation scale, order by order in perturbation theory. This leads to a revised stability bounds m(h)(pole)>(129.4±2.3) GeV and m(t)(pole)<(171.2±0.3) GeV. We also show how to evaluate the effect of new physics on the stability bound without resorting to unphysical field values.
Russian national time scale long-term stability
NASA Astrophysics Data System (ADS)
Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.
1994-05-01
The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.
Russian national time scale long-term stability
NASA Technical Reports Server (NTRS)
Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.
1994-01-01
The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.
Infant temperament: stability by age, gender, birth order, term status, and socioeconomic status.
Bornstein, Marc H; Putnick, Diane L; Gartstein, Maria A; Hahn, Chun-Shin; Auestad, Nancy; O'Connor, Deborah L
2015-01-01
Two complementary studies focused on stability of infant temperament across the 1st year and considered infant age, gender, birth order, term status, and socioeconomic status (SES) as moderators. Study 1 consisted of 73 mothers of firstborn term girls and boys queried at 2, 5, and 13 months of age. Study 2 consisted of 335 mothers of infants of different gender, birth order, term status, and SES queried at 6 and 12 months. Consistent positive and negative affectivity factors emerged at all time points across both studies. Infant temperament proved stable and robust across gender, birth order, term status, and SES. Stability coefficients for temperament factors and scales were medium to large for shorter (< 9 months) interassessment intervals and small to medium for longer (> 10 months) intervals. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
The long-term hydrological effect of forest stands on the stability of slopes
NASA Astrophysics Data System (ADS)
Bogaard, T. A.; Meng, W.; van Beek, L. P. H.
2012-04-01
Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we used in a spatially distributed, physical-based, dynamical model to simulate the hydrology and resulting stability for a catchment on a daily scale. The results can be used to identify end members of the hydrological influence of forests on slope stability and the typical variations in stability associated with the various growth stages. They indicate that the influence of forest stand age on the water consumption can be significant and has clear consequences for the antecedent soil moisture condition within a slope and thus on the potential for slope destabilization. The outcome should help to understand the long-term impact of vegetation on slope hydrology and define sustainable and reliable management strategies at the scale of forest stands. Keywords: slope stability, hydrology, vegetation, long-tem effect
Industrial scale garage-type dry fermentation of municipal solid waste to biogas.
Qian, M Y; Li, R H; Li, J; Wedwitschka, H; Nelles, M; Stinner, W; Zhou, H J
2016-10-01
The objectives of this study was to through monitoring the 1st industrial scale garage-type dry fermentation (GTDF) MSW biogas plant in Bin County, Harbin City, Heilongjiang Province, China, to investigate its anaerobic digestion (AD) performance and the stability of process. After a monitoring period of 180days, the results showed that the volumetric biogas production of the digesters and percolate tank was 0.72 and 2.22m(3) (m(3)d)(-1), respectively, and the specific biogas yield of the feedstock was about 270m(3)CH4tVS(-1), which indicated that the GTDF is appropriate for the Chinese MSW. This paper also raised some problems aimed at improving the process stability and AD efficiency. Copyright © 2016. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.
Secondary Students' Stable and Unstable Optics Conceptions Using Contextualized Questions
ERIC Educational Resources Information Center
Chu, Hye-Eun; Treagust, David F.
2014-01-01
This study focuses on elucidating and explaining reasons for the stability of and interrelationships between students' conceptions about "Light Propagation" and "Visibility of Objects" using contextualized questions across 3 years of secondary schooling from Years 7 to 9. In a large-scale quantitative study involving 1,233…
NASA Technical Reports Server (NTRS)
Kayten, Gerald G
1945-01-01
The analysis of results of wind-tunnel stability and control tests of powered airplane models in terms of the flying qualities of full-scale airplanes is advocated. In order to indicated the topics upon which comments are considered desirable in the report of a wind-tunnel stability and control investigation and to demonstrate the nature of the suggested analysis, the present NACA flying-qualities requirements are discussed in relation to wind-tunnel tests. General procedures for the estimation of flying qualities from wind-tunnel tests are outlined.
Decentralization, stabilization, and estimation of large-scale linear systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Vukcevic, M. B.
1976-01-01
In this short paper we consider three closely related aspects of large-scale systems: decentralization, stabilization, and estimation. A method is proposed to decompose a large linear system into a number of interconnected subsystems with decentralized (scalar) inputs or outputs. The procedure is preliminary to the hierarchic stabilization and estimation of linear systems and is performed on the subsystem level. A multilevel control scheme based upon the decomposition-aggregation method is developed for stabilization of input-decentralized linear systems Local linear feedback controllers are used to stabilize each decoupled subsystem, while global linear feedback controllers are utilized to minimize the coupling effect among the subsystems. Systems stabilized by the method have a tolerance to a wide class of nonlinearities in subsystem coupling and high reliability with respect to structural perturbations. The proposed output-decentralization and stabilization schemes can be used directly to construct asymptotic state estimators for large linear systems on the subsystem level. The problem of dimensionality is resolved by constructing a number of low-order estimators, thus avoiding a design of a single estimator for the overall system.
Stability measures in arid ecosystems
NASA Astrophysics Data System (ADS)
Nosshi, M. I.; Brunsell, N. A.; Koerner, S.
2015-12-01
Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.
Robust Stability of Scaled-Four-Channel Teleoperation with Internet Time-Varying Delays
Delgado, Emma; Barreiro, Antonio; Falcón, Pablo; Díaz-Cacho, Miguel
2016-01-01
We describe the application of a generic stability framework for a teleoperation system under time-varying delay conditions, as addressed in a previous work, to a scaled-four-channel (γ-4C) control scheme. Described is how varying delays are dealt with by means of dynamic encapsulation, giving rise to mu-test conditions for robust stability and offering an appealing frequency technique to deal with the stability robustness of the architecture. We discuss ideal transparency problems and we adapt classical solutions so that controllers are proper, without single or double differentiators, and thus avoid the negative effects of noise. The control scheme was fine-tuned and tested for complete stability to zero of the whole state, while seeking a practical solution to the trade-off between stability and transparency in the Internet-based teleoperation. These ideas were tested on an Internet-based application with two Omni devices at remote laboratory locations via simulations and real remote experiments that achieved robust stability, while performing well in terms of position synchronization and force transparency. PMID:27128914
Hernansaiz-Garrido, Helena; Alonso-Tapia, Jesús
2017-01-01
Internalized stigma and disclosure concerns are key elements for the study of mental health in people living with HIV. Since no measures of these constructs were available for Spanish population, this study sought to develop such instruments, to analyze their reliability and validity and to provide a short version. A heterogeneous sample of 458 adults from different Spanish-speaking countries completed the HIV-Internalized Stigma Scale and the HIV-Disclosure Concerns Scale, along with the Hospital Anxiety and Depression Scale, Rosenberg's Self-esteem Scale and other socio-demographic variables. Reliability and correlation analyses, exploratory factor analyses, path analyses with latent variables, and ANOVAs were conducted to test the scales' psychometric properties. The scales showed good reliability in terms of internal consistency and temporal stability, as well as good sensitivity and factorial and criterion validity. The HIV-Internalized Stigma Scale and the HIV-Disclosure Concerns Scale are reliable and valid means to assess these variables in several contexts.
Stability of neutrino parameters and self-complementarity relation with varying SUSY breaking scale
NASA Astrophysics Data System (ADS)
Singh, K. Sashikanta; Roy, Subhankar; Singh, N. Nimai
2018-03-01
The scale at which supersymmetry (SUSY) breaks (ms) is still unknown. The present article, following a top-down approach, endeavors to study the effect of varying ms on the radiative stability of the observational parameters associated with the neutrino mixing. These parameters get additional contributions in the minimal supersymmetric model (MSSM). A variation in ms will influence the bounds for which the Standard Model (SM) and MSSM work and hence, will account for the different radiative contributions received from both sectors, respectively, while running the renormalization group equations (RGE). The present work establishes the invariance of the self complementarity relation among the three mixing angles, θ13+θ12≈θ23 against the radiative evolution. A similar result concerning the mass ratio, m2:m1 is also found to be valid. In addition to varying ms, the work incorporates a range of different seesaw (SS) scales and tries to see how the latter affects the parameters.
Life-history strategies associated with local population variability confer regional stability.
Pribil, Stanislav; Houlahan, Jeff E
2003-07-07
A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.
NASA Astrophysics Data System (ADS)
Park, Jisang
In this dissertation, we investigate MIMO stability margin inference of a large number of controllers using pre-established stability margins of a small number of nu-gap-wise adjacent controllers. The generalized stability margin and the nu-gap metric are inherently able to handle MIMO system analysis without the necessity of repeating multiple channel-by-channel SISO analyses. This research consists of three parts: (i) development of a decision support tool for inference of the stability margin, (ii) computational considerations for yielding the maximal stability margin with the minimal nu-gap metric in a less conservative manner, and (iii) experiment design for estimating the generalized stability margin with an assured error bound. A modern problem from aerospace control involves the certification of a large set of potential controllers with either a single plant or a fleet of potential plant systems, with both plants and controllers being MIMO and, for the moment, linear. Experiments on a limited number of controller/plant pairs should establish the stability and a certain level of margin of the complete set. We consider this certification problem for a set of controllers and provide algorithms for selecting an efficient subset for testing. This is done for a finite set of candidate controllers and, at least for SISO plants, for an infinite set. In doing this, the nu-gap metric will be the main tool. We provide a theorem restricting a radius of a ball in the parameter space so that the controller can guarantee a prescribed level of stability and performance if parameters of the controllers are contained in the ball. Computational examples are given, including one of certification of an aircraft engine controller. The overarching aim is to introduce truly MIMO margin calculations and to understand their efficacy in certifying stability over a set of controllers and in replacing legacy single-loop gain and phase margin calculations. We consider methods for the computation of; maximal MIMO stability margins bP̂,C, minimal nu-gap metrics deltanu , and the maximal difference between these two values, through the use of scaling and weighting functions. We propose simultaneous scaling selections that attempt to maximize the generalized stability margin and minimize the nu-gap. The minimization of the nu-gap by scaling involves a non-convex optimization. We modify the XY-centering algorithm to handle this non-convexity. This is done for applications in controller certification. Estimating the generalized stability margin with an accurate error bound has significant impact on controller certification. We analyze an error bound of the generalized stability margin as the infinity norm of the MIMO empirical transfer function estimate (ETFE). Input signal design to reduce the error on the estimate is also studied. We suggest running the system for a certain amount of time prior to recording of each output data set. The assured upper bound of estimation error can be tuned by the amount of the pre-experiment.
NASA Technical Reports Server (NTRS)
Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.
1983-01-01
The full scale ground test, ground vibration test, and flight tests conducted to demonstrate a composite structure stabilizer for the Boeing 737 aircraft and obtain FAA certification are described. Detail tools, assembly tools, and overall production are discussed. Cost analyses aspects covered include production costs, composite material usage factors, and cost comparisons.
Duong, Trang Minh; Ranasinghe, Roshanka; Thatcher, Marcus; Mahanama, Sarith; Wang, Zheng Bing; Dissanayake, Pushpa Kumara; Hemer, Mark; Luijendijk, Arjen; Bamunawala, Janaka; Roelvink, Dano; Walstra, Dirkjan
2018-01-01
Climate change (CC) is likely to affect the thousands of bar-built or barrier estuaries (here referred to as Small tidal inlets - STIs) around the world. Any such CC impacts on the stability of STIs, which governs the dynamics of STIs as well as that of the inlet-adjacent coastline, can result in significant socio-economic consequences due to the heavy human utilisation of these systems and their surrounds. This article demonstrates the application of a process based snap-shot modelling approach, using the coastal morphodynamic model Delft3D , to 3 case study sites representing the 3 main STI types; Permanently open, locationally stable inlets (Type 1), Permanently open, alongshore migrating inlets (Type 2) and Seasonally/Intermittently open, locationally stable inlets (Type 3). The 3 case study sites (Negombo lagoon - Type 1, Kalutara lagoon - Type 2, and Maha Oya river - Type 3) are all located along the southwest coast of Sri Lanka. After successful hydrodynamic and morphodynamic model validation at the 3 case study sites, CC impact assessment are undertaken for a high end greenhouse gas emission scenario. Future CC modified wave and riverflow conditions are derived from a regional scale application of spectral wave models (WaveWatch III and SWAN) and catchment scale applications of a hydrologic model (CLSM) respectively, both of which are forced with IPCC Global Climate Model output dynamically downscaled to ~ 50 km resolution over the study area with the stretched grid Conformal Cubic Atmospheric Model CCAM. Results show that while all 3 case study STIs will experience significant CC driven variations in their level of stability, none of them will change Type by the year 2100. Specifically, the level of stability of the Type 1 inlet will decrease from 'Good' to 'Fair to poor' by 2100, while the level of (locational) stability of the Type 2 inlet will also decrease with a doubling of the annual migration distance. Conversely, the stability of the Type 3 inlet will increase, with the time till inlet closure increasing by ~75%. The main contributor to the overall CC effect on the stability of all 3 STIs is CC driven variations in wave conditions and resulting changes in longshore sediment transport, not Sea level rise as commonly believed.
Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert
The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar andmore » wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.« less
Beever, E.A.; Huso, M.; Pyke, D.A.
2006-01-01
Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.
Segets, Doris; Marczak, Renata; Schäfer, Stefan; Paula, Carolin; Gnichwitz, Jan-Frederik; Hirsch, Andreas; Peukert, Wolfgang
2011-06-28
The current work addresses the understanding of the stabilization of nanoparticles in suspension. Specifically, we study ZnO in ethanol for which the influence of particle size and reactant ratio as well as surface coverage on colloidal stability in dependence of the purification progress was investigated. The results revealed that the well-known ζ-potential determines not only the colloidal stability but also the surface coverage of acetate groups bound to the particle surface. The acetate groups act as molecular spacers between the nanoparticles and prevent agglomeration. Next to DLVO calculations based on the theory of Derjaguin, Landau, Verwey and Overbeek using a core-shell model we find that the stability is better understood in terms of dimensionless numbers which represent attractive forces as well as electrostatic repulsion, steric effects, transport properties, and particle concentration. Evaluating the colloidal stability in dependence of time by means of UV-vis absorption measurements a stability map for ZnO is derived. From this map it becomes clear that the dimensionless steric contribution to colloidal stability scales with a stability parameter including dimensionless repulsion and attraction as well as particle concentration and diffusivity of the particles according to a power law with an exponent of -0.5. Finally, we show that our approach is valid for other stabilizing molecules like cationic dendrons and is generally applicable for a wide range of other material systems within the limitations of vanishing van der Waals forces in refractive index matched situations, vanishing ζ-potential and systems without a stabilizing shell around the particle surface.
NASA Astrophysics Data System (ADS)
Nathan, Terrence
1991-09-01
Over the past forty years, numerous linear stability studies have been performed in order to explain the origin and structure of observed waves in the atmosphere. Of these studies, only a small fraction have considered the stability of time-dependent, zonally varying flow or the influence of radiative-photochemical feedbacks on the stability of zonally uniform flow. The stability of such flows is described, and these flows may yield important information concerning the origin, structure, and transient time scales of free waves in the atmosphere. During the period 1990 to 1991, a beta-plane model that couples radiative transfer, ozone advection, and ozone photochemistry with the quasigeostrophic dynamical circulation was developed in order to study the diabatic effects of Newtonian cooling and ozone-dynamics interaction on the linear stability of free planetary waves in the atmosphere. The stability of a basic state consisting of a westward-moving wave and a zonal mean jet was examined using a linearized, nondivergent barotropic model on sphere. The sensitivity of the stability of the flow to the strength and structure of the zonal jet was emphasized. The current research is focused on the following problems: (1) examination of the finite amplitude interactions among radiation, ozone, and dynamics; and (2) examination of the role of seasonal forcing in short-term climate variability. The plans for next year are presented.
Psychometric Properties of the Persian Version of Self-Transcendence Scale: Adolescent Version.
Farahani, Azam Shirinabadi; Rassouli, Maryam; Yaghmaie, Farideh; Majd, Hamid Alavi; Sajjadi, Moosa
2016-04-01
Given the greater tendency during adolescence toward risk-taking, identifying and measuring the factors affecting the adolescents' health is highly important to ensure the efficacy of health promoting interventions. One of these factors is self-transcendence. The aim of this study was to assess the psychometric features of the Self-Transcendence Scale (adolescents' version) in students in Tehran, the capital city of Iran. This research was conducted in 2015. For this purpose, 1210 high school students were selected through the multistage cluster sampling method. After the backward-forward translation, the psychometric properties of the scale were examined through the assessment of the (face and construct) validity and reliability (internal consistency and stability) of the scale. The construct validity was assessed using two methods, factor analysis, and convergence of the scale with the Hopefulness Scale for Adolescents. The result of face validity was minor modifications in some words. The exploratory factor analysis resulted in the extraction of two dimensions, with explaining 52.79% of the variance collectively. In determining the convergent validity, the correlation between hopefulness score and self-transcendence score was r=0.47 (P<0.001). The internal consistency of the scale was determined using Cronbach's alpha of 0.82 for the whole scale and 0.75 and 0.70 for each of the sub-scales. The stability reliability was found to have an ICC of 0.86 and a confidence interval of 95%. The Persian version of the Adolescents' Self-Transcendence Scale showed an acceptable validity and reliability and can be used in the assessment of self-transcendence in Iranian adolescents.
Villafranca, Alexander; Hamlin, Colin; Rodebaugh, Thomas L; Robinson, Sandra; Jacobsohn, Eric
2017-09-10
Disruptive intraoperative behavior has detrimental effects to clinicians, institutions, and patients. How clinicians respond to this behavior can either exacerbate or attenuate its effects. Previous investigations of disruptive behavior have used survey scales with significant limitations. The study objective was to develop appropriate scales to measure exposure and responses to disruptive behavior. We obtained ethics approval. The scales were developed in a sequence of steps. They were pretested using expert reviews, computational linguistic analysis, and cognitive interviews. The scales were then piloted on Canadian operating room clinicians. Factor analysis was applied to half of the data set for question reduction and grouping. Item response analysis and theoretical reviews ensured that important questions were not eliminated. Internal consistency was evaluated using Cronbach α. Model fit was examined on the second half of the data set using confirmatory factor analysis. Content validity of the final scales was re-evaluated. Consistency between observed relationships and theoretical predictions was assessed. Temporal stability was evaluated on a subsample of 38 respondents. A total of 1433 and 746 clinicians completed the exposure and response scales, respectively. Content validity indices were excellent (exposure = 0.96, responses = 1.0). Internal consistency was good (exposure = 0.93, responses = 0.87). Correlations between the exposure scale and secondary measures were consistent with expectations based on theory. Temporal stability was acceptable (exposure = 0.77, responses = 0.73). We have developed scales measuring exposure and responses to disruptive behavior. They generate valid and reliable scores when surveying operating room clinicians, and they overcome the limitations of previous tools. These survey scales are freely available.
Sánchez de Miguel, Manuel; Lizaso, Izarne; Hermosilla, Daniel; Alcover, Carlos-Maria; Goudas, Marios; Arranz-Freijó, Enrique
2017-12-01
Research has shown that self-determination theory can be useful in the study of motivation in sport and other forms of physical activity. The Perceived Locus of Causality (PLOC) scale was originally designed to study both. The current research presents and validates the new PLOC-U scale to measure academic motivation in the university context. We tested levels of self-determination before and after academic examinations. Also, we analysed degree of internalization of extrinsic motivation in students' practical activities. Two hundred and eighty-seven Spanish university students participated in the study. Data were collected at two time points to check the reliability and stability of PLOC-U by a test-retest procedure. Confirmatory factor analysis was performed on the PLOC-U. Also convergent validity was tested against the Academic Motivation Scale (EME-E). Confirmatory factor analysis showed optimum fit and good reliability of PLOC-U. It also presented excellent convergent validity with the EME-E and good stability over time. Our findings did not show any significant correlation between self-determination and expected results before academic examinations, but it did so afterwards, revealing greater regulation by and integration of extrinsic motivation. The high score obtained for extrinsic motivation points to a greater regulation associated with an external contingency (rewards in the practical coursework). PLOC-U is a good instrument for the measurement of academic motivation and provides a new tool to analyse self-determination among university students. © 2017 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Taccoen, Nicolas; Lequeux, François; Gunes, Deniz Z.; Baroud, Charles N.
2016-01-01
Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds. This conflicts with their uses in foams where they serve to modify the properties of the material in which they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper, we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam. We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even for a fixed overpressure. The observed route to the armor failure therefore begins from localized dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves. The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a scaling of Δ Pcollapse∝R-1 , but does not depend on the particle diameter. These results disagree with the generally used elastic models to describe particle-covered interfaces. Instead, the experimental measurements are accounted for by an original theoretical description that equilibrates the energy gained from the gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to particle diameter. Finally, we use this new microscopic understanding to predict the aging of particle-stabilized foams, by applying classical Ostwald ripening models. We find that the smallest armored bubbles should fail, as the dissolution stress on these bubbles increases more rapidly than the armor strength. Both the experimental and theoretical results can readily be generalized to more complex particle interactions and shell structures.
The Snakelike Chain Character of Unstructured RNA
Jacobson, David R.; McIntosh, Dustin B.; Saleh, Omar A.
2013-01-01
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod “wormlike chain” (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a “snakelike chain,” characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. PMID:24314087
Thermal stability analysis of the fine structure of solar prominences
NASA Technical Reports Server (NTRS)
Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.
1986-01-01
The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.
USDA-ARS?s Scientific Manuscript database
Streambank stabilization techniques are often implemented to reduce sediment loads from unstable streambanks. Process-based models can predict sediment yields with stabilization scenarios prior to implementation. However, a framework does not exist on how to effectively utilize these models to evalu...
Jafari Roodbandi, Akram; Choobineh, Alireza; Daneshvar, Somayeh
2015-01-01
Sleep is affected by the circadian cycle and its features. Amplitude and stability of circadian rhythm are important parameters of the circadian cycle. This study aims to examine the relationship between amplitude and stability of circadian rhythm with sleep quality and sleepiness. In this cross-sectional research, 315 shift nurses and health care workers from educational hospitals of Kerman University of Medical Sciences (KUMS), Iran, were selected using a random sampling method. The Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS) and Circadian Type Inventory (CTI) were used to collect the required data. In this study, 83.2% suffered from poor sleep and one-half had moderate and excessive sleepiness. The results showed that flexibility in circadian rhythm stability, job stress and sleepiness are among the factors affecting quality sleep in shift workers. Those whose circadian rhythm amplitude was languid suffered more from sleepiness and those whose circadian stability was flexible had a better sleep. Variables including circadian rhythm stability (flexible/rigid) and amplitude (languid/vigorous) can act as predictive indices in order to employ people in a shift work system so that sleepiness and a drop in quality of sleep are prevented.
Cabanas-Valdés, Rosa; Bagur-Calafat, Caritat; Girabent-Farrés, Montserrat; Caballero-Gómez, Fernanda Mª; du Port de Pontcharra-Serra, Helena; German-Romero, Ana; Urrútia, Gerard
2017-11-01
Analyse the effect of core stability exercises in addition to conventional physiotherapy training three months after the intervention ended. A randomized controlled trial. Outpatient services. Seventy-nine stroke survivors. In the intervention period, both groups underwent conventional physiotherapy performed five days/week for five weeks, and in addition the experimental group performed core stability exercises for 15 minutes/day. Afterwards, during a three-month follow-up period, both groups underwent usual care that could eventually include conventional physiotherapy or physical exercise but not in a controlled condition. Primary outcome was trunk control and dynamic sitting balance assessed by the Spanish-Version of Trunk Impairment Scale 2.0 and Function in Sitting Test. Secondary outcomes were standing balance and gait evaluated by the Berg Balance Scale, Tinetti Test, Brunel Balance Assessment, Spanish-Version of Postural Assessment Scale for Stroke and activities of daily living using the Barthel Index. A total of 68 subjects out of 79 completed the three-month follow-up period. The mean difference (SD) between groups was 0.78 (1.51) points ( p = 0.003) for total score on the Spanish-Version of Trunk Impairment Scale 2.0, 2.52 (6.46) points ( p = 0.009) for Function in Sitting Test, dynamic standing balance was 3.30 (9.21) points ( p= 0.009) on the Berg Balance Scale, gait was 0.82 (1.88) points ( p = 0.002) by Brunel Balance Assessment (stepping), and 1.11 (2.94) points ( p = 0.044) by Tinetti Test (gait), all in favour of core stability exercises. Core stability exercises plus conventional physiotherapy have a positive long-term effect on improving dynamic sitting and standing balance and gait in post-stroke patients.
Influence of Humic Acid on Stability and Attachment of nTiO2 Particles to Sand at Different pH
NASA Astrophysics Data System (ADS)
Cheng, T.
2015-12-01
Stability of nano-scale or micro-scale titanium dioxide particles (nTiO2) and their attachment to sediment grains have important implications to the fate and transport of nTiO2 in subsurface environments. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand, with special attention to low HA concentration ranges that are relevant to groundwater conditions. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand were experimentally measured under a range of low HA concentrations at pH 5 and 9. Results showed that HA can either promote or hinder nTiO2 stability, depending on pH and HA concentration. We also found that HA can either enhance or reduce nTiO2 attachment to Fe oxyhydroxide coating at pH 5, depending on HA concentration. Results further showed that at pH 5, Fe oxyhydroxide coating reduced nTiO2 attachment to sand in the absence of HA but increased nTiO2 attachment in the presence of low concentration of HA. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was invoked to analyze particle-to-particle and particle-to-sand interactions in order to elucidate the roles of pH, HA, quartz, and Fe coating in nTiO2 stability and attachment. Overall, this study showed that changes in zeta potential of nTiO2 and Fe coating due to pH changes and/or HA adsorption are the key factors that influence stability and attachment of nTiO2.
Takase, Miyuki; Imai, Takiko; Uemura, Chizuru
2016-06-01
This paper examines the psychometric properties of the Learning Experience Scale. A survey method was used to collect data from a total of 502 nurses. Data were analyzed by factor analysis and the known-groups technique to examine the construct validity of the scale. In addition, internal consistency was evaluated by Cronbach's alpha, and stability was examined by test-retest correlation. Factor analysis showed that the Learning Experience Scale consisted of five factors: learning from practice, others, training, feedback, and reflection. The scale also had the power to discriminate between nurses with high and low levels of nursing competence. The internal consistency and the stability of the scale were also acceptable. The Learning Experience Scale is a valid and reliable instrument, and helps organizations to effectively design learning interventions for nurses. © 2015 Wiley Publishing Asia Pty Ltd.
[Stability of whole cell biocatalyst for biodiesel production from renewable oils].
Sun, Ting; Du, Wei; Liu, Dehua; Li, Wei; Zeng, Jing; Dai, Lingmei
2009-09-01
Lipase-mediated biodiesel production becomes increasingly important because of mild reaction conditions, pollution free during the process and easy product separation. Compared with traditional immobilized lipase, whole cell biocatalyst is promising for biodiesel production because it is easy to prepare and has higher enzyme activity recovery. Rhizopus oryzae IFO4697 can be used as the catalyst for biodiesel production. To further study the stability of the whole cell biocatalyst is extremely important for its further application on large scale. This paper focuses on the stability study of Rhizopus oryzae IFO4697 when used for the methanolysis of renewable oils for biodiesel production. The results showed that water content was important for achieving high catalytic activity and good stability of the biocatalyst. The optimum water content was found to be 5%-15%. Both particle size and desiccation methods showed no obvious effect on the stability of the biocatalyst. With GA cross-linking pretreatment, the stability of the biocatalyst could be improved significantly. When Rhizopus oryzae IFO4697 repeatedly used for next batch reaction, direct vacuum filtration was found to be a good way for the maintenance of good stability of the biocatalyst. Under the optimum reaction conditions, the methyl ester yield could keep over 80% during 20 repeated reaction batches.
Robust flow stability: Theory, computations and experiments in near wall turbulence
NASA Astrophysics Data System (ADS)
Bobba, Kumar Manoj
Helmholtz established the field of hydrodynamic stability with his pioneering work in 1868. From then on, hydrodynamic stability became an important tool in understanding various fundamental fluid flow phenomena in engineering (mechanical, aeronautics, chemical, materials, civil, etc.) and science (astrophysics, geophysics, biophysics, etc.), and turbulence in particular. However, there are many discrepancies between classical hydrodynamic stability theory and experiments. In this thesis, the limitations of traditional hydrodynamic stability theory are shown and a framework for robust flow stability theory is formulated. A host of new techniques like gramians, singular values, operator norms, etc. are introduced to understand the role of various kinds of uncertainty. An interesting feature of this framework is the close interplay between theory and computations. It is shown that a subset of Navier-Stokes equations are globally, non-nonlinearly stable for all Reynolds number. Yet, invoking this new theory, it is shown that these equations produce structures (vortices and streaks) as seen in the experiments. The experiments are done in zero pressure gradient transiting boundary layer on a flat plate in free surface tunnel. Digital particle image velocimetry, and MEMS based laser Doppler velocimeter and shear stress sensors have been used to make quantitative measurements of the flow. Various theoretical and computational predictions are in excellent agreement with the experimental data. A closely related topic of modeling, simulation and complexity reduction of large mechanics problems with multiple spatial and temporal scales is also studied. A nice method that rigorously quantifies the important scales and automatically gives models of the problem to various levels of accuracy is introduced. Computations done using spectral methods are presented.
Mechanical Stability of Fractured Rift Basin Mudstones: from lab to basin scale
NASA Astrophysics Data System (ADS)
Zakharova, N. V.; Goldberg, D.; Collins, D.; Swager, L.; Payne, W. G.
2016-12-01
Understanding petrophysical and mechanical properties of caprock mudstones is essential for ensuring good containment and mechanical formation stability at potential CO2 storage sites. Natural heterogeneity and presence of fractures, however, create challenges for accurate prediction of mudstone behavior under injection conditions and at reservoir scale. In this study, we present a multi-scale geomechanical analysis for Mesozoic mudstones from the Newark Rift basin, integrating petropyshical core and borehole data, in situ stress measurements, and caprock stability modeling. The project funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) focuses on the Newark basin as a representative locality for a series of the Mesozoic rift basins in eastern North America considered as potential CO2 storage sites. An extensive core characterization program, which included laboratory CT scans, XRD, SEM, MICP, porosity, permeability, acoustic velocity measurements, and geomechanical testing under a range of confining pressures, revealed large variability and heterogeneity in both petrophysical and mechanical properties. Estimates of unconfined compressive strength for these predominantly lacustrine mudstones range from 5,000 to 50,000 psi, with only a weak correlation to clay content. Thinly bedded intervals exhibit up to 30% strength anisotropy. Mineralized fractures, abundant in most formations, are characterized by compressive strength as low as 10% of matrix strength. Upscaling these observations from core to reservoir scale is challenging. No simple one-to-one correlation between mechanical and petrophyscial properties exists, and therefore, we develop multivariate empirical relationships among these properties. A large suite of geophysical logs, including new measurements of the in situ stress field, is used to extrapolate these relationships to a basin-scale geomechanical model and predict mudstone behavior under injection conditions.
Attention Problems and Stability of WISC-IV Scores Among Clinically Referred Children.
Green Bartoi, Marla; Issner, Jaclyn Beth; Hetterscheidt, Lesley; January, Alicia M; Kuentzel, Jeffrey Garth; Barnett, Douglas
2015-01-01
We examined the stability of Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) scores among 51 diverse, clinically referred 8- to 16-year-olds (M(age) = 11.24 years, SD = 2.36). Children were referred to and tested at an urban, university-based training clinic; 70% of eligible children completed follow-up testing 12 months to 40 months later (M = 22.05, SD = 5.94). Stability for index scores ranged from .58 (Processing Speed) to .81 (Verbal Comprehension), with a stability of .86 for Full-Scale IQ. Subtest score stability ranged from .35 (Letter-Number Sequencing) to .81 (Vocabulary). Indexes believed to be more susceptible to concentration (Processing Speed and Working Memory) had lower stability. We also examined attention problems as a potential moderating factor of WISC-IV index and subtest score stability. Children with attention problems had significantly lower stability for Digit Span and Matrix Reasoning subtests compared with children without attention problems. These results provide support for the temporal stability of the WISC-IV and also provide some support for the idea that attention problems contribute to children producing less stable IQ estimates when completing the WISC-IV. We hope our report encourages further examination of this hypothesis and its implications.
NASA Astrophysics Data System (ADS)
Moore, T. S.; Sanderman, J.; Baldock, J.; Plante, A. F.
2016-12-01
National-scale inventories typically include soil organic carbon (SOC) content, but not chemical composition or biogeochemical stability. Australia's Soil Carbon Research Programme (SCaRP) represents a national inventory of SOC content and composition in agricultural systems. The program used physical fractionation followed by 13C nuclear magnetic resonance (NMR) spectroscopy. While these techniques are highly effective, they are typically too expensive and time consuming for use in large-scale SOC monitoring. We seek to understand if analytical thermal analysis is a viable alternative. Coupled differential scanning calorimetry (DSC) and evolved gas analysis (CO2- and H2O-EGA) yields valuable data on SOC composition and stability via ramped combustion. The technique requires little training to use, and does not require fractionation or other sample pre-treatment. We analyzed 300 agricultural samples collected by SCaRP, divided into four fractions: whole soil, coarse particulates (POM), untreated mineral associated (HUM), and hydrofluoric acid (HF)-treated HUM. All samples were analyzed by DSC-EGA, but only the POM and HF-HUM fractions were analyzed by NMR. Multivariate statistical analyses were used to explore natural clustering in SOC composition and stability based on DSC-EGA data. A partial least-squares regression (PLSR) model was used to explore correlations among the NMR and DSC-EGA data. Correlations demonstrated regions of combustion attributable to specific functional groups, which may relate to SOC stability. We are increasingly challenged with developing an efficient technique to assess SOC composition and stability at large spatial and temporal scales. Correlations between NMR and DSC-EGA may demonstrate the viability of using thermal analysis in lieu of more demanding methods in future large-scale surveys, and may provide data that goes beyond chemical composition to better approach quantification of biogeochemical stability.
Impact of nZVI stability on mobility in porous media.
Kocur, Chris M; O'Carroll, Denis M; Sleep, Brent E
2013-02-01
Nano-scale zero valent iron (nZVI) has received significant attention because of its potential to rapidly reduce a number of priority source zone contaminants. In order to effectively deliver nZVI to the source zone the nZVI particles must be stable. Previous laboratory studies have demonstrated the mobility of polymer modified suspensions of low concentration nZVI. More recently studies have shown potential for higher concentration nZVI suspensions to be transmitted through porous media. However, with increasing nZVI concentration aggregation is accelerated, reducing the available time for injection before nZVI settles. In this study the colloidal stability and mobility of nZVI concurrently synthesized and stabilized in the presence of carboxy-methyl-cellulose (CMC) are evaluated in one-dimensional column experiments. Low pore water velocity nZVI injections (4, 2, and 0.25 m/day) conducted over periods as long as 80 h with no mixing of the influent reservoir were used to investigate the effects of prolonged aggregation and settling of colloids on transport. A numerical simulator, based on colloid filtration theory, but accounting for particle aggregation and settling was used to evaluate the contributions of aggregation and settling on nZVI mobility. Results suggest that the prediction of nZVI sticking efficiency in column experiments becomes increasingly influenced by aggregation and settling in the influent reservoir as the period of injection increases. Consideration of nZVI stability is required for the prediction of nZVI mobility at the field scale and for the design of successful nZVI remediation plans. Copyright © 2012 Elsevier B.V. All rights reserved.
Volpe, Daniele; Giantin, Maria Giulia; Fasano, Alfonso
2014-01-01
Background Muscle spindles endings are extremely sensitive to externally applied vibrations, and under such circumstances they convey proprioceptive inflows to the central nervous system that modulate the spinal reflexes excitability or the muscle responses elicited by postural perturbations. The aim of this pilot study is to test the feasibility and effectiveness of a balance training program in association with a wearable proprioceptive stabilizer (Equistasi) that emits focal mechanical vibrations in patients with PD. Methods Forty patients with PD were randomly divided in two groups wearing an active or inactive device. All the patients received a 2-month intensive program of balance training. Assessments were performed at baseline, after the rehabilitation period (T1), and two more months after (T2). Posturographic measures were used as primary endpoint; secondary measures of outcome included the number of falls and several clinical scales for balance and quality of life. Results Both groups improved at the end of the rehabilitation period and we did not find significant between-group differences in any of the principal posturographic measures with the exception of higher sway area and limit of stability on the instrumental functional reach test during visual deprivation at T1 in the Equistasi group. As for the secondary outcome, we found an overall better outcome in patients enrolled in the Equistasi group: 1) significant improvement at T1 on Berg Balance Scale (+45.0%, p = .026), Activities-specific Balance Confidence (+83.7, p = .004), Falls Efficacy Scale (−33.3%, p = .026) and PDQ-39 (−48.8%, p = .004); 2) sustained improvement at T2 in terms of UPDRS-III, Berg Balance Scales, Time Up and Go and PDQ-39; 3) significant and sustained reduction of the falls rate. Conclusions This pilot trial shows that a physiotherapy program for training balance in association with focal mechanical vibration exerted by a wearable proprioceptive stabilizer might be superior than rehabilitation alone in improving patients’ balance. Trial Registration EudraCT 2013-003020-36 and ClinicalTrials.gov (number not assigned) PMID:25401967
Grid scale drives the scale and long-term stability of place maps
Mallory, Caitlin S; Hardcastle, Kiah; Bant, Jason S; Giocomo, Lisa M
2018-01-01
Medial entorhinal cortex (MEC) grid cells fire at regular spatial intervals and project to the hippocampus, where place cells are active in spatially restricted locations. One feature of the grid population is the increase in grid spatial scale along the dorsal-ventral MEC axis. However, the difficulty in perturbing grid scale without impacting the properties of other functionally-defined MEC cell types has obscured how grid scale influences hippocampal coding and spatial memory. Here, we use a targeted viral approach to knock out HCN1 channels selectively in MEC, causing grid scale to expand while leaving other MEC spatial and velocity signals intact. Grid scale expansion resulted in place scale expansion in fields located far from environmental boundaries, reduced long-term place field stability and impaired spatial learning. These observations, combined with simulations of a grid-to-place cell model and position decoding of place cells, illuminate how grid scale impacts place coding and spatial memory. PMID:29335607
2014-05-01
propagations CoCs Contaminants of concern GC Gas chromatography DNAPL Dense nonaqueous phase liquid ISCO In situ chemical oxidation HCA...used for the design and scale-up of air strippers, ion exchange systems, precipitation reactors , and many other treatment processes. Such treatability...studies provide definitive data on system dimensions and reagent dosages using linear or non -linear scale-up. Designing these processes without the
This document is a project plan for a pilot study at the United Chrome NPL site, Corvallis, Oregon and includes the health and safety and quality assurance/quality control plans. The plan reports results of a bench-scale study of the treatment process as iieasured by the ...
Mobile Phenotyping System Using an Aeromotively Stabilized Cable-Driven Robot
NASA Astrophysics Data System (ADS)
Newman, M. B.; Zygielbaum, A. I.
2017-12-01
Agricultural researchers are constantly attempting to generate superior agricultural crops. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering with their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of Nebraska - Lincoln (UNL), uses a system of poles, cables, and winches to support and maneuver a sensor platform above the crops at an outdoor phenotyping site. In this work, we improve upon the UNL outdoor phenotyping system presenting the concept design for a mobile, cable-driven phenotyping system as opposed to a permanent phenotyping facility. One major challenge in large-scale, cable-driven robots is stability of the end-effector. As a result, this mobile system seeks to use a novel method of end-effector stabilization using an onboard rotor drive system, herein referred to as the Instrument Platform Aeromotive Stabilization System (IPASS). A prototype system is developed and analyzed to determine the viability of IPASS.
Zapater-Pereyra, M; van Dien, F; van Bruggen, J J A; Lens, P N L
2013-01-01
A constructed wetroof (CWR) is defined in this study as the combination of a green roof and a constructed wetland: a shallow wastewater treatment system placed on the roof of a building. The foremost challenge of such CWRs, and the main aim of this investigation, is the selection of an appropriate matrix capable of assuring the required hydraulic retention time, the long-term stability and the roof load-bearing capacity. Six substrata were subjected to water dynamics and destructive tests in two testing-tables. Among all the materials tested, the substratum configuration composed of sand, light expanded clay aggregates, biodegradable polylactic acid beads together with stabilization plates and a turf mat is capable of retaining the water for approximately 3.8 days and of providing stability (stabilization plates) and an immediate protection (turf mat) to the system. Based on those results, a full-scale CWR was built, which did not show any physical deterioration after 1 year of operation. Preliminary wastewater treatment results on the full-scale CWR suggest that it can highly remove main wastewater pollutants (e.g. chemical oxygen demand, PO4(3-)-P and NH4(+)-N). The results of these tests and practical design considerations of the CWR are discussed in this paper.
Zhou, Yanling; Li, Guannan; Li, Dan; Cui, Hongmei; Ning, Yuping
2018-05-01
The long-term effects of dose reduction of atypical antipsychotics on cognitive function and symptomatology in stable patients with schizophrenia remain unclear. We sought to determine the change in cognitive function and symptomatology after reducing risperidone or olanzapine dosage in stable schizophrenic patients. Seventy-five stabilized schizophrenic patients prescribed risperidone (≥4 mg/day) or olanzapine (≥10 mg/day) were randomly divided into a dose-reduction group ( n=37) and a maintenance group ( n=38). For the dose-reduction group, the dose of antipsychotics was reduced by 50%; for the maintenance group, the dose remained unchanged throughout the whole study. The Positive and Negative Syndrome Scale, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects, and Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery were measured at baseline, 12, 28, and 52 weeks. Linear mixed models were performed to compare the Positive and Negative Syndrome Scale, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects and MATRICS Consensus Cognitive Battery scores between groups. The linear mixed model showed significant time by group interactions on the Positive and Negative Syndrome Scale negative symptoms, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects, speed of processing, attention/vigilance, working memory and total score of MATRICS Consensus Cognitive Battery (all p<0.05). Post hoc analyses showed significant improvement in Positive and Negative Syndrome Scale negative subscale, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects, speed of processing, working memory and total score of MATRICS Consensus Cognitive Battery for the dose reduction group compared with those for the maintenance group (all p<0.05). This study indicated that a risperidone or olanzapine dose reduction of 50% may not lead to more severe symptomatology but can improve speed of processing, working memory and negative symptoms in patients with stabilized schizophrenia.
NASA Technical Reports Server (NTRS)
Bennett, Charles V.
1947-01-01
An investigation of the low-speed, power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane has been conducted in the Langley free-flight tunnel. In the investigation it was found that with flaps neutral satisfactory flight behavior at low speeds was obtainable with an increase in height of the vertical tail and with the inboard slats opened. In the flap-down slat-open condition the longitudinal stability was satisfactory, but it was impossible to obtain satisfactory lateral-flight characteristics even with the increase in height of the vertical tail because of the negative effective dihedral, low directional stability, and large-adverse yawing moments of the ailerons.
Nano-scaling law: geometric foundation of thiolated gold nanomolecules.
Dass, Amala
2012-04-07
Thiolated gold nanomolecules show a power correlation between the number of gold atoms and the thiolate ligands with a 2/3 scaling similar to Platonic and Archimedean solids. Nanomolecule stability is influenced by a universal geometric factor that is foundational to its stability through the Euclidean surface rule, in addition to the electronic shell closing factor and staple motif requirements. This journal is © The Royal Society of Chemistry 2012
NASA Technical Reports Server (NTRS)
Hastings, Earl E., Jr.; Mitcham, Grady L.
1954-01-01
A flight test has been conducted to determine the longitudinal stability and control,characteristics of a 0.133-scale model of the Consolidated Vultee XFY-1 airplane without propellers for the Mach number range between 0.73 and 1.19.
Best Core Stabilization for Anticipatory Postural Adjustment and Falls in Hemiparetic Stroke.
Lee, Nam G; You, Joshua Sung H; Yi, Chung H; Jeon, Hye S; Choi, Bong S; Lee, Dong R; Park, Jae M; Lee, Tae H; Ryu, In T; Yoon, Hyun S
2018-02-21
To compare the effects of conventional core stabilization and dynamic neuromuscular stabilization (DNS) on anticipatory postural adjustment (APA) time, balance performance, and fear of falls in chronic hemiparetic stroke. Two-group randomized controlled trial with pretest-posttest design. Hospital rehabilitation center. Adults with chronic hemiparetic stroke (N=28). Participants were randomly divided into either conventional core stabilization (n=14) or DNS (n=14) groups. Both groups received a total of 20 sessions of conventional core stabilization or DNS training for 30 minutes per session 5 times a week during the 4-week period. Electromyography was used to measure the APA time for bilateral external oblique (EO), transverse abdominis (TrA)/internal oblique (IO), and erector spinae (ES) activation during rapid shoulder flexion. Trunk Impairment Scale (TIS), Berg Balance Scale (BBS), and Falls Efficacy Scale (FES) were used to measure trunk movement control, balance performance, and fear of falling. Baseline APA times were delayed and fear of falling was moderately high in both the conventional core stabilization and DNS groups. After the interventions, the APA times for EO, TrA/IO, and ES were shorter in the DNS group than in the conventional core stabilization group (P<.008). The BBS and TIS scores (P<.008) and the FES score (P<.003) were improved compared with baseline in both groups, but FES remained stable through the 2-year follow-up period only in the DNS group (P<.003). This is the first clinical evidence highlighting the importance of core stabilization exercises for improving APA control, balance, and fear of falls in individuals with hemiparetic stroke. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1949-01-01
An investigation of the stability and control characteristics of a 1/10-scale model of a Canadian tailless glider has been conducted in the 10 Langley free-flight tunnel. The glider designated the N.R.L. tailless glider has a straight center section and outboard panels sweptback 43 deg. along the leading edge of the wing. The aspect ratio is 5.83 and the taper ratio is 0.323. From the results of the investigation and on the basis of comparison with higher-scale static tests of the National Research Council of Canada, it is expected that the longitudinal stability of the airplane will be satisfactory with flap up but unsatisfactory near the stall with flap down. The airplane is expected to have unsatisfactory lateral stability and control characteristics in the design configuration with either flap up or flap down. The model flights showed very low damping of the lateral oscillation. Increasing the vertical-tail area improved the lateral stability, and it appeared that a value of the directional-stability parameter C(sub n beta) of at least 0.002 per degree would probably be necessary for satisfactory lateral flying characteristics. A comparison of the calculated dynamic lateral stability characteristics of the N.R.L. tailless glider with those of a conventional-type sweptback airplane having a similar wing plan form and about the same inclination of the principal longitudinal axis of inertia showed that the tailless glider had poorer lateral stability because of the relatively larger radius of gyration in roll and the smaller damping-in-yaw factor C(sub nr).
de Jonge, Jan; van der Linden, Sjaak; Schaufeli, Wilmar; Peter, Richard; Siegrist, Johannes
2008-01-01
Key measures of Siegrist's (1996) Effort-Reward Imbalance (ERI) Model (i.e., efforts, rewards, and overcommitment) were psychometrically tested. To study change in organizational interventions, knowledge about the type of change underlying the instruments used is needed. Next to assessing baseline factorial validity and reliability, the factorial stability over time - known as alpha-beta-gamma change - of the ERI scales was examined. Psychometrics were tested among 383 and 267 healthcare workers from two Dutch panel surveys with different time lags. Baseline results favored a five-factor model (i.e., efforts, esteem rewards, financial/career-related aspects, job security, and overcommitment) over and above a three-factor solution (i.e., efforts, composite rewards, and overcommitment). Considering changes as a whole, particularly the factor loadings of the three ERI scales were not equal over time. Findings suggest in general that moderate changes in the ERI factor structure did not affect the interpretation of mean changes over time. Occupational health researchers utilizing the ERI scales can feel confident that self-reported changes are more likely to be due to factors other than structural change of the ERI scales over time, which has important implications for evaluating job stress and health interventions.
Acharya, Sanigdha; Sharma, S K; Khandegar, Vinita
2018-06-01
In the present study, hydro-geochemical characteristics of groundwater samples collected from South West Delhi, India, have been assessed. 50 sampling locations were recorded with the help of global positioning system, to assess the groundwater quality and evaluate the corrosion and scaling potential. Hydro-geochemical characterization for different parameters such as pH, temperature (T), electrical conductivity (EC), total dissolved solids (TDS), salinity (SA), total hardness (TH), total alkalinity ( H C O 3 - ), levels of anions such as calcium (Ca +2 ), magnesium (Mg +2 ), sodium (Na + ), potassium (K + ) and cations which include chloride (Cl - ), Flouride (F - ), sulfates ( S O 4 - 2 ), Nitrates ( N O 3 - ) was done using standard APHA methods. The corrosion and scaling potential of groundwater was evaluated by five stability indices: Langelier saturation index (LSI), Ryznar stability index (RSI), Aggressive index (AI), Learson-Skold index (Ls) and Puckorius scaling index (PSI). The dataset classified groundwater as polluted and this indicates that the water is not safe for domestic, agricultural and industrial usage and will need further treatment. This dataset is beneficial for policymakers, and researchers in the field of water purification, quality management and in preventing the economic and safety concerns related to corrosion and scaling of groundwater.
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson's disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson's disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient's static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson's disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson's disease.
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson’s disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson’s disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient’s static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson’s disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson’s disease. PMID:28210066
Hu, Zhilan; Hsu, Wendy; Pynn, Abby; Ng, Domingos; Quicho, Donna; Adem, Yilma; Kwong, Zephie; Mauger, Brad; Joly, John; Snedecor, Bradley; Laird, Michael W; Andersen, Dana C; Shen, Amy
2017-11-01
In the biopharmaceutical industry, a clonally derived cell line is typically used to generate material for investigational new drug (IND)-enabling toxicology studies. The same cell line is then used to generate material for clinical studies. If a pool of clones can be used to produce material for IND-enabling toxicology studies (Pool for Tox (PFT) strategy) during the time a lead clone is being selected for clinical material production, the toxicology studies can be accelerated significantly (approximately 4 months at Genentech), leading to a potential acceleration of 4 months for the IND submission. We explored the feasibility of the PFT strategy with three antibodies-mAb1, mAb2, and mAb3-at the 2 L scale. For each antibody, two lead cell lines were identified that generated material with similar product quality to the material generated from the associated pool. For two antibody molecules, mAb1 and mAb2, the material generated by the lead cell lines from 2 L bioreactors was tested in an accelerated stability study and was shown to have stability comparable to the material generated by the associated pool. Additionally, we used this approach for two antibody molecules, mAb4 and mAb5, at Tox and GMP production. The materials from the Tox batch at 400 L scale and three GMP batches at 2000 L scale have comparable product quality attributes for both molecules. Our results demonstrate the feasibility of using a pool of clonally derived cell lines to generate material of similar product quality and stability for use in IND-enabling toxicology studies as was derived from the final production clone, which enabled significant acceleration of timelines into clinical development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1449-1455, 2017. © 2017 American Institute of Chemical Engineers.
Remington, Gary; Seeman, Philip; Feingold, Alan; Mann, Steve; Shammi, Chekkera; Kapur, Shitij
2011-08-01
In the treatment of schizophrenia, all currently available oral antipsychotics are administered at least once daily, with strict adherence strongly encouraged to minimize risk of relapse. Based on a better understanding of the brain kinetics of antipsychotics, we have proposed a variation of this approach, "extended" dosing, which allows for intermittent but regular dosing. We carried out a randomized, double-blind, placebo-controlled trial evaluating 35 individuals with DSM-IV-defined schizophrenia who had been stabilized on antipsychotic therapy. Over a 6-month interval, 18 subjects received their medication as usual (daily), while 17 received their antipsychotic therapy every second day (extended). Outcome measures included clinical scales to assess symptoms (Brief Psychiatric Rating Scale [the primary outcome measure], Calgary Depression Scale), illness severity (Clinical Global Impressions-Severity of Illness scale), and relapse (ie, rehospitalization) rates. Side effects were also assessed, including movement disorders (Barnes Akathisia Scale, Simpson-Angus Scale, Abnormal Involuntary Movement Scale) and weight. The study was conducted from February 2003 to July 2007. Individuals in the extended dosing group were not at greater risk of symptom exacerbation, relapse, or rehospitalization; indeed, more rehospitalizations occurred in those receiving regular dosing. At the same time, though, there was no indication that side effects were significantly reduced in the extended dosing group. These results challenge the long-standing dogma that oral antipsychotics must be administered daily in stabilized patients with schizophrenia. Further studies with larger samples are needed to replicate these findings, as well as to elucidate whether postulated clinical advantages can be established and determined to outweigh potential risks. clinicaltrials.gov Identifier: NCT00431574. © Copyright 2011 Physicians Postgraduate Press, Inc.
Viscous, resistive MHD stability computed by spectral techniques
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.
1983-01-01
Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.
Full-scale wind-tunnel test of the aeroelastic stability of a bearingless main rotor
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Mccloud, J., III; Sheffler, M.; Staley, J.
1981-01-01
The rotor studied in the wind tunnel had previously been flight tested on a BO-105 helicopter. The investigation was conducted to determine the rotor's aeroelastic stability characteristics in hover and at airspeeds up to 143 knots. These characteristics are compared with those obtained from whirl-tower and flight tests and predictions from a digital computer simulation. It was found that the rotor was stable for all conditions tested. At constant tip speed, shaft angle, and airspeed, stability increases with blade collective pitch setting. No significant change in system damping occurred that was attributable to frequency coalescence between the rotor inplane regressing mode and the support modes. Stability levels determined in the wind tunnel were of the same magnitude and yielded the same trends as data obtained from whirl-tower and flight tests.
Current Protocols in Protein Science
Huynh, Kathy
2015-01-01
The purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables the rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as a low cost, initial screen to discover new protein:ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for the small-scale, high-throughout thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. PMID:25640896
Stability investigations of relaxing molecular gas flows. Results and perspectives
NASA Astrophysics Data System (ADS)
Grigor'ev, Yurii N.; Ershov, Igor V.
2017-10-01
This article presents results of systematic investigations of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The effect can be a new way for control stability and laminar turbulent transition in aerodynamic flows. The consideration of suppression of inviscid acoustic waves in 2D shear flows is presented. Nonlinear evolution of large-scale vortices and Kelvin — Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both classical linear and nonlinear energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of this article is to show the new dissipative effect, which can be used for flow control and laminarization.
A Longitudinal Study of Self Concept From Grade 5 to Grade 9.
ERIC Educational Resources Information Center
Kohr, Richard L.
This study examined five subscales of the Pennsylvania Educational Quality Assessment self-concept scale, composed largely of items from the Coopersmith Self Esteem Inventory, in terms of socioeconomic status (SES) and sex differences in internal consistency, stability, across time changes in means, and relationship with achievement. In general,…
Several studies have examined how fecal indicator bacteria (FIB) measurements compare between quantitative polymerase chain reaction (QPCR) and the culture methods it is intended to replace. Here we extend those studies by examining the stability of that relationship within a be...
A measure of satisfaction with food-related life.
Grunert, Klaus G; Dean, Moira; Raats, Monique M; Nielsen, Niels Asger; Lumbers, Margaret
2007-09-01
A measure of satisfaction with food-related life is developed and tested in three studies in eight European countries. Five items are retained from an original pool of seven; these items exhibit good reliability as measured by Cronbach's alpha, good temporal stability, convergent validity with two related measures, and construct validity as indicated by relationships with other indicators of quality of life, including the Satisfaction With Life and the SF-8 scales. It is concluded that this scale will be useful in studies trying to identify factors contributing to satisfaction with food-related life.
Stability and stabilisation of a class of networked dynamic systems
NASA Astrophysics Data System (ADS)
Liu, H. B.; Wang, D. Q.
2018-04-01
We investigate the stability and stabilisation of a linear time invariant networked heterogeneous system with arbitrarily connected subsystems. A new linear matrix inequality based sufficient and necessary condition for the stability is derived, based on which the stabilisation is provided. The obtained conditions efficiently utilise the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, a sufficient condition only dependent on each individual subsystem is also presented for the stabilisation of the networked systems with a large scale. Numerical simulations show that these conditions are computationally valid in the analysis and synthesis of a large-scale networked system.
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.; Kuhn, Richard E.; Goodson, Kenneth W.
1947-01-01
The stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane have been investigated over a Mach number range from 0.40 to 0.91. Results of the basic longitudinal tests of the complete model with undeflected control surfaces are given in the present report with a very limited analysis of the results.
Vrbova, Kristyna; Prasko, Jan; Ociskova, Marie; Holubova, Michaela; Kantor, Krystof; Kolek, Antonin; Grambal, Aleš; Slepecky, Milos
2018-01-01
Background and aim Patients who have schizophrenia are more prone to suicidal behavior than the general population. This study aimed to find connections between suicidality and self-stigma, hope, and personality traits in patients with schizophrenia. Methods Forty-eight stabilized outpatients with schizophrenia attended this cross-sectional study. Patients were diagnosed by the Mini International Neuropsychiatric Interview (MINI) using the ICD-10 research diagnostic criteria. The assessments included Positive and Negative Syndrome Scale, objective and subjective Clinical Global Impression, Liebowitz Social Anxiety Scale, Beck Depression Inventory-second edition, Internalized Stigma of Mental Illness, the Temperament and Character Inventory, and Adult Dispositional Hope Scale. Results The individual rate of suicidality (suicidal index from MINI) strongly positively correlated with self-stigma, level of depression, social anxiety, and harm-avoidance, and negatively correlated with hope, self-directedness, and stigma resistance. Conclusion Individuals with additional symptoms of depression, social anxiety, trait-like anxiety, and self-stigma should be carefully monitored for suicidal ideation. On the opposite side, patients with sufficient hope, self-esteem, and goal-directed attitudes are less likely to have suicidal thoughts and may potentially be role models in group rehabilitation programs, motivating more distressed colleagues and showing them ways to cope. PMID:29910618
Waszczuk, M A; Zavos, H M S; Gregory, A M; Eley, T C
2016-01-01
Depression and anxiety persist within and across diagnostic boundaries. The manner in which common v. disorder-specific genetic and environmental influences operate across development to maintain internalizing disorders and their co-morbidity is unclear. This paper investigates the stability and change of etiological influences on depression, panic, generalized, separation and social anxiety symptoms, and their co-occurrence, across adolescence and young adulthood. A total of 2619 twins/siblings prospectively reported symptoms of depression and anxiety at mean ages 15, 17 and 20 years. Each symptom scale showed a similar pattern of moderate continuity across development, largely underpinned by genetic stability. New genetic influences contributing to change in the developmental course of the symptoms emerged at each time point. All symptom scales correlated moderately with one another over time. Genetic influences, both stable and time-specific, overlapped considerably between the scales. Non-shared environmental influences were largely time- and symptom-specific, but some contributed moderately to the stability of depression and anxiety symptom scales. These stable, longitudinal environmental influences were highly correlated between the symptoms. The results highlight both stable and dynamic etiology of depression and anxiety symptom scales. They provide preliminary evidence that stable as well as newly emerging genes contribute to the co-morbidity between depression and anxiety across adolescence and young adulthood. Conversely, environmental influences are largely time-specific and contribute to change in symptoms over time. The results inform molecular genetics research and transdiagnostic treatment and prevention approaches.
Gunay, Selim M; Keser, Ilke; Bicer, Zemzem T
2018-01-01
Ankylosing spondylitis (AS) can cause severe functional disorders that lead to loss of balance. The aim of this study was to investigate the effects of balance and postural stability exercises on spa based rehabilitation programme in AS subjects. Twenty-one participants were randomized to the study (n= 11) and control groups (n= 10). Patients balance and stability were assessed with the Berg Balance Scale (BBS), Timed Up and Go (TUG) Test, Single Leg Stance Test (SLST) and Functional Reach Test (FRT). AS spesicied measures were used for assessing to other parameters. The treatment plan for both groups consisted of conventional transcutaneous electrical nerve stimulation (TENS), spa and land-based exercises 5 days per week for 3 weeks. The study group performed exercises based on postural stability and balance with routine physiotherapy practice in thermal water and in exercise room. The TUG, SLST and FUT scores were significantly increased in the study group. In both groups, the BASMI, BASFI, BASDAI and ASQoL scores decreased significantly by the end of the treatment period (p< 0.05). In AS rehabilitation, performing balance and stability exercises in addition to spa based routine approaches can increase the duration of maintaining balance and can improve the benefits of physiotherapy.
Picardi, Angelo; Toni, Alessandro; Caroppo, Emanuele
2005-01-01
Controversy still exists concerning the stability of the alexithymia construct. Also, although alexithymia has been found to be related in a theoretically meaningful way to other personality constructs such as the 'Big Five' factors, few studies have investigated its relationship with influential constructs such as temperament and character, and attachment security. Two hundred twenty-one undergraduate and graduate students were administered the Toronto Alexithymia Scale (TAS-20), the State-Trait Anxiety Inventory (STAI), the Zung Depression Scale (ZDS), the Temperament and Character Inventory (TCI-125), the Big Five Questionnaire (BFQ), and the Experiences in Close Relationships (ECR) questionnaire. After 1 month, 115 participants completed again the TAS-20, STAI, and ZDS. Alexithymia was only moderately correlated with depression and anxiety. Both the absolute and relative stability of TAS-20 total and subscale scores was high, and a negligible portion of their change over time was accounted for by changes in depression or anxiety. In separate multiple regression models including also gender, age, depression and anxiety, TAS-20 total and subscale scores were correlated with low energy/extraversion, low emotional stability, openness, low friendliness/agreeableness; harm avoidance, low self-directedness, low cooperativeness, low reward dependence; attachment-related avoidance and anxiety. Our findings lend support for both absolute and relative stability of alexithymia, corroborate an association between alexithymia and insecure attachment, and contribute to a coherent placing of alexithymia in the broader theoretical network of personality constructs. Copyright (c) 2005 S. Karger AG, Basel.
Stabilizing Selection, Purifying Selection, and Mutational Bias in Finite Populations
Charlesworth, Brian
2013-01-01
Genomic traits such as codon usage and the lengths of noncoding sequences may be subject to stabilizing selection rather than purifying selection. Mutations affecting these traits are often biased in one direction. To investigate the potential role of stabilizing selection on genomic traits, the effects of mutational bias on the equilibrium value of a trait under stabilizing selection in a finite population were investigated, using two different mutational models. Numerical results were generated using a matrix method for calculating the probability distribution of variant frequencies at sites affecting the trait, as well as by Monte Carlo simulations. Analytical approximations were also derived, which provided useful insights into the numerical results. A novel conclusion is that the scaled intensity of selection acting on individual variants is nearly independent of the effective population size over a wide range of parameter space and is strongly determined by the logarithm of the mutational bias parameter. This is true even when there is a very small departure of the mean from the optimum, as is usually the case. This implies that studies of the frequency spectra of DNA sequence variants may be unable to distinguish between stabilizing and purifying selection. A similar investigation of purifying selection against deleterious mutations was also carried out. Contrary to previous suggestions, the scaled intensity of purifying selection with synergistic fitness effects is sensitive to population size, which is inconsistent with the general lack of sensitivity of codon usage to effective population size. PMID:23709636
Investigation of intrinsic toroidal rotation scaling in KSTAR
NASA Astrophysics Data System (ADS)
Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.
2017-07-01
The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.
Fu, Dong-Jing; Turkoz, Ibrahim; Walling, David; Lindenmayer, Jean-Pierre; Schooler, Nina R; Alphs, Larry
2018-02-01
Evaluate the effect of paliperidone palmitate once-monthly (PP1M) injectable on the specific functioning domains of the Personal and Social Performance (PSP) scale in patients with schizoaffective disorder (SCA) participating in a long-term study. This study (NCT01193153) included both in- and outpatient subjects with SCA experiencing an acute exacerbation of psychotic and mood symptoms. Subjects were treated with PP1M either as monotherapy or in combination with antidepressants or mood stabilizers during a 25-week open-label (OL) phase. Stabilized subjects were randomly assigned 1:1 (PP1M or placebo) into a 15-month double-blind (DB) relapse-prevention period. Functioning of the randomized subjects during OL and DB phases was evaluated using the PSP scale (four domains: socially useful activities, personal/social relationships, self-care, and disturbing/aggressive behaviors). Three statistical approaches were utilized to analyze PSP scores to assess robustness and consistency of findings. No adjustments were made for multiplicity. 334 of 667 enrolled subjects were stabilized with PP1M, randomly assigned to PP1M (n=164) or placebo (n=170) in the DB phase, and included in this analysis. Improvements in all PSP domain scores were observed during the OL phase and were maintained during the DB phase with PP1M, but decreased with placebo. Differences compared to placebo were significant in all four PSP domains during the DB phase (P≤0.008). The analysis in this study showed that PP1M improves functioning, as measured by the four PSP domain scores, in symptomatic subjects with SCA. Functioning was maintained compared with placebo. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Reed, Casey A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E
2012-08-01
Core stability training, operationally defined as training focused to improve trunk and hip control, is an integral part of athletic development, yet little is known about its direct relation to athletic performance. This systematic review focuses on identification of the association between core stability and sports-related performance measures. A secondary objective was to identify difficulties encountered when trying to train core stability with the goal of improving athletic performance. A systematic search was employed to capture all articles related to athletic performance and core stability training that were identified using the electronic databases MEDLINE, CINAHL and SPORTDiscus™ (1982-June 2011). A systematic approach was used to evaluate 179 articles identified for initial review. Studies that performed an intervention targeted toward the core and measured an outcome related to athletic or sport performances were included, while studies with a participant population aged 65 years or older were excluded. Twenty-four in total met the inclusionary criteria for review. Studies were evaluated using the Physical Therapy Evidence Database (PEDro) scale. The 24 articles were separated into three groups, general performance (n = 8), lower extremity (n = 10) and upper extremity (n = 6), for ease of discussion. In the majority of studies, core stability training was utilized in conjunction with more comprehensive exercise programmes. As such, many studies saw improvements in skills of general strengths such as maximum squat load and vertical leap. Surprisingly, not all studies reported measurable increases in specific core strength and stability measures following training. Additionally, investigations that targeted the core as the primary goal for improved outcome of training had mixed results. Core stability is rarely the sole component of an athletic development programme, making it difficult to directly isolate its affect on athletic performance. The population biases of some studies of athletic performance also confound the results. Targeted core stability training provides marginal benefits to athletic performance. Conflicting findings and the lack of a standardization for measurement of outcomes and training focused to improve core strength and stability pose difficulties. Because of this, further research targeted to determine this relationship is necessary to better understand how core strength and stability affect athletic performance.
Landslide Hazard from Coupled Inherent and Dynamic Probabilities
NASA Astrophysics Data System (ADS)
Strauch, R. L.; Istanbulluoglu, E.; Nudurupati, S. S.
2015-12-01
Landslide hazard research has typically been conducted independently from hydroclimate research. We sought to unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach couples an empirical inherent landslide probability, based on a frequency ratio analysis, with a numerical dynamic probability, generated by combining subsurface water recharge and surface runoff from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model. Landslide hazard mapping is advanced by combining static and dynamic models of stability into a probabilistic measure of geohazard prediction in both space and time. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex in northern Washington State.
Finite-temperature mechanical instability in disordered lattices.
Zhang, Leyou; Mao, Xiaoming
2016-02-01
Mechanical instability takes different forms in various ordered and disordered systems and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We use this theory to study two disordered lattices: a randomly diluted triangular lattice and a randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T=0. We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G∼T(1/2), whereas the square lattice shows G∼T(2/3). We discuss generic scaling laws for finite-T mechanical instabilities and relate them to experimental systems.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Odegard, Gregory M.; Nemeth, Michael P.; Frankland, Sarah-Jane V.
2004-01-01
A multi-scale analysis of the structural stability of a carbon nanotube-polymer composite material is developed. The influence of intrinsic molecular structure, such as nanotube length, volume fraction, orientation and chemical functionalization, is investigated by assessing the relative change in critical, in-plane buckling loads. The analysis method relies on elastic properties predicted using the hierarchical, constitutive equations developed from the equivalent-continuum modeling technique applied to the buckling analysis of an orthotropic plate. The results indicate that for the specific composite materials considered in this study, a composite with randomly orientated carbon nanotubes consistently provides the highest values of critical buckling load and that for low volume fraction composites, the non-functionalized nanotube material provides an increase in critical buckling stability with respect to the functionalized system.
Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven
2015-11-01
We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer-based formulations, especially at protein concentrations up to and including 115 mg/mL. Copyright © 2015 Elsevier B.V. All rights reserved.
Dell'Uomo, Daniela; Morone, Giovanni; Centrella, Antonio; Paolucci, Stefano; Caltagirone, Carlo; Grasso, Maria Grazia; Traballesi, Marco; Iosa, Marco
2017-01-01
Despite upper limb rehabilitation is widely investigated in patients with stroke, the effects of scapulohumeral rehabilitation on trunk stabillization are mainly unknown. To test the effects of scapulohumeral rehabilitation protocol on trunk control recovery in patients with subacute stroke. A pilot randomized controlled trial with two groups of 14 patients each one performing 20 minutes per day, 5 days a week, for 6 weeks in add on to standard therapy. Experimental group performed a specific scapulohumeral rehabilitation protocol aiming to improve trunk competencies whereas control group performed conventional arm rehabilitation. Clinical scale tests and accelerometric evaluations were performed pre- and post-treatment. Experimental groups showed better scores at discharge at Trunk impairment Scale (p < 0.001), Barthel Index (p = 0.024), Trunk Control Test (p = 0.002), Sitting Balance Scale (p = 0.002), but neither at Fugl-Meyer Scale (p = 0.194) nor Modified Ashworth Scale (p = 0.114). Accelerometric analysis showed higher stability of trunk for experimental group especially during static and dynamic items. The recovery of scapulohumeral functions also acts on trunk stabilization post-stroke.
Cruz, Jonas Preposi; Reyes, Ralph Warren P; Colet, Paolo C; Estacio, Joel C; Caldeira, Sílvia; Vitorino, Luciano Magalhães; Koenig, Harold G
2017-08-01
This study evaluated the psychometric properties of the Filipino versions of the Duke University Religion Index (DUREL-F) and the Spiritual Coping Strategies scale (SCS-F) for hemodialysis (HD) patients in the Philippines. A convenient sample of 162 HD patients was included in this descriptive, cross-sectional study. The DUREL-F and SCS-F exhibited acceptable internal consistency and stability reliability, as well as excellent content and construct validity. The findings confirmed the soundness of the psychometric properties of the two scales. Thus, they can be used for timely and accurate assessment of religiosity and spiritual coping utilization among Filipino patients receiving HD.
Stability region maximization by decomposition-aggregation method. [Skylab stability
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Cuk, S. M.
1974-01-01
This work is to improve the estimates of the stability regions by formulating and resolving a proper maximization problem. The solution of the problem provides the best estimate of the maximal value of the structural parameter and at the same time yields the optimum comparison system, which can be used to determine the degree of stability of the Skylab. The analysis procedure is completely computerized, resulting in a flexible and powerful tool for stability considerations of large-scale linear as well as nonlinear systems.
NASA Technical Reports Server (NTRS)
Hofstetter, William R.
1957-01-01
The static longitudinal and lateral stability charaetefistics of an 0 .065-scale model of the XRSSM-N-9a (REGULUS II) Missile at Mach number range of 1.6 to 2.0 at a Reynolds number per foot of 2.0(exp 8)
Rates and patterns of plankton response to stress exposure under natural conditions
NASA Astrophysics Data System (ADS)
Kucera, M.; Weinkauf, M.
2016-02-01
The effects of long-term exposure to natural levels of stress are often difficult to assess directly, because the resulting physiological changes and adaptations occur over times scales that cannot be covered by observations and where the outcome of the exposure cannot be predicted. Biometric studies on fossils provide a unique opportunity bridge this time scale and provide information on the reaction of populations to different levels of stress, including stress leading to extinction. In this respect, planktonic foraminifera represent a suitable model organism. This is because their shells, which are well preserved in marine sediments, record their entire ontogeny and allow assessment of developmental stability. Here we studied fossil populations of planktonic foraminifera transitioning into a high-stress environment during the onset of the deposition of Sapropel S5 in the Eastern Mediterranean, which culminated in local extinctions of several species. We show that calcification intensity (i.e. the amount of calcite secreted for a given body size) showed a strong and rapid reaction to surface water perturbation, with the same direction of change all species but no change prior to extinction, indicating that this parameters is primarily under environmental control. In contrast, shell morphology was not strictly tied to environmental change, but we observed large and rapid deviations in developmental stability immediately preceding local extinctions. It seems that developmental stability throughout ontogeny can be disrupted by enhanced stress levels leading to increased variation. This mechanism seems to operate on very short (decadal) time scales. It can potentially play a role in microevolution, and may be useful as an environmental stress proxy in plankton communities.
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Choudhari, Meelan; Li, Fei
1995-01-01
A multiple-scales approach is used to approximate the effects of nonparallelism and streamwise surface curvature on the growth of stationary crossflow vortices in incompressible, three-dimesional boundary layers. The results agree with results predicted by solving the parabolized stability equations in regions where the nonparallelism is sufficiently weak. As the nonparallelism increases, the agreement between the two approaches worsens. An attempt has been made to quantify the nonparallelism on flow stability in terms of a nondimensional number that describes the rate of change of the mean flow relative to the disturbance wavelength. We find that the above nondimensional number provides useful information about the adequacy of the multiple-scales approximation for different disturbances for a given flow geometry, but the number does not collapse data for different flow geometries onto a single curve.
Computer code for the prediction of nozzle admittance
NASA Technical Reports Server (NTRS)
Nguyen, Thong V.
1988-01-01
A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed.
[The clinical picture and stability of non-cognitive symptoms in patients with Alzheimer's disease].
Haupt, M; Jänner, M; Stierstorfer, A; Kretschmar, C
1998-05-01
The purpose of this study was to investigate noncognitive symptoms in Alzheimer's disease in order to identify symptom patterns and to study stability of such patterns prospectively. Furthermore, variables were examined which could be associated with certain types of symptom patterns or could be predictors of change of these patterns. Forty-eight patients with the clinical diagnosis of probable Alzheimer's disease were included in this study and were assessed weekly over a three-week period. Noncognitive symptoms were rated according to the Behavioral Abnormalities in Alzheimer's Disease Rating Scale (BEHAVE-AD) and the Dementia Mood Assessment Scale (DMAS) and to a set of items specifically assessing misidentifications. By means of principal component factor analysis different noncognitive symptom patterns were obtained yielding a four-factor solution. They were mapped as rational domains with respect to clinical experience: 'depression', 'apathy', 'psychotic symptoms/aggression', 'misidentifications/agitation'. Demographic and clinical variables were not associated with the factor solutions and did not predict change of the factor values. The results demonstrate that in Alzheimer's disease there are distinct noncognitive symptom patterns with at least short-term prospective stability. None of the examined clinical variables, such as age at entry, the status of the patients (outpatient or inpatient) or dementia severity, exerted substantial influence on the noncognitive symptom patterns. Further investigations should concentrate on the pathological and prognostical correlates of noncognitive symptom patterns in Alzheimer's disease.
Passive control of coherent structures in a modified backwards-facing step flow
NASA Astrophysics Data System (ADS)
Ormonde, Pedro C.; Cavalieri, André V. G.; Silva, Roberto G. A. da; Avelar, Ana C.
2018-05-01
We study a modified backwards-facing step flow, with the addition of two different plates; one is a baseline, impermeable plate and the second a perforated one. An experimental investigation is carried out for a turbulent reattaching shear layer downstream of the two plates. The proposed setup is a model configuration to study how the plate characteristics affect the separated shear layer and how turbulent kinetic energies and large-scale coherent structures are modified. Measurements show that the perforated plate changes the mean flow field, mostly by reducing the intensity of reverse flow close to the bottom wall. Disturbance amplitudes are significantly reduced up to five step heights downstream of the trailing edge of the plate, more specifically in the recirculation region. A loudspeaker is then used to introduce phase-locked, low-amplitude perturbations upstream of the plates, and phase-averaged measurements allow a quantitative study of large-scale structures in the shear-layer. The evolution of such coherent structures is evaluated in light of linear stability theory, comparing the eigenfunction of the Kelvin-Helmholtz mode to the experimental results. We observe a close match of linear-stability eigenfunctions with phase-averaged amplitudes for the two tested Strouhal numbers. The perforated plate is found to reduce the amplitude of the Kelvin-Helmholtz coherent structures in comparison to the baseline, impermeable plate, a behavior consistent with the predicted amplification trends from linear stability.
Linking the influence and dependence of people on biodiversity across scales.
Isbell, Forest; Gonzalez, Andrew; Loreau, Michel; Cowles, Jane; Díaz, Sandra; Hector, Andy; Mace, Georgina M; Wardle, David A; O'Connor, Mary I; Duffy, J Emmett; Turnbull, Lindsay A; Thompson, Patrick L; Larigauderie, Anne
2017-05-31
Biodiversity enhances many of nature's benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth's history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation.
The analysis of HIV/AIDS drug-resistant on networks
NASA Astrophysics Data System (ADS)
Liu, Maoxing
2014-01-01
In this paper, we present an Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) drug-resistant model using an ordinary differential equation (ODE) model on scale-free networks. We derive the threshold for the epidemic to be zero in infinite scale-free network. We also prove the stability of disease-free equilibrium (DFE) and persistence of HIV/AIDS infection. The effects of two immunization schemes, including proportional scheme and targeted vaccination, are studied and compared. We find that targeted strategy compare favorably to a proportional condom using has prominent effect to control HIV/AIDS spread on scale-free networks.
Foltz, Martin; van Buren, Leo; Klaffke, Werner; Duchateau, Guus S M J E
2009-09-01
Selected di- and tripeptides exhibit angiotensin-I converting enzyme (ACE) inhibitory activity in vitro. However, the efficacy in vivo is most likely limited for most peptides due to low bioavailability. The purpose of this study was to identify descriptors of intestinal stability, permeability, and ACE inhibitory activity of dipeptides. A total of 228 dipeptides were synthesized; intestinal stability was obtained by in vitro digestion, intestinal permeability using Caco-2 cells and ACE inhibitory activity by an in vitro assay. Databases were constructed to study the relationship between structure and activity, permeability, and stability. Quantitative structure-activity relationship (QSAR) modeling was performed based on computed models using partial least squares regression based on 400 molecular descriptors. QSAR modeling of dipeptide stability revealed high correlation coefficients (R > 0.65) for models based on Z and X scales. However, amino acid (AA) clustering showed the best results in describing stability of dipeptides. The N-terminal AA residues Asp, Gly, and Pro as well as the C-terminal residues Pro, Ser, Thr, and Asp stabilize dipeptides toward luminal enzymatic peptide hydrolysis. QSAR modeling did not reveal significant correlation models for intestinal permeability. 2D-fingerprint models were identified describing ACE inhibitory activity of dipeptides. The intestinal stability of 12 peptides was predicted. Peptides were synthesized and stability was confirmed in simulated digestion experiments. Based on the results, specific dipeptides can be designed to meet both stability and activity criteria. However, postabsorptive ACE inhibitory activities of dipeptides in vivo are most likely limited due to the very low intestinal permeability of dipeptides.
Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang
2016-12-01
Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.
Psychometric Properties of the Persian Version of Self-Transcendence Scale: Adolescent Version
Farahani, Azam Shirinabadi; Rassouli, Maryam; Yaghmaie, Farideh; Majd, Hamid Alavi; Sajjadi, Moosa
2016-01-01
Background: Given the greater tendency during adolescence toward risk-taking, identifying and measuring the factors affecting the adolescents’ health is highly important to ensure the efficacy of health promoting interventions. One of these factors is self-transcendence. The aim of this study was to assess the psychometric features of the Self-Transcendence Scale (adolescents’ version) in students in Tehran, the capital city of Iran. Methods: This research was conducted in 2015. For this purpose, 1210 high school students were selected through the multistage cluster sampling method. After the backward-forward translation, the psychometric properties of the scale were examined through the assessment of the (face and construct) validity and reliability (internal consistency and stability) of the scale. The construct validity was assessed using two methods, factor analysis, and convergence of the scale with the Hopefulness Scale for Adolescents. Results: The result of face validity was minor modifications in some words. The exploratory factor analysis resulted in the extraction of two dimensions, with explaining 52.79% of the variance collectively. In determining the convergent validity, the correlation between hopefulness score and self-transcendence score was r=0.47 (P<0.001). The internal consistency of the scale was determined using Cronbach’s alpha of 0.82 for the whole scale and 0.75 and 0.70 for each of the sub-scales. The stability reliability was found to have an ICC of 0.86 and a confidence interval of 95%. Conclusion: The Persian version of the Adolescents’ Self-Transcendence Scale showed an acceptable validity and reliability and can be used in the assessment of self-transcendence in Iranian adolescents. PMID:27218113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Doping control container for urine stabilization: a pilot study.
Tsivou, Maria; Giannadaki, Evangelia; Hooghe, Fiona; Roels, Kris; Van Gansbeke, Wim; Garribba, Flaminia; Lyris, Emmanouil; Deventer, Koen; Mazzarino, Monica; Donati, Francesco; Georgakopoulos, Dimitrios G; Van Eenoo, Peter; Georgakopoulos, Costas G; de la Torre, Xavier; Botrè, Francesco
2017-05-01
Urine collection containers used in the doping control collection procedure do not provide a protective environment for urine, against degradation by microorganisms and proteolytic enzymes. An in-house chemical stabilization mixture was developed to tackle urine degradation problems encountered in human sport samples, in cases of microbial contamination or proteolytic activity. The mixture consists of antimicrobial substances and protease inhibitors for the simultaneous inactivation of a wide range of proteolytic enzymes. It has already been tested in lab-scale, as part of World Anti-Doping Agency's (WADA) funded research project, in terms of efficiency against microbial and proteolytic activity. The present work, funded also by WADA, is a follow-up study on the improvement of chemical stabilization mixture composition, application mode and limitation of interferences, using pilot urine collection containers, spray-coated in their internal surface with the chemical stabilization mixture. Urine in plastic stabilized collection containers have been gone through various incubation cycles to test for stabilization efficiency and analytical matrix interferences by three WADA accredited Laboratories (Athens, Ghent, and Rome). The spray-coated chemical stabilization mixture was tested against microorganism elimination and steroid glucuronide degradation, as well as enzymatic breakdown of proteins, such as intact hCG, recombinant erythropoietin and small peptides (GHRPs, ipamorelin), induced by proteolytic enzymes. Potential analytical interferences, observed in the presence of spray-coated chemical stabilization mixture, were recorded using routine screening procedures. The results of the current study support the application of the spray-coated plastic urine container, in the doping control collection procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O
2017-01-01
The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review’s inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16–2.10) and in patients suffering from chronic stroke (−0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (−0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive–motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings. PMID:28356727
Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O
2017-01-01
The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review's inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16-2.10) and in patients suffering from chronic stroke (-0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (-0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive-motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings.
The snakelike chain character of unstructured RNA.
Jacobson, David R; McIntosh, Dustin B; Saleh, Omar A
2013-12-03
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod "wormlike chain" (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a "snakelike chain," characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Clark, L. E.; Richie, C. B.
1977-01-01
The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.
Renormalization group flow of the Higgs potential
NASA Astrophysics Data System (ADS)
Gies, Holger; Sondenheimer, René
2018-01-01
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
Development of the Attributed Dignity Scale.
Jacelon, Cynthia S; Dixon, Jane; Knafl, Kathleen A
2009-07-01
A sequential, multi-method approach to instrument development beginning with concept analysis, followed by (a) item generation from qualitative data, (b) review of items by expert and lay person panels, (c) cognitive appraisal interviews, (d) pilot testing, and (e) evaluating construct validity was used to develop a measure of attributed dignity in older adults. The resulting positively scored, 23-item scale has three dimensions: Self-Value, Behavioral Respect-Self, and Behavioral Respect-Others. Item-total correlations in the pilot study ranged from 0.39 to 0.85. Correlations between the Attributed Dignity Scale (ADS) and both Rosenberg's Self-Esteem Scale (0.17) and Crowne and Marlowe's Social Desirability Scale (0.36) were modest and in the expected direction, indicating attributed dignity is a related but independent concept. Next steps include testing the ADS with a larger sample to complete factor analysis, test-retest stability, and further study of the relationships between attributed dignity and other concepts.
Entropically Stabilized Colloidal Crystals Hold Entropy in Collective Modes
NASA Astrophysics Data System (ADS)
Antonaglia, James; van Anders, Greg; Glotzer, Sharon
Ordered structures can be stabilized by entropy if the system has more ordered microstates available than disordered ones. However, ``locating'' the entropy in an ordered system is challenging because entropic ordering is necessarily a collective effort emerging from the interactions of large numbers of particles. Yet, we can characterize these crystals using simple traditional tools, because entropically stabilized crystals exhibit collective motion and effective stiffness. For a two-dimensional system of hard hexagons, we calculate the dispersion relations of both vibrational and librational collective modes. We find the librational mode is gapped, and the gap provides an emergent, macroscopic, and density-dependent length scale. We quantify the entropic contribution of each collective mode and find that below this length scale, the dominant entropic contributions are librational, and above this length scale, vibrations dominate. This length scale diverges in the high-density limit, so entropy is found predominantly in libration near dense packing. National Science Foundation Graduate Research Fellowship Program Grant No. DGE 1256260, Advanced Research Computing at the University of Michigan, Ann Arbor, and the Simons Foundation.
Kang, Ho Jung; Oh, Won Taek; Koh, Il Hyun; Kim, Sungmin
2016-01-01
Purpose Simple decompression of the ulnar nerve has outcomes similar to anterior transposition for cubital tunnel syndrome; however, there is no consensus on the proper technique for patients with an unstable ulnar nerve. We hypothesized that 1) simple decompression or anterior ulnar nerve transposition, depending on nerve stability, would be effective for cubital tunnel syndrome and that 2) there would be determining factors of the clinical outcome at two years. Materials and Methods Forty-one patients with cubital tunnel syndrome underwent simple decompression (n=30) or anterior transposition (n=11) according to an assessment of intra-operative ulnar nerve stability. Clinical outcome was assessed using grip and pinch strength, two-point discrimination, the mean of the disabilities of arm, shoulder, and hand (DASH) survey, and the modified Bishop Scale. Results Preoperatively, two patients were rated as mild, another 20 as moderate, and the remaining 19 as severe according to the Dellon Scale. At 2 years after operation, mean grip/pinch strength increased significantly from 19.4/3.2 kg to 31.1/4.1 kg, respectively. Two-point discrimination improved from 6.0 mm to 3.2 mm. The DASH score improved from 31.0 to 14.5. All but one patient scored good or excellent according to the modified Bishop Scale. Correlations were found between the DASH score at two years and age, pre-operative grip strength, and two-point discrimination. Conclusion An ulnar nerve stability-based approach to surgery selection for cubital tunnel syndrome was effective based on 2-year follow-up data. Older age, worse preoperative grip strength, and worse two-point discrimination were associated with worse outcomes at 2 years. PMID:26847300
Short and long-term genome stability analysis of prokaryotic genomes.
Brilli, Matteo; Liò, Pietro; Lacroix, Vincent; Sagot, Marie-France
2013-05-08
Gene organization dynamics is actively studied because it provides useful evolutionary information, makes functional annotation easier and often enables to characterize pathogens. There is therefore a strong interest in understanding the variability of this trait and the possible correlations with life-style. Two kinds of events affect genome organization: on one hand translocations and recombinations change the relative position of genes shared by two genomes (i.e. the backbone gene order); on the other, insertions and deletions leave the backbone gene order unchanged but they alter the gene neighborhoods by breaking the syntenic regions. A complete picture about genome organization evolution therefore requires to account for both kinds of events. We developed an approach where we model chromosomes as graphs on which we compute different stability estimators; we consider genome rearrangements as well as the effect of gene insertions and deletions. In a first part of the paper, we fit a measure of backbone gene order conservation (hereinafter called backbone stability) against phylogenetic distance for over 3000 genome comparisons, improving existing models for the divergence in time of backbone stability. Intra- and inter-specific comparisons were treated separately to focus on different time-scales. The use of multiple genomes of a same species allowed to identify genomes with diverging gene order with respect to their conspecific. The inter-species analysis indicates that pathogens are more often unstable with respect to non-pathogens. In a second part of the text, we show that in pathogens, gene content dynamics (insertions and deletions) have a much more dramatic effect on genome organization stability than backbone rearrangements. In this work, we studied genome organization divergence taking into account the contribution of both genome order rearrangements and genome content dynamics. By studying species with multiple sequenced genomes available, we were able to explore genome organization stability at different time-scales and to find significant differences for pathogen and non-pathogen species. The output of our framework also allows to identify the conserved gene clusters and/or partial occurrences thereof, making possible to explore how gene clusters assembled during evolution.
Mönkäre, Tiina J; Palmroth, Marja R T; Rintala, Jukka A
2017-02-01
Increasing interest for the landfill mining and the amount of fine fraction (FF) in landfills (40-70% (w/w) of landfill content) mean that sustainable treatment and utilization methods for FF are needed. For this study FF (<20mm) was mined from a municipal solid waste (MSW) landfill operated from 1967 to 1989. FF, which resembles soil, was stabilized in laboratory scale reactors in two phases: first, anaerobically for 101days and second, for 72days using four different methods: anaerobic with the addition of moisture (water) or inoculum (sewage sludge) and aerobic with continuous water washing, with, or without, bulking material. The aim was to evaluate the effect on the stability of mined FF, which has been rarely reported, and to study the quality and quantity of gas and leachate produced during the stabilization experiment. The study showed that aerobic treatment reduced respiration activity (final values 0.9-1.1mgO 2 /gTS) and residual methane potential (1.1LCH 4 /kgTS) better than anaerobic methods (1.8-2.3mg O 2 /g TS and 1.3-2.4L CH 4 /kg TS, respectively). Bulking material mixed in FF in one aerobic reactor had no effect on the stability of FF. The benefit of anaerobic treatment was the production of methane, which could be utilized as energy. Even though the inoculum addition increased methane production from FF about 30%, but the methane production was still relatively low (in total 1.5-1.7L CH 4 /kg TS). Continuous water washing was essential to remove leachable organic matter and soluble nutrients from FF, while increasing the volume of leachate collected. In the aerobic treatment, nitrogen was oxidized into nitrite and nitrate and then washed out in the leachate. Both anaerobic and aerobic methods could be used for FF stabilization. The use of FF, in landscaping for example, is possible because its nutrient content (4gN/kg TS and 1g P/kg TS) can increase the nutrient content of soil, but this may have limitations due to the possible presence of heavy metal and other contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of discharge variation in scaling of drainage area and food chain length in rivers
Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.
2010-01-01
Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.
Neighborhood Effects on PND Symptom Severity for Women Enrolled in a Home Visiting Program.
Jones, David E; Tang, Mei; Folger, Alonzo; Ammerman, Robert T; Hossain, Md Monir; Short, Jodie; Van Ginkel, Judith B
2018-05-01
The aim of this study was to investigate the association between postnatal depression (PND) symptoms severity and structural neighborhood characteristics among women enrolled in a home visiting program. The sample included 295 mothers who were at risk for developing PND, observed as 3-month Edinburgh Postnatal Depression Scale (EPDS) scores ≥ 10. Two neighborhood predictor components (residential stability and social disadvantage) were analyzed as predictors of PND symptom severity using a generalized estimating equation. Residential stability was negatively associated with PND symptom severity. Social disadvantage was not found to be statistically significantly. The findings suggest that residential stability is associated with a reduction in PND symptom severity for women enrolled in home visiting program.
The role of discharge variation in scaling of drainage area and food chain length in rivers.
Sabo, John L; Finlay, Jacques C; Kennedy, Theodore; Post, David M
2010-11-12
Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.
Miao, J; Wang, B; Bai, Y; Yuan, Y B; Gao, C; Wang, L J
2015-05-01
Frequency dissemination and synchronization in free space play an important role in global navigation satellite system, radio astronomy, and synthetic aperture radar. In this paper, we demonstrated a portable radio frequency dissemination scheme via free space using microwave antennas. The setup has a good environment adaptability and high dissemination stability. The frequency signal was disseminated at different distances ranging from 10 to 640 m with a fixed 10 Hz locking bandwidth, and the scaling law of dissemination stability on distance and averaging time was discussed. The preliminary extrapolation shows that the dissemination stability may reach 1 × 10(-12)/s in ground-to-satellite synchronization, which far exceeds all present methods, and is worthy for further study.
Spectrum of perturbations in anisotropic inflationary universe with vector hair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himmetoglu, Burak, E-mail: burak@physics.umn.edu
2010-03-01
We study both the background evolution and cosmological perturbations of anisotropic inflationary models supported by coupled scalar and vector fields. The models we study preserve the U(1) gauge symmetry associated with the vector field, and therefore do not possess instabilities associated with longitudinal modes (which instead plague some recently proposed models of vector inflation and curvaton). We first intoduce a model in which the background anisotropy slowly decreases during inflation; we then confirm the stability of the background solution by studying the quadratic action for all the perturbations of the model. We then compute the spectrum of the h{sub ×}more » gravitational wave polarization. The spectrum we find breaks statistical isotropy at the largest scales and reduces to the standard nearly scale invariant form at small scales. We finally discuss the possible relevance of our results to the large scale CMB anomalies.« less
NASA Astrophysics Data System (ADS)
Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua
2018-05-01
Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.
Relative operational performance of geosynthetics used as subgrade stabilization.
DOT National Transportation Integrated Search
2014-05-01
Full-scale test sections were constructed, trafficked and monitored to compare the relative operational : performance of geosynthetics used as subgrade stabilization as well as determine which material properties are : most related to performance. Se...
ERIC Educational Resources Information Center
Klem, Marianne; Hagtvet, Bente; Hulme, Charles; Gustafsson, Jan-Eric
2016-01-01
Purpose: This study investigated the stability and growth of preschool language skills and explores latent class analysis as an approach for identifying children at risk of language impairment. Method: The authors present data from a large-scale 2-year longitudinal study, in which 600 children were assessed with a language-screening tool…
ERIC Educational Resources Information Center
Moffitt, Terrie E.; Silva, P. A.
1987-01-01
Examined children whose Wechsler Intelligence Scale for Children-Revised (WISC-R) verbal and performance Intelligence Quotient discrepancies placed them beyond the 90th percentile. Longitudinal study showed 23 percent of the discrepant cases to be discrepant at two or more ages. Studied frequency of perinatal difficulties, early childhood…
Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil
2016-04-01
Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.
Bleidorn, Wiebke; Kandler, Christian; Riemann, Rainer; Spinath, Frank M; Angleitner, Alois
2009-07-01
The present study examined the patterns and sources of 10-year stability and change of adult personality assessed by the 5 domains and 30 facets of the Revised NEO Personality Inventory. Phenotypic and biometric analyses were performed on data from 126 identical and 61 fraternal twins from the Bielefeld Longitudinal Study of Adult Twins (BiLSAT). Consistent with previous research, LGM analyses revealed significant mean-level changes in domains and facets suggesting maturation of personality. There were also substantial individual differences in the change trajectories of both domain and facet scales. Correlations between age and trait changes were modest and there were no significant associations between change and gender. Biometric extensions of growth curve models showed that 10-year stability and change of personality were influenced by both genetic as well as environmental factors. Regarding the etiology of change, the analyses uncovered a more complex picture than originally stated, as findings suggest noticeable differences between traits with respect to the magnitude of genetic and environmental effects. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
The Bahasa Melayu version of the Nursing Stress Scale among nurses: a reliability study in Malaysia.
Rosnawati, Muhamad Robat; Moe, Htay; Masilamani, Retneswari; Darus, A
2010-10-01
The Nursing Stress Scale (NSS) has been shown to be a valid and reliable instrument to assess occupational stressors among nurses. The NSS, which was previously used in the English version, was translated and back-translated into Bahasa Melayu. This study was conducted to assess the reliability of the Bahasa Melayu version of the NSS among nurses for future studies in this country. The reliability of the NSS was assessed after its readministration to 30 nurses with a 2-week interval. The Spearman coefficient was calculated to assess its stability. The internal consistency was measured through 4 measures: Cronbach's α, Spearman-Brown, Guttman split-half, and standardized item α coefficients. The total response rate was 70%. Test-retest reliability showed remarkable stability (Spearman's ρ exceeded .70). All 4 measures of internal consistency among items indicated a satisfactory level (coefficients in the range of .68 to .87). In conclusion, the Bahasa Melayu version of the NSS is a reliable and useful instrument for measuring the possible stressors at the workplace among nurses.
Genung, Mark A; Fox, Jeremy; Williams, Neal M; Kremen, Claire; Ascher, John; Gibbs, Jason; Winfree, Rachael
2017-07-01
The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments. © 2017 by the Ecological Society of America.
Making the Spoon: Analyzing and Employing Stability Power in Counterinsurgency Operations
2007-05-11
Economic Effects of 9/11:A Retrospective Assessment. Report to Congress: Specialist in Economic Policy, 2002. Maslow , Abraham H., and Robert Frager...elements of national power in proportion to the scale of the intervention, to stabilize a failing state. As the theory of stability power requires a...sustainment and support capabilities to provide the military a counterinsurgency “spoon,” through the theory of stability power. This thesis determines if
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Wolhart, Walter D.; Fletcher, H. S.
1953-01-01
An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the pitching stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient, control deflections, and propeller blade angle were investigated. The tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
On the stability of the Atlantic meridional overturning circulation.
Hofmann, Matthias; Rahmstorf, Stefan
2009-12-08
One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC.
NASA Astrophysics Data System (ADS)
Yao, Jun; Zhang, Jinqiu; Zhao, Mingmei; Li, Xin
2018-07-01
This study investigated the stability of vibration in a nonlinear suspension system with slow-varying sprung mass under dual-excitation. A mathematical model of the system was first established and then solved using the multi-scale method. Finally, the amplitude-frequency curve of vehicle vibration, the solution's stable region and time-domain curve in Hopf bifurcation were derived. The obtained results revealed that an increase in the lower excitation would reduce the system's stability while an increase in the upper excitation can make the system more stable. The slow-varying sprung mass will change the system's damping from negative to positive, leading to the appearance of limit cycle and Hopf bifurcation. As a result, the vehicle's vibration state is forced to change. The stability of this system is extremely fragile under the effect of dynamic Hopf bifurcation as well as static bifurcation.
Onset of density-driven instabilities in fractured aquifers
NASA Astrophysics Data System (ADS)
Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan
2018-04-01
Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.
Wang, Qi; Chen, Bo; Liu, Ye; ...
2017-01-01
The stability of perovskite solar cells has shown a huge variation with respect to the film process and film morphology, while the underlining mechanism for the morphology-dependent degradation of the perovskite film has remained elusive. Herein, we report a scaling behavior of moisture-induced grain degradation in polycrystalline CH 3NH 3PbI 3 films. The degradation rates of CH 3NH 3PbI 3 films in moisture were shown to be sensitive to the grain sizes. The duration that was needed for different films to degrade by the same percent showed a linear relationship with the grain size, despite the fact that the filmsmore » were formed by five different deposition methods. This scaling behavior can be explained by the degradation along the in-plane direction, which is initiated at the grain boundary (GB). The GBs of CH 3NH 3PbI 3 films consist of an amorphous intergranular layer, which allows quick diffusion of moisture into the perovskite films. It was found that thermal annealing induced surface self-passivation plays a critical role in stabilizing the surfaces of thin films and single crystals by reducing the moisture-sensitive methylammonium ions at the surface. Finally, the determination of the scaling behavior of grain degradation highlights the importance of stabilizing the GBs to improve the stability of perovskite solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Chen, Bo; Liu, Ye
The stability of perovskite solar cells has shown a huge variation with respect to the film process and film morphology, while the underlining mechanism for the morphology-dependent degradation of the perovskite film has remained elusive. Herein, we report a scaling behavior of moisture-induced grain degradation in polycrystalline CH 3NH 3PbI 3 films. The degradation rates of CH 3NH 3PbI 3 films in moisture were shown to be sensitive to the grain sizes. The duration that was needed for different films to degrade by the same percent showed a linear relationship with the grain size, despite the fact that the filmsmore » were formed by five different deposition methods. This scaling behavior can be explained by the degradation along the in-plane direction, which is initiated at the grain boundary (GB). The GBs of CH 3NH 3PbI 3 films consist of an amorphous intergranular layer, which allows quick diffusion of moisture into the perovskite films. It was found that thermal annealing induced surface self-passivation plays a critical role in stabilizing the surfaces of thin films and single crystals by reducing the moisture-sensitive methylammonium ions at the surface. Finally, the determination of the scaling behavior of grain degradation highlights the importance of stabilizing the GBs to improve the stability of perovskite solar cells.« less
Large-scale systems: Complexity, stability, reliability
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1975-01-01
After showing that a complex dynamic system with a competitive structure has highly reliable stability, a class of noncompetitive dynamic systems for which competitive models can be constructed is defined. It is shown that such a construction is possible in the context of the hierarchic stability analysis. The scheme is based on the comparison principle and vector Liapunov functions.
NASA Astrophysics Data System (ADS)
Ghannam, K.; Katul, G. G.; Chamecki, M.
2016-12-01
The scale-wise properties of turbulent flow statistics are conventionally quantified using the structure function D_ss (r)= <〖(Δs)〗^2 > describing velocity (s=u) or scalar (s=c) concentration increments Δs=s(x+r)-s(x) at various scales or separation distances r, where <.> is Reynolds averaging over coordinates of statistical homogeneity. For locally homogeneous and isotropic turbulence, the structure function can unfold statistical invariance of the form D_ss (βr)=β^p D_ss (r) as has been demonstrated by Kolmogorov's theory for the inertial subrange in the absence of intermittency corrections. For scales larger than inertial, scale invariance need not hold though universal scaling properties can still emerge provided an appropriate length and velocity scales are identified. One recent study on the structure function of the streamwise velocity (s=u) in smooth and rough wall-bounded flows argued that a logarithmic scaling of the form D_ss/(u_*^2 )=A+B ln(r/l_ɛ ) exists at any height z above the wall (or roughness elements), with,l_ɛ,〖 u〗_*, A and B being a dissipation length scale, the friction velocity, and two similarity constants to be determined. Whether this scaling is valid across all atmospheric stability regimes in the roughness sublayer (RSL) and the possible co-existence of length scales other than l_ɛ that collapse D_ss (r) for velocity and temperature frames the scope of this work. Using year-round field measurements within and above an Amazonian canopy, the work here explores the aforementioned scaling for the streamwise (s=u) and vertical velocity (s=w) components, along with its extension to active scalars (s=T, the air temperature) inside canopies and in the RSL above canopies. While the premise is that a length scale such as l_ɛ may serve as a master closure length scale for turbulent momentum and heat flux budgets, the role of the vorticity thickness, the Obukhov length, the adjustment length scale, and height z are also explored for various scale (or r) regimes. Because the RSL blends D_ss (r) from its form inside the canopy to its form in the well-studied atmospheric surface layer, the scaling laws derived here offer a new perspective on the thickness of the RSL for momentum and scalars and its variations with atmospheric stability.
Delocalized periodic vibrations in nonlinear LC and LCR electrical chains
NASA Astrophysics Data System (ADS)
Chechin, G. M.; Shcherbinin, S. A.
2015-05-01
We consider electrical LC- and LCR-chains consisting of N cells. In the LC-chain each cell contains a linear inductor L and a nonlinear capacitor C, while the cell in the LCR-chain include additionally a resistor R and an voltage source. It is assumed that voltage dependence of capacitors represents an even function. Such capacitors have implemented by some experimental groups studying propagation of electrical signals in the lines constructed on MOS and CMOS substrates. In these chains, we study dynamical regimes representing nonlinear normal modes (NNMs) by Rosenberg. We prove that maximum possible number of symmetry-determined NNMs which can be excited in the considered chains is equal to 5. The stability of these modes for different N is studied with the aid of the group-theoretical method [Physical Review E 73 (2006) 36216] which allows to simplify radically the variational systems appearing in the Floquet stability analysis. For NNMs in LC-chain, the scaling of the voltage stability threshold in the thermodynamic limit (N → ∞) is determined. It is shown that the above group theoretical method can be also used for studying stability of NNMs in the LCR-chains.
Zhao, Xiao; Liu, Wen; Cai, Zhengqing; Han, Bing; Qian, Tianwei; Zhao, Dongye
2016-09-01
Nano-scale zero-valent iron (nZVI) is one of the most intensively studied materials for environmental cleanup uses over the past 20 years or so. Freshly prepared nZVI is highly reactive due to its high specific surface area and strong reducing power. Over years, the classic borohydride reduction method for preparing nZVI has been modified by use of various stabilizers or surface modifiers to acquire more stable and soil deliverable nZVI for treatment of different organic and inorganic contaminants in water and soil. While most studies have been focused on testing nZVI for water treatment, the greater potential or advantage of nZVI appears to be for in situ remediation of contaminated soil and groundwater by directly delivering stabilized nZVI into the contaminated subsurface as it was proposed from the beginning. Compared to conventional remediation practices, the in situ remediation technique using stabilized nZVI offers some unique advantages. This work provides an update on the latest development of stabilized nZVI for various environmental cleanup uses, and overviews the evolution and environmental applications of stabilized nZVI. Commonly used stabilizers are compared and the stabilizing mechanisms are discussed. The effectiveness and constraints of the nZVI-based in situ remediation technology are summarized. This review also reveals some critical knowledge gaps and research needs, such as interactions between delivered nZVI and the local biogeochemical conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrodynamic interaction between two trapped swimming model micro-organisms.
Matas Navarro, R; Pagonabarraga, I
2010-09-01
We present a theoretical study of the behaviour of two active particles under the action of harmonic traps kept at a fixed distance away from each other. We classify the steady configurations the squirmers develop as a function of their self-propelling velocity and the active stresses the swimmers induce around them. We have further analyzed the stability of such configurations, and have found that the ratio between their self-propelling velocity and the apolar flow generated through active stresses determines whether collinear parallel squirmers or perpendicularly swimming particles moving away from each other are stable. Therefore, there is a close connection between the stable configurations and the active mechanisms leading to the particle self-propulsion. The trap potential does not affect the stability of the configurations; it only modifies some of their relevant time scales. We have also observed the development of characteristic frequencies which should be observable. Finally, we show that the development of the hydrodynamic flows induced by the active particles may be relevant even when its time scale orders of magnitude smaller than the other present characteristic time scales and may destabilize the stable configurations.
Use of agar agar stabilized milled zero-valent iron particles for in situ groundwater remediation
NASA Astrophysics Data System (ADS)
Schmid, Doris; Velimirović, Milica; Wagner, Stephan; Micić Batka, Vesna; von der Kammer, Frank; Hofmann, Thilo
2015-04-01
A major obstacle for use of nanoscale zero-valent iron (nZVI) particles as a nontoxic material for effective in situ degradation of chlorinated aliphatic hydrocarbons (CAHs) is the high production cost. For that reason, submicro-scale milled zero-valent iron particles were recently developed (milled ZVI, UVR-FIA, Germany) by grinding macroscopic raw materials of elementary iron as a cheaper alternative to products produced by solid-state reduction. However, milled ZVI particles tend to aggregate and due to the rather large particle size (d50= 11.9 µm) also rapidly sediment. To prevent aggregation and consequently sedimentation of milled ZVI particles and therefore improve the mobility after in situ application, the use of a stabilizer is considered in literature as a most promising option. In this study, milled ZVI particles (1 g L-1 of particle concentration) were stabilized by environmentally friendly polymer agar agar (>0.5 g L-1), which had a positive impact on the milled ZVI stability. Sedimentation rate was significantly decreased by increasing the suspension viscosity. Column transport experiments were performed for bare and agar agar stabilized milled ZVI particles in commercially available fine grained quartz sand (DORSILIT® Nr.8, Gebrüder Dorfner GmbH Co, Germany) and different porous media collected from brownfields. The experiments were carried out under field relevant injection conditions of 100 m d-1. The maximal travel distance (LT) of less than 10 cm was determined for non-stabilized suspension in fine grained quartz sand, while agar agar (1 g L-1) stabilized milled ZVI suspension revealed LT of 12 m. Similar results were observed for porous media from brownfields showing that mobility of agar agar stabilized particle suspensions was significantly improved compared to bare particles. Based on the mobility data, agar agar stabilized milled zero-valent iron particles could be used for in situ application. Finally, lab-scale batch degradation experiments were performed to determine the impact of agar agar on the reactivity of milled ZVI and investigate the apparent corrosion rate of particles by quantifying the hydrogen gas generated by anaerobic corrosion of milled ZVI. The results indicate that agar agar had a positive impact on the milled ZVI stability and mobility, however adverse impact on the reactivity towards trichloroethene (TCE) was observed compared to the non-stabilized material. On the other hand, this study shows that the apparent corrosion rate of non-stabilized and agar agar stabilized milled ZVI particles is in the same order of magnitude. These data indicate that the dechlorination pathway of TCE by agar agar stabilized milled ZVI particles is possibly impacted by blocking of the reactive sites and not hydrogen revealed during particles corrosion. Finally, calculated longevity of the particles based on the apparent corrosion rate is significantly prolonged compared to the longevity of the nZVI particles reported in previous studies. This research receives funding from the European Union's Seventh Framework Programme FP7/2007-2013 under grant agreement n°309517.
Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems
NASA Technical Reports Server (NTRS)
Padovan, Joe; Krishna, Lala
1986-01-01
To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.
Improvement of enalapril maleate chemical stability by high shear melting granulation.
de Oliveira, Ana Paula Montandon; Cunha, Talita Amorim; Serpa, Raphael Caixeta; Taveira, Stephânia Fleury; Lima, Eliana Martins; Almeida Diniz, Danielle Guimarães; de Freitas, Luis Alexandre Pedro; Marreto, Ricardo Neves
2014-09-18
Abstract Enalapril maleate is a widely used drug, which is chemically unstable when mixed with excipients resulting in enalaprilat and diketopiperazine as the main degradation products. The preparation of enalapril sodium salt has been used to improve drug stability in solid dosage forms; however, product rejection is observed when the chemical reaction for obtaining the sodium salt is not completely finished before packaging. In this study, granules were prepared by melting granulation using stearic acid or glyceryl monostearate, with a view to developing more stable enalapril maleate solid dosage forms. The granules were prepared in a laboratory-scale high shear mixer and compressed in a rotary machine. Size distribution, flow properties, in vitro drug release and enalapril maleate chemical stability were evaluated and compared with data obtained from tablets prepared without hydrophobic binders. All formulations showed good physical properties and immediate drug release. The greatest improvement in the enalapril maleate stability was observed in formulations containing stearic acid. This study showed that hot melting granulation could be successfully used to prepare enalapril maleate granules which could substitute the in situ formation of enalapril sodium salt, since they provided better enalapril stability in solid dosage forms.
Papachristou, Efstathios; Ormel, Johan; Oldehinkel, Albertine J.; Kyriakopoulos, Marinos; Reinares, María; Reichenberg, Abraham; Frangou, Sophia
2013-01-01
Context Early identification of Bipolar Disorder (BD) remains poor despite the high levels of disability associated with the disorder. Objective We developed and evaluated a new DSM orientated scale for the identification of young people at risk for BD based on the Child Behavior Checklist (CBCL) and compared its performance against the CBCL-Pediatric Bipolar Disorder (CBCL-PBD) and the CBCL-Externalizing Scale, the two most widely used scales. Methods The new scale, CBCL-Mania Scale (CBCL-MS), comprises 19 CBCL items that directly correspond to operational criteria for mania. We tested the reliability, longitudinal stability and diagnostic accuracy of the CBCL-MS on data from the TRacking Adolescents' Individual Lives Survey (TRAILS), a prospective epidemiological cohort study of 2230 Dutch youths assessed with the CBCL at ages 11, 13 and 16. At age 19 lifetime psychiatric diagnoses were ascertained with the Composite International Diagnostic Interview. We compared the predictive ability of the CBCL-MS against the CBCL-Externalising Scale and the CBCL-PBD in the TRAILS sample. Results The CBCL-MS had high internal consistency and satisfactory accuracy (area under the curve = 0.64) in this general population sample. Principal Component Analyses, followed by parallel analyses and confirmatory factor analyses, identified four factors corresponding to distractibility/disinhibition, psychosis, increased libido and disrupted sleep. This factor structure remained stable across all assessment ages. Logistic regression analyses showed that the CBCL-MS had significantly higher predictive ability than both the other scales. Conclusions Our data demonstrate that the CBCL-MS is a promising screening instrument for BD. The factor structure of the CBCL-MS showed remarkable temporal stability between late childhood and early adulthood suggesting that it maps on to meaningful developmental dimensions of liability to BD. PMID:23967059
Jurcisinová, E; Jurcisin, M; Remecký, R
2009-10-01
The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical expressions for coordinates of the corresponding fixed point of the renormalization-group equations as functions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling regime is demonstrated, and the dependence of the borderline dimension d(c) is an element of (2,3] between stable and unstable scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous dimensions of the structure functions, which are the same (universal) for the Kraichnan model, for the model with finite time correlations of the velocity field, and for the model with the advection by the velocity field driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corresponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within the Kraichnan rapid-change model is done.
Anchorage strength and slope stability of a landfill liner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villard, P.; Gourc, J.P.; Feki, N.
1997-11-01
In order to determine reliable dimensions of an anchorage system and satisfactory operation of the watertight liner in a waste landfill, it is essential to make an accurate assessment of the tensions acting on the geosynthetics on the top of the slope. Experimental and theoretical studies have been carried out in parallel. The former concern a full-scale experiment undertaken in Montreuil sur Barse on a waste storage site with instrumented slope. The latter concern anchorage tests performed on a scale model for different anchorage geometries.
Turbofan engine control system design using the LQG/LTR methodology
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1989-01-01
Application of the linear-quadratic-Gaussian with loop-transfer-recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired target feedback loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.
Turbofan engine control system design using the LQG/LTR methodology
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1989-01-01
Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired Target-Feedback-Loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.
Stability analysis and future singularity of the m{sup 2} R □{sup -2} R model of non-local gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirian, Yves; Mitsou, Ermis, E-mail: yves.dirian@unige.ch, E-mail: ermis.mitsou@unige.ch
2014-10-01
We analyse the classical stability of the model proposed by Maggiore and Mancarella, where gravity is modified by a term ∼ m{sup 2} R □{sup -2} R to produce the late-time acceleration of the expansion of the universe. Our study takes into account all excitations of the metric that can potentially drive an instability. There are some subtleties in identifying these modes, as a non-local field theory contains dynamical fields which yet do not correspond to degrees of freedom. Since some of them are ghost-like, we clarify the impact of such modes on the stability of the solutions of interest that are the flatmore » space-time and cosmological solutions. We then find that flat space-time is unstable under scalar perturbations, but the instability manifests itself only at cosmological scales, i.e. out of the region of validity of this solution. It is therefore the stability of the FLRW solution which is relevant there, in which case the scalar perturbations are known to be well-behaved by numerical studies. By finding the analytic solution for the late-time behaviour of the scale factor, which leads to a big rip singularity, we argue that the linear perturbations are bounded in the future because of the domination of Hubble friction. In particular, this effect damps the scalar ghost perturbations which were responsible for destabilizing Minkowski space-time. Thus, the model remains phenomenologically viable.« less
Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
Bluman, James; Kang, Chang-Kwon
2017-06-15
Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer. The Navier-Stokes equations capture wing-wake interaction, whereas the quasi-steady models do not. Both aerodynamic models are tightly coupled to a flight dynamic model, which includes the effects of wing mass. The flapping amplitude, stroke plane angle, and flapping offset angle are adjusted in free flight for various wing rotations to achieve hover equilibrium. We present stability results for 152 simulations which consider different kinematics involving the pitch amplitude and pitch axis as well as the duration and timing of pitch rotation. The stability of all studied motions was qualitatively similar, with an unstable oscillatory mode present in each case. Wing-wake interaction has a destabilizing effect on the longitudinal stability, which cannot be predicted by a quasi-steady model. Wing-wake interaction increases the tendency of the flapping flyer to pitch up in the presence of a horizontal velocity perturbation, which further destabilizes the unstable oscillatory mode of hovering flight dynamics.
Vorticity imbalance and stability in relation to convection
NASA Technical Reports Server (NTRS)
Read, W. L.; Scoggins, J. R.
1977-01-01
A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.
Do the emotional states of pregnant women affect neonatal behaviour?
Hernández-Martínez, Carmen; Arija, Victoria; Balaguer, Albert; Cavallé, Pere; Canals, Josefa
2008-11-01
The emotional states of pregnant women affect the course of their pregnancies, their deliveries and the behaviour and development of their infants. The aim of this study is to analyse the influence of positive and negative maternal emotional states on neonatal behaviour at 2-3 days after birth. A sample of 163 healthy full-term newborns was evaluated using the Neonatal Behavioral Assessment Scale. Maternal anxiety, perceived stress, and emotional stability during pregnancy were evaluated in the immediate postpartum period with the State Trait Anxiety Inventory and the Perceived Stress Scale. Moderate levels of anxiety during pregnancy alter infant orientation and self-regulation. These aspects of infant behaviour could lead to later attachment, behavioural and developmental problems. Maternal emotional stability during pregnancy improves infant self-regulation and several aspects of infant behaviour that may predispose them to better interactions with their parents.
A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US Southwest.
Bocinsky, R Kyle; Kohler, Timothy A
2014-12-04
Humans experience, adapt to and influence climate at local scales. Paleoclimate research, however, tends to focus on continental, hemispheric or global scales, making it difficult for archaeologists and paleoecologists to study local effects. Here we introduce a method for high-frequency, local climate-field reconstruction from tree-rings. We reconstruct the rain-fed maize agricultural niche in two regions of the southwestern United States with dense populations of prehispanic farmers. Niche size and stability are highly variable within and between the regions. Prehispanic rain-fed maize farmers tended to live in agricultural refugia--areas most reliably in the niche. The timing and trajectory of the famous thirteenth century Pueblo migration can be understood in terms of relative niche size and stability. Local reconstructions like these illuminate the spectrum of strategies past humans used to adapt to climate change by recasting climate into the distributions of resources on which they depended.
Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.
Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch
2013-01-01
Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pirozzi, D; Halling, P J
2001-01-20
A very small-scale continuous flow reactor has been designed for use with enzymes in organic media, particularly for operational stability studies. It is constructed from fairly inexpensive components, and typically uses 5 mg of catalyst and flow rates of 1 to 5 mL/h, so only small quantities of feedstock need to be handled. The design allows control of the thermodynamic water activity of the feed, and works with temperatures up to at least 80 degrees C. The reactor has been operated with both nonpolar (octane) and polar (4-methyl-pentan-2-one) solvents, and with the more viscous solvent-free reactant mixture. It has been applied to studies of the operational stability of lipases from Chromobacterium viscosum (lyophilized powder or polypropylene-adsorbed) and Rhizomucor miehei (Lipozyme) in different experimental conditions. Transesterification of geraniol and ethylcaproate has been adopted as a model transformation.
Reconstruction of railroads and highways with in-situ reclamation materials.
DOT National Transportation Integrated Search
2011-03-01
The resilient modulus and plastic deformation of recycled roadway materials with and without fly ash stabilization were characterized using a large-scale model experiment (LSME). Stabilization of recycled pavement materials (RPM) and road surface gra...
From Cell to Module: Fabrication and Long-term Stability of Dye-sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Nursam, N. M.; Hidayat, J.; Muliani, L.; Anggraeni, P. N.; Retnaningsih, L.; Idayanti, N.
2017-07-01
Dye-sensitized solar cell (DSSC), which has been firstly developed by Graetzel et al back in 1991, has attracted a considerable interest since its discovery. However, two of the main challenges that the DSSC technology will have to overcome towards commercialization involve device scale-up and long-term stability. In our group, the fabrication technology of DSSC has been developed from laboratory to module scale over the past few years, nevertheless, the long-term stability has still became a major concern. In this contribution, the long-term DSSC performance in relation to their scale-up from cell to module is investigated. The photoelectrode of the DSSCs were fabricated using nanocrystalline titanium dioxide materials that were subsequently sensitized using ruthenium-based dye. Additionally, TiCl4 pre- and post-treatment were carried out to enhance the overall device efficiency. When fabricated as cells, the DSSC prototypes showed relatively stable performance during repeated tests over three months. In order to increase the output power of the solar cells, the DSSCs were then connected in a Z-type series connection to obtain sub-module panels. The DSSC sub-modules exhibit poor stability, particularly as indicated by the significant decrease in the short circuit current (ISC ). Herein, the effect of photoelectrode and sealant materials as well as module design are investigated, highlighting their profound influence upon the DSSC efficiency and long-term stability.
Analysis of edge stability for models of heat flux width
Makowski, Michael A.; Lasnier, Charles J.; Leonard, Anthony W.; ...
2017-05-12
Detailed measurements of the n e, and T e, and T i profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completelymore » consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.« less
NASA Technical Reports Server (NTRS)
Draper, John W.; Hewes, Donald E.
1948-01-01
At the request of the Bureau of Aeronautics, Navy Department, a stability and control investigation of a 1/10-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley free-flight tunnel. Results of force end flight tests to determine the power-off stability and control characteristics of the model with slats retracted and extended are presented herein. The longitudinal and lateral stability characteristics were satisfactory for both the slats retracted and extended conditions over the lift range up to the stall. With the slats retracted, the stall was fairly gentle but the model rolled off out of control. With the slats extended, control could be maintained at the stall so that the wings could be kept level even as the model dropped.
NASA Technical Reports Server (NTRS)
Click, P. L.; Michana, D. J.; Sarver, D. A.
1971-01-01
Experimental aerodynamic investigations were made on a .006 scale model 040-A delta wing space shuttle orbiter configuration. These tests were conducted to determine six-degree-of-freedom force and moment data for preliminary stability and control analysis. Data were obtained over a Mach number range from 0.6 to 4.96 at angles of attack from -10 deg to 50 deg at zero degrees sideslip and at angles of sideslip from -10 deg to 10 deg at constants angles of attack of 0 deg, 15 deg, 30 deg, and 45 deg. Various aileron, elevator, (elevon) rudder and rudder flare deflection angles were tested to establish the control effectiveness and vehicle stability. Model component buildup data were also obtained to provide a data base for future configuration modifications. Plotted data results are presented in both the body and stability axis system.
NASA Technical Reports Server (NTRS)
Polhamus, Edward C.; King, Thomas J., Jr.
1949-01-01
An investigation was made in the Langley high-speed 7- by 10-foot tunnel to determine the high-speed lateral and directional stability characteristics of a 0.10-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicate that static lateral and directional stability is present throughout the Mach number range investigated although in the Mach number range from 0.75 to 0.85 there is an appreciable decrease in rolling moment due to sideslip. Calculations of the dynamic stability indicate that according to current flying-quality requirements the damping of the lateral oscillation, although probably satisfactory for the sea-level condition, may not be satisfactory for the majority of the altitude conditions investigated
Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Owens, B. C.; Griffith, D. T.
2014-06-01
The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.
Multiscale model within-host and between-host for viral infectious diseases.
Almocera, Alexis Erich S; Nguyen, Van Kinh; Hernandez-Vargas, Esteban A
2018-05-08
Multiscale models possess the potential to uncover new insights into infectious diseases. Here, a rigorous stability analysis of a multiscale model within-host and between-host is presented. The within-host model describes viral replication and the respective immune response while disease transmission is represented by a susceptible-infected model. The bridging of scales from within- to between-host considered transmission as a function of the viral load. Consequently, stability and bifurcation analyses were developed coupling the two basic reproduction numbers [Formula: see text] and [Formula: see text] for the within- and the between-host subsystems, respectively. Local stability results for each subsystem, including a unique stable equilibrium point, recapitulate classical approaches to infection and epidemic control. Using a Lyapunov function, global stability of the between-host system was obtained. Our main result was the derivation of the [Formula: see text] as an increasing function of [Formula: see text]. Numerical analyses reveal that a Michaelis-Menten form based on the virus is more likely to recapitulate the behavior between the scales than a form directly proportional to the virus. Our work contributes basic understandings of the two models and casts light on the potential effects of the coupling function on linking the two scales.
Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)
NASA Astrophysics Data System (ADS)
Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.
2013-12-01
Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.
Spatial scale of similarity as an indicator of metacommunity stability in exploited marine systems.
Shackell, Nancy L; Fisher, Jonathan A D; Frank, Kenneth T; Lawton, Peter
2012-01-01
The spatial scale of similarity among fish communities is characteristically large in temperate marine systems: connectivity is enhanced by high rates of dispersal during the larval/juvenile stages and the increased mobility of large-bodied fish. A larger spatial scale of similarity (low beta diversity) is advantageous in heavily exploited systems because locally depleted populations are more likely to be "rescued" by neighboring areas. We explored whether the spatial scale of similarity changed from 1970 to 2006 due to overfishing of dominant, large-bodied groundfish across a 300 000-km2 region of the Northwest Atlantic. Annually, similarities among communities decayed slowly with increasing geographic distance in this open system, but through time the decorrelation distance declined by 33%, concomitant with widespread reductions in biomass, body size, and community evenness. The decline in connectivity stemmed from an erosion of community similarity among local subregions separated by distances as small as 100 km. Larger fish, of the same species, contribute proportionally more viable offspring, so observed body size reductions will have affected maternal output. The cumulative effect of nonlinear maternal influences on egg/larval quality may have compromised the spatial scale of effective larval dispersal, which may account for the delayed recovery of certain member species. Our study adds strong support for using the spatial scale of similarity as an indicator of metacommunity stability both to understand the spatial impacts of exploitation and to refine how spatial structure is used in management plans.
USDA-ARS?s Scientific Manuscript database
As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote sensing methods have the spatial and temporal resolution required to...
Variability in oak forest herb layer communities
J. R. McClenahen; R. P. Long
1995-01-01
This study evaluates forest herb-layer sensitivity to annual-scale environmental fluctuation. Specific objectives were to determine the between-year variation in herb-layer community biomass, and to contrast and evaluate the temporal stability of spatial relationships in herb-layer community structure and composition between successive years. Aboveground dry weights of...
A multi-scale analysis of landscape statistics
Douglas H. Cain; Kurt H. Riitters; Kenneth Orvis
1997-01-01
It is now feasible to monitor some aspects of landscape ecological condition nationwide using remotely- sensed imagery and indicators of land cover pattern. Previous research showed redundancies among many reported pattern indicators and identified six unique dimensions of land cover pattern. This study tested the stability of those dimensions and representative...
The development of effective measures to stabilize atmospheric 22 CO2 concentration and mitigate negative impacts of climate change requires accurate quantification of the spatial variation and magnitude of the terrestrial carbon (C) flux. However, the spatial pattern and strengt...
USDA-ARS?s Scientific Manuscript database
Genomes from fifteen porcine reproductive and respiratory syndrome virus (PRRSV) isolates were derived simultaneously using 454 pyrosequencing technology. The viral isolates sequenced were from a recent swine study, in which engineered Type 2 prototype PRRSV strain VR-2332 mutants, with 87, 184, 200...
Psychometric characteristics and dimensionality of a Persian version of Rosenberg Self-esteem Scale.
Shapurian, R; Hojat, M; Nayerahmadi, H
1987-08-01
The Rosenberg Self-esteem scale was translated into Persian and 12 Iranian bilingual judges confirmed the soundness of translation. The psychometric properties of the Persian version of Rosenberg Self-esteem Scale were studied in two samples of Iranian college students separately. Sample I consisted of 232 Iranian students in American universities, and Sample II comprised 305 Iranian students in Iranian universities. Criterion measures of loneliness, depression, anxiety, neuroticism, psychoticism, misanthropy, locus of control, tendency to dissimulate, and measures of relationship with parents, peers, and academic achievement were obtained. Item-total score correlations and alpha reliabilities supported the internal consistency of the scale. Test-retest reliabilities indicated the stability of the scores, and correlations between scores of the scale, and criterion measures supported the concurrent validity of the Rosenberg scale. Factor analysis of the Rosenberg scores confirmed the unidimensionality of the scale.
Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A., E-mail: abos@lle.rochester.edu; Woo, K. M.; Betti, R.
2015-07-15
The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of χ{sub Ω} ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less
Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A.; Woo, K. M.; Nora, R.
2015-07-02
The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of ΧΩ ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less
Renormalization group flow of the Higgs potential.
Gies, Holger; Sondenheimer, René
2018-03-06
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
Scalable fabrication of perovskite solar cells
Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; ...
2018-03-27
Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discussmore » common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe
Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discussmore » common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.« less
A natural little hierarchy for RS from accidental SUSY
NASA Astrophysics Data System (ADS)
Gherghetta, Tony; von Harling, Benedict; Setzer, Nicholas
2011-07-01
We use supersymmetry to address the little hierarchy problem in Randall-Sundrum models by naturally generating a hierarchy between the IR scale and the electroweak scale. Supersymmetry is broken on the UV brane which triggers the stabilization of the warped extra dimension at an IR scale of order 10 TeV. The Higgs and top quark live near the IR brane whereas light fermion generations are localized towards the UV brane. Supersymmetry breaking causes the first two sparticle generations to decouple, thereby avoiding the supersymmetric flavour and CP problems, while an accidental R-symmetry protects the gaugino mass. The resulting low-energy sparticle spectrum consists of stops, gauginos and Higgsinos which are sufficient to stabilize the little hierarchy between the IR scale and the electroweak scale. Finally, the supersymmetric little hierarchy problem is ameliorated by introducing a singlet Higgs field on the IR brane.
Submarine pipeline on-bottom stability. Volume 2: Software and manuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
The state-of-the-art in pipeline stability design has been changing very rapidly recent. The physics governing on-bottom stability are much better understood now than they were eight years. This is due largely because of research and large scale model tests sponsored by PRCI. Analysis tools utilizing this new knowledge have been developed. These tools provide the design engineer with a rational approach have been developed. These tools provide the design engineer with a rational approach for weight coating design, which he can use with confidence because the tools have been developed based on full scale and near full scale model tests.more » These tools represent the state-of-the-art in stability design and model the complex behavior of pipes subjected to both wave and current loads. These include: hydrodynamic forces which account for the effect of the wake (generated by flow over the pipe) washing back and forth over the pipe in oscillatory flow; and the embedment (digging) which occurs as a pipe resting on the seabed is exposed to oscillatory loadings and small oscillatory deflections. This report has been developed as a reference handbook for use in on-bottom pipeline stability analysis It consists of two volumes. Volume one is devoted descriptions of the various aspects of the problem: the pipeline design process; ocean physics, wave mechanics, hydrodynamic forces, and meteorological data determination; geotechnical data collection and soil mechanics; and stability design procedures. Volume two describes, lists, and illustrates the analysis software. Diskettes containing the software and examples of the software are also included in Volume two.« less
Body-freedom flutter of a 1/2-scale forward-swept-wing model, an experimental and analytical study
NASA Technical Reports Server (NTRS)
Chipman, R.; Rauch, F.; Rimer, M.; Muniz, B.
1984-01-01
The aeroelastic phenomenon known as body-freedom flutter (BFF), a dynamic instability involving aircraft-pitch and wing-bending motions which, though rarely experienced on conventional vehicles, is characteristic of forward swept wing (FSW) aircraft was investigated. Testing was conducted in the Langley transonic dynamics tunnel on a flying, cable-mounted, 1/2-scale model of a FSW configuration with and without relaxed static stability (RSS). The BFF instability boundaries were found to occur at significantly lower airspeeds than those associated with aeroelastic wing divergence on the same model. For those cases with RSS, a canard-based stability augmentation system (SAS) was incorporated in the model. This SAS was designed using aerodynamic data measured during a preliminary tunnel test in which the model was attached to a force balance. Data from the subsequent flutter test indicated that BFF speed was not dependent on open-loop static margin but, rather, on the equivalent closed-loop dynamics provided by the SAS. Servo-aeroelastic stability analyses of the flying model were performed using a computer code known as SEAL and predicted the onset of BFF reasonably well.
Continental drift and climate change drive instability in insect assemblages
NASA Astrophysics Data System (ADS)
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Lin, Yashen; Gevorgian, Vahan
Synchronous machines have traditionally acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, with the increased integration of distributed renewable resources and energy-storage technologies, there is a need to systematically acknowledge the dynamics of power-electronics inverters - the primary energy-conversion interface in such systems - in all aspects of modeling, analysis, and control of the bulk power network. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. The inverter model is formulatedmore » such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.« less
Continental drift and climate change drive instability in insect assemblages
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-01-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale. PMID:26081036
Continental drift and climate change drive instability in insect assemblages.
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-17
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region--one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
NASA Astrophysics Data System (ADS)
Mondal, P.; Krol, M.; Sleep, B. E.
2015-12-01
A wide variety of groundwater contaminants can be treated with nano-scale zero valent iron (nZVI). However, delivery of nZVI in the subsurface to the treatment zones is challenging as the bare nZVI particles have a higher tendency to agglomerate. The subsurface mobility of nZVI can be enhanced by stabilizing nZVI with polymer, such as carboxymethyl cellulose (CMC). In this study, numerical simulations were conducted to evaluate CMC stabilized nZVI transport behavior in porous media. The numerical simulations were based on a set of laboratory-scale transport experiments that were conducted in a two-dimensional water-saturated glass-walled sandbox (length - 55 cm; height - 45 cm; width - 1.4 cm), uniformly packed with silica sand. In the transport experiments: CMC stabilized nZVI and a non-reactive dye tracer Lissamine Green B (LGB) were used; water specific discharge and CMC concentration were varied; movements of LGB, and CMC-nZVI in the sandbox were tracked using a camera, a light source and a dark box. The concentrations of LGB, CMC, and CMC-nZVI at the sandbox outlet were analyzed. A 2D multiphase flow and transport model was applied to simulate experimental results. The images from LGB dye transport experiments were used to determine the pore water velocities and media permeabilities in various layers in the sand box. These permeability values were used in the subsequent simulations of CMC-nZVI transport. The 2D compositional simulator, modified to include colloid filtration theory (CFT), treated CMC as a solute and nZVI as a colloid. The simulator included composition dependent viscosity to account for CMC injection and mixing, and attachment efficiency as a fitting parameter for nZVI transport modeling. In the experiments, LGB and CMC recoveries were greater than 95%; however, CMC residence time was significantly higher than the LGB residence time and the higher CMC concentration caused higher pressure drops in the sandbox. The nZVI recovery was lower than 40% in all experiments. The simulation results were found to be in good agreement with the experimental results, implying that the compositional simulator including CFT-modified transport equations could be utilized for the estimation of CMC-stabilized nZVI transport in porous media and design of field scale implementations of CMC-nZVI for remediation.
Self-organizing dynamic stability of far-from-equilibrium biological systems
NASA Astrophysics Data System (ADS)
Ivanitskii, G. R.
2017-10-01
One indication of the stability of a living system is the variation of the system’s characteristic time scales. Underlying the stability mechanism are the structural hierarchy and self-organization of systems, factors that give rise to a positive (accelerating) feedback and a negative (braking) feedback. Information processing in the brain cortex plays a special role in highly organized living organisms.
Gür, Gözde; Ayhan, Cigdem; Yakut, Yavuz
2017-06-01
Core stabilization training is used to improve postural balance in musculoskeletal problems. The purpose of this study was to investigate the effectiveness of stabilization training in adolescent idiopathic scoliosis. A randomized controlled trial, pretest-posttest design. In total, 25 subjects with adolescent idiopathic scoliosis were randomly divided into two groups: stabilization group ( n = 12) and control group ( n = 13). The stabilization group received core stabilization in addition to traditional rehabilitation, and the control group received traditional rehabilitation for 10 weeks. Assessment included Cobb's angle on radiograph, apical vertebral rotation in Adam's test, trunk asymmetry (Posterior Trunk Symmetry Index), cosmetic trunk deformity (Trunk Appearance Perception Scale), and quality of life (Scoliosis Research Society-22 questionnaire). Inter-group comparisons showed significantly greater improvements in the mean change in lumbar apical vertebral rotation degree and the pain domain of Scoliosis Research Society-22 in the stabilization group than those in the control group ( p < 0.05). No significant differences were observed for other measurements between the groups; however, trends toward greater improvement were observed in the stabilization group. Core stabilization training in addition to traditional exercises was more effective than traditional exercises alone in the correction of vertebral rotation and reduction of pain in adolescent idiopathic scoliosis. Clinical relevance Stabilization exercises are more effective in reducing rotation deformity and pain than traditional exercises in the conservative rehabilitation of adolescent idiopathic scoliosis. These improvements suggest that stabilization training should be added to rehabilitation programs in adolescent idiopathic scoliosis.
Regime shifts and panarchies in regional scale social ...
In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises,
NASA Astrophysics Data System (ADS)
Grise, K. M.; Thompson, D. W.; Birner, T.
2009-12-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the “tropopause inversion layer,” or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
NASA Astrophysics Data System (ADS)
Grise, Kevin M.; Thompson, David W. J.; Birner, Thomas
2010-05-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the "tropopause inversion layer," or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
Non-linear coherent mode interactions and the control of shear layers
NASA Technical Reports Server (NTRS)
Nikitopoulos, D. E.; Liu, J. T. C.
1990-01-01
A nonlinear integral formulation, based on local linear stability considerations, is used to study the collective interactions between discrete wave-modes associated with large-scale structures and the mean flow in a developing shear layer. Aspects of shear layer control are examined in light of the sensitivity of these interactions to the initial frequency parameter, modal energy contents and modal phases. Manipulation of the large-scale structure is argued to be an effective means of controlling the flow, including the small-scale turbulence dominated region far downstream. Cases of fundamental, 1st and 2nd subharmonic forcing are discussed in conjunction with relevant experiments.
Linking the influence and dependence of people on biodiversity across scales
Isbell, Forest; Gonzalez, Andrew; Loreau, Michel; Cowles, Jane; Díaz, Sandra; Hector, Andy; Mace, Georgina M.; Wardle, David A.; O’Connor, Mary I.; Duffy, J. Emmett; Turnbull, Lindsay A.; Thompson, Patrick L.; Larigauderie, Anne
2017-01-01
Biodiversity enhances many of nature’s benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth’s history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation. PMID:28569811
Park, Sol A; Jeon, Sang Won; Yoon, Ho-Kyoung; Yoon, Seo Young; Shin, Cheolmin; Ko, Young-Hoon
2018-02-01
Residual symptoms of depression are related to more severe and chronic course of functional impairment with higher risk of relapse. The objective of this study was to validate, and determine psychometric properties of the Korean version of Depression Residual Symptom Scale (KDRSS). A total of 203 outpatients with recent episode of major depression based on DSM-IV criteria were enrolled in this study. They had been treated with antidepressants and assessed by KDRSS, Hamilton Depression Rating Scale-24 (HDRS-24), and Montgomery-Åsberg Depression Rating Scale (MARDS). The validity and reliability of KDRSS were assessed, including internal consistency reliability, concurrent validity, temporal stability, factorial validity, and discriminative validity. Internal consistency (Cronbach's alpha=0.961), concurrent validity (MADRS: r=0.731, p<0.01, HDRS-24: r=0.663, p<0.01), and temporal stability (r=0.726, p<0.01) of KDRSS were all excellent. KDRSS showed good discriminative validity based on MARDS. KDRSS consisted of one-factor structure accounting for 63.8% of total variance. All subjects except two in full remission group had one or more residual symptoms. In 7 subscales of KDRSS consisting of similar items respectively, 'lack of energy' was the most commonly reported, followed by 'increased emotionalism' in this group. KDRSS is a useful and sensitive instrument for measuring residual depressive symptoms. Since some depressive symptoms including 'lack of energy' and 'increased emotionalism' in patients with full remission might be persistent during psychiatric intervention, these symptoms need to be focused on in clinical practice.
Synoptic-Scale Behavior of the Extratropical Tropopause Inversion Layer
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl
2015-04-01
The Tropopause Inversion Layer (TIL) is a climatological feature of the tropopause region, characterized by enhanced static stability and strong temperature inversion in a thin layer (about 1km deep) right above the tropopause. It was discovered recently via tropopause-based averaging [Birner 2002]. The sharp static stability, temperature and wind shear gradients of the TIL theoretically shall inhibit stratosphere-troposphere exchange and influence the vertical propagation of planetary scale Rossby and small-scale gravity waves. High vertically resolved radiosonde and GPS radio occultation measurements show that the strength of the TIL is positively correlated with the tropopause height and anticyclonic conditions, and that it reaches its maximum strength in polar regions during summer [Birner 2006] [Randel and Wu, 2007 and 2010]. Our study takes advantage of the high density of vertical profiles (~2000 measurements per day, globally) measured by the COSMIC satellites (2007-present), in order to describe the synoptic-scale structures of the TIL and the differences between the seasonal climatologies from earlier studies and the real-time TIL. Also, using ERA-Interim reanalysis wind fields, we split relative vorticity into shear and curl terms and study separately their relation to TIL strength in cyclonic-anticyclonic conditions. We find that the TIL has a rich zonal structure, especially in midlatitude winter, and that its strength is instantly adjusted to the synoptic situation at near-tropopause level. The peaks of strongest TIL at midlatitude ridges in winter are stronger and much more frequent than any peaks found in polar summer. The roles of shear and curl vorticity differ substantially towards higher values of relative vorticity (both cyclonic and anticyclonic).
The periodic dynamics of the irregular heterogeneous celestial bodies
NASA Astrophysics Data System (ADS)
Lan, Lei; Yang, Mo; Baoyin, Hexi; Li, Junfeng
2017-02-01
In this paper, we develop a methodology to study the periodic dynamics of irregular heterogeneous celestial bodies. Heterogeneous bodies are not scarce in space. It has been found that bodies, such as 4 Vesta, 624 Hektor, 87 Sylvia, 16 Psyche and 25143 Itokawa, may all have varied internal structures. They can be divided into large-scale and small-scale cases. The varied internal structures of large-scale bodies always result from gradient pressure inside, which leads to compactness differences of the inner material. However, the heterogeneity of a small-scale body is always reflected by the different densities of different areas, which may originate from collision formation from multiple objects. We propose a modeling procedure for the heterogeneous bodies derived from the conventional polyhedral method and then compare its dynamical characteristics with those of the homogeneous case. It is found that zero-velocity curves, positions of equilibrium points, types of bifurcations in the continuation of the orbital family and the stabilities of periodic orbits near the heterogeneous body are different from those in the homogeneous case. The suborbicular orbits near the equatorial plane are potential parking orbits for a future mission, so we discuss the switching of the orbital stability of the family because it has fundamental significance to orbit maintenance and operations around actual asteroids.
Role of paliperidone extended-release in treatment of schizoaffective disorder
Canuso, Carla M; Turkoz, Ibrahim; Fu, Dong Jing; Bossie, Cynthia A
2010-01-01
Schizoaffective disorder is characterized by the presence of symptoms of both schizophrenia and a major mood disorder. The coexistence of these symptoms can be difficult to manage, and these patients are generally treated with antipsychotics as well as mood stabilizers and/or antidepressants. Additionally, no established treatment guidelines exist for this disorder. This review describes the combined results of two international, double-blind, placebo-controlled clinical studies of paliperidone extended-release (ER), an atypical antipsychotic recently approved in the US for the treatment of schizoaffective disorder. Subjects in these six-week trials were aged 18–65 years, had a diagnosis of schizoaffective disorder based on the Structural Clinical Interview for DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) Disorders, and were experiencing an acute exacerbation. The subjects from these studies had significant symptomatology as evidenced by a mean (standard deviation) baseline Positive and Negative Syndrome Scale total score of 92.8 (13.0). Based on Young Mania Rating Scale and/or a 21-item Hamilton Rating Scale for Depression score of ≥16 at baseline, 79.5% and 66.9% of subjects presented with prominent manic and depressive symptoms, respectively, and 46.4% presented with mixed symptoms. Approximately half (45%) of subjects were taking adjunctive mood stabilizers and/or antidepressants. Paliperidone ER was found to be effective in improving psychotic and mood symptoms in these subjects. Paliperidone ER was also effective as monotherapy or adjunctive to mood stabilizers and/or antidepressants for subjects with prominent manic, depressive, or mixed symptoms at baseline. No new tolerability signals were observed in this population. To the best of our awareness, these pooled data provide the largest data set of patients with schizoaffective disorder, and extend our knowledge of disease characteristics and treatment response. PMID:20957127
Role of paliperidone extended-release in treatment of schizoaffective disorder.
Canuso, Carla M; Turkoz, Ibrahim; Fu, Dong Jing; Bossie, Cynthia A
2010-10-05
Schizoaffective disorder is characterized by the presence of symptoms of both schizophrenia and a major mood disorder. The coexistence of these symptoms can be difficult to manage, and these patients are generally treated with antipsychotics as well as mood stabilizers and/or antidepressants. Additionally, no established treatment guidelines exist for this disorder. This review describes the combined results of two international, double-blind, placebo-controlled clinical studies of paliperidone extended-release (ER), an atypical antipsychotic recently approved in the US for the treatment of schizoaffective disorder. Subjects in these six-week trials were aged 18-65 years, had a diagnosis of schizoaffective disorder based on the Structural Clinical Interview for DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) Disorders, and were experiencing an acute exacerbation. The subjects from these studies had significant symptomatology as evidenced by a mean (standard deviation) baseline Positive and Negative Syndrome Scale total score of 92.8 (13.0). Based on Young Mania Rating Scale and/or a 21-item Hamilton Rating Scale for Depression score of ≥16 at baseline, 79.5% and 66.9% of subjects presented with prominent manic and depressive symptoms, respectively, and 46.4% presented with mixed symptoms. Approximately half (45%) of subjects were taking adjunctive mood stabilizers and/or antidepressants. Paliperidone ER was found to be effective in improving psychotic and mood symptoms in these subjects. Paliperidone ER was also effective as monotherapy or adjunctive to mood stabilizers and/or antidepressants for subjects with prominent manic, depressive, or mixed symptoms at baseline. No new tolerability signals were observed in this population. To the best of our awareness, these pooled data provide the largest data set of patients with schizoaffective disorder, and extend our knowledge of disease characteristics and treatment response.
Goossens, Eva; Luyckx, Koen; Mommen, Nele; Gewillig, Marc; Budts, Werner; Zupancic, Nele; Moons, Philip
2013-12-01
To optimize long-term outcomes, patients with congenital heart disease (CHD) should adopt health-promoting behaviors. Studies on health behavior in afflicted patients are scarce and comparability of study results is limited. To enlarge the body of evidence, we have developed the Health Behavior Scale-Congenital Heart Disease (HBS-CHD). We examined the psychometric properties of the HBS-CHD by providing evidence for (a) the content validity; (b) validity based on the relationships with other variables; (c) reliability in terms of stability; and (d) responsiveness. Ten experts rated the relevance of the HBS-CHD items. The item content validity index (I-CVI) and the averaged scale content validity index (S-CVI/Ave); the modified multi-rater Kappa and proportion of missing values for each question were calculated. Relationships with other variables were evaluated using six hypotheses that were tested in 429 adolescents with CHD. Stability of the instrument was assessed using Heise's method; and responsiveness was tested by calculating the Guyatt's Responsiveness Index (GRI). Overall, 86.3% of the items had a good to excellent content validity; the S-CVI/Ave (0.81) and multi-rater Kappa (0.78) were adequate. The average proportion of missing values was low (1.2%). Because five out of six hypotheses were confirmed, evidence for the validity of the HBS-CHD based on relationships with other variables was provided. The stability of the instrument could not be confirmed based on our data. The GRI showed good to excellent capacity of the HBS-CHD to detect clinical changes in the health behavior over time. We found that the HBS-CHD is a valid and responsive questionnaire to assess health behaviors in patients with CHD.
Thermal properties of black phosphorene and doped phosphorene (C, N & O): A DFT study
NASA Astrophysics Data System (ADS)
Devi, Anjna; Singh, Amarjeet
2018-04-01
In this work, we present the results from a DFT based computational study of pristine phosphorene and doped (C, N & O) phosphorene. We systematically investigated the lattice thermal properties of black phosphorene and the effect of doping on its thermal properties. We first determined the vibrational properties of pristine and doped phosphorene and from these results we calculated their thermal properties. We doped the phosphorene with C, N and O and observed that the structural stability of doped phosphorene decreases, while the thermal stability is increased as compared to pristine phosphorene. The presence of finite temperature effects in the doped system can contribute to acceleration of progress in future nano-scale technology.
A numerical study of variable density flow and mixing in porous media
NASA Astrophysics Data System (ADS)
Fan, Yin; Kahawita, René
1994-10-01
A numerical study of a negatively buoyant plume intruding into a neutrally stratified porous medium has been undertaken using finite different methods. Of particular interest has been to ascertain whether the experimentally observed gravitational instabilities that form along the lower edge of the plume are reproduced in the numerical model. The model has been found to faithfully reproduce the mean flow as well as the gravitational instabilities in the intruding plume. A linear stability analysis has confirmed the fact that the negatively buoyant plume is in fact gravitationally unstable and that the stability depends on two parameters: a concentration Rayleigh number and a characteristic length scale which is dependent on the transverse dispersivity.
[Advances in studies on the structure of farmland shelterbelt ecosystem].
Li, Chunping; Guan, Wenbin; Fan, Zhiping; Su, Fanxin; Wang, Xilin
2003-11-01
The ecological function of farmland shelterbelt system is determined by its structure. The spatio-temporal structure is a key aspect in related researches, which is very necessary to study the integrity, stability and durability of shelterbelt modules. In this article, the researches on the structure of farmland shelterbelt ecosystem were reviewed from the four scales of tree structure, shelterbelt structure, shelterbelts network and landscape structure. The principles, methods and productions of each scale were summarized, and the prospects were also discussed. Dynamic simulation of tree growth process in shelterbelts could be conducted by the theory of form and quality structure of tree and by fractal graphics, which were helpful to study the mechanism of individual trees and belts based on photosynthetic and transpiration mechanism of individual trees. The mechanism model of shelterbelt porosity should be conducted, so that, the sustainable yield model of shelterbelt management could be established, and the optimized model of shelterbelt networks with multi-special and multi-hierarchical structure could also be formed. Evaluating the reasonability, stability and durability of shelterbelt landscape based on the theories and methods of landscape ecology was an important task in the future studies.
NASA Technical Reports Server (NTRS)
Polhamus, Edward C.; King, Thomas J., Jr.
1948-01-01
An investigation was made in the Langley high-speed 7-by 10-foot tunnel to determine the high-speed longitudinal stability end con&o1 characteristics of a 0.01-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicated that the lift and drag force breaks occurred at a Mach number of about 0.76. The aerodynamic-center position moved rearward after the force break and control position stability was present for all Mach numbers up to a Mach number of 0.80.
NASA Technical Reports Server (NTRS)
Czarnecki, K. R.; Donlan, C. J.
1976-01-01
Tests were made in the NACA full-scale tunnel to determine the lateral stability and control characteristics of the XP-77 airplane. Measurements were made of the forces and moments on the airplane at various angles of attack and angles of yaw. The measurements were made with the propeller removed and with the propeller installed and operating at various thrust coefficients, and with the landing flaps retracted and deflected. The effects of aileron, elevator, and rudder deflection on control surface effectiveness and hinge moments were determined. The tests were planned to obtain the data required to evaluate as completely as possible the Army Air Force requirements on lateral stability and control for pursuit-type airplanes.
Damping in flapping flight and its implications for manoeuvring, scaling and evolution.
Hedrick, Tyson L
2011-12-15
Flying animals exhibit remarkable degrees of both stability and manoeuvrability. Our understanding of these capabilities has recently been improved by the identification of a source of passive damping specific to flapping flight. Examining how this damping effect scales among different species and how it affects active manoeuvres as well as recovery from perturbations provides general insights into the flight of insects, birds and bats. These new damping models offer a means to predict manoeuvrability and stability for a wide variety of flying animals using prior reports of the morphology and flapping motions of these species. Furthermore, the presence of passive damping is likely to have facilitated the evolution of powered flight in animals by providing a stability benefit associated with flapping.
Performance Test on Polymer Waste Form - 12137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Se Yup
Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it ismore » believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation testing and water immersion testing, no degradation was observed in the waste forms. Also, by measuring the compressive strength after these tests, it was confirmed that the structural integrity was still retained. A leach test was performed by using non radioactive cobalt, cesium and strontium. The leaching of cobalt, cesium and strontium from the polymer waste forms was very low. Also, the polymer waste forms were found to possess adequate fire resistance. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, Performance tests with full scale polymer waste forms are on-going in order to obtain qualification certificate by the regulatory institute in Korea. (authors)« less
Rotorcraft aeroelastic stability
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.
1988-01-01
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.
NASA Astrophysics Data System (ADS)
Kar, R. C.; Sujata, T.
1992-04-01
Simple and combination resonances of a rotating cantilever beam with an end mass subjected to a transverse follower parametric excitation have been studied. The method of multiple scales is used to obtain the resonance zones of the first and second order for various values of the system parameters. It is concluded that first order combination resonances of sum- and difference-type are predominant. Higher tip mass and inertia parameters may either stabilize or destabilize the system. The increase of rotational speed, hub radius, and warping rigidity makes the beam less sensitive to periodic forces.
Physical and molecular bases of protein thermal stability and cold adaptation.
Pucci, Fabrizio; Rooman, Marianne
2017-02-01
The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effects of Isolated and Integrated ‘Core Stability’ Training on Athletic Performance Measures
Reed, Casey A.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.
2014-01-01
Background Core stability training, operationally defined as training focused to improve trunk and hip control, is an integral part of athletic development, yet little is known about its direct relation to athletic performance. Objective This systematic review focuses on identification of the association between core stability and sports-related performance measures. A secondary objective was to identify difficulties encountered when trying to train core stability with the goal of improving athletic performance. Data sources A systematic search was employed to capture all articles related to athletic performance and core stability training that were identified using the electronic databases MEDLINE, CINAHL and SPORTDiscus™ (1982-June2011). Study selection A systematic approach was used to evaluate 179 articles identified for initial review. Studies that performed an intervention targeted toward the core and measured an outcome related to athletic or sport performances were included, while studies with a participant population aged 65 years or older were excluded. Twenty-four in total met the inclusionary criteria for review. Study appraisal and synthesis methods Studies were evaluated using the Physical Therapy Evidence Database (PEDro) scale. The 24 articles were separated into three groups, general performance (n = 8), lower extremity (n = 10) and upper extremity (n = 6), for ease of discussion. Results In the majority of studies, core stability training was utilized in conjunction with more comprehensive exercise programmes. As such, many studies saw improvements in skills of general strengths such as maximum squat load and vertical leap. Surprisingly, not all studies reported measurable increases in specific core strength and stability measures following training. Additionally, investigations that targeted the core as the primary goal for improved outcome of training had mixed results. Limitations Core stability is rarely the sole component of an athletic development programme, making it difficult to directly isolate its affect on athletic performance. The population biases of some studies of athletic performance also confound the results. Conclusions Targeted core stability training provides marginal benefits to athletic performance. Conflicting findings and the lack of a standardization for measurement of outcomes and training focused to improve core strength and stability pose difficulties. Because of this, further research targeted to determine this relationship is necessary to better understand how core strength and stability affect athletic performance. PMID:22784233
Stability of ternesite and the production at scale of ternesite-based clinkers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanein, Theodore; Galan, Isabel; Glasser, Fredrik P.
A method to synthesize high-purity ternesite is presented and the importance of reaction volume is highlighted; a brief description of the product morphology is also presented. Thermodynamic data for ternesite are derived and the limits of ternesite stability are then explored. An upper temperature stability limit of ≈ 1290 °C at 1 atm is determined; however, this temperature is dependent on the fugacity of the volatile components in the atmosphere. Thermodynamic predictions confirm that belite and ternesite rich calcium sulfoaluminate clinkers can be readily produced in a single stage process at temperatures above 1200 °C provided the atmosphere and temperaturemore » are controlled. To demonstrate this control at larger scales, a conventional 7.4-meter rotary kiln has been used to produce ≈ 20 kg of ternesite-containing clinkers. This demonstrates the usefulness of thermodynamic modelling as it has enabled ternesite-based clinkers to be readily produced at scale in a single-stage process using existing equipment without major modifications.« less
Atomistic and coarse-grained computer simulations of raft-like lipid mixtures.
Pandit, Sagar A; Scott, H Larry
2007-01-01
Computer modeling can provide insights into the existence, structure, size, and thermodynamic stability of localized raft-like regions in membranes. However, the challenges in the construction and simulation of accurate models of heterogeneous membranes are great. The primary obstacle in modeling the lateral organization within a membrane is the relatively slow lateral diffusion rate for lipid molecules. Microsecond or longer time-scales are needed to fully model the formation and stability of a raft in a membra ne. Atomistic simulations currently are not able to reach this scale, but they do provide quantitative information on the intermolecular forces and correlations that are involved in lateral organization. In this chapter, the steps needed to carry out and analyze atomistic simulations of hydrated lipid bilayers having heterogeneous composition are outlined. It is then shown how the data from a molecular dynamics simulation can be used to construct a coarse-grained model for the heterogeneous bilayer that can predict the lateral organization and stability of rafts at up to millisecond time-scales.
2000-12-08
With a small stabilization parachute trailing behind, the X-40 sub-scale technology demonstrator is suspended under a U.S. Army CH-47 Chinook cargo helicopter during a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.
Scaled position-force tracking for wireless teleoperation of miniaturized surgical robotic system.
Guo, Jing; Liu, Chao; Poignet, Philippe
2014-01-01
Miniaturized surgical robotic system presents promising trend for reducing invasiveness during operation. However, cables used for power and communication may affect its performance. In this paper we chose Zigbee wireless communication as a means to replace communication cables for miniaturized surgical robot. Nevertheless, time delay caused by wireless communication presents a new challenge to performance and stability of the teleoperation system. We proposed a bilateral wireless teleoperation architecture taking into consideration of the effect of position-force scaling between operator and slave. Optimal position-force tracking performance is obtained and the overall system is shown to be passive with a simple condition on the scaling factors satisfied. Simulation studies verify the efficiency of the proposed scaled wireless teleoperation scheme.
Control of large space structures
NASA Technical Reports Server (NTRS)
Gran, R.; Rossi, M.; Moyer, H. G.; Austin, F.
1979-01-01
The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only.
Variation objective analyses for cyclone studies
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.; Kidder, S. Q.; Ochs, H. T.
1985-01-01
The objectives were to: (1) develop an objective analysis technique that will maximize the information content of data available from diverse sources, with particular emphasis on the incorporation of observations from satellites with those from more traditional immersion techniques; and (2) to develop a diagnosis of the state of the synoptic scale atmosphere on a much finer scale over a much broader region than is presently possible to permit studies of the interactions and energy transfers between global, synoptic and regional scale atmospheric processes. The variational objective analysis model consists of the two horizontal momentum equations, the hydrostatic equation, and the integrated continuity equation for a dry hydrostatic atmosphere. Preliminary tests of the model with the SESMAE I data set are underway for 12 GMT 10 April 1979. At this stage of purpose of the analysis is not the diagnosis of atmospheric structures but rather the validation of the model. Model runs for rawinsonde data and with the precision modulus weights set to force most of the adjustment of the wind field to the mass field have produced 90 to 95 percent reductions in the imbalance of the initial data after only 4-cycles through the Euler-Lagrange equations. Sensitivity tests for linear stability of the 11 Euler-Lagrange equations that make up the VASP Model 1 indicate that there will be a lower limit to the scales of motion that can be resolved by this method. Linear stability criteria are violated where there is large horizontal wind shear near the upper tropospheric jet.
NASA Technical Reports Server (NTRS)
Parlett, L. P.; Emerling, S. J.; Phelps, A. E., III
1974-01-01
The stability and control characteristics of a four-engine turbofan STOL transport model having an externally blown jet flap have been investigated by means of the flying-model technique in the Langley full-scale tunnel. The flight characteristics of the model were investigated under conditions of symmetric and asymmetric (one engine inoperative) thrust at lift coefficients up to 9.5 and 5.5, respectively. Static characteristics were studied by conventional power-on force tests over the flight-test angle-of-attack range including the stall. In addition to these tests, dynamic longitudinal and lateral stability calculations were performed for comparison with the flight-test results and for use in correlating the model results with STOL handling-qualities criteria.
The Stability of Self-Reported Anxiety in Youth with Autism Versus ADHD or Typical Development.
Schiltz, Hillary; McIntyre, Nancy; Swain-Lerro, Lindsay; Zajic, Matthew; Mundy, Peter
2017-12-01
Children with autism spectrum disorder (ASD) are at risk for anxiety symptoms. Few anxiety measures are validated for individuals with ASD, and the nature of ASD raises questions about reliability of self-reported anxiety. This study examined longitudinal stability and change of self-reported anxiety in higher functioning youth with ASD (HFASD) compared to youth with symptoms of attention deficit hyperactivity disorder and typical development (TD) using the Multidimensional Anxiety Scale for Children (March, 2012; March et al. J Am Acad Child Adolesc Psychiatry 36(4):554-565, 1997). Diagnostic groups demonstrated comparable evidence of stability for most dimensions of anxiety. The HFASD group displayed higher anxiety than both comparison groups, especially physical symptoms. These findings have implications for identification and measurement of anxiety in ASD.
Stability of anisotropic self-gravitating fluids
NASA Astrophysics Data System (ADS)
Ahmad, S.; Jami, A. Rehman; Mughal, M. Z.
2018-06-01
The aim of this paper is to study the stability as well as the existence of self-gravitating anisotropic fluids in Λ-dominated era. Taking a cylindrically symmetric and static spacetime, we computed the corresponding equations of motion in the background of anisotropic fluid distributions. The realistic formulation of energy momentum tensor as well as theoretical model of the scale factors are considered in order to describe some physical properties of the anisotropic fluids. To find the stability of the compact star, we have used Herrera’s technique which is based on finding the radial and the transverse components of the speed of sound. Moreover, the behaviors of other physical quantities are also discussed like anisotropy, matching conditions of interior metric and exterior metric and compactness of the compact structures are also discussed.
High- β equilibrium and ballooning stability of the low aspect ratio CNT stellarator
Hammond, K. C.; Lazerson, S. A.; Volpe, F. A.
2017-04-07
In the paper, the existence and ballooning-stability of low aspect ratio stellarator equilibria is predicted for the Columbia Neutral Torus (CNT) with the aid of 3D numerical tools. In addition to having a low aspect ratio, CNT is characterized by a low magnetic field and small plasma volume. Also, highly overdense plasmas were recently heated in CNT by means of microwaves. These characteristics suggest that CNT might attain relatively high values of plasma beta and thus be of use in the experimental study of stellarator stability to high-beta instabilities such as ballooning modes. As a first step in that direction,more » here the ballooning stability limit is found numerically. Depending on the particular magnetic configuration we expect volume-averaged β limits in the range 0.9%–3.0%, and possibly higher, and observe indications of a second region of ballooning stability. As the aspect ratio is reduced, stability is found to increase in some configurations and decrease in others. Energy-balance estimates using stellarator scaling laws indicate that the lower β limit may be attainable with overdense heating at powers of 40 to 100 kW. The present study serves the additional purpose of testing VMEC and other stellarator codes at high values of β and at low aspect ratios. For this reason, the study was carried out both for free boundary, for maximum fidelity to experiment, as well as with a fixed boundary, as a numerical test.« less
Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2013-03-01
Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.
NASA Technical Reports Server (NTRS)
Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.
1982-01-01
The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.
SUMMARY OF SOLIDIFICATION/STABILIZATION SITE DEMONSTRATIONS AT UNCONTROLLED HAZARDOUS WASTE SITES
Four large-scale solidification/stabilization demonstrations have occurred under EPA's SITE program. In general, physical testing results have been acceptable. Reduction in metal leachability, as determined by the TCLP test, has been observed. Reduction in organic leachability ha...
Ultrafast dynamics and stabilization in chip-scale optical frequency combs (Conference Presentation)
NASA Astrophysics Data System (ADS)
Huang, Shu Wei
2017-02-01
Optical frequency comb technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, re-definition of time, extreme light-matter interaction, and attosecond sciences. Recently emerged Kerr-active microresonators are promising alternatives to the current benchmark femtosecond laser platform. These chip-scale frequency combs, or Kerr combs, are unique in their compact footprints and offer the potential for monolithic electronic and feedback integration, thereby expanding the already remarkable applications of optical frequency combs. In this talk, I will first report the generation and characterization of low-phase-noise Kerr frequency combs. Measurements of the Kerr comb ultrafast dynamics and phase noise will be presented and discussed. Then I will describe novel strategies to fully stabilize Kerr comb line frequencies towards chip-scale optical frequency synthesizers with a relative uncertainty better than 2.7×10-16. I will show that the unique generation physics of Kerr frequency comb can provide an intrinsic self-referenced access to the Kerr comb line frequencies. The strategy improves the optical frequency stability by more than two orders of magnitude, while preserving the Kerr comb's key advantage of low SWaP and potential for chip-scale electronic and photonic integration.
Airframe Icing Research Gaps: NASA Perspective
NASA Technical Reports Server (NTRS)
Potapczuk, Mark
2009-01-01
qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.
Evaluation of the reliability and validity for X16 balance testing scale for the elderly.
Ju, Jingjuan; Jiang, Yu; Zhou, Peng; Li, Lin; Ye, Xiaolei; Wu, Hongmei; Shen, Bin; Zhang, Jialei; He, Xiaoding; Niu, Chunjin; Xia, Qinghua
2018-05-10
Balance performance is considered as an indicator of functional status in the elderly, a large scale population screening and evaluation in the community context followed by proper interventions would be of great significance at public health level. However, there has been no suitable balance testing scale available for large scale studies in the unique community context of urban China. A balance scale named X16 balance testing scale was developed, which was composed of 3 domains and 16 items. A total of 1985 functionally independent and active community-dwelling elderly adults' balance abilities were tested using the X16 scale. The internal consistency, split-half reliability, content validity, construct validity, discriminant validity of X16 balance testing scale were evaluated. Factor analysis was performed to identify alternative factor structure. The Eigenvalues of factors 1, 2, and 3 were 8.53, 1.79, and 1.21, respectively, and their cumulative contribution to the total variance reached 72.0%. These 3 factors mainly represented domains static balance, postural stability, and dynamic balance. The Cronbach alpha coefficient for the scale was 0.933. The Spearman correlation coefficients between items and its corresponding domains were ranged from 0.538 to 0.964. The correlation coefficients between each item and its corresponding domain were higher than the coefficients between this item and other domains. With the increase of age, the scores of balance performance, domains static balance, postural stability, and dynamic balance in the elderly declined gradually (P < 0.001). With the increase of age, the proportion of the elderly with intact balance performance decreased gradually (P < 0.001). The reliability and validity of the X16 balance testing scale is both adequate and acceptable. Due to its simple and quick use features, it is practical to be used repeatedly and routinely especially in community setting and on large scale screening.
Untangling the biological contributions to soil stability in semiarid shrublands
Chaudhary, V. Bala; Bowker, Matthew A.; O'Dell, Thomas E.; Grace, James B.; Redman, Andrea E.; Rillig, Matthias C.; Johnson, Nancy C.
2009-01-01
Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability and 54% of the variation in subsurface stability. The results support several tentative conclusions. While BSCs, plants, and AM fungi all contribute to surface stability, only plants and AM fungi contribute to subsurface stability. In both surface and subsurface models, the strongest contributions to soil stability are made by biological components of the system. Biological soil crust cover was found to have the strongest direct effect on surface soil stability (0.60; controlling for other factors). Surprisingly, AM fungi appeared to influence surface soil stability (0.37), even though they are not generally considered to exist in the top few millimeters of the soil. In the subsurface model, plant cover appeared to have the strongest direct influence on soil stability (0.42); in both models, results indicate that plant cover influences soil stability both directly (controlling for other factors) and indirectly through influences on other organisms. Soil organic matter was not found to have a direct contribution to surface or subsurface stability in this system. The relative influence of AM fungi on soil stability in these semiarid shrublands was similar to that reported for a mesic tallgrass prairie. Estimates of effects that BSCs, plants, and AM fungi have on soil stability in these models are used to suggest the relative amounts of resources that erosion control practitioners should devote to promoting these communities. This study highlights the need for system approaches in combating erosion, soil degradation, and arid-land desertification.
Martel, Marc O; Wasan, Ajay D; Edwards, Robert R
2013-11-01
To examine the temporal stability of conditioned pain modulation (CPM), formerly termed diffuse noxious inhibitory controls, among a sample of patients with chronic pain. The study also examined the factors that might be responsible for the stability of CPM. In this test-retest study, patients underwent a series of standardized psychophysical pain-testing procedures designed to assess CPM on two separate occasions (i.e., baseline and follow up). Patients also completed self-report measures of catastrophizing (Pain Catastrophizing Scale [PCS] and negative affect [NA]). Overall, results provided evidence for the stability of CPM among patients with chronic pain. Results, however, revealed considerable sex differences in the stability of CPM. For women, results revealed a significant test-retest correlation between baseline and follow-up CPM scores. For men, however, the test-retest correlation between baseline and follow-up CPM scores was not significant. Results of a Fisher's Z-test revealed that the stability of CPM was significantly greater for women than for men. Follow-up analyses revealed that the difference between men and women in the stability of CPM could not be accounted for by any demographic (e.g., age) and/or psychological factors (PCS and NA). Our findings suggest that CPM paradigms possess sufficient reliability to be incorporated into bedside clinical evaluation of patients with chronic pain, but only among women. The lack of CPM reproducibility/stability observed among men places limits on the potential use of CPM paradigms in clinical settings for the assessment of men's endogenous pain-inhibitory function. Wiley Periodicals, Inc.
Development and psychometric evaluation of the Personal Growth Initiative Scale-II.
Robitschek, Christine; Ashton, Matthew W; Spering, Cynthia C; Geiger, Nathaniel; Byers, Danielle; Schotts, G Christian; Thoen, Megan A
2012-04-01
The original Personal Growth Initiative Scale (PGIS; Robitschek, 1998) was unidimensional, despite theory identifying multiple components (e.g., cognition and behavior) of personal growth initiative (PGI). The present research developed a multidimensional measure of the complex process of PGI, while retaining the brief and psychometrically sound properties of the original scale. Study 1 focused on scale development, including theoretical derivation of items, assessing factor structure, reducing number of items, and refining the scale length using samples of college students. Study 2 consisted of confirmatory factor analysis with 3 independent samples of college students and community members. Lastly, Study 3 assessed test-retest reliability over 1-, 2-, 4-, and 6-week periods and tests of concurrent and discriminant validity using samples of college students. The final measure, the Personal Growth Initiative Scale-II (PGIS-II), includes 4 subscales: Readiness for Change, Planfulness, Using Resources, and Intentional Behavior. These studies provide exploratory and confirmatory evidence for the 4-factor structure, strong internal consistency for the subscales and overall score across samples, acceptable temporal stability at all assessed intervals, and concurrent and discriminant validity of the PGIS-II. Future directions for research and clinical practice are discussed.
Survey of Army/NASA rotorcraft aeroelastic stability research
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.
1988-01-01
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.
Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio
2015-09-01
Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.
Miranda, Iã Ferreira; Souza, Catiane; Schneider, Alexandre Tavares; Chagas, Leandro Campos; Loss, Jefferson Fagundes
2018-05-01
There is some evidence in the literature about the effectiveness of the Pilates methods in the low back pain. Moreover, Pilates focus on exercises that empathizes the stability and/or mobility of the spine. Therefore, it is discussed in the literature whether higher levels of stability or mobility of the lumbar spine generates better results, both in performance and rehabilitation for low back pain. Compare the effects of the low back mobility and stability exercises from Pilates Method on low back pain, disability and movement functionality in individuals with non-specific chronic low back pain. 28 participants will be randomized into two exercise protocol from Pilates methods, one focusing on low back stability and other on low back mobility. Low back pain (visual analogic scale), low back disability (Oswestry) and movement functionality (7 functional movement tasks) will be evaluated before and after 10 sessions of Pilates exercise by the same trained assessor. A mixed designed ANOVA with two factors will be used. This study is the first to compare these outcomes for chronic low back pain participants with two exercises protocol focusing on low back mobility and stability and the results will evaluate what to prioritize with Pilates exercises to give better results for that population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bounding the first exit from the basin: Independence times and finite-time basin stability
NASA Astrophysics Data System (ADS)
Schultz, Paul; Hellmann, Frank; Webster, Kevin N.; Kurths, Jürgen
2018-04-01
We study the stability of deterministic systems, given sequences of large, jump-like perturbations. Our main result is the derivation of a lower bound for the probability of the system to remain in the basin, given that perturbations are rare enough. This bound is efficient to evaluate numerically. To quantify rare enough, we define the notion of the independence time of such a system. This is the time after which a perturbed state has probably returned close to the attractor, meaning that subsequent perturbations can be considered separately. The effect of jump-like perturbations that occur at least the independence time apart is thus well described by a fixed probability to exit the basin at each jump, allowing us to obtain the bound. To determine the independence time, we introduce the concept of finite-time basin stability, which corresponds to the probability that a perturbed trajectory returns to an attractor within a given time. The independence time can then be determined as the time scale at which the finite-time basin stability reaches its asymptotic value. Besides that, finite-time basin stability is a novel probabilistic stability measure on its own, with potential broad applications in complex systems.
Mechanistic insights into heterogeneous methane activation
Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; ...
2017-01-11
While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less
Mechanistic insights into heterogeneous methane activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin
While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.
2015-12-01
This work was motivated by the observation, as early as 2008, that GYRO simulations of some ITER operating scenarios exhibited nonlinear zonal-flow generation large enough to effectively quench turbulence inside r /a ~ 0.5. This observation of flow-dominated, low-transport states persisted even as more accurate and comprehensive predictions of ITER profiles were made using the state-of-the-art TGLF transport model. This core stabilization is in stark contrast to GYRO-TGLF comparisons for modern-day tokamaks, for which GYRO and TGLF are typically in very close agreement. So, we began to suspect that TGLF needed to be generalized to include the effect of zonal-flowmore » stabilization in order to be more accurate for the conditions of reactor simulations. While the precise cause of the GYRO-TGLF discrepancy for ITER parameters was not known, it was speculated that closeness to threshold in the absence of driven rotation, as well as electromagnetic stabilization, created conditions more sensitive the self-generated zonal-flow stabilization than in modern tokamaks. Need for nonlinear zonal-flow stabilization: To explore the inclusion of a zonal-flow stabilization mechanism in TGLF, we started with a nominal ITER profile predicted by TGLF, and then performed linear and nonlinear GYRO simulations to characterize the behavior at and slightly above the nominal temperature gradients for finite levels of energy transport. Then, we ran TGLF on these cases to see where the discrepancies were largest. The predicted ITER profiles were indeed near to the TGLF threshold over most of the plasma core in the hybrid discharge studied (weak magnetic shear, q > 1). Scanning temperature gradients above the TGLF power balance values also showed that TGLF overpredicted the electron energy transport in the low-collisionality ITER plasma. At first (in Q3), a model of only the zonal-flow stabilization (Dimits shift) was attempted. Although we were able to construct an ad hoc model of the zonal flows that fit the GYRO simulations, the parameters of the model had to be tuned to each case. A physics basis for the zonal flow model was lacking. Electron energy transport at short wavelength: A secondary issue – the high-k electron energy flux – was initially assumed to be independent of the zonal flow effect. However, detailed studies of the fluctuation spectra from recent multiscale (electron and ion scale) GYRO simulations provided a critical new insight into the role of zonal flows. The multiscale simulations suggested that advection by the zonal flows strongly suppressed electron-scale turbulence. Radial shear of the zonal E×B fluctuation could not compete with the large electron-scale linear growth rate, but the k x-mixing rate of the E×B advection could. This insight led to a preliminary new model for the way zonal flows saturate both electron- and ion-scale turbulence. It was also discovered that the strength of the zonal E×B velocity could be computed from the linear growth rate spectrum. The new saturation model (SAT1), which replaces the original model (SAT0), was fit to the multiscale GYRO simulations as well as the ion-scale GYRO simulations used to calibrate the original SAT0 model. Thus, SAT1 captures the physics of both multiscale electron transport and zonal-flow stabilization. In future work, the SAT1 model will require significant further testing and (expensive) calibration with nonlinear multiscale gyrokinetic simulations over a wider variety of plasma conditions – certainly more than the small set of scans about a single C-Mod L-mode discharge. We believe the SAT1 model holds great promise as a physics-based model of the multiscale turbulent transport in fusion devices. Correction to ITER performance predictions: Finally, the impact of the SAT1model on the ITER hybrid case is mixed. Without the electron-scale contribution to the fluxes, the Dimits shift makes a significant improvement in the predicted fusion power as originally posited. Alas, including the high-k electron transport reduces the improvement, yielding a modest net increase in predicted fusion power compared to the TGLF prediction with the original SAT0 model.« less
Bruns-Toepler, Markus; Hardt, Philip
2017-07-01
The aims of the present study were: (i) Evaluate specificity and sensitivity of Hb Smart enzyme-linked immunosorbent assay (ELISA) (ScheBo Biotech) compared to colonoscopy results and (ii) assess stability of a new sample collection device containing a newly formulated buffer to extract haemoglobin using buffer and stool samples spiked with defined concentrations of haemoglobin. Stool samples were quantified with the ELISA method. The stability of haemoglobin in the extraction buffer and in native stool samples, respectively, was determined daily by ELISA during storage for 5 days at 4°C and at room temperature after addition of haemoglobin. Haemoglobin ELISA had a sensitivity of 78.4% for detection of CRC with a specificity of 98%. Haemoglobin extracted in corresponding extraction buffer demonstrated stability throughout storage for 5 days at 4°C and at room temperature. Hb Smart represents a very promising tool for large-scale screening of CRC with regard to sample handling, stability and analysis of haemoglobin in faeces. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Understanding diversity–stability relationships: towards a unified model of portfolio effects
Thibaut, Loïc M; Connolly, Sean R; He, Fangliang
2013-01-01
A major ecosystem effect of biodiversity is to stabilise assemblages that perform particular functions. However, diversity–stability relationships (DSRs) are analysed using a variety of different population and community properties, most of which are adopted from theory that makes several restrictive assumptions that are unlikely to be reflected in nature. Here, we construct a simple synthesis and generalisation of previous theory for the DSR. We show that community stability is a product of two quantities: the synchrony of population fluctuations, and an average species-level population stability that is weighted by relative abundance. Weighted average population stability can be decomposed to consider effects of the mean-variance scaling of abundance, changes in mean abundance with diversity and differences in species' mean abundance in monoculture. Our framework makes explicit how unevenness in the abundances of species in real communities influences the DSR, which occurs both through effects on community synchrony, and effects on weighted average population variability. This theory provides a more robust framework for analysing the results of empirical studies of the DSR, and facilitates the integration of findings from real and model communities. PMID:23095077
Puso, M. A.; Kokko, E.; Settgast, R.; ...
2014-10-22
An embedded mesh method using piecewise constant multipliers originally proposed by Puso et al. (CMAME, 2012) is analyzed here to determine effects of the pressure stabilization term and small cut cells. The approach is implemented for transient dynamics using the central difference scheme for the time discretization. It is shown that the resulting equations of motion are a stable linear system with a condition number independent of mesh size. Furthermore, we show that the constraints and the stabilization terms can be recast as non-proportional damping such that the time integration of the scheme is provably stable with a critical timemore » step computed from the undamped equations of motion. Effects of small cuts are discussed throughout the presentation. A mesh study is conducted to evaluate the effects of the stabilization on the discretization error and conditioning and is used to recommend an optimal value for stabilization scaling parameter. Several nonlinear problems are also analyzed and compared with comparable conforming mesh results. Finally, we show several demanding problems highlighting the robustness of the proposed approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, Mark; Chliquete, Carlos
2011-01-20
The pulsating dynamics of gaseous detonations with a model two-step chain-branching kinetic mechanism are studied both numerically and asymptotically. The model studied here was also used in [4], [3] and [2] and mimics the attributes of some chain-branching reaction mechanisms. Specifically, the model comprises a chain-initiationlbranching zone with an Arrhenius temperature-sensitive rate behind the detonation shock where fuel is converted into chain-radical with no heat release. This is followed by a chain-termination zone having a temperature insensitive rate where the exothermic heat of reaction is released. The lengths of these two zones depend on the relative rates of each stage.more » It was determined in [4] and [3] via asymptotic and numerical analysis that the ratio of the length of the chain-branching zone to that of the chain-initation zone relative to the size of the von Neumann state scaled activation energy in the chain initiation/branching zone has a primary influence of the stability of one-dimensional pulsating instability behavior for this model. In [2], the notion of a specific stability parameter related to this ratio was proposed that determines the boundary between stable and unstable waves. In [4], a slow-time varying asymptotic study was conducted of pulsating instability of Chapman-Jouguet (CJ) detonations with the above two-step rate model, assuming a large activation energy for the chain-initiation zone and a chain-termination zone longer than the chain-initiation zone. Deviations D{sub n}{sup (1)} ({tau}) of the detonation velocity from Chapman-Jouguet were of the order of the non-dimensional activation energy. Solutions were sought for a pulsation timescale of the order of the non-dimensional activation energy times the particle transit time through the induction zone. On this time-scale, the evolution of the chain-initation zone is quasi-steady. In [4], a time-dependent non-linear evolution equation for D{sub n}{sup (1)} ({tau}) was then constructed via a perturbation procedure for cases where the ratio of the length of the chain-termination zone to chain-initiation zone was less than the non-dimensional activation energy. To leading order, the steady CJ detonation was found to be unstable; higher-order corrections lead to the construction of a stability limit between stable and unsteady pulsating solutions. One conclusion from this study is that for a stability limit to occur at leading order, the period of pulsation of the detonation must occur on the time scale of particle passage through the longer chain-termination zone, while the length of the chain-termination zone must be of order of the non-dimensional activation energy longer than the chain-initiation zone. The relevance of these suggested scalings was verified via numerical solutions of the full Euler system in [3], and formed the basis of the stability parameter criteria suggested in [2]. In the following, we formulate an asymptotic study based on these new suggested scales, studying the implications for describing pulsating behavior in gaseous chain-branching detonations. Specifically, we find that the chain-induction zone structure is the same as that studied in [4]. However, the study of unsteady evolution in the chain-termination region is now governed by a set of asymptotically derived nonlinear POEs. Equations for the linear stablity behavior of this set of POE's is obtained, while the nonlinear POEs are solved numerically using a shock-attached, shock-fitting method developed by Henrick et aJ. [1]. The results thus far show that the stability threshold calculated using the new ratio of the chain-termination zone length to that of the chain-initiation zone yields a marked improvement over [2]. Additionally, solutions will be compared with predictions obtained from the solution of the full Euler system. Finally, the evolution equation previously derived in [4] has been generalized to consider both arbitrary reaction orders and any degree of overdrive.« less
Neutron scattering studies of nano-scale wood-water interactions
Nayomi Z. Plaza Rodriguez
2017-01-01
Understanding and controlling water in wood is critical to both improving forest products moisture durability and developing new sustainable forest products-based technologies. While wood is known to be hygroscopic, there is still a lack of understanding of the nanoscale wood-water interactions necessary for increased moisture-durability and dimensional stability. My...
ERIC Educational Resources Information Center
Peterson, John R.
2004-01-01
The concept of energy arises in all disciplines of science, from ecosystems and species niches to gravity and motion. Most students have difficulty understanding the relative sense of energy, however. Unless students are studying thermal energy and using the kelvin scale, the energy of an object or system is always with respect to some baseline or…
Rater Severity in Large-Scale Assessment: Is It Invariant?
ERIC Educational Resources Information Center
McQueen, Joy; Congdon, Peter J.
A study was conducted to investigate the stability of rater severity over an extended rating period. Multifaceted Rasch analysis was applied to ratings of writing performances of 8,285 primary school (elementary) students. Each performance was rated on two performance dimensions by two trained raters over a period of 7 rating days. Performances…
Stability of Teacher Value-Added Rankings across Measurement Model and Scaling Conditions
ERIC Educational Resources Information Center
Hawley, Leslie R.; Bovaird, James A.; Wu, ChaoRong
2017-01-01
Value-added assessment methods have been criticized by researchers and policy makers for a number of reasons. One issue includes the sensitivity of model results across different outcome measures. This study examined the utility of incorporating multivariate latent variable approaches within a traditional value-added framework. We evaluated the…
Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd
2015-09-01
Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ghaderi, Fariba; Jafarabadi, Mohammad Asghari; Javanshir, Khodabakhsh
2017-01-01
Neck pain is an important cause of disability. In spite of its high prevalence rate, treatment of the disorder is a challenging topic. Stabilization exercise has been the topic of many studies. To compare the effects of stabilization and routine exercises on chronic neck pain. Forty patients were randomly assigned into either stabilization or routine exercise groups and undertook a 10-week training program. Electromyographic (EMG) activity was recorded from Sternocleidomastoid (SCM), Anterior Scalene (AS) and Splenius Capitis (SC) muscles bilaterally. Endurance time of deep flexor muscles was measured by chronometer.Pain and disability were measured using Visual Analogue Scale (VAS) and neck disability index (NDI) questionnaire, respectively before and after training period. Findings revealed significant decreased pain and disability in both groups after intervention (P< 0/001). Flexor muscles endurance of stabilization group was significantly increased compared with that of routine (P< 0/001). Also EMG activity of SCM, AS and SC muscles were significantly decreased in stabilization group compared with routine (P< 0/001). Increased deep flexor endurance and decreased EMG activity of SCM, AS and SC muscles suggest an important role for stabilizing exercises on reducing the activity of superficial muscles in chronic neck pain.
Bhadauria, Esha A; Gurudut, Peeyoosha
2017-08-01
The aim of the present study was to compare three different forms of exercises namely lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain (LBP) in terms of pain, range of motion, core strength and function. In this study, 44 subjects suffering from non-specific LBP for more than 3 months were randomly allocated into the lumbar stabilization group, the dynamic strengthening group, and the Pilates group. Ten sessions of exercises for 3 weeks were prescribed along with interferential current and hot moist pack. Pain was assessed by visual analog scale, functional affection by modified Oswestry Disability Questionnaire, range of motion by assessing lumbar flexion and extension by modified Schober test and core strength was assessed by pressure biofeedback on day 1 and day 10 of the treatment. There was reduction of pain, improvement in range of motion, functional ability and core strength in all the 3 exercise groups. The improvement was significantly greater in the lumbar stabilization group for all the outcome measures, when compared the posttreatment after 10th session. Pairwise comparison showed that there was greater reduction of disability in the Pilates group than the dynamic strengthening group. It was concluded that the lumbar stabilization is more superior compared to the dynamic strengthening and Pilates in chronic nonspecific LBP. However, long-term benefits need to be assessed and compared with prospective follow-up studies.
Makowiecki, Arkadiusz; Botzenhart, Ute; Seeliger, Julia; Heinemann, Friedhelm; Biocev, Peter; Dominiak, Marzena
2017-07-01
The objective of the present study was to compare the primary and secondary stability of tissue-level short dental titanium implants with polished necks and hydrophilic surfaces of two different designs and manufacturers. The first implant system used (SPI ® ELEMENT RC INICELL titanium implants, Thommen Medical AG, Grenchen, Switzerland), allowed functional loading 6 weeks after its placement, whereas the second implant system (RN SLActiv ® tissue-level titanium implants, Straumann GmbH, Fribourg, Germany), was loaded after 15 weeks. The degree of primary and secondary stability was determined using an Osstell ISQ measuring device. Marginal bone loss (MBL) was evaluated radiographically 12 and 24 weeks after implantation and the Wachtel's healing index as well as the patient's satisfaction with the treatment was registered on a VAS scale. The intergroup comparison revealed significant differences in terms of primary stability as well as differences in MBL 3 months after the procedure, but no significant differences could be found after 6 months and for secondary stability. The primary stability was significantly higher for Thommen ® compared to Straumann ® implants. Insertion of short dental implants with a hydrophilic conditioned surface significantly shortens patient treatment time. Copyright © 2017 Elsevier GmbH. All rights reserved.
Wilson, K M; Huff, J L
2001-05-01
The influence on social behavior of beliefs in Satan and the nature of evil has received little empirical study. Elaine Pagels (1995) in her book, The Origin of Satan, argued that Christians' intolerance toward others is due to their belief in an active Satan. In this study, more than 200 college undergraduates completed the Manitoba Prejudice Scale and the Attitudes Toward Homosexuals Scale (B. Altemeyer, 1988), as well as the Belief in an Active Satan Scale, developed by the authors. The Belief in an Active Satan Scale demonstrated good internal consistency and temporal stability. Correlational analyses revealed that for the female participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men and intolerance toward ethnic minorities. For the male participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men but was not significantly related to intolerance toward ethnic minorities. Results of this research showed that it is possible to meaningfully measure belief in an active Satan and that such beliefs may encourage intolerance toward others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anguet, J.; Salles, Y.
The aim of the work is to apply the laminated glass technology used in buildings and car windscreens to the encapsulation of solar panels so as to form a glass-polyvinylbutyral-glass 'sandwich'. Based on small-scale experimental panels, the following studies were made: (1) adhesion techniques; (2) structure studies to find the most suitable means for maintaining the mechanical stability of the cells; (3) types of connections for the solar panels and (4) climatic tests and humidity resistance. Mechanical and climatic tests with the minimodules gave encouraging results, whereupon larger scale models were designed. The results obtained with these confirmed those obtainedmore » with the mini-modules.« less
Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli
Fuller, Sawyer B.; Karpelson, Michael; Censi, Andrea; Ma, Kevin Y.; Wood, Robert J.
2014-01-01
Scaling a flying robot down to the size of a fly or bee requires advances in manufacturing, sensing and control, and will provide insights into mechanisms used by their biological counterparts. Controlled flight at this scale has previously required external cameras to provide the feedback to regulate the continuous corrective manoeuvres necessary to keep the unstable robot from tumbling. One stabilization mechanism used by flying insects may be to sense the horizon or Sun using the ocelli, a set of three light sensors distinct from the compound eyes. Here, we present an ocelli-inspired visual sensor and use it to stabilize a fly-sized robot. We propose a feedback controller that applies torque in proportion to the angular velocity of the source of light estimated by the ocelli. We demonstrate theoretically and empirically that this is sufficient to stabilize the robot's upright orientation. This constitutes the first known use of onboard sensors at this scale. Dipteran flies use halteres to provide gyroscopic velocity feedback, but it is unknown how other insects such as honeybees stabilize flight without these sensory organs. Our results, using a vehicle of similar size and dynamics to the honeybee, suggest how the ocelli could serve this role. PMID:24942846
Lauer, Matthias E; Maurer, Reto; Paepe, Anne T De; Stillhart, Cordula; Jacob, Laurence; James, Rajesh; Kojima, Yuki; Rietmann, Rene; Kissling, Tom; van den Ende, Joost A; Schwarz, Sabine; Grassmann, Olaf; Page, Susanne
2018-05-19
Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed. Similar mixtures were manufactured with a lab-scale extruder, for face to face comparison. The properties of MinEx extrudates widely translated to those manufactured with a lab-scale extruder. Plasticizers, Polyethyleneglycol 4000 (PEG4000) and Poloxamer 188, were homogenously distributed but decreased the storage stability of the extrudates. Stearic acid was found condensed in ultrathin nanoplatelets which did not impact the storage stability of the system. Depending on their distribution and physicochemical properties, plasticizers can modulate storage stability and dissolution performance of extrudates. MinEx is a valuable prototyping-screening method and enables rational selection of plasticizers in a time and material sparing manner. In eight out of eight cases the properties of the extrudates translated to products manufactured in lab-scale extrusion trials.
Core Stability Exercise Versus General Exercise for Chronic Low Back Pain.
Coulombe, Brian J; Games, Kenneth E; Neil, Elizabeth R; Eberman, Lindsey E
2017-01-01
Reference: Wang XQ, Zheng JJ, Yu ZW, et al. A meta-analysis of core stability exercise versus general exercise for chronic low back pain. PLoS One. 2012;7(12):e52082. Clinical Questions: Is core stability exercise more effective than general exercise in the treatment of patients with nonspecific low back pain (LBP)? The authors searched the following databases: China Biological Medicine disc, Cochrane Library, Embase, and PubMed from 1970 through 2011. The key medical subject headings searched were chronic pain, exercise, LBP, lumbosacral region, and sciatica. Randomized controlled trials comparing core stability exercise with general exercise in the treatment of chronic LBP were investigated. Participants were male and female adults with LBP for at least 3 months that was not caused by a specific known condition. A control group receiving general exercise and an experimental group receiving core stability exercise were required for inclusion in the meta-analysis. Core stability was defined as the ability to ensure a stable neutral spine position, but the type of exercise was not specified. Outcome measures of pain intensity, back-specific functional status, quality of life, and work absenteeism were recorded at 3-, 6-, and 12-month intervals. The study design, participant information, description of interventions in the control and experimental groups, outcome measures, and follow-up period were extracted. The mean difference (MD) and 95% confidence interval (CI) were calculated to evaluate statistical significance. Risk of bias was assessed using the Cochrane Collaboration Recommendations, and all articles were rated as high risk for other bias with no further explanation given. Five studies involving 414 patients were included. Four studies assessed pain intensity using the visual analog scale or numeric rating scale. In the core stability exercise group, the reduction in pain was significant at 3 months (MD = -1.29, 95% CI = -2.47, -0.11; P = .003) but not at 6 months (MD = -0.50, 95% CI = -1.36, 0.35; P = .26). Functional status was improved at 3 months (MD = -7.14, 95% CI = -11.64, -2.65; P = .002) but not at 6 months (MD = -0.50, 95% CI = 0.36, 0.35; P = .26) or 12 months (MD = -0.32, 95% CI = -0.87, 0.23; P = .25). All of the included studies assessed back-specific functional status: 4 used the Oswestry Disability Index and 1 used the Roland-Morris Disability Questionnaire. Patients in the core stability exercise groups experienced improved functional status versus the general exercise group at 3 months (MD = -7.14, 95% CI = -11.64, -2.65; P = .002); no results were recorded at 6 or 12 months. In the short term, core stability exercise was more effective than general exercise for decreasing pain and increasing back-specific functional status in patients with LBP.
NASA Astrophysics Data System (ADS)
Tsukamoto, Osami; Fujimoto, Yasutaka; Takao, Tomoaki
2014-09-01
It has been considered that HTS coils are hard to be quenched because of high quench energy due to high critical temperature and high specific heat of HTS wires. Therefore, attention to quench protection was not much paid. However, HTS coils still have possibility to be quenched during operation by mainly the following two origins, (a) presence of non-recoverable local defects in the conductors and (b) temperature rise of long part of the conductor. Actually, severe quench accidents, such as burning coils, are occurring in various places as scales of HTS increased. Purposes of this paper are to study on behaviors of normal zone and hot spot temperature of wires during quench detect/energy dump sequence and to find criteria for the stability and quench protection. In the paper, criteria are proposed for stability and quench protection of HTS coils. A criterion for the stability is that a coil can be operated stably without a quench against defects in coil windings and that for quench protection is that a coil can be safely protected from damages caused by a quench due to temperature rise of long part of coil wires. The criteria are used as design rules for HTS coils.
NASA Technical Reports Server (NTRS)
Vaughn, J. E.; Daviet, J. T.
1975-01-01
Experimental aerodynamic investigations were conducted on a .012 scale model of a NASA/Langley modified version of the Rockwell 089B Space Shuttle Orbiter. Using the forced oscillation test technique, dynamic stability derivatives were measured in the pitch, yaw and roll planes at a Mach number of 8 over an angle of attack range from -4 deg to 28 deg. Plotted and tabulated results are presented.
Application and research of block caving in Pulang copper mine
NASA Astrophysics Data System (ADS)
Ge, Qifa; Fan, Wenlu; Zhu, Weigen; Chen, Xiaowei
2018-01-01
The application of block caving in mines shows significant advantages in large scale, low cost and high efficiency, thus block caving is worth promoting in the mines that meets the requirement of natural caving. Due to large scale of production and low ore grade in Pulang copper mine in China, comprehensive analysis and research were conducted on rock mechanics, mining sequence, undercutting and stability of bottom structure in terms of raising mine benefit and maximizing the recovery mineral resources. Finally this study summarizes that block caving is completely suitable for Pulang copper mine.
Erosion waves: Transverse instabilities and fingering
NASA Astrophysics Data System (ADS)
Malloggi, F.; Lanuza, J.; Andreotti, B.; Clément, E.
2006-09-01
Two laboratory scale experiments of dry and underwater avalanches of non-cohesive granular materials are investigated. We trigger solitary waves and study the conditions under which the front is transversally stable. We show the existence of a linear instability followed by a coarsening dynamics and finally the onset of a fingering pattern. Due to the different operating conditions, both experiments strongly differ by the spatial and time scales involved. Nevertheless, the quantitative agreement between the stability diagram, the wavelengths selected and the avalanche morphology suggest a common scenario for an erosion/deposition process.
Preti, Antonio; Sheehan, David V; Coric, Vladimir; Distinto, Marco; Pitanti, Mirko; Vacca, Irene; Siddi, Alessandra; Masala, Carmelo; Petretto, Donatella Rita
2013-10-01
The Sheehan Suicidality Tracking Scale (S-STS) is a patient self-report or clinician-administered rating scale that tracks spontaneous and treatment-emergent suicidal ideation and behaviors. This study set out to evaluate the reliability, convergent and divergent validity of the S-STS in a sample of college students, a population with a high risk of completed and attempted suicide. Cross-sectional, survey design. Participants (303 undergraduate students; males: 42%) completed several measures assessing psychological distress (General Health Questionnaire; GHQ); self-esteem (Rosenberg Self Esteem Scale; RSES); social support (Modified Social Support Survey; MOSSS); and suicidal behavior, including ideation and attempts (S-STS). Both internal consistency and test-retest stability were excellent for the S-STS-global score. The S-STS subscale on suicide ideation also showed good reliability, while the subscale on suicidal behavior showed some inconsistency at retest. Convergent and divergent validity of S-STS was confirmed. All S-STS items loaded on a single factor, which had an excellent fit for the unidimensional model, thus justifying the use of the S-STS as a screening tool. In a mediation model, self-esteem and social support explained 45% of the effects of psychological distress on suicide ideation and behavior as measured by the S-STS-global score. This study provided promising evidence on the convergent, divergent, internal consistency and test-retest stability of the Sheehan Suicidality Tracking Scale. The cross-sectional design and lack of measures of hopelessness and helplessness prevent any conclusion about the links of suicidal behavior with self-esteem and social support. Copyright © 2013 Elsevier Inc. All rights reserved.
Hite, Jessica L; Cressler, Clayton E
2018-05-05
What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a 'non-nested' model. Then, we consider a 'nested' model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to 'non-nested' model predictions, the 'nested' model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).
Cho, Chul-Hyun; Jung, Jae-Hoon; Kim, Beom-Soo
2017-05-01
The purpose of this study was to evaluate the radiologic and clinical outcomes of coracoclavicular (CC) stabilization using a suture button device for Neer type IIB lateral clavicle fractures. Eighteen consecutive patients with Neer type IIB fractures were treated with CC stabilization using a TightRope device (Arthrex, Naples, FL, USA). The mean follow-up period was 46.6 months (range, 24-75 months). Radiologic outcomes were assessed using serial plain radiographs. Clinical outcomes were evaluated using the visual analog scale pain score; University of California, Los Angeles score; American Shoulder and Elbow Surgeons score; and subjective shoulder value. Intraoperative and postoperative complications were also evaluated. Of the 18 cases, 17 (94.4%) showed complete bony union. The mean final visual analog scale pain score was 1.1; University of California, Los Angeles score, 31.3; American Shoulder and Elbow Surgeons score, 88.6; and subjective shoulder value, 88.5%. Four complications were observed: (1) intraoperative coracoid process fracture, (2) nonunion, (3) delayed union, and (4) shoulder stiffness. The case with a coracoid process fracture during coracoid tunnel generation was converted to the K-wire tension band technique. CC stabilization using a suture button device for Neer type IIB lateral clavicle fractures yielded satisfactory radiologic and clinical outcomes. The major advantage of this technique is that implant removal is not required. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1947-01-01
At the request of the Air Materiel Command, Army Air Forces, an investigation of the low-speed, power-off, stability and control characteristics of the McDonnell XP-85 airplane has been conducted in the Langley free-flight tunnel. The results of the portion of the investigation consisting of tests of a 1/10-scale model to study the stability of the XP-85 when attached to the trapeze and during retraction into the B-36 bomb bay are presented herein. In the power-off condition the stability was satisfactory with all oscillations well damped and the nose-restraining collar could be placed in position without difficulty. In a simulated power-on condition the model had a constant-amplitude rolling and sidewise motion and when the collar was layered, a violent motion resulted if the collar struck the model but failed to hold it in the proper manner. Folding of the wings and retraction into the bomb bay offered no problem once the airplane was properly held by the collar. It is recommended that the power be cut immediately after hooking on and that a restricting mechanism be incorporated in the center of the trapeze to eliminate the sidewise motion. It also appears desirable to have the retracting procedure controlled by the XP-85 pilot or an observer in the mother ship to insure that the parasite is in proper position after hooking up before bringing the collar down.
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.; Shafer, M. F.
1976-01-01
In response to the interest in airplane configuration characteristics at high angles of attack, an unpowered remotely piloted 3/8-scale F-15 airplane model was flight tested. The subsonic stability and control characteristics of this airplane model over an angle of attack range of -20 to 53 deg are documented. The remotely piloted technique for obtaining flight test data was found to provide adequate stability and control derivatives. The remotely piloted technique provided an opportunity to test the aircraft mathematical model in an angle of attack regime not previously examined in flight test. The variation of most of the derivative estimates with angle of attack was found to be consistent, particularly when the data were supplemented by uncertainty levels.