Small-Scale Tests of MX Vertical Shelter Structures.
1983-06-29
models were built with as much geometric and material similitude as practical. They 7were not identical to the 1/3-scale structures tested in the VST ...comparison with the 1/30-scale models and the 1/6-scale models, the 1/3-scale VST 7 models had different geometry (wall thickness variations), different...1/30-scale and 1/6-scale results with the 1/3-scale VST results. For example, the strains measured in the 1/3-scale ’B’ structure are about twice as
A geographic comparison of selected large-scale planetary surface features
NASA Technical Reports Server (NTRS)
Meszaros, S. P.
1984-01-01
Photographic and cartographic comparisons of geographic features on Mercury, the Moon, Earth, Mars, Ganymede, Callisto, Mimas, and Tethys are presented. Planetary structures caused by impacts, volcanism, tectonics, and other natural forces are included. Each feature is discussed individually and then those of similar origin are compared at the same scale.
NASA Technical Reports Server (NTRS)
Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.
1998-01-01
We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.
The natural armors of fish: A comparison of the lamination pattern and structure of scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murcia, Sandra; Lavoie, Ellen; Linley, Tim
Fish scales exhibit a unique balance of flexibility, strength and toughness, which is essential to provide protection without encumbering locomotion. Although the mechanical behavior and structure of this natural armor are of recent interest, a comparison of these qualities from scales of different fish species has not been reported. In this investigation the armor of fish with different locomotion, size and protection needs were analyzed. Scales from the Arapaima gigas, the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio) were compared in terms of the stacking sequence of individual plies and their microstructure. The scales were also compared with respectmore » to anatomical position to distinguish site-specific functional differences. Results show that the lamination sequence of plies for the carp and tarpon exhibit a Bouligand structure with relative rotation of 75° between consecutive plies. The arapaima scales exhibit a cross-ply structure, with 90° rotation between adjacent plies. In addition, results indicate that the volume fraction of reinforcement, the number of plies and the variations in thickness with anatomical position are unique amongst the three fish. These characteristics should be considered in evaluations focused on the mechanical behavior.« less
The development and validation of the Physical Appearance Comparison Scale-Revised (PACS-R).
Schaefer, Lauren M; Thompson, J Kevin
2014-04-01
The Physical Appearance Comparison Scale (PACS; Thompson, Heinberg, & Tantleff, 1991) was revised to assess appearance comparisons relevant to women and men in a wide variety of contexts. The revised scale (Physical Appearance Comparison Scale-Revised, PACS-R) was administered to 1176 college females. In Study 1, exploratory factor analysis and parallel analysis using one half of the sample suggested a single factor structure for the PACS-R. Study 2 utilized the remaining half of the sample to conduct confirmatory factor analysis, item analysis, and to examine the convergent validity of the scale. These analyses resulted in an 11-item measure that demonstrated excellent internal consistency and convergent validity with measures of body satisfaction, eating pathology, sociocultural influences on appearance, and self-esteem. Regression analyses demonstrated the utility of the PACS-R in predicting body satisfaction and eating pathology. Overall, results indicate that the PACS-R is a reliable and valid tool for assessing appearance comparison tendencies in women. Copyright © 2014. Published by Elsevier Ltd.
Discovery of a diamond-based photonic crystal structure in beetle scales.
Galusha, Jeremy W; Richey, Lauren R; Gardner, John S; Cha, Jennifer N; Bartl, Michael H
2008-05-01
We investigated the photonic crystal structure inside iridescent scales of the weevil Lamprocyphus augustus. By combining a high-resolution structure analysis technique based on sequential focused ion beam milling and scanning electron microscopy imaging with theoretical modeling and photonic band-structure calculations, we discovered a natural three-dimensional photonic structure with a diamond-based crystal lattice operating at visible wavelengths. Moreover, we found that within individual scales, the diamond-based structure is assembled in the form of differently oriented single-crystalline micrometer-sized pixels with only selected lattice planes facing the scales' top surface. A comparison of results obtained from optical microreflectance measurements with photonic band-structure calculations reveals that it is this sophisticated microassembly of the diamond-based crystal lattice that lends Lamprocyphus augustus its macroscopically near angle-independent green coloration.
Unsteady loads due to propulsive lift configurations. Part A: Investigation of scaling laws
NASA Technical Reports Server (NTRS)
Morton, J. B.; Haviland, J. K.
1978-01-01
This study covered scaling laws, and pressure measurements made to determine details of the large scale jet structure and to verify scaling laws by direct comparison. The basis of comparison was a test facility at NASA Langley in which a JT-15D exhausted over a boilerplater airfoil surface to reproduce upper surface blowing conditions. A quarter scale model was built of this facility, using cold jets. A comparison between full scale and model pressure coefficient spectra, presented as functions of Strouhal numbers, showed fair agreement, however, a shift of spectral peaks was noted. This was not believed to be due to Mach number or Reynolds number effects, but did appear to be traceable to discrepancies in jet temperatures. A correction for jet temperature was then tried, similar to one used for far field noise prediction. This was found to correct the spectral peak discrepancy.
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Scaling images using their background ratio. An application in statistical comparisons of images.
Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J
2003-06-07
Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases.
Stability of large-scale systems.
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1972-01-01
The purpose of this paper is to present the results obtained in stability study of large-scale systems based upon the comparison principle and vector Liapunov functions. The exposition is essentially self-contained, with emphasis on recent innovations which utilize explicit information about the system structure. This provides a natural foundation for the stability theory of dynamic systems under structural perturbations.
2017-05-03
AS A FUNCTION OF SCALING INTO THE QUASI -QUANTUM REGIME Naz Islam University of Missouri Electrical and Computer Engineering 319 Engineering...Carrier Transport Properties in Strained Crystalline Si Wall-Like Structures as a Function of Scaling into the Quasi -Quantum Regime 5b. GRANT NUMBER...curves) and their comparisons with experimental data (black dots in both panels......................................... 16 Approved for public
Accelerating large-scale protein structure alignments with graphics processing units
2012-01-01
Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132
Lovibond, P F; Lovibond, S H
1995-03-01
The psychometric properties of the Depression Anxiety Stress Scales (DASS) were evaluated in a normal sample of N = 717 who were also administered the Beck Depression Inventory (BDI) and the Beck Anxiety Inventory (BAI). The DASS was shown to possess satisfactory psychometric properties, and the factor structure was substantiated both by exploratory and confirmatory factor analysis. In comparison to the BDI and BAI, the DASS scales showed greater separation in factor loadings. The DASS Anxiety scale correlated 0.81 with the BAI, and the DASS Depression scale correlated 0.74 with the BDI. Factor analyses suggested that the BDI differs from the DASS Depression scale primarily in that the BDI includes items such as weight loss, insomnia, somatic preoccupation and irritability, which fail to discriminate between depression and other affective states. The factor structure of the combined BDI and BAI items was virtually identical to that reported by Beck for a sample of diagnosed depressed and anxious patients, supporting the view that these clinical states are more severe expressions of the same states that may be discerned in normals. Implications of the results for the conceptualisation of depression, anxiety and tension/stress are considered, and the utility of the DASS scales in discriminating between these constructs is discussed.
Unifying Inference of Meso-Scale Structures in Networks.
Tunç, Birkan; Verma, Ragini
2015-01-01
Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).
A Multi-Cultural Comparison of the Factor Structure of the MIDAS for Adults/College Students.
ERIC Educational Resources Information Center
Jones, James A.
The Multiple Intelligences Developmental Assessment Scales (MIDAS) instrument was developed to measure eight constructs of intelligence. The 119-item MIDAS provides scores for 26 subscales in addition to the 8 major scales. Using the 26 subscales, a factor structure was developed on half of a U.S. sample of college students (n=834), while the…
SETTER: web server for RNA structure comparison
Čech, Petr; Svozil, Daniel; Hoksza, David
2012-01-01
The recent discoveries of regulatory non-coding RNAs changed our view of RNA as a simple information transfer molecule. Understanding the architecture and function of active RNA molecules requires methods for comparing and analyzing their 3D structures. While structural alignment of short RNAs is achievable in a reasonable amount of time, large structures represent much bigger challenge. Here, we present the SETTER web server for the RNA structure pairwise comparison utilizing the SETTER (SEcondary sTructure-based TERtiary Structure Similarity Algorithm) algorithm. The SETTER method divides an RNA structure into the set of non-overlapping structural elements called generalized secondary structure units (GSSUs). The SETTER algorithm scales as O(n2) with the size of a GSSUs and as O(n) with the number of GSSUs in the structure. This scaling gives SETTER its high speed as the average size of the GSSU remains constant irrespective of the size of the structure. However, the favorable speed of the algorithm does not compromise its accuracy. The SETTER web server together with the stand-alone implementation of the SETTER algorithm are freely accessible at http://siret.cz/setter. PMID:22693209
DOT National Transportation Integrated Search
1974-03-01
Comparison is made of theoretically calculated and experimentally determined scattering from metallic tilted rectangles and vertical cylindrical scatterers. The scattering was experimentally measured in a scale model range at the Watertown Arsenal, W...
Shape Memory Alloys for Vibration Isolation and Damping of Large-Scale Space Structures
2010-08-04
Portugal (2007) Figure 24 – Comparison of martensitic SMA with steel in sine upsweep 3.2.2.4 Dwell Test Comparison with Sine Sweep Results...International Conference on Experimental Vibration Analysis for Civil Engineering Structures (EVACES), Porto, Portugal (2007) † Lammering, Rolf...a unique jump in amplitude during a sine sweep if sufficient pre- stretch is applied. These results were significant, but investigation of more
An operational global-scale ocean thermal analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, R. M.; Pollak, K.D.; Phoebus, P.A.
1990-04-01
The Optimum Thermal Interpolation System (OTIS) is an ocean thermal analysis system designed for operational use at FNOC. It is based on the optimum interpolation of the assimilation technique and functions in an analysis-prediction-analysis data assimilation cycle with the TOPS mixed-layer model. OTIS provides a rigorous framework for combining real-time data, climatology, and predictions from numerical ocean prediction models to produce a large-scale synoptic representation of ocean thermal structure. The techniques and assumptions used in OTIS are documented and results of operational tests of global scale OTIS at FNOC are presented. The tests involved comparisons of OTIS against an existingmore » operational ocean thermal structure model and were conducted during February, March, and April 1988. Qualitative comparison of the two products suggests that OTIS gives a more realistic representation of subsurface anomalies and horizontal gradients and that it also gives a more accurate analysis of the thermal structure, with improvements largest below the mixed layer. 37 refs.« less
Structures and Intermittency in a Passive Scalar Model
NASA Astrophysics Data System (ADS)
Vergassola, M.; Mazzino, A.
1997-09-01
Perturbative expansions for intermittency scaling exponents in the Kraichnan passive scalar model [Phys. Rev. Lett. 72, 1016 (1994)] are investigated. A one-dimensional compressible model is considered for this purpose. High resolution Monte Carlo simulations using an Ito approach adapted to an advecting velocity field with a very short correlation time are performed and lead to clean scaling behavior for passive scalar structure functions. Perturbative predictions for the scaling exponents around the Gaussian limit of the model are derived as in the Kraichnan model. Their comparison with the simulations indicates that the scale-invariant perturbative scheme correctly captures the inertial range intermittency corrections associated with the intense localized structures observed in the dynamics.
Tensor scale: An analytic approach with efficient computation and applications☆
Xu, Ziyue; Saha, Punam K.; Dasgupta, Soura
2015-01-01
Scale is a widely used notion in computer vision and image understanding that evolved in the form of scale-space theory where the key idea is to represent and analyze an image at various resolutions. Recently, we introduced a notion of local morphometric scale referred to as “tensor scale” using an ellipsoidal model that yields a unified representation of structure size, orientation and anisotropy. In the previous work, tensor scale was described using a 2-D algorithmic approach and a precise analytic definition was missing. Also, the application of tensor scale in 3-D using the previous framework is not practical due to high computational complexity. In this paper, an analytic definition of tensor scale is formulated for n-dimensional (n-D) images that captures local structure size, orientation and anisotropy. Also, an efficient computational solution in 2- and 3-D using several novel differential geometric approaches is presented and the accuracy of results is experimentally examined. Also, a matrix representation of tensor scale is derived facilitating several operations including tensor field smoothing to capture larger contextual knowledge. Finally, the applications of tensor scale in image filtering and n-linear interpolation are presented and the performance of their results is examined in comparison with respective state-of-art methods. Specifically, the performance of tensor scale based image filtering is compared with gradient and Weickert’s structure tensor based diffusive filtering algorithms. Also, the performance of tensor scale based n-linear interpolation is evaluated in comparison with standard n-linear and windowed-sinc interpolation methods. PMID:26236148
Tuncbag, Nurcan; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem
2011-08-11
Prediction of protein-protein interactions at the structural level on the proteome scale is important because it allows prediction of protein function, helps drug discovery and takes steps toward genome-wide structural systems biology. We provide a protocol (termed PRISM, protein interactions by structural matching) for large-scale prediction of protein-protein interactions and assembly of protein complex structures. The method consists of two components: rigid-body structural comparisons of target proteins to known template protein-protein interfaces and flexible refinement using a docking energy function. The PRISM rationale follows our observation that globally different protein structures can interact via similar architectural motifs. PRISM predicts binding residues by using structural similarity and evolutionary conservation of putative binding residue 'hot spots'. Ultimately, PRISM could help to construct cellular pathways and functional, proteome-scale annotation. PRISM is implemented in Python and runs in a UNIX environment. The program accepts Protein Data Bank-formatted protein structures and is available at http://prism.ccbb.ku.edu.tr/prism_protocol/.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.
2003-01-01
A 25-fps vertical drop test of a 1/5-scale model composite fuselage section was conducted to replicate a previous test of a full-scale fuselage section. The purpose of the test was to obtain experimental data characterizing the impact response of the 1/5-scale model fuselage section for comparison with the corresponding full-scale data. This comparison is performed to assess the scaling procedures and to determine if scaling effects are present. For the drop test, the 1/5-scale model fuselage section was configured in a similar manner as the full-scale section, with lead masses attached to the floor through simulated seat rails. Scaled acceleration and velocity responses are compared and a general assessment of structural damage is made. To further quantify the data correlation, comparisons of the average acceleration data are made as a function of floor location and longitudinal position. Also, the percentage differences in the velocity change (area under the acceleration curve) and the velocity change squared (proportional to kinetic energy) are compared as a function of floor location. Finally, correlation coefficients are calculated for corresponding 1/5- and full-scale data channels and these values are plotted versus floor location. From a scaling perspective, the differences between the 1/5- and full-scale tests are relatively small, indicating that appropriate scaling procedures were used in fabricating the test specimens and in conducting the experiments. The small differences in the scaled test data are attributed to minor scaling anomalies in mass, potential energy, and impact attitude.
Structural control of coalbed methane production in Alabama
Pashin, J.C.; Groshong, R.H.
1998-01-01
Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.
Artificial selection for structural color on butterfly wings and comparison with natural evolution.
Wasik, Bethany R; Liew, Seng Fatt; Lilien, David A; Dinwiddie, April J; Noh, Heeso; Cao, Hui; Monteiro, Antónia
2014-08-19
Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales' structural color via slight modifications to the scales' physical dimensions.
Dispersion in Fractures with Ramified Dissolution Patterns
NASA Astrophysics Data System (ADS)
Xu, Le; Marks, Benjy; Toussaint, Renaud; Flekkøy, Eirik G.; Måløy, Knut J.
2018-04-01
The injection of a reactive fluid into an open fracture may modify the fracture surface locally and create a ramified structure around the injection point. This structure will have a significant impact on the dispersion of the injected fluid due to increased permeability, which will introduce large velocity fluctuations into the fluid. Here, we have injected a fluorescent tracer fluid into a transparent artificial fracture with such a ramified structure. The transparency of the model makes it possible to follow the detailed dispersion of the tracer concentration. The experiments have been compared to two dimensional (2D) computer simulations which include both convective motion and molecular diffusion. A comparison was also performed between the dispersion from an initially ramified dissolution structure and the dispersion from an initially circular region. A significant difference was seen both at small and large length scales. At large length scales, the persistence of the anisotropy of the concentration distribution far from the ramified structure is discussed with reference to some theoretical considerations and comparison with simulations.
On the large scale structure of X-ray background sources
NASA Technical Reports Server (NTRS)
Bi, H. G.; Meszaros, A.; Meszaros, P.
1991-01-01
The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.
Yang, Li; Jia, Cun-Xian; Qin, Ping
2015-04-09
Depression is an important public health problem and is closely associated with suicidal behavior in the population. Although the Center for Epidemiologic Studies Depression Scale (CES-D) is widely used for assessment of depression, the psychometric characteristics of this scale have not been explored in studies of suicide attempters and local residents in rural areas. In this study, reliability and validity of CES-D were assessed in 409 suicide attempters and 409 comparison residents from rural China and through internal consistency analysis and confirmatory factor analysis (CFA). Cronbach's alpha values of the CES-D were 0.940 and 0.895 in, respectively, suicide attempters and comparison residents. CES-D scores were significantly correlated with the scores of Trait Anxiety Inventory (TAI) and Beck Hopelessness Scale (BHS) in both the suicide attempters and the comparison residents. Confirmatory factor analyses indicated that 3-factor structure (positive affect, interpersonal problems, depressive mood and somatic symptoms combined) with 14 items (excluding items 9, 10, 13, 15, 17, and 19) had the best fit in these two populations. The CES-D scale has satisfactory reliability and validity when used for assessing depression in suicide attempters and comparison residents in rural China.
Structural Representations in Knowledge Acquisition.
ERIC Educational Resources Information Center
Gonzalvo, Pilar; And Others
1994-01-01
Multidimensional scaling (MDS) and Pathfinder techniques for assessing changes in the structural representation of a knowledge domain were studied with relatedness ratings collected from 72 Spanish college students. Comparison of student and expert similarity measures indicate that MDS and graph theoretic approaches are valid techniques. (SLD)
Hoelzle, James B; Nelson, Nathaniel W; Smith, Clifford A
2011-03-01
Dimensional structures underlying the Wechsler Memory Scale-Fourth Edition (WMS-IV) and Wechsler Memory Scale-Third Edition (WMS-III) were compared to determine whether the revised measure has a more coherent and clinically relevant factor structure. Principal component analyses were conducted in normative samples reported in the respective technical manuals. Empirically supported procedures guided retention of dimensions. An invariant two-dimensional WMS-IV structure reflecting constructs of auditory learning/memory and visual attention/memory (C1 = .97; C2 = .96) is more theoretically coherent than the replicable, heterogeneous WMS-III dimension (C1 = .97). This research suggests that the WMS-IV may have greater utility in identifying lateralized memory dysfunction.
Comparison of Knowledge Structures with the Pathfinder Scaling Algorithm.
ERIC Educational Resources Information Center
McGaghie, William C.
The cognitive structure of 13 concepts in pulmonary physiology was explored among 112 first-year medical students and among 32 faculty members in three different expertise groups in a knowledge representation study. Purposes were to assess the degree of agreement among faculty members, map students' concept structures, and compare the similarity…
Pamies-Aubalat, Lidia; Quiles-Marcos, Yolanda; Núñez-Núñez, Rosa M
2013-12-01
This study examined the Dieting Peer Competitiveness Scale; it is an instrument for evaluating this social comparison in young people. This instrumental study has two aims: The objective of the first aim was to present preliminary psychometric data from the Spanish version of the Dieting Peer Competitiveness Scale, including statistical item analysis, research about this instrument's internal structure, and a reliability analysis, from a sample of 1067 secondary school adolescents. The second objective of the study corresponds to confirmatory factor analysis of the scale's internal structure, as well as analysis for evidence of validity from a sample of 1075 adolescents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, H.S.; Stone, C.M.; Krieg, R.D.
Several large scale in situ experiments in bedded salt formations are currently underway at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, USA. In these experiments, the thermal and creep responses of salt around several different underground room configurations are being measured. Data from the tests are to be compared to thermal and structural responses predicted in pretest reference calculations. The purpose of these comparisons is to evaluate computational models developed from laboratory data prior to fielding of the in situ experiments. In this paper, the computational models used in the pretest reference calculation for one of themore » large scale tests, The Overtest for Defense High Level Waste, are described; and the pretest computed thermal and structural responses are compared to early data from the experiment. The comparisons indicate that computed and measured temperatures for the test agree to within ten percent but that measured deformation rates are between two and three times greater than corresponsing computed rates. 10 figs., 3 tabs.« less
Scaling effects in the impact response of graphite-epoxy composite beams
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
1989-01-01
In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.
Artificial selection for structural color on butterfly wings and comparison with natural evolution
Wasik, Bethany R.; Liew, Seng Fatt; Lilien, David A.; Dinwiddie, April J.; Noh, Heeso; Cao, Hui; Monteiro, Antónia
2014-01-01
Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales’ structural color via slight modifications to the scales’ physical dimensions. PMID:25092295
Groups of galaxies in the Center for Astrophysics redshift survey
NASA Technical Reports Server (NTRS)
Ramella, Massimo; Geller, Margaret J.; Huchra, John P.
1989-01-01
By applying the Huchra and Geller (1982) objective group identification algorithm to the Center for Astrophysics' redshift survey, a catalog of 128 groups with three or more members is extracted, and 92 of these are used as a statistical sample. A comparison of the distribution of group centers with the distribution of all galaxies in the survey indicates qualitatively that groups trace the large-scale structure of the region. The physical properties of groups may be related to the details of large-scale structure, and it is concluded that differences among group catalogs may be due to the properties of large-scale structures and their location relative to the survey limits.
NASA Technical Reports Server (NTRS)
Keskinen, M. J.; Chaturvedi, P. K.; Ossakow, S. L.
1992-01-01
The 2D nonlinear evolution of the ionization-driven adiabatic auroral arc instability is studied. We find: (1) the adiabatic auroral arc instability can fully develop on time scales of tens to hundreds of seconds and on spatial scales of tens to hundreds of kilometers; (2) the evolution of this instability leads to nonlinear 'hook-shaped' conductivity structures: (3) this instability can lead to parallel current filamentation over a wide range of scale sizes; and (4) the k-spectra of the density, electric field, and parallel current develop into inverse power laws in agreement with satellite observations. Comparison with mesoscale auroral phenomenology and current filamentation structures is made.
Models for small-scale structure on cosmic strings. II. Scaling and its stability
NASA Astrophysics Data System (ADS)
Vieira, J. P. P.; Martins, C. J. A. P.; Shellard, E. P. S.
2016-11-01
We make use of the formalism described in a previous paper [Martins et al., Phys. Rev. D 90, 043518 (2014)] to address general features of wiggly cosmic string evolution. In particular, we highlight the important role played by poorly understood energy loss mechanisms and propose a simple Ansatz which tackles this problem in the context of an extended velocity-dependent one-scale model. We find a general procedure to determine all the scaling solutions admitted by a specific string model and study their stability, enabling a detailed comparison with future numerical simulations. A simpler comparison with previous Goto-Nambu simulations supports earlier evidence that scaling is easier to achieve in the matter era than in the radiation era. In addition, we also find that the requirement that a scaling regime be stable seems to notably constrain the allowed range of energy loss parameters.
Pouilly, Marc; Point, David; Sondag, Francis; Henry, Manuel; Santos, Roberto V
2014-08-19
Calcified structures such as otoliths and scales grow continuously throughout the lifetime of fishes. The geochemical variations present in these biogenic structures are particularly relevant for studying fish migration and origin. In order to investigate the potential of the (87)Sr/(86)Sr ratio as a precise biogeochemical tag in Amazonian fishes, we compared this ratio between the water and fish otoliths and scales of two commercial fish species, Hoplias malabaricus and Schizodon fasciatus, from three major drainage basins of the Amazon: the Madeira, Solimões, and Tapajós rivers, displaying contrasted (87)Sr/(86)Sr ratios. A comparison of the (87)Sr/(86)Sr ratios between the otoliths and scales of the same individuals revealed similar values and were very close to the Sr isotopic composition of the local river where they were captured. This indicates, first, the absence of Sr isotopic fractionation during biological uptake and incorporation into calcified structures and, second, that scales may represent an interesting nonlethal alternative for (87)Sr/(86)Sr ratio measurements in comparison to otoliths. Considering the wide range of (87)Sr/(86)Sr variations that exist across Amazonian rivers, we used variations of (87)Sr/(86)Sr to discriminate fish origin at the basin level, as well as at the sub-basin level between the river and savannah lakes of the Beni River (Madeira basin).
Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric cond...
Cloud Computing for Protein-Ligand Binding Site Comparison
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824
Cloud computing for protein-ligand binding site comparison.
Hung, Che-Lun; Hua, Guan-Jie
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.
Liao, Jun; Jackson, Todd; Chen, Hong
2014-09-01
We evaluated the structure and validity of the Upward Appearance Comparison Scale (UPACS) and Downward Appearance Comparison Scale (DACS) (O'Brien et al., 2009) in Chinese samples. In Study 1, principal component analysis on an initial sample (427 women, 123 men) and confirmatory factor analysis on another sample (447 women, 121 men) found that a 15-item, two component model had the best overall fit. Derived components had moderate correlations with most conceptually related measures and low correlations with less conceptually related indices. Study 2 participants (310 women, 201 men) completed the UPACS and DACS as well as measures of disordered eating, fatness concern, and negative affect; they were re-assessed one year later. Baseline UPACS scores predicted changes in disordered eating for women and fatness concerns for men, independent of initial disturbances, but DACS responses were not related to outcomes. Findings highlighted the potential utility of derived UPACS and DACS within a Chinese context. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.
Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F
2012-02-14
Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.
Michael J. Papaik; Andrew Fall; Brian Sturtevant; Daniel Kneeshaw; Christian Messier; Marie-Josee Fortin; Neal Simon
2010-01-01
Forest management practices conducted primarily at the stand scale result in simplified forests with regeneration problems and low structural and biological diversity. Landscape models have been used to help design management strategies to address these problems. However, there remains a great deal of uncertainty that the actual management practices result in the...
Comparison of large-scale structures and velocities in the local universe
NASA Technical Reports Server (NTRS)
Yahil, Amos
1994-01-01
Comparison of the large-scale density and velocity fields in the local universe shows detailed agreement, strengthening the standard paradigm of the gravitational origin of these structures. Quantitative analysis can determine the cosmological density parameter, Omega, and biasing factor, b; there is virtually no sensitivity in any local analyses to the cosmologial constant, lambda. Comparison of the dipole anisotropy of the cosmic microwave background with the acceleration due to the Infrared Astronomy Satellite (IRAS) galaxies puts the linear growth factor in the range beta approximately equals Omega (exp 0.6)/b = 0.6(+0.7/-0.3) (95% confidence). A direct comparison of the density and velocity fields of nearby galaxies gives beta = 1.3 (+0.7/-0.6), and from nonlinear analysis the weaker limit (Omega greater than 0.45 for b greater than 0.5 (again 95% confidence). A tighter limit (Omega greater than 0.3 (4-6 sigma)), is obtained by a reconstruction of the probability distribution function of the initial fluctuations from which the structures observed today arose. The last two methods depend critically on the smooth velocity field determined from the observed velocities of nearby galaxies by the POTENT method. A new analysis of these velocities, with more than three times the data used to obtain the above quoted results, is now underway and promises to tighten the uncertainties considerably, as well as reduce systematic bias.
NASA Astrophysics Data System (ADS)
Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.
2008-12-01
The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail Dmitrievic; Geogdzhayev, Igor V.; Tsigaridis, Konstantinos; Marshak, Alexander; Levy, Robert; Cairns, Brian
2016-01-01
A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process, that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach AOT fields have lognormal PDFs and structure functions having the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale-invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a month-long global MODIS AOT dataset (over ocean) with 10 km resolution. It was used to compute AOT statistics for sample cells forming a grid with 5deg spacing. The observed shapes of the structure functions indicated that in a large number of cases the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.
The development and validation of the Physical Appearance Comparison Scale-3 (PACS-3).
Schaefer, Lauren M; Thompson, J Kevin
2018-05-21
Appearance comparison processes are implicated in the development of body-image disturbance and disordered eating. The Physical Appearance Comparison Scale-Revised (PACS-R) assesses the simple frequency of appearance comparisons; however, research has suggested that other aspects of appearance comparisons (e.g., comparison direction) may moderate the association between comparisons and their negative outcomes. In the current study, the PACS-R was revised to examine aspects of comparisons with relevance to body-image and eating outcomes. Specifically, the measure was modified to examine (a) dimensions of physical appearance relevant to men and women (i.e., weight-shape, muscularity, and overall physical appearance), (b) comparisons with proximal and distal targets, (c) upward versus downward comparisons, and (d) the acute emotional impact of comparisons. The newly revised measure, labeled the PACS-3, along with existing measures of appearance comparison, body satisfaction, eating pathology, and self-esteem, was completed by 1,533 college men and women. Exploratory and confirmatory factor analyses were conducted to examine the factor structure of the PACS-3. In addition, the reliability, convergent validity, and incremental validity of the PACS-3 scores were examined. The final PACS-3 comprises 27 items and 9 subscales: Proximal: Frequency, Distal: Frequency, Muscular: Frequency, Proximal: Direction, Distal: Direction, Muscular: Direction, Proximal: Effect, Distal: Effect, and Muscular: Effect. the PACS-3 subscale scores demonstrated good reliability and convergent validity. Moreover, the PACS-3 subscales greatly improved the prediction of body satisfaction and disordered eating relative to existing measures of appearance comparison. Overall, the PACS-3 improves upon existing scales and offers a comprehensive assessment of appearance-comparison processes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.
2017-12-01
The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.
Holm, Liisa; Laakso, Laura M
2016-07-08
The Dali server (http://ekhidna2.biocenter.helsinki.fi/dali) is a network service for comparing protein structures in 3D. In favourable cases, comparing 3D structures may reveal biologically interesting similarities that are not detectable by comparing sequences. The Dali server has been running in various places for over 20 years and is used routinely by crystallographers on newly solved structures. The latest update of the server provides enhanced analytics for the study of sequence and structure conservation. The server performs three types of structure comparisons: (i) Protein Data Bank (PDB) search compares one query structure against those in the PDB and returns a list of similar structures; (ii) pairwise comparison compares one query structure against a list of structures specified by the user; and (iii) all against all structure comparison returns a structural similarity matrix, a dendrogram and a multidimensional scaling projection of a set of structures specified by the user. Structural superimpositions are visualized using the Java-free WebGL viewer PV. The structural alignment view is enhanced by sequence similarity searches against Uniprot. The combined structure-sequence alignment information is compressed to a stack of aligned sequence logos. In the stack, each structure is structurally aligned to the query protein and represented by a sequence logo. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Multi-scale, Hierarchically Nested Young Stellar Structures in LEGUS Galaxies
NASA Astrophysics Data System (ADS)
Thilker, David A.; LEGUS Team
2017-01-01
The study of star formation in galaxies has predominantly been limited to either young stellar clusters and HII regions, or much larger kpc-scale morphological features such as spiral arms. The HST Legacy ExtraGalactic UV Survey (LEGUS) provides a rare opportunity to link these scales in a diverse sample of nearby galaxies and obtain a more comprehensive understanding of their co-evolution for comparison against model predictions. We have utilized LEGUS stellar photometry to identify young, resolved stellar populations belonging to several age bins and then defined nested hierarchical structures as traced by these subsamples of stars. Analagous hierarchical structures were also defined using LEGUS catalogs of unresolved young stellar clusters. We will present our emerging results concerning the physical properties (e.g. area, star counts, stellar mass, star formation rate, ISM characteristics), occupancy statistics (e.g. clusters per substructure versus age and scale, parent/child demographics) and relation to overall galaxy morphology/mass for these building blocks of hierarchical star-forming structure.
Mapping the universe in three dimensions
Haynes, Martha P.
1996-01-01
The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble’s law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin. PMID:11607714
Mapping the universe in three dimensions.
Haynes, M P
1996-12-10
The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble's law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin.
Michielsen, K; De Raedt, H; Stavenga, D G
2010-05-06
We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the gyroid cuticular structure grown in the domains of different orientation. We also show that this three-dimensional structure, operating as a biophotonic crystal, gives rise to various polarization effects. We briefly discuss the possible biological utility of the green coloration and polarization effects.
NASA Astrophysics Data System (ADS)
Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua
2018-03-01
Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.
Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures
Manolakos, Elias S.
2015-01-01
Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub. PMID:26605332
Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures.
Sharma, Anuj; Manolakos, Elias S
2015-01-01
Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub.
Richard M. DeGraaf; Jay B. Hestbeck; Mariko Yamasaki
1998-01-01
Assessment of faunal distribution in relation to landscape features is becoming increasingly popular. Technological advances in remote sensing have encouraged regional analyses of the distributions of terrestrial vertebrates. Comparisons of the strength of association of habitat characteristics at various scales of measurement of habitat structure are rare. We compared...
Validity Generalization of the WISC-R Factor Structure with 10 1/2-Year-Old Children.
ERIC Educational Resources Information Center
Shiek, David A.; Miller, John E.
1978-01-01
Investigated robustness of the Wechsler Intelligence Scale for Children-Revised (WISC-R) factor structure. Comparisons of the loadings obtained with generalization sample and 10 1/2-year-old national standardization sample suggest high degree of similarity in composition, magnitude, and pattern. Findings highly support robustness of WISC-R's…
2015-02-01
bicyclo- HMX (22) ..................................................................................29 4.4.2 2,6,7-Trinitro-2,6,7-triaza[2.2.2]octane... HMX , and CL-20 ................................................................2 Fig. 2 Molecular structures of 1, 2, and 3...4 Fig. 4 Molecular structures of the precursor (HMTA) for the industrial-scale production of RDX and HMX
Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R
2012-01-01
In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.
Vitacco, Michael J; Rogers, Richard; Gabel, Jason; Munizza, Janice
2007-06-01
The assessment of malingering is a fundamental component of forensic evaluations that should be considered with each referral. In systematizing the evaluation of malingering, one option is the standardized administration of screens as an initial step. The current study assessed the effectiveness of three common screening measures: the Miller Forensic Assessment of Symptoms Test (M-FAST; Miller, 2001), the Structured Inventory of Malingered Symptomatology (SIMS; Widows & Smith, 2004), and the Evaluation of Competency to Stand Trial-Revised Atypical Presentation Scale (ECST-R ATP; Rogers, Tillbrook, & Sewell, 2004). Using the Structured Interview of Reported Symptoms (SIRS) as the external criterion, 100 patients involved in competency to stand trial evaluations were categorized as either probable malingerers (n=21) or nonmalingerers (n=79). Each malingering scale produced robust effect sizes in this known-groups comparison. Results are discussed in relation to the comprehensive assessment of malingering within a forensic context.
On the morphology of the scattering medium as seen by MST/ST radars
NASA Technical Reports Server (NTRS)
Gage, K. S.
1983-01-01
Much is learned about the morphology of the small scale structures of the atmosphere from analysis of echoes observed by MST radars. The use of physical models enables a synthesis of diverse observations. Each model contains an implicit assumption about the nature of the irregularity structure of the medium. A comparison is made between the irregularity structure implicit in several models and what is known about the structure of the medium.
Earthquake simulator tests and associated study of an 1/6-scale nine-story RC model
NASA Astrophysics Data System (ADS)
Sun, Jingjiang; Wang, Tao; Qi, Hu
2007-09-01
Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the test data, a relationship between maximum inter-story drift and damage state is established. Equations of variation of structural characteristics (natural frequency and equivalent stiffness) with overall drifts are derived by data fitting, which can be used to estimate structural damage state if structural characteristics can be measured. A comparison of the analytical and experimental results show that both the commonly used equivalent beam and fiber element models can simulate the nonlinear seismic response of structures very well. Finally, conclusions associated with seismic design and damage evaluation of RC structures are presented.
Finding modules and hierarchy in weighted financial network using transfer entropy
NASA Astrophysics Data System (ADS)
Yook, Soon-Hyung; Chae, Huiseung; Kim, Jinho; Kim, Yup
2016-04-01
We study the modular structure of financial network based on the transfer entropy (TE). From the comparison with the obtained modular structure using the cross-correlation (CC), we find that TE and CC both provide well organized modular structure and the hierarchical relationship between each industrial group when the time scale of the measurement is less than one month. However, when the time scale of the measurement becomes larger than one month, we find that the modular structure from CC cannot correctly reflect the known industrial classification and their hierarchy. In addition the measured maximum modularity, Qmax, for TE is always larger than that for CC, which indicates that TE is a better weight measure than CC for the system with asymmetric relationship.
FFMPD scales: Comparisons with the FFM, PID-5, and CAT-PD-SF.
Crego, Cristina; Oltmanns, Joshua R; Widiger, Thomas A
2018-01-01
A series of 8 Five Factor Model Personality Disorder (FFMPD) scales have been developed to assess, from the perspective of the Five Factor Model (FFM), the maladaptive traits included within DSM-5 Section II personality disorders. An extensive body of FFMPD research has accumulated. However, for the most part, each study has been confined to the scales within 1 particular FFMPD Inventory. The current study considered 36 FFMPD scales, at least 1 from each of the 8 FFMPD inventories, including 8 scales considered to be from neuroticism, 8 from extraversion, 5 from openness, 8 from agreeableness, and 7 from conscientiousness. Their convergent, discriminant, and structural relationship with the FFM was considered, and compared with the structural relationship with the FFM obtained by the Personality Inventory for DSM-5 (PID-5) and the Computerized Adaptive Test-Personality Disorder-Static Form (CAT-PD-SF). Support for an FFM structure was obtained (albeit with agreeableness defining 1 factor and antagonism a separate factor). Similarities and differences across the FFMPD, PID-5, and CAT-PD-SF scales were highlighted. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Kalantarians, N.; Keppel, C.; Christy, M. E.
2017-09-12
A comparison study of world data for the structure function F 2 for Iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is < 0.15. This observationmore » is indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are here presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalantarians, N.; Keppel, C.; Christy, M. E.
A comparison study of world data for the structure function F 2 for Iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is < 0.15. This observationmore » is indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are here presented.« less
NASA Technical Reports Server (NTRS)
Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.
1983-01-01
The full scale ground test, ground vibration test, and flight tests conducted to demonstrate a composite structure stabilizer for the Boeing 737 aircraft and obtain FAA certification are described. Detail tools, assembly tools, and overall production are discussed. Cost analyses aspects covered include production costs, composite material usage factors, and cost comparisons.
NASA Astrophysics Data System (ADS)
Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong
2018-04-01
Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.
Telescoping Mechanics: A New Paradigm for Composite Behavior Simulation
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Gotsis, P. K.; Mital. S. K.
2004-01-01
This report reviews the application of telescoping mechanics to composites using recursive laminate theory. The elemental scale is the fiber-matrix slice, the behavior of which propagates to laminate. The results from using applications for typical, hybrid, and smart composites and composite-enhanced reinforced concrete structures illustrate the versatility and generality of telescoping scale mechanics. Comparisons with approximate, single-cell, and two- and three-dimensional finite-element methods demonstrate the accuracy and computational effectiveness of telescoping scale mechanics for predicting complex composite behavior.
De Novo Protein Structure Prediction
NASA Astrophysics Data System (ADS)
Hung, Ling-Hong; Ngan, Shing-Chung; Samudrala, Ram
An unparalleled amount of sequence data is being made available from large-scale genome sequencing efforts. The data provide a shortcut to the determination of the function of a gene of interest, as long as there is an existing sequenced gene with similar sequence and of known function. This has spurred structural genomic initiatives with the goal of determining as many protein folds as possible (Brenner and Levitt, 2000; Burley, 2000; Brenner, 2001; Heinemann et al., 2001). The purpose of this is twofold: First, the structure of a gene product can often lead to direct inference of its function. Second, since the function of a protein is dependent on its structure, direct comparison of the structures of gene products can be more sensitive than the comparison of sequences of genes for detecting homology. Presently, structural determination by crystallography and NMR techniques is still slow and expensive in terms of manpower and resources, despite attempts to automate the processes. Computer structure prediction algorithms, while not providing the accuracy of the traditional techniques, are extremely quick and inexpensive and can provide useful low-resolution data for structure comparisons (Bonneau and Baker, 2001). Given the immense number of structures which the structural genomic projects are attempting to solve, there would be a considerable gain even if the computer structure prediction approach were applicable to a subset of proteins.
Multi-thread parallel algorithm for reconstructing 3D large-scale porous structures
NASA Astrophysics Data System (ADS)
Ju, Yang; Huang, Yaohui; Zheng, Jiangtao; Qian, Xu; Xie, Heping; Zhao, Xi
2017-04-01
Geomaterials inherently contain many discontinuous, multi-scale, geometrically irregular pores, forming a complex porous structure that governs their mechanical and transport properties. The development of an efficient reconstruction method for representing porous structures can significantly contribute toward providing a better understanding of the governing effects of porous structures on the properties of porous materials. In order to improve the efficiency of reconstructing large-scale porous structures, a multi-thread parallel scheme was incorporated into the simulated annealing reconstruction method. In the method, four correlation functions, which include the two-point probability function, the linear-path functions for the pore phase and the solid phase, and the fractal system function for the solid phase, were employed for better reproduction of the complex well-connected porous structures. In addition, a random sphere packing method and a self-developed pre-conditioning method were incorporated to cast the initial reconstructed model and select independent interchanging pairs for parallel multi-thread calculation, respectively. The accuracy of the proposed algorithm was evaluated by examining the similarity between the reconstructed structure and a prototype in terms of their geometrical, topological, and mechanical properties. Comparisons of the reconstruction efficiency of porous models with various scales indicated that the parallel multi-thread scheme significantly shortened the execution time for reconstruction of a large-scale well-connected porous model compared to a sequential single-thread procedure.
A Human Systems Integration Approach to Energy Efficiency in Ground Transportation
2015-12-01
Granite Construction Organizational Structure .........................................53 Figure 7. A Comparison of USMC Structure to Granite Construction...Caterpillar Corporation and the implementation and use of their telematics systems within a company called Granite Construction. Granite Construction...profit over 250 million dollars annually. In addition, similar to the USMC, Granite Construction handles both large and small scale projects in a
Lanham, Brendan S; Vergés, Adriana; Hedge, Luke H; Johnston, Emma L; Poore, Alistair G B
2018-04-01
Coastal urbanization has led to large-scale transformation of estuaries, with artificial structures now commonplace. Boat moorings are known to reduce seagrass cover, but little is known about their effect on fish communities. We used underwater video to quantify abundance, diversity, composition and feeding behaviour of fish assemblages on two scales: with increasing distance from moorings on fine scales, and among locations where moorings were present or absent. Fish were less abundant in close proximity to boat moorings, and the species composition varied on fine scales, leading to lower predation pressure near moorings. There was no relationship at the location with seagrass. On larger scales, we detected no differences in abundance or community composition among locations where moorings were present or absent. These findings show a clear impact of moorings on fish and highlight the importance of fine-scale assessments over location-scale comparisons in the detection of the effects of artificial structures. Copyright © 2018 Elsevier Ltd. All rights reserved.
A comparison of methods for evaluating structure during ship collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, D.J.; Daidola, J.C.
1996-10-01
A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the {open_quotes}Tanker Structural Analysis for Minor Collisions{close_quotes} (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration ismore » given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs.« less
Michielsen, K.; De Raedt, H.; Stavenga, D. G.
2010-01-01
We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the gyroid cuticular structure grown in the domains of different orientation. We also show that this three-dimensional structure, operating as a biophotonic crystal, gives rise to various polarization effects. We briefly discuss the possible biological utility of the green coloration and polarization effects. PMID:19828506
NASA Technical Reports Server (NTRS)
Dittmer, P. H.; Scherrer, P. H.; Wilcox, J. M.
1978-01-01
The large-scale solar velocity field has been measured over an aperture of radius 0.8 solar radii on 121 days between April and September, 1976. Measurements are made in the line Fe I 5123.730 A, employing a velocity subtraction technique similar to that of Severny et al. (1976). Comparisons of the amplitude and frequency of the five-minute resonant oscillation with the geomagnetic C9 index and magnetic sector boundaries show no evidence of any relationship between the oscillations and coronal holes or sector structure.
Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison
NASA Astrophysics Data System (ADS)
Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.
2016-02-01
Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.
Structure of wind-shear turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.; Laituri, T. R.
1989-01-01
The statistical characteristics of wind shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of turbulence scales in wind shear is addressed from the perspective of power spectral density.
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena
2017-10-01
Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.
Musa, Ahmad S
2016-03-01
This study reported the differences in factor structure of the Spiritual Well-Being Scale (SWBS) among Jordanian Arab and Malaysian Muslim participants and further examined its validity and reliability. A convenience sample of 553 Jordanian Arab and 183 Malaysian Malay Muslim university students was recruited from governmental universities in northern Jordan. The findings of this study revealed that this scale consists of two factors for the Jordanian Arab group, representing the "Religious Well-Being" and the "Existential Well-Being" subscales, and consists of three factors for the Malaysian group, representing the "Affiliation/Meaning and Purpose," "Positive Existential Well-Being/God Caring and Love," and "Alienation/Despair" subscales. In conclusion, the factor structure of the SWBS for both groups in this study was psychometrically sound with evidence of acceptable to good validity and reliability. Furthermore, this study supported the multidimensional nature of the SWBS and the earlier notion that ethnicity shapes responses to this scale. © The Author(s) 2014.
Validation of the Chinese expanded Euthanasia Attitude Scale.
Chong, Alice Ming-Lin; Fok, Shiu-Yeu
2013-01-01
This article reports the validation of the Chinese version of an expanded 31-item Euthanasia Attitude Scale. A 4-stage validation process included a pilot survey of 119 college students and a randomized household survey with 618 adults in Hong Kong. Confirmatory factor analysis confirmed a 4-factor structure of the scale, which can therefore be used to examine attitudes toward general, active, passive, and non-voluntary euthanasia. The scale considers the role effect in decision-making about euthanasia requests and facilitates cross-cultural comparison of attitudes toward euthanasia. The new Chinese scale is more robust than its Western predecessors conceptually and measurement-wise.
The Tempe volcanic province of Mars and comparisons with the Snake River Plains of Idaho
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1981-01-01
The Tempe volcanic region of Mars, a relatively low plain of probable basaltic flood lava affinity, is shown to be comparable in many respects to features of the Snake River Plains of Idaho, including both scale and type of features observed. Superimposed upon the Tempe plain are a variety of features that appear structurally controlled, along an orientation of N60 deg E; comprising low shields, irregular hills that may be silicic domes, and possible composite cones. The Tempe/Snake River match is held to be the first in which direct comparison can be made between Martian and terrestrial geologic-geomorphic features without encountering problems of scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Khee-Gan; Hennawi, Joseph F.; Eilers, Anna-Christina
2014-11-01
We present the first observations of foreground Lyα forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z ∼ 2.3-2.8 within a 5' × 14' region of the COSMOS field. The transverse sightline separation is ∼2 h {sup –1} Mpc comoving, allowing us to create a tomographic reconstruction of the three-dimensional (3D) Lyα forest absorption field over the redshift range 2.20 ≤ z ≤ 2.45. The resulting map covers 6 h {sup –1} Mpc × 14 h {sup –1} Mpc in the transverse plane and 230 h {sup –1} Mpc along the line of sight with a spatialmore » resolution of ≈3.5 h {sup –1} Mpc, and is the first high-fidelity map of a large-scale structure on ∼Mpc scales at z > 2. Our map reveals significant structures with ≳ 10 h {sup –1} Mpc extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume, enabling a direct comparison with our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establish the feasibility of the CLAMATO survey, which aims to obtain Lyα forest spectra for ∼1000 SFGs over ∼1 deg{sup 2} of the COSMOS field, in order to map out the intergalactic medium large-scale structure at (z) ∼ 2.3 over a large volume (100 h {sup –1} Mpc){sup 3}.« less
Structure of wind-shear turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.; Laituri, T. R.
1988-01-01
The statistical characteristics of wind-shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of how turbulence scales in a wind shear is addressed from the perspective of power spectral density.
Quantum probability, choice in large worlds, and the statistical structure of reality.
Ross, Don; Ladyman, James
2013-06-01
Classical probability models of incentive response are inadequate in "large worlds," where the dimensions of relative risk and the dimensions of similarity in outcome comparisons typically differ. Quantum probability models for choice in large worlds may be motivated pragmatically - there is no third theory - or metaphysically: statistical processing in the brain adapts to the true scale-relative structure of the universe.
Spanish adaptation of the internal functioning of the Work Teams Scale (QFI-22).
Ficapal-Cusí, Pilar; Boada-Grau, Joan; Torrent-Sellens, Joan; Vigil-Colet, Andreu
2014-05-01
The aim of this article is to develop the Spanish adaptation of the internal functioning of Work Teams Scale (QFI-22). The scale was adapted from the French version, and was applied to a sample of 1,055 employees working for firms operating in Spain. The article analyses the internal structure (exploratory and confirmatory factor analysis) and internal consistency, and provides convergent validity evidence of the scale. The QFI-22 scale shows the same internal structure as the original. Factor analysis confirmed the existence of two factors: interpersonal support and team work management, with good internal consistency coefficients (α1 = .93, α2 = .92). Regarding validity evidence, the QFI-22 scale has significant correlations with other correlates and alternative scales used for comparison purposes. The two factors correlated positively with team vision, participation safety, task orientation and support for innovation (Team Climate Inventory, TCI scale), with progressive culture (Organisational Culture, X-Y scale), and with creating change, customer focus and organisational learning (Denison Organizational Culture Survey, DOCS scale). In contrast, the two factors correlated negatively with traditional culture (X-Y scale). The QFI-22 scale is a useful instrument for assessing the internal functioning of work teams.
Structure Function Scaling Exponent and Intermittency in the Wake of a Wind Turbine Array
NASA Astrophysics Data System (ADS)
Aseyev, Aleksandr; Ali, Naseem; Cal, Raul
2015-11-01
Hot-wire measurements obtained in a 3 × 3 wind turbine array boundary layer are utilized to analyze high order structure functions, intermittency effects as well as the probability density functions of velocity increments at different scales within the energy cascade. The intermittency exponent is found to be greater in the far wake region in comparison to the near wake. At hub height, the intermittency exponent is found to be null. ESS scaling exponents of the second, fourth, and fifth order structure functions remain relatively constant as a function of height in the far-wake whereas in the near-wake these highly affected by the passage of the rotor thus showing a dependence on physical location. When comparing with proposed models, these generally over predict the structure functions in the far wake region. The pdf distributions in the far wake region display wider tails compared to the near wake region, and constant skewness hypothesis based on the local isotropy is verified in the wake. CBET-1034581.
Kuijpers, Rowella C. W. M.; Otten, Roy; Vermulst, Ad A.; Bitfoi, Adina; Goelitz, Dietmar; Koç, Ceren; Mihova, Zlatka; Pez, Ondine; Carta, Mauro; Keyes, Katherine; Lesinskiene, Sigita; Engels, Rutger C. M. E.; Kovess, Viviane
2015-01-01
Large-scale international surveys are important to globally evaluate, monitor, and promote children's mental health. However, use of young children's self-reports in these studies is still controversial. The Dominic Interactive, a computerized DSM-IV–based child mental health self-report questionnaire, has unique characteristics that may make it preeminently appropriate for usage in cross-country comparisons. This study aimed to determine scale score reliabilities (omega) of the Dominic Interactive in a sample of 8,135 primary school children, ages 6–11 years old, in 7 European countries, to confirm the proposed 7-scale factor structure, and to test for measurement invariance of scale and item scores across countries. Omega reliability values for scale scores were good to high in every country, and the factor structure was confirmed for all countries. A thorough examination of measurement invariance provided evidence for cross-country test score comparability of 5 of the 7 scales and partial scale score invariance of 2 anxiety scales. Possible explanations for this partial invariance include cross-country differences in conceptualizing items and defining what is socially and culturally acceptable anxiety. The convincing evidence for validity of score interpretation makes the Dominic Interactive an indispensable tool for cross-country screening purposes. PMID:26237209
Interactions of multi-scale heterogeneity in the lithosphere: Australia
NASA Astrophysics Data System (ADS)
Kennett, B. L. N.; Yoshizawa, K.; Furumura, T.
2017-10-01
Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main constraints on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer-scale structures comes through body wave studies, including detailed seismic tomography and P-wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features fine-scale variations are subdued. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P-wave reflectivity. P reflections in the 0.5-3.0 Hz band in the uppermost mantle suggest variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. Interference of waves reflected or converted at sequences of such modest variations in physical properties produce relatively simple behaviour for lower frequencies, which can suggest simpler structures than are actually present. Vertical changes in the character of fine-scale heterogeneity can produce apparent discontinuities. In Central Australia a 'mid-lithospheric discontinuity' can be tracked via changes in frequency content of station reflectivity, with links to the broad-scale pattern of wavespeed gradients and, in particular, the gradients of radial anisotropy. Comparisons with xenolith results from southeastern Australia indicate a strong tie between geochemical stratification and P-wave reflectivity.
(abstract) A VLBI Test of Tropospheric Delay Calibration with WVRs
NASA Technical Reports Server (NTRS)
Linfield, R. P.; Teitelbaum, L. P.; Keihm, S. J.; Resch, G. M.; Mahoney, M. J.; Treuhaft, R. N.
1994-01-01
Dual frequency (S/X band) very long baseline interferometry (VLBI) observations were used to test troposphere calibration by water vapor radiometers (WVRs). Comparison of the VLBI and WVR measurements show a statistical agreement (specifically, their structure functions agree) on time scales less than 700 seconds. On longer time scales, VLBI instrumental errors become important. The improvement in VLBI residual delays from WVR calibration was consistent with the measured level of tropospheric fluctuations.
Is central dogma a global property of cellular information flow?
Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar
2012-01-01
The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information. PMID:23189060
Is central dogma a global property of cellular information flow?
Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar
2012-01-01
The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.
Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.
2015-01-01
Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502
Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S
2015-01-01
Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.
Mariner 9 photographs of small-scale volcanic structures on Mars
NASA Technical Reports Server (NTRS)
Greeley, R.
1972-01-01
Surface features on the flanks of Martian shield volcanoes photographed by Mariner 9 are identified as lava flow channels, rift zones, and partly collapsed lava tubes by comparisons with similar structures on the flanks of Mauna Loa shield volcano, Hawaii. From these identifications, the composition of the Martian lava flows is interpreted to be basaltic, with viscosities ranging from those of fluid pahoehoe to more viscous aa.
Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer
NASA Astrophysics Data System (ADS)
Schnieders, Jana; Garbe, Christoph
2014-05-01
The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale processes on interfacial transport and relate it to gas transfer. References [1] T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. Christensen, and E. S. Saltzman. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. , 13:11073-11087, 2013. [2] J Schnieders, C. S. Garbe, W.L. Peirson, and C. J. Zappa. Analyzing the footprints of near surface aqueous turbulence - an image processing based approach. Journal of Geophysical Research-Oceans, 2013.
Gomez, Rapson
2009-03-01
This study used the mean and covariance structures analysis approach to examine the equality or invariance of ratings of the 18 ADHD symptoms. 783 Australian and 928 Malaysian parents provided ratings for an ADHD rating scale. Invariance was tested across these groups (Comparison 1), and North European Australian (n = 623) and Malay Malaysian (n = 571, Comparison 2) groups. Results indicate support for form and item factor loading invariance; more than half the total number of symptoms showed item intercept invariance, and 14 symptoms showed invariance for error variances. There was invariance for both the factor variances and the covariance, and the latent mean scores for hyperactivity/impulsivity. For inattention latent scores, the Malaysian (Comparison 1) and Malay Malaysian (Comparison 2) groups had higher scores. These results indicate fairly good support for invariance for parent ratings of the ADHD symptoms across the groups compared.
Comparison Analysis among Large Amount of SNS Sites
NASA Astrophysics Data System (ADS)
Toriumi, Fujio; Yamamoto, Hitoshi; Suwa, Hirohiko; Okada, Isamu; Izumi, Kiyoshi; Hashimoto, Yasuhiro
In recent years, application of Social Networking Services (SNS) and Blogs are growing as new communication tools on the Internet. Several large-scale SNS sites are prospering; meanwhile, many sites with relatively small scale are offering services. Such small-scale SNSs realize small-group isolated type of communication while neither mixi nor MySpace can do that. However, the studies on SNS are almost about particular large-scale SNSs and cannot analyze whether their results apply for general features or for special characteristics on the SNSs. From the point of view of comparison analysis on SNS, comparison with just several types of those cannot reach a statistically significant level. We analyze many SNS sites with the aim of classifying them by using some approaches. Our paper classifies 50,000 sites for small-scale SNSs and gives their features from the points of network structure, patterns of communication, and growth rate of SNS. The result of analysis for network structure shows that many SNS sites have small-world attribute with short path lengths and high coefficients of their cluster. Distribution of degrees of the SNS sites is close to power law. This result indicates the small-scale SNS sites raise the percentage of users with many friends than mixi. According to the analysis of their coefficients of assortativity, those SNS sites have negative values of assortativity, and that means users with high degree tend to connect users with small degree. Next, we analyze the patterns of user communication. A friend network of SNS is explicit while users' communication behaviors are defined as an implicit network. What kind of relationships do these networks have? To address this question, we obtain some characteristics of users' communication structure and activation patterns of users on the SNS sites. By using new indexes, friend aggregation rate and friend coverage rate, we show that SNS sites with high value of friend coverage rate activate diary postings and their comments. Besides, they become activated when hub users with high degree do not behave actively on the sites with high value of friend aggregation rate and high value of friend coverage rate. On the other hand, activation emerges when hub users behave actively on the sites with low value of friend aggregation rate and high value of friend coverage rate. Finally, we observe SNS sites which are increasing the number of users considerably, from the viewpoint of network structure, and extract characteristics of high growth SNS sites. As a result of discrimination on the basis of the decision tree analysis, we can recognize the high growth SNS sites with a high degree of accuracy. Besides, this approach suggests mixi and the other small-scale SNS sites have different character trait.
NASA Astrophysics Data System (ADS)
Wroblewski, D. E.; Werne, J.; Cote, O.; Hacker, J.; Dobosy, R.
2010-12-01
High-resolution turbulence measurements of temperature and three components of velocity were acquired from the GROB 520T EGRETT high altitude research aircraft equipped with three NOAA/FRD built BAT probes. The research campaign spanned eight years with the goal of characterizing clear air turbulence (CAT) and optical turbulence (OpT) in the upper troposphere and lower stratosphere (UTLS), focusing on scales from 1 meter to 1 km, a range that encompasses three-dimensional phenomena critical to CAT and OpT, but for which a dearth of experimental data exists. This talk will cover structure function analysis from 129 separate level flight segments representing 41 hours of flight time and 12,600 km of flight distance. The scaling behavior for sub 100- meter scales will be discussed, with an emphasis on Kelvin-Helmholtz (KH) shear layer development as a phenomenological model for this scale range. Comparisons with micro-scale, direct numerical simulations of KH billows will be presented.
Probing Mantle Heterogeneity Across Spatial Scales
NASA Astrophysics Data System (ADS)
Hariharan, A.; Moulik, P.; Lekic, V.
2017-12-01
Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.
Size and structure of Chlorella zofingiensis /FeCl 3 flocs in a shear flow: Algae Floc Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyatt, Nicholas B.; O'Hern, Timothy J.; Shelden, Bion
Flocculation is a promising method to overcome the economic hurdle to separation of algae from its growth medium in large scale operations. But, understanding of the floc structure and the effects of shear on the floc structure are crucial to the large scale implementation of this technique. The floc structure is important because it determines, in large part, the density and settling behavior of the algae. Freshwater algae floc size distributions and fractal dimensions are presented as a function of applied shear rate in a Couette cell using ferric chloride as a flocculant. Comparisons are made with measurements made formore » a polystyrene microparticle model system taken here as well as reported literature results. The algae floc size distributions are found to be self-preserving with respect to shear rate, consistent with literature data for polystyrene. Moreover, three fractal dimensions are calculated which quantitatively characterize the complexity of the floc structure. Low shear rates result in large, relatively dense packed flocs which elongate and fracture as the shear rate is increased. Our results presented here provide crucial information for economically implementing flocculation as a large scale algae harvesting strategy.« less
Comparative Tectonics of Europa and Ganymede
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Collins, G. C.; Prockter, L. M.; Head, J. W.
2000-10-01
Europa and Ganymede are sibling satellites with tectonic similarities and differences. Ganymede's ancient dark terrain is crossed by furrows, probably related to ancient large impacts, and has been normal faulted to various degrees. Bright grooved is pervasively deformed at multiple scales and is locally highly strained, consistent with normal faulting of an ice-rich lithosphere above a ductile asthenosphere, along with minor horizontal shear. Little evidence has been identified for compressional structures. The relative roles of tectonism and icy cryovolcanism in creating bright grooved terrain is an outstanding issue. Some ridge and trough structures within Europa's bands show tectonic similarities to Ganymede's grooved terrain, specifically sawtooth structures resembling normal fault blocks. Small-scale troughs are consistent with widened tension fractures. Shearing has produced transtensional and transpressional structures in Europan bands. Large-scale folds are recognized on Europa, with synclinal small-scale ridges and scarps probably representing folds and/or thrust blocks. Europa's ubiquitous double ridges may have originated as warm ice upwelled along tidally heated fracture zones. The morphological variety of ridges and troughs on Europa imply that care must be taken in inferring their origin. The relative youth of Europa's surface means that the satellite has preserved near-pristine morphologies of many structures, though sputter erosion could have altered the morphology of older topography. Moderate-resolution imaging has revealed lesser apparent diversity in Ganymede's ridge and trough types. Galileo's 28th orbit has brought new 20 m/pixel imaging of Ganymede, allowing direct comparison to Europa's small-scale structures.
Pernetta, A P; Allen, J A; Beebee, T J C; Reading, C J
2011-09-01
Human-induced alteration of natural habitats has the potential to impact on the genetic structuring of remnant populations at multiple spatial scales. Species from higher trophic levels, such as snakes, are expected to be particularly susceptible to land-use changes. We examined fine-scale population structure and looked for evidence of sex-biased dispersal in smooth snakes (Coronella austriaca), sampled from 10 heathland localities situated within a managed coniferous forest in Dorset, United Kingdom. Despite the limited distances between heathland areas (maximum <6 km), there was a small but significant structuring of populations based on eight microsatellite loci. This followed an isolation-by-distance model using both straight line and 'biological' distances between sampling sites, suggesting C. austriaca's low vagility as the causal factor, rather than closed canopy conifer forest exerting an effect as a barrier to dispersal. Within population comparisons of male and female snakes showed evidence for sex-biased dispersal, with three of four analyses finding significantly higher dispersal in males than in females. We suggest that the fine-scale spatial genetic structuring and sex-biased dispersal have important implications for the conservation of C. austriaca, and highlight the value of heathland areas within commercial conifer plantations with regards to their future management.
GPU-Q-J, a fast method for calculating root mean square deviation (RMSD) after optimal superposition
2011-01-01
Background Calculation of the root mean square deviation (RMSD) between the atomic coordinates of two optimally superposed structures is a basic component of structural comparison techniques. We describe a quaternion based method, GPU-Q-J, that is stable with single precision calculations and suitable for graphics processor units (GPUs). The application was implemented on an ATI 4770 graphics card in C/C++ and Brook+ in Linux where it was 260 to 760 times faster than existing unoptimized CPU methods. Source code is available from the Compbio website http://software.compbio.washington.edu/misc/downloads/st_gpu_fit/ or from the author LHH. Findings The Nutritious Rice for the World Project (NRW) on World Community Grid predicted de novo, the structures of over 62,000 small proteins and protein domains returning a total of 10 billion candidate structures. Clustering ensembles of structures on this scale requires calculation of large similarity matrices consisting of RMSDs between each pair of structures in the set. As a real-world test, we calculated the matrices for 6 different ensembles from NRW. The GPU method was 260 times faster that the fastest existing CPU based method and over 500 times faster than the method that had been previously used. Conclusions GPU-Q-J is a significant advance over previous CPU methods. It relieves a major bottleneck in the clustering of large numbers of structures for NRW. It also has applications in structure comparison methods that involve multiple superposition and RMSD determination steps, particularly when such methods are applied on a proteome and genome wide scale. PMID:21453553
Patterns and processes of Mycobacterium bovis evolution revealed by phylogenomic analyses
USDA-ARS?s Scientific Manuscript database
Mycobacterium bovis is an important animal pathogen worldwide that parasitizes wild and domesticated vertebrate livestock as well as humans. A comparison of the five M. bovis complete genomes from UK, South Korea, Brazil and USA revealed four novel large-scale structural variations of at least 2,000...
ERIC Educational Resources Information Center
Shi, Qingmin; Zhang, Shaoan; Lin, Emily
2014-01-01
Drawing on large-scale international teachers' data from Hungary, Korea, Norway, and Turkey in the Teaching and Learning International Survey in 2008 assessment, this study examined the relationships between new teachers' beliefs about instruction (direct transmission and constructivist beliefs) and teaching practices (structured, student…
Kaasen, A; Helbig, A; Malt, U F; Naes, T; Skari, H; Haugen, G
2010-08-01
To predict acute psychological distress in pregnant women following detection of a fetal structural anomaly by ultrasonography, and to relate these findings to a comparison group. A prospective, observational study. Tertiary referral centre for fetal medicine. One hundred and eighty pregnant women with a fetal structural anomaly detected by ultrasound (study group) and 111 with normal ultrasound findings (comparison group) were included within a week following sonographic examination after gestational age 12 weeks (inclusion period: May 2006 to February 2009). Social dysfunction and health perception were assessed by the corresponding subscales of the General Health Questionnaire (GHQ-28). Psychological distress was assessed using the Impact of Events Scale (IES-22), Edinburgh Postnatal Depression Scale (EPDS) and the anxiety and depression subscales of the GHQ-28. Fetal anomalies were classified according to severity and diagnostic or prognostic ambiguity at the time of assessment. Social dysfunction, health perception and psychological distress (intrusion, avoidance, arousal, anxiety, depression). The least severe anomalies with no diagnostic or prognostic ambiguity induced the lowest levels of IES intrusive distress (P = 0.025). Women included after 22 weeks of gestation (24%) reported significantly higher GHQ distress than women included earlier in pregnancy (P = 0.003). The study group had significantly higher levels of psychosocial distress than the comparison group on all psychometric endpoints. Psychological distress was predicted by gestational age at the time of assessment, severity of the fetal anomaly, and ambiguity concerning diagnosis or prognosis.
ERIC Educational Resources Information Center
Gomez, Rapson
2009-01-01
Objective: This study used the mean and covariance structures analysis approach to examine the equality or invariance of ratings of the 18 ADHD symptoms. Method: 783 Australian and 928 Malaysian parents provided ratings for an ADHD rating scale. Invariance was tested across these groups (Comparison 1), and North European Australian (n = 623) and…
Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Benford, Andrew; Tinker, Michael L.
2004-01-01
The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.
Lightning protection guidelines and test data for adhesively bonded aircraft structures
NASA Technical Reports Server (NTRS)
Pryzby, J. E.; Plumer, J. A.
1984-01-01
The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.
Kaasen, Anne; Helbig, Anne; Malt, Ulrik Fredrik; Naes, Tormod; Skari, Hans; Haugen, Guttorm Nils
2013-07-12
In Norway almost all pregnant women attend one routine ultrasound examination. Detection of fetal structural anomalies triggers psychological stress responses in the women affected. Despite the frequent use of ultrasound examination in pregnancy, little attention has been devoted to the psychological response of the expectant father following the detection of fetal anomalies. This is important for later fatherhood and the psychological interaction within the couple. We aimed to describe paternal psychological responses shortly after detection of structural fetal anomalies by ultrasonography, and to compare paternal and maternal responses within the same couple. A prospective observational study was performed at a tertiary referral centre for fetal medicine. Pregnant women with a structural fetal anomaly detected by ultrasound and their partners (study group,n=155) and 100 with normal ultrasound findings (comparison group) were included shortly after sonographic examination (inclusion period: May 2006-February 2009). Gestational age was >12 weeks. We used psychometric questionnaires to assess self-reported social dysfunction, health perception, and psychological distress (intrusion, avoidance, arousal, anxiety, and depression): Impact of Event Scale. General Health Questionnaire and Edinburgh Postnatal Depression Scale. Fetal anomalies were classified according to severity and diagnostic or prognostic ambiguity at the time of assessment. Median (range) gestational age at inclusion in the study and comparison group was 19 (12-38) and 19 (13-22) weeks, respectively. Men and women in the study group had significantly higher levels of psychological distress than men and women in the comparison group on all psychometric endpoints. The lowest level of distress in the study group was associated with the least severe anomalies with no diagnostic or prognostic ambiguity (p < 0.033). Men had lower scores than women on all psychometric outcome variables. The correlation in distress scores between men and women was high in the fetal anomaly group (p < 0.001), but non-significant in the comparison group. Severity of the anomaly including ambiguity significantly influenced paternal response. Men reported lower scores on all psychometric outcomes than women. This knowledge may facilitate support for both expectant parents to reduce strain within the family after detectionof a fetal anomaly.
Structure and information in spatial segregation
2017-01-01
Ethnoracial residential segregation is a complex, multiscalar phenomenon with immense moral and economic costs. Modeling the structure and dynamics of segregation is a pressing problem for sociology and urban planning, but existing methods have limitations. In this paper, we develop a suite of methods, grounded in information theory, for studying the spatial structure of segregation. We first advance existing profile and decomposition methods by posing two related regionalization methods, which allow for profile curves with nonconstant spatial scale and decomposition analysis with nonarbitrary areal units. We then formulate a measure of local spatial scale, which may be used for both detailed, within-city analysis and intercity comparisons. These methods highlight detailed insights in the structure and dynamics of urban segregation that would be otherwise easy to miss or difficult to quantify. They are computationally efficient, applicable to a broad range of study questions, and freely available in open source software. PMID:29078323
Structure and information in spatial segregation.
Chodrow, Philip S
2017-10-31
Ethnoracial residential segregation is a complex, multiscalar phenomenon with immense moral and economic costs. Modeling the structure and dynamics of segregation is a pressing problem for sociology and urban planning, but existing methods have limitations. In this paper, we develop a suite of methods, grounded in information theory, for studying the spatial structure of segregation. We first advance existing profile and decomposition methods by posing two related regionalization methods, which allow for profile curves with nonconstant spatial scale and decomposition analysis with nonarbitrary areal units. We then formulate a measure of local spatial scale, which may be used for both detailed, within-city analysis and intercity comparisons. These methods highlight detailed insights in the structure and dynamics of urban segregation that would be otherwise easy to miss or difficult to quantify. They are computationally efficient, applicable to a broad range of study questions, and freely available in open source software. Published under the PNAS license.
NASA Astrophysics Data System (ADS)
Wang, Y.; Wei, F.; Feng, X.
2013-12-01
Recent observations revealed a scale-invariant dissipation process in the fast ambient solar wind, while numerical simulations indicated that the dissipation process in collisionless reconnection was multifractal. Here, we investigate the properties of turbulent fluctuations in the magnetic reconnection prevailed region. It is found that there are large magnetic field shear angle and obvious intermittent structures in these regions. The deduced scaling exponents in the dissipation subrange show a multifractal scaling. In comparison, in the nearby region where magnetic reconnection is less prevailed, we find smaller magnetic field shear angle, less intermittent structures, and most importantly, a monofractal dissipation process. These results provide additionally observational evidence for previous observation and simulation work, and they also imply that magnetic dissipation in the solar wind magnetic reconnection might be caused by the intermittent cascade as multifractal processes.
Grid sensitivity capability for large scale structures
NASA Technical Reports Server (NTRS)
Nagendra, Gopal K.; Wallerstein, David V.
1989-01-01
The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.
Solar X-ray Astronomy Sounding Rocket Program
NASA Technical Reports Server (NTRS)
Moses, J. Daniel
1989-01-01
Several broad objectives were pursued by the development and flight of the High Resolution Soft X-Ray Imaging Sounding Rocket Payload, followed by the analysis of the resulting data and by comparison with both ground based and space based observations from other investigators. The scientific objectives were: to study the thermal equilibrium of active region loop systems by analyzing the X-ray observations to determine electron temperatures, densities, and pressures; by recording the changes in the large scale coronal structures from the maximum and descending phases of Cycle 21 to the ascending phase of Cycle 22; and to extend the study of small scale coronal structures through the minimum of Cycle 21 with new emphasis on correlative observations.
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing
Kang, Chang-kwon; Shyy, Wei
2013-01-01
We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300
ERIC Educational Resources Information Center
Glod, Magdalena; Creswell, Cathy; Waite, Polly; Jamieson, Ruth; McConachie, Helen; South, Mikle Don; Rodgers, Jacqui
2017-01-01
The Spence Children's Anxiety Scale-Parent version (SCAS-P) is often used to assess anxiety in children with autism spectrum disorder (ASD), however, little is known about the validity of the tool in this population. The aim of this study was to determine whether the SCAS-P has the same factorial validity in a sample of young people with ASD (n =…
2014-01-01
Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel representations to extract information about protein structures, as well as organizing and mining protein structure space with mature text mining tools. PMID:25080993
Technology development status at McDonnell Douglas
NASA Technical Reports Server (NTRS)
Rowe, W. T.
1981-01-01
The significant technology items of the Concorde and the conceptual MCD baseline advanced supersonic transport are compared. The four major improvements are in the areas of range performance, structures (materials), aerodynamics, and in community noise. Presentation charts show aerodynamic efficiency; the reoptimized wing; low scale lift/drag ratio; control systems; structural modeling and analysis; weight and cost comparisons for superplasticity diffusion bonded titanium sandwich structures and for aluminum brazed titanium honeycomb structures; operating cost reduction; suppressor nozzles; noise reduction and range; the bicone inlet; a market summary; environmental issues; high priority items; the titanium wing and fuselage test components; and technology validation.
The geoeffectiveness of CIRs and ICMEs
NASA Astrophysics Data System (ADS)
Shen, C.; Chi, Y.; Wang, Y.
2017-12-01
The corotation rotation regions (CIRs) and interplanetary coronal mass ejections (CMEs) are two typical large scale structures in interplanetary space and also important sources of geomagnetic storms. Using the WIND observations from 1995, the CIRs and ICMEs have been identified manually. Totally, there are 800 CIRs and 500 ICMEs during this period. Based on these catalogues, the properties and geoeffectiveness of CIRs and ICMEs have been carefully studied. In the presentation, we will introduce the properties of these structures first. Then, the detailed comparison between these two structures will also be addressed.
Structure identification methods for atomistic simulations of crystalline materials
Stukowski, Alexander
2012-05-28
Here, we discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as common neighbor analysis (CNA), centrosymmetry analysis, bond angle analysis, bond order analysis and Voronoi analysis. In addition we propose a simple extension to the CNA method that makes it suitable for multi-phase systems. Finally, we introduce a new structure identification algorithm, the neighbor distance analysis, which is designed to identify atomic structure units in grain boundaries.
Asymptotic stability and instability of large-scale systems. [using vector Liapunov functions
NASA Technical Reports Server (NTRS)
Grujic, L. T.; Siljak, D. D.
1973-01-01
The purpose of this paper is to develop new methods for constructing vector Lyapunov functions and broaden the application of Lyapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. By redefining interconnection functions among the subsystems according to interconnection matrices, the same mathematical machinery can be used to determine connective asymptotic stability of large-scale systems under arbitrary structural perturbations.
Comparison of the F2 Structure Function in Iron as Measured by Charged Lepton and Neutrino Probes
NASA Astrophysics Data System (ADS)
Kalantarians, Narbe; Christy, Eric; Keppel, Cynthia
2017-09-01
World data for the F2 structure function for Iron, as measured by multiple charged lepton and neutrino deep inelastic scattering experiments, are compared. Data obtained from charged lepton and neutrino scattering at larger values of x are in remarkably good agreement with a simple invocation of the 18/5 rule, while a discrepancy in the behavior of the data obtained from the different probes well beyond the data uncertainties is observed in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is less than 0.15. The data are compared to theoretical calculations. Details and results of the data comparison will be presented, along with future plans.
Goldstein, B C; Harris, K C; Klein, M D
1993-02-01
This study investigated the relationship between reading comprehension and oral storytelling abilities. Thirty-one Latino junior high school students with learning handicaps were selected as subjects based on learning handicapped designation, home language, and language proficiency status. Reading comprehension was measured by the Reading Comprehension subtest of the Peabody Individual Achievement Test. Storytelling was measured by (a) the Oral Production subtest of the Language Assessment Scales using the standard scoring protocol and (b) a story structure analysis. A comparison of the standard scoring protocol and reading comprehension revealed no relationship, while the comparison of the story structure analysis and reading comprehension revealed a significant correlation. The implications of these results for language assessment of bilingual students are discussed.
NASA Astrophysics Data System (ADS)
Skiles, M.
2017-12-01
The ability to accurately measure and manage the natural snow water reservoir in mountainous regions has its challenges, namely mapping of snowpack depth and snow water equivalent (SWE). Presented here is a scalable method that differentially maps snow depth using Structure from Motion (SfM); a photogrammetric technique that uses 2d images to create a 3D model/Digital Surface Model (DSM). There are challenges with applying SfM to snow, namely, relatively uniform snow brightness can make it difficult to produce quality images needed for processing, and vegetation can limit the ability to `see' through the canopy to map both the ground and snow beneath. New techniques implemented in the method to adapt to these challenges will be demonstrated. Results include a time series at (1) the plot scale, imaged with an unmanned areal vehicle (DJI Phantom 2 adapted with Sony A5100) over the Utah Department of Transportation Atwater Study Plot in Little Cottonwood Canyon, UT, and at (2) the mountain watershed scale, imaged from the RGB camera aboard the Airborne Snow Observatory (ASO), over the headwaters of the Uncompahgre River in the San Juan Mountains, CO. At the plot scale we present comparisons to measured snow depth, and at the watershed scale we present comparisons to the ASO lidar DSM. This method is of interest due to its low cost relative to lidar, making it an accessible tool for snow research and the management of water resources. With advancing unmanned aerial vehicle technology there are implications for scalability to map snow depth, and SWE, across large basins.
Survey of methods of facial palsy documentation in use by members of the Sir Charles Bell Society.
Fattah, Adel Y; Gavilan, Javier; Hadlock, Tessa A; Marcus, Jeffrey R; Marres, Henri; Nduka, Charles; Slattery, William H; Snyder-Warwick, Alison K
2014-10-01
Facial palsy manifests a broad array of deficits affecting function, form, and psychological well-being. Assessment scales were introduced to standardize and document the features of facial palsy and to facilitate the exchange of information and comparison of outcomes. The aim of this study was to determine which assessment methodologies are currently employed by those involved in the care of patients with facial palsy as a first step toward the development of consensus on the appropriate assessments for this patient population. Online questionnaire. The Sir Charles Bell Society, a group of professionals dedicated to the care of patients with facial palsy, were surveyed to determine the scales used to document facial nerve function, patient reported outcome measures (PROM), and photographic documentation. Fifty-five percent of the membership responded (n = 83). Grading scales were used by 95%, most commonly the House-Brackmann and Sunnybrook scales. PROMs were used by 58%, typically the Facial Clinimetric Evaluation scale or Facial Disability Index. All used photographic recordings, but variability existed among the facial expressions used. Videography was performed by 82%, and mostly involved the same views as still photography; it was also used to document spontaneous movement and speech. Three-dimensional imaging was employed by 18% of respondents. There exists significant heterogeneity in assessments among clinicians, which impedes straightforward comparisons of outcomes following recovery and intervention. Widespread adoption of structured assessments, including scales, PROMs, photography, and videography, will facilitate communication and comparison among those who study the effects of interventions on this population. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Implicit theories about interrelations of anger components in 25 countries.
Alonso-Arbiol, Itziar; van de Vijver, Fons J R; Fernandez, Itziar; Paez, Dario; Campos, Miryam; Carrera, Pilar
2011-02-01
We were interested in the cross-cultural comparison of implicit theories of the interrelations of eight anger components (antecedents, body sensations, cognitive reactions, verbal expressions, nonverbal expressions, interpersonal responses, and primary and secondary self-control). Self-report scales of each of these components were administered to a total of 5,006 college students in 25 countries. Equivalence of the scales was supported in that scales showed acceptable congruence coefficients in almost all comparisons. A multigroup confirmatory factor model with three latent variables (labeled internal processes, behavioral outcomes, and self-control mechanisms) could well account for the interrelations of the eight observed variables; measurement and structural weights were invariant. Behavioral outcomes and self-control mechanisms were only associated through their common dependence on internal processes. Verbal expressions and cognitive reactions showed the largest cross-cultural differences in means, whereas self-control mechanisms scales showed the smallest differences. Yet, cultural differences between the countries were small. It is concluded that anger, as measured by these scales, shows more pronounced cross-cultural similarities than differences in terms of both interrelations and mean score levels. PsycINFO Database Record (c) 2011 APA, all rights reserved.
An approach to multiscale modelling with graph grammars.
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-09-01
Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.
An approach to multiscale modelling with graph grammars
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-01-01
Background and Aims Functional–structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. Methods A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Key Results Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. Conclusions The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models. PMID:25134929
Kutina, Jan; Carter, William D.
1978-01-01
The pattern of lineaments and curvilinear features interpreted from a 1:5,000,000 mosaic of satellite images (Landsat-1 was superimposed on a simplified version of the Geological Map of the United States, 1:2,500,000 scale, showing the structural scheme of Central and Eastern United States. A comparison of the above two patterns, shown in Fig. 1, is presented in this paper.
Teaching: An Option for Mid-Life Retirees.
ERIC Educational Resources Information Center
Bell, David
This document identifies patterns of characteristics of those who have leisure as an option at mid-life. A comparison was made between individuals electing to enter teaching and those electing to pursue leisure at this life stage. Results of structured interviews, statistical results, and an analysis of a life satisfaction scale is given. In…
ERIC Educational Resources Information Center
Tuohilampi, Laura; Hannula, Markku S.; Varas, Leonor; Giaconi, Valentina; Laine, Anu; Näveri, Liisa; i Nevado, Laia Saló
2015-01-01
Large-scale studies measure mathematics-related affect using questionnaires developed by researchers in primarily English-based countries and according to Western-based theories. Influential comparative conclusions about different cultures and countries are drawn based on such measurements. However, there are certain premises involved in these…
USDA-ARS?s Scientific Manuscript database
Great progress has been made on developing bio-based wood adhesives from renewable natural resources over last couple of decades . Water-washed cottonseed meal (WCSM) showed the adhesive performance comparable to cottonseed protein isolate. To promote WCSM as an industrial wood adhesive for non-stru...
COMPARISON OF STABLE-NITROGEN (15N/14N) ISOTOPE RATIOS IN LARGE MOUTH BASS SCALES AND MUSCLE TISSUE
Stable-nitrogen (15N/14N) isotope ratios of fish tissue are currently used to determine trophic structure, contaminant bioaccumulation, and the level of anthropogenic nitrogen enrichment in aquatic systems. The most common tissue used for these measurements is fileted dorsal musc...
Restoration of bottomland hardwood forest across a treatment intensity gradient.
J.A Stanturf; E.S Gardiner; J.P Shepard; C.J Schweitzer; C.J Portwood; L.C Dorros
2009-01-01
Large-scale restoration of bottomland hardwood forests in the lower Mississippi Alluvial Valley (USA)under federal incentive programs, begun in the 1990s. initially achieved mixed results. We report here on a comparison of four restoration techniques in terms of survival. accretion of vertical structure and woody species diversity. The...
Biasin, Elisa; van Driel, Tim Brandt; Kjær, Kasper S.; ...
2016-06-30
Here, we study the structural dynamics of photoexcited [Co(terpy) 2] 2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of themore » high spin state is established on a single-picosecond time scale and that this state has a lifetime of ~7 ps.« less
NASA Technical Reports Server (NTRS)
Hussain, A. K. M. F.
1980-01-01
Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.
NASA Technical Reports Server (NTRS)
Carden, H. D.
1984-01-01
Three six-place, low wing, twin-engine general aviation airplane test specimens were crash tested at the langley Impact Dynamics research Facility under controlled free-flight conditions. One structurally unmodified airplane was the baseline airplane specimen for the test series. The other airplanes were structurally modified to incorporate load-limiting (energy-absorbing) subfloor concepts into the structure for full scale crash test evaluation and comparison to the unmodified airplane test results. Typically, the lowest floor accelerations and anthropomorphic dummy occupant responses, and the least seat crushing of standard and load-limiting seats, occurred in the modified load-limiting subfloor airplanes wherein the greatest structural crushing of the subfloor took place. The better performing of the two load-limiting subfloor concepts reduced the peak airplane floor accelerations at the pilot and four seat/occupant locations to -25 to -30 g's as compared to approximately -50 to -55 g's acceleration magnitude for the unmodified airplane structure.
Void statistics of the CfA redshift survey
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1991-01-01
Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.
Void statistics of the CfA redshift survey
NASA Astrophysics Data System (ADS)
Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1991-11-01
Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.
Shahyad, Shima; Pakdaman, Shahla; Shokri, Omid; Saadat, Seyed Hassan
2018-01-12
The aim of the present study was to examine the causal relationships between psychological and social factors, being independent variables and body image dissatisfaction plus symptoms of eating disorders as dependent variables through the mediation of social comparison and thin-ideal internalization. To conduct the study, 477 high-school students from Tehran were recruited by method of cluster sampling. Next, they filled out Rosenberg Self-esteem Scale (RSES), Physical Appearance Comparison Scale (PACS), Self-Concept Clarity Scale (SCCS), Appearance Perfectionism Scale (APS), Eating Disorder Inventory (EDI), Multidimensional Body Self Relations Questionnaire (MBSRQ) and Sociocultural Attitudes towards Appearance Questionnaire (SATAQ-4). In the end, collected data were analyzed using structural equation modeling. Findings showed that the assumed model perfectly fitted the data after modification and as a result, all the path-coefficients of latent variables (except for the path between self-esteem and thin-ideal internalization) were statistically significant (p>0.05). Also, in this model, 75% of scores' distribution of body dissatisfaction was explained through psychological variables, socio-cultural variables, social comparison and internalization of the thin ideal. The results of the present study provid experimental basis for the confirmation of proposed causal model. The combination of psychological, social and cultural variables could efficiently predict body image dissatisfaction of young girls in Iran.
A multi-frequency receiver function inversion approach for crustal velocity structure
NASA Astrophysics Data System (ADS)
Li, Xuelei; Li, Zhiwei; Hao, Tianyao; Wang, Sheng; Xing, Jian
2017-05-01
In order to constrain the crustal velocity structures better, we developed a new nonlinear inversion approach based on multi-frequency receiver function waveforms. With the global optimizing algorithm of Differential Evolution (DE), low-frequency receiver function waveforms can primarily constrain large-scale velocity structures, while high-frequency receiver function waveforms show the advantages in recovering small-scale velocity structures. Based on the synthetic tests with multi-frequency receiver function waveforms, the proposed approach can constrain both long- and short-wavelength characteristics of the crustal velocity structures simultaneously. Inversions with real data are also conducted for the seismic stations of KMNB in southeast China and HYB in Indian continent, where crustal structures have been well studied by former researchers. Comparisons of inverted velocity models from previous and our studies suggest good consistency, but better waveform fitness with fewer model parameters are achieved by our proposed approach. Comprehensive tests with synthetic and real data suggest that the proposed inversion approach with multi-frequency receiver function is effective and robust in inverting the crustal velocity structures.
Acre, Matthew R.; Alejandrez, Celeste; East, Jessica; Massure, Wade A.; Miyazono, S.; Pease, Jessica E.; Roesler, Elizabeth L.; Williams, H.M.; Grabowski, Timothy B.
2017-01-01
Evaluating the precision of age estimates generated by different readers and different calcified structures is an important part of generating reliable estimations of growth, recruitment, and mortality for fish populations. Understanding the potential loss of precision associated with using structures harvested without sacrificing individuals, such as scales or fin rays, is particularly important when working with imperiled species, such as Cycleptus elongatus (Blue Sucker). We collected otoliths (lapilli), scales, and the first fin rays of the dorsal, anal, pelvic, and pectoral fins of 9 Blue Suckers. We generated age estimates from each structure by both experienced (n = 5) and novice (n = 4) readers. We found that, independent of the structure used to generate the age estimates, the mean coefficient of variation (CV) of experienced readers was approximately 29% lower than that of novice readers. Further, the mean CV of age estimates generated from pectoral-fin rays, pelvic-fin rays, and scales were statistically indistinguishable and less than those of dorsal-fin rays, anal-fin rays, and otoliths. Anal-, dorsal-, and pelvic-fin rays and scales underestimated age compared to otoliths, but age estimates from pectoral-fin rays were comparable to those from otoliths. Skill level, structure, and fish total-length influenced reader precision between subsequent reads of the same aging structure from a particular fish. Using structures that can be harvested non-lethally to estimate the age of Blue Sucker can provide reliable and reproducible results, similar to those that would be expected from using otoliths. Therefore, we recommend the use of pectoral-fin rays as a non-lethal method to obtain age estimates for Blue Suckers.
Exploring the reliability and validity of the social-moral awareness test.
Livesey, Alexandra; Dodd, Karen; Pote, Helen; Marlow, Elizabeth
2012-11-01
The aim of the study was to explore the validity of the social-moral awareness test (SMAT) a measure designed for assessing socio-moral rule knowledge and reasoning in people with learning disabilities. Comparisons between Theory of Mind and socio-moral reasoning allowed the exploration of construct validity of the tool. Factor structure, reliability and discriminant validity were also assessed. Seventy-one participants with mild-moderate learning disabilities completed the two scales of the SMAT and two False Belief Tasks for Theory of Mind. Reliability of the SMAT was very good, and the scales were shown to be uni-dimensional in factor structure. There was a significant positive relationship between Theory of Mind and both SMAT scales. There is early evidence of the construct validity and reliability of the SMAT. Further assessment of the validity of the SMAT will be required. © 2012 Blackwell Publishing Ltd.
Crawford, Thomas N; Cohen, Patricia; Johnson, Jeffrey G; Kasen, Stephanie; First, Michael B; Gordon, Kathy; Brook, Judith S
2005-02-01
Approximately 800 youths from the Children in the Community Study (Cohen & Cohen, 1996) have been assessed prospectively for over 20 years to study personality disorders (PDs) in adolescents and young adults. In this article we evaluate the Children in the Community Self-Report (CIC-SR) Scales, which were designed to assess DSM-IV PDs using self-reported prospective data from this longitudinal sample. To evaluate convergent validity, we assessed concordance between the CIC-SR Scales and the Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II; First, Gibbon, Spitzer, Williams, & Benjamin, 1995) in 644 participants at mean age 33. To assess predictive validity, we used CIC-SR Scales at mean age 22 to predict subsequent CIC-SR and SCID-II Personality Questionnaire scores at mean age 33. In these analyses the CIC-SR Scales matched or exceeded benchmarks established in previous comparisons between self-report instruments and structured clinical interviews. Unlike other self-report scales, the CIC-SR did not appear to overestimate diagnoses when compared with SCID-II clinical diagnoses.
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
NASA Astrophysics Data System (ADS)
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
3D reconstruction software comparison for short sequences
NASA Astrophysics Data System (ADS)
Strupczewski, Adam; Czupryński, BłaŻej
2014-11-01
Large scale multiview reconstruction is recently a very popular area of research. There are many open source tools that can be downloaded and run on a personal computer. However, there are few, if any, comparisons between all the available software in terms of accuracy on small datasets that a single user can create. The typical datasets for testing of the software are archeological sites or cities, comprising thousands of images. This paper presents a comparison of currently available open source multiview reconstruction software for small datasets. It also compares the open source solutions with a simple structure from motion pipeline developed by the authors from scratch with the use of OpenCV and Eigen libraries.
Metrics for comparison of crystallographic maps
Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; ...
2014-10-01
Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less
Rankings, Standards, and Competition: Task vs. Scale Comparisons
ERIC Educational Resources Information Center
Garcia, Stephen M.; Tor, Avishalom
2007-01-01
Research showing how upward social comparison breeds competitive behavior has so far conflated local comparisons in "task" performance (e.g. a test score) with comparisons on a more general "scale" (i.e. an underlying skill). Using a ranking methodology (Garcia, Tor, & Gonzalez, 2006) to separate task and scale comparisons, Studies 1-2 reveal that…
NASA Astrophysics Data System (ADS)
De Michelis, Paola; Consolini, Giuseppe; Tozzi, Roberta; Marcucci, Maria Federica
2017-10-01
This paper attempts to explore the statistical scaling features of high-latitude geomagnetic field fluctuations at Swarm altitude. Data for this study are low-resolution (1 Hz) magnetic data recorded by the vector field magnetometer on board Swarm A satellite over 1 year (from 15 April 2014 to 15 April 2015). The first- and second-order structure function scaling exponents and the degree of intermittency of the fluctuations of the intensity of the horizontal component of the magnetic field at high northern latitudes have been evaluated for different interplanetary magnetic field orientations in the GSM Y-Z plane and seasons. In the case of the first-order structure function scaling exponent, a comparison between the average spatial distributions of the obtained values and the statistical convection patterns obtained using a Super Dual Auroral Radar Network dynamic model (CS10 model) has been also considered. The obtained results support the idea that the knowledge of the scaling features of the geomagnetic field fluctuations can help in the characterization of the different ionospheric turbulence regimes of the medium crossed by Swarm A satellite. This study shows that different turbulent regimes of the geomagnetic field fluctuations exist in the regions characterized by a double-cell convection pattern and in those regions near the border of the convective structures.
Fast protein tertiary structure retrieval based on global surface shape similarity.
Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke
2008-09-01
Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.
Reid, Rory C; Cyders, Melissa A; Moghaddam, Jacquelene F; Fong, Timothy W
2014-11-01
Although the Barratt Impulsiveness Scale (BIS; Patton, Stanford, & Barratt, 1995) is a widely-used self-report measure of impulsivity, there have been numerous questions about the invariance of the factor structure across clinical populations (Haden & Shiva, 2008, 2009; Ireland & Archer, 2008). The goal of this article is to examine the factor structure of the BIS among a sample consisting of three populations exhibiting addictive behaviors and impulsivity: pathological gamblers, hypersexual patients, and individuals seeking treatment for methamphetamine dependence to determine if modification to the existing factors might improve the psychometric properties of the BIS. The current study found that the factor structure of the BIS does not replicate in this sample and instead produces a 12-item three-factor solution consisting of motor-impulsiveness (5 items), non-planning impulsiveness (3 items), and immediacy impulsiveness (4 items). The clinical utility of the BIS in this population is questionable. The authors suggest future studies to investigate comparisons with this modified version of the BIS and other impulsivity scales such as the UPPS-P Impulsive Behavior Scale in clinical populations when assessing disposition toward rash action. Copyright © 2013. Published by Elsevier Ltd.
INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu
2016-06-20
The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian and Pogosyan are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when themore » SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.« less
Brazilian version of the Jefferson Scale of Empathy: psychometric properties and factor analysis
2012-01-01
Background Empathy is a central characteristic of medical professionalism and has recently gained attention in medical education research. The Jefferson Scale of Empathy is the most commonly used measure of empathy worldwide, and to date it has been translated in 39 languages. This study aimed to adapt the Jefferson Scale of Empathy to the Brazilian culture and to test its reliability and validity among Brazilian medical students. Methods The Portuguese version of the Jefferson Scale of Empathy was adapted to Brazil using back-translation techniques. This version was pretested among 39 fifth-year medical students in September 2010. During the final fifth- and sixth-year Objective Structured Clinical Examination (October 2011), 319 students were invited to respond to the scale anonymously. Cronbach’s alpha, exploratory factor analysis, item-total correlation, and gender comparisons were performed to check the reliability and validity of the scale. Results The student response rate was 93.7% (299 students). Cronbach’s coefficient for the scale was 0.84. A principal component analysis confirmed the construct validity of the scale for three main factors: Compassionate Care (first factor), Ability to Stand in the Patient’s Shoes (second factor), and Perspective Taking (third factor). Gender comparisons did not reveal differences in the scores between female and male students. Conclusions The adapted Brazilian version of the Jefferson Scale of Empathy proved to be a valid, reliable instrument for use in national and cross-cultural studies in medical education. PMID:22873730
Measuring Psychobiosocial States in Sport: Initial Validation of a Trait Measure
Bertollo, Maurizio; Ruiz, Montse C.; Bortoli, Laura
2016-01-01
We examined the item characteristics, the factor structure, and the concurrent validity of a trait measure of psychobiosocial states. In Study 1, Italian athletes (N = 342, 228 men, 114 women, Mage = 23.93, SD = 6.64) rated the intensity, the frequency, and the perceived impact dimensions of a psychobiosocial states scale, trait version (PBS-ST), which is composed of 20 items (10 functional and 10 dysfunctional) referring to how they usually felt before an important competition. In Study 2, the scale was cross validated in an independent sample (N = 251, 181 men, 70 women, Mage = 24.35, SD = 7.25). The concurrent validity of the PBS-ST scale scores were also examined in comparison with two sport-specific emotion-related measures and a general measure of affect. Exploratory structural equation modeling and confirmatory factor analysis of the data of Study 1 showed that a 2-factor, 15-item solution of the PBS-ST scale (8 functional items and 7 dysfunctional items) reached satisfactory fit indices for the three dimensions (i.e., intensity, frequency, and perceived impact). Results of Study 2 provided evidence of substantial measurement and structural invariance of all dimensions across samples. The low association of the PBS-ST scale with other measures suggests that the scale taps unique constructs. Findings of the two studies offer initial validity evidence for a sport-specific tool to measure psychobiosocial states. PMID:27907111
Comparison of Structural Optimization Techniques for a Nuclear Electric Space Vehicle
NASA Technical Reports Server (NTRS)
Benford, Andrew
2003-01-01
The purpose of this paper is to utilize the optimization method of genetic algorithms (GA) for truss design on a nuclear propulsion vehicle. Genetic Algorithms are a guided, random search that mirrors Darwin s theory of natural selection and survival of the fittest. To verify the GA s capabilities, other traditional optimization methods were used to compare the results obtained by the GA's, first on simple 2-D structures, and eventually on full-scale 3-D truss designs.
Numerical simulation of cloud and precipitation structure during GALE IOP-2
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Perkey, D. J.; Seablom, M. S.
1988-01-01
A regional scale model, LAMPS (Limited Area Mesoscale Prediction System), is used to investigate cloud and precipitation structure that accompanied a short wave system during a portion of GALE IOP-2. A comparison of satellite imagery and model fields indicates that much of the large mesoscale organization of condensation has been captured by the simulation. In addition to reproducing a realistic phasing of two baroclinic zones associated with a split cold front, a reasonable simulation of the gross mesoscale cloud distribution has been achieved.
Chan, Kin Sun
2018-01-01
Objectives This study aimed to evaluate the internal consistency, reliability, convergent validity, known-group comparisons, and structural validity of the Chinese version of Fear of Intimacy with Helping Professionals (C–FIS–HP) scale in Macau. Methods A cross-sectional design was used on a sample of 593 older people in 6 health centers. We used Chinese version of Exercise of Self-Care Agency Scale (C-ESCAS) and Morisky 4-item medication adherence scale to evaluate self-care actions and medication adherence. The internal consistency and reliability of C–FIS–HP were analyzed using the Spearman-Brown split-half reliability, Cronbach’s alpha, and test–retest reliability. Convergent validity was tested the construct of C–FIS–HP and self-care actions. Known-group comparisons differentiated predefined groups in an expected direction. Two separated samples were used to test the structural validity. An exploratory factor analysis (EFA) tested the factor structure of C–FISHP using the principal axis factoring. A confirmatory factor analysis (CFA) was further conducted to confirm the factor structure constructed in the prior EFA. Results The C–FIS–HP had a Spearman-Brown split-half coefficient, Cronbach’s alpha, and intraclass correlation coefficient of 0.96, 0.93, and 0.96, respectively. Convergent validity was satisfactory with significantly correlations between the C-FIS-HP and C-ESCAS. C–FIS–HP to differentiate the differences between high-, moderate-, and low- medication adherence groups. EFA demonstrated a two-factor structure among 297 older people. A first-order CFA was performed to confirm the construct dimensionality of C–FIS–HP with satisfactory fit indices (NFI = 0.92; IFI = 0.95; TLI = 0.94; CFI = 0.95 and RMSEA = 0.07) among 296 older people. Conclusions C–FIS–HP is a reliable and valid test for assessing helping relationships in older Chinese people. Health professionals can use C–FIS–HP as a clinical tool to assess the comfort level of patients in a helping relationship, and use this information to develop culturally sensitive therapeutic interventions and treatment plans. Further studies need to be conducted concerning the different psychometric properties, as well as the application of C–FIS–HP in various regions. PMID:29795563
A Comparison of Family Adaptations to Having a Child with Cystic Fibrosis.
ERIC Educational Resources Information Center
Johnson, Mark C.; And Others
1985-01-01
Examines effect of cystic fibrosis (CF) on structure and social climate of the family using self-report scales and independent observations of family functioning. Families in which the child with CF was not the firstborn were found to be functioning more healthily than those in which the child was firstborn. (Author/NRB)
DIF Analysis with Multilevel Data: A Simulation Study Using the Latent Variable Approach
ERIC Educational Resources Information Center
Jin, Ying; Eason, Hershel
2016-01-01
The effects of mean ability difference (MAD) and short tests on the performance of various DIF methods have been studied extensively in previous simulation studies. Their effects, however, have not been studied under multilevel data structure. MAD was frequently observed in large-scale cross-country comparison studies where the primary sampling…
ERIC Educational Resources Information Center
Marsh, Herbert W.; Abduljabbar, Adel Salah; Abu-Hilal, Maher M.; Morin, Alexandre J. S.; Abdelfattah, Faisal; Leung, Kim Chau; Xu, Man K.; Nagengast, Benjamin; Parker, Philip
2013-01-01
For the international Trends in International Mathematics and Science Study (TIMSS2007) math and science motivation scales (self-concept, positive affect, and value), we evaluated the psychometric properties (factor structure, method effects, gender differences, and convergent and discriminant validity) in 4 Arab-speaking countries (Saudi Arabia,…
Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection.
Sean P. Healey; Warren B. Cohen; Yang Zhiqiang; Olga N. Krankina
2005-01-01
Landsat satellite data has become ubiquitous in regional-scale forest disturbance detection. The Tasseled Cap (TC) transformation for Landsat data has been used in several disturbance-mapping projects because of its ability to highlight relevant vegetation changes. We used an automated composite analysis procedure to test four multi-date variants of the TC...
Visual Analytics for Exploration of a High-Dimensional Structure
2013-04-01
5 Figure 3. Comparison of Euclidean vs. geodesic distance. LDRs use...manifold, whereas an LDR fails. ...........................6 Figure 4. WEKA GUI for data mining HDD using FRFS-ACO...multidimensional scaling (CMDS)— are a linear DR ( LDR ). An LDR is based on a linear combination of the feature data. LDRs keep similar data points close together
Family Conflict and Children's Self-Concepts: A Comparison of Intact and Single-Parent Families.
ERIC Educational Resources Information Center
Raschke, Helen J.; Raschke, Vernon J.
1979-01-01
Using the Piers-Harris Children's Self-Concept Scale to measure self-concept, and self-reports for family structure and family conflict, no significant differences in self-concept scores of children from intact, single-parent, reconstituted, or other types of families were found. Self-concept scores were significantly lower for children reporting…
Restoration of bottomland hardwood forests across a treatment intensity gradient
John A. Stanturf; Emile S. Gardiner; James P. Shepard; Callie J. Schweitzer; C. Jeffrey Portwood; Lamar C. Jr. Dorris
2009-01-01
Large-scale restoration of bottomland hardwood forests in the Lower Mississippi Alluvial Valley (USA) under federal incentive programs, begun in the 1990s, initially achieved mixed results. We report here on a comparison of four restoration techniques in terms of survival, accretion of vertical structure, and woody species diversity. The range of treatment intensity...
Large-scale systems: Complexity, stability, reliability
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1975-01-01
After showing that a complex dynamic system with a competitive structure has highly reliable stability, a class of noncompetitive dynamic systems for which competitive models can be constructed is defined. It is shown that such a construction is possible in the context of the hierarchic stability analysis. The scheme is based on the comparison principle and vector Liapunov functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guin, Arijit; Ramanathan, Ramya; Ritzi, Robert W.
In Part 1 of this series we presented a methodology and a code for modeling the hierarchical sedimentary architecture in braided channel belt deposits. Here, in Part 2, the code was used to create a digital model of this architecture, and the corresponding spatial distribution of permeability. The simulated architecture was compared to the real stratal architecture observed in an abandoned channel belt of the Sagavanirktok River, Alaska by Lunt et al. (2004). The comparisons included assessments of similarity which were both qualitative and quantitative. From the qualitative comparisons we conclude that a synthetic deposit created by the code hasmore » unit types, at each level, with a geometry which is generally consistent with the geometry of unit types observed in the field. The digital unit types would generally be recognized as representing their counterparts in nature, including cross stratasets, lobate and scroll bar deposits, channel fills, etc. Furthermore, the synthetic deposit has a hierarchical spatial relationship among these units which represents how the unit types are observed in field exposures and in geophysical images. In quantitative comparisons the proportions and the length, width, and height of unit types at different scales, across all levels of the stratal hierarchy compare well between the digital and the natural deposits. A number of important attributes of the channel belt model were shown to be influenced by more than one level within the hierarchy of stratal architecture. First, the high-permeability open-framework gravels percolated at all levels and thus formed preferential flow pathways. Open framework gravels are indeed known to form preferential flow pathways in natural channel belt deposits. The nature of a percolating cluster changed across different levels of the hierarchy of stratal architecture. As a result of this geologic structure, the percolation occurs at proportions of open-framework gravels below the theoretical percolation threshold for random infinite media. Second, when the channel belt model was populated with permeability distributions by lowest-level unit type, the composite permeability semivariogram contained structures that were identifiable at more than one scale, and each of these structures could be directly linked to unit types of different scales existing at different levels within the hierarchy of strata. These collective results are encouraging with respect to our goal that this model be relevant as a base case in future studies for testing ideas in research addressing the upscaling problem in aquifers and reservoirs with multi-scale heterogeneity.« less
Growns, Ivor; Astles, Karen; Gehrke, Peter
2006-03-01
We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.
NASA Astrophysics Data System (ADS)
Formosa, F.; Fréchette, L. G.
2015-12-01
An electrical circuit equivalent (ECE) approach has been set up allowing elementary oscillatory microengine components to be modelled. They cover gas channel/chamber thermodynamics, viscosity and thermal effects, mechanical structure and electromechanical transducers. The proposed tool has been validated on a centimeter scale Free Piston membrane Stirling engine [1]. We propose here new developments taking into account scaling effects to establish models suitable for any microengines. They are based on simplifications derived from the comparison of the hydraulic radius with respect to the viscous and thermal penetration depths respectively).
Désiré, Amélie; Paillard, Bruno; Bougaret, Joël; Baron, Michel; Couarraze, Guy
2013-02-01
Scaling-up the extrusion-spheronization process involves the separate scale-up of each of the five process steps: dry mixing, granulation, extrusion, spheronization, and drying. The aim of the study was to compare two screw extrusion systems regarding their suitability for scaling-up. Two drug substances of high- and low-solubility in water were retained at different concentrations as formulation variables. Different spheronization times were tested. The productivity of the process was followed up using the extrusion rate and yield. Pellets were characterized by their size and shape, and by their structural and mechanical properties. A response surface design of experiments was built to evaluate the influence of the different variables and their interactions on each response, and to select the type of extrusion which provides the best results in terms of product quality, the one which shows less influence on the product after scale-up ("scalability") and when the formula used changes ("robustness"), and the one which allows the possibility to adjust pellet properties with spheronization variables ("flexibility"). Axial system showed the best characteristics in terms of product quality at lab and industrial scales, the best robustness at industrial scale, and the best scalability, by comparison with radial system. Axial system thus appeared as the easiest scaled-up system. Compared to lab scale, the conclusions observed at industrial scale were the same in terms of product quality, but different for robustness and flexibility, which confirmed the importance to test the systems at industrial scale before acquiring the equipment.
Non-Axisymmetric Inflatable Pressure Structure (NAIPS) Full-Scale Pressure Test
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.; Warren, Jerry E.; Watson, Judith J.; Shariff, Khadijah; Makino, Alberto; Yount, Bryan C.
2017-01-01
Inflatable space structures have the potential to significantly reduce the required launch volume for large pressure vessels required for exploration applications including habitats, airlocks and tankage. In addition, mass savings can be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Large inclusions however, such as hatches, induce a high mass penalty at the interfaces with the softgoods and in the added rigid structure while reducing the packaging efficiency. A novel, Non-Axisymmetric Inflatable Pressure Structure (NAIPS) was designed and recently tested at NASA Langley Research Center to demonstrate an elongated inflatable architecture that could provide areas of low stress along a principal axis in the surface. These low stress zones will allow the integration of a flexible linear seal that substantially reduces the added mass and volume of a heritage rigid hatch structure. This paper describes the test of the first full-scale engineering demonstration unit (EDU) of the NAIPS geometry and a comparison of the results to finite element analysis.
NASA Astrophysics Data System (ADS)
Wu, S.; McKay, M.; Evans, K. R.
2017-12-01
Understanding the architecture of mountain belts is limited because studies are typically confined to surficial exposures with lesser amounts of subsurface data and active margins are prone to successive tectonism that obscures the rock record. In west-central Missouri, two Paleozoic meteorite impacts are exposed that contain a range of outcrop-scale structures. While the strain rate in a meteorite impact is an order of magnitude greater than that in orogeny-scale structures, the morphology and spatial relationships in these impact structures may provide insight into larger tectonic features. The entire crater could not be compared to an orogenic event because the amount of strain diffuses as distance increases from the impactor during an impacting event. The center of an impact crater could not be compared to an orogenic event because it has become too deformed. However, the crater rim and the immediate surrounding area could be used as a comparison because it has undergone the right amount of deformation to have recognizable structures. High-detail mapping and structural analyses of road cut exposures near Decaturville, MO reveals thrust fault sequences contain 1-2 m thick mixed carbonate and clastic sheets that include rollover anticlines, structural orphans, and lateral ramp features. Thrust faults dip away from the impact structure and represent gravitational collapse of the central uplift seconds after collision. Thrust sheet thickness, thrust fault spacing, ramp/flat morphology, and shortening of within these structures will be presented and assessed as an analogue for map-scale features in the Southern Appalachian fold and thrust belt. Because temperature controls rock mechanic properties, a thermal model based on thermochronology and thermobarometry for the section will also be presented and discussed in the context of orogenic thermomechanics.
An evaluation of the precision of fin ray, otolith, and scale age determinations for brook trout
Stolarski, J.T.; Hartman, K.J.
2008-01-01
The ages of brook trout Salvelinus fontinalis are typically estimated using scales despite a lack of research documenting the effectiveness of this technique. The use of scales is often preferred because it is nonlethal and is believed to require less effort than alternative methods. To evaluate the relative effectiveness of different age estimation methodologies for brook trout, we measured the precision and processing times of scale, sagittal otolith, and pectoral fin ray age estimation techniques. Three independent readers, age bias plots, coefficients of variation (CV = 100 x SD/mean), and percent agreement (PA) were used to measure within-reader, among-structure bias and within-structure, among-reader precision. Bias was generally minimal; however, the age estimates derived from scales tended to be lower than those derived from otoliths within older (age > 2) cohorts. Otolith, fin ray, and scale age estimates were within 1 year of each other for 95% of the comparisons. The measures of precision for scales (CV = 6.59; PA = 82.30) and otoliths (CV = 7.45; PA = 81.48) suggest higher agreement between these structures than with fin rays (CV = 11.30; PA = 65.84). The mean per-sample processing times were lower for scale (13.88 min) and otolith techniques (12.23 min) than for fin ray techniques (22.68 min). The comparable processing times of scales and otoliths contradict popular belief and are probably a result of the high proportion of regenerated scales within samples and the ability to infer age from whole (as opposed to sectioned) otoliths. This research suggests that while scales produce age estimates rivaling those of otoliths for younger (age > 3) cohorts, they may be biased within older cohorts and therefore should be used with caution. ?? Copyright by the American Fisheries Society 2008.
Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.
Tao, Tianyou; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges. PMID:24995367
Butler, J B; Vaillancourt, R E; Potts, B M; Lee, D J; King, G J; Baten, A; Shepherd, M; Freeman, J S
2017-05-22
Previous studies suggest genome structure is largely conserved between Eucalyptus species. However, it is unknown if this conservation extends to more divergent eucalypt taxa. We performed comparative genomics between the eucalypt genera Eucalyptus and Corymbia. Our results will facilitate transfer of genomic information between these important taxa and provide further insights into the rate of structural change in tree genomes. We constructed three high density linkage maps for two Corymbia species (Corymbia citriodora subsp. variegata and Corymbia torelliana) which were used to compare genome structure between both species and Eucalyptus grandis. Genome structure was highly conserved between the Corymbia species. However, the comparison of Corymbia and E. grandis suggests large (from 1-13 MB) intra-chromosomal rearrangements have occurred on seven of the 11 chromosomes. Most rearrangements were supported through comparisons of the three independent Corymbia maps to the E. grandis genome sequence, and to other independently constructed Eucalyptus linkage maps. These are the first large scale chromosomal rearrangements discovered between eucalypts. Nonetheless, in the general context of plants, the genomic structure of the two genera was remarkably conserved; adding to a growing body of evidence that conservation of genome structure is common amongst woody angiosperms.
Jain, Shekhar; Ginzburg, Valeriy V; Jog, Prasanna; Weinhold, Jeffrey; Srivastava, Rakesh; Chapman, Walter G
2009-07-28
The interaction between two polymer grafted surfaces is important in many applications, such as nanocomposites, colloid stabilization, and polymer alloys. In our previous work [Jain et al., J. Chem. Phys. 128, 154910 (2008)], we showed that interfacial statistical associating fluid density theory (iSAFT) successfully calculates the structure of grafted polymer chains in the absence/presence of a free polymer. In the current work, we have applied this density functional theory to calculate the force of interaction between two such grafted monolayers in implicit good solvent conditions. In particular, we have considered the case where the segment sizes of the free (sigma(f)) and grafted (sigma(g)) polymers are different. The interactions between the two monolayers in the absence of the free polymer are always repulsive. However, in the presence of the free polymer, the force either can be purely repulsive or can have an attractive minimum depending upon the relative chain lengths of the free (N(f)) and grafted polymers (N(g)). The attractive minimum is observed only when the ratio alpha = N(f)/N(g) is greater than a critical value. We find that these critical values of alpha satisfy the following scaling relation: rho(g) square root(N(g)) beta(3) proportional to alpha(-lambda), where beta = sigma(f)/sigma(g) and lambda is the scaling exponent. For beta = 1 or the same segment sizes of the free and grafted polymers, this scaling relation is in agreement with those from previous theoretical studies using self-consistent field theory (SCFT). Detailed comparisons between iSAFT and SCFT are made for the structures of the monolayers and their forces of interaction. These comparisons lead to interesting implications for the modeling of nanocomposite thermodynamics.
Origin of fine structure of the giant dipole resonance in s d -shell nuclei
NASA Astrophysics Data System (ADS)
Fearick, R. W.; Erler, B.; Matsubara, H.; von Neumann-Cosel, P.; Richter, A.; Roth, R.; Tamii, A.
2018-04-01
A set of high-resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the giant dipole resonance (GDR) in s d -shell nuclei. Understanding is achieved by comparison with random phase approximation calculations for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows one to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement for scales in the range of a few hundred keV supports the surmise that the fine structure arises from ground-state deformation driven by α clustering.
On the structure of contact binaries. I - The contact discontinuity
NASA Technical Reports Server (NTRS)
Shu, F. H.; Lubow, S. H.; Anderson, L.
1976-01-01
The problem of the interior structure of contact binaries is reviewed, and a simple resolution of the difficulties which plague the theory is suggested. It is proposed that contact binaries contain a contact discontinuity between the lower surface of the common envelope and the Roche lobe of the cooler star. This discontinuity is maintained against thermal diffusion by fluid flow, and the transition layer is thin to the extent that the dynamical time scale is short in comparison with the thermal time scale. The idealization that the transition layer has infinitesimal thickness allows a simple formulation of the structure equations which are closed by appropriate jump conditions across the discontinuity. The further imposition of the standard boundary conditions suffices to define a unique model for the system once the chemical composition, the masses of the two stars, and the orbital separation are specified.
Molecular clouds and the large-scale structure of the galaxy
NASA Technical Reports Server (NTRS)
Thaddeus, Patrick; Stacy, J. Gregory
1990-01-01
The application of molecular radio astronomy to the study of the large-scale structure of the Galaxy is reviewed and the distribution and characteristic properties of the Galactic population of Giant Molecular Clouds (GMCs), derived primarily from analysis of the Columbia CO survey, and their relation to tracers of Population 1 and major spiral features are described. The properties of the local molecular interstellar gas are summarized. The CO observing programs currently underway with the Center for Astrophysics 1.2 m radio telescope are described, with an emphasis on projects relevant to future comparison with high-energy gamma-ray observations. Several areas are discussed in which high-energy gamma-ray observations by the EGRET (Energetic Gamma-Ray Experiment Telescope) experiment aboard the Gamma Ray Observatory will directly complement radio studies of the Milky Way, with the prospect of significant progress on fundamental issues related to the structure and content of the Galaxy.
Goo, Ae Jin; Shin, Dong Wook; Yang, Hyung Kook; Park, Jong-Hyock; Kim, So-Young; Shin, Joo Yeon; Kim, Young Ae; Kim, Changhoon; Hong, Nam-Soo; Min, Young Joo; Park, Keeho
2017-07-01
The European Organization for Research and Treatment of Cancer (EORTC) QLQ-ELD14 is a validated tool that measures Health-related Quality-of-life (HRQOL) for elderly patients with cancer. This study was conducted to evaluate the psychometric properties of the Korean version of the EORTC QLQ-ELD14 to determine if this tool can be used to evaluate HRQOL for older Korean patients with cancer. We recruited 439 elderly patients with cancer aged ≥60years from 11 cancer centers and completed the EORTC QLQ-ELD14 questionnaires. The reliability and validity of the EORTC QLQ-ELD14 questionnaire were assessed via Cronbach alpha, multitrait scaling analyses, correlation analyses with the EORTC QLQ-C30, and known-group comparisons. Known-group comparisons were conducted by dividing the patients into groups based on the cancer stage, depression level, and loss of mobility. The scale structure of the Korean version of the EORTC QLQ-ELD14 was consistent with the originally hypothesized scale structure. Cronbach alpha coefficients ranged 0.65-0.88. Multitrait scaling analysis showed good item convergent and discriminant validity. Low scaling errors (3.1%) were observed. Divergent validity was demonstrated by no strong correlation with the EORTC QLQ C30. The clinical validity of the Korean version of the EORTC QLQ-ELD14 was demonstrated by its ability to discriminate among patient subgroups categorized by AJCC stage, depression level, and loss of mobility. Our findings indicate that the Korean version of the EORTC QLQ-ELD14 questionnaire is reliable and valid for measuring QOL of older Korean patients with cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Statistical Measures of Large-Scale Structure
NASA Astrophysics Data System (ADS)
Vogeley, Michael; Geller, Margaret; Huchra, John; Park, Changbom; Gott, J. Richard
1993-12-01
\\inv Mpc} To quantify clustering in the large-scale distribution of galaxies and to test theories for the formation of structure in the universe, we apply statistical measures to the CfA Redshift Survey. This survey is complete to m_{B(0)}=15.5 over two contiguous regions which cover one-quarter of the sky and include ~ 11,000 galaxies. The salient features of these data are voids with diameter 30-50\\hmpc and coherent dense structures with a scale ~ 100\\hmpc. Comparison with N-body simulations rules out the ``standard" CDM model (Omega =1, b=1.5, sigma_8 =1) at the 99% confidence level because this model has insufficient power on scales lambda >30\\hmpc. An unbiased open universe CDM model (Omega h =0.2) and a biased CDM model with non-zero cosmological constant (Omega h =0.24, lambda_0 =0.6) match the observed power spectrum. The amplitude of the power spectrum depends on the luminosity of galaxies in the sample; bright (L>L(*) ) galaxies are more strongly clustered than faint galaxies. The paucity of bright galaxies in low-density regions may explain this dependence. To measure the topology of large-scale structure, we compute the genus of isodensity surfaces of the smoothed density field. On scales in the ``non-linear" regime, <= 10\\hmpc, the high- and low-density regions are multiply-connected over a broad range of density threshold, as in a filamentary net. On smoothing scales >10\\hmpc, the topology is consistent with statistics of a Gaussian random field. Simulations of CDM models fail to produce the observed coherence of structure on non-linear scales (>95% confidence level). The underdensity probability (the frequency of regions with density contrast delta rho //lineρ=-0.8) depends strongly on the luminosity of galaxies; underdense regions are significantly more common (>2sigma ) in bright (L>L(*) ) galaxy samples than in samples which include fainter galaxies.
A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure
NASA Astrophysics Data System (ADS)
Duvall, M. S.; Hench, J. L.
2016-02-01
The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.
Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing
NASA Technical Reports Server (NTRS)
Nance, Donald K.; Liever, Peter A.
2015-01-01
The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.
Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing
NASA Technical Reports Server (NTRS)
Nance, Donald; Liever, Peter; Nielsen, Tanner
2015-01-01
The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.
Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.; ...
2016-10-20
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less
Sippel, Sebastian; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.
2016-01-01
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics. PMID:27764187
Hu, Jun; Liu, Zi; Yu, Dong-Jun; Zhang, Yang
2018-02-15
Sequence-order independent structural comparison, also called structural alignment, of small ligand molecules is often needed for computer-aided virtual drug screening. Although many ligand structure alignment programs are proposed, most of them build the alignments based on rigid-body shape comparison which cannot provide atom-specific alignment information nor allow structural variation; both abilities are critical to efficient high-throughput virtual screening. We propose a novel ligand comparison algorithm, LS-align, to generate fast and accurate atom-level structural alignments of ligand molecules, through an iterative heuristic search of the target function that combines inter-atom distance with mass and chemical bond comparisons. LS-align contains two modules of Rigid-LS-align and Flexi-LS-align, designed for rigid-body and flexible alignments, respectively, where a ligand-size independent, statistics-based scoring function is developed to evaluate the similarity of ligand molecules relative to random ligand pairs. Large-scale benchmark tests are performed on prioritizing chemical ligands of 102 protein targets involving 1,415,871 candidate compounds from the DUD-E (Database of Useful Decoys: Enhanced) database, where LS-align achieves an average enrichment factor (EF) of 22.0 at the 1% cutoff and the AUC score of 0.75, which are significantly higher than other state-of-the-art methods. Detailed data analyses show that the advanced performance is mainly attributed to the design of the target function that combines structural and chemical information to enhance the sensitivity of recognizing subtle difference of ligand molecules and the introduces of structural flexibility that help capture the conformational changes induced by the ligand-receptor binding interactions. These data demonstrate a new avenue to improve the virtual screening efficiency through the development of sensitive ligand structural alignments. http://zhanglab.ccmb.med.umich.edu/LS-align/. njyudj@njust.edu.cn or zhng@umich.edu. Supplementary data are available at Bioinformatics online.
Saboonchi, Fredrik; Perski, Aleksander; Grossi, Giorgio
2013-12-01
The syndrome of exhaustion is currently a medical diagnosis in Sweden. The description of the syndrome largely corresponds to the suggested core component of burnout, that is exhaustion. Karolinska Exhaustion Scale (KES) has been constructed to provide specific assessment of exhaustion in clinical and research settings. The purpose of the present study was to examine the psychometric properties of this scale in its original and revised versions by examining the factorial structure and measures of convergent and discriminant validity. Data gathered from two independent samples (n1 = 358 & n2 = 403) consisting of patients diagnosed with 'reaction to severe stress, and adjustment disorder' were subjected to confirmatory factor analysis. The study's instruments were Karolinska Exhaustion Scale and Shirom Melam Burnout Measure. Correlation analyses were employed to follow up the established factorial structure of the scale. The study was ethically approved by Karolinska Institute regional ethic committee. The findings demonstrated adequate fit of the data to the measurement model provided by the revised version of KES Limitations: The main limitation of the present study is the lack of a gold standard of exhaustion for direct comparison with KES. (KES-26) and partially supported convergent validity and discriminant validity of the scale. The demonstrated psychometric properties of KES-26 indicate sound construct validity for this scale encouraging use of this scale in assessment of exhaustion. The factorial structure of KES-26 may also be used to provide information concerning possible different clinical profiles. © 2012 The Authors Scandinavian Journal of Caring Sciences © 2012 Nordic College of Caring Science.
Intercode comparison of gyrokinetic global electromagnetic modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Görler, T., E-mail: tobias.goerler@ipp.mpg.de; Tronko, N.; Hornsby, W. A.
Aiming to fill a corresponding lack of sophisticated test cases for global electromagnetic gyrokinetic codes, a new hierarchical benchmark is proposed. Starting from established test sets with adiabatic electrons, fully gyrokinetic electrons, and electrostatic fluctuations are taken into account before finally studying the global electromagnetic micro-instabilities. Results from up to five codes involving representatives from different numerical approaches as particle-in-cell methods, Eulerian and Semi-Lagrangian are shown. By means of spectrally resolved growth rates and frequencies and mode structure comparisons, agreement can be confirmed on ion-gyro-radius scales, thus providing confidence in the correct implementation of the underlying equations.
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Elliott, Joe W.
1992-01-01
An experimental investigation was conducted in the 14 by 22 ft subsonic tunnel at NASA Langley Research Center to quantify the rotor wake behind a scale model helicopter rotor in forward flight (mu = 0.15 and 0.23) at one thrust level (C sub T = 0.0064). The rotor system used in the present test consisted of a four-bladed, fully articulated hub and utilized blades of rectangular planform with a NACA-0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the flow in planes parallel and perpendicular to the freestream flow. Quantitative measurements of vortex location, vertical skew angle, and vortex particle void radius were obtained for vortices in the flow; convective velocities were obtained for blade tip vortices. Comparisons were made between the experimental results and the wake geometry generated by computational predictions. The results of these comparisons show that the interaction between wake vortex structures is an important consideration for correctly predicting the wake geometry.
Modulation of a methane Bunsen flame by upstream perturbations
NASA Astrophysics Data System (ADS)
de Souza, T. Cardoso; Bastiaans, R. J. M.; De Goey, L. P. H.; Geurts, B. J.
2017-04-01
In this paper the effects of an upstream spatially periodic modulation acting on a turbulent Bunsen flame are investigated using direct numerical simulations of the Navier-Stokes equations coupled with the flamelet generated manifold (FGM) method to parameterise the chemistry. The premixed Bunsen flame is spatially agitated with a set of coherent large-scale structures of specific wave-number, K. The response of the premixed flame to the external modulation is characterised in terms of time-averaged properties, e.g. the average flame height ⟨H⟩ and the flame surface wrinkling ⟨W⟩. Results show that the flame response is notably selective to the size of the length scales used for agitation. For example, both flame quantities ⟨H⟩ and ⟨W⟩ present an optimal response, in comparison with an unmodulated flame, when the modulation scale is set to relatively low wave-numbers, 4π/L ≲ K ≲ 6π/L, where L is a characteristic scale. At the agitation scales where the optimal response is observed, the average flame height, ⟨H⟩, takes a clearly defined minimal value while the surface wrinkling, ⟨W⟩, presents an increase by more than a factor of 2 in comparison with the unmodulated reference case. Combined, these two response quantities indicate that there is an optimal scale for flame agitation and intensification of combustion rates in turbulent Bunsen flames.
Comparison of seven optical clearing methods for mouse brain
NASA Astrophysics Data System (ADS)
Wan, Peng; Zhu, Jingtan; Yu, Tingting; Zhu, Dan
2018-02-01
Recently, a variety of tissue optical clearing techniques have been developed to reduce light scattering for imaging deeper and three-dimensional reconstruction of tissue structures. Combined with optical imaging techniques and diverse labeling methods, these clearing methods have significantly promoted the development of neuroscience. However, most of the protocols were proposed aiming for specific tissue type. Though there are some comparison results, the clearing methods covered are limited and the evaluation indices are lack of uniformity, which made it difficult to select a best-fit protocol for clearing in practical applications. Hence, it is necessary to systematically assess and compare these clearing methods. In this work, we evaluated the performance of seven typical clearing methods, including 3DISCO, uDISCO, SeeDB, ScaleS, ClearT2, CUBIC and PACT, on mouse brain samples. First, we compared the clearing capability on both brain slices and whole-brains by observing brain transparency. Further, we evaluated the fluorescence preservation and the increase of imaging depth. The results showed that 3DISCO, uDISCO and PACT posed excellent clearing capability on mouse brains, ScaleS and SeeDB rendered moderate transparency, while ClearT2 was the worst. Among those methods, ScaleS was the best on fluorescence preservation, and PACT achieved the highest increase of imaging depth. This study is expected to provide important reference for users in choosing most suitable brain optical clearing method.
Molecular Treatment of Nano-Kaolinite Generations.
Táborosi, Attila; Szilagyi, Robert K; Zsirka, Balázs; Fónagy, Orsolya; Horváth, Erzsébet; Kristóf, János
2018-06-18
A procedure is developed for defining a compositionally and structurally realistic, atomic-scale description of exfoliated clay nanoparticles from the kaolinite family of phylloaluminosilicates. By use of coordination chemical principles, chemical environments within a nanoparticle can be separated into inner, outer, and peripheral spheres. The edges of the molecular models of nanoparticles were protonated in a validated manner to achieve charge neutrality. Structural optimizations using semiempirical methods (NDDO Hamiltonians and DFTB formalism) and ab initio density functionals with a saturated basis set revealed previously overlooked molecular origins of morphological changes as a result of exfoliation. While the use of semiempirical methods is desirable for the treatment of nanoparticles composed of tens of thousands of atoms, the structural accuracy is rather modest in comparison to DFT methods. We report a comparative survey of our infrared data for untreated crystalline and various exfoliated states of kaolinite and halloysite. Given the limited availability of experimental techniques for providing direct structural information about nano-kaolinite, the vibrational spectra can be considered as an essential tool for validating structural models. The comparison of experimental and calculated stretching and bending frequencies further justified the use of the preferred level of theory. Overall, an optimal molecular model of the defect-free, ideal nano-kaolinite can be composed with respect to stationary structure and curvature of the potential energy surface using the PW91/SVP level of theory with empirical dispersion correction (PW91+D) and polarizable continuum solvation model (PCM) without the need for a scaled quantum chemical force field. This validated theoretical approach is essential in order to follow the formation of exfoliated clays and their surface reactivity that is experimentally unattainable.
NASA Astrophysics Data System (ADS)
Guin, Arijit; Ramanathan, Ramya; Ritzi, Robert W.; Dominic, David F.; Lunt, Ian A.; Scheibe, Timothy D.; Freedman, Vicky L.
2010-04-01
In part 1 of this paper (Ramanathan et al., 2010b) we presented a methodology and a code for modeling the hierarchical sedimentary architecture in braided channel belt deposits. Here in part 2, the code was used to create a digital model of this architecture and the corresponding spatial distribution of permeability. The simulated architecture was compared to the real stratal architecture observed in an abandoned channel belt. The comparisons included assessments of similarity which were both qualitative and quantitative. The qualitative comparisons show that the geometries of unit types within the synthetic deposits are generally consistent with field observations. The unit types in the synthetic deposits would generally be recognized as representing their counterparts in nature, including cross stratasets, lobate and scroll bar deposits, and channel fills. Furthermore, the synthetic deposits have a hierarchical spatial relationship among these units consistent with observations from field exposures and geophysical images. In quantitative comparisons the proportions and the length, width, and height of unit types at different scales, across all levels of the stratal hierarchy, compare well between the synthetic and the natural deposits. A number of important attributes of the synthetic channel belt deposits are shown to be influenced by more than one level within the hierarchy of stratal architecture. First, the high-permeability open-framework gravels connected across all levels and thus formed preferential flow pathways; open-framework gravels are known to form preferential flow pathways in natural channel belt deposits. The nature of a connected cluster changed across different levels of the stratal hierarchy, and as a result of the geologic structure, the connectivity occurs at proportions of open-framework gravels below the theoretical percolation threshold for random infinite media. Second, when the channel belt model was populated with permeability distributions by lowest-level unit type, the composite permeability semivariogram contained structures that were identifiable at more than one scale, and each of these structures could be directly linked to unit types of different scales existing at different levels within the hierarchy of strata. These collective results are encouraging with respect to our goal that this model be relevant for testing ideas in future research on flow and transport in aquifers and reservoirs with multiscale heterogeneity.
Feature Extraction of High-Dimensional Structures for Exploratory Analytics
2013-04-01
Comparison of Euclidean vs. geodesic distance. LDRs use metric based on the Euclidean distance between two points, while the NLDRs are based on...geodesic distance. An NLDR successfully unrolls the curved manifold, whereas an LDR fails. ...........................3 1 1. Introduction An...and classical metric multidimensional scaling, are a linear DR ( LDR ). An LDR is based on a linear combination of
Yu, Clinton; Huszagh, Alexander; Viner, Rosa; Novitsky, Eric J; Rychnovsky, Scott D; Huang, Lan
2016-10-18
Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.
NASA Astrophysics Data System (ADS)
Dombeck, J. P.; Cattell, C. A.; Prasad, N.; Sakher, A.; Hanson, E.; McFadden, J. P.; Strangeway, R. J.
2016-12-01
Field-aligned currents (FACs) provide a fundamental driver and means of Magnetosphere-Ionosphere (M-I) coupling. These currents need to be supported by local physics along the entire field line generally with quasi-static potential structures, but also supporting the time-evolution of the structures and currents, producing Alfvén waves and Alfvénic electron acceleration. In regions of upward current, precipitating auroral electrons are accelerated earthward. These processes can result in ion outflow, changes in ionospheric conductivity, and affect the particle distributions on the field line, affecting the M-I coupling processes supporting the individual FACs and potentially the entire FAC system. The FAST mission was well suited to study both the FACs and the electron auroral acceleration processes. We present the results of the comparisons between meso- and small-scale FACs determined from FAST using the method of Peria, et al., 2000, and our FAST auroral acceleration mechanism study when such identification is possible for the entire ˜13 year FAST mission. We also present the latest results of the electron energy (and number) flux ionospheric input based on acceleration mechanism (and FAC characteristics) from our FAST auroral acceleration mechanism study.
Psychometric properties of the Hebrew version of the Dutch Work Addiction Scale (DUWAS-10).
Littman-Ovadia, Hadassah; Balducci, Cristian; Ben-Moshe, Tali
2014-01-01
The present study examined the psychometric properties of the Hebrew version of the Dutch Work Addiction Scale (DUWAS-10), developed by Schaufeli, Shimazu, and Taris (2009). Three hundred fifty-one employees completed a questionnaire measuring workaholism; of these, 251 employees completed questionnaires measuring work engagement, job satisfaction, overcommitment, and burnout. The results confirmed the expected two-factor structure of workaholism: working excessively and working compulsively. Strong correlations were obtained between self-reports and peer-reports, and satisfactory correlations were obtained between the first and second administrations of the DUWAS-10. Furthermore, DUWAS-10 scores showed predictable relations with actual number of hours worked per week, work engagement, job satisfaction, overcommitment, and burnout. Interestingly, despite working fewer hours per week, women reported higher levels of workaholism in comparison to men, and managers reported higher levels of workaholism in comparison to nonmanagerial employees.
Supersonic jet noise generated by large scale instabilities
NASA Technical Reports Server (NTRS)
Seiner, J. M.; Mclaughlin, D. K.; Liu, C. H.
1982-01-01
The role of large scale wavelike structures as the major mechanism for supersonic jet noise emission is examined. With the use of aerodynamic and acoustic data for low Reynolds number, supersonic jets at and below 70 thousand comparisons are made with flow fluctuation and acoustic measurements in high Reynolds number, supersonic jets. These comparisons show that a similar physical mechanism governs the generation of sound emitted in he principal noise direction. These experimental data are further compared with a linear instability theory whose prediction for the axial location of peak wave amplitude agrees satisfactorily with measured phased averaged flow fluctuation data in the low Reynolds number jets. The agreement between theory and experiment in the high Reynolds number flow differs as to the axial location for peak flow fluctuations and predicts an apparent origin for sound emission far upstream of the measured acoustic data.
NASA Technical Reports Server (NTRS)
Bretherton, Christopher S.
2002-01-01
The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.
NASA Astrophysics Data System (ADS)
Schweser, Ferdinand; Dwyer, Michael G.; Deistung, Andreas; Reichenbach, Jürgen R.; Zivadinov, Robert
2013-10-01
The assessment of abnormal accumulation of tissue iron in the basal ganglia nuclei and in white matter plaques using the gradient echo magnetic resonance signal phase has become a research focus in many neurodegenerative diseases such as multiple sclerosis or Parkinson’s disease. A common and natural approach is to calculate the mean high-pass-filtered phase of previously delineated brain structures. Unfortunately, the interpretation of such an analysis requires caution: in this paper we demonstrate that regional gray matter atrophy, which is concomitant with many neurodegenerative diseases, may itself directly result in a phase shift seemingly indicative of increased iron concentration even without any real change in the tissue iron concentration. Although this effect is relatively small results of large-scale group comparisons may be driven by anatomical changes rather than by changes of the iron concentration.
NASA Technical Reports Server (NTRS)
Ricks, W. R.
1994-01-01
PWC is used for pair-wise comparisons in both psychometric scaling techniques and cognitive research. The cognitive tasks and processes of a human operator of automated systems are now prominent considerations when defining system requirements. Recent developments in cognitive research have emphasized the potential utility of psychometric scaling techniques, such as multidimensional scaling, for representing human knowledge and cognitive processing structures. Such techniques involve collecting measurements of stimulus-relatedness from human observers. When data are analyzed using this scaling approach, an n-dimensional representation of the stimuli is produced. This resulting representation is said to describe the subject's cognitive or perceptual view of the stimuli. PWC applies one of the many techniques commonly used to acquire the data necessary for these types of analyses: pair-wise comparisons. PWC administers the task, collects the data from the test subject, and formats the data for analysis. It therefore addresses many of the limitations of the traditional "pen-and-paper" methods. By automating the data collection process, subjects are prevented from going back to check previous responses, the possibility of erroneous data transfer is eliminated, and the burden of the administration and taking of the test is eased. By using randomization, PWC ensures that subjects see the stimuli pairs presented in random order, and that each subject sees pairs in a different random order. PWC is written in Turbo Pascal v6.0 for IBM PC compatible computers running MS-DOS. The program has also been successfully compiled with Turbo Pascal v7.0. A sample executable is provided. PWC requires 30K of RAM for execution. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. Two electronic versions of the documentation are included on the diskette: one in ASCII format and one in MS Word for Windows format. PWC was developed in 1993.
NASA Astrophysics Data System (ADS)
Handley, John C.; Babcock, Jason S.; Pelz, Jeff B.
2003-12-01
Image evaluation tasks are often conducted using paired comparisons or ranking. To elicit interval scales, both methods rely on Thurstone's Law of Comparative Judgment in which objects closer in psychological space are more often confused in preference comparisons by a putative discriminal random process. It is often debated whether paired comparisons and ranking yield the same interval scales. An experiment was conducted to assess scale production using paired comparisons and ranking. For this experiment a Pioneer Plasma Display and Apple Cinema Display were used for stimulus presentation. Observers performed rank order and paired comparisons tasks on both displays. For each of five scenes, six images were created by manipulating attributes such as lightness, chroma, and hue using six different settings. The intention was to simulate the variability from a set of digital cameras or scanners. Nineteen subjects, (5 females, 14 males) ranging from 19-51 years of age participated in this experiment. Using a paired comparison model and a ranking model, scales were estimated for each display and image combination yielding ten scale pairs, ostensibly measuring the same psychological scale. The Bradley-Terry model was used for the paired comparisons data and the Bradley-Terry-Mallows model was used for the ranking data. Each model was fit using maximum likelihood estimation and assessed using likelihood ratio tests. Approximate 95% confidence intervals were also constructed using likelihood ratios. Model fits for paired comparisons were satisfactory for all scales except those from two image/display pairs; the ranking model fit uniformly well on all data sets. Arguing from overlapping confidence intervals, we conclude that paired comparisons and ranking produce no conflicting decisions regarding ultimate ordering of treatment preferences, but paired comparisons yield greater precision at the expense of lack-of-fit.
Reconciling biases and uncertainties of AIRS and MODIS ice cloud properties
NASA Astrophysics Data System (ADS)
Kahn, B. H.; Gettelman, A.
2015-12-01
We will discuss comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (COT), effective radius (CER), and cloud thermodynamic phase retrievals. The ice cloud comparisons are stratified by retrieval uncertainty estimates, horizontal inhomogeneity at the pixel-scale, vertical cloud structure, and other key parameters. Although an estimated 27% globally of all AIRS pixels contain ice cloud, only 7% of them are spatially uniform ice according to MODIS. We find that the correlations of COT and CER between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure. The best correlations are found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans with biases and scatter that increase with scene complexity. While the COT comparisons are unbiased in homogeneous ice clouds, a bias of 5-10 microns remains in CER within the most homogeneous scenes identified. This behavior is entirely consistent with known sensitivity differences in the visible and infrared bands. We will use AIRS and MODIS ice cloud properties to evaluate ice hydrometeor output from climate model output, such as the CAM5, with comparisons sorted into different dynamical regimes. The results of the regime-dependent comparisons will be described and implications for model evaluation and future satellite observational needs will be discussed.
Jurcisinová, E; Jurcisin, M; Remecký, R
2009-10-01
The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical expressions for coordinates of the corresponding fixed point of the renormalization-group equations as functions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling regime is demonstrated, and the dependence of the borderline dimension d(c) is an element of (2,3] between stable and unstable scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous dimensions of the structure functions, which are the same (universal) for the Kraichnan model, for the model with finite time correlations of the velocity field, and for the model with the advection by the velocity field driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corresponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within the Kraichnan rapid-change model is done.
Guerreiro, Diogo Frasquilho; Cruz, Diana; Figueira, Maria Luísa; Sampaio, Daniel
2014-01-01
Coping is a psychological process that prompts the individual to adapt to stressful situations. The Adolescent Coping Scale is a widely used research and clinical tool. This study aimed to develop a Portuguese version of the Adolescent Coping Scale and to analyze the strategies and coping styles of young people in our sample. An anonymous questionnaire comprising the Adolescent Coping Scale was submitted and replied by 1 713 students (56% female, from 12 to 20 years, average age 16) The validity study of the scale included: principal component and reliability analysis; confirmatory analysis using structural equation modelling Subsequently, a gender comparison of both the strategies and the coping styles was conducted through independent samples t tests. The final structure of the Adolescent Coping Scale adaptation retained 70 items assessing 16 coping strategies grouped into three major styles. The scales showed good internal consistency (Cronbach alpha values between 0.63. and 0.86, with the exception of one dimension that as shown a value of 0.55) and the confirmatory model showed a good fit (goodness of fit index values between 0.94 e 0.96). Two coping strategies were eliminated on statistical grounds (insufficient saturations of items in the corresponding dimensions). We found that the style of coping focused on problem solving is the most used by youths from our sample, in both sexes. Females had higher mean values in non-productive coping style and reference to others. This adapted version has high similarity with the original scale, with expectable minor changes, given that coping is influenced by cultural, geographical and socio-economic variables. The present study represents an important part of the validation protocol Portuguese Adolescent Coping Scale, including its linguistic adaptation and its internal consistency and factor structure studies.
Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Zhao, Ke; Du, Changhang; Shao, Yunxian
2016-11-01
A new-developed vegetation-activated sludge process (V-ASP) was implemented for decentralized domestic wastewater treatment, and studied in lab-scale and full-scale. The main purpose of this work was the investigation of biomass activities and microbial communities in V-ASP by comparison with conventional constructed wetland (CW), to unveil the causations of its consistently higher pollutants removal efficiencies. Compared with CWs, V-ASP has greater vegetation nitrogen and phosphorus uptake rates, higher biomass and enzymatic activities, and more bacteria community diversity. The microbial community structure was comprehensively analyzed by using high-throughput sequencing. It was observed that Proteobacteria was dominated in both CWs and V-ASPs, while their subdivisions distribution was rather different. V-ASPs contained a higher nitrite-oxidizing bacteria (Nitrospira) abundances that resulted in a consistently better nitrogen removal efficiency. Hence, a long-term experiment of full-scale V-ASP displayed stably excellent capability in resistance of influent loading shocks and seasonal temperature effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Koomen, Helma M Y; Verschueren, Karine; van Schooten, Erik; Jak, Suzanne; Pianta, Robert C
2012-04-01
The Student-Teacher Relationship Scale (STRS) is widely used to examine teachers' relationships with young students in terms of closeness, conflict, and dependency. This study aimed to verify the dimensional structure of the STRS with confirmatory factor analysis, test its measurement invariance across child gender and age, improve its measurement of the dependency construct, and extend its age range. Teachers completed a slightly adapted STRS for a Dutch sample of 2335 children aged 3 to 12. Overall, the 3-factor model showed an acceptable fit. Results indicated metric invariance across gender and age up to 8years. Scalar invariance generally did not hold. Lack of metric invariance at ages 8 to 12 primarily involved Conflict items, whereas scale differences across gender and age primarily involved Closeness items. The adapted Dependency scale showed strong invariance and higher internal consistencies than the original scale for this Dutch sample. Importantly, the revealed non-invariance for gender and age did not influence mean group comparisons. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Choca, J P; Shanley, L A; Peterson, C A; Van Denburg, E
1990-01-01
We studied the scores obtained on the Millon Clinical Multiaxial Inventory (MCMI) by Black and White male psychiatric inpatients to determine the presence or absence of racial bias. In predicting psychopathology for the two races, comparisons of MCMI performance indicated significant differences for all diagnoses except the personality disorders. The subjects were then matched into two groups of 209 patients each, according to DSM-III psychiatric diagnoses. The data were analyzed at the item, scale, and structural levels. At the item level, application of the Mantel-Haenszel Procedure revealed that 45 of the 175 items of the inventory were answered significantly different by the two racial groups. Because this number was higher than what could be expected by chance, the finding suggested possible deficiencies in terms of the culture-fairness of the items used in the test. At the scale level, an analysis of variance (ANOVA) demonstrated that the scores obtained by the Black and White groups were significantly different in 9 of the 20 scales (Histrionic, Narcissistic, Antisocial, Paraphrenia, Hypomania, Dysthymia, Alcohol Abuse, Drug Abuse, and Psychotic Delusion). With the exception of the Dysthymic scale, all of the differences were in the direction of the Blacks obtaining a higher score than the Whites. At the structural level, however, a principal components factor analysis performed on each group resulted in factor structures that looked identical.
Neutrons Image Additive Manufactured Turbine Blade in 3-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-04-29
The video displays the Inconel 718 Turbine Blade made by Additive Manufacturing. First a gray scale neutron computed tomogram (CT) is displayed with transparency in order to show the internal structure. Then the neutron CT is overlapped with the engineering drawing that was used to print the part and a comparison of external and internal structures is possible. This provides a map of the accuracy of the printed turbine (printing tolerance). Internal surface roughness can also be observed. Credits: Experimental Measurements: Hassina Z. Bilheaux, Video and Printing Tolerance Analysis: Jean C. Bilheaux
Ground Layer Plant Species Turnover and Beta Diversity in Southern-European Old-Growth Forests
Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo
2014-01-01
Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests. PMID:24748155
Mandák, Bohumil; Hadincová, Věroslava; Mahelka, Václav; Wildová, Radka
2013-01-01
Background North American Pinus strobus is a highly invasive tree species in Central Europe. Using ten polymorphic microsatellite loci we compared various aspects of the large-scale genetic diversity of individuals from 30 sites in the native distribution range with those from 30 sites in the European adventive distribution range. To investigate the ascertained pattern of genetic diversity of this intercontinental comparison further, we surveyed fine-scale genetic diversity patterns and changes over time within four highly invasive populations in the adventive range. Results Our data show that at the large scale the genetic diversity found within the relatively small adventive range in Central Europe, surprisingly, equals the diversity found within the sampled area in the native range, which is about thirty times larger. Bayesian assignment grouped individuals into two genetic clusters separating North American native populations from the European, non-native populations, without any strong genetic structure shown over either range. In the case of the fine scale, our comparison of genetic diversity parameters among the localities and age classes yielded no evidence of genetic diversity increase over time. We found that SGS differed across age classes within the populations under study. Old trees in general completely lacked any SGS, which increased over time and reached its maximum in the sapling stage. Conclusions Based on (1) the absence of difference in genetic diversity between the native and adventive ranges, together with the lack of structure in the native range, and (2) the lack of any evidence of any temporal increase in genetic diversity at four highly invasive populations in the adventive range, we conclude that population amalgamation probably first happened in the native range, prior to introduction. In such case, there would have been no need for multiple introductions from previously isolated populations, but only several introductions from genetically diverse populations. PMID:23874648
Cross-cultural validation of the Child Abuse Potential Inventory in Greece: a preliminary study.
Diareme, S; Tsiantis, J; Tsitoura, S
1997-11-01
The aim of this study was first, to provide preliminary findings on the reliability and validity of a Greek translation of the CAP Inventory (Milner, 1986), and second, to examine whether there were any differences between Greek and American scores in the CAP Inventory. A convenience sample of 320 Greek parents was recruited from the outpatient unit of a large Children's Hospital in Athens, Greece. Greek scores were compared with American scores taken from the test manual. Internal consistency reliability was high for the Abuse scale (.91), two factor scales (Distress = .93 and Rigidity = .86) and one Validity scale (Inconsistency = .80). The Greek version of the Abuse scale had a similar factorial structure with the American version. Also, 78.1% of Greek parents were classified correctly as nonabusive by the Abuse scale. This rate was increased to 88.6% when invalid questionnaires were excluded from the sample. Comparisons between Greek and American mean scale scores indicated that Greek scores were significantly higher than American scores in all but one scale. Greeks had significantly lower scores than Americans in the Problems with Child and Self scale. Current findings including the high reliability, relatively high correct classification rates and factorial structure of the Greek Abuse scale are promising and support the idea of continuation of research for the development and validation of the Greek CAP Inventory. The difference between Greek and American scores in particular indicates the need for adjustment of cut off scores in the Greek scale.
Rodebaugh, Thomas L; Woods, Carol M; Heimberg, Richard G
2007-06-01
Although well-used and empirically supported, the Social Interaction Anxiety Scale (SIAS) has a questionable factor structure and includes reverse-scored items with questionable utility. Here, using samples of undergraduates and a sample of clients with social anxiety disorder, we extend previous work that opened the question of whether the reverse-scored items belong on the scale. First, we successfully confirmed the factor structure obtained in previous samples. Second, we found the reverse-scored items to show consistently weaker relationships with a variety of comparison measures. Third, we demonstrated that removing the reverse-scored questions generally helps rather than hinders the psychometric performance of the SIAS total score. Fourth, we found that the reverse-scored items show a strong relationship with the normal personality characteristic of extraversion, suggesting that the reverse-scored items may primarily assess extraversion. Given the above results, we suggest investigators consider performing data analyses using only the straightforwardly worded items of the SIAS.
Van Hiel, Alain; Cornelis, Ilse; Roets, Arne
2010-06-01
The present study aimed to delineate the psychological structure of materialism and intrinsic and extrinsic value pursuit. Moreover, we compared models based on self-determination theory (SDT), Fromm's marketing character, and Inglehart's theory of social change to account for racial prejudice. In a sample of undergraduate students (n=131) and adults (n=176) it was revealed that the extrinsic value pursuit Financial Success/Materialism could be distinguished from the extrinsic value scales Physical Appeal and Social Recognition, and Community Concern could be distinguished from the intrinsic value pursuit scales Self-acceptance and Affiliation. Moreover, Financial Success/Materialism and Community Concern were consistently and significantly related to prejudice, whereas the other SDT facet scales yielded weaker relationships with prejudice. Structural models based on SDT and Inglehart were not corroborated, but instead the present data supported a mediation model based on Fromm's work in which the effect of Community Concern was mediated by Financial Success/Materialism. Broader implications for SDT are critically assessed.
NASA Astrophysics Data System (ADS)
Dednam, W.; Botha, A. E.
2015-01-01
Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution function method.
First-principles calculation of the optical properties of an amphiphilic cyanine dye aggregate.
Haverkort, Frank; Stradomska, Anna; de Vries, Alex H; Knoester, Jasper
2014-02-13
Using a first-principles approach, we calculate electronic and optical properties of molecular aggregates of the dye amphi-pseudoisocyanine, whose structures we obtained from molecular dynamics (MD) simulations of the self-aggregation process. Using quantum chemistry methods, we translate the structural information into an effective time-dependent Frenkel exciton Hamiltonian for the dominant optical transitions in the aggregate. This Hamiltonian is used to calculate the absorption spectrum. Detailed analysis of the dynamic fluctuations in the molecular transition energies and intermolecular excitation transfer interactions in this Hamiltonian allows us to elucidate the origin of the relevant time scales; short time scales, on the order of up to a few hundreds of femtoseconds, result from internal motions of the dye molecules, while the longer (a few picosecond) time scales we ascribe to environmental motions. The absorption spectra of the aggregate structures obtained from MD feature a blue-shifted peak compared to that of the monomer; thus, our aggregates can be classified as H-aggregates, although considerable oscillator strength is carried by states along the entire exciton band. Comparison to the experimental absorption spectrum of amphi-PIC aggregates shows that the simulated line shape is too wide, pointing to too much disorder in the internal structure of the simulated aggregates.
NASA Astrophysics Data System (ADS)
Garland, Justin; Sayanagi, Kunio M.; Blalock, John J.; Gunnarson, Jacob; McCabe, Ryan M.; Gallego, Angelina; Hansen, Candice; Orton, Glenn S.
2017-10-01
We present an analysis of the spatial-scales contained in the cloud morphology of Jupiter’s southern high latitudes using images captured by JunoCam in 2016 and 2017, and compare them to those on Saturn using images captured using the Imaging Science Subsystem (ISS) on board the Cassini orbiter. For Jupiter, the characteristic spatial scale of cloud morphology as a function of latitude is calculated from images taken in three visual (600-800, 500-600, 420-520 nm) bands and a near-infrared (880- 900 nm) band. In particular, we analyze the transition from the banded structure characteristic of Jupiter’s mid-latitudes to the chaotic structure of the polar region. We apply similar analysis to Saturn using images captured using Cassini ISS. In contrast to Jupiter, Saturn maintains its zonally organized cloud morphology from low latitudes up to the poles, culminating in the cyclonic polar vortices centered at each of the poles. By quantifying the differences in the spatial scales contained in the cloud morphology, our analysis will shed light on the processes that control the banded structures on Jupiter and Saturn. Our work has been supported by the following grants: NASA PATM NNX14AK07G, NASA MUREP NNX15AQ03A, and NSF AAG 1212216.
Gretchen G. Moisen; Elizabeth A. Freeman; Jock A. Blackard; Tracey S. Frescino; Niklaus E. Zimmermann; Thomas C. Edwards
2006-01-01
Many efforts are underway to produce broad-scale forest attribute maps by modelling forest class and structure variables collected in forest inventories as functions of satellite-based and biophysical information. Typically, variants of classification and regression trees implemented in Rulequest's© See5 and Cubist (for binary and continuous responses,...
To assess the value of satellite photographs in the resource evaluation on a national scale
NASA Technical Reports Server (NTRS)
Hepworth, J. V. (Principal Investigator); Akehurst, S. M.
1973-01-01
The author has identified the following significant results. Some observations have been made on ERTS-1 color imagery and comparison of imagery. Results of geophysical work are correlated with ERTS-1 imagery and new lineaments are postuated in the northern Kalahari Desert. ERTS-1 imagery reveals complex structural trends in the Basement Complex in the Selebi-Pikwe area.
ERIC Educational Resources Information Center
Fernandes, Anthony; Kahn, Leslie H.; Civil, Marta
2017-01-01
In this article, we use multimodality to examine how bilingual students interact with an area task from the National Assessment of Educational Progress in task-based interviews. Using vignettes, we demonstrate how some of these students manipulate the concrete materials, and use gestures, as a primary form of structuring their explanations and…
Aziz Ebrahimi; Abdolkarim Zarei; Shaneka Lawson; Keith E. Woeste; M. J. M. Smulders
2016-01-01
Persian walnut (Juglans regia L.) is the world's most widely grown nut crop, but large-scale assessments and comparisons of the genetic diversity of the crop are notably lacking. To guide the conservation and utilization of Persian walnut genetic resources, genotypes (n = 189) from 25 different regions in 14 countries on...
The connectivity structure, giant strong component and centrality of metabolic networks.
Ma, Hong-Wu; Zeng, An-Ping
2003-07-22
Structural and functional analysis of genome-based large-scale metabolic networks is important for understanding the design principles and regulation of the metabolism at a system level. The metabolic network is conventionally considered to be highly integrated and very complex. A rational reduction of the metabolic network to its core structure and a deeper understanding of its functional modules are important. In this work, we show that the metabolites in a metabolic network are far from fully connected. A connectivity structure consisting of four major subsets of metabolites and reactions, i.e. a fully connected sub-network, a substrate subset, a product subset and an isolated subset is found to exist in metabolic networks of 65 fully sequenced organisms. The largest fully connected part of a metabolic network, called 'the giant strong component (GSC)', represents the most complicated part and the core of the network and has the feature of scale-free networks. The average path length of the whole network is primarily determined by that of the GSC. For most of the organisms, GSC normally contains less than one-third of the nodes of the network. This connectivity structure is very similar to the 'bow-tie' structure of World Wide Web. Our results indicate that the bow-tie structure may be common for large-scale directed networks. More importantly, the uncovered structure feature makes a structural and functional analysis of large-scale metabolic network more amenable. As shown in this work, comparing the closeness centrality of the nodes in the GSC can identify the most central metabolites of a metabolic network. To quantitatively characterize the overall connection structure of the GSC we introduced the term 'overall closeness centralization index (OCCI)'. OCCI correlates well with the average path length of the GSC and is a useful parameter for a system-level comparison of metabolic networks of different organisms. http://genome.gbf.de/bioinformatics/
Statistical scaling of geometric characteristics in stochastically generated pore microstructures
Hyman, Jeffrey D.; Guadagnini, Alberto; Winter, C. Larrabee
2015-05-21
In this study, we analyze the statistical scaling of structural attributes of virtual porous microstructures that are stochastically generated by thresholding Gaussian random fields. Characterization of the extent at which randomly generated pore spaces can be considered as representative of a particular rock sample depends on the metrics employed to compare the virtual sample against its physical counterpart. Typically, comparisons against features and/patterns of geometric observables, e.g., porosity and specific surface area, flow-related macroscopic parameters, e.g., permeability, or autocorrelation functions are used to assess the representativeness of a virtual sample, and thereby the quality of the generation method. Here, wemore » rely on manifestations of statistical scaling of geometric observables which were recently observed in real millimeter scale rock samples [13] as additional relevant metrics by which to characterize a virtual sample. We explore the statistical scaling of two geometric observables, namely porosity (Φ) and specific surface area (SSA), of porous microstructures generated using the method of Smolarkiewicz and Winter [42] and Hyman and Winter [22]. Our results suggest that the method can produce virtual pore space samples displaying the symptoms of statistical scaling observed in real rock samples. Order q sample structure functions (statistical moments of absolute increments) of Φ and SSA scale as a power of the separation distance (lag) over a range of lags, and extended self-similarity (linear relationship between log structure functions of successive orders) appears to be an intrinsic property of the generated media. The width of the range of lags where power-law scaling is observed and the Hurst coefficient associated with the variables we consider can be controlled by the generation parameters of the method.« less
Parker, Dawn C.; Entwisle, Barbara; Rindfuss, Ronald R.; Vanwey, Leah K.; Manson, Steven M.; Moran, Emilio; An, Li; Deadman, Peter; Evans, Tom P.; Linderman, Marc; Rizi, S. Mohammad Mussavi; Malanson, George
2009-01-01
Cross-site comparisons of case studies have been identified as an important priority by the land-use science community. From an empirical perspective, such comparisons potentially allow generalizations that may contribute to production of global-scale land-use and land-cover change projections. From a theoretical perspective, such comparisons can inform development of a theory of land-use science by identifying potential hypotheses and supporting or refuting evidence. This paper undertakes a structured comparison of four case studies of land-use change in frontier regions that follow an agent-based modeling approach. Our hypothesis is that each case study represents a particular manifestation of a common process. Given differences in initial conditions among sites and the time at which the process is observed, actual mechanisms and outcomes are anticipated to differ substantially between sites. Our goal is to reveal both commonalities and differences among research sites, model implementations, and ultimately, conclusions derived from the modeling process. PMID:19960107
Parker, Dawn C; Entwisle, Barbara; Rindfuss, Ronald R; Vanwey, Leah K; Manson, Steven M; Moran, Emilio; An, Li; Deadman, Peter; Evans, Tom P; Linderman, Marc; Rizi, S Mohammad Mussavi; Malanson, George
2008-01-01
Cross-site comparisons of case studies have been identified as an important priority by the land-use science community. From an empirical perspective, such comparisons potentially allow generalizations that may contribute to production of global-scale land-use and land-cover change projections. From a theoretical perspective, such comparisons can inform development of a theory of land-use science by identifying potential hypotheses and supporting or refuting evidence. This paper undertakes a structured comparison of four case studies of land-use change in frontier regions that follow an agent-based modeling approach. Our hypothesis is that each case study represents a particular manifestation of a common process. Given differences in initial conditions among sites and the time at which the process is observed, actual mechanisms and outcomes are anticipated to differ substantially between sites. Our goal is to reveal both commonalities and differences among research sites, model implementations, and ultimately, conclusions derived from the modeling process.
Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.
2014-01-01
Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions across terrestrial and aquatic ecosystems.
Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.
Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong
2017-10-11
The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.
A comparison of Gemini and ERTS imagery obtained over southern Morocco
NASA Technical Reports Server (NTRS)
Blodget, H. W.; Anderson, A. T.
1973-01-01
A mosaic constructed from three ERTS MSS band 5 images enlarged to 1:500,000 compares favorably with a similar scale geologic map of southern Morocco, and a near-similar scale Gemini 5 photo pair. A comparative plot of lineations and generalized geology on the three formats show that a significantly greater number of probable fractures are visible on the ERTS imagery than on the Gemini photography, and that both orbital formats show several times more lineaments than were previously mapped. A plot of mineral occurrences on the structural overlays indicates that definite structure-mineralization relationships exist; this finding is used to define underdeveloped areas which are prospective for mineralization. More detailed mapping is possible using MSS imagery than on Gemini 5 photographs, and in addition, the ERTS format is not restricted to limited coverage.
Comparison of manual scaled and predicted foE and foF1 critical frequencies. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamache, R.R.; Kersey, W.T.
1990-07-01
The CCIR and Titheridge foE critical frequency prediction routines were tested by comparison with 1875 manually scaled values. The foF1 critical frequency prediction routine of Millman et al was tested by comparison with 1005 manually scaled values. Plots and statistics of the comparisons are presented and discussed. From the results recommendations are made to help improve autoscaling.
Error simulation of paired-comparison-based scaling methods
NASA Astrophysics Data System (ADS)
Cui, Chengwu
2000-12-01
Subjective image quality measurement usually resorts to psycho physical scaling. However, it is difficult to evaluate the inherent precision of these scaling methods. Without knowing the potential errors of the measurement, subsequent use of the data can be misleading. In this paper, the errors on scaled values derived form paired comparison based scaling methods are simulated with randomly introduced proportion of choice errors that follow the binomial distribution. Simulation results are given for various combinations of the number of stimuli and the sampling size. The errors are presented in the form of average standard deviation of the scaled values and can be fitted reasonably well with an empirical equation that can be sued for scaling error estimation and measurement design. The simulation proves paired comparison based scaling methods can have large errors on the derived scaled values when the sampling size and the number of stimuli are small. Examples are also given to show the potential errors on actually scaled values of color image prints as measured by the method of paired comparison.
Final report on RMO Vickers key comparison COOMET M.H-K1
NASA Astrophysics Data System (ADS)
Aslanyan, E.; Menelao, F.; Herrmann, K.; Aslanyan, A.; Pivovarov, V.; Galat, E.; Dovzhenko, Y.; Zhamanbalin, M.
2013-01-01
This report describes a COOMET key comparison on Vickers hardness scales involving five National Metrology Institutes: PTB (Germany), BelGIM (Belarus), NSC IM (Ukraine), KazInMetr (Kazakhstan) and VNIIFTRI (Russia). The pilot laboratory was VNIIFTRI, and PTB acted as the linking institute to key comparisons CCM.H-K1.b and CCM.H-K1.c conducted for the Vickers hardness scales HV1 and HV30, respectively. The comparison was also conducted for the HV5 Vickers hardness scale, since this scale is most frequently used in practice in Russia and CIS countries that work according to GOST standards. In the key comparison, two sets of hardness reference blocks for the Vickers hardness scales HV1, HV5 and HV30 consisting each of three hardness reference blocks with hardness levels of 450 HV and 750 HV were used. The measurement results and uncertainty assessments for HV1 and HV30 hardness scales, as announced by BelGIM, NSC IM, KazInMetr and VNIIFTRI, are in good agreement with the key comparison reference values of CCM.H-K1.b and CCM.H-K1.c. The comparison results for the HV5 hardness scale are viewed as additional information, since up to today no CCM key comparisons on this scale have yet been carried out. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Astrophysics Data System (ADS)
Lee, S. S.; Rempe, D. M.; Holbrook, W. S.; Schmidt, L.; Hahm, W. J.; Dietrich, W. E.
2017-12-01
Except for boreholes and road cut, landslide, and quarry exposures, the subsurface structure of the critical zone (CZ) of weathered bedrock is relatively invisible and unmapped, yet this structure controls the short and long term fluxes of water and solutes. Non-invasive geophysical methods such as seismic refraction are widely applied to image the structure of the CZ at the hillslope scale. However, interpretations of such data are often limited due to heterogeneity and anisotropy contributed from fracturing, moisture content, and mineralogy on the seismic signal. We develop a quantitative framework for using seismic refraction tomography from intersecting geophysical surveys and hydrologic data obtained at the Eel River Critical Zone Observatory (ERCZO) in Northern California to help quantify the nature of subsurface structure across multiple hillslopes of varying topography in the area. To enhance our understanding of modeled velocity gradients and boundaries in relation to lithological properties, we compare refraction tomography results with borehole logs of nuclear magnetic resonance (NMR), gamma and neutron density, standard penetration testing, and observation drilling logs. We also incorporate laboratory scale rock characterization including mineralogical and elemental analyses as well as porosity and density measurements made via pycnometry, helium and mercury porosimetry, and laboratory scale NMR. We evaluate the sensitivity of seismically inferred saprolite-weathered bedrock and weathered-unweathered bedrock boundaries to various velocity and inversion parameters in relation with other macro scale processes such as gravitational and tectonic forces in influencing weathered bedrock velocities. Together, our sensitivity analyses and multi-method data comparison provide insight into the interpretation of seismic refraction tomography for the quantification of CZ structure and hydrologic dynamics.
Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal
Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.
2012-01-01
The brilliant structural body colours of many animals are created by three-dimensional biological photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly coloured scales of the diamond weevil, Entimus imperialis. Electron microscopy identified the chitin and air assemblies inside the scales as domains of a single-network diamond (Fd3m) photonic crystal. We visualized the topology of the first Brillouin zone (FBZ) by imaging scatterometry, and we reconstructed the complete photonic band structure diagram (PBSD) of the chitinous photonic crystal from reflectance spectra. Comparison with calculated PBSDs indeed showed a perfect overlap. The unique method of non-invasive hemispherical imaging of the FBZ provides key insights for the investigation of photonic crystals in the visible wavelength range. The characterized extremely large biophotonic nanostructures of E. imperialis are structurally optimized for high reflectance and may thus be well suited for use as a template for producing novel photonic devices, e.g. through biomimicry or direct infiltration from dielectric material. PMID:22188768
Müller, Jochen; Bühner, Markus; Ellgring, Heiner
2003-12-01
The 20-item Toronto Alexithymia Scale (TAS-20) is the most widely used instrument for measuring alexithymia. However, different studies did not always yield identical factor structures of this scale. The present study aims at clarifying some discrepant results. Maximum likelihood confirmatory factor analyses of a German version of the TAS-20 were conducted on data from a clinical sample (N=204) and a sample of normal adults (N=224). Five different models with one to four factors were compared. A four-factor model with factors (F1) "Difficulty identifying feelings" (F2), "Difficulty describing feelings" (F3), "Low importance of emotion" and (F4) "Pragmatic thinking" and a three-factor model with the combined factor "Difficulties in identifying and describing feelings" described the data best. Factors related to "externally oriented thinking" provided no acceptable level of reliability. Results from the present and other studies indicate that the factorial structure of the TAS-20 may vary across samples. Whether factor structures different from the common three-factor structure are an exception in some mainly clinical populations or a common phenomenon outside student populations has still to be determined. For a further exploration of the factor structure of the TAS-20 in different populations, it would be important not only to test the fit of the common three-factor model, but also to consider other competing solutions like the models of the present study.
Jang, Jae-Won; Park, So Young; Park, Young Ho; Baek, Min Jae; Lim, Jae-Sung; Youn, Young Chul; Kim, SangYun
2015-01-01
Brain magnetic resonance imaging (MRI) shows cerebral structural changes. However, a unified comprehensive visual rating scale (CVRS) has seldom been studied. Thus, we combined brain atrophy and small vessel disease scales and used an MRI template as a CVRS. The aims of this study were to design a simple and reliable CVRS, validate it by investigating cerebral structural changes in clinical groups, and made comparison to the volumetric measurements. Elderly subjects (n = 260) with normal cognition (NC, n = 65), mild cognitive impairment (MCI, n = 101), or Alzheimer's disease (AD, n = 94) were evaluated with brain MRI according to the CVRS of brain atrophy and small vessel disease. Validation of the CVRS with structural changes, neuropsychological tests, and volumetric analyses was performed. The CVRS revealed a high intra-rater and inter-rater agreement and it reflected the structural changes of subjects with NC, MCI, and AD better than volumetric measures (CVRS-coronal: F = 13.5, p < 0.001; CVRS-axial: F = 19.9, p < 0.001). The area under the receiver operation curve (aROC) of the CVRS showed higher accuracy than volumetric analyses. (NC versus MCI aROC: CVRS-coronal, 0.777; CVRS-axial, 0.773; MCI versus AD aROC: CVRS-coronal, 0.680; CVRS-axial, 0.681). The CVRS can be used clinically to conveniently measure structural changes of brain. It reflected cerebral structural changes of clinical groups and correlated with the age better than volumetric measures.
Evaluating the Factor Validity of the Children's Organizational Skills Scale in Youth with ADHD.
Molitor, Stephen J; Langberg, Joshua M; Evans, Steven W; Dvorsky, Melissa R; Bourchtein, Elizaveta; Eddy, Laura D; Smith, Zoe R; Oddo, Lauren E
2017-06-01
Children and adolescents with ADHD often have difficulties with organization, time management, and planning (OTMP) skills, and these skills are a common target of intervention. A limited array of tools for measuring these abilities in youth is available, and one of the most prominent measures is the Children's Organizational Skills Scale (COSS). Although the COSS fills an important need, a replication of the COSS factor structure outside of initial measure development has not been conducted in any population. Given that the COSS is frequently used in ADHD research, the current study evaluated the factor structure of the parent-rated COSS in a sample ( N = 619) of adolescents with ADHD. Results indicated that the original factor structure could be replicated, although the use of item parcels appeared to affect model fit statistics. An alternative bi-factor model was also tested that did not require the use of parcels, with results suggesting similar model fit in comparison to the original factor structure. Exploratory validity tests indicated that the domain-general factor of the bi-factor model appears related to broad executive functioning abilities.
Varni, James W; Limbers, Christine A; Newman, Daniel A; Seid, Michael
2008-11-01
The measurement of health-related quality of life (HRQOL) in pediatric medicine and health services research has grown significantly over the past decade. The paradigm shift toward patient-reported outcomes (PROs) has provided the opportunity to emphasize the value and critical need for pediatric patient self-report. In order for changes in HRQOL/PRO outcomes to be meaningful over time, it is essential to demonstrate longitudinal factorial invariance. This study examined the longitudinal factor structure of the PedsQL 4.0 Generic Core Scales over a one-year period for child self-report ages 5-17 in 2,887 children from a statewide evaluation of the California State Children's Health Insurance Program (SCHIP) utilizing a structural equation modeling framework. Specifying four- and five-factor measurement models, longitudinal structural equation modeling was used to compare factor structures over a one-year interval on the PedsQL 4.0 Generic Core Scales. While the four-factor conceptually-derived measurement model for the PedsQL 4.0 Generic Core Scales produced an acceptable fit, the five-factor empirically-derived measurement model from the initial field test of the PedsQL 4.0 Generic Core Scales produced a marginally superior fit in comparison to the four-factor model. For the five-factor measurement model, the best fitting model, strict factorial invariance of the PedsQL 4.0 Generic Core Scales across the two measurement occasions was supported by the stability of the comparative fit index between the unconstrained and constrained models, and several additional indices of practical fit including the root mean squared error of approximation, the non-normed fit index, and the parsimony normed fit index. The findings support an equivalent factor structure on the PedsQL 4.0 Generic Core Scales over time. Based on these data, it can be concluded that over a one-year period children in our study interpreted items on the PedsQL 4.0 Generic Core Scales in a similar manner.
Ongey, Elvis Legala; Neubauer, Peter
2016-06-07
Lanthipeptides (also called lantibiotics for those with antibacterial activities) are ribosomally synthesized post-translationally modified peptides having thioether cross-linked amino acids, lanthionines, as a structural element. Lanthipeptides have conceivable potentials to be used as therapeutics, however, the lack of stable, high-yield, well-characterized processes for their sustainable production limit their availability for clinical studies and further pharmaceutical commercialization. Though many reviews have discussed the various techniques that are currently employed to produce lanthipeptides, a direct comparison between these methods to assess industrial applicability has not yet been described. In this review we provide a synoptic comparison of research efforts on total synthesis and in vivo biosynthesis aimed at fostering lanthipeptides production. We further examine current applications and propose measures to enhance product yields. Owing to their elaborate chemical structures, chemical synthesis of these biomolecules is economically less feasible for large-scale applications, and hence biological production seems to be the only realistic alternative.
Effects of spatial resolution and landscape structure on land cover characterization
NASA Astrophysics Data System (ADS)
Yang, Wenli
This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.
Variable Grid Traveltime Tomography for Near-surface Seismic Imaging
NASA Astrophysics Data System (ADS)
Cai, A.; Zhang, J.
2017-12-01
We present a new algorithm of traveltime tomography for imaging the subsurface with automated variable grids upon geological structures. The nonlinear traveltime tomography along with Tikhonov regularization using conjugate gradient method is a conventional method for near surface imaging. However, model regularization for any regular and even grids assumes uniform resolution. From geophysical point of view, long-wavelength and large scale structures can be reliably resolved, the details along geological boundaries are difficult to resolve. Therefore, we solve a traveltime tomography problem that automatically identifies large scale structures and aggregates grids within the structures for inversion. As a result, the number of velocity unknowns is reduced significantly, and inversion intends to resolve small-scale structures or the boundaries of large-scale structures. The approach is demonstrated by tests on both synthetic and field data. One synthetic model is a buried basalt model with one horizontal layer. Using the variable grid traveltime tomography, the resulted model is more accurate in top layer velocity, and basalt blocks, and leading to a less number of grids. The field data was collected in an oil field in China. The survey was performed in an area where the subsurface structures were predominantly layered. The data set includes 476 shots with a 10 meter spacing and 1735 receivers with a 10 meter spacing. The first-arrival traveltime of the seismogram is picked for tomography. The reciprocal errors of most shots are between 2ms and 6ms. The normal tomography results in fluctuations in layers and some artifacts in the velocity model. In comparison, the implementation of new method with proper threshold provides blocky model with resolved flat layer and less artifacts. Besides, the number of grids reduces from 205,656 to 4,930 and the inversion produces higher resolution due to less unknowns and relatively fine grids in small structures. The variable grid traveltime tomography provides an alternative imaging solution for blocky structures in the subsurface and builds a good starting model for waveform inversion and statics.
NASA Astrophysics Data System (ADS)
Thomas, Valerie Anne
This research models canopy-scale photosynthesis at the Groundhog River Flux Site through the integration of high-resolution airborne remote sensing data and micrometeorological measurements collected from a flux tower. Light detection and ranging (lidar) data are analysed to derive models of tree structure, including: canopy height, basal area, crown closure, and average aboveground biomass. Lidar and hyperspectral remote sensing data are used to model canopy chlorophyll (Chl) and carotenoid concentrations (known to be good indicators of photosynthesis). The integration of lidar and hyperspectral data is applied to derive spatially explicit models of the fraction of photosynthetically active radiation (fPAR) absorbed by the canopy as well as a species classification for the site. These products are integrated with flux tower meteorological measurements (i.e., air temperature and global solar radiation) collected on a continuous basis over 2004 to apply the C-Fix model of carbon exchange to the site. Results demonstrate that high resolution lidar and lidar-hyperspectral integration techniques perform well in the boreal mixedwood environment. Lidar models are well correlated with forest structure, despite the complexities introduced in the mixedwood case (e.g., r2=0.84, 0.89, 0.60, and 0.91, for mean dominant height, basal area, crown closure, and average aboveground biomass). Strong relationships are also shown for canopy scale chlorophyll/carotenoid concentration analysis using integrated lidar-hyperspectral techniques (e.g., r2=0.84, 0.84, and 0.82 for Chl(a), Chl(a+b), and Chl(b)). Examination of the spatially explicit models of fPAR reveal distinct spatial patterns which become increasingly apparent throughout the season due to the variation in species groupings (and canopy chlorophyll concentration) within the 1 km radius surrounding the flux tower. Comparison of results from the modified local-scale version of the C-Fix model to tower gross ecosystem productivity (GEP) demonstrate a good correlation to flux tower measured GEP (r2=0.70 for 10 day averages), with the largest deviations occurring in June-July. This research has direct benefits for forest inventory mapping and management practices; mapping of canopy physiology and biochemical constituents related to forest health; and scaling and direct comparison to large resolution satellite models to help bridge the gap between the local-scale measurements at flux towers and predictions derived from continental-scale carbon models.
Adding Spice to Vanilla LCDM simulations: Alternative Cosmologies & Lighting up Simulations
NASA Astrophysics Data System (ADS)
Jahan Elahi, Pascal
2015-08-01
Cold Dark Matter simulations have formed the backbone of our theoretical understanding of cosmological structure formation. Predictions from the Lambda Cold Dark Matter (LCDM) cosmology, where the Universe contains two dark components, namely Dark Matter & Dark Energy, are in excellent agreement with the Large-Scale Structures observed, i.e., the distribution of galaxies across cosmic time. However, this paradigm is in tension with observations at small-scales, from the number and properties of satellite galaxies around galaxies such as the Milky Way and Andromeda, to the lensing statistics of massive galaxy clusters. I will present several alternative models of cosmology (from Warm Dark Matter to coupled Dark Matter-Dark Energy models) and how they compare to vanilla LCDM by studying formation of groups and clusters dark matter only and adiabatic hydrodynamical zoom simulations. I will show how modifications to the dark sector can lead to some surprising results. For example, Warm Dark Matter, so often examined on small satellite galaxies scales, can be probed observationally using weak lensing at cluster scales. Coupled dark sectors, where dark matter decays into dark energy and experiences an effective gravitational potential that differs from that experienced by normal matter, is effectively hidden away from direct observations of galaxies. Studies like these are vital if we are to pinpoint observations which can look for unique signatures of the physics that governs the hidden Universe. Finally, I will discuss how all of these predictions are affected by uncertain galaxy formation physics. I will present results from a major comparison study of numerous hydrodynamical codes, the nIFTY cluster comparison project. This comparison aims to understand the code-to-code scatter in the properties of dark matter haloes and the galaxies that reside in them. We find that even in purely adiabatic simulations, different codes form clusters with very different X-ray profiles. The galaxies that form in these simulations, which all use codes that attempt to reproduce the observed galaxy population via not unreasonable subgrid physics, vary in stellar mass, morphology and gas fraction, sometimes by an order of magnitude. I will end with a discussion of precision cosmology in light of these results.
NASA Astrophysics Data System (ADS)
Rosli, Norliana; Leduc, Daniel; Rowden, Ashley A.; Probert, P. Keith; Clark, Malcolm R.
2018-01-01
Deep-sea community attributes vary at a range of spatial scales. However, identifying the scale at which environmental factors affect variability in deep-sea communities remains difficult, as few studies have been designed in such a way as to allow meaningful comparisons across more than two spatial scales. In the present study, we investigated nematode diversity, community structure and trophic structure at different spatial scales (sediment depth (cm), habitat (seamount, canyon, continental slope; 1-100 km), and geographic region (100-10000 km)), while accounting for the effects of water depth, in two regions on New Zealand's continental margin. The greatest variability in community attributes was found between sediment depth layers and between regions, which explained 2-4 times more variability than habitats. The effect of habitat was consistently stronger in the Hikurangi Margin than the Bay of Plenty for all community attributes, whereas the opposite pattern was found in the Bay of Plenty where effect of sediment depth was greater in Bay of Plenty. The different patterns at each scale in each region reflect the differences in the environmental variables between regions that control nematode community attributes. Analyses suggest that nematode communities are mostly influenced by sediment characteristics and food availability, but that disturbance (fishing activity and bioturbation) also accounts for some of the observed patterns. The results provide new insight on the relative importance of processes operating at different spatial scales in regulating nematode communities in the deep-sea, and indicate potential differences in vulnerability to anthropogenic disturbance.
The Proteome Folding Project: Proteome-scale prediction of structure and function
Drew, Kevin; Winters, Patrick; Butterfoss, Glenn L.; Berstis, Viktors; Uplinger, Keith; Armstrong, Jonathan; Riffle, Michael; Schweighofer, Erik; Bovermann, Bill; Goodlett, David R.; Davis, Trisha N.; Shasha, Dennis; Malmström, Lars; Bonneau, Richard
2011-01-01
The incompleteness of proteome structure and function annotation is a critical problem for biologists and, in particular, severely limits interpretation of high-throughput and next-generation experiments. We have developed a proteome annotation pipeline based on structure prediction, where function and structure annotations are generated using an integration of sequence comparison, fold recognition, and grid-computing-enabled de novo structure prediction. We predict protein domain boundaries and three-dimensional (3D) structures for protein domains from 94 genomes (including human, Arabidopsis, rice, mouse, fly, yeast, Escherichia coli, and worm). De novo structure predictions were distributed on a grid of more than 1.5 million CPUs worldwide (World Community Grid). We generated significant numbers of new confident fold annotations (9% of domains that are otherwise unannotated in these genomes). We demonstrate that predicted structures can be combined with annotations from the Gene Ontology database to predict new and more specific molecular functions. PMID:21824995
Accurate population genetic measurements require cryptic species identification in corals
NASA Astrophysics Data System (ADS)
Sheets, Elizabeth A.; Warner, Patricia A.; Palumbi, Stephen R.
2018-06-01
Correct identification of closely related species is important for reliable measures of gene flow. Incorrectly lumping individuals of different species together has been shown to over- or underestimate population differentiation, but examples highlighting when these different results are observed in empirical datasets are rare. Using 199 single nucleotide polymorphisms, we assigned 768 individuals in the Acropora hyacinthus and A. cytherea morphospecies complexes to each of eight previously identified cryptic genetic species and measured intraspecific genetic differentiation across three geographic scales (within reefs, among reefs within an archipelago, and among Pacific archipelagos). We then compared these calculations to estimated genetic differentiation at each scale with all cryptic genetic species mixed as if we could not tell them apart. At the reef scale, correct genetic species identification yielded lower F ST estimates and fewer significant comparisons than when species were mixed, raising estimates of short-scale gene flow. In contrast, correct genetic species identification at large spatial scales yielded higher F ST measurements than mixed-species comparisons, lowering estimates of long-term gene flow among archipelagos. A meta-analysis of published population genetic studies in corals found similar results: F ST estimates at small spatial scales were lower and significance was found less often in studies that controlled for cryptic species. Our results and these prior datasets controlling for cryptic species suggest that genetic differentiation among local reefs may be lower than what has generally been reported in the literature. Not properly controlling for cryptic species structure can bias population genetic analyses in different directions across spatial scales, and this has important implications for conservation strategies that rely on these estimates.
Scale dependence in species turnover reflects variance in species occupancy.
McGlinn, Daniel J; Hurlbert, Allen H
2012-02-01
Patterns of species turnover may reflect the processes driving community dynamics across scales. While the majority of studies on species turnover have examined pairwise comparison metrics (e.g., the average Jaccard dissimilarity), it has been proposed that the species-area relationship (SAR) also offers insight into patterns of species turnover because these two patterns may be analytically linked. However, these previous links only apply in a special case where turnover is scale invariant, and we demonstrate across three different plant communities that over 90% of the pairwise turnover values are larger than expected based on scale-invariant predictions from the SAR. Furthermore, the degree of scale dependence in turnover was negatively related to the degree of variance in the occupancy frequency distribution (OFD). These findings suggest that species turnover diverges from scale invariance, and as such pairwise turnover and the slope of the SAR are not redundant. Furthermore, models developed to explain the OFD should be linked with those developed to explain species turnover to achieve a more unified understanding of community structure.
RESOLVING THE ROTATION MEASURE OF THE M87 JET ON KILOPARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algaba, J. C.; Asada, K.; Nakamura, M., E-mail: algaba@asiaa.sinica.edu.tw
2016-06-01
We investigate the distribution of Faraday rotation measure (RM) in the M87 jet at arcsecond scales by using archival polarimetric Very Large Array data at 8, 15, 22 and 43 GHz. We resolve the structure of the RM in several knots along the jet for the first time. We derive the power spectrum in the arcsecond-scale jet and find indications that the RM cannot be associated with a turbulent magnetic field with a 3D Kolmogorov spectrum. Our analysis indicates that the RM probed on jet scales has a significant contribution of a Faraday screen associated with the vicinity of themore » jet, in contrast with that on kiloparsec scales, typically assumed to be disconnected from the jet. Comparison with previous RM analyses suggests that the magnetic fields giving rise to the RMs observed in jet scales have different properties and are well less turbulent than those observed in the lobes.« less
NASA Astrophysics Data System (ADS)
Guilloteau, C.; Foufoula-Georgiou, E.; Kummerow, C.; Kirstetter, P. E.
2017-12-01
A multiscale approach is used to compare precipitation fields retrieved from GMI using the last version of the GPROF algorithm (GPROF-2017) to the DPR fields all over the globe. Using a wavelet-based spectral analysis, which renders the multi-scale decompositions of the original fields independent of each other spatially and across scales, we quantitatively assess the various scales of variability of the retrieved fields, and thus define the spatially-variable "effective resolution" (ER) of the retrievals. Globally, a strong agreement is found between passive microwave and radar patterns at scales coarser than 80km. Over oceans the patterns match down to the 20km scale. Over land, comparison statistics are spatially heterogeneous. In most areas a strong discrepancy is observed between passive microwave and radar patterns at scales finer than 40-80km. The comparison is also supported by ground-based observations over the continental US derived from the NOAA/NSSL MRMS suite of products. While larger discrepancies over land than over oceans are classically explained by land complex surface emissivity perturbing the passive microwave retrieval, other factors are investigated here, such as intricate differences in the storm structure over oceans and land. Differences in term of statistical properties (PDF of intensities and spatial organization) of precipitation fields over land and oceans are assessed from radar data, as well as differences in the relation between the 89GHz brightness temperature and precipitation. Moreover, the multiscale approach allows quantifying the part of discrepancies caused by miss-match of the location of intense cells and instrument-related geometric effects. The objective is to diagnose shortcomings of current retrieval algorithms such that targeted improvements can be made to achieve over land the same retrieval performance as over oceans.
Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez
2017-02-28
Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10 -10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale.
Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez
2017-01-01
Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10−10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale. PMID:28772605
NASA Technical Reports Server (NTRS)
McCloud, Peter L.
2010-01-01
Thermal Protection System (TPS) Cavity Heating is predicted using Computational Fluid Dynamics (CFD) on unstructured grids for both simplified cavities and actual cavity geometries. Validation was performed using comparisons to wind tunnel experimental results and CFD predictions using structured grids. Full-scale predictions were made for simplified and actual geometry configurations on the Space Shuttle Orbiter in a mission support timeframe.
2009-02-01
One plasma- derived AT product is Thrombate, produced by Bayer. Recombinant AT (rhAT) is made on a large scale in the milk of transgenic goats and is...infusions of rhAT to increase AT levels to 200 and 500% of normal, followed by infusions of endotoxin . AT dose dependently decreased tissue factor...injury. REFERENCES 1. Edmunds T, Van Patten SM, Pollock J, et al. Transgenically produced human antithrombin: structural and functional comparison to
Allen, Christopher T; Swan, Suzanne C; Maas, Carl D; Barber, Sara
2015-08-01
Court-mandated domestic violence (DV) treatment programs across the country have seen a marked increase in female clients. These programs use a variety of measurement tools to assess the needs of their clients. Increased numbers of women in treatment for DV reflect a need to address the measurement of intimate partner violence (IPV) for both males and females. Unfortunately, the reliability and validity of many of measures used to assess IPV and related constructs for women remains unknown. The current study focuses on a particular measure, the Propensity for Abusiveness Scale (PAS). The PAS is not a measure of abusive behavior per se; rather, it assesses risk factors for abuse, including affective lability, anger expression, trauma symptoms, and harsh parenting experienced by the respondent. Specifically, the current study compares the factor structure and the measurement properties of the PAS for males and females in a sample of 885 (647 female, 238 male) participants in a DV treatment program. Findings indicate that the PAS demonstrated configural, metric, and scalar invariance between the female and male samples. These results suggest that it is appropriate for researchers and clinicians to make comparisons between women and men based on PAS factor scores. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Torbahn, Lutz; Weuster, Alexander; Handl, Lisa; Schmidt, Volker; Kwade, Arno; Wolf, Dietrich E.
2017-06-01
The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm), shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poidevin, Frédérick; Ade, Peter A. R.; Hargrave, Peter C.
2014-08-10
Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of themore » morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.« less
NASA Astrophysics Data System (ADS)
Prasai, Binay
We present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). Using in-operando high-energy X-ray diffraction we tracked the evolution of the atomic structure and activity of noble metal-transition metal(NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Data were analyzed in terms of atomic pair distribution functions and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore, we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation.
NASA Astrophysics Data System (ADS)
Fang, Jing; Song, Guofen; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Su, Huilan; Guo, Cuiping; Zhang, Di
2018-01-01
Photocatalytic water splitting via utilizing various semiconductors is recognized as a promising way for hydrogen production. Plasmonic metals with sub-micrometer textures can improve the photocatalytic performance of semiconductors via a localized surface plasmon resonance (LSPR) process. Moreover, arrays of multilayer metallic structures can help generate strong LSPR. However, artificial synthesis has difficulties in constructing novel multilayer metallic arrays down to nanoscales. Here, we use three dimensional (3D) scales from Morpho didius forewings (M) to prepare 3D Au-wings with intact hierarchical bio-structures. For comparison, we use Troides helena forewings (T) which are known for their antireflection quasi-honeycomb structures resulting in strong light absorbing ability. Results show that multilayer rib structures of Au-M can significantly amplify the LSPR of 3D Au and thus can efficiently help the photocatalytic process (9-fold increase). This amplification effect is obviously more superior to the straightforward enhancement of the absorption of incident light (Au-T, 5-fold increase). Thus, our study provides the possibility to prepare highly efficient plasmonic photocatalysts (possessing 3D multilayer rib structures) via an easy method. This work will also be revealing for plasmonic applications in other fields.
Equatorial waves in the stratosphere of Uranus
NASA Technical Reports Server (NTRS)
Hinson, David P.; Magalhaes, Julio A.
1991-01-01
Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilgrim, C. D.; Callahan, J. R.; Colla, C. A.
Here, one-dimensional 27Al, 23Na Magic-Angle-Spinning (MAS) NMR and 27Al Multiple-Quantum Magic-Angle-Spinning NMR (MQMAS) measurements are reported for the δ-isomer of the Al 13 Keggin structure at high spinning speed and 14.1 T field. Values for the CQ and η parameters are on the same scale as those seen in other isomers of the Al 13 structure. Density functional theory (DFT) calculations are performed for comparison to the experimental fits using the B3PW91/6-31+G* and PBE0/6-31+G* levels of theory, with the Polarizable Continuum Model (PCM).
Light aircraft crash safety program
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.
1974-01-01
NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions. The analytical techniques being developed both in-house and under contract are described, and a comparison of some analytical predictions with experimental results is shown.
Evaluation of Repair Efficiency in Structures Made of Fibrous Polymer Composite Materials
NASA Astrophysics Data System (ADS)
Anoshkin, A. N.; Vil'deman, V. E.; Lobanov, D. S.; Chikhachev, A. I.
2014-07-01
Full-scale experimental investigations into the residual strength of structurally similar elements of acoustical panels after a local repair of defects, such as through breakdown, were conducted. Local repairs without using the vacuum technology were carried out. The technology of repair consists in removing and layer-bylayer replacing the damaged layers of material with repaired ones. For comparison, undamaged and repaired sandwich panel specimens were tested in tension and compression. The specimens were produced by serial technology from a VPS-33 fiberglass prepreg. Their deformation and fracture mechanisms are analyzed, and their loading diagrams are obtained.
NASA Astrophysics Data System (ADS)
Vérèmes, Hélène; Payen, Guillaume; Keckhut, Philippe; Duflot, Valentin; Baray, Jean-Luc; Cammas, Jean-Pierre; de Bellevue, Jimmy Leclair; Posny, Françoise; Evan, Stéphanie; Metzger, Jean-Marc; Marquestaut, Nicolas; Gabarrot, Franck; Meier, Susanne; Vömel, Holger; Dirksen, Ruud
2018-04-01
The 2-year lidar water vapor database (November 2013 - October 2015) of the Maïdo Observatory (Reunion Island / 21°S,55.5°E) is now processed. The performances of the lidar in providing accurate vertical structures are shown to be good. The ability to measure quantities of a few ppmv in the lower stratosphere is demonstrated (based on Cryogenic Frost point Hygrometer sonde/lidar profiles comparisons) for a 48-hour integration time period, up to 22 km (with a vertical resolution of 1.3 km).
Multiscale analysis of the fracture pattern in granite, example of Tamariu's granite, Catalunya.
NASA Astrophysics Data System (ADS)
Bertrand, L.; LeGarzic, E.; Géraud, Y.; Diraison, M.
2012-04-01
Crystalline rocks can be the host of important fluid flow and therefore they can provide a good reservoir potential. In this kind of rocks, the matrice porosity is in general low and a large part of the permeability is governed by the fracture pattern. Thus, they are the first interest of studies in order to characterize and model the fluid flows. Actual reservoirs are underground, and the only access to the fracture pattern is with boreholes and seismic lines. Those methods are investigating different scales and dimensions: seismic is in 3D at a global scale whereas boreholes are 1D at a localized scale. To make the link between the different data, it is necessary to study field analogues where such fractured rocks are outcropping. Tamariu's granite, in Catalunya, has recently been studied as a field analogue of a fractured reservoir. The previous studies have lead to define structural blocks at different scales, linked to the regional deformation. This study's aim is to characterize the internal fracturation of a single structural block with a statistical analysis. We used one dimension scan lines at the scale of a block and 2 dimensions mapping at a more precise scale until the grain scale. The data highlighted that the fracture and fault lengths have a power law relation in 8 orders of scales. So this power law is stretching between seismic and borehole scales. Therefore, the data fit with a very good trust in the power law exponent, which is very well defined. The link between the reservoir scale faults and the internal block fracturation has also been defined in term of the structures orientation. Finally, a comparison between the 1D and 2D measurement could be done. The 1D scan lines show correctly the different fractures families but samples incompletely a part the fracture pattern, whereas the 2D maps which show more the global trends of the fractures and could lose some minor trends orientations.
Suetsugu, Yoshiko; Honjo, Shuji; Ikeda, Mari; Kamibeppu, Kiyoko
2015-07-01
The purpose of this study was to develop the Japanese version of the Postpartum Bonding Questionnaire (PBQ) to gather data on Japanese mothers for comparison with other cultures and to examine the scale structure of the PBQ among Japanese mothers. We administered the PBQ to a cross-section of 244 mothers 4 weeks after delivery and again 2 weeks later to 199 mothers as a retest to examine reliability. We used exploratory factor analysis to evaluate the factor structure of the PBQ. Correlations with the Mother-to-Infant Bonding Scale (MIBS), the Maternal Attachment Inventory (MAI), Edinburgh Postnatal Depression Scale (EPDS), and sociodemographic variables were calculated for validation. The 14-item version of the PBQ extracted by exploratory analysis consisted of four factors: 'impaired bonding', 'rejection and anger', 'anxiety about care', and 'lack of affection'. We found significant correlations of the total scores of the PBQ and the 14-item version of the PBQ positively with the MIBS and negatively with the MAI. Moderate significant correlations with total scores were also found with the EPDS. Total scores for primiparous and depressed mothers were higher than those for multiparous mothers and mothers without depression. The results of this study demonstrated the reliability and validity of the PBQ and the 14-item version of the PBQ in Japanese mothers 4 weeks after delivery. Copyright © 2015. Published by Elsevier Inc.
Small-Scale Tropopause Dynamics and TOMS Total Ozone
NASA Technical Reports Server (NTRS)
Stanford, John L.
2002-01-01
This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.
Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals
Schmittfull, Marcel; Vlah, Zvonimir
2016-11-28
Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Here, trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals thatmore » are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.« less
Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise
2016-01-01
A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.
Using Model Comparisons to Understand Sources of Nitrogen Delivered to US Coastal Areas
NASA Astrophysics Data System (ADS)
McCrackin, M. L.; Harrison, J.; Compton, J. E.
2011-12-01
Nitrogen loading to water bodies can result in eutrophication-related hypoxia and degraded water quality. The relative contributions of different anthropogenic and natural sources of in-stream N cannot be directly measured at whole-watershed scales; hence, N source attribution estimates at scales beyond a small catchment must rely on models. Although such estimates have been accomplished using individual N loading models, there has not yet been a comparison of source attribution by multiple regional- and continental-scale models. We compared results from two models applied at large spatial scales: Nutrient Export from WatershedS (NEWS) and SPAtially Referenced Regressions On Watersheds (SPARROW). Despite widely divergent approaches to source attribution, NEWS and SPARROW identified the same dominant sources of N for 65% of the modeled drainage area of the continental US. Human activities accounted for over two-thirds of N delivered to the coastal zone. Regionally, the single largest sources of N predicted by both models reflect land-use patterns across the country. Sewage was an important source in densely populated regions along the east and west coasts of the US. Fertilizer and livestock manure were dominant in the Mississippi River Basin, where the bulk of agricultural areas are located. Run-off from undeveloped areas was the largest source of N delivered to coastal areas in the northwestern US. Our analysis shows that comparisons of source apportionment between models can increase confidence in modeled output by revealing areas of agreement and disagreement. We found predictions for agriculture and atmospheric deposition to be comparable between models; however, attribution to sewage was greater by SPARROW than by NEWS, while the reverse was true for natural N sources. Such differences in predictions resulted from differences in model structure and sources of input data. Nonetheless, model comparisons provide strong evidence that anthropogenic activities have a profound effect on N delivered to coastal areas of the US, especially along the Atlantic coast and Gulf of Mexico.
Brepols, Ch; Schäfer, H; Engelhardt, N
2010-01-01
Based on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment. A comparison of the specific energy demand of MBRs and conventional WWTPs is given. The structure of the MBRs actual operational costs is analysed. It can be seen that energy consumption is only responsible for one quarter to one third of all operational expenses. Based on a rough design and empirical cost data, a cost comparison of a full-scale MBR and a CAS is carried out. In this example the CAS employs a sand filtration and a disinfection in order to achieve comparable effluent quality. The influence of membrane lifetime on life cycle cost is assessed.
On the Reliability of Individual Brain Activity Networks.
Cassidy, Ben; Bowman, F DuBois; Rae, Caroline; Solo, Victor
2018-02-01
There is intense interest in fMRI research on whole-brain functional connectivity, and however, two fundamental issues are still unresolved: the impact of spatiotemporal data resolution (spatial parcellation and temporal sampling) and the impact of the network construction method on the reliability of functional brain networks. In particular, the impact of spatiotemporal data resolution on the resulting connectivity findings has not been sufficiently investigated. In fact, a number of studies have already observed that functional networks often give different conclusions across different parcellation scales. If the interpretations from functional networks are inconsistent across spatiotemporal scales, then the whole validity of the functional network paradigm is called into question. This paper investigates the consistency of resting state network structure when using different temporal sampling or spatial parcellation, or different methods for constructing the networks. To pursue this, we develop a novel network comparison framework based on persistent homology from a topological data analysis. We use the new network comparison tools to characterize the spatial and temporal scales under which consistent functional networks can be constructed. The methods are illustrated on Human Connectome Project data, showing that the DISCOH 2 network construction method outperforms other approaches at most data spatiotemporal resolutions.
Bimler, David; Kirkland, John; Pichler, Shaun
2004-02-01
The structure of color perception can be examined by collecting judgments about color dissimilarities. In the procedure used here, stimuli are presented three at a time on a computer monitor and the spontaneous grouping of most-similar stimuli into gestalts provides the dissimilarity comparisons. Analysis with multidimensional scaling allows such judgments to be pooled from a number of observers without obscuring the variations among them. The anomalous perceptions of color-deficient observers produce comparisons that are represented well by a geometric model of compressed individual color spaces, with different forms of deficiency distinguished by different directions of compression. The geometrical model is also capable of accommodating the normal spectrum of variation, so that there is greater variation in compression parameters between tests on normal subjects than in those between repeated tests on individual subjects. The method is sufficiently sensitive and the variations sufficiently large that they are not obscured by the use of a range of monitors, even under somewhat loosely controlled conditions.
Long, Kristin A; Lobato, Debra; Kao, Barbara; Plante, Wendy; Grullón, Edicta; Cheas, Lydia; Houck, Christopher; Seifer, Ronald
2013-06-01
Examine general emotion expression and sibling-parent emotion communication among Latino and non-Latino white (NLW) siblings of children with intellectual disabilities (ID) and matched comparisons. 200 siblings (ages 8-15 years) completed the newly developed Sibling-Parent Emotion Communication Scale and existing measures of general emotion expression and psychosocial functioning. Preliminary analyses evaluated scale psychometrics across ethnicity. Structure and internal consistency of the emotion expression and communication measures differed by respondent ethnicity. Latino siblings endorsed more general emotion expression problems and marginally lower sibling-parent emotion communication than NLW siblings. Siblings of children with ID reported marginally more general emotion expression problems than comparisons. Emotion expression problems and lower sibling-parent emotion communication predicted more internalizing and somatic symptoms and poorer personal adjustment, regardless of ID status. Siblings of children with ID endorsed poorer personal adjustment. Cultural differences in emotion expression and communication may increase Latino siblings' risk for emotional adjustment difficulties.
NASA Astrophysics Data System (ADS)
Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin
2018-02-01
In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.
Sonic environment of aircraft structure immersed in a supersonic jet flow stream
NASA Technical Reports Server (NTRS)
Guinn, W. A.; Balena, F. J.; Soovere, J.
1976-01-01
Test methods for determining the sonic environment of aircraft structure that is immersed in the flow stream of a high velocity jet or that is subjected to the noise field surrounding the jet, were investigated. Sonic environment test data measured on a SCAT 15-F model in the flow field of Mach 1.5 and 2.5 jets were processed. Narrow band, lateral cross correlation and noise contour plots are presented. Data acquisition and reduction methods are depicted. A computer program for scaling the model data is given that accounts for model size, jet velocity, transducer size, and jet density. Comparisons of scaled model data and full size aircraft data are made for the L-1011, S-3A, and a V/STOL lower surface blowing concept. Sonic environment predictions are made for an engine-over-the-wing SST configuration.
Comparative NEXAFS study of the selected icefish hard tissues and hydroxyapatite
NASA Astrophysics Data System (ADS)
Petrova, O. V.; Nekipelov, S. V.; Sivkov, D. V.; Mingaleva, A. E.; Nikolaev, A.; Frank-Kamenetskaya, O. V.; Bazhenov, V. V.; Vyalikh, D. V.; Molodtsov, S. L.; Sivkov, V. N.; Ehrlich, H.
2017-11-01
The structure of native Champsocephalus gunnari icefish otoliths, scales, teeth, bones and pristine hydroxyapatite (HA) were examined using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. NEXAFS Cls-absorption spectra of the selected icefish hard tissues indicate that otoliths contain anion [CO3]2-. NEXAFS P2p-spectra clearly indicate the absence of phosphorus atoms only within otoliths and scales samples. However, the icefish teeth and bones P2p-spectra demonstrate identical spectral feature typical for the HA. NEXAFS Ca2p-spectra of the icefish hard tissues studied also shows features, which are in good correspondence with HA spectra. Interestingly, there is a red shift ≈ 0.1 eV of the 2p1/2,3/2 → 3d transition energies in NEXAFS Ca2p-spectra of teethes and bones of the C. gunnari in comparison to HA.
Structure analysis for hole-nuclei close to 132Sn by a large-scale shell-model calculation
NASA Astrophysics Data System (ADS)
Wang, Han-Kui; Sun, Yang; Jin, Hua; Kaneko, Kazunari; Tazaki, Shigeru
2013-11-01
The structure of neutron-rich nuclei with a few holes in respect of the doubly magic nucleus 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including orbitals allowing both neutron and proton core excitations, an effective interaction for the extended pairing-plus-quadrupole model with monopole corrections is tested through detailed comparison between the calculation and experimental data. By using the experimental energy of the core-excited 21/2+ level in 131In as a benchmark, monopole corrections are determined that describe the size of the neutron N=82 shell gap. The level spectra, up to 5 MeV of excitation in 131In, 131Sn, 130In, 130Cd, and 130Sn, are well described and clearly explained by couplings of single-hole orbitals and by core excitations.
Realistic Modeling of Interaction of Quiet-Sun Magnetic Fields with the Chromosphere
NASA Technical Reports Server (NTRS)
Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.
2017-01-01
High-resolution observations and 3D MHD simulations reveal intense interaction between the convection zone dynamics and the solar atmosphere on subarcsecond scales. To investigate processes of the dynamical coupling and energy exchange between the subsurface layers and the chromosphere we perform 3D radiative MHD modeling for a computational domain that includes the upper convection zone and the chromosphere, and investigate the structure and dynamics for different intensity of the photospheric magnetic flux. For comparison with observations, the simulation models have been used to calculate synthetic Stokes profiles of various spectral lines. The results show intense energy exchange through small-scale magnetized vortex tubes rooted below the photosphere, which provide extra heating of the chromosphere, initiate shock waves, and small-scale eruptions.
Filamentary and hierarchical pictures - Kinetic energy criterion
NASA Technical Reports Server (NTRS)
Klypin, Anatoly A.; Melott, Adrian L.
1992-01-01
We present a new criterion for formation of second-generation filaments. The criterion called the kinetic energy ratio, KR, is based on comparison of peculiar velocities at different scales. We suggest that the clumpiness of the distribution in some cases might be less important than the 'coldness' or 'hotness' of the flow for formation of coherent structures. The kinetic energy ratio is analogous to the Mach number except for one essential difference. If at some scale KR is greater than 1, as estimated at the linear stage, then when fluctuations of this scale reach nonlinearity, the objects they produce must be anisotropic ('filamentary'). In the case of power-law initial spectra the kinetic ratio criterion suggests that the border line is the power-spectrum with the slope n = -1.
Measuring the Large-scale Solar Magnetic Field
NASA Astrophysics Data System (ADS)
Hoeksema, J. T.; Scherrer, P. H.; Peterson, E.; Svalgaard, L.
2017-12-01
The Sun's large-scale magnetic field is important for determining global structure of the corona and for quantifying the evolution of the polar field, which is sometimes used for predicting the strength of the next solar cycle. Having confidence in the determination of the large-scale magnetic field of the Sun is difficult because the field is often near the detection limit, various observing methods all measure something a little different, and various systematic effects can be very important. We compare resolved and unresolved observations of the large-scale magnetic field from the Wilcox Solar Observatory, Heliseismic and Magnetic Imager (HMI), Michelson Doppler Imager (MDI), and Solis. Cross comparison does not enable us to establish an absolute calibration, but it does allow us to discover and compensate for instrument problems, such as the sensitivity decrease seen in the WSO measurements in late 2016 and early 2017.
The Use of Weighted Graphs for Large-Scale Genome Analysis
Zhou, Fang; Toivonen, Hannu; King, Ross D.
2014-01-01
There is an acute need for better tools to extract knowledge from the growing flood of sequence data. For example, thousands of complete genomes have been sequenced, and their metabolic networks inferred. Such data should enable a better understanding of evolution. However, most existing network analysis methods are based on pair-wise comparisons, and these do not scale to thousands of genomes. Here we propose the use of weighted graphs as a data structure to enable large-scale phylogenetic analysis of networks. We have developed three types of weighted graph for enzymes: taxonomic (these summarize phylogenetic importance), isoenzymatic (these summarize enzymatic variety/redundancy), and sequence-similarity (these summarize sequence conservation); and we applied these types of weighted graph to survey prokaryotic metabolism. To demonstrate the utility of this approach we have compared and contrasted the large-scale evolution of metabolism in Archaea and Eubacteria. Our results provide evidence for limits to the contingency of evolution. PMID:24619061
Confocal Rheology Probes the Structure and Mechanics of Collagen through the Sol-Gel Transition.
Tran-Ba, Khanh-Hoa; Lee, Daniel J; Zhu, Jieling; Paeng, Keewook; Kaufman, Laura J
2017-10-17
Fibrillar type I collagen-based hydrogels are commonly used in tissue engineering and as matrices for biophysical studies. Mechanical and structural properties of these gels are known to be governed by the conditions under which fibrillogenesis occurs, exhibiting variation as a function of protein concentration, temperature, pH, and ionic strength. Deeper understanding of how macroscopic structure affects viscoelastic properties of collagen gels over the course of fibrillogenesis provides fundamental insight into biopolymer gel properties and promises enhanced control over the properties of such gels. Here, we investigate type I collagen fibrillogenesis using confocal rheology-simultaneous confocal reflectance microscopy, confocal fluorescence microscopy, and rheology. The multimodal approach allows direct comparison of how viscoelastic properties track the structural evolution of the gel on fiber and network length scales. Quantitative assessment and comparison of each imaging modality and the simultaneously collected rheological measurements show that the presence of a system-spanning structure occurs at a time similar to rheological determinants of gelation. Although this and some rheological measures are consistent with critical gelation through percolation, additional rheological and structural properties of the gel are found to be inconsistent with this theory. This study clarifies how structure sets viscoelasticity during collagen fibrillogenesis and more broadly highlights the utility of multimodal measurements as critical test-beds for theoretical descriptions of complex systems. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Centrifuge modeling of rocking-isolated inelastic RC bridge piers
Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George
2014-01-01
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd. PMID:26300573
NASA Astrophysics Data System (ADS)
Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.
2017-12-01
Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical situations. Finally we present initial comparison of our modeling results with GNSS scintillation observed via an array of receivers at Poker Flat.
NASA Astrophysics Data System (ADS)
Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.
2016-12-01
One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.
Qin, Zhao; Buehler, Markus J
2011-01-01
Intermediate filaments, in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, and play an important role in mechanotransduction as well as in providing mechanical stability to cells at large stretch. The molecular structures, mechanical and dynamical properties of the intermediate filament basic building blocks, the dimer and the tetramer, however, have remained elusive due to persistent experimental challenges owing to the large size and fibrillar geometry of this protein. We have recently reported an atomistic-level model of the human vimentin dimer and tetramer, obtained through a bottom-up approach based on structural optimization via molecular simulation based on an implicit solvent model (Qin et al. in PLoS ONE 2009 4(10):e7294, 9). Here we present extensive simulations and structural analyses of the model based on ultra large-scale atomistic-level simulations in an explicit solvent model, with system sizes exceeding 500,000 atoms and simulations carried out at 20 ns time-scales. We report a detailed comparison of the structural and dynamical behavior of this large biomolecular model with implicit and explicit solvent models. Our simulations confirm the stability of the molecular model and provide insight into the dynamical properties of the dimer and tetramer. Specifically, our simulations reveal a heterogeneous distribution of the bending stiffness along the molecular axis with the formation of rather soft and highly flexible hinge-like regions defined by non-alpha-helical linker domains. We report a comparison of Ramachandran maps and the solvent accessible surface area between implicit and explicit solvent models, and compute the persistence length of the dimer and tetramer structure of vimentin intermediate filaments for various subdomains of the protein. Our simulations provide detailed insight into the dynamical properties of the vimentin dimer and tetramer intermediate filament building blocks, which may guide the development of novel coarse-grained models of intermediate filaments, and could also help in understanding assembly mechanisms.
Structural Analysis and Test Comparison of a 20-Meter Inflation-Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Sleight, David W.; Mann, Troy; Lichodziejewski, David; Derbes, Billy
2006-01-01
Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive test program was implemented to advance the technology readiness level of the solar sail design. These tests consisted of solar sail component, subsystem, and sub-scale system ground tests that simulated the aspects of the space environment such as vacuum and thermal conditions. In July 2005, a 20-m four-quadrant solar sail system test article was tested in the NASA Glenn Research Center s Space Power Facility to measure its static and dynamic structural responses. Key to the maturation of solar sail technology is the development of validated finite element analysis (FEA) models that can be used for design and analysis of solar sails. A major objective of the program was to utilize the test data to validate the FEA models simulating the solar sail ground tests. The FEA software, ABAQUS, was used to perform the structural analyses to simulate the ground tests performed on the 20-m solar sail test article. This paper presents the details of the FEA modeling, the structural analyses simulating the ground tests, and a comparison of the pretest and post-test analysis predictions with the ground test results for the 20-m solar sail system test article. The structural responses that are compared in the paper include load-deflection curves and natural frequencies for the beam structural assembly and static shape, natural frequencies, and mode shapes for the solar sail membrane. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were unmeasured initial conditions in the test set-up.
Wavelet Analysis of Turbulent Spots and Other Coherent Structures in Unsteady Transition
NASA Technical Reports Server (NTRS)
Lewalle, Jacques
1998-01-01
This is a secondary analysis of a portion of the Halstead data. The hot-film traces from an embedded stage of a low pressure turbine have been extensively analyzed by Halstead et al. In this project, wavelet analysis is used to develop the quantitative characterization of individual coherent structures in terms of size, amplitude, phase, convection speed, etc., as well as phase-averaged time scales. The purposes of the study are (1) to extract information about turbulent time scales for comparison with unsteady model results (e.g. k/epsilon). Phase-averaged maps of dominant time scales will be presented; and (2) to evaluate any differences between wake-induced and natural spots that might affect model performance. Preliminary results, subject to verification with data at higher frequency resolution, indicate that spot properties are independent of their phase relative to the wake footprints: therefore requirements for the physical content of models are kept relatively simple. Incidentally, we also observed that spot substructures can be traced over several stations; further study will examine their possible impact.
Large-eddy simulations of a forced homogeneous isotropic turbulence with polymer additives
NASA Astrophysics Data System (ADS)
Wang, Lu; Cai, Wei-Hua; Li, Feng-Chen
2014-03-01
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.
Vibration test of 1/5 scale H-II launch vehicle
NASA Astrophysics Data System (ADS)
Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.
In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.
A Comparison of MMPI--2 measures of Psychopathic Deviance in a Forensic Setting
ERIC Educational Resources Information Center
Sellbom, Martin; Ben-Porath, Yossef S.; Stafford, Kathleen P.
2007-01-01
We examined the convergent and discriminant validity of the Minnesota Multiphasic Personality Inventory--2 (MMPI--2) measures of psychopathy, including the Clinical Scale 4, Restructured Clinical Scale 4 (RC4), Content Scale Antisocial Practices (ASP), and Personality Psychopathology Five Scale Disconstraint (DISC). Comparisons of the empirical…
Haile, Sarah R; Guerra, Beniamino; Soriano, Joan B; Puhan, Milo A
2017-12-21
Prediction models and prognostic scores have been increasingly popular in both clinical practice and clinical research settings, for example to aid in risk-based decision making or control for confounding. In many medical fields, a large number of prognostic scores are available, but practitioners may find it difficult to choose between them due to lack of external validation as well as lack of comparisons between them. Borrowing methodology from network meta-analysis, we describe an approach to Multiple Score Comparison meta-analysis (MSC) which permits concurrent external validation and comparisons of prognostic scores using individual patient data (IPD) arising from a large-scale international collaboration. We describe the challenges in adapting network meta-analysis to the MSC setting, for instance the need to explicitly include correlations between the scores on a cohort level, and how to deal with many multi-score studies. We propose first using IPD to make cohort-level aggregate discrimination or calibration scores, comparing all to a common comparator. Then, standard network meta-analysis techniques can be applied, taking care to consider correlation structures in cohorts with multiple scores. Transitivity, consistency and heterogeneity are also examined. We provide a clinical application, comparing prognostic scores for 3-year mortality in patients with chronic obstructive pulmonary disease using data from a large-scale collaborative initiative. We focus on the discriminative properties of the prognostic scores. Our results show clear differences in performance, with ADO and eBODE showing higher discrimination with respect to mortality than other considered scores. The assumptions of transitivity and local and global consistency were not violated. Heterogeneity was small. We applied a network meta-analytic methodology to externally validate and concurrently compare the prognostic properties of clinical scores. Our large-scale external validation indicates that the scores with the best discriminative properties to predict 3 year mortality in patients with COPD are ADO and eBODE.
NASA Astrophysics Data System (ADS)
Chhiber, Rohit; Usmanov, Arcadi V.; DeForest, Craig E.; Matthaeus, William H.; Parashar, Tulasi N.; Goldstein, Melvyn L.
2018-04-01
Recent analysis of Solar-Terrestrial Relations Observatory (STEREO) imaging observations have described the early stages of the development of turbulence in the young solar wind in solar minimum conditions. Here we extend this analysis to a global magnetohydrodynamic (MHD) simulation of the corona and solar wind based on inner boundary conditions, either dipole or magnetogram type, that emulate solar minimum. The simulations have been calibrated using Ulysses and 1 au observations, and allow, within a well-understood context, a precise determination of the location of the Alfvén critical surfaces and the first plasma beta equals unity surfaces. The compatibility of the the STEREO observations and the simulations is revealed by direct comparisons. Computation of the radial evolution of second-order magnetic field structure functions in the simulations indicates a shift toward more isotropic conditions at scales of a few Gm, as seen in the STEREO observations in the range 40–60 R ⊙. We affirm that the isotropization occurs in the vicinity of the first beta unity surface. The interpretation based on early stages of in situ solar wind turbulence evolution is further elaborated, emphasizing the relationship of the observed length scales to the much smaller scales that eventually become the familiar turbulence inertial range cascade. We argue that the observed dynamics is the very early manifestation of large-scale in situ nonlinear couplings that drive turbulence and heating in the solar wind.
The seesaw space, a vector space to identify and characterize large-scale structures at 1 AU
NASA Astrophysics Data System (ADS)
Lara, A.; Niembro, T.
2017-12-01
We introduce the seesaw space, an orthonormal space formed by the local and the global fluctuations of any of the four basic solar parameters: velocity, density, magnetic field and temperature at any heliospheric distance. The fluctuations compare the standard deviation of a moving average of three hours against the running average of the parameter in a month (consider as the local fluctuations) and in a year (global fluctuations) We created this new vectorial spaces to identify the arrival of transients to any spacecraft without the need of an observer. We applied our method to the one-minute resolution data of WIND spacecraft from 1996 to 2016. To study the behavior of the seesaw norms in terms of the solar cycle, we computed annual histograms and fixed piecewise functions formed by two log-normal distributions and observed that one of the distributions is due to large-scale structures while the other to the ambient solar wind. The norm values in which the piecewise functions change vary in terms of the solar cycle. We compared the seesaw norms of each of the basic parameters due to the arrival of coronal mass ejections, co-rotating interaction regions and sector boundaries reported in literature. High seesaw norms are due to large-scale structures. We found three critical values of the norms that can be used to determined the arrival of coronal mass ejections. We present as well general comparisons of the norms during the two maxima and the minimum solar cycle periods and the differences of the norms due to large-scale structures depending on each period.
Morean, Meghan E.; DeMartini, Kelly S.; Leeman, Robert F.; Pearlson, Godfrey D.; Anticevic, Alan; Krishnan-Sarin, Suchitra; Krystal, John H.; O’Malley, Stephanie S.
2014-01-01
Self-reported impulsivity confers risk factor for substance abuse. However, the psychometric properties of many self-report impulsivity measures have been questioned, thereby undermining the interpretability of study findings using these measures. To better understand these measurement limitations and to suggest a path to assessing self-reported impulsivity with greater psychometric stability, we conducted a comprehensive psychometric evaluation of the Barratt Impulsiveness Scale-11 (BIS-11), the Behavioral Inhibition and Activation Scales (BIS/BAS), and the Brief Self Control Scale (BSCS) using data from 1,449 individuals who participated in substance use research. For each measure, we evaluated: 1) latent factor structure, 2) measurement invariance, 3) test-criterion relationships between the measures, and 4) test-criterion relations with drinking and smoking outcomes. Notably, we could not replicate the originally published latent structure for the BIS, BIS/BAS, or BSCS or any previously published alternative factor structures (English language). Using exploratory and confirmatory factor analysis, we identified psychometrically improved, abbreviated versions of each measure (i.e., 8-item, 2 factor BIS-11 [RMSEA = .06, CFI = .95]; 13-item, 4 factor BIS/BAS [RMSEA = .04, CFI = .96]; 7-item, 2 factor BSCS [RMSEA = .05, CFI = .96]). These versions evidenced: 1) stable, replicable factor structures, 2) scalar measurement invariance, ensuring our ability to make statistically interpretable comparisons across subgroups of interest (e.g., sex, race, drinking/smoking status), and 3) test-criterion relationships with each other and with drinking/smoking. This study provides strong support for using these psychometrically improved impulsivity measures, which improve data quality directly through better scale properties and indirectly through reducing response burden. PMID:24885848
Gale, Catharine R; Allerhand, Michael; Sayer, Avan Aihie; Cooper, Cyrus; Dennison, Elaine M; Starr, John M; Ben-Shlomo, Yoav; Gallacher, John E; Kuh, Diana; Deary, Ian J
2010-06-01
The Hospital Anxiety and Depression Scale (HADS) is widely used but evaluation of its psychometric properties has produced equivocal results. Little is known about its structure in non-clinical samples of older people. We used data from four cohorts in the HALCyon collaborative research program into healthy aging: the Caerphilly Prospective Study, the Hertfordshire Ageing Study, the Hertfordshire Cohort Study, and the Lothian Birth Cohort 1921. We used exploratory factor analysis and confirmatory factor analysis with multi-group comparisons to establish the structure of the HADS and test for factorial invariance between samples. Exploratory factor analysis showed a bi-dimensional structure (anxiety and depression) of the scale in men and women in each cohort. We tested a hypothesized three-factor model but high correlations between two of the factors made a two-factor model more psychologically plausible. Multi-group confirmatory factor analysis revealed that the sizes of the respective item loadings on the two factors were effectively identical in men and women from the same cohort. There was more variation between cohorts, particularly those from different parts of the U.K. and in whom the HADS was administered differently. Differences in social-class distribution accounted for part of this variation. Scoring the HADS as two subscales of anxiety and depression is appropriate in non-clinical populations of older men and women. However, there were differences between cohorts in the way that individual items were linked with the constructs of anxiety and depression, perhaps due to differences in sociocultural factors and/or in the administration of the scale.
Full-scale results for TAM limestone injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, S.
1996-12-31
Information is outlined on the use of thermally active marble (TAM) sorbents in boilers. Data are presented on: the comparison of TAM to limestone; NOVACON process development history; CFB test history; CFB pilot scale test; full-scale CFB trial; August, 1996 CFB demonstration; Foster Wheeler Mount Carmel sorbent feed rate comparison and Ca:S comparison; unburned carbon is ash; and advantages and savings in CFB boilers.
A New Comprehensive Model for Crustal and Upper Mantle Structure of the European Plate
NASA Astrophysics Data System (ADS)
Morelli, A.; Danecek, P.; Molinari, I.; Postpischl, L.; Schivardi, R.; Serretti, P.; Tondi, M. R.
2009-12-01
We present a new comprehensive model of crustal and upper mantle structure of the whole European Plate — from the North Atlantic ridge to Urals, and from North Africa to the North Pole — describing seismic speeds (P and S) and density. Our description of crustal structure merges information from previous studies: large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness and seismic parameters. Most original information refers to P-wave speed, from which we derive S speed and density from scaling relations. This a priori crustal model by itself improves the overall fit to observed Bouguer anomaly maps, as derived from GRACE satellite data, over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. In the inversion for transversely isotropic mantle structure, we use group speed measurements made on European event-to-station paths, and use a global a priori model (S20RTS) to ensure fair rendition of earth structure at depth and in border areas with little coverage from our data. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies beneath the Alpine mobile belt, and fast lithospheric signatures under the two main Mediterranean subduction systems (Aegean and Tyrrhenian). We map compressional wave speed inverting ISC travel times (reprocessed by Engdahl et al.) with a non linear inversion scheme making use of finite-difference travel time calculation. The inversion is based on an a priori model obtained by scaling the 3D mantle S-wave speed to P. The new model substantially confirms images of descending lithospheric slabs and back-arc shallow asthenospheric regions, shown in other more local high-resolution tomographic studies, but covers the whole range of the European Plate. We also obtain three-dimensional mantle density structure by inversion of GRACE Bouguer anomalies locally adjusting density and the scaling relation between seismic wave speeds and density. We validate the new comprehensive model through comparison of recorded seismograms with numerical simulations based on SPECFEM3D. This work is a contribution towards the definition of a reference earth model for Europe. To this extent, in order to improve model dissemination and comparison, we propose the adoption of a common exchange format for tomographic earth models based on JSON, a lightweight data-interchange format supported by most high-level programming languages. We provide tools for manipulating and visualising models, described in this standard format, in Google Earth and GEON IDV.
NASA Astrophysics Data System (ADS)
Tiselj, Iztok
2014-12-01
Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and instantaneous streamwise velocities, but between the instantaneous temperatures and velocities averaged over certain time interval.
Zhang, Ying; Zhao, Xudong; Leonhart, Rainer; Nadig, Maya; Hasenburg, Annette; Wirsching, Michael; Fritzsche, Kurt
2016-07-01
This cross-cultural study aimed to compare climacteric symptoms, self-esteem, and perceived social support between Mosuo and Han Chinese women, and to explore the interaction between culture and climacteric symptoms. Mosuo is a Chinese minority group with a matriarchal structure, and Han Chinese is the majority ethnic group in China with a patriarchal structure. Through convenience sampling, 54 Mosuo women and 52 Han Chinese women between 40 and 60 years of age completed the sociodemographic questionnaire, the Menopause Rating Scale, the Self-Esteem Scale, and the Perceived Social Support Scale. Compared with Han Chinese women, Mosuo women scored lower on the psychological (P < 0.001) and the somato-vegetative (P = 0.047) subscales of the Menopause Rating Scale, but higher on the Self-Esteem Scale (P = 0.006) and the "support from family" subscale of the Perceived Social Support Scale (P = 0.004). Multiple linear regressions indicated that minority ethnicity (β = 0.207, P = 0.016) was one of the predictive variables of psychological symptoms severity. Referring to the severity of all symptoms, predictive variables were: perceived support from family (β = -0.210, P = 0.017); self-esteem (β = 0.320, P < 0.001); previous history of premenstrual syndrome (β = 0.293, P < 0.001); number of family members (β = -0.229, P = 0.003); and family income (β = -0.173, P = 0.028). Differences in climacteric symptoms were found between two groups. Cultural variables such as familial structure, women's self-esteem, and perceived social support were correlated with symptomatology.
NASA Technical Reports Server (NTRS)
Gryc, G. (Principal Investigator); Lathram, E. H.
1973-01-01
The author has identified the following significant results. Analysis of lineated lakes in the Umiat, Alaska area and comparison with known geology, gravity, and magnetic data in the the area suggest concealed structures exist at depth, possibly at or near basement, which may represent targets for petroleum exploration. Compilation of reconnaissance geologic data on 1:250,000 scale enlargements of ERTS-1 images near Corwin reveal structural and stratigraphic anomalies that suggest the Cretaceous sequence is less thick than supposed and is repeated in a series of plates superimposed by flat thrust faults. The structural style differs from that in coeval strata to the northeast, across the northwest-trending linear zone separating differing tectonic styles in older strata noted earlier. The regional extension of a fault known locally in the McCarthy area has been recognized; this fault appears to form the boundary of a significant terrane of mid-Paleozoic metamorphic rocks. ERTS-1 images are being used operationally, at 1:1,000,000 scale in the compilation of regional geologic maps, and at 1:250,000 scale in field mapping in the Brooks Range, in the study of faults in seismically active southern Alaska, in field-checking interpretations previously made from ERTS-1 imagery, and orthophoto base maps for geologic maps.
NASA Technical Reports Server (NTRS)
Newell, Reginald E. (Principal Investigator)
2003-01-01
During the first year we focused on the analysis of data collected on over 7600 commercial aircraft flights (the MOZAIC program). The aim was to further our understanding of the fundamental dynamical processes that drive mesoscale phenomena in the upper troposphere and lower stratosphere, and their effects on the advection of passive scalars. Through these studies we made the following findings. 2001]: We derived the Kolmogorov equation for the third-order velocity structure function on an f-plane. We showed how the sign of the function yields the direction of the energy cascade. The remarkable linearity of the measured off diagonal third-order structure function was studied. We suggested that the Coriolis term, which appears explicitly in this equation, may be crucial in understanding the observed kinetic energy spectra at scales larger than 100 km, instead of the nonlinear advection term as previously assumed. Also, we showed that
MASTtreedist: visualization of tree space based on maximum agreement subtree.
Huang, Hong; Li, Yongji
2013-01-01
Phylogenetic tree construction process might produce many candidate trees as the "best estimates." As the number of constructed phylogenetic trees grows, the need to efficiently compare their topological or physical structures arises. One of the tree comparison's software tools, the Mesquite's Tree Set Viz module, allows the rapid and efficient visualization of the tree comparison distances using multidimensional scaling (MDS). Tree-distance measures, such as Robinson-Foulds (RF), for the topological distance among different trees have been implemented in Tree Set Viz. New and sophisticated measures such as Maximum Agreement Subtree (MAST) can be continuously built upon Tree Set Viz. MAST can detect the common substructures among trees and provide more precise information on the similarity of the trees, but it is NP-hard and difficult to implement. In this article, we present a practical tree-distance metric: MASTtreedist, a MAST-based comparison metric in Mesquite's Tree Set Viz module. In this metric, the efficient optimizations for the maximum weight clique problem are applied. The results suggest that the proposed method can efficiently compute the MAST distances among trees, and such tree topological differences can be translated as a scatter of points in two-dimensional (2D) space. We also provide statistical evaluation of provided measures with respect to RF-using experimental data sets. This new comparison module provides a new tree-tree pairwise comparison metric based on the differences of the number of MAST leaves among constructed phylogenetic trees. Such a new phylogenetic tree comparison metric improves the visualization of taxa differences by discriminating small divergences of subtree structures for phylogenetic tree reconstruction.
Tsigilis, Nikolaos; Gregoriadis, Athanasios; Grammatikopoulos, Vasilis; Zachopoulou, Evridiki
2018-01-01
Teacher-child relationships in early childhood are a fundamental prerequisite for children's social, emotional, and academic development. The Student-Teacher Relationship Scale (STRS) is one of the most widely accepted and used instruments that evaluate the quality of teacher-child relationships. STRS is a 28-item questionnaire that assess three relational dimensions, Closeness, Conflict, and Dependency. The relevant literature has shown a pattern regarding the difficulty to support the STRS factor structure with CFA, while it is well-documented with EFA. Recently, a new statistical technique was proposed to combine the best of the CFA and EFA namely, the Exploratory Structural Equation Modeling (ESEM). The purpose of this study was (a) to examine the factor structure of the STRS in a Greek national sample. Toward this end, the ESEM framework was applied in order to overcome the limitations of EFA and CFA, (b) to confirm previous findings about the cultural influence in teacher-child relationship patterns, and (c) to examine the invariance of STRS across gender and age. Early educators from a representative Greek sample size of 535 child care and kindergarten centers completed the STRS for 4,158 children. CFA as well as ESEM procedures were implemented. Results showed that ESEM provided better fit to the data than CFA in both groups, supporting the argument that CFA is an overly restrictive approach in comparison to ESEM for the study of STRS. All primary loadings were statistically significant and were associated with their respective latent factors. Contrary to the existing literature conducted in USA and northern Europe, the association between Closeness and Dependency yielded a positive correlation. This finding is in line with previous studies conducted in Greece and confirm the existence of cultural differences in teacher-child relationships. In addition, findings supported the configural, metric, scalar, and variance/covariance equivalence of the STRS between males and females and between preschoolers (3-5 years) and early primary years (5-7 years). Latent factor means comparisons showed that females seem to have a warmer and more dependent relationship with their teachers and are less conflictual in comparison to males.
Tsigilis, Nikolaos; Gregoriadis, Athanasios; Grammatikopoulos, Vasilis; Zachopoulou, Evridiki
2018-01-01
Teacher-child relationships in early childhood are a fundamental prerequisite for children's social, emotional, and academic development. The Student-Teacher Relationship Scale (STRS) is one of the most widely accepted and used instruments that evaluate the quality of teacher-child relationships. STRS is a 28-item questionnaire that assess three relational dimensions, Closeness, Conflict, and Dependency. The relevant literature has shown a pattern regarding the difficulty to support the STRS factor structure with CFA, while it is well-documented with EFA. Recently, a new statistical technique was proposed to combine the best of the CFA and EFA namely, the Exploratory Structural Equation Modeling (ESEM). The purpose of this study was (a) to examine the factor structure of the STRS in a Greek national sample. Toward this end, the ESEM framework was applied in order to overcome the limitations of EFA and CFA, (b) to confirm previous findings about the cultural influence in teacher-child relationship patterns, and (c) to examine the invariance of STRS across gender and age. Early educators from a representative Greek sample size of 535 child care and kindergarten centers completed the STRS for 4,158 children. CFA as well as ESEM procedures were implemented. Results showed that ESEM provided better fit to the data than CFA in both groups, supporting the argument that CFA is an overly restrictive approach in comparison to ESEM for the study of STRS. All primary loadings were statistically significant and were associated with their respective latent factors. Contrary to the existing literature conducted in USA and northern Europe, the association between Closeness and Dependency yielded a positive correlation. This finding is in line with previous studies conducted in Greece and confirm the existence of cultural differences in teacher-child relationships. In addition, findings supported the configural, metric, scalar, and variance/covariance equivalence of the STRS between males and females and between preschoolers (3–5 years) and early primary years (5–7 years). Latent factor means comparisons showed that females seem to have a warmer and more dependent relationship with their teachers and are less conflictual in comparison to males. PMID:29867688
Madden-Julian Oscillation: Western Pacific and Indian Ocean
NASA Astrophysics Data System (ADS)
Fuchs, Z.; Raymond, D. J.
2016-12-01
The MJO has been and still remains a "holy grail" of today's atmospheric science research. Why does the MJO propagate eastward? What makes it unstable? What is the scaling for the MJO, i.e. why does it prefer long wavelengths or planetary wavenumbers 1-3? The MJO has the strongest signal in the Indian ocean and in the West Pacific, but the average vertical structure is very different in each of those basins. We look at the reanalysis/analysis FNL, ERAI vertical structure of temperature and moisture as well as the surface zonal winds for two ocean basins. We also look at data from DYNAMO and TOGA_COARE in great detail (saturation fraction, temperature, entropy, surface zonal winds, gross moist stability, etc). The findings from observations and field projects for the two ocean basins are then compared to a linear WISHE model on an equatorial beta plane. Though linear WISHE has long been discounted as a plausible model for the MJO, the version we have developed explains many of the observed features of this phenomenon, in particular, the preference for large zonal scale, the eastward propagation, the westward group velocity, and the thermodynamic structure. There is no need to postulate large-scale negative gross moist stability, as destabilization occurs via WISHE at long wavelengths only. This differs from early WISHE models because we take a moisture adjustment time scale of order one day in comparison to the much shorter time scales assumed in earlier models. Linear modeling cannot capture all of the features of the MJO, so we are in the process of adding nonlinearity.
Difference magnitude is not measured by discrimination steps for order of point patterns.
Protonotarios, Emmanouil D; Johnston, Alan; Griffin, Lewis D
2016-07-01
We have shown in previous work that the perception of order in point patterns is consistent with an interval scale structure (Protonotarios, Baum, Johnston, Hunter, & Griffin, 2014). The psychophysical scaling method used relies on the confusion between stimuli with similar levels of order, and the resulting discrimination scale is expressed in just-noticeable differences (jnds). As with other perceptual dimensions, an interesting question is whether suprathreshold (perceptual) differences are consistent with distances between stimuli on the discrimination scale. To test that, we collected discrimination data, and data based on comparison of perceptual differences. The stimuli were jittered square lattices of dots, covering the range from total disorder (Poisson) to perfect order (square lattice), roughly equally spaced on the discrimination scale. Observers picked the most ordered pattern from a pair, and the pair of patterns with the greatest difference in order from two pairs. Although the judgments of perceptual difference were found to be consistent with an interval scale, like the discrimination judgments, no common interval scale that could predict both sets of data was possible. In particular, the midpattern of the perceptual scale is 11 jnds away from the ordered end, and 5 jnds from the disordered end of the discrimination scale.
Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin
2014-09-15
Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sandrini-Neto, L.; Lana, P. C.
2012-06-01
Heterogeneity in the distribution of organisms occurs at a range of spatial scales, which may vary from few centimeters to hundreds of kilometers. The exclusion of small-scale variability from routine sampling designs may confound comparisons at larger scales and lead to inconsistent interpretation of data. Despite its ecological and social-economic importance, little is known about the spatial structure of the mangrove crab Ucides cordatus in the southwest Atlantic. Previous studies have commonly compared densities at relatively broad scales, relying on alleged distribution patterns (e.g., mangroves of distinct composition and structure). We have assessed variability patterns of U. cordatus in mangroves of Paranaguá Bay at four levels of spatial hierarchy (10 s km, km, 10 s m and m) using a nested ANOVA and variance components measures. The potential role of sediment parameters, pneumatophore density, and organic matter content in regulating observed patterns was assessed by multiple regression models. Densities of total and non-commercial size crabs varied mostly at 10 s m to km scales. Densities of commercial size crabs differed at the scales of 10 s m and 10 s km. Variance components indicated that small-scale variation was the most important, contributing up to 70% of the crab density variability. Multiple regression models could not explain the observed variations. Processes driving differences in crab abundance were not related to the measured variables. Small-scale patchy distribution has direct implications to current management practices of U. cordatus. Future studies should consider processes operating at smaller scales, which are responsible for a complex mosaic of patches within previously described patterns.
Comparison of the hedonic general Labeled Magnitude Scale with the hedonic 9-point scale.
Kalva, Jaclyn J; Sims, Charles A; Puentes, Lorenzo A; Snyder, Derek J; Bartoshuk, Linda M
2014-02-01
The hedonic 9-point scale was designed to compare palatability among different food items; however, it has also been used occasionally to compare individuals and groups. Such comparisons can be invalid because scale labels (for example, "like extremely") can denote systematically different hedonic intensities across some groups. Addressing this problem, the hedonic general Labeled Magnitude Scale (gLMS) frames affective experience in terms of the strongest imaginable liking/disliking of any kind, which can yield valid group comparisons of food palatability provided extreme hedonic experiences are unrelated to food. For each scale, 200 panelists rated affect for remembered food products (including favorite and least favorite foods) and sampled foods; they also sampled taste stimuli (quinine, sucrose, NaCl, citric acid) and rated their intensity. Finally, subjects identified experiences representing the endpoints of the hedonic gLMS. Both scales were similar in their ability to detect within-subject hedonic differences across a range of food experiences, but group comparisons favored the hedonic gLMS. With the 9-point scale, extreme labels were strongly associated with extremes in food affect. In contrast, gLMS data showed that scale extremes referenced nonfood experiences. Perceived taste intensity significantly influenced differences in food liking/disliking (for example, those experiencing the most intense tastes, called supertasters, showed more extreme liking and disliking for their favorite and least favorite foods). Scales like the hedonic gLMS are suitable for across-group comparisons of food palatability. © 2014 Institute of Food Technologists®
NASA Technical Reports Server (NTRS)
Sadunas, J. A.; French, E. P.; Sexton, H.
1973-01-01
A 1/25 scale model S-2 stage base region thermal environment test is presented. Analytical results are included which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection on base region thermal environment. Comparisons are made between full scale flight data, model test data, and analytical results. The report is prepared in two volumes. The description of analytical predictions and comparisons with flight data are presented. Tabulation of the test data is provided.
ALMA Observations of a Quiescent Molecular Cloud in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Rémy; Bernard, Jean-Philippe; Onishi, Toshikazu; Wojciechowski, Evan; Bandurski, Jeffrey B.; Kawamura, Akiko; Roman-Duval, Julia; Cao, Yixian; Chen, C.-H. Rosie; Chu, You-hua; Cui, Chaoyue; Fukui, Yasuo; Montier, Ludovic; Muller, Erik; Ott, Juergen; Paradis, Deborah; Pineda, Jorge L.; Rosolowsky, Erik; Sewiło, Marta
2017-12-01
We present high-resolution (subparsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in 12CO(2-1) and the high column density regions in 13CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the “Planck cold cloud” or PCC) in the southern outskirts of the galaxy where star formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and five times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface-density structures tend to exhibit supervirial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (“leaves”) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-line-width relationships.
Modeling the atomistic growth behavior of gold nanoparticles in solution
NASA Astrophysics Data System (ADS)
Turner, C. Heath; Lei, Yu; Bao, Yuping
2016-04-01
The properties of gold nanoparticles strongly depend on their three-dimensional atomic structure, leading to an increased emphasis on controlling and predicting nanoparticle structural evolution during the synthesis process. In order to provide this atomistic-level insight and establish a link to the experimentally-observed growth behavior, a kinetic Monte Carlo simulation (KMC) approach is developed for capturing Au nanoparticle growth characteristics. The advantage of this approach is that, compared to traditional molecular dynamics simulations, the atomistic nanoparticle structural evolution can be tracked on time scales that approach the actual experiments. This has enabled several different comparisons against experimental benchmarks, and it has helped transition the KMC simulations from a hypothetical toy model into a more experimentally-relevant test-bed. The model is initially parameterized by performing a series of automated comparisons of Au nanoparticle growth curves versus the experimental observations, and then the refined model allows for detailed structural analysis of the nanoparticle growth behavior. Although the Au nanoparticles are roughly spherical, the maximum/minimum dimensions deviate from the average by approximately 12.5%, which is consistent with the corresponding experiments. Also, a surface texture analysis highlights the changes in the surface structure as a function of time. While the nanoparticles show similar surface structures throughout the growth process, there can be some significant differences during the initial growth at different synthesis conditions.
Dimensionality and measurement invariance in the Satisfaction with Life Scale in Norway.
Clench-Aas, Jocelyne; Nes, Ragnhild Bang; Dalgard, Odd Steffen; Aarø, Leif Edvard
2011-10-01
Results from previous studies examining the dimensionality and factorial invariance of the Satisfaction with Life Scale (SWLS) are inconsistent and often based on small samples. This study examines the factorial structure and factorial invariance of the SWLS in a Norwegian sample. Confirmatory factor analysis (AMOS) was conducted to explore dimensionality and test for measurement invariance in factor structure, factor loadings, intercepts, and residual variance across gender and four age groups in a large (N = 4,984), nationally representative sample of Norwegian men and women (15-79 years). The data supported a modified unidimensional structure. Factor loadings could be constrained to equality between the sexes, indicating metric invariance between genders. Further testing indicated invariance also at the strong and strict levels, thus allowing analyses involving group means. The SWLS was shown to be sensitive to age, however, at the strong and strict levels of invariance testing. In conclusion, the results in this Norwegian study seem to confirm that a unidimensional structure is acceptable, but that a modified single-factor model with correlations between error terms of items 4 and 5 is preferred. Additionally, comparisons may be made between the genders. Caution must be exerted when comparing age groups.
NASA Technical Reports Server (NTRS)
Sahraoui, Fouad; Goldstein, Melvyn
2008-01-01
Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.
The [N II] Kinematics of R Aquarii
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Vogel, S. N.; VanBuren, D.; Strong, J. P.; Lyon, R. G.; Dorband, J. E.
1998-01-01
We report a kinematic study of the symbiotic star system R Aqr derived from [N H]lambda 6584 emission observations with a Fabry-Perot imaging spectrometer. The [N II] spatial structure of the R Aqr jet, first observed circa 1977, and surrounding hourglass-shaped nebulosity, due to an explosion approximately 660 years ago, are derived from 41 velocity planes spaced at approximately 12 km/s intervals. Fabry-Perot imagery shows the elliptical nebulosity comprising the waist of the hourglass shell is consistent with a circular ring expanding radially at 55 km/s as seen at an inclination angle, i approximately 70 deg. Fabry-Perot imagery shows the two-sided R Aqr jet is collimated flow in opposite directions. The intensity-velocity structure of the strong NE jet component is shown in contrast to the amorphous SW jet component. We offer a idealized schematic model for the R Aqr jet motion which results in a small-scale helical structure forming around a larger-scale helical path. The implications of such a jet model are discussed. We present a movie showing a side-by-side comparison of the spatial structure of the model and the data as a function of the 41 velocity planes.
Using simulation to interpret experimental data in terms of protein conformational ensembles.
Allison, Jane R
2017-04-01
In their biological environment, proteins are dynamic molecules, necessitating an ensemble structural description. Molecular dynamics simulations and solution-state experiments provide complimentary information in the form of atomically detailed coordinates and averaged or distributions of structural properties or related quantities. Recently, increases in the temporal and spatial scale of conformational sampling and comparison of the more diverse conformational ensembles thus generated have revealed the importance of sampling rare events. Excitingly, new methods based on maximum entropy and Bayesian inference are promising to provide a statistically sound mechanism for combining experimental data with molecular dynamics simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
27Al MQMAS of the δ-Al 13-Keggin
Pilgrim, C. D.; Callahan, J. R.; Colla, C. A.; ...
2017-01-20
Here, one-dimensional 27Al, 23Na Magic-Angle-Spinning (MAS) NMR and 27Al Multiple-Quantum Magic-Angle-Spinning NMR (MQMAS) measurements are reported for the δ-isomer of the Al 13 Keggin structure at high spinning speed and 14.1 T field. Values for the CQ and η parameters are on the same scale as those seen in other isomers of the Al 13 structure. Density functional theory (DFT) calculations are performed for comparison to the experimental fits using the B3PW91/6-31+G* and PBE0/6-31+G* levels of theory, with the Polarizable Continuum Model (PCM).
Large - scale Rectangular Ruler Automated Verification Device
NASA Astrophysics Data System (ADS)
Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie
2018-03-01
This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.
NDE application of ultrasonic tomography to a full-scale concrete structure.
Choi, Hajin; Popovics, John S
2015-06-01
Newly developed ultrasonic imaging technology for large concrete elements, based on tomographic reconstruction, is presented. The developed 3-D internal images (velocity tomograms) are used to detect internal defects (polystyrene foam and pre-cracked concrete prisms) that represent structural damage within a large steel reinforced concrete element. A hybrid air-coupled/contact transducer system is deployed. Electrostatic air-coupled transducers are used to generate ultrasonic energy and contact accelerometers are attached on the opposing side of the concrete element to detect the ultrasonic pulses. The developed hybrid testing setup enables collection of a large amount of high-quality, through-thickness ultrasonic data without surface preparation to the concrete. The algebraic reconstruction technique is used to reconstruct p-wave velocity tomograms from the obtained time signal data. A comparison with a one-sided ultrasonic imaging method is presented for the same specimen. Through-thickness tomography shows some benefit over one-sided imaging for highly reinforced concrete elements. The results demonstrate that the proposed through-thickness ultrasonic technique shows great potential for evaluation of full-scale concrete structures in the field.
Swami, Viren; Ng, Siu-Kuen
2015-09-01
Previous studies have suggested that there may not be cross-cultural equivalence in the factor structure of body appreciation. Here, we examine the conceptual equivalence of a Chinese (Cantonese) translation of the Body Appreciation Scale-2 (BAS-2; Tylka & Wood-Barcalow, 2015b), a newly-developed measure of body appreciation. Participants were 457 women and 417 men from a university in Hong Kong. The results of exploratory factor analyses showed that, like its English version, the Chinese BAS-2 had a one-dimensional structure. Body appreciation scores had good internal consistency and were also significantly associated with respondent body mass index, self-esteem, life satisfaction, and (in women) actual-ideal weight discrepancy. Men had significantly higher scores than women, while comparisons with data from Tylka and Wood-Barcalow (2015b) suggest that cross-cultural differences are small-to-moderate at best. The present findings suggest that the BAS-2 may prove to be a useful tool for the assessment of body appreciation across cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lau, Ying; Htun, Tha Pyai; Lim, Peng Im; Ho-Lim, Sarah Su Tin; Klainin-Yobas, Piyanee
2016-05-01
The Iowa Infant Feeding Attitude Scale (IIFAS) was developed to measure maternal attitudes toward infant feeding, but a number of validated studies on the IIFAS found that it was subject to methodological limitations. The purpose of this study was to evaluate the psychometric properties of the IIFAS among a multiethnic population in Singapore. A cross-sectional research design was used on a sample of 417 antenatal women. The internal consistency and stability of the IIFAS were evaluated using Cronbach's α and test-retest reliability. Known-group comparisons discriminated certain group differences in a predictable way. A series of exploratory factor analyses (EFAs) was conducted to test the factor structure of the IIFAS using the maximum likelihood and principal axis factoring. The number of factors was selected according to theoretical and statistical considerations. A confirmatory factor analysis (CFA) was further performed to validate the factor structure constructed in the prior EFA. The IIFAS had a Cronbach's α and Pearson correlation of 0.79 and 0.85, respectively. The known-group comparisons among certain groups were supported. The EFA results showed that the 3-factor structure produced the most interpretable and theoretical sense. A second-order CFA was conducted to confirm the construct dimensionality of the 15-item IIFAS, with satisfactory fit indices found. The 15-item IIFAS is a psychometrically sound measurement tool that health care professionals can use to understand the diverse infant feeding attitudes and knowledge among different ethnic groups in order to provide breastfeeding interventions that are culturally sensitive. © The Author(s) 2015.
Fully Coupled Micro/Macro Deformation, Damage, and Failure Prediction for SiC/Ti-15-3 Laminates
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Lerch, Brad A.
2001-01-01
The deformation, failure, and low cycle fatigue life of SCS-6/Ti-15-3 composites are predicted using a coupled deformation and damage approach in the context of the analytical generalized method of cells (GMC) micromechanics model. The local effects of inelastic deformation, fiber breakage, fiber-matrix interfacial debonding, and fatigue damage are included as sub-models that operate on the micro scale for the individual composite phases. For the laminate analysis, lamination theory is employed as the global or structural scale model, while GMC is embedded to operate on the meso scale to simulate the behavior of the composite material within each laminate layer. While the analysis approach is quite complex and multifaceted, it is shown, through comparison with experimental data, to be quite accurate and realistic while remaining extremely efficient.
Lee, Barrett A.; Reardon, Sean F.; Firebaugh, Glenn; Farrell, Chad R.; Matthews, Stephen A.; O'Sullivan, David
2014-01-01
The census tract-based residential segregation literature rests on problematic assumptions about geographic scale and proximity. We pursue a new tract-free approach that combines explicitly spatial concepts and methods to examine racial segregation across egocentric local environments of varying size. Using 2000 census data for the 100 largest U.S. metropolitan areas, we compute a spatially modified version of the information theory index H to describe patterns of black-white, Hispanic-white, Asian-white, and multi-group segregation at different scales. The metropolitan structural characteristics that best distinguish micro-segregation from macro-segregation for each group combination are identified, and their effects are decomposed into portions due to racial variation occurring over short and long distances. A comparison of our results to those from tract-based analyses confirms the value of the new approach. PMID:25324575
Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn
2016-06-01
Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales < 100 m in any site or season. However, temporal changes were striking. Amplicon sequencing corroborated shifts from r- to K-selected taxon-dominated communities, influencing in silico predictions of functional potential. Network analyses reveal temporal keystone taxa, with a spring betaproteobacterial sub-network centred upon a Burkholderia operational taxonomic unit (OTU) and a reconfiguration to a summer sub-network centred upon an alphaproteobacterial OTU. Although spatial structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.
2012-09-01
Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.
NASA Astrophysics Data System (ADS)
Hardesty, R. Michael; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann M.; Shepson, Paul B.; Cambaliza, Maria; Heimburger, Alexie; Davis, Kenneth J.; Lauvaux, Thomas; Miles, Natasha L.; Sarmiento, Daniel P.; Deng, A. J.; Gaudet, Brian; Karion, Anna; Sweeney, Colm; Whetstone, James
2016-06-01
A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, although sensitivity might be an issue under low aerosol conditions.
Stoyanova, Stanislava Yordanova; Giannouli, Vaitsa; Gergov, Teodor Krasimirov
2017-01-01
Sentimentality and nostalgia are two similar psychological constructs, which play an important role in the emotional lives of elderly people who are usually focused on the past. There are two objectives of this study - making cross-cultural comparison of sentimentality and nostalgia among Bulgarian and Greek elderly people using a questionnaire, and establishing the psychometric properties of this questionnaire among Greek elderly people. Sentimentality and nostalgia in elderly people in Bulgaria and Greece were studied by means of Sentimentality and Nostalgia in Elderly People questionnaire (SNEP), created by Gergov and Stoyanova (2013). For the Greek version, one factor structure without sub-scales is proposed, while for the Bulgarian version of SNEP the factor structure had four sub-scales, besides the total score. Together with some similarities (medium level of nostalgia and sentimentality being widespread), the elderly people in Bulgaria and Greece differed cross-culturally in their sentimentality and nostalgia related to the past in direction of more increased sentimentality and nostalgia in the Bulgarian sample. Some gender and age differences revealed that the oldest male Bulgarians were the most sentimental. The psychometric properties of this questionnaire were examined for the first time in a Greek sample of elders and a trend was found for stability of sentimentality and nostalgia in elderly people that could be studied further in longitudinal studies. PMID:28344678
Katrina and the Thai Tsunami - Water Quality and Public Health Aspects Mitigation and Research Needs
Englande, A. J.
2008-01-01
The South East Asian Tsunami in Thailand and Hurricane Katrina in the United States were natural disasters of different origin but of similar destruction and response. Both disasters exhibited synonymous health outcomes and similar structural damage from large surges of water, waves, and flooding. A systematic discussion and comparison of the disasters in Thailand and the Gulf Coast considers both calamities to be similar types of disaster in different coastal locations. Thus valuable comparisons can be made for improvements in response, preparedness and mitigation. Research needs are discussed and recommendations made regarding potential methologies. Recommendations are made to: (1) improve disaster response time in terms of needs assessments for public health and environmental data collection; (2) develop an access-oriented data sharing policy; and (3) prioritize natural geomorphic structures such as barrier islands, mangroves, and wetlands to help reduce the scale of future natural disasters. Based on the experiences gained opportunities to enhance disaster preparedness through research are presented. PMID:19151433
Zerze, Gül H; Miller, Cayla M; Granata, Daniele; Mittal, Jeetain
2015-06-09
Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force molecular dynamics simulations is often limited by short time scales. Present literature provides a number of enhanced sampling methods to explore protein conformational space in molecular simulations more efficiently. In this work, we present a comparison of two enhanced sampling methods: temperature replica exchange molecular dynamics and bias exchange metadynamics. By investigating both the free energy landscape as a function of pertinent order parameters and the per-residue secondary structures of an IDP, namely, human islet amyloid polypeptide, we found that the two methods yield similar results as expected. We also highlight the practical difference between the two methods by describing the path that we followed to obtain both sets of data.
Effect of C(60) fullerene on the duplex formation of i-motif DNA with complementary DNA in solution.
Jin, Kyeong Sik; Shin, Su Ryon; Ahn, Byungcheol; Jin, Sangwoo; Rho, Yecheol; Kim, Heesoo; Kim, Seon Jeong; Ree, Moonhor
2010-04-15
The structural effects of fullerene on i-motif DNA were investigated by characterizing the structures of fullerene-free and fullerene-bound i-motif DNA, in the presence of cDNA and in solutions of varying pH, using circular dichroism and synchrotron small-angle X-ray scattering. To facilitate a direct structural comparison between the i-motif and duplex structures in response to pH stimulus, we developed atomic scale structural models for the duplex and i-motif DNA structures, and for the C(60)/i-motif DNA hybrid associated with the cDNA strand, assuming that the DNA strands are present in an ideal right-handed helical conformation. We found that fullerene shifted the pH-induced conformational transition between the i-motif and the duplex structure, possibly due to the hydrophobic interactions between the terminal fullerenes and between the terminal fullerenes and an internal TAA loop in the DNA strand. The hybrid structure showed a dramatic reduction in cyclic hysteresis.
Intermittency of solar wind on scale 0.01-16 Hz.
NASA Astrophysics Data System (ADS)
Riazantseva, Maria; Zastenker, Georgy; Chernyshov, Alexander; Petrosyan, Arakel
Magnetosphere of the Earth is formed in the process of solar wind flow around earth's magnetic field. Solar wind is a flow of turbulent plasma that displays a multifractal structure and an intermittent character. That is why the study of the characteristics of solar wind turbulence is very important part of the solution of the problem of the energy transport from the solar wind to magnetosphere. A large degree of intermittency is observed in the solar wind ion flux and magnetic field time rows. We investigated the intermittency of solar wind fluctuations under large statistics of high time resolution measurements onboard Interball-1 spacecraft on scale from 0.01 to 16 Hz. Especially it is important that these investigation is carry out for the first time for the earlier unexplored (by plasma data) region of comparatively fast variations (frequency up to 16 Hz), so we significantly extend the range of intermittency observations for solar wind plasma. The intermittency practically absent on scale more then 1000 s and it grows to the small scales right up till t 30-60 s. The behavior of the intermittency for the scale less then 30-60 s is rather changeable. The boundary between these two rates of intermittency is quantitatively near to the well-known boundary between the dissipation and inertial scales of fluctuations, what may point to their possible relation. Special attention is given to a comparison of intermittency for solar wind observation intervals containing SCIF (Sudden Changes of Ion Flux) to ones for intervals without SCIF. Such a comparison allows one to reveal the fundamental turbulent properties of the solar wind regions in which SCIF is observed more frequently. We use nearly incompressible model of the solar wind turbulence for obtained data interpretation. The regime when density fluctuations are passive scalar in a hydrodynamic field of velocity is realized in turbulent solar wind flows according to this model. This hypothesis can be verified straightforwardly by investigating the density spectrum which should be slaved to the incompressible velocity spectrum. Density discontinuities on times up to t 30-60 s are defined by intermittency of velocity turbulent field. Solar wind intermittency and many or most of its discontinuities are produced by MHD turbulence in this time interval. It is possible that many or even most of the current structures in the solar wind, particularly inertial range structures that contribute to the tails of the PDFs. Complex non-gaussian behaviour on smaller times is described by dissipation rate nonhomogeneity of statistical moments for density field in a random flow.
Synthesis of regional crust and upper-mantle structure from seismic and gravity data
NASA Technical Reports Server (NTRS)
Alexander, S. S.; Lavin, P. M.
1979-01-01
Available seismic and ground based gravity data are combined to infer the three dimensional crust and upper mantle structure in selected regions. This synthesis and interpretation proceeds from large-scale average models suitable for early comparison with high-altitude satellite potential field data to more detailed delineation of structural boundaries and other variations that may be significant in natural resource assessment. Seismic and ground based gravity data are the primary focal point, but other relevant information (e.g. magnetic field, heat flow, Landsat imagery, geodetic leveling, and natural resources maps) is used to constrain the structure inferred and to assist in defining structural domains and boundaries. The seismic data consists of regional refraction lines, limited reflection coverage, surface wave dispersion, teleseismic P and S wave delay times, anelastic absorption, and regional seismicity patterns. The gravity data base consists of available point gravity determinations for the areas considered.
The role of nonlinear viscoelasticity on the functionality of laminating shortenings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macias-Rodriguez, Braulio A.; Peyronel, Fernanda; Marangoni, Alejandro G.
The rheology of fats is essential for the development of homogeneous and continuous layered structures of doughs. Here, we define laminating shortenings in terms of rheological behavior displayed during linear-to-nonlinear shear deformations, investigated by large amplitude oscillatory shear rheology. Likewise, we associate the rheological behavior of the shortenings with structural length scales elucidated by ultra-small angle x-ray scattering and cryo-electron microscopy. Shortenings exhibited solid-like viscoelastic and viscoelastoplastic behaviors in the linear and nonlinear regimes respectively. In the nonlinear region, laminating shortenings dissipated more viscous energy (larger normalized dynamic viscosities) than a cake bakery shortening. The fat solid-like network of laminatingmore » shortening displayed a three-hierarchy structure and layered crystal aggregates, in comparison to two-hierarchy structure and spherical-like crystal aggregates of a cake shortening. We argue that the observed rheology, correlated to the structural network, is crucial for optimal laminating performance of shortenings.« less
Calabrese, William R; Rudick, Monica M; Simms, Leonard J; Clark, Lee Anna
2012-09-01
Recently, integrative, hierarchical models of personality and personality disorder (PD)--such as the Big Three, Big Four, and Big Five trait models--have gained support as a unifying dimensional framework for describing PD. However, no measures to date can simultaneously represent each of these potentially interesting levels of the personality hierarchy. To unify these measurement models psychometrically, we sought to develop Big Five trait scales within the Schedule for Nonadaptive and Adaptive Personality--Second Edition (SNAP-2). Through structural and content analyses, we examined relations between the SNAP-2, the Big Five Inventory (BFI), and the NEO Five-Factor Inventory (NEO-FFI) ratings in a large data set (N = 8,690), including clinical, military, college, and community participants. Results yielded scales consistent with the Big Four model of personality (i.e., Neuroticism, Conscientiousness, Introversion, and Antagonism) and not the Big Five, as there were insufficient items related to Openness. Resulting scale scores demonstrated strong internal consistency and temporal stability. Structural validity and external validity were supported by strong convergent and discriminant validity patterns between Big Four scale scores and other personality trait scores and expectable patterns of self-peer agreement. Descriptive statistics and community-based norms are provided. The SNAP-2 Big Four Scales enable researchers and clinicians to assess personality at multiple levels of the trait hierarchy and facilitate comparisons among competing big-trait models. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Calabrese, William R.; Rudick, Monica M.; Simms, Leonard J.; Clark, Lee Anna
2012-01-01
Recently, integrative, hierarchical models of personality and personality disorder (PD)—such as the Big Three, Big Four and Big Five trait models—have gained support as a unifying dimensional framework for describing PD. However, no measures to date can simultaneously represent each of these potentially interesting levels of the personality hierarchy. To unify these measurement models psychometrically, we sought to develop Big Five trait scales within the Schedule for Adaptive and Nonadaptive Personality–2nd Edition (SNAP-2). Through structural and content analyses, we examined relations between the SNAP-2, Big Five Inventory (BFI), and NEO-Five Factor Inventory (NEO-FFI) ratings in a large data set (N = 8,690), including clinical, military, college, and community participants. Results yielded scales consistent with the Big Four model of personality (i.e., Neuroticism, Conscientiousness, Introversion, and Antagonism) and not the Big Five as there were insufficient items related to Openness. Resulting scale scores demonstrated strong internal consistency and temporal stability. Structural and external validity was supported by strong convergent and discriminant validity patterns between Big Four scale scores and other personality trait scores and expectable patterns of self-peer agreement. Descriptive statistics and community-based norms are provided. The SNAP-2 Big Four Scales enable researchers and clinicians to assess personality at multiple levels of the trait hierarchy and facilitate comparisons among competing “Big Trait” models. PMID:22250598
Garcia, Antonio F.; Acosta, Melina; Pirani, Saifa; Edwards, Daniel; Osman, Augustine
2017-01-01
We describe 2 studies designed to evaluate scores on the Multidimensional Shame-related Response Inventory-21 (MSRI-21), a recently developed instrument that measures affective and behavioral responses to shame. The inventory assesses shame-related responses in 3 categories: negative self-evaluation, fear of social consequences, and maladaptive behavior tendency. For Study 1, (N = 743) undergraduates completed the MSRI-21. Confirmatory factor analysis supported the validity of the MSRI-21 3-factor structure. Latent variable modeling of coefficient-α provided strong evidence for the internal consistency of scores on each scale. In Study 2, (N = 540) undergraduates completed the instrument along with 5 concurrent measures chosen for clinical significance. Achievement of factorial invariance supported the use of MSRI-21 scale scores to make valid mean comparisons across gender. In addition, MSRI-21 scale scores were associated as expected with scores on measures of self-harm, suicide, and other risk factors. Taken together, results of 2 studies support the internal consistency reliability, factorial validity, factorial invariance, and convergent validity of scores on the MSRI-21. Further work is needed to assess the temporal stability of the MSRI-21 scale scores, invariance across clinical status and other groupings, item-level measurement properties, and viability in highly symptomatic samples. PMID:28182490
Cyders, Melissa A
2013-02-01
Before it is possible to test whether men and women differ in impulsivity, it is necessary to evaluate whether impulsivity measures are invariant across sex. The UPPS-P Impulsive Behavior Scale (negative urgency, lack of premeditation, lack of perseverance, and sensation seeking, with added subscale of positive urgency) is one measure of five dispositions toward rash action that has shown to have robust and clinically useful relationships among risk-taking outcomes. In the current research, the author examined (a) the psychometric measurement invariance of the UPPS-P across sex, (b) the scale's structural invariance across sex, and (c) whether the five impulsivity traits differentially relate to risk outcomes as a function of sex. In a sample of 1,372 undergraduates, the author found evidence for measurement and invariance across sex: Thus, comparisons of men and women on the UPPS-P can be considered valid. Additionally, although males tend to report higher levels of sensation seeking and positive urgency (and possibly lack of perseverance), the relationships between the UPPS-P traits and risk outcomes were generally invariant across sex. The UPPS-P appears to function comparably across males and females, and mean differences on this scale between the sexes can be thought to reflect trait-level differences.
Validation of the Italian version of the HSE Indicator Tool.
Magnavita, N
2012-06-01
An Italian version of the Health & Safety Executive's (HSE) Management Standards Revised Indicator Tool (MS-RIT) has been used to monitor the working conditions that may lead to stress. To initially examine the factor structure of the Italian version of the MS-RIT, in comparison with the original UK tool, and to investigate its validity and reliability; second, to study the association between occupational stress and psychological distress. Workers from 17 companies self-completed the MS-RIT and the General Health Questionnaire used to measure the psychological distress while they waited for their periodic examination at the workplace. Factor analysis was employed to ascertain whether the Italian version maintained the original subdivision into seven scales. Odds ratios were calculated to estimate the risk of impairment associated with exposure to stress at the workplace. In total, 748 workers participated; the response rate was 91%. The factor structure of the Italian MS-RIT corresponded partially to the original UK version. The 'demand', 'control', 'role', ' relationship' and 'colleague-support' scales were equivalent to the UK ones. A principal factor, termed ' elasticity', incorporated the UK 'management-support' and 'change' scales. Reliability analysis of the sub-scales revealed Cronbach's alpha values ranging from 0.75 to 0.86. Our findings confirmed the usefulness of the Italian version of the HSE MS-RIT in stress control.
NASA Astrophysics Data System (ADS)
Roningen, J. M.; Eylander, J. B.
2014-12-01
Groundwater use and management is subject to economic, legal, technical, and informational constraints and incentives at a variety of spatial and temporal scales. Planned and de facto management practices influenced by tax structures, legal frameworks, and agricultural and trade policies that vary at the country scale may have medium- and long-term effects on the ability of a region to support current and projected agricultural and industrial development. USACE is working to explore and develop global-scale, physically-based frameworks to serve as a baseline for hydrologic policy comparisons and consequence assessment, and such frameworks must include a reasonable representation of groundwater systems. To this end, we demonstrate the effects of different subsurface parameterizations, scaling, and meteorological forcings on surface and subsurface components of the Catchment Land Surface Model Fortuna v2.5 (Koster et al. 2000). We use the Land Information System 7 (Kumar et al. 2006) to process model runs using meteorological components of the Air Force Weather Agency's AGRMET forcing data from 2006 through 2011. Seasonal patterns and trends are examined in areas of the Upper Nile basin, northern China, and the Mississippi Valley. We also discuss the relevance of the model's representation of the catchment deficit with respect to local hydrogeologic structures.
Multi-scale Pore Imaging Techniques to Characterise Heterogeneity Effects on Flow in Carbonate Rock
NASA Astrophysics Data System (ADS)
Shah, S. M.
2017-12-01
Digital rock analysis and pore-scale studies have become an essential tool in the oil and gas industry to understand and predict the petrophysical and multiphase flow properties for the assessment and exploitation of hydrocarbon reserves. Carbonate reservoirs, accounting for majority of the world's hydrocarbon reserves, are well known for their heterogeneity and multiscale pore characteristics. The pore sizes in carbonate rock can vary over orders of magnitudes, the geometry and topology parameters of pores at different scales have a great impact on flow properties. A pore-scale study is often comprised of two key procedures: 3D pore-scale imaging and numerical modelling techniques. The fundamental problem in pore-scale imaging and modelling is how to represent and model the different range of scales encountered in porous media, from the pore-scale to macroscopic petrophysical and multiphase flow properties. However, due to the restrictions of image size vs. resolution, the desired detail is rarely captured at the relevant length scales using any single imaging technique. Similarly, direct simulations of transport properties in heterogeneous rocks with broad pore size distributions are prohibitively expensive computationally. In this study, we present the advances and review the practical limitation of different imaging techniques varying from core-scale (1mm) using Medical Computed Tomography (CT) to pore-scale (10nm - 50µm) using Micro-CT, Confocal Laser Scanning Microscopy (CLSM) and Focussed Ion Beam (FIB) to characterise the complex pore structure in Ketton carbonate rock. The effect of pore structure and connectivity on the flow properties is investigated using the obtained pore scale images of Ketton carbonate using Pore Network and Lattice-Boltzmann simulation methods in comparison with experimental data. We also shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging.
Dynamic Structure of a Molecular Liquid S0.5Cl0.5: Ab initio Molecular-Dynamics Simulations
NASA Astrophysics Data System (ADS)
Ohmura, Satoshi; Shimakura, Hironori; Kawakita, Yukinobu; Shimojo, Fuyuki; Yao, Makoto
2013-07-01
The static and dynamic structures of a molecular liquid S0.5Cl0.5 consisting of Cl--S--S--Cl (S2Cl2) type molecules are studied by means of ab initio molecular dynamics simulations. Both the calculated static and dynamic structure factors are in good agreement with experimental results. The dynamic structures are discussed based on van-Hove distinct correlation functions, molecular translational mean-square displacements (TMSD) and rotational mean-square displacements (RMSD). In the TMSD and RMSD, there are ballistic and diffusive regimes in the sub-picosecond and picosecond time regions, respectively. These time scales are consistent with the decay time observed experimentally. The interaction between molecules in the liquid is also discussed in comparison with that in another liquid chalcogen--halogen system Se0.5Cl0.5.
Hou, Fujun
2016-01-01
This paper provides a description of how market competitiveness evaluations concerning mechanical equipment can be made in the context of multi-criteria decision environments. It is assumed that, when we are evaluating the market competitiveness, there are limited number of candidates with some required qualifications, and the alternatives will be pairwise compared on a ratio scale. The qualifications are depicted as criteria in hierarchical structure. A hierarchical decision model called PCbHDM was used in this study based on an analysis of its desirable traits. Illustration and comparison shows that the PCbHDM provides a convenient and effective tool for evaluating the market competitiveness of mechanical equipment. The researchers and practitioners might use findings of this paper in application of PCbHDM.
Trait-specific dependence in romantic relationships.
Ellis, Bruce J; Simpson, Jeffry A; Campbell, Lorne
2002-10-01
Informed by three theoretical frameworks--trait psychology, evolutionary psychology, and interdependence theory--we report four investigations designed to develop and test the reliability and validity of a new construct and accompanying multiscale inventory, the Trait-Specific Dependence Inventory (TSDI). The TSDI assesses comparisons between present and alternative romantic partners on major dimensions of mate value. In Study 1, principal components analyses revealed that the provisional pool of theory-generated TSDI items were represented by six factors: Agreeable/Committed, Resource Accruing Potential, Physical Prowess, Emotional Stability, Surgency, and Physical Attractiveness. In Study 2, confirmatory factor analysis replicated these results on a different sample and tested how well different structural models fit the data. Study 3 provided evidence for the convergent and discriminant validity of the six TSDI scales by correlating each one with a matched personality trait scale that did not explicitly incorporate comparisons between partners. Study 4 provided further validation evidence, revealing that the six TSDI scales successfully predicted three relationship outcome measures--love, time investment, and anger/upset--above and beyond matched sets of traditional personality trait measures. These results suggest that the TSDI is a reliable, valid, and unique construct that represents a new trait-specific method of assessing dependence in romantic relationships. The construct of trait-specific dependence is introduced and linked with other theories of mate value.
Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu; Kawas, Neal P., E-mail: nealkawas@ucla.edu; Lutz, Andre, E-mail: andre.lutz@hotmail.de
2013-07-01
We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structuremore » varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.« less
Findlay, S; Sinsabaugh, R L
2006-10-01
We examined bacterial metabolic activity and community similarity in shallow subsurface stream sediments distributed across three regions of the eastern United States to assess whether there were parallel changes in functional and structural attributes at this large scale. Bacterial growth, oxygen consumption, and a suite of extracellular enzyme activities were assayed to describe functional variability. Community similarity was assessed using randomly amplified polymorphic DNA (RAPD) patterns. There were significant differences in streamwater chemistry, metabolic activity, and bacterial growth among regions with, for instance, twofold higher bacterial production in streams near Baltimore, MD, compared to Hubbard Brook, NH. Five of eight extracellular enzymes showed significant differences among regions. Cluster analyses of individual streams by metabolic variables showed clear groups with significant differences in representation of sites from different regions among groups. Clustering of sites based on randomly amplified polymorphic DNA banding resulted in groups with generally less internal similarity although there were still differences in distribution of regional sites. There was a marginally significant (p = 0.09) association between patterns based on functional and structural variables. There were statistically significant but weak (r2 approximately 30%) associations between landcover and measures of both structure and function. These patterns imply a large-scale organization of biofilm communities and this structure may be imposed by factor(s) such as landcover and covariates such as nutrient concentrations, which are known to also cause differences in macrobiota of stream ecosystems.
Chen, Mikai; Nam, Hongsuk; Rokni, Hossein; Wi, Sungjin; Yoon, Jeong Seop; Chen, Pengyu; Kurabayashi, Katsuo; Lu, Wei; Liang, Xiaogan
2015-09-22
MoS2 and other semiconducting transition metal dichalcogenides (TMDCs) are of great interest due to their excellent physical properties and versatile chemistry. Although many recent research efforts have been directed to explore attractive properties associated with MoS2 monolayers, multilayer/few-layer MoS2 structures are indeed demanded by many practical scale-up device applications, because multilayer structures can provide sizable electronic/photonic state densities for driving upscalable electrical/optical signals. Currently there is a lack of processes capable of producing ordered, pristine multilayer structures of MoS2 (or other relevant TMDCs) with manufacturing-grade uniformity of thicknesses and electronic/photonic properties. In this article, we present a nanoimprint-based approach toward addressing this challenge. In this approach, termed as nanoimprint-assisted shear exfoliation (NASE), a prepatterned bulk MoS2 stamp is pressed into a polymeric fixing layer, and the imprinted MoS2 features are exfoliated along a shear direction. This shear exfoliation can significantly enhance the exfoliation efficiency and thickness uniformity of exfoliated flakes in comparison with previously reported exfoliation processes. Furthermore, we have preliminarily demonstrated the fabrication of multiple transistors and biosensors exhibiting excellent device-to-device performance consistency. Finally, we present a molecular dynamics modeling analysis of the scaling behavior of NASE. This work holds significant potential to leverage the superior properties of MoS2 and other emerging TMDCs for practical scale-up device applications.
Adding Spice to Vanilla LCDM simulations: From Alternative Cosmologies to Lighting up Galaxies
NASA Astrophysics Data System (ADS)
Jahan Elahi, Pascal
2015-08-01
Cold Dark Matter simulations have formed the backbone of our theoretical understanding of cosmological structure formation. Predictions from the Lambda Cold Dark Matter (LCDM) cosmology, in which the Universe contains two major dark components, namely Dark Matter and Dark Energy, are in excellent agreement with the Large-Scale Structures observed, i.e., the distribution of galaxies across cosmic time. However, this paradigm is in tension with observations at small-scales, from the number and properties of satellite galaxies around galaxies such as the Milky Way and Andromeda, to the lensing statistics of massive galaxy clusters. I will present several alternative models of cosmology (from Warm Dark Matter to coupled Dark Matter-Dark Energy models) and how they compare to vanilla LCDM by studying formation of groups and clusters dark matter only and adiabatic hydrodynamical zoom simulations. I will show how modifications to the dark sector can lead to some surprising results. For example, Warm Dark Matter, so often examined on small satellite galaxies scales, can be probed observationally using weak lensing at cluster scales. Coupled dark sectors, where dark matter decays into dark energy and experiences an effective gravitational potential that differs from that experienced by normal matter, is effectively hidden away from direct observations of galaxies. Studies like these are vital if we are to pinpoint observations which can look for unique signatures of the physics that governs the hidden Universe. Of course, all of these predictions are unfortunately affected by uncertain galaxy formation physics. I will end by presenting results from a comparison study of numerous hydrodynamical codes, the nIFTY cluster comparison project, and how even how purely adiabatic simulations run with different codes give in quite different galaxy populations. The galaxies that form in these simulations, which all attempt to reproduce the observed galaxy population via not unreasonable subgrid physics, can and do vary in stellar mass, morphology and gas fraction.
Improved protein surface comparison and application to low-resolution protein structure data.
Sael, Lee; Kihara, Daisuke
2010-12-14
Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.
SPH calculations of asteroid disruptions: The role of pressure dependent failure models
NASA Astrophysics Data System (ADS)
Jutzi, Martin
2015-03-01
We present recent improvements of the modeling of the disruption of strength dominated bodies using the Smooth Particle Hydrodynamics (SPH) technique. The improvements include an updated strength model and a friction model, which are successfully tested by a comparison with laboratory experiments. In the modeling of catastrophic disruptions of asteroids, a comparison between old and new strength models shows no significant deviation in the case of targets which are initially non-porous, fully intact and have a homogeneous structure (such as the targets used in the study by Benz and Asphaug, 1999). However, for many cases (e.g. initially partly or fully damaged targets and rubble-pile structures) we find that it is crucial that friction is taken into account and the material has a pressure dependent shear strength. Our investigations of the catastrophic disruption threshold
A validated non-linear Kelvin-Helmholtz benchmark for numerical hydrodynamics
NASA Astrophysics Data System (ADS)
Lecoanet, D.; McCourt, M.; Quataert, E.; Burns, K. J.; Vasil, G. M.; Oishi, J. S.; Brown, B. P.; Stone, J. M.; O'Leary, R. M.
2016-02-01
The non-linear evolution of the Kelvin-Helmholtz instability is a popular test for code verification. To date, most Kelvin-Helmholtz problems discussed in the literature are ill-posed: they do not converge to any single solution with increasing resolution. This precludes comparisons among different codes and severely limits the utility of the Kelvin-Helmholtz instability as a test problem. The lack of a reference solution has led various authors to assert the accuracy of their simulations based on ad hoc proxies, e.g. the existence of small-scale structures. This paper proposes well-posed two-dimensional Kelvin-Helmholtz problems with smooth initial conditions and explicit diffusion. We show that in many cases numerical errors/noise can seed spurious small-scale structure in Kelvin-Helmholtz problems. We demonstrate convergence to a reference solution using both ATHENA, a Godunov code, and DEDALUS, a pseudo-spectral code. Problems with constant initial density throughout the domain are relatively straightforward for both codes. However, problems with an initial density jump (which are the norm in astrophysical systems) exhibit rich behaviour and are more computationally challenging. In the latter case, ATHENA simulations are prone to an instability of the inner rolled-up vortex; this instability is seeded by grid-scale errors introduced by the algorithm, and disappears as resolution increases. Both ATHENA and DEDALUS exhibit late-time chaos. Inviscid simulations are riddled with extremely vigorous secondary instabilities which induce more mixing than simulations with explicit diffusion. Our results highlight the importance of running well-posed test problems with demonstrated convergence to a reference solution. To facilitate future comparisons, we include as supplementary material the resolved, converged solutions to the Kelvin-Helmholtz problems in this paper in machine-readable form.
Sampath, Ramgopal; Mathur, Manikandan; Chakravarthy, Satyanarayanan R
2016-12-01
This paper quantitatively examines the occurrence of large-scale coherent structures in the flow field during combustion instability in comparison with the flow-combustion-acoustic system when it is stable. For this purpose, the features in the recirculation zone of the confined flow past a backward-facing step are studied in terms of Lagrangian coherent structures. The experiments are conducted at a Reynolds number of 18600 and an equivalence ratio of 0.9 of the premixed fuel-air mixture for two combustor lengths, the long duct corresponding to instability and the short one to the stable case. Simultaneous measurements of the velocity field using time-resolved particle image velocimetry and the CH^{*} chemiluminescence of the flame along with pressure time traces are obtained. The extracted ridges of the finite-time Lyapunov exponent (FTLE) fields delineate dynamically distinct regions of the flow field. The presence of large-scale vortical structures and their modulation over different time instants are well captured by the FTLE ridges for the long combustor where high-amplitude acoustic oscillations are self-excited. In contrast, small-scale vortices signifying Kelvin-Helmholtz instability are observed in the short duct case. Saddle-type flow features are found to separate the distinct flow structures for both combustor lengths. The FTLE ridges are found to align with the flame boundaries in the upstream regions, whereas farther downstream, the alignment is weaker due to dilatation of the flow by the flame's heat release. Specifically, the FTLE ridges encompass the flame curl-up for both the combustor lengths, and thus act as the surrogate flame boundaries. The flame is found to propagate upstream from an earlier vortex roll-up to a newer one along the backward-time FTLE ridge connecting the two structures.
Brylinski, Michal; Konieczny, Leszek; Kononowicz, Andrzej; Roterman, Irena
2008-03-21
The well-known procedure implemented in ClustalW oriented on the sequence comparison was applied to structure comparison. The consensus sequence as well as consensus structure has been defined for proteins belonging to serpine family. The structure of early stage intermediate was the object for similarity search. The high values of W(sequence) appeared to be accordant with high values of W(structure) making possible structure comparison using common criteria for sequence and structure comparison. Since the early stage structural form has been created according to limited conformational sub-space which does not include the beta-structure (this structure is mediated by C7eq structural form), is particularly important to see, that the C7eq structural form may be treated as the seed for beta-structure present in the final native structure of protein. The applicability of ClustalW procedure to structure comparison makes these two comparisons unified.
Lobato, Debra; Kao, Barbara; Plante, Wendy; Grullón, Edicta; Cheas, Lydia; Houck, Christopher; Seifer, Ronald
2013-01-01
Objective Examine general emotion expression and sibling–parent emotion communication among Latino and non-Latino white (NLW) siblings of children with intellectual disabilities (ID) and matched comparisons. Methods 200 siblings (ages 8–15 years) completed the newly developed Sibling–Parent Emotion Communication Scale and existing measures of general emotion expression and psychosocial functioning. Preliminary analyses evaluated scale psychometrics across ethnicity. Results Structure and internal consistency of the emotion expression and communication measures differed by respondent ethnicity. Latino siblings endorsed more general emotion expression problems and marginally lower sibling–parent emotion communication than NLW siblings. Siblings of children with ID reported marginally more general emotion expression problems than comparisons. Emotion expression problems and lower sibling–parent emotion communication predicted more internalizing and somatic symptoms and poorer personal adjustment, regardless of ID status. Siblings of children with ID endorsed poorer personal adjustment. Conclusion Cultural differences in emotion expression and communication may increase Latino siblings’ risk for emotional adjustment difficulties. PMID:23459309
NASA Technical Reports Server (NTRS)
Waugh, Darryn W.; Plumb, R. Alan
1994-01-01
We present a trajectory technique, contour advection with surgery (CAS), for tracing the evolution of material contours in a specified (including observed) evolving flow. CAS uses the algorithms developed by Dritschel for contour dynamics/surgery to trace the evolution of specified contours. The contours are represented by a series of particles, which are advected by a specified, gridded, wind distribution. The resolution of the contours is preserved by continually adjusting the number of particles, and finescale features are produced that are not present in the input data (and cannot easily be generated using standard trajectory techniques). The reliability, and dependence on the spatial and temporal resolution of the wind field, of the CAS procedure is examined by comparisons with high-resolution numerical data (from contour dynamics calculations and from a general circulation model), and with routine stratospheric analyses. These comparisons show that the large-scale motions dominate the deformation field and that CAS can accurately reproduce small scales from low-resolution wind fields. The CAS technique therefore enables examination of atmospheric tracer transport at previously unattainable resolution.
Senger, Stefan; Bartek, Luca; Papadatos, George; Gaulton, Anna
2015-12-01
First public disclosure of new chemical entities often takes place in patents, which makes them an important source of information. However, with an ever increasing number of patent applications, manual processing and curation on such a large scale becomes even more challenging. An alternative approach better suited for this large corpus of documents is the automated extraction of chemical structures. A number of patent chemistry databases generated by using the latter approach are now available but little is known that can help to manage expectations when using them. This study aims to address this by comparing two such freely available sources, SureChEMBL and IBM SIIP (IBM Strategic Intellectual Property Insight Platform), with manually curated commercial databases. When looking at the percentage of chemical structures successfully extracted from a set of patents, using SciFinder as our reference, 59 and 51 % were also found in our comparison in SureChEMBL and IBM SIIP, respectively. When performing this comparison with compounds as starting point, i.e. establishing if for a list of compounds the databases provide the links between chemical structures and patents they appear in, we obtained similar results. SureChEMBL and IBM SIIP found 62 and 59 %, respectively, of the compound-patent pairs obtained from Reaxys. In our comparison of automatically generated vs. manually curated patent chemistry databases, the former successfully provided approximately 60 % of links between chemical structure and patents. It needs to be stressed that only a very limited number of patents and compound-patent pairs were used for our comparison. Nevertheless, our results will hopefully help to manage expectations of users of patent chemistry databases of this type and provide a useful framework for more studies like ours as well as guide future developments of the workflows used for the automated extraction of chemical structures from patents. The challenges we have encountered whilst performing this study highlight that more needs to be done to make such assessments easier. Above all, more adequate, preferably open access to relevant 'gold standards' is required.
Impact Forces from Tsunami-Driven Debris
NASA Astrophysics Data System (ADS)
Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.
2012-12-01
Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The tsunami was modeled as a transient pulse command signal to the wavemaker to provide a low amplitude long wave. Results are expected to show the effect of the water on the debris collision by comparing water tests with the in-air tests. It is anticipated that the water will provide some combination of added mass and cushioning of the collision. Results will be compared with proposed equations for the new ASCE-7 standard and with numerical models at the University of Hawaii.
Hoben, Matthias; Estabrooks, Carole A.; Squires, Janet E.; Behrens, Johann
2016-01-01
We translated the Canadian residential long term care versions of the Alberta Context Tool (ACT) and the Conceptual Research Utilization (CRU) Scale into German, to study the association between organizational context factors and research utilization in German nursing homes. The rigorous translation process was based on best practice guidelines for tool translation, and we previously published methods and results of this process in two papers. Both instruments are self-report questionnaires used with care providers working in nursing homes. The aim of this study was to assess the factor structure, reliability, and measurement invariance (MI) between care provider groups responding to these instruments. In a stratified random sample of 38 nursing homes in one German region (Metropolregion Rhein-Neckar), we collected questionnaires from 273 care aides, 196 regulated nurses, 152 allied health providers, 6 quality improvement specialists, 129 clinical leaders, and 65 nursing students. The factor structure was assessed using confirmatory factor models. The first model included all 10 ACT concepts. We also decided a priori to run two separate models for the scale-based and the count-based ACT concepts as suggested by the instrument developers. The fourth model included the five CRU Scale items. Reliability scores were calculated based on the parameters of the best-fitting factor models. Multiple-group confirmatory factor models were used to assess MI between provider groups. Rather than the hypothesized ten-factor structure of the ACT, confirmatory factor models suggested 13 factors. The one-factor solution of the CRU Scale was confirmed. The reliability was acceptable (>0.7 in the entire sample and in all provider groups) for 10 of 13 ACT concepts, and high (0.90–0.96) for the CRU Scale. We could demonstrate partial strong MI for both ACT models and partial strict MI for the CRU Scale. Our results suggest that the scores of the German ACT and the CRU Scale for nursing homes are acceptably reliable and valid. However, as the ACT lacked strict MI, observed variables (or scale scores based on them) cannot be compared between provider groups. Rather, group comparisons should be based on latent variable models, which consider the different residual variances of each group. PMID:27656156
Lounnas, M; Correa, A C; Vázquez, A A; Dia, A; Escobar, J S; Nicot, A; Arenas, J; Ayaqui, R; Dubois, M P; Gimenez, T; Gutiérrez, A; González-Ramírez, C; Noya, O; Prepelitchi, L; Uribe, N; Wisnivesky-Colli, C; Yong, M; David, P; Loker, E S; Jarne, P; Pointier, J P; Hurtrez-Boussès, S
2017-02-01
Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self-fertilizing species. We here focus on the self-fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none-to-low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large-scale flash invasion may affect the spread of fasciolosis. © 2016 John Wiley & Sons Ltd.
Kurz, A Solomon; Drescher, Christopher F; Chin, Eu Gene; Johnson, Laura R
2016-06-01
Malaysia is a Southeast Asian country in which multiple languages are prominently spoken, including English and Mandarin Chinese. As psychological science continues to develop within Malaysia, there is a need for psychometrically sound instruments that measure psychological phenomena in multiple languages. For example, assessment tools for measuring social desirability could be a useful addition in psychological assessments and research studies in a Malaysian context. This study examined the psychometric performance of the English and Mandarin Chinese versions of the Marlowe-Crowne Social Desirability Scale when used in Malaysia. Two hundred and eighty-three students (64% female; 83% Chinese, 9% Indian) from two college campuses completed the Marlowe-Crowne Social Desirability Scale in their language of choice (i.e., English or Mandarin Chinese). Proposed factor structures were compared with confirmatory factor analysis, and multiple indicators-multiple causes models were used to examine measurement invariance across language and sex. Factor analyses supported a two-factor structure (i.e., Attribution and Denial) for the measure. Invariance tests revealed the scale was invariant by sex, indicating that social desirability can be interpreted similarly across sex. The scale was partially invariant by language version, with some non-invariance observed within the Denial factor. Non-invariance may be related to differences in the English and Mandarin Chinese languages, as well as cultural differences. Directions for further research include examining the measurement of social desirability in other contexts where both English and Mandarin Chinese are spoken (i.e., China) and further examining the causes of non-invariance on specific items. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves
2012-10-11
The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.
NASA Astrophysics Data System (ADS)
Tenne, R.
In this article a comparison between inorganic nanoparticles with hollow closed structure and the carbon fullerenes and nanotubes is undertaken. First, the structural evolution of inorganic fullerene-like (IF) nanoparticles of MoS2 as a function of their size is examined in some detail and compared to that of carbon and BN fullerenes. It is shown that hollow closed structures of MoS2 are stable above 3 nm (app 103 atoms). In the range of 3-8 nm (103-105) nanooctahedra with metallic character are the most stable form of MoS2 Semiconducting nanotubes and quasispherical IF nano-particles become the stable-most form beyond that size and the bulk (platelets) are stable above about 0.2 μm. The stability of inorganic nanotubes is also discussed. The scaling-up of the synthesis of IF-WS2 and the very recent successful synthesis of large, amounts of pure WS2 nanotubes are briefly described. The stability of IF and INT of MoS2 (WS2) under pressure and that of carbon is also discussed. Applications of the IF-WS2 as superior solid lubricants, which lead to their recent commercialization, is demonstrated.
Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves
2012-01-01
The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline. PMID:23202013
Kuhlmann, Tim; Dantlgraber, Michael; Reips, Ulf-Dietrich
2017-12-01
Visual analogue scales (VASs) have shown superior measurement qualities in comparison to traditional Likert-type response scales in previous studies. The present study expands the comparison of response scales to properties of Internet-based personality scales in a within-subjects design. A sample of 879 participants filled out an online questionnaire measuring Conscientiousness, Excitement Seeking, and Narcissism. The questionnaire contained all instruments in both answer scale versions in a counterbalanced design. Results show comparable reliabilities, means, and SDs for the VAS versions of the original scales, in comparison to Likert-type scales. To assess the validity of the measurements, age and gender were used as criteria, because all three constructs have shown non-zero correlations with age and gender in previous research. Both response scales showed a high overlap and the proposed relationships with age and gender. The associations were largely identical, with the exception of an increase in explained variance when predicting age from the VAS version of Excitement Seeking (B10 = 1318.95, ΔR(2) = .025). VASs showed similar properties to Likert-type response scales in most cases.
Massive superclusters as a probe of the nature and amplitude of primordial density fluctuations
NASA Technical Reports Server (NTRS)
Kaiser, N.; Davis, M.
1985-01-01
It is pointed out that correlation studies of galaxy positions have been widely used in the search for information about the large-scale matter distribution. The study of rare condensations on large scales provides an approach to extend the existing knowledge of large-scale structure into the weakly clustered regime. Shane (1975) provides a description of several apparent massive condensations within the Shane-Wirtanen catalog, taking into account the Serpens-Virgo cloud and the Corona cloud. In the present study, a description is given of a model for estimating the frequency of condensations which evolve from initially Gaussian fluctuations. This model is applied to the Corona cloud to estimate its 'rareness' and thereby estimate the rms density contrast on this mass scale. An attempt is made to find a conflict between the density fluctuations derived from the Corona cloud and independent constraints. A comparison is conducted of the estimate and the density fluctuations predicted to arise in a universe dominated by cold dark matter.
NASA Astrophysics Data System (ADS)
Collins, Gilbert; Valenzuela, Julio; Beg, Farhat
2016-10-01
We have studied the collision of counter-propagating plasma flows using opposing conical wire arrays driven by the 200kA, 150ns rise-time `GenASIS' driver. These plasma flows produced weakly collisional, well-defined bow-shock structures. Varying initial parameters such as the opening angle of the array and the atomic mass of the wires allowed us to modify quantities such as the density contrast between jets, intra-jet mean free path (λmfp, scales with v, atomic mass A, and ionization state Zi-4) , Reynolds number (Re, scales with AZ), and the Peclet number (Pe, scales with Z). We calculate these dimensionless quantities using schlieren imagery, interferometry, and emission data, and determine whether they meet the scaling criteria necessary for the comparison to and subsequent study of astrophysical plasmas. This work was partially supported by the Department of Energy Grant Number DE-SC0014493.
Multiscale infrared and visible image fusion using gradient domain guided image filtering
NASA Astrophysics Data System (ADS)
Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia
2018-03-01
For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.
Efficient implicit LES method for the simulation of turbulent cavitating flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Schmidt, Steffen J.; Hickel, Stefan
2016-07-01
We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flowmore » field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.« less
Stability of large-scale systems with stable and unstable subsystems.
NASA Technical Reports Server (NTRS)
Grujic, Lj. T.; Siljak, D. D.
1972-01-01
The purpose of this paper is to develop new methods for constructing vector Liapunov functions and broaden the application of Liapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. With minor technical adjustments, the same criterion can be used to determine connective asymptotic stability of large-scale systems subject to structural perturbations. By redefining the constraints imposed on the interconnections among the subsystems, the considered class of systems is broadened in an essential way to include composite systems with unstable subsystems. In this way, the theory is brought substantially closer to reality since stability of all subsystems is no longer a necessary assumption in establishing stability of the overall composite system.
NASA Astrophysics Data System (ADS)
Khaykin, S. M.; Hauchecorne, A.; Cammas, J.-P.; Marqestaut, N.; Mariscal, J.-F.; Posny, F.; Payen, G.; Porteneuve, J.; Keckhut, P.
2018-04-01
A unique Rayleigh-Mie Doppler lidar capable of wind measurements in the 5-50 km altitude range is operated routinely at La Reunion island (21° S, 55° E) since 2015. We evaluate instrument's capacities in capturing fine structures in stratospheric wind profiles and their temporal and spatial variability through comparison with collocated radiosoundings and ECMWF analysis. Perturbations in the wind velocity are used to retrieve gravity wave frequency spectrum.
Stability region maximization by decomposition-aggregation method. [Skylab stability
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Cuk, S. M.
1974-01-01
This work is to improve the estimates of the stability regions by formulating and resolving a proper maximization problem. The solution of the problem provides the best estimate of the maximal value of the structural parameter and at the same time yields the optimum comparison system, which can be used to determine the degree of stability of the Skylab. The analysis procedure is completely computerized, resulting in a flexible and powerful tool for stability considerations of large-scale linear as well as nonlinear systems.
2011-01-01
SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18 . NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT...unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 sampling is based on...atom distance-scaled ideal-gas reference state (DFIRE-AA) statistical potential func- tion.[ 18 ] The third approach is the Rosetta all-atom energy func
The Space-Time Scales of Variability in Oceanic Thermal Structure Off the Central California Coast.
1983-12-01
SST and sea- surface salinity (SSS) boundaries extracted from the shipboard (2m) thermalsalinograph (T/S) records (Figs. 23, 24, and 25). For these... extracted for comparison. At 175m the density gradient is sufficient to support vigorous internal wave activity in this region. As a result, the predominant... VB2 (VB squared) profiles were calculated from density profiles taken from each phase at a common location (Fig. 149). The location is approximately
Single-Image Super-Resolution Based on Rational Fractal Interpolation.
Zhang, Yunfeng; Fan, Qinglan; Bao, Fangxun; Liu, Yifang; Zhang, Caiming
2018-08-01
This paper presents a novel single-image super-resolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.
Renormalization Analysis of a Composite Ultrasonic Transducer with a Fractal Architecture
NASA Astrophysics Data System (ADS)
Algehyne, Ebrahem A.; Mulholland, Anthony J.
To ensure the safe operation of many safety critical structures such as nuclear plants, aircraft and oil pipelines, non-destructive imaging is employed using piezoelectric ultrasonic transducers. These sensors typically operate at a single frequency due to the restrictions imposed on their resonant behavior by the use of a single length scale in the design. To allow these transducers to transmit and receive more complex signals it would seem logical to use a range of length scales in the design so that a wide range of resonating frequencies will result. In this paper, we derive a mathematical model to predict the dynamics of an ultrasound transducer that achieves this range of length scales by adopting a fractal architecture. In fact, the device is modeled as a graph where the nodes represent segments of the piezoelectric and polymer materials. The electrical and mechanical fields that are contained within this graph are then expressed in terms of a finite element basis. The structure of the resulting discretized equations yields to a renormalization methodology which is used to derive expressions for the non-dimensionalized electrical impedance and the transmission and reception sensitivities. A comparison with a standard design shows some benefits of these fractal designs.
NASA Technical Reports Server (NTRS)
Gao, Xin-Hai; Yu, Wen-Bi; Stanford, John L.
1987-01-01
Four years of satellite-derived microwave and infrared radiances are analyzed for the three-dimensional and seasonal variation of semiannual oscillations (SAO) in stratospheric temperatures, with particular focus on high latitudes, to investigate the effect of stratospheric warmings on SAO. Separate analyses of individual seasons in each hemisphere reveal that the strongest SAO in temperature occur in the Northern Hemisphere (NH) winter polar upper stratosphere. These results, together with the latitudinal structure of the temperature SAO and the fact that the NH polar SAO is nearly out of phase with the lower latitude SAO, are consistent with the existence of a global-scale, meridional circulation on the SAO time scale. The results suggest that polar stratospheric warmings are an important source of SAO in both high and low latitude stratospheric temperature fields. Interannual variations, three-dimensional phase structure, and zonal asymmetry of SAO are also detailed. The SH stratospheric SAO is dominated by a localized feature in the high-latitude, eastern hemisphere which tilts westward with height.
Simulation of FRET dyes allows quantitative comparison against experimental data
NASA Astrophysics Data System (ADS)
Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T.; Jacob, Christoph R.; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander
2018-03-01
Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.
Peng, Ching-Yu; Korshin, Gregory V; Valentine, Richard L; Hill, Andrew S; Friedman, Melinda J; Reiber, Steve H
2010-08-01
Corrosion scales and deposits formed within drinking water distribution systems (DWDSs) have the potential to retain inorganic contaminants. The objective of this study was to characterize the elemental and structural composition of extracted pipe solids and hydraulically-mobile deposits originating from representative DWDSs. Goethite (alpha-FeOOH), magnetite (Fe(3)O(4)) and siderite (FeCO(3)) were the primary crystalline phases identified in most of the selected samples. Among the major constituent elements of the deposits, iron was most prevalent followed, in the order of decreasing prevalence, by sulfur, organic carbon, calcium, inorganic carbon, phosphorus, manganese, magnesium, aluminum and zinc. The cumulative occurrence profiles of iron, sulfur, calcium and phosphorus for pipe specimens and flushed solids were similar. Comparison of relative occurrences of these elements indicates that hydraulic disturbances may have relatively less impact on the release of manganese, aluminum and zinc, but more impact on the release of organic carbon, inorganic carbon, and magnesium. (c) 2010 Elsevier Ltd. All rights reserved.
An investigation of rotor harmonic noise by the use of small scale wind tunnel models
NASA Technical Reports Server (NTRS)
Sternfeld, H., Jr.; Schaffer, E. G.
1982-01-01
Noise measurements of small scale helicopter rotor models were compared with noise measurements of full scale helicopters to determine what information about the full scale helicopters could be derived from noise measurements of small scale helicopter models. Comparisons were made of the discrete frequency (rotational) noise for 4 pairs of tests. Areas covered were tip speed effects, isolated rotor, tandem rotor, and main rotor/tail rotor interaction. Results show good comparison of noise trends with configuration and test condition changes, and good comparison of absolute noise measurements with the corrections used except for the isolated rotor case. Noise measurements of the isolated rotor show a great deal of scatter reflecting the fact that the rotor in hover is basically unstable.
A comparison of hydrologic models for ecological flows and water availability
Caldwell, Peter V; Kennen, Jonathan G.; Sun, Ge; Kiang, Julie E.; Butcher, John B; Eddy, Michelle C; Hay, Lauren E.; LaFontaine, Jacob H.; Hain, Ernie F.; Nelson, Stacy C; McNulty, Steve G
2015-01-01
Robust hydrologic models are needed to help manage water resources for healthy aquatic ecosystems and reliable water supplies for people, but there is a lack of comprehensive model comparison studies that quantify differences in streamflow predictions among model applications developed to answer management questions. We assessed differences in daily streamflow predictions by four fine-scale models and two regional-scale monthly time step models by comparing model fit statistics and bias in ecologically relevant flow statistics (ERFSs) at five sites in the Southeastern USA. Models were calibrated to different extents, including uncalibrated (level A), calibrated to a downstream site (level B), calibrated specifically for the site (level C) and calibrated for the site with adjusted precipitation and temperature inputs (level D). All models generally captured the magnitude and variability of observed streamflows at the five study sites, and increasing level of model calibration generally improved performance. All models had at least 1 of 14 ERFSs falling outside a +/−30% range of hydrologic uncertainty at every site, and ERFSs related to low flows were frequently over-predicted. Our results do not indicate that any specific hydrologic model is superior to the others evaluated at all sites and for all measures of model performance. Instead, we provide evidence that (1) model performance is as likely to be related to calibration strategy as it is to model structure and (2) simple, regional-scale models have comparable performance to the more complex, fine-scale models at a monthly time step.
Perl, Craig D; Rossoni, Sergio; Niven, Jeremy E
2017-03-01
Static allometries determine how organ size scales in relation to body mass. The extent to which these allometric relationships are free to evolve, and how they differ among closely related species, has been debated extensively and remains unclear; changes in intercept appear common, but changes in slope are far rarer. Here, we compare the scaling relationships that govern the structure of compound eyes of four closely related ant species from the genus Formica . Comparison among these species revealed changes in intercept but not slope in the allometric scaling relationships governing eye area, facet number, and mean facet diameter. Moreover, the scaling between facet diameter and number was conserved across all four species. In contrast, facet diameters from distinct regions of the compound eye differed in both intercept and slope within a single species and when comparing homologous regions among species. Thus, even when species are conservative in the scaling of whole organs, they can differ substantially in regional scaling within organs. This, at least partly, explains how species can produce organs that adhere to genus wide scaling relationships while still being able to invest differentially in particular regions of organs to produce specific features that match their ecology.
Hierarchical Population Genetic Structure in a Direct Developing Antarctic Marine Invertebrate
Hoffman, Joseph I.; Clarke, Andrew; Clark, Melody S.; Peck, Lloyd S.
2013-01-01
Understanding the relationship between life-history variation and population structure in marine invertebrates is not straightforward. This is particularly true of polar species due to the difficulty of obtaining samples and a paucity of genomic resources from which to develop nuclear genetic markers. Such knowledge, however, is essential for understanding how different taxa may respond to climate change in the most rapidly warming regions of the planet. We therefore used over two hundred polymorphic Amplified Fragment Length Polymorphisms (AFLPs) to explore population connectivity at three hierachical spatial scales in the direct developing Antarctic topshell Margarella antarctica. To previously published data from five populations spanning a 1500 km transect along the length of the Western Antarctic Peninsula, we added new AFLP data for four populations separated by up to 6 km within Ryder Bay, Adelaide Island. Overall, we found a nonlinear isolation-by-distance pattern, suggestive of weaker population structure within Ryder Bay than is present over larger spatial scales. Nevertheless, significantly positive F st values were obtained in all but two of ten pairwise population comparisons within the bay following Bonferroni correction for multiple tests. This is in contrast to a previous study of the broadcast spawner Nacella concinna that found no significant genetic differences among several of the same sites. By implication, the topshell's direct-developing lifestyle may constrain its ability to disperse even over relatively small geographic scales. PMID:23691125
NASA Astrophysics Data System (ADS)
Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.; Doeleman, Sheperd S.
2017-03-01
Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford-Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.
Centrifuge modeling of rocking-isolated inelastic RC bridge piers.
Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George
2014-12-01
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, C.E.; Bass, B.R.; Keeney, J.A.
This report contains 40 papers that were presented at the Joint IAEA/CSNI Specialists` Meeting Fracture Mechanics Verification by Large-Scale Testing held at the Pollard Auditorium, Oak Ridge, Tennessee, during the week of October 26--29, 1992. The papers are printed in the order of their presentation in each session and describe recent large-scale fracture (brittle and/or ductile) experiments, analyses of these experiments, and comparisons between predictions and experimental results. The goal of the meeting was to allow international experts to examine the fracture behavior of various materials and structures under conditions relevant to nuclear reactor components and operating environments. The emphasismore » was on the ability of various fracture models and analysis methods to predict the wide range of experimental data now available. The individual papers have been cataloged separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapol, Peter; Bourg, Ian; Criscenti, Louise Jacqueline
2011-10-01
This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers,more » classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.« less
Ecological impacts of large-scale disposal of mining waste in the deep sea
Hughes, David J.; Shimmield, Tracy M.; Black, Kenneth D.; Howe, John A.
2015-01-01
Deep-Sea Tailings Placement (DSTP) from terrestrial mines is one of several large-scale industrial activities now taking place in the deep sea. The scale and persistence of its impacts on seabed biota are unknown. We sampled around the Lihir and Misima island mines in Papua New Guinea to measure the impacts of ongoing DSTP and assess the state of benthic infaunal communities after its conclusion. At Lihir, where DSTP has operated continuously since 1996, abundance of sediment infauna was substantially reduced across the sampled depth range (800–2020 m), accompanied by changes in higher-taxon community structure, in comparison with unimpacted reference stations. At Misima, where DSTP took place for 15 years, ending in 2004, effects on community composition persisted 3.5 years after its conclusion. Active tailings deposition has severe impacts on deep-sea infaunal communities and these impacts are detectable at a coarse level of taxonomic resolution. PMID:25939397
Ecological impacts of large-scale disposal of mining waste in the deep sea.
Hughes, David J; Shimmield, Tracy M; Black, Kenneth D; Howe, John A
2015-05-05
Deep-Sea Tailings Placement (DSTP) from terrestrial mines is one of several large-scale industrial activities now taking place in the deep sea. The scale and persistence of its impacts on seabed biota are unknown. We sampled around the Lihir and Misima island mines in Papua New Guinea to measure the impacts of ongoing DSTP and assess the state of benthic infaunal communities after its conclusion. At Lihir, where DSTP has operated continuously since 1996, abundance of sediment infauna was substantially reduced across the sampled depth range (800-2020 m), accompanied by changes in higher-taxon community structure, in comparison with unimpacted reference stations. At Misima, where DSTP took place for 15 years, ending in 2004, effects on community composition persisted 3.5 years after its conclusion. Active tailings deposition has severe impacts on deep-sea infaunal communities and these impacts are detectable at a coarse level of taxonomic resolution.
Orszag Tang vortex - Kinetic study of a turbulent plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parashar, T. N.; Servidio, S.; Shay, M. A.
Kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations based on particle in cell ions and fluid electrons. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. An earlier study estimated the dissipation in the system. A comparison of MHD and hybrid simulations showed similar behavior at large scales but substantial differences at small scales. The hybrid magnetic energy spectrum shows a break at the scale where Hall term in the Ohm's law becomes important. The protons heat perpendicularly and most of the energy is dissipated through magnetic interactions. Here, the space time structure of themore » system is studied using frequency-wavenumber (k-omega) decomposition. No clear resonances appear, ruling out the cyclotron resonances as a likely candidate for the perpendicular heating. The only distinguishable wave modes present, which constitute a small percentage of total energy, are magnetosonic modes.« less
TWO MEASURES FOR CROSS-CULTURAL RESEARCH ON MORALITY: COMPARISON AND REVISION.
Zhang, Yanyan; Li, Sisi
2015-08-01
The current research assessed the reliability and validity of two Western measures of morality in a Chinese sample, namely the Community, Autonomy, and Divinity Scale (CADS) and the Moral Foundations Questionnaire (MFQ). Questionnaires were administered to 274 Chinese participants in Northern China (M age = 25.4 yr., SD = 8.50; 86% women). Confirmatory factor analysis using a structural equation model was conducted to evaluate the construct validity of the two scales. The results indicated a reasonable model fit of both the CADS and the MFQ after certain modifications. The revised versions of both measures had good internal consistency reliabilities. Correlation analysis indicated moderate correlations between the dimensions of the two scales. Regarding the content of morality, Chinese people endorsed more of the traditional ethics and foundations than people from Western cultures in other studies. In addition, participants who reported a religious affiliation scored higher on the Divinity subscale compared to those who claimed to be atheists.
2007-11-01
long baseline of ~8600 km. The comparisons were made with measurement systems developed for the Sistema Interamericano de Metrologia (SIM) comparison...measurements are compared and summarized. I. INTRODUCTION The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization...Brazil. The two time scales are separated by a long baseline of ~8600 km. The comparisons were made with measurement systems developed for the Sistema
The structure of red-infrared scattergrams of semivegetated landscapes
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Eagleson, Peter S.
1988-01-01
A physically based linear stochastic geometric canopy soil reflectance model is presented for characterizing spatial variability of semivegetated landscapes at subpixel and regional scales. Landscapes are conceptualized as stochastic geometric surfaces, incorporating not only the variability in geometric elements, but also the variability in vegetation and soil background reflectance which can be important in some scenes. The model is used to investigate several possible mechanisms which contribute to the often observed characteristic triangular shape of red-infrared scattergrams of semivegetated landscapes. Scattergrams of simulated and semivegetated scenes are analyzed with respect to the scales of the satellite pixel and subpixel components. Analysis of actual aerial radiometric data of a pecan orchard is presented in comparison with ground observations as preliminary confirmation of the theoretical results.
The structure of red-infrared scattergrams of semivegetated landscapes
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Eagleson, Peter S.
1989-01-01
A physically based linear stochastic geometric canopy soil reflectance model is presented for characterizing spatial variability of semivegetated landscapes at subpixel and regional scales. Landscapes are conceptualized as stochastic geometric surfaces, incorporating not only the variability in geometric elements, but also the variability in vegetation and soil background reflectance which can be important in some scenes. The model is used to investigate several possible mechanisms which contribute to the often observed characteristic triangular shape of red-infrared scattergrams of semivegetated landscapes. Scattergrams of simulated semivegetated scenes are analyzed with respect to the scales of the satellite pixel and subpixel components. Analysis of actual aerial radiometric data of a pecan orchard is presented in comparison with ground observations as preliminary confirmation of the theoretical results.
Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.
2013-01-01
In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.
Bumps of the wave structure function in non-Kolmogorov turbulence
NASA Astrophysics Data System (ADS)
Qiao, Chunhong; Lu, Lu; Zhang, Pengfei; Wang, Haitao; Huang, Honghua; Fan, Chengyu
2015-10-01
The analytical expressions for wave structure function of plane and spherical waves are derived both in the viscous dissipation and inertial range. Due to previously research, there is a discrepancy between theoretical results and the experimental datum in viscous dissipation range. In this paper, only considering the inertial range, taking plane waves for example, we give a comparison of results of WSF calculated by the analytical formula obtained in this paper and the numerical calculations of the definition at the fixed parameter (i.e., the generalized exponent α), it can be seen that the two results are in agreement with each other exactly. Based on non-Kolmogorov power spectrum, new characteristics for wave structure function (WSF) have been found for plane and spherical wave models when the different ratio of inner scale l0 and outer scale of turbulence L0 is obtained. In outer scale assumed finite case (i.e., L0 =1m), WSF obtains the maximum when α approximates to 3.3 both for plane and spherical wave models. In outer scale assumed infinite case (i.e., L0 = ∞), the WSF can be sorted into three parts, including two rapid-rising regions (i.e., 3.0 < α < 3.3 and 3.8 < α < 4.0 ) and one gently rising region (i.e., 3.3 < α < 3.8 ).Further, the changes of scaled WSF versus the ratio of separation distance and inner scale ( p/ l0 ) are investigated under mentioned above conditions for two models. In L0 = 1m case, both for plane and spherical waves, the value of α determines the bump position of WSF. In L0 = ∞ case, the bump of scaled WSF disappears when the generalized exponent has large values. The changings of scaled WSF monotonically increase as α increased when the generalized exponent is larger than11/3 for two models. Besides, the properties of spherical waves are similar to plane waves, except which the values of WSF and the scaled WSF are smaller than plane ones.
Surface structure modification of single crystal graphite after slow, highly charged ion irradiation
NASA Astrophysics Data System (ADS)
Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.
2018-04-01
Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.
Evolution of spherical over-densities in tachyon scalar field model
NASA Astrophysics Data System (ADS)
Setare, M. R.; Felegary, F.; Darabi, F.
2017-09-01
We study the tachyon scalar field model in flat FRW cosmology with the particular potential ϕ-2 and the scale factor behavior a (t) =tn. We consider the spherical collapse model and investigate the effects of the tachyon scalar field on the structure formation in flat FRW universe. We calculate δc (zc), λ (zc), ξ (zc), ΔV (zc), log [ νf (ν) ] and log [ n (k) ] for the tachyon scalar field model and compare the results with the results of EdS model and ΛCDM model. It is shown that in the tachyon scalar field model the structure formation may occur earlier, in comparison to the other models.
A Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF)
NASA Astrophysics Data System (ADS)
Trotta, Francesco; Fenu, Elisa; Pinardi, Nadia; Bruciaferri, Diego; Giacomelli, Luca; Federico, Ivan; Coppini, Giovanni
2016-11-01
We present a numerical platform named Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF). The platform is developed for short-time forecasts and is designed to be embedded in any region of the large-scale Mediterranean Forecasting System (MFS) via downscaling. We employ CTD data collected during a campaign around the Elba island to calibrate and validate SURF. The model requires an initial spin up period of a few days in order to adapt the initial interpolated fields and the subsequent solutions to the higher-resolution nested grids adopted by SURF. Through a comparison with the CTD data, we quantify the improvement obtained by SURF model compared to the coarse-resolution MFS model.
Neighborhood scale quantification of ecosystem goods and ...
Ecosystem goods and services are those ecological structures and functions that humans can directly relate to their state of well-being. Ecosystem goods and services include, but are not limited to, a sufficient fresh water supply, fertile lands to produce agricultural products, shading, air and water of sufficient quality for designated uses, flood water retention, and places to recreate. The US Environmental Protection Agency (USEPA) Office of Research and Development’s Tampa Bay Ecosystem Services Demonstration Project (TBESDP) modeling efforts organized existing literature values for biophysical attributes and processes related to EGS. The goal was to develop a database for informing mapped-based EGS assessments for current and future land cover/use scenarios at multiple scales. This report serves as a demonstration of applying an EGS assessment approach at the large neighborhood scale (~1,000 acres of residential parcels plus common areas). Here, we present mapped inventories of ecosystem goods and services production at a neighborhood scale within the Tampa Bay, FL region. Comparisons of the inventory between two alternative neighborhood designs are presented as an example of how one might apply EGS concepts at this scale.
Similarity spectra analysis of high-performance jet aircraft noise.
Neilsen, Tracianne B; Gee, Kent L; Wall, Alan T; James, Michael M
2013-04-01
Noise measured in the vicinity of an F-22A Raptor has been compared to similarity spectra found previously to represent mixing noise from large-scale and fine-scale turbulent structures in laboratory-scale jet plumes. Comparisons have been made for three engine conditions using ground-based sideline microphones, which covered a large angular aperture. Even though the nozzle geometry is complex and the jet is nonideally expanded, the similarity spectra do agree with large portions of the measured spectra. Toward the sideline, the fine-scale similarity spectrum is used, while the large-scale similarity spectrum provides a good fit to the area of maximum radiation. Combinations of the two similarity spectra are shown to match the data in between those regions. Surprisingly, a combination of the two is also shown to match the data at the farthest aft angle. However, at high frequencies the degree of congruity between the similarity and the measured spectra changes with engine condition and angle. At the higher engine conditions, there is a systematically shallower measured high-frequency slope, with the largest discrepancy occurring in the regions of maximum radiation.
The Yale Craving Scale: Development and psychometric properties.
Rojewski, Alana M; Morean, Meghan E; Toll, Benjamin A; McKee, Sherry A; Krishnan-Sarin, Suchitra; Green, Barry G; Bartoshuk, Linda M; O'Malley, Stephanie S
2015-09-01
The current study presents a psychometric evaluation of the Yale Craving Scale (YCS), a novel measure of craving for cigarettes and alcohol, respectively. The YCS is the first craving measure to use a generalized Labeled Magnitude Scale (gLMS) as the scoring format, which facilitates between-group comparisons of subjective craving and eliminates ceiling effects by assessing the full range of imaginable sensation intensities. Psychometric evaluations of the YCS for use with cigarettes (YCS Smoking) and alcohol (YCS Drinking) included assessments of latent factor structure, internal consistency, ceiling effects, and test-criterion relationships. Study samples included 493 treatment-seeking smokers and 213 heavy drinkers. Factor analyses of the 5-item YCS Smoking and Drinking scores confirmed a 1-factor scale. The YCS Smoking and Drinking scores evidenced: (1) good internal consistency, (2) scalar measurement invariance within several subgroups (e.g., smoking/drinking status; nicotine/alcohol dependence), (3) convergent relationships with extant craving measures, and (4) concurrent relationships with smoking/drinking outcomes. These results suggest that the YCS represents a psychometrically sound scale for assessing smoking and drinking urges in dependent populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ardıç, Fazıl Necdet; Tümkaya, Funda; Akdağ, Beyza; Şenol, Hande
2017-10-01
Dizziness Handicap Inventory (DHI) is one of the most frequently used surveys for vertigo. The aim of the study was re-analyze the consistency of subscales and correlation between original and different short forms. The data of 2111 patients were analyzed. Original three subscales, screening form of DHI and short form of DHI were evaluated. The suitability of the data set for factor analysis and factor structure was analyzed with Kaiser-Meyer-Olkin (KMO) coefficient, Bartlett's Sphericity Test, and Varimax method. Pearson correlation analysis was performed. Factor analysis showed that two factor solutions are more prominent in our data. The factors proposed in different studies are not in harmony with each other. There is high correlation between the original and screening and short forms of DHI. This study indicated that the factor structure of the scale was not consistent. It is not advised to use subscale scores for comparison especially in international level. Therefore, total score should be used rather than the scores of the subscales. Using DHI screening form instead of original 25 questions is more convenient, because it is highly correlated with the original one and has fewer questions. Implications for rehabilitation Factor structure of the DHI is not consistent enough for comparison of the international studies. Total score of DHI is reliable. Using the screening version of DHI is better, because it is highly correlated with the original form and has fewer questions (10 questions).
Perception of midline deviations in smile esthetics by laypersons.
Ferreira, Jamille Barros; Silva, Licínio Esmeraldo da; Caetano, Márcia Tereza de Oliveira; Motta, Andrea Fonseca Jardim da; Cury-Saramago, Adriana de Alcantara; Mucha, José Nelson
2016-01-01
To evaluate the esthetic perception of upper dental midline deviation by laypersons and if adjacent structures influence their judgment. An album with 12 randomly distributed frontal view photographs of the smile of a woman with the midline digitally deviated was evaluated by 95 laypersons. The frontal view smiling photograph was modified to create from 1 mm to 5 mm deviations in the upper midline to the left side. The photographs were cropped in two different manners and divided into two groups of six photographs each: group LCN included the lips, chin, and two-thirds of the nose, and group L included the lips only. The laypersons performed the rate of each smile using a visual analog scale (VAS). Wilcoxon test, Student's t-test and Mann-Whitney test were applied, adopting a 5% level of significance. Laypersons were able to perceive midline deviations starting at 1 mm. Statistically significant results (p< 0.05) were found for all multiple comparisons of the values in photographs of group LCN and for almost all comparisons in photographs of group L. Comparisons between the photographs of groups LCN and L showed statistically significant values (p< 0.05) when the deviation was 1 mm. Laypersons were able to perceive the upper dental midline deviations of 1 mm, and above when the adjacent structures of the smiles were included. Deviations of 2 mm and above when the lips only were included. The visualization of structures adjacent to the smile demonstrated influence on the perception of midline deviation.
Sung, Yao-Ting; Wu, Jeng-Shin
2018-04-17
Traditionally, the visual analogue scale (VAS) has been proposed to overcome the limitations of ordinal measures from Likert-type scales. However, the function of VASs to overcome the limitations of response styles to Likert-type scales has not yet been addressed. Previous research using ranking and paired comparisons to compensate for the response styles of Likert-type scales has suffered from limitations, such as that the total score of ipsative measures is a constant that cannot be analyzed by means of many common statistical techniques. In this study we propose a new scale, called the Visual Analogue Scale for Rating, Ranking, and Paired-Comparison (VAS-RRP), which can be used to collect rating, ranking, and paired-comparison data simultaneously, while avoiding the limitations of each of these data collection methods. The characteristics, use, and analytic method of VAS-RRPs, as well as how they overcome the disadvantages of Likert-type scales, ranking, and VASs, are discussed. On the basis of analyses of simulated and empirical data, this study showed that VAS-RRPs improved reliability, response style bias, and parameter recovery. Finally, we have also designed a VAS-RRP Generator for researchers' construction and administration of their own VAS-RRPs.
NASA Astrophysics Data System (ADS)
Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David
2016-04-01
Uncertainty in bedload estimates for gravel bed rivers is largely driven by our inability to characterize arrangement, orientation and resultant forces of fluvial sediment in river beds. Water working of grains leads to structural differences between areas of the bed through particle sorting, packing, imbrication, mortaring and degree of bed armoring. In this study, non-destructive, micro-focus X-ray computed tomography (CT) imaging in 3D is used to visualize, quantify and assess the internal geometry of sections of a flume bed that have been extracted keeping their fabric intact. Flume experiments were conducted at 1:1 scaling of our prototype river. From the volume, center of mass, points of contact, and protrusion of individual grains derived from 3D scan data we estimate 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and local grain exposure. Here metrics are derived for images from two flume experiments: one with a bed of coarse grains (>4mm) and the other where sand and clay were incorporated into the coarse flume bed. In addition to deriving force networks, comparison of metrics such as critical shear stress, pivot angles, grain distributions, principle axis orientation, and pore space over depth are made. This is the first time bed stability has been studied in 3D using CT scanned images of sediment from the bed surface to depths well into the subsurface. The derived metrics, inter-granular relationships and characterization of bed structures will lead to improved bedload estimates with reduced uncertainty, as well as improved understanding of relationships between sediment structure, grain size distribution and channel topography.
NASA Astrophysics Data System (ADS)
Thoraval, C.
2017-12-01
Describing the large-scale structures of mantle convection and quantifying the mass transfer between upper and lower mantle request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth mantle from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of mantle flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower mantle are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.
Adamczak, Rafal; Meller, Jarek
2016-12-28
Advances in computing have enabled current protein and RNA structure prediction and molecular simulation methods to dramatically increase their sampling of conformational spaces. The quickly growing number of experimentally resolved structures, and databases such as the Protein Data Bank, also implies large scale structural similarity analyses to retrieve and classify macromolecular data. Consequently, the computational cost of structure comparison and clustering for large sets of macromolecular structures has become a bottleneck that necessitates further algorithmic improvements and development of efficient software solutions. uQlust is a versatile and easy-to-use tool for ultrafast ranking and clustering of macromolecular structures. uQlust makes use of structural profiles of proteins and nucleic acids, while combining a linear-time algorithm for implicit comparison of all pairs of models with profile hashing to enable efficient clustering of large data sets with a low memory footprint. In addition to ranking and clustering of large sets of models of the same protein or RNA molecule, uQlust can also be used in conjunction with fragment-based profiles in order to cluster structures of arbitrary length. For example, hierarchical clustering of the entire PDB using profile hashing can be performed on a typical laptop, thus opening an avenue for structural explorations previously limited to dedicated resources. The uQlust package is freely available under the GNU General Public License at https://github.com/uQlust . uQlust represents a drastic reduction in the computational complexity and memory requirements with respect to existing clustering and model quality assessment methods for macromolecular structure analysis, while yielding results on par with traditional approaches for both proteins and RNAs.
NASA Astrophysics Data System (ADS)
Monkenbusch, M.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Allgaier, J.; Richter, D.
2005-08-01
The properties of bicontinuous microemulsions, consisting of water, oil and a surfactant, depend to a large extent on the bending moduli of the surfactant containing oil-water interface. In systems with CiEj as surfactant these moduli can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. The influence of the addition of homopolymers (PEPX and PEOX, X = 5 or 10 kg/mol molecular weight) on the structure, bending modulus and dynamics of the surfactant layer is studied with small angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). Besides providing information on the microemulsion structure, neutron scattering is a microscopic probe that can be used to measure the local bending modulus κ. The polymer addition gives access to a homologous series of microemulsions with changing κ values. We relate the results obtained by analysis of SANS to those from NSE experiments. Comparison of the bending moduli obtained sheds light on the different renormalization length scales for NSE and SANS. Comparison of SANS and NSE derived κ values yields a consistent picture if renormalization properties are observed. Finally a ready to use method for converting NSE data into reliable values for κ is presented.
Rapid encoding of relationships between spatially remote motion signals.
Maruya, Kazushi; Holcombe, Alex O; Nishida, Shin'ya
2013-02-06
For visual processing, the temporal correlation of remote local motion signals is a strong cue to detect meaningful large-scale structures in the retinal image, because related points are likely to move together regardless of their spatial separation. While the processing of multi-element motion patterns involved in biological motion and optic flow has been studied intensively, the encoding of simpler pairwise relationships between remote motion signals remains poorly understood. We investigated this process by measuring the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared to luminance or orientation, motion comparison was more rapid. Performance remained very high even when interstimulus separation was increased up to 100°. Motion comparison also remained rapid regardless of whether the two motion directions were similar to or different from each other. The exception was a dramatic slowing when the elements formed an orthogonal "T," in which two motions do not perceptually group together. Motion presented at task-irrelevant positions did not reduce performance, suggesting that the rapid motion comparison could not be ascribed to global optic flow processing. Our findings reveal the existence and unique nature of specialized processing that encodes long-range relationships between motion signals for quick appreciation of global dynamic scene structure.
SGP-1: Prediction and Validation of Homologous Genes Based on Sequence Alignments
Wiehe, Thomas; Gebauer-Jung, Steffi; Mitchell-Olds, Thomas; Guigó, Roderic
2001-01-01
Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors. PMID:11544202
Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...
2015-04-08
The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less
NASA Astrophysics Data System (ADS)
Lekkas, Efthymios L.; Mavroulis, Spyridon D.
2016-01-01
The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.
Nuclear structure functions at a future electron-ion collider
Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; ...
2017-12-07
The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less
Nuclear structure functions at a future electron-ion collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.
The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less
A study on phenomenology of Dhat syndrome in men in a general medical setting.
Prakash, Sathya; Sharan, Pratap; Sood, Mamta
2016-01-01
"Dhat syndrome" is believed to be a culture-bound syndrome of the Indian subcontinent. Although many studies have been performed, many have methodological limitations and there is a lack of agreement in many areas. The aim is to study the phenomenology of "Dhat syndrome" in men and to explore the possibility of subtypes within this entity. It is a cross-sectional descriptive study conducted at a sex and marriage counseling clinic of a tertiary care teaching hospital in Northern India. An operational definition and assessment instrument for "Dhat syndrome" was developed after taking all concerned stakeholders into account and review of literature. It was applied on 100 patients along with socio-demographic profile, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, Mini International Neuropsychiatric Interview, and Postgraduate Institute Neuroticism Scale. For statistical analysis, descriptive statistics, group comparisons, and Pearson's product moment correlations were carried out. Factor analysis and cluster analysis were done to determine the factor structure and subtypes of "Dhat syndrome." A diagnostic and assessment instrument for "Dhat syndrome" has been developed and the phenomenology in 100 patients has been described. Both the health beliefs scale and associated symptoms scale demonstrated a three-factor structure. The patients with "Dhat syndrome" could be categorized into three clusters based on severity. There appears to be a significant agreement among various stakeholders on the phenomenology of "Dhat syndrome" although some differences exist. "Dhat syndrome" could be subtyped into three clusters based on severity.
Shin, Dong Wook; Ahn, Eunmi; Kim, Yong-Man; Kang, Sokbom; Kim, Byoung-Gie; Seong, Seok Ju; Cha, Soon Do; Park, Chan-Yong; Yun, Young Ho
2009-01-01
This study was conducted to evaluate the psychometric properties of the Korean version of the Quality of Life questionnaire cervical cancer module (QLQ-CX24), developed by the European Organization for Research and Treatment of Cancer (EORTC). The EORTC QLQ-CX24 and the core questionnaire (the EORTC QLQ-C30) were administered to 860 Korean disease-free survivors of cervical cancer and 494 female control subjects from the general Korean population. The construct reliability and validity of the EORTC QLQ-CX24 questionnaire were assessed via factor analysis, multitrait scaling analyses and known group comparisons. Factor structure of the Korean version of the EORTC QLQ-CX24 questionnaire agreed with the originally hypothesized scale structure. Scale reliability was confirmed by Cronbach's alpha coefficients for internal consistency, which ranged from 0.78 to 0.87. Convergent and discriminant validity was confirmed by multitrait scaling analysis, which revealed scaling errors of 0.9. The clinical validity of the Korean version of the EORTC QLQ-CX24 was demonstrated by the ability to discriminate among controls and patient subgroups of different stages, treatments and overall health status. The Korean version of the EORTC QLQ-CX24 was found to be a reliable and a valid measure of quality of life among survivors of cervical cancer when administered in a large survey setting. Copyright 2009 S. Karger AG, Basel.
Defining ADHD symptom persistence in adulthood: optimizing sensitivity and specificity.
Sibley, Margaret H; Swanson, James M; Arnold, L Eugene; Hechtman, Lily T; Owens, Elizabeth B; Stehli, Annamarie; Abikoff, Howard; Hinshaw, Stephen P; Molina, Brooke S G; Mitchell, John T; Jensen, Peter S; Howard, Andrea L; Lakes, Kimberley D; Pelham, William E
2017-06-01
Longitudinal studies of children diagnosed with ADHD report widely ranging ADHD persistence rates in adulthood (5-75%). This study documents how information source (parent vs. self-report), method (rating scale vs. interview), and symptom threshold (DSM vs. norm-based) influence reported ADHD persistence rates in adulthood. Five hundred seventy-nine children were diagnosed with DSM-IV ADHD-Combined Type at baseline (ages 7.0-9.9 years) 289 classmates served as a local normative comparison group (LNCG), 476 and 241 of whom respectively were evaluated in adulthood (Mean Age = 24.7). Parent and self-reports of symptoms and impairment on rating scales and structured interviews were used to investigate ADHD persistence in adulthood. Persistence rates were higher when using parent rather than self-reports, structured interviews rather than rating scales (for self-report but not parent report), and a norm-based (NB) threshold of 4 symptoms rather than DSM criteria. Receiver-Operating Characteristics (ROC) analyses revealed that sensitivity and specificity were optimized by combining parent and self-reports on a rating scale and applying a NB threshold. The interview format optimizes young adult self-reporting when parent reports are not available. However, the combination of parent and self-reports from rating scales, using an 'or' rule and a NB threshold optimized the balance between sensitivity and specificity. With this definition, 60% of the ADHD group demonstrated symptom persistence and 41% met both symptom and impairment criteria in adulthood. © 2016 Association for Child and Adolescent Mental Health.
Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W
2007-07-01
Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.
TCA High Lift Preliminary Assessment
NASA Technical Reports Server (NTRS)
Wyatt, G. H.; Polito, R. C.; Yeh, D. T.; Elzey, M. E.; Tran, J. T.; Meredith, Paul T.
1999-01-01
This paper presents a TCA (Technology Concept Airplane) High lift Preliminary Assessment. The topics discussed are: 1) Model Description; 2) Data Repeatability; 3) Effect of Inboard L.E. (Leading Edge) Flap Span; 4) Comparison of 14'x22' TCA-1 With NTF (National Transonic Facility) Modified Ref. H; 5) Comparison of 14'x22' and NTF Ref. H Results; 6) Effect of Outboard Sealed Slat on TCA; 7) TCA Full Scale Build-ups; 8) Full Scale L/D Comparisons; 9) TCA Full Scale; and 10) Touchdown Lift Curves. This paper is in viewgraph form.
Large-scale modelling of the divergent spectrin repeats in nesprins: giant modular proteins.
Autore, Flavia; Pfuhl, Mark; Quan, Xueping; Williams, Aisling; Roberts, Roland G; Shanahan, Catherine M; Fraternali, Franca
2013-01-01
Nesprin-1 and nesprin-2 are nuclear envelope (NE) proteins characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KASH [Klarsicht-ANC-Syne-homology] domain and display N-terminal actin-binding CH (calponin homology) domains. Mutations in these proteins have been described in Emery-Dreifuss muscular dystrophy and attributed to disruptions of interactions at the NE with nesprins binding partners, lamin A/C and emerin. Evolutionary analysis of the rod domains of the nesprins has shown that they are almost entirely composed of unbroken SR-like structures. We present a bioinformatical approach to accurate definition of the boundaries of each SR by comparison with canonical SR structures, allowing for a large-scale homology modelling of the 74 nesprin-1 and 56 nesprin-2 SRs. The exposed and evolutionary conserved residues identify important pbs for protein-protein interactions that can guide tailored binding experiments. Most importantly, the bioinformatics analyses and the 3D models have been central to the design of selected constructs for protein expression. 1D NMR and CD spectra have been performed of the expressed SRs, showing a folded, stable, high content α-helical structure, typical of SRs. Molecular Dynamics simulations have been performed to study the structural and elastic properties of consecutive SRs, revealing insights in the mechanical properties adopted by these modules in the cell.
Passive control of coherent structures in a modified backwards-facing step flow
NASA Astrophysics Data System (ADS)
Ormonde, Pedro C.; Cavalieri, André V. G.; Silva, Roberto G. A. da; Avelar, Ana C.
2018-05-01
We study a modified backwards-facing step flow, with the addition of two different plates; one is a baseline, impermeable plate and the second a perforated one. An experimental investigation is carried out for a turbulent reattaching shear layer downstream of the two plates. The proposed setup is a model configuration to study how the plate characteristics affect the separated shear layer and how turbulent kinetic energies and large-scale coherent structures are modified. Measurements show that the perforated plate changes the mean flow field, mostly by reducing the intensity of reverse flow close to the bottom wall. Disturbance amplitudes are significantly reduced up to five step heights downstream of the trailing edge of the plate, more specifically in the recirculation region. A loudspeaker is then used to introduce phase-locked, low-amplitude perturbations upstream of the plates, and phase-averaged measurements allow a quantitative study of large-scale structures in the shear-layer. The evolution of such coherent structures is evaluated in light of linear stability theory, comparing the eigenfunction of the Kelvin-Helmholtz mode to the experimental results. We observe a close match of linear-stability eigenfunctions with phase-averaged amplitudes for the two tested Strouhal numbers. The perforated plate is found to reduce the amplitude of the Kelvin-Helmholtz coherent structures in comparison to the baseline, impermeable plate, a behavior consistent with the predicted amplification trends from linear stability.
NASA Astrophysics Data System (ADS)
Cohen, Martin; Green, Anne J.
2001-08-01
We report on the comparison of images of a region of the Galactic plane (centred on l=312°) as seen by the Midcourse Space Experiment (MSX) at 8.3μm and by the Molonglo Observatory Synthesis Telescope (MOST) at 843MHz in the radio continuum. We note that the survey from each telescope is without peer and occupies a niche in panoramic coverage with high spatial resolution. Using independent classification of sources in the selected region, a detailed comparison of the two surveys was made. The aim of the project was to seek global characteristics for different types of source, with a view to establishing predictive criteria for identification and hence emission mechanisms. Several strong trends were found. There is a complete absence in this field of any detected MSX counterparts to non-thermal radio sources. Almost every Hii region in the radio image has its MSX counterpart, in the form of a polycyclic aromatic hydrocarbon halo in the neutral zone surrounding the ionized gas. Both surveys show large-scale `braided' filamentary structures, extending over 1°, which appear to be produced by thermal processes. These filaments may be structures in the warm ionized phase of the interstellar medium or extended haloes around Hii regions. The comparisons in this paper were made using both preliminary MSX 8.3-μm results with 46-arcsec resolution and final MSX images with the intrinsic 20-arcsec resolution of the instruments.
Kornacka, Monika; Buczny, Jacek; Layton, Rebekah L
2016-01-01
Repetitive negative thinking (RNT) is a transdiagnostic process involved in the risk, maintenance, and relapse of serious conditions including mood disorders, anxiety, eating disorders, and addictions. Processing mode theory provides a theoretical model to assess, research, and treat RNT using a transdiagnostic approach. Clinical researchers also often employ categorical approaches to RNT, including a focus on depressive rumination or worry, for similar purposes. Three widely used self-report questionnaires have been developed to assess these related constructs: the Ruminative Response Scale (RRS), the Perseverative Thinking Questionnaire (PTQ), and the Mini-Cambridge Exeter Repetitive Thought Scale (Mini-CERTS). Yet these scales have not previously been used in conjunction, despite useful theoretical distinctions only available in Mini-CERTS. The present validation of the methods in a Polish speaking population provides psychometric parameters estimates that contribute to current efforts to increase reliable replication of theoretical outcomes. Moreover, the following study aims to present particular characteristics and a comparison of the three methods. Although there has been some exploration of a categorical approach, the comparison of transdiagnostic methods is still lacking. These methods are particularly relevant for developing and evaluating theoretically based interventions like concreteness training, an emerging field of increasing interest, which can be used to address the maladaptive processing mode in RNT that can lead to depression and other disorders. Furthermore, the translation of these measures enables the examination of possible cross-cultural structural differences that may lead to important theoretical progress in the measurement and classification of RNT. The results support the theoretical hypothesis. As expected, the dimensions of brooding, general repetitive negative thinking, as well as abstract analytical thinking, can all be classified as unconstructive repetitive thinking. The particular characteristics of each scale and potential practical applications in clinical and research are discussed.
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Chasmer, L. E.; Taylor, A.; Day, R.
2010-12-01
Characterization of riparian buffers is integral to understanding the landscape scale impacts of disturbance on wildlife and aquatic ecosystems. Riparian buffers may be characterized using in situ plot sampling or via high resolution remote sensing. Field measurements are time-consuming and may not cover a broad range of ecosystem types. Further, spectral remote sensing methods introduce a compromise between spatial resolution (grain) and area extent. Airborne LiDAR can be used to continuously map and characterize riparian vegetation structure and composition due to the three-dimensional reflectance of laser pulses within and below the canopy, understory and at the ground surface. The distance between reflections (or ‘returns’) allows for detection of narrow buffer corridors at the landscape scale. There is a need to compare leaf-off and leaf-on surveyed LiDAR data with in situ measurements to assess accuracy in landscape scale analysis. These comparisons are particularly important considering increased availability of leaf-off surveyed LiDAR datasets. And given this increased availability, differences between leaf-on and leaf-off derived LiDAR metrics are largely unknown for riparian vegetation of varying composition and structure. This study compares the effectiveness of leaf-on and leaf-off LiDAR in characterizing riparian buffers of varying structure and composition as compared to field measurements. Field measurements were used to validate LiDAR derived metrics. Vegetation height, canopy cover, density and overstory and understory species composition were recorded in 80 random plots of varying vegetation type, density and structure within a Pennsylvania watershed (-77.841, 40.818). Plot data were compared with LiDAR data collected during leaf on and leaf off conditions to determine 1) accuracy of LiDAR derived metrics compared to field measures and 2) differences between leaf-on and leaf-off LiDAR metrics. Results illustrate that differences exist between metrics derived from leaf on and leaf-off surveyed LiDAR. There is greater variability between the two datasets within taller deciduous and mixed (conifer and deciduous) vegetation compared to shorter deciduous and mixed vegetation. Differences decrease as stand density increases for both mixed and deciduous forests. LiDAR derived canopy height is more sensitive to understory vegetation as stand density decreases making measurement of understory vegetation in the field important in the validation process. Finally, while leaf-on LiDAR is often preferred for vegetation analysis, results suggest that leaf-off LiDAR may be sufficient to categorize vegetation into height classes to be used for landscape scale habitat models.
Sinval, Jorge; Pasian, Sonia; Queirós, Cristina; Marôco, João
2018-01-01
The aim of this paper is to present a revision of international versions of the Utrecht Work Engagement Scale and to describe the psychometric properties of a Portuguese version of the UWES-9 developed simultaneously for Brazil and Portugal, the validity evidence related with the internal structure, namely, Dimensionality, measurement invariance between Brazil and Portugal, and Reliability of the scores. This is the first UWES version developed simultaneously for both countries, and it is an important instrument for understanding employees' work engagement in the organizations, allowing human resources departments to better use workforces, especially when they are migrants. A total of 524 Brazilian workers and 522 Portuguese workers participated in the study. Confirmatory Factor Analysis, group comparisons, and Reliability estimates were used. The use of workers who were primarily professionals or administrative support, according to ISCO-08, reinforced the need to collect data on other professional occupations. Confirmatory factor analysis showed acceptable fit for the UWES-9 original three-factor solution, and a second-order factor structure has been proposed that presented an acceptable fit. Full-scale invariance was obtained between the Portuguese and Brazilian samples, both for the original three-factor first-order and second-order models. Data revealed that Portuguese and Brazilian workers didn't show statistically significant differences in the work engagement dimensions. This version allows for direct comparisons of means and, consequently, for performance of comparative and cross-cultural studies between these two countries. PMID:29618995
Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry
NASA Astrophysics Data System (ADS)
Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.
2016-10-01
Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.
Thomas C. Brown; George L. Peterson
2009-01-01
The method of paired comparisons is used to measure individuals' preference orderings of items presented to them as discrete binary choices. This paper reviews the theory and application of the paired comparison method, describes a new computer program available for eliciting the choices, and presents an analysis of methods for scaling paired choice data to...
Gaia: automated quality assessment of protein structure models.
Kota, Pradeep; Ding, Feng; Ramachandran, Srinivas; Dokholyan, Nikolay V
2011-08-15
Increasing use of structural modeling for understanding structure-function relationships in proteins has led to the need to ensure that the protein models being used are of acceptable quality. Quality of a given protein structure can be assessed by comparing various intrinsic structural properties of the protein to those observed in high-resolution protein structures. In this study, we present tools to compare a given structure to high-resolution crystal structures. We assess packing by calculating the total void volume, the percentage of unsatisfied hydrogen bonds, the number of steric clashes and the scaling of the accessible surface area. We assess covalent geometry by determining bond lengths, angles, dihedrals and rotamers. The statistical parameters for the above measures, obtained from high-resolution crystal structures enable us to provide a quality-score that points to specific areas where a given protein structural model needs improvement. We provide these tools that appraise protein structures in the form of a web server Gaia (http://chiron.dokhlab.org). Gaia evaluates the packing and covalent geometry of a given protein structure and provides quantitative comparison of the given structure to high-resolution crystal structures. dokh@unc.edu Supplementary data are available at Bioinformatics online.
Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin
2018-05-08
Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.
NASA Astrophysics Data System (ADS)
Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.
2017-09-01
Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.
NASA Astrophysics Data System (ADS)
Sogaro, Francesca; Poole, Robert; Dennis, David
2014-11-01
High-speed stereoscopic particle image velocimetry has been performed in fully developed turbulent pipe flow at moderate Reynolds numbers with and without a drag-reducing additive (an aqueous solution of high molecular weight polyacrylamide). Three-dimensional large and very large-scale motions (LSM and VLSM) are extracted from the flow fields by a detection algorithm and the characteristics for each case are statistically compared. The results show that the three-dimensional extent of VLSMs in drag reduced (DR) flow appears to increase significantly compared to their Newtonian counterparts. A statistical increase in azimuthal extent of DR VLSM is observed by means of two-point spatial autocorrelation of the streamwise velocity fluctuation in the radial-azimuthal plane. Furthermore, a remarkable increase in length of these structures is observed by three-dimensional two-point spatial autocorrelation. These results are accompanied by an analysis of the swirling strength in the flow field that shows a significant reduction in strength and number of the vortices for the DR flow. The findings suggest that the damping of the small scales due to polymer addition results in the undisturbed development of longer flow structures.
Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield
NASA Technical Reports Server (NTRS)
Johnston, John; Lienard, Sebastien; Brodeur, Steve (Technical Monitor)
2001-01-01
New modeling and analysis techniques have been developed for predicting the dynamic behavior of the Next Generation Space Telescope (NGST) sunshield. The sunshield consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. Modeling the structural dynamic behavior of the sunshield is a challenging aspect of the problem due to the effects of membrane wrinkling. A finite element model of the sunshield was developed using an approximate engineering approach, the cable network method, to account for membrane wrinkling effects. Ground testing of a one-tenth scale model of the NGST sunshield were carried out to provide data for validating the analytical model. A series of analyses were performed to predict the behavior of the sunshield under the ground test conditions. Modal analyses were performed to predict the frequencies and mode shapes of the test article and transient response analyses were completed to simulate impulse excitation tests. Comparison was made between analytical predictions and test measurements for the dynamic behavior of the sunshield. In general, the results show good agreement with the analytical model correctly predicting the approximate frequency and mode shapes for the significant structural modes.
Artemieva, I.M.; Thybo, H.; Kaban, M.K.; ,
2006-01-01
We present a summary of geophysical models of the subcrustal lithosphere of Europe. This includes the results from seismic (reflection and refraction profiles, P- and S-wave tomography, mantle anisotropy), gravity, thermal, electromagnetic, elastic and petrological studies of the lithospheric mantle. We discuss major tectonic processes as reflected in the lithospheric structure of Europe, from Precambrian terrane accretion and subduction to Phanerozoic rifting, volcanism, subduction and continent-continent collision. The differences in the lithospheric structure of Precambrian and Phanerozoic Europe, as illustrated by a comparative analysis of different geophysical data, are shown to have both a compositional and a thermal origin. We propose an integrated model of physical properties of the European subcrustal lithosphere, with emphasis on the depth intervals around 150 and 250 km. At these depths, seismic velocity models, constrained by body-and surface-wave continent-scale tomography, are compared with mantle temperatures and mantle gravity anomalies. This comparison provides a framework for discussion of the physical or chemical origin of the major lithospheric anomalies and their relation to large-scale tectonic processes, which have formed the present lithosphere of Europe. ?? The Geological Society of London 2006.
Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones
Elliott, Taffeta M.; Hamilton, Liberty S.; Theunissen, Frédéric E.
2013-01-01
Attempts to relate the perceptual dimensions of timbre to quantitative acoustical dimensions have been tenuous, leading to claims that timbre is an emergent property, if measurable at all. Here, a three-pronged analysis shows that the timbre space of sustained instrument tones occupies 5 dimensions and that a specific combination of acoustic properties uniquely determines gestalt perception of timbre. Firstly, multidimensional scaling (MDS) of dissimilarity judgments generated a perceptual timbre space in which 5 dimensions were cross-validated and selected by traditional model comparisons. Secondly, subjects rated tones on semantic scales. A discriminant function analysis (DFA) accounting for variance of these semantic ratings across instruments and between subjects also yielded 5 significant dimensions with similar stimulus ordination. The dimensions of timbre space were then interpreted semantically by rotational and reflectional projection of the MDS solution into two DFA dimensions. Thirdly, to relate this final space to acoustical structure, the perceptual MDS coordinates of each sound were regressed with its joint spectrotemporal modulation power spectrum. Sound structures correlated significantly with distances in perceptual timbre space. Contrary to previous studies, most perceptual timbre dimensions are not the result of purely temporal or spectral features but instead depend on signature spectrotemporal patterns. PMID:23297911
The deep thermal field of the Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias
2017-01-01
The Upper Rhine Graben has a significant socioeconomic relevance as it provides a great potential for geothermal energy production. The key for the utilisation of this energy resource is to understand the controlling factors of the thermal field in this area. We have therefore built a data-based lithospheric-scale 3D structural model of the Upper Rhine Graben and its adjacent areas. In addition, 3D gravity modelling was performed to constrain the internal structure of the crystalline crust consistent with seismic information. Based on this lithosphere scale 3D structural model the present-day conductive thermal field was calculated and compared to measured temperatures. Our results show that the regional thermal field is mainly controlled by the configuration of the upper crust, which has different thermal properties characteristic for the Variscan and Alpine domains. Temperature maxima are predicted for the Upper Rhine Graben where thick insulating Cenozoic sediments cause a thermal blanketing effect and where the underlying crustal units are characterised by high radiogenic heat production. The comparison of calculated and measured temperatures overall shows a reasonable fit, while locally occuring model deviations indicate where a larger influence of groundwater flow may be expected.
Factor structure and gender stability in the multidimensional condom attitudes scale.
Starosta, Amy J; Berghoff, Christopher R; Earleywine, Mitch
2015-06-01
Sexually transmitted infections continue to trouble the United States and can be attenuated through increased condom use. Attitudes about condoms are an important multidimensional factor that can affect sexual health choices and have been successfully measured using the Multidimensional Condom Attitudes Scale (MCAS). Such attitudes have the potential to vary between men and women, yet little work has been undertaken to identify if the MCAS accurately captures attitudes without being influenced by underlying gender biases. We examined the factor structure and gender invariance on the MCAS using confirmatory factor analysis and item response theory, within-subscale differential item functioning analyses. More than 770 participants provided data via the Internet. Results of differential item functioning analyses identified three items as differentially functioning between the genders, and removal of these items is recommended. Findings confirmed the previously hypothesized multidimensional nature of condom attitudes and the five-factor structure of the MCAS even after the removal of the three problematic items. In general, comparisons across genders using the MCAS seem reasonable from a methodological standpoint. Results are discussed in terms of improving sexual health research and interventions. © The Author(s) 2014.
Persson, Lars-Olof; Erichsen, Magdalena; Wändell, Per; Gåfvels, Catharina
2013-10-01
The study examines internal item/scale structure and concurrent validity of a newly developed 48-item questionnaire [General Coping Questionnaire (GCQ)] that measures 10 aspects of coping with chronic illness (self-trust, problem-reducing actions, change of values, social trust, minimization, fatalism, resignation, protest, isolation and intrusion). The tests were performed in two independent samples of persons with diabetes mellitus. The first sample consisted of 119 subjects with type I diabetes and the second sample of 184 subjects with type II diabetes. Concurrent validity was examined by comparisons with measures of health-related quality of life (SF-36), a measure of metabolic control (HbA1c) and incidence of diabetic complications. The item/scale structure was found to be similar and very good in both samples. The 10 dimensions correlated as expected with the measure of mental health, although the 'negative' dimensions of the GCQ correlated higher compared with the 'positive' dimensions. Weaker relations with metabolic control were also found in one of the samples. These tests provide further evidence that GCQ is a well-structured, relevant and reliable instrument for assessing coping reactions in chronic somatic conditions. Copyright © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Khangaonkar, Tarang; Long, Wen
2014-02-07
In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts tomore » the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.« less
Disrupted Topological Patterns of Large-Scale Network in Conduct Disorder
Jiang, Yali; Liu, Weixiang; Ming, Qingsen; Gao, Yidian; Ma, Ren; Zhang, Xiaocui; Situ, Weijun; Wang, Xiang; Yao, Shuqiao; Huang, Bingsheng
2016-01-01
Regional abnormalities in brain structure and function, as well as disrupted connectivity, have been found repeatedly in adolescents with conduct disorder (CD). Yet, the large-scale brain topology associated with CD is not well characterized, and little is known about the systematic neural mechanisms of CD. We employed graphic theory to investigate systematically the structural connectivity derived from cortical thickness correlation in a group of patients with CD (N = 43) and healthy controls (HCs, N = 73). Nonparametric permutation tests were applied for between-group comparisons of graphical metrics. Compared with HCs, network measures including global/local efficiency and modularity all pointed to hypo-functioning in CD, despite of preserved small-world organization in both groups. The hubs distribution is only partially overlapped with each other. These results indicate that CD is accompanied by both impaired integration and segregation patterns of brain networks, and the distribution of highly connected neural network ‘hubs’ is also distinct between groups. Such misconfiguration extends our understanding regarding how structural neural network disruptions may underlie behavioral disturbances in adolescents with CD, and potentially, implicates an aberrant cytoarchitectonic profiles in the brain of CD patients. PMID:27841320
Compressible turbulent mixing: Effects of Schmidt number.
Ni, Qionglin
2015-05-01
We investigated by numerical simulations the effects of Schmidt number on passive scalar transport in forced compressible turbulence. The range of Schmidt number (Sc) was 1/25∼25. In the inertial-convective range the scalar spectrum seemed to obey the k(-5/3) power law. For Sc≫1, there appeared a k(-1) power law in the viscous-convective range, while for Sc≪1, a k(-17/3) power law was identified in the inertial-diffusive range. The scaling constant computed by the mixed third-order structure function of the velocity-scalar increment showed that it grew over Sc, and the effect of compressibility made it smaller than the 4/3 value from incompressible turbulence. At small amplitudes, the probability distribution function (PDF) of scalar fluctuations collapsed to the Gaussian distribution whereas, at large amplitudes, it decayed more quickly than Gaussian. At large scales, the PDF of scalar increment behaved similarly to that of scalar fluctuation. In contrast, at small scales it resembled the PDF of scalar gradient. Furthermore, the scalar dissipation occurring at large magnitudes was found to grow with Sc. Due to low molecular diffusivity, in the Sc≫1 flow the scalar field rolled up and got mixed sufficiently. However, in the Sc≪1 flow the scalar field lost the small-scale structures by high molecular diffusivity and retained only the large-scale, cloudlike structures. The spectral analysis found that the spectral densities of scalar advection and dissipation in both Sc≫1 and Sc≪1 flows probably followed the k(-5/3) scaling. This indicated that in compressible turbulence the processes of advection and dissipation except that of scalar-dilatation coupling might deferring to the Kolmogorov picture. It then showed that at high wave numbers, the magnitudes of spectral coherency in both Sc≫1 and Sc≪1 flows decayed faster than the theoretical prediction of k(-2/3) for incompressible flows. Finally, the comparison with incompressible results showed that the scalar in compressible turbulence with Sc=1 lacked a conspicuous bump structure in its spectrum, but was more intermittent in the dissipative range.
Catalytic ignition model in a monolithic reactor with in-depth reaction
NASA Technical Reports Server (NTRS)
Tien, Ta-Ching; Tien, James S.
1990-01-01
Two transient models have been developed to study the catalytic ignition in a monolithic catalytic reactor. The special feature in these models is the inclusion of thermal and species structures in the porous catalytic layer. There are many time scales involved in the catalytic ignition problem, and these two models are developed with different time scales. In the full transient model, the equations are non-dimensionalized by the shortest time scale (mass diffusion across the catalytic layer). It is therefore accurate but is computationally costly. In the energy-integral model, only the slowest process (solid heat-up) is taken as nonsteady. It is approximate but computationally efficient. In the computations performed, the catalyst is platinum and the reactants are rich mixtures of hydrogen and oxygen. One-step global chemical reaction rates are used for both gas-phase homogeneous reaction and catalytic heterogeneous reaction. The computed results reveal the transient ignition processes in detail, including the structure variation with time in the reactive catalytic layer. An ignition map using reactor length and catalyst loading is constructed. The comparison of computed results between the two transient models verifies the applicability of the energy-integral model when the time is greater than the second largest time scale of the system. It also suggests that a proper combined use of the two models can catch all the transient phenomena while minimizing the computational cost.
NASA Astrophysics Data System (ADS)
Usman, Muhammad
2018-04-01
Bismide semiconductor materials and heterostructures are considered a promising candidate for the design and implementation of photonic, thermoelectric, photovoltaic, and spintronic devices. This work presents a detailed theoretical study of the electronic and optical properties of strongly coupled GaBixAs1 -x /GaAs multiple quantum well (MQW) structures. Based on a systematic set of large-scale atomistic tight-binding calculations, our results reveal that the impact of atomic-scale fluctuations in alloy composition is stronger than the interwell coupling effect, and plays an important role in the electronic and optical properties of the investigated MQW structures. Independent of QW geometry parameters, alloy disorder leads to a strong confinement of charge carriers, a large broadening of the hole energies, and a red-shift in the ground-state transition wavelength. Polarization-resolved optical transition strengths exhibit a striking effect of disorder, where the inhomogeneous broadening could exceed an order of magnitude for MQWs, in comparison to a factor of about 3 for single QWs. The strong influence of alloy disorder effects persists when small variations in the size and composition of MQWs typically expected in a realistic experimental environment are considered. The presented results highlight the limited scope of continuum methods and emphasize on the need for large-scale atomistic approaches to design devices with tailored functionalities based on the novel properties of bismide materials.
NASA Astrophysics Data System (ADS)
Yang, Y.; Tenenbaum, D. E.
2009-12-01
The process of urbanization has major effects on both human and natural systems. In order to monitor these changes and better understand how urban ecological systems work, urban spatial structure and the variation needs to be first quantified at a fine scale. Because the land-use and land-cover (LULC) in urbanizing areas is highly heterogeneous, the classification of urbanizing environments is the most challenging field in remote sensing. Although a pixel-based method is a common way to do classification, the results are not good enough for many research objectives which require more accurate classification data in fine scales. Transect sampling and object-oriented classification methods are more appropriate for urbanizing areas. Tenenbaum used a transect sampling method using a computer-based facility within a widely available commercial GIS in the Glyndon Catchment and the Upper Baismans Run Catchment, Baltimore, Maryland. It was a two-tiered classification system, including a primary level (which includes 7 classes) and a secondary level (which includes 37 categories). The statistical information of LULC was collected. W. Zhou applied an object-oriented method at the parcel level in Gwynn’s Falls Watershed which includes the two previously mentioned catchments and six classes were extracted. The two urbanizing catchments are located in greater Baltimore, Maryland and drain into Chesapeake Bay. In this research, the two different methods are compared for 6 classes (woody, herbaceous, water, ground, pavement and structure). The comparison method uses the segments in the transect method to extract LULC information from the results of the object-oriented method. Classification results were compared in order to evaluate the difference between the two methods. The overall proportions of LULC classes from the two studies show that there is overestimation of structures in the object-oriented method. For the other five classes, the results from the two methods are similar, except for a difference in the proportions of the woody class. The segment to segment comparison shows that the resolution of the light detection and ranging (LIDAR) data used in the object-oriented method does affect the accuracy of the classification. Shadows of trees and structures are still a big problem in the object-oriented method. For classes that make up a small proportion of the catchments, such as water, neither method was capable of detecting them.
Improved protein surface comparison and application to low-resolution protein structure data
2010-01-01
Background Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. Results The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Conclusions Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy. PMID:21172052
Campbell, Michael H; Palmieri, Michael; Lasch, Brandi
2006-12-01
The concurrent validity of the College Adjustment Scales was assessed using comparison to the College Maladjustment Scale of the Minnesota Multiphasic Inventory-2. Undergraduate students (N=56, 40 women, M age = 21.3 yr., 87.5% white, non-Hispanic) completed both tests. Analysis indicated scores on 8 of 9 College Adjustment Scales correlated significantly in the predicted direction with those on the College Maladjustment Scale, thereby providing some additional support for convergent validity. While the conclusions are limited significantly by the small sample, this report provides an incremental contribution to the validity of the College Adjustment Scales.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
NASA Technical Reports Server (NTRS)
Shinoda, Patrick M.
1996-01-01
A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.
A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.
1985-01-01
The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.
Efficient multitasking of Choleski matrix factorization on CRAY supercomputers
NASA Technical Reports Server (NTRS)
Overman, Andrea L.; Poole, Eugene L.
1991-01-01
A Choleski method is described and used to solve linear systems of equations that arise in large scale structural analysis. The method uses a novel variable-band storage scheme and is structured to exploit fast local memory caches while minimizing data access delays between main memory and vector registers. Several parallel implementations of this method are described for the CRAY-2 and CRAY Y-MP computers demonstrating the use of microtasking and autotasking directives. A portable parallel language, FORCE, is used for comparison with the microtasked and autotasked implementations. Results are presented comparing the matrix factorization times for three representative structural analysis problems from runs made in both dedicated and multi-user modes on both computers. CPU and wall clock timings are given for the parallel implementations and are compared to single processor timings of the same algorithm.
Ortho and para hydrogen dimers on G/SiC(0001): combined STM and DFT study.
Merino, P; Švec, M; Martínez, J I; Mutombo, P; Gonzalez, C; Martín-Gago, J A; de Andres, P L; Jelinek, P
2015-01-01
The hydrogen (H) dimer structures formed upon room-temperature H adsorption on single layer graphene (SLG) grown on SiC(0001) are addressed using a combined theoretical-experimental approach. Our study includes density functional theory (DFT) calculations for the full (6√3 × 6√3)R30° unit cell of the SLG/SiC(0001) substrate and atomically resolved scanning tunneling microscopy images determining simultaneously the graphene lattice and the internal structure of the H adsorbates. We show that H atoms normally group in chemisorbed coupled structures of different sizes and orientations. We make an atomic scale determination of the most stable experimental geometries, the small dimers and ellipsoid-shaped features, and we assign them to hydrogen adsorbed in para dimers and ortho dimers configuration, respectively, through comparison with the theory.
NASA Astrophysics Data System (ADS)
van Wyk, F.; Highcock, E. G.; Field, A. R.; Roach, C. M.; Schekochihin, A. A.; Parra, F. I.; Dorland, W.
2017-11-01
We investigate the effect of varying the ion temperature gradient (ITG) and toroidal equilibrium scale sheared flow on ion-scale turbulence in the outer core of MAST by means of local gyrokinetic simulations. We show that nonlinear simulations reproduce the experimental ion heat flux and that the experimentally measured values of the ITG and the flow shear lie close to the turbulence threshold. We demonstrate that the system is subcritical in the presence of flow shear, i.e., the system is formally stable to small perturbations, but transitions to a turbulent state given a large enough initial perturbation. We propose that the transition to subcritical turbulence occurs via an intermediate state dominated by low number of coherent long-lived structures, close to threshold, which increase in number as the system is taken away from the threshold into the more strongly turbulent regime, until they fill the domain and a more conventional turbulence emerges. We show that the properties of turbulence are effectively functions of the distance to threshold, as quantified by the ion heat flux. We make quantitative comparisons of correlation lengths, times, and amplitudes between our simulations and experimental measurements using the MAST BES diagnostic. We find reasonable agreement of the correlation properties, most notably of the correlation time, for which significant discrepancies were found in previous numerical studies of MAST turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwell, M.; Ault, J.; Gentile, J.
1995-12-31
The conduct of comparative ecological risk assessments (CERA) resulting from the release of anthropogenic stressors into coastal marine environments requires theoretical and methodological innovations to integrate contaminant exposure with populations at risk over time and space scales. Consequently, predicted risks must be scaled to allow comparisons of relative ecological impacts in three physical dimensions plus time. This study was designed to compare the risks from hypothetical spills of Orimulsion and Fuel Oil No. 6 into the Tampa Bay ecosystem. The CERA framework used in this study integrates numerical hydrodynamic and transport-and-fate, toxicological, and biological models with extensive spatially explicit databasesmore » that describe the distributions of critical species and habitats. The presentation of the comparative ecological risks is facilitated by visualization and GIS techniques to allow realistic comparisons of toxicant exposures and their co-occurrence with key biological resources over time and across the seascape. A scaling methodology is presented that uses toxicological data as scalars for graphically representing the ecological effects associated with exposure levels for each scenario simulation. The CERA model serves as an interactive tool for assessing the relative ecological consequences of a range of potential exposure scenarios and for forecasting the longer-term productivity of critical biological resources and habitats that are key to ecosystem structure and function.« less
2011-01-01
Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (RST = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view. PMID:22151746
Psychometric properties of the Social Comparison Motives Scale.
Tigges, Beth Baldwin
2009-01-01
This article describes the 19-item Social Comparison Motive Scale [SCMS], a measure of adolescents' motives for social comparison related to pregnancy. Dimensions and items were developed based on adolescent focus groups. The instrument was reviewed for content validity, pilot tested, and administered to 431 adolescents aged 14-18 years. Principal axis factor analysis with oblique rotation supported five dimensions. Convergent and discriminant validity were demonstrated by moderate correlations (r = .50) between the SCMS and the Iowa-Netherlands Comparison Orientation Measure and low correlations (r = .15) between the SCMS and the Rosenberg Self-Esteem Scale. Cronbach's alphas were .91 overall and .71 to .85 for the subscales. The SCMS demonstrated reliability and validity as a measure of adolescents' motives for comparing themselves with others about pregnancy.
Zorn, Reiner; Yin, Huajie; Lohstroh, Wiebke; Harrison, Wayne; Budd, Peter M; Pauw, Brian R; Böhning, Martin; Schönhals, Andreas
2018-01-17
Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering.
Scaling of Performance in Liquid Propellant Rocket Engine Combustors
NASA Technical Reports Server (NTRS)
Hulka, James R.
2007-01-01
This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.
Scaling of Performance in Liquid Propellant Rocket Engine Combustion Devices
NASA Technical Reports Server (NTRS)
Hulka, James R.
2008-01-01
This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.
Compact groups in theory and practice - IV. The connection to large-scale structure
NASA Astrophysics Data System (ADS)
Mendel, J. Trevor; Ellison, Sara L.; Simard, Luc; Patton, David R.; McConnachie, Alan W.
2011-12-01
We investigate the properties of photometrically selected compact groups (CGs) in the Sloan Digital Sky Survey. In this paper, the fourth in a series, we focus on understanding the characteristics of our observed CG sample with particular attention paid to quantifying and removing contamination from projected foreground or background galaxies. Based on a simple comparison of pairwise redshift likelihoods, we find that approximately half of CGs in the parent sample contain one or more projected (interloping) members; our final clean sample contains 4566 galaxies in 1086 CGs. We show that half of the remaining CGs are associated with rich groups (or clusters), i.e. they are embedded sub-structure. The other half have spatial distributions and number-density profiles consistent with the interpretation that they are either independently distributed structures within the field (i.e. they are isolated) or associated with relatively poor structures. Comparisons of late-type and red-sequence fractions in radial annuli show that galaxies around apparently isolated CGs resemble the field population by 300 to 500 kpc from the group centre. In contrast, the galaxy population surrounding embedded CGs appears to remain distinct from the field out beyond 1 to 2 Mpc, consistent with results for rich groups. We take this as additional evidence that the observed distinction between CGs, i.e. isolated versus embedded, is a separation between different host environments.
NASA Astrophysics Data System (ADS)
Leslie, A.; Gorman, A. R.
2004-12-01
The interpretation of seismic reflection data in non-sedimentary environments is problematic. In the Macraes Flat region near Dunedin (South Island, New Zealand), ongoing mining of mineralized schist has prompted the development of a seismic interpretation scheme that is capable of imaging a gold-bearing shear zone and associated mineralized structures accurately to the meter scale. The anisotropic and complex structural nature of this geological environment necessitates a cost-effective computer-based modeling technique that can provide information on the physical characteristics of the schist. Such a method has been tested on seismic data acquired in 1993 over a region that has since been excavated and logged. Correlation to measured structural data permits a direct comparison between the seismic data and the actual geology. Synthetic modeling utilizes a 2D visco-elastic finite difference routine to constrain the interpretation of observed seismic characteristics, including the velocity, anisotropy, and contrast, of the shear zone structures. Iterative refinements of the model result in a more representative synthetic model that most closely matches the seismic response. The comparison between the actual and synthetic seismic sections provides promising results that will be tested by new data acquisition over the summer of 2004/2005 to identify structures and zones of potential mineralization. As a downstream benefit, this research could also contribute to earthquake risk assessment analyses at active faults with similar characteristics.
NASA Astrophysics Data System (ADS)
Mariappan, G.; Sundaraganesan, N.
2014-01-01
A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.
Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes
Cannon, Steven B.; Sterck, Lieven; Rombauts, Stephane; Sato, Shusei; Cheung, Foo; Gouzy, Jérôme; Wang, Xiaohong; Mudge, Joann; Vasdewani, Jayprakash; Schiex, Thomas; Spannagl, Manuel; Monaghan, Erin; Nicholson, Christine; Humphray, Sean J.; Schoof, Heiko; Mayer, Klaus F. X.; Rogers, Jane; Quétier, Francis; Oldroyd, Giles E.; Debellé, Frédéric; Cook, Douglas R.; Retzel, Ernest F.; Roe, Bruce A.; Town, Christopher D.; Tabata, Satoshi; Van de Peer, Yves; Young, Nevin D.
2006-01-01
Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago–Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20–30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar). PMID:17003129
Clinical application of ICF key codes to evaluate patients with dysphagia following stroke
Dong, Yi; Zhang, Chang-Jie; Shi, Jie; Deng, Jinggui; Lan, Chun-Na
2016-01-01
Abstract This study was aimed to identify and evaluate the International Classification of Functioning (ICF) key codes for dysphagia in stroke patients. Thirty patients with dysphagia after stroke were enrolled in our study. To evaluate the ICF dysphagia scale, 6 scales were used as comparisons, namely the Barthel Index (BI), Repetitive Saliva Swallowing Test (RSST), Kubota Water Swallowing Test (KWST), Frenchay Dysarthria Assessment, Mini-Mental State Examination (MMSE), and the Montreal Cognitive Assessment (MoCA). Multiple regression analysis was performed to quantitate the relationship between the ICF scale and the other 7 scales. In addition, 60 ICF scales were analyzed by the least absolute shrinkage and selection operator (LASSO) method. A total of 21 ICF codes were identified, which were closely related with the other scales. These included 13 codes from Body Function, 1 from Body Structure, 3 from Activities and Participation, and 4 from Environmental Factors. A topographic network map with 30 ICF key codes was also generated to visualize their relationships. The number of ICF codes identified is in line with other well-established evaluation methods. The network topographic map generated here could be used as an instruction tool in future evaluations. We also found that attention functions and biting were critical codes of these scales, and could be used as treatment targets. PMID:27661012
NASA Technical Reports Server (NTRS)
Zalesak, J.
1975-01-01
A dynamic substructuring analysis, utilizing the component modes technique, of the 1/8 scale space shuttle orbiter finite element model is presented. The analysis was accomplished in 3 phases, using NASTRAN RIGID FORMAT 3, with appropriate Alters, on the IBM 360-370. The orbiter was divided into 5 substructures, each of which was reduced to interface degrees of freedom and generalized normal modes. The reduced substructures were coupled to yield the first 23 symmetric free-free orbiter modes, and the eigenvectors in the original grid point degree of freedom lineup were recovered. A comparison was made with an analysis which was performed with the same model using the direct coordinate elimination approach. Eigenvalues were extracted using the inverse power method.
NASA Astrophysics Data System (ADS)
Karavosov, R. K.; Prozorov, A. G.
2012-01-01
We have investigated the spectra of pressure pulsations in the near field of the open working section of the wind tunnel with a vortex flow behind the tunnel blower formed like the flow behind the hydroturbine of a hydraulic power plant. We have made a comparison between the measurement data for pressure pulsations and the air stream velocity in tunnels of the above type and in tunnels in which a large-scale vortex structure behind the blower is not formed. It has been established that the large-scale vortex formation in the incompressible medium behind the blade system in the wind tunnel is a source of narrow-band acoustic radiation capable of exciting resonance self-oscillations in the tunnel channel.
Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure
NASA Astrophysics Data System (ADS)
Szafran, J.; Juszczyk, K.; Kamiński, M.
2017-12-01
The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.
Impaired consciousness in partial seizures is bimodally distributed.
Cunningham, Courtney; Chen, William C; Shorten, Andrew; McClurkin, Michael; Choezom, Tenzin; Schmidt, Christian P; Chu, Victoria; Bozik, Anne; Best, Cameron; Chapman, Melissa; Furman, Moran; Detyniecki, Kamil; Giacino, Joseph T; Blumenfeld, Hal
2014-05-13
To investigate whether impaired consciousness in partial seizures can usually be attributed to specific deficits in the content of consciousness or to a more general decrease in the overall level of consciousness. Prospective testing during partial seizures was performed in patients with epilepsy using the Responsiveness in Epilepsy Scale (n = 83 partial seizures, 30 patients). Results were compared with responsiveness scores in a cohort of patients with severe traumatic brain injury evaluated with the JFK Coma Recovery Scale-Revised (n = 552 test administrations, 184 patients). Standardized testing during partial seizures reveals a bimodal scoring distribution, such that most patients were either fully impaired or relatively spared in their ability to respond on multiple cognitive tests. Seizures with impaired performance on initial test items remained consistently impaired on subsequent items, while other seizures showed spared performance throughout. In the comparison group, we found that scores of patients with brain injury were more evenly distributed across the full range in severity of impairment. Partial seizures can often be cleanly separated into those with vs without overall impaired responsiveness. Results from similar testing in a comparison group of patients with brain injury suggest that the bimodal nature of Responsiveness in Epilepsy Scale scores is not a result of scale bias but may be a finding unique to partial seizures. These findings support a model in which seizures either propagate or do not propagate to key structures that regulate overall arousal and thalamocortical function. Future investigations are needed to relate these behavioral findings to the physiology underlying impaired consciousness in partial seizures.
Comparison of concentric needle versus hooked-wire electrodes in the canine larynx.
Jaffe, D M; Solomon, N P; Robinson, R A; Hoffman, H T; Luschei, E S
1998-05-01
The use of a specific electrode type in laryngeal electromyography has not been standardized. Laryngeal electromyography is usually performed with hooked-wire electrodes or concentric needle electrodes. Hooked-wire electrodes have the advantage of allowing laryngeal movement with ease and comfort, whereas the concentric needle electrodes have benefits from a technical aspect and may be advanced, withdrawn, or redirected during attempts to appropriately place the electrode. This study examines whether hooked-wire electrodes permit more stable recordings than standard concentric needle electrodes at rest and after large-scale movements of the larynx and surrounding structures. A histologic comparison of tissue injury resulting from placement and removal of the two electrode types is also made by evaluation of the vocal folds. Electrodes were percutaneously placed into the thyroarytenoid muscles of 10 adult canines. Amplitude of electromyographic activity was measured and compared during vagal stimulation before and after large-scale laryngeal movements. Signal consistency over time was examined. Animals were killed and vocal fold injury was graded and compared histologically. Waveform morphology did not consistently differ between electrode types. The variability of electromyographic amplitude was greater for the hooked-wire electrode (p < 0.05), whereas the mean amplitude measures before and after large-scale laryngeal movements did not differ (p > 0.05). Inflammatory responses and hematoma formation were also similar. Waveform morphology of electromyographic signals registered from both electrode types show similar complex action potentials. There is no difference between the hooked-wire electrode and the concentric needle electrode in terms of electrode stability or vocal fold injury in the thyroarytenoid muscle after large-scale laryngeal movements.
A psychophysical comparison of two methods for adaptive histogram equalization.
Zimmerman, J B; Cousins, S B; Hartzell, K M; Frisse, M E; Kahn, M G
1989-05-01
Adaptive histogram equalization (AHE) is a method for adaptive contrast enhancement of digital images. It is an automatic, reproducible method for the simultaneous viewing of contrast within a digital image with a large dynamic range. Recent experiments have shown that in specific cases, there is no significant difference in the ability of AHE and linear intensity windowing to display gray-scale contrast. More recently, a variant of AHE which limits the allowed contrast enhancement of the image has been proposed. This contrast-limited adaptive histogram equalization (CLAHE) produces images in which the noise content of an image is not excessively enhanced, but in which sufficient contrast is provided for the visualization of structures within the image. Images processed with CLAHE have a more natural appearance and facilitate the comparison of different areas of an image. However, the reduced contrast enhancement of CLAHE may hinder the ability of an observer to detect the presence of some significant gray-scale contrast. In this report, a psychophysical observer experiment was performed to determine if there is a significant difference in the ability of AHE and CLAHE to depict gray-scale contrast. Observers were presented with computed tomography (CT) images of the chest processed with AHE and CLAHE. Subtle artificial lesions were introduced into some images. The observers were asked to rate their confidence regarding the presence of the lesions; this rating-scale data was analyzed using receiver operating characteristic (ROC) curve techniques. These ROC curves were compared for significant differences in the observers' performances. In this report, no difference was found in the abilities of AHE and CLAHE to depict contrast information.
Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel; ...
2017-11-16
A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel
A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.
2017-10-01
Facility is a large-scale cascade that allows detailed flow field surveys and blade surface measurements.10–12 The facility has a continuous run ...structured grids at 2 flow conditions, cruise and takeoff, of the VSPT blade . Computations were run in parallel on a Department of Defense...RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable-Speed Power- Turbine Blade Operating with Low Inlet Turbulence Levels
Experimental Analyses of Yellow Tuff Spandrels of Post-medieval Buildings in the Naples Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderoni, B.; Cordasco, E. A.; Lenza, P.
2008-07-08
Experimental analyses have been carried out on tuff masonry specimens in order to investigate the structural behaviour of historical buildings in the Naples area (Southern Italy). Spandrels of post-medieval buildings (late XVI to early XX century) have been analysed, with emphasis on morphological characteristics according to chronological indicators. Results of the experimentation on scaled models (1:10) are discussed and the better behaviour of historical masonry typologies on respect to the modern one is highlighted. Comparison with theoretical formulations of ultimate shear resistance are provided too.
On the physical reality of the millisecond bursts in Cygnus X-1 - Bursts and shot noise
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Sutherland, P. G.
1978-01-01
The method of data analysis used to interpret the millisecond temporal structure of Cyg X-1 is discussed. In particular, the effects produced by the shot-noise variability of this source, which occurs on time scales of about 0.5 s, are examined. Taking into account the recent discovery that only about 30% of the flux may be in the shots, it is found that spurious 'millisecond bursts' will be detected. A comparison of the properties of these bursts with currently published experimental data is performed.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Dryer, M.; Hearth, D. P.
1957-01-01
The performance of a full-scale translating-spike inlet was obtained at Mach numbers of 1.8 and 2.0 and at angles of attach from 0 deg to 6 deg. Comparisons were made between the full-scale production inlet configuration and a geometrically similar quarter-scale model. The inlet pressure-recovery, cowl pressure-distribution, and compressor-face distortion characteristics of the full-scale inlet agreed fairly well with the quarter-scale results. In addition, the results indicated that bleeding around the periphery ahead of the compressor-face station improved pressure recovery and compressor-face distortion, especially at angle of attack.
Sonsthagen, S.A.; Talbot, S.L.; Lanctot, Richard B.; Scribner, K.T.; McCracken, K.G.
2009-01-01
Documentation of spatial genetic discordance among breeding populations of Arctic-nesting avian species is important, because anthropogenic change is altering environmental linkages at micro- and macrogeographic scales. We estimated levels of population subdivision within Pacific Common Eiders (Somateria mollissima v-nigrum) breeding on 12 barrier islands in the western Beaufort Sea, Alaska, using molecular markers and capture—mark—recapture (CMR) data. Common Eider populations were genetically structured on a microgeographic scale. Regional comparisons between populations breeding on island groups separated by 90 km (Mikkelsen Bay and Simpson Lagoon) revealed structuring at 14 microsatellite loci (F ST = 0.004, P < 0.01), a nuclear intron (F ST = 0.022, P = 0.02), and mitochondrial DNA (ΦST = 0.082, P < 0.05). The CMR data (n = 34) did not indicate female dispersal between island groups. Concordance between genetic and CMR data indicates that females breeding in the western Beaufort Sea are strongly philopatric to island groups rather than to a particular island. Despite the apparent high site fidelity of females, coalescence-based models of gene flow suggest that asymmetrical western dispersal occurs between island groups and is likely mediated by Mikkelsen Bay females stopping early on spring migration at Simpson Lagoon to breed. Alternatively, late-arriving females may be predisposed to nest in Simpson Lagoon because of the greater availability and wider distribution of nesting habitat. Our results indicate that genetic discontinuities, mediated by female philopatry, can exist at microgeographic scales along established migratory corridors.
NASA Astrophysics Data System (ADS)
Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady
2016-04-01
Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.
Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotationalmore » instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.« less
ARE GIANT TORNADOES THE LEGS OF SOLAR PROMINENCES?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc
Observations in the 171 A channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events aremore » present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional H{alpha} observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale.« less
Are Giant Tornadoes the Legs of Solar Prominences?
NASA Astrophysics Data System (ADS)
Wedemeyer, Sven; Scullion, Eamon; Rouppe van der Voort, Luc; Bosnjak, Antonija; Antolin, Patrick
2013-09-01
Observations in the 171 Å channel of the Atmospheric Imaging Assembly of the space-borne Solar Dynamics Observatory show tornado-like features in the atmosphere of the Sun. These giant tornadoes appear as dark, elongated, and apparently rotating structures in front of a brighter background. This phenomenon is thought to be produced by rotating magnetic field structures that extend throughout the atmosphere. We characterize giant tornadoes through a statistical analysis of properties such as spatial distribution, lifetimes, and sizes. A total number of 201 giant tornadoes are detected in a period of 25 days, suggesting that, on average, about 30 events are present across the whole Sun at a time close to solar maximum. Most tornadoes appear in groups and seem to form the legs of prominences, thus serving as plasma sources/sinks. Additional Hα observations with the Swedish 1 m Solar Telescope imply that giant tornadoes rotate as a structure, although they clearly exhibit a thread-like structure. We observe tornado groups that grow prior to the eruption of the connected prominence. The rotation of the tornadoes may progressively twist the magnetic structure of the prominence until it becomes unstable and erupts. Finally, we investigate the potential relation of giant tornadoes to other phenomena, which may also be produced by rotating magnetic field structures. A comparison to cyclones, magnetic tornadoes, and spicules implies that such events are more abundant and short-lived the smaller they are. This comparison might help to construct a power law for the effective atmospheric heating contribution as a function of spatial scale.
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W.
2016-01-01
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty’s 1–9 scale, this paper proposes a cross-ratio-based bipolar 0.1–0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness. PMID:27618082
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W
2016-09-09
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty's 1-9 scale, this paper proposes a cross-ratio-based bipolar 0.1-0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness.
Size and age structure of anadromous and landlocked populations of Rainbow Smelt
O'Malley, Andrew; Enterline, Claire; Zydlewski, Joseph D.
2017-01-01
Rainbow Smelt Osmerus mordax are widely distributed in both anadromous and landlocked populations throughout northeastern North America; abundance, size at age, and maximum size vary widely among populations and life histories. In the present study, size at age, von Bertalanffy growth parameters, population age distributions, and precision and bias in age assessment based on scales and sectioned otoliths were compared between ecotypes and among populations of Rainbow Smelt. To compare the ecotypes, we collected spawning adults from four anadromous and three landlocked populations in Maine during spring 2014. A significant bias was identified in only one of four scale comparisons but in four of seven otolith comparisons; however, a comparable level of precision was indicated. Anadromous populations had larger and more variable size at age and von Bertalanffy growth parameters than landlocked fish. Populations were composed of ages 1–4; six populations were dominated by age-2 or age-3 individuals, and one population was dominated by age-1 fish. These data suggest the presence of considerable plasticity among populations. A latitudinal gradient was observed in the anadromous Rainbow Smelt, which may show signs of population stress at the southern extent of their distribution.
Pauls, Franz; Petermann, Franz; Lepach, Anja Christina
2013-01-01
Between-group comparisons are permissible and meaningfully interpretable only if diagnostic instruments are proved to measure the same latent dimensions across different groups. Addressing this issue, the present study was carried out to provide a rigorous test of measurement invariance. Confirmatory factor analyses were used to determine which model solution could best explain memory performance as measured by the Wechsler Memory Scale-Fourth Edition (WMS-IV) in a clinical depression sample and in healthy controls. Multigroup confirmatory factor analysis was conducted to evaluate the evidence for measurement invariance. A three-factor model solution including the dimensions of auditory memory, visual memory, and visual working memory was identified to best fit the data in both samples, and measurement invariance was partially satisfied. The results supported clinical utility of the WMS-IV--that is, auditory and visual memory performances of patients with depressive disorders are interpretable on the basis of the WMS-IV standardization data. However, possible differences in visual working memory functions between healthy and depressed individuals could restrict comparisons of the WMS-IV working memory index.
NASA Astrophysics Data System (ADS)
Sanponpute, Tassanai; Meesaplak, Apichaya; Herrmann, Konrad; Menelao, Febo
2009-01-01
The bilateral comparison APMP.M.H-S2 of hardness measurement for Rockwell scales A and B was arranged by the National Institute of Metrology of Thailand, NIMT, as the pilot laboratory, comparing with Physikalisch-Technische Bundesanstalt of Germany, PTB. The objective of this comparison was to confirm the calibration and measurement capabilities of NIMT in hardness measurement. The period of measurement covered March to August 2009. There were two sets of artefacts: scale A artefact set and scale B artefact set. The scale A artefact set consisted of seven hardness blocks: 35 HRA, 40 HRA, 55 HRA, 60 HRA, 70 HRA, 80 HRA, 85 HRA. The artefact set for scale B consisted of nine hardness blocks: 25 HRB, 30 HRB, 40 HRB, 50 HRB, 60 HRB, 70 HRB, 80 HRB, 90 HRB, 100 HRB. Laboratories had to ensure that the primary Rockwell hardness machines passed the verification process according to ISO 6508-3. Then participants measured the hardness value by making ten indentations in a designated area of each artefact block. Hardness measurement results and uncertainty budget were then reported to the pilot laboratory and were used to compute the degrees of equivalence in terms of the Comparison Reference Value (CRV) and En ratio. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Scaling Laws in Turbulence: Their Manifestation and Utility.
NASA Astrophysics Data System (ADS)
Juneja, Anurag
1995-01-01
It has long been hypothesized that small-scale features in turbulence possess some form of scale-invariance leading to several interesting predictions about related flow quantities. In the present work, we examine the scaling features and scaling exponents of various quantities in turbulence and the relationship they bear to Kolmogorov and multifractal scaling theories. A related goal (which is the inverse problem) is to synthesize stochastic fields which faithfully reproduce the observed scaling features of velocity fluctuations in high-Reynolds-number turbulence. First, we obtain, for structure functions of arbitrary order, an expression which is uniformly valid for the inertial and dissipation range. This enables a more definitive determination of scaling exponents than has been possible in the past. Next, we examine the scaling properties of circulation around contours of various sizes, as it is suggested that a better way to study the small-scale features might be to focus on the vortical component of the velocity field. We then utilize a quantity called the cancellation exponent to characterize the singular nature of vorticity fluctuations, whose trace exhibits an oscillation in sign on arbitrary fine scales. We note that the inter-relationships which can be established among the aforementioned scaling exponents for velocity structure functions, circulation and vorticity provide support for the multifractal formalism of turbulence. Next, we examine the fractal structure of self -affine time series data in turbulent flows. It is shown that the fractal dimension of velocity and temperature signals in atmospheric turbulence is 1.65 +/- 0.05 implying that the dimension of iso-velocity or iso-temperature surfaces in fully developed turbulence is about 2.65 +/- 0.05 in agreement with previous theoretical predictions. The Reynolds number dependence of the measured dimensions is also explored by examining laboratory data at moderate Reynolds numbers. Using simple ideas from turbulence physics underlying the observed scaling features, we outline a family of schemes for generating artificial velocity fields, dubbed synthetic turbulence, which mimic velocity fluctuations in high-Reynolds -number turbulence to various degrees of detail. In the case of one-dimensional implementation of these schemes, we provide comparisons with experimental turbulence data and note that analytical predictions from the model allow us to relate the parameters of synthetic turbulence to those of real turbulence. Finally, we show that, compared to random initial conditions, an artificial velocity field in three-dimensions generated using a simplified synthetic turbulence scheme may be better suited for use as the initial condition for direct numerical simulation of homogeneous isotropic turbulence.
Perception of midline deviations in smile esthetics by laypersons
Ferreira, Jamille Barros; da Silva, Licínio Esmeraldo; Caetano, Márcia Tereza de Oliveira; da Motta, Andrea Fonseca Jardim; Cury-Saramago, Adriana de Alcantara; Mucha, José Nelson
2016-01-01
ABSTRACT Objective: To evaluate the esthetic perception of upper dental midline deviation by laypersons and if adjacent structures influence their judgment. Methods: An album with 12 randomly distributed frontal view photographs of the smile of a woman with the midline digitally deviated was evaluated by 95 laypersons. The frontal view smiling photograph was modified to create from 1 mm to 5 mm deviations in the upper midline to the left side. The photographs were cropped in two different manners and divided into two groups of six photographs each: group LCN included the lips, chin, and two-thirds of the nose, and group L included the lips only. The laypersons performed the rate of each smile using a visual analog scale (VAS). Wilcoxon test, Student’s t-test and Mann-Whitney test were applied, adopting a 5% level of significance. Results: Laypersons were able to perceive midline deviations starting at 1 mm. Statistically significant results (p< 0.05) were found for all multiple comparisons of the values in photographs of group LCN and for almost all comparisons in photographs of group L. Comparisons between the photographs of groups LCN and L showed statistically significant values (p< 0.05) when the deviation was 1 mm. Conclusions: Laypersons were able to perceive the upper dental midline deviations of 1 mm, and above when the adjacent structures of the smiles were included. Deviations of 2 mm and above when the lips only were included. The visualization of structures adjacent to the smile demonstrated influence on the perception of midline deviation. PMID:28125140
Peeling the onion: ribosomes are ancient molecular fossils.
Hsiao, Chiaolong; Mohan, Srividya; Kalahar, Benson K; Williams, Loren Dean
2009-11-01
We describe a method to establish chronologies of ancient ribosomal evolution. The method uses structure-based and sequence-based comparison of the large subunits (LSUs) of Haloarcula marismortui and Thermus thermophilus. These are the highest resolution ribosome structures available and represent disparate regions of the evolutionary tree. We have sectioned the superimposed LSUs into concentric shells, like an onion, using the site of peptidyl transfer as the origin (the PT-origin). This spherical approximation combined with a shell-by-shell comparison captures significant information along the evolutionary time line revealing, for example, that sequence and conformational similarity of the 23S rRNAs are greatest near the PT-origin and diverge smoothly with distance from it. The results suggest that the conformation and interactions of both RNA and protein can be described as changing, in an observable manner, over evolutionary time. The tendency of macromolecules to assume regular secondary structural elements such as A-form helices with Watson-Crick base pairs (RNA) and alpha-helices and beta-sheets (protein) is low at early time points but increases as time progresses. The conformations of ribosomal protein components near the PT-origin suggest that they may be molecular fossils of the peptide ancestors of ribosomal proteins. Their abbreviated length may have proscribed formation of secondary structure, which is indeed nearly absent from the region of the LSU nearest the PT-origin. Formation and evolution of the early PT center may have involved Mg(2+)-mediated assembly of at least partially single-stranded RNA oligomers or polymers. As one moves from center to periphery, proteins appear to replace magnesium ions. The LSU is known to have undergone large-scale conformation changes upon assembly. The T. thermophilus LSU analyzed here is part of a fully assembled ribosome, whereas the H. marismortui LSU analyzed here is dissociated from other ribosomal components. Large-scale conformational differences in the 23S rRNAs are evident from superimposition and prevent structural alignment of some portions of the rRNAs, including the L1 stalk.
Kattula, Deepthi; Venugopal, Srinivasan; Velusamy, Vasanthakumar; Sarkar, Rajiv; Jiang, Victoria; S, Mahasampath Gowri; Henry, Ankita; Deosaran, Jordanna Devi; Muliyil, Jayaprakash; Kang, Gagandeep
2016-01-01
Socioeconomic status (SES) scales measure poverty, wealth and economic inequality in a population to guide appropriate economic and public health policies. Measurement of poverty and comparison of material deprivation across nations is a challenge. This study compared four SES scales which have been used locally and internationally and evaluated them against childhood stunting, used as an indicator of chronic deprivation, in urban southern India. A door-to-door survey collected information on socio-demographic indicators such as education, occupation, assets, income and living conditions in a semi-urban slum area in Vellore, Tamil Nadu in southern India. A total of 7925 households were categorized by four SES scales-Kuppuswamy scale, Below Poverty Line scale (BPL), the modified Kuppuswamy scale, and the multidimensional poverty index (MDPI) and the level of agreement compared between scales. Logistic regression was used to test the association of SES scales with stunting. The Kuppuswamy, BPL, MDPI and modified Kuppuswamy scales classified 7.1%, 1%, 5.5%, and 55.3% of families as low SES respectively, indicating conservative estimation of low SES by the BPL and MDPI scales in comparison with the modified Kuppuswamy scale, which had the highest sensitivity (89%). Children from low SES classified by all scales had higher odds of stunting, but the level of agreement between scales was very poor ranging from 1%-15%. There is great non-uniformity between existing SES scales and cautious interpretation of SES scales is needed in the context of social, cultural, and economic realities.
NASA Astrophysics Data System (ADS)
Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
Watson, Shaun; Gomez, Rapson; Gullone, Eleonora
2017-06-01
This study examined various psychometric properties of the items comprising the shame and guilt scales of the Test of Self-Conscious Affect-Adolescent. A total of 563 adolescents (321 females and 242 males) completed these scales, and also measures of depression and empathy. Confirmatory factor analysis provided support for an oblique two-factor model, with the originally proposed shame and guilt items comprising shame and guilt factors, respectively. Also, shame correlated with depression positively and had no relation with empathy. Guilt correlated with depression negatively and with empathy positively. Thus, there was support for the convergent and discriminant validity of the shame and guilt factors. Multiple-group confirmatory factor analysis comparing females and males, based on the chi-square difference test, supported full metric invariance, the intercept invariance of 26 of the 30 shame and guilt items, and higher latent mean scores among females for both shame and guilt. Comparisons based on the difference in root mean squared error of approximation values supported full measurement invariance and no gender difference for latent mean scores. The psychometric and practical implications of the findings are discussed.
A validation study of the psychometric properties of the Groningen Reflection Ability Scale.
Andersen, Nina Bjerre; O'Neill, Lotte; Gormsen, Lise Kirstine; Hvidberg, Line; Morcke, Anne Mette
2014-10-10
Reflection, the ability to examine critically one's own learning and functioning, is considered important for 'the good doctor'. The Groningen Reflection Ability Scale (GRAS) is an instrument measuring student reflection, which has not yet been validated beyond the original Dutch study. The aim of this study was to adapt GRAS for use in a Danish setting and to investigate the psychometric properties of GRAS-DK. We performed a cross-cultural adaptation of GRAS from Dutch to Danish. Next, we collected primary data online, performed a retest, analysed data descriptively, estimated measurement error, performed an exploratory and a confirmatory factor analysis to test the proposed three-factor structure. 361 (69%) of 523 invited students completed GRAS-DK. Their mean score was 88 (SD = 11.42; scale maximum 115). Scores were approximately normally distributed. Measurement error and test-retest score differences were acceptable, apart from a few extreme outliers. However, the confirmatory factor analysis did not replicate the original three-factor model and neither could a one-dimensional structure be confirmed. GRAS is already in use, however we advise that use of GRAS-DK for effect measurements and group comparison awaits further review and validation studies. Our negative finding might be explained by a weak conceptualisation of personal reflection.
Sachem: a chemical cartridge for high-performance substructure search.
Kratochvíl, Miroslav; Vondrášek, Jiří; Galgonek, Jakub
2018-05-23
Structure search is one of the valuable capabilities of small-molecule databases. Fingerprint-based screening methods are usually employed to enhance the search performance by reducing the number of calls to the verification procedure. In substructure search, fingerprints are designed to capture important structural aspects of the molecule to aid the decision about whether the molecule contains a given substructure. Currently available cartridges typically provide acceptable search performance for processing user queries, but do not scale satisfactorily with dataset size. We present Sachem, a new open-source chemical cartridge that implements two substructure search methods: The first is a performance-oriented reimplementation of substructure indexing based on the OrChem fingerprint, and the second is a novel method that employs newly designed fingerprints stored in inverted indices. We assessed the performance of both methods on small, medium, and large datasets containing 1, 10, and 94 million compounds, respectively. Comparison of Sachem with other freely available cartridges revealed improvements in overall performance, scaling potential and screen-out efficiency. The Sachem cartridge allows efficient substructure searches in databases of all sizes. The sublinear performance scaling of the second method and the ability to efficiently query large amounts of pre-extracted information may together open the door to new applications for substructure searches.
Emplacement of the Rocche Rosse rhyolite lava flow (Lipari, Aeolian Islands)
NASA Astrophysics Data System (ADS)
Bullock, Liam A.; Gertisser, Ralf; O'Driscoll, Brian
2018-05-01
The Rocche Rosse lava flow marks the most recent rhyolitic extrusion on Lipari island (Italy), and preserves evidence for a multi-stage emplacement history. Due to the viscous nature of the advancing lava (108 to 1010 Pa s), indicators of complex emplacement processes are preserved in the final flow. This study focuses on structural mapping of the flow to highlight the interplay of cooling, crust formation and underlying slope in the development of rhyolitic lavas. The flow is made up of two prominent lobes, small (< 0.2 m) to large (> 0.2 m) scale folding and a channelled geometry. Foliations dip at 2-4° over the flatter topography close to the vent, and up to 30-50° over steeper mid-flow topography. Brittle faults, tension gashes and conjugate fractures are also evident across flow. Heterogeneous deformation is evident through increasing fold asymmetry from the vent due to downflow cooling and stagnation. A steeper underlying topography mid-flow led to development of a channelled morphology, and compression at topographic breaks resulted in fold superimposition in the channel. We propose an emplacement history that involved the evolution through five stages, each associated with the following flow regimes: (1) initial extrusion, crustal development and small scale folding; (2) extensional strain, stretching lineations and channel development over steeper topography; (3) compression at topographic break, autobrecciation, lobe development and medium scale folding; (4) progressive deformation with stagnation, large-scale folding and re-folding; and (5) brittle deformation following flow termination. The complex array of structural elements observed within the Rocche Rosse lava flow facilitates comparisons to be made with actively deforming rhyolitic lava flows at the Chilean volcanoes of Chaitén and Cordón Caulle, offering a fluid dynamic and structural framework within which to evaluate our data.
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Allroggen, Niklas
2017-04-01
The missing vision into the subsurface appears to be a major limiting factor for our hydrological process understanding and theory development. Today, hydrology-related sciences have collected tremendous evidence for soils acting as drainage network and retention stores simultaneously in structured and self-organising domains. However, our present observation technology relies mainly on point-scale sensors, which integrate over a volume of unknown structures and is blind for their distribution. Although heterogeneity is acknowledged at all scales, it is rarely seen as inherent system property. At small scales (soil moisture probe) and at large scales (neutron probe) our measurements leave quite some ambiguity. Consequently, spatially and temporally continuous measurement of soil water states is essential for advancing our understanding and development of subsurface process theories. We present results from several irrigation experiments accompanied by 2D and 3D time-lapse GPR for the development of a novel technique to visualise and quantify water dynamics in the subsurface. Through the comparison of TDR, tracer and gravimetric measurement of soil moisture it becomes apparent that all sensor-based techniques are capable to record temporal dynamics, but are challenged to precisely quantify the measurements and to extrapolate them in space. At the same time excavative methods are very limited in temporal and spatial resolution. The application of non-invasive 4D GPR measurements complements the existing techniques and reveals structural and temporal dynamics simultaneously. By consequently increasing the density of the GPR data recordings in time and space, we find means to process the data also in the time-dimension. This opens ways to quantitatively analyse soil water dynamics in complex settings.