Sample records for scale weather control

  1. Identifying the Threshold of Dominant Controls on Fire Spread in a Boreal Forest Landscape of Northeast China

    PubMed Central

    Liu, Zhihua; Yang, Jian; He, Hong S.

    2013-01-01

    The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the relative importance of these controls respond to changing spatial scales is poorly understood. We designed a “moving window” resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our “moving window” resampling technique. Although the threshold derived from this analytical method may rely heavily on the sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes. PMID:23383247

  2. Weathering and landscape evolution

    NASA Astrophysics Data System (ADS)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  3. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and long flow paths suggesting that the particular hydrologic setting of a landscape will be the underlying control on the chemical fluxes. As such, we reinterpret the large chemical fluxes that are observed in active mountain belts, like the Himalaya, to be primarily controlled by the long reactive flow paths created by the steep terrain coupled with high amounts of precipitation.

  4. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE PAGES

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  5. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Sachin; Rajaram, Harihar

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  6. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon Chorover, University of Arizona; Peggy O'€™Day, University of California, Merced; Karl Mueller, Penn State University

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of howmore » sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.« less

  7. Limestone weathering rates accelerated by micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Levenson, Y.

    2014-12-01

    The weathering rates of carbonate rocks is often thought to be controlled by chemical dissolution, although some studies have suggested that mechanical erosion could also play an important role. Quantifying the rates of the different processes has proved challenging due to the high degree of variability encountered in both field and lab settings. To determine the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Weathering rates in fine-grained micritic limestone blocks are up to 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these higher reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained rocks in many carbonate terrains.

  8. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features ranged from tens to a few microns with textures that remained relatively sharp and were crystallographically controlled. These results were comparable to that observed in the "naturally" weathered comparison/reference grains. Chemical analysis by EDS indicates these textures correlated with the relative loss of Mg and Fe cations by diffusional processes. In contrast the biotic results indicated changes in the etching patterns on the scale of hundreds of nm, which are neither sharp nor crystallographically controlled (nanoetching). Organisms, organic debris and/or extracellular polymeric substances (biofilm) were often in close proximity or direct contact with the nanoetching. While there are many poorly constrained variables in natural weathering experiments to contend with, such as the time scale, the chemistry of the fluids and degree of biologic participation, some preliminary observations can be made: (1) certain distinct surface textures appear correlated with the specific processes giving rise to these textures; (2) the process of diffusing cations can produce many similar styles of surface textural changes; and (3) the main difference between abiotic and biotically produced weathering is the scale (microns versus nanometers) and the style (crystallographically versus noncrystallographically controlled) of the textural features. Further investigation into nanosize scale surface textures should attempt to quantify both textures and chemical changes of the role of microorganisms in the weathering of silicates. Additional experiments addressing nanoscale textures of shock features for comparison with the current data set.

  9. Do GCM's predict the climate.... Or the low frequency weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Schertzer, D.; Varon, D.

    2012-04-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500 - 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT vary in power law manners ≈ Δt**H the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale (Δt). At longer scales Δt >τw (≈ 10 days) H changes sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime. In this regime, the spectrum is a relatively flat "plateau", it's variability is low, stable, corresponding to our usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, once again H>0, so that the variability increases with scale: the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, to define "climate states" as fluctuations at scale τc and then "climate change" as the fluctuations at longer periods (Δt>τc). We show that the intermediate low frequency weather regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched so that only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by stochastic cascade models of weather, but also by control runs (i.e. without climate forcing) of GCM based climate forecasting systems including those of the Institut Pierre Simon Laplace (Paris) and the Earth Forecasting System (Hamburg). In order for these systems to go beyond simply predicting low frequency weather i.e. in order for them to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. Using statistical scaling techniques we examine the scale dependence of fluctuations from forced and unforced GCM outputs, including from the ECHO-G and EFS simulations in the Millenium climate reconstruction project and compare this with data, multiproxies and paleo data. Our general conclusion is that the models systematically underestimate the multidecadal, multicentennial scale variability.

  10. Weathering of almandine garnet: influence of secondary minerals on the rate-determining step, and implications for regolith-scale Al mobilization

    Treesearch

    Jason R. Price; Debra S. Bryan-Ricketts; Diane Anderson; Michael A. Velbel

    2013-01-01

    Secondary surface layers form by replacement of almandine garnet during chemical weathering. This study tested the hypothesis that the kinetic role of almandine's weathering products, and the consequent relationships of primary-mineral surface texture and specific assemblages of secondary minerals, both vary with the solid-solution-controlled variations in Fe and...

  11. Quantifying Heterogeneities in Soil Cover and Weathering in the Bitterroot and Sapphire Mountains, Montana: Implications for Glacial Legacies and their Morphologic Control on Soil Formation

    NASA Astrophysics Data System (ADS)

    Benjaram, S. S.; Dixon, J. L.

    2017-12-01

    To what extent is chemical weathering governed by a landscape's topography? Quantifying chemical weathering in both steep rocky landscapes and soil-mantled landscapes requires describing heterogeneity in soil and rock cover at local and landscape scales. Two neighboring mountain ranges in the northern Rockies of western Montana, USA, provide an ideal natural laboratory in which to investigate the relationship between soil chemical weathering, persistence of soil cover, and topography. We focus our work in the previously glaciated Bitterroot Mountains, which consist of steep, rock-dominated hillslopes, and the neighboring unglaciated Sapphire Mountains, which display convex, soil-mantled hillslopes. Soil thickness measurements, soil and rock geochemistry, and digital terrain analysis reveal that soils in the rock-dominated Bitterroot Mountains are only slightly less weathered than those in the Sapphire Mountains. However, these differences are magnified when adjusted for rock fragments at a local scale and bedrock cover at a landscape scale, using our newly developed metric, the rock-adjusted chemical depletion fraction (RACDF) and rock-adjusted mass transfer coefficient (RA τ). The Bitterroots overall are 30% less weathered than the Sapphires despite higher mean annual precipitation in the former, with an average rock-adjusted CDF of 0.38 in the postglacial Bitterroots catchment and 0.61 in the nonglacial Sapphire catchment, suggesting that 38% of rock mass is lost in the conversion to soil in the Bitterroots, whereas 61% of rock mass is lost in the nonglaciated Sapphires. Because the previously glaciated Bitterroots are less weathered despite being wetter, we conclude that the glacial history of this landscape exerts more influence on soil chemical weathering than does modern climate. However, while previous studies have correlated weathering intensity with topographic parameters such as slope gradient, we find little topographic indication of specific controls on weathering in these complex systems.

  12. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE PAGES

    Winnick, Matthew J.; Maher, Kate

    2018-01-27

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  13. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Maher, Kate

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  14. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    NASA Astrophysics Data System (ADS)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.

  15. Fine Scale Modeling and Forecasts of Upper Atmospheric Turbulence for Operational Use

    DTIC Science & Technology

    2014-11-30

    Weather Center Digital Data Service (ADDS) fhttp://www.aviationweather.gov/adds, http://weather.aero/1 Graphical Turbulence Guidance product, GTG -2.5...analysis GTG - Graphical Turbulence Guidance HRMM - High Resolution Mesoscale/Microscale ICD - Interface Control Document IDE - Integrated Development...site (with GTG 2.5 data) http://www.aviationweather.gov/turbuience • ADDS Experimental site http://weather.aero/ • NCEP FNL data - http

  16. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improvedmore » molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.« less

  17. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, P CO2, and reaction time; (ii)more » improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.« less

  18. Analysis of the ability of large-scale reanalysis data to define Siberian fire danger in preparation for future fire prediction

    NASA Astrophysics Data System (ADS)

    Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.

  19. Lithological and textural controls on radar and diurnal thermal signatures of weathered volcanic deposits, Lunar Crater region, Nevada

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Rivard, Benoit

    1992-01-01

    Radar backscatter intensity as measured by calibrated synthetic aperture radar (SAR) systems is primarily controlled by three factors: local incidence angle, wavelength-scale roughness, and dielectric permittivity of surface materials. Radar observations may be of limited use for geological investigations of surface composition, unless the relationships between lithology and the above characteristics can be adequately understood. In arid terrains, such as the Southwest U.S., weathering signatures (e.g. soil development, fracturing, debris grain size and shape, and hill slope characteristics) are controlled to some extent by lithologic characteristics of the parent bedrock. These textural features of outcrops and their associated debris will affect radar backscatter to varying degrees, and the multiple-wavelength capability of the JPL Airborne SAR (AIRSAR) system allows sampling of textures at three distinct scales. Diurnal temperature excursions of geologic surfaces are controlled primarily by the thermal inertia of surface materials, which is a measure of the resistance of a material to a change in temperature. Other influences include albedo, surface slopes affecting insolation, local meteorological conditions and surface emissivity at the relevant thermal wavelengths. To first order, thermal inertia variations on arid terrain surfaces result from grain size distribution and porosity differences, at scales ranging from micrometers to tens of meters. Diurnal thermal emission observations, such as those made by the JPL Thermal Infrared Multispectral Scanner (TIMS) airborne instrument, are thus influenced by geometric surface characteristics at scales comparable to those controlling radar backscatter. A preliminary report on a project involving a combination of field, laboratory and remote sensing observations of weathered felsic-to basaltic volcanic rock units exposed in the southern part of the Lunar Crater Volcanic Field, in the Pancake Range of central Nevada is presented. Focus is on the relationship of radar backscatter cross sections at multiple wavelengths, apparent diurnal temperature excursions identified in multi-temporal TIMS images, surface geometries related to weathering style, and parent bedrock lithology.

  20. Biologically-Mediated Weathering of Minerals From Nanometre Scale to Environmental Systems

    NASA Astrophysics Data System (ADS)

    Brown, D. J.; Banwart, S. A.; Smits, M. M.; Leake, J. R.; Bonneville, S.; Benning, L. G.; Haward, S. J.; Ragnarsdottir, K.

    2007-12-01

    The Weathering Science Consortium is a multi-disciplinary project that aims to create a step change in understanding how biota control mineral weathering and soil formation (http://www.wun.ac.uk/wsc). Our hypothesis is that rates of biotic weathering are driven by the energy supply from plants to the organisms, controlling their biomass, surface area of contact with minerals and their capacity to interact chemically with minerals. Symbiotic fungal mycorrhiza of 90% of plant species are empowered with an available carbohydrate supply from plants that is unparalleled amongst soil microbes. They develop extensive mycelial networks that intimately contact minerals, which they weather aggressively. We hypothesise that mycorrhiza play a critical role through their focussing of photosynthate energy from plants into sub-surface weathering environments. Our work identifies how these fungal cells, and their secretions, interact with mineral surfaces and affect the rates of nutrient transfer from minerals to the organism. Investigating these living systems allows us to create new concepts and mathematical models that can describe biological weathering and be used in computer simulations of soil weathering dynamics. We are studying these biochemical interactions at 3 levels of observation: 1. At the molecular scale to understand interactions between living cells and minerals and to quantify the chemistry that breaks down the mineral structure; 2. At the soil grain scale to quantify the activity and spatial distribution of the fungi, roots and other organisms (e.g. bacteria) and their effects on the rates at which minerals are dissolved to release nutrients; 3. At soil profile scale to test models for the spatial distribution of active fungi and carbon energy and their seasonal variability and impact on mineral dissolution rates. Here we present early results from molecular and soil grain scale experiments. We have grown pure culture (Suillus bovinus, Paxillus involutus) mycorrhizal mycelial networks associated with pine trees in otherwise sterile (agar) and also non-sterile (peat) microcosms, which include mineral sections and powders of biotite, apatite and quartz. 14C labelling has been used to map C flux through the microcosms and to determine the transfer of photosynthate energy into the weathering arenas. We have used Vertical Scanning Interferometry (VSI) to assess volumetric alteration of mineral substrates in contact with fungi. Focused Ion Beam (FIB)- Transmission Electron Microscope (TEM) work provides evidence for increased mechanical forcing and possible alteration of biotite surfaces with greater fungi contact time. We also present real-time in situ observations of mineral-organic acid and mineral-exudate interactions using Atomic Force Microscopy (AFM).

  1. Extreme limestone weathering rates due to micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, Simon; Levenson, Yael

    2014-05-01

    Chemical dissolution is often assumed to control the weathering rates of carbonate rocks, although some studies have indicated that mechanical erosion could also play a significant role. Quantifying the rates of the different processes is challenging due to the high degree of variability encountered in both field and lab settings. To measure the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Surface retreat rates in fine-grained micritic limestone blocks are found to be as much as 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these elevated reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained carbonate rocks.

  2. Inferring silicate weathering rates over recent timescales (less than 100 years) in crystalline aquifers by calibrating lumped parameters models with atmospheric tracers

    NASA Astrophysics Data System (ADS)

    Marçais, J.; Labasque, T.; Gauvain, A.; De Dreuzy, J. R.; Aquilina, L.; Abbott, B. W.

    2016-12-01

    Silicate minerals (e.g. feldspars, micas and olivines) are ubiquitous in crystalline rocks such as granite and schist. Groundwater dissolves some of this silica via weathering processes as it passes through the catchment, increasing silica concentration with residence time. However, quantifying weathering rates is complicated by the fact that groundwater residence time distributions (RTD) are typically unknown. Batch experiments can characterize weathering reaction type and provide estimates of dissolution rates, but weathering timescales in the field are far greater than what can be simulated in the laboratory (White and Brantley, 2003). Here we implement a novel approach coupling chlorofluorocarbons (CFC) and dissolved silica concentrations to infer timescales of silica weathering processes at the watershed scale. We investigated 6 crystalline aquifers in Brittany with contrasting lithology. We quantified silicate weathering at the watershed scale based on individual measurements from multiple wells, assuming first-order reaction kinetics. For each well, we used a lumped parameter model to determined RTD with inverse gaussian distributions, which allow two degrees of freedom. Production rate and initial silicate concentration were then optimized at the watershed scale with the calibrated model. Weathering rates were relatively similar among watersheds, varying for most sites from 0.16 to 0.42 mg/L/yr (SD = 0.09 mg/L/yr), and estimates of weathering rates were not significantly influenced by single well measurements. This work demonstrates how atmospheric tracers can be used with dissolved silica concentration to inform both RTD and first order kinetics of weathering reactions. Together these results suggest that dissolved silica could be a robust and cheap groundwater age proxy for recent timescales (less than 100 years). ------------------ White, Art F, and Susan L Brantley. 2003. « The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? » Chemical Geology, Controls on Chemical Weathering, 202 (3-4): 479-506. doi:10.1016/j.chemgeo.2003.03.001.

  3. Do GCM's Predict the Climate.... Or the Low Frequency Weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Varon, D.; Schertzer, D. J.

    2011-12-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500- 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT ≈ ΔtH the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale. At longer scales Δt >τw (≈ 10 days) they change sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime the spectrum is a relatively flat "plateau", it's variability is that of the usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, again H>0, the variability again increases with scale. This is the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, "climate states", as fluctuations at scale τc and "climate change" as the fluctuations at longer periods >τc). We show that the intermediate regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched, only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by weather cascade models, but also by control runs (i.e. without climate forcing) of GCM's (including IPSL and ECHAM GCM's). In order for GCM's to go beyond simply predicting this low frequency weather so as to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. We examine this using wavelet analyses of forced and unforced GCM outputs, including the ECHO-G simulation used in the Millenium project. For example, we find that climate scenarios with large CO2 increases do give rise to a climate regime but that Hc>1 i.e. much larger than that of natural variability which for temperatures has Hc≈0.4. In comparison, the (largely volcanic) forcing of the ECHO-G Millenium simulation is fairly realistic (Hc≈0.4), although it is not clear that this mechanism can explain the even lower frequency variability found in the paleotemperature series, nor is it clear that this is compatible with low frequency solar or orbital forcings.

  4. Meteorological Controls on Biomass Burning During Santa Ana Events in Southern California

    NASA Technical Reports Server (NTRS)

    Veraverbeke, Sander; Capps, Scott; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Hall, Alex

    2013-01-01

    Fires occurring during Santa Ana (SA) events in southern California are driven by extreme fire weather characterized by high temperatures, low humidities, and high wind speeds. We studied the controls on burned area and carbon emissions during two intensive SA burning periods in 2003 and 2007. We therefore used remote sensing data in parallel with fire weather simulations of the Weather and Regional Forecast model. Total carbon emissions were approximately 1800 gigagrams in 2003 and 900 gigagrams in 2007, based on a daily burned area and a fire emission model that accounted for spatial variability in fuel loads and combustion completeness. On a regional scale, relatively strong positive correlations were found between the daily Fosberg fire weather index and burned area/emissions (probability is less than 0.01). Our analysis provides a quantitative assessment of relationships between fire activity and weather during severe SA fires in southern California.

  5. Lithologic controls on AIRSAR signatures of bedrock and alluvium, at Lunar Crater, Nevada

    NASA Technical Reports Server (NTRS)

    Rivard, Benoit; Diorio, Marc; Budkewitsch, Paul

    1995-01-01

    Radar backscatter intensity as measured by calibrated synthetic aperture radar (SAR) systems is primarily controlled by three factors: local incidence angle, wavelength-scale roughness, and dielectric permittivity of surface materials. In order to make adequate use of radar observations for geological investigations of surface type, the relationships between lithology and the above characteristics must be adequately understood. In arid terrains weathering signatures (e.g. fracturing, debris grain size and shape, slope characteristics) are controlled to some extent by lithologic characteristics of the parent bedrock. These textural features of outcrops and their associated debris control radar backscatter to varying degrees. The quad-polarization JPL AIRSAR system allows sampling of textures at three distinct wavelength scales: C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm). This paper presents a discussion of AIRSAR data using recent field observations of weathered felsic and basaltic volcanic rock units exposed in the southern part of the Lunar Crater Volcanic Field, in the Pancake Range of central Nevada. The focus is on the relationship of radar backscatter at multiple wavelengths to weathering style and parent bedrock lithology.

  6. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: New insight from U-series isotopes in weathering rinds

    NASA Astrophysics Data System (ADS)

    Engel, Jacqueline M.; Ma, Lin; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-12-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite. Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale. At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.

  7. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-10-20

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  8. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  9. Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand

    NASA Astrophysics Data System (ADS)

    Dixon, Jean L.; Chadwick, Oliver A.; Vitousek, Peter M.

    2016-09-01

    Chemical weathering in soils dissolves and alters minerals, mobilizes metals, liberates nutrients to terrestrial and aquatic ecosystems, and may modulate Earth's climate over geologic time scales. Climate-weathering relationships are often considered fundamental controls on the evolution of Earth's surface and biogeochemical cycles. However, surprisingly little consensus has emerged on if and how climate controls chemical weathering, and models and data from published literature often give contrasting correlations and predictions for how weathering rates and climate variables such as temperature or moisture are related. Here we combine insights gained from the different approaches, methods, and theory of the soil science, biogeochemistry, and geomorphology communities to tackle the fundamental question of how rainfall influences soil chemical properties. We explore climate-driven variations in weathering and soil development in young, postglacial soils of New Zealand, measuring soil elemental geochemistry along a large precipitation gradient (400-4700 mm/yr) across the Waitaki basin on Te Waipounamu, the South Island. Our data show a strong climate imprint on chemical weathering in these young soils. This climate control is evidenced by rapid nonlinear changes along the gradient in total and exchangeable cations in soils and in the increased movement and redistribution of metals with rainfall. The nonlinear behavior provides insight into why climate-weathering relationships may be elusive in some landscapes. These weathering thresholds also have significant implications for how climate may influence landscape evolution and the release of rock-derived nutrients to ecosystems, as landscapes that transition to wetter climates across this threshold may weather and deplete rapidly.

  10. Mineral transformation controls speciation and pore-fluid transmission of contaminants in waste-weathered Hanford sediments

    NASA Astrophysics Data System (ADS)

    Perdrial, Nicolas; Thompson, Aaron; O'Day, Peggy A.; Steefel, Carl I.; Chorover, Jon

    2014-09-01

    Portions of the Hanford Site (WA, USA) vadose zone were subjected to weathering by caustic solutions during documented releases of high level radioactive waste (containing Sr, Cs and I) from leaking underground storage tanks. Previous studies have shown that waste-sediment interactions can promote variable incorporation of contaminants into neo-formed mineral products (including feldspathoids and zeolites), but processes regulating the subsequent contaminant release from these phases into infiltrating background pore waters remain poorly known. In this paper, reactive transport experiments were conducted with Hanford sediments previously weathered for one year in simulated hyper-alkaline waste solutions containing high or low 88Sr, 127I, and 133Cs concentrations, with or without CO2(aq). These waste-weathered sediments were leached in flow-through column experiments with simulated background pore water (characteristic of meteoric recharge) to measure contaminant release from solids formed during waste-sediment interaction. Contaminant sorption-desorption kinetics and mineral transformation reactions were both monitored using continuous-flow and wet-dry cycling regimes for ca. 300 pore volumes. Less than 20% of contaminant 133Cs and 88Sr mass and less than 40% 127I mass were released over the course of the experiment. To elucidate molecular processes limiting contaminant release, reacted sediments were studied with micro- (TEM and XRD) and molecular- (Sr K-edge EXAFS) scale methods. Contaminant dynamics in column experiments were principally controlled by rapid dissolution of labile solids and competitive exchange reactions. In initially feldspathoidic systems, time-dependent changes in the local zeolitic bonding environment observed with X-ray diffraction and EXAFS are responsible for limiting contaminant release. Linear combination fits and shell-by-shell analysis of Sr K-edge EXAFS data revealed modification in Sr-Si/Al distances within the zeolite cage. Wet-dry cycling did not affect significantly molecular-scale transformations relative to continuous-flow controls. Results indicate that contaminants bound to the solid phase in distinct micro- and molecular-scale coordinative environments can generate similar macro-scale release behaviors, highlighting the need for multi-scale interrogations to constrain mechanisms of reactive transport. Data also indicate that weathering-induced change in ion exchange selectivity coefficients should be incorporated in simulations of contaminant release from caustic high-level radioactive waste impacted sediments.

  11. Constraining the role of early land plants in Palaeozoic weathering and global cooling.

    PubMed

    Quirk, Joe; Leake, Jonathan R; Johnson, David A; Taylor, Lyla L; Saccone, Loredana; Beerling, David J

    2015-08-22

    How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land plant fossils, amplified calcium weathering from basalt grains threefold to sevenfold, relative to plant-free controls. Phosphate weathering by mycorrhizal liverworts was amplified 9-13-fold over plant-free controls, compared with fivefold to sevenfold amplification by liverworts lacking fungal symbionts. Etching and trenching of phyllosilicate minerals increased with AM fungal network size and atmospheric CO2 concentration. Integration of grain-scale weathering rates over the depths of liverwort rhizoids and mycelia (0.1 m), or tree roots and mycelia (0.75 m), indicate early land plants with shallow anchorage systems were probably at least 10-fold less effective at enhancing the total weathering flux than later-evolving trees. This work challenges the suggestion that early land plants significantly enhanced total weathering and land-to-ocean fluxes of calcium and phosphorus, which have been proposed as a trigger for transient dramatic atmospheric CO2 sequestration and glaciations in the Ordovician. © 2015 The Authors.

  12. Linking the climatic and geochemical controls on global soil carbon cycling

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; Van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal

    2015-04-01

    Climatic and geochemical parameters are regarded as the primary controls for soil organic carbon (SOC) storage and turnover. However, due to the difference in scale between climate and geochemical-related soil research, the interaction of these key factors for SOC dynamics have rarely been assessed. Across a large geochemical and climatic transect in similar biomes in Chile and the Antarctic Peninsula we show how abiotic geochemical soil features describing soil mineralogy and weathering pose a direct control on SOC stocks, concentration and turnover and are central to explaining soil C dynamics at larger scales. Precipitation and temperature had an only indirect control by regulating geochemistry. Soils with high SOC content have low specific potential CO2 respiration rates, but a large fraction of SOC that is stabilized via organo-mineral interactions. The opposite was observed for soils with low SOC content. The observed differences for topsoil SOC stocks along this transect of similar biomes but differing geo-climatic site conditions are of the same magnitude as differences observed for topsoil SOC stocks across all major global biomes. Using precipitation and a set of abiotic geochemical parameters describing soil mineralogy and weathering status led to predictions of high accuracy (R2 0.53-0.94) for different C response variables. Partial correlation analyses revealed that the strength of the correlation between climatic predictors and SOC response variables decreased by 51 - 83% when controlling for geochemical predictors. In contrast, controlling for climatic variables did not result in a strong decrease in the strength of the correlations of between most geochemical variables and SOC response variables. In summary, geochemical parameters describing soil mineralogy and weathering were found to be essential for accurate predictions of SOC stocks and potential CO2 respiration, while climatic factors were of minor importance as a direct control, but are important through governing soil weathering and geochemistry. In conclusion, we pledge for a stronger implementation of geochemical soil properties to predict SOC stocks on a global scale. Understanding the effects of climate (temperature and precipitation) change on SOC dynamics also requires good understanding of the relationship between climate and soil geochemistry.

  13. Introducing GFWED: The Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; hide

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  14. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    USGS Publications Warehouse

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale.At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.

  15. The Weathering of Antarctic Meteorites: Climatic Controls on Weathering Rates and Implications for Meteorite Accumulation

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Akridge, J. M. C.; Sears, D. W. G.; Bland, P. A.

    1995-01-01

    Weathering of meteorites includes a variety of chemical and mineralogical changes, including conversion of metal to iron oxides, or rust. Other changes include the devitrification of glass, especially in fusion crust. On a longer time scale, major minerals such as olivine, pyroxene, and feldspar are partially or wholly converted to various phyllosilicates. The degree of weathering of meteorite finds is often noted using a qualitative system based on visual inspection of hand specimens. Several quantitative weathering classification systems have been proposed or are currently under development. Wlotzka has proposed a classification system based on mineralogical changes observed in polished sections and Mossbauer properties of meteorite powders have also been used. In the current paper, we discuss induced thermoluminescence (TL) as an indicator of degree of weathering of individual meteorites. The quantitative measures of weathering, including induced TL, suffer from one major flaw, namely that their results only apply to small portions of the meteorite.

  16. Modeling the influence of organic acids on soil weathering

    NASA Astrophysics Data System (ADS)

    Lawrence, Corey; Harden, Jennifer; Maher, Kate

    2014-08-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  17. Modeling the influence of organic acids on soil weathering

    USGS Publications Warehouse

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  18. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  19. Critical zone architecture and processes: a geophysical perspective

    NASA Astrophysics Data System (ADS)

    Holbrook, W. S.

    2016-12-01

    The "critical zone (CZ)," Earth's near-surface layer that reaches from treetop to bedrock, sustains terrestrial life by storing water and producing nutrients. Despite is central importance, however, the CZ remains poorly understood, due in part to the complexity of interacting biogeochemical and physical processes that take place there, and in part due to the difficulty of measuring CZ properties and processes at depth. Major outstanding questions include: What is the architecture of the CZ? How does that architecture vary across scales and across gradients in climate, lithology, topography, biology and regional states of stress? What processes control the architecture of the CZ? At what depth does weathering initiate, and what controls the rates at which it proceeds? Based on recent geophysical campaigns at seven Critical Zone Observatory (CZO) sites and several other locations, a geophysical perspective on CZ architecture and processes is emerging. CZ architecture can be usefully divided into four layers, each of which has distinct geophysical properties: soil, saprolite, weathered bedrock and protolith. The distribution of those layers across landscapes varies depending on protolith composition and internal structure, topography, climate (P/T) and the regional state of stress. Combined observations from deep CZ drilling, geophysics and geochemistry demonstrate that chemical weathering initiates deep in the CZ, in concert with mechanical weathering (fracturing), as chemical weathering appears concentrated along fractures in borehole walls. At the Calhoun CZO, the plagioclase weathering front occurs at nearly 40 m depth, at the base of a 25-m-thick layer of weathered bedrock. The principal boundary in porosity, however, occurs at the saprolite/weathered bedrock boundary: porosity decreases over an order of magnitude, from 50% to 5% over an 8-m-thick zone at the base of saprolite. Porosity in weathered bedrock is between 2-5%. Future progress will depend on (1) more tightly linked geophysical, geochemical, hydrological and drilling studies, (2) 3D and 4D studies of deep CZ structure, and (3) measurements at multiple scales in the CZ, from pores to plots to hillslopes to catchments.

  20. Development of a Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; hide

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2/3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective- Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.

  1. Evaluating impacts of different longitudinal driver assistance systems on reducing multi-vehicle rear-end crashes during small-scale inclement weather.

    PubMed

    Li, Ye; Xing, Lu; Wang, Wei; Wang, Hao; Dong, Changyin; Liu, Shanwen

    2017-10-01

    Multi-vehicle rear-end (MVRE) crashes during small-scale inclement (SSI) weather cause high fatality rates on freeways, which cannot be solved by traditional speed limit strategies. This study aimed to reduce MVRE crash risks during SSI weather using different longitudinal driver assistance systems (LDAS). The impact factors on MVRE crashes during SSI weather were firstly analyzed. Then, four LDAS, including Forward collision warning (FCW), Autonomous emergency braking (AEB), Adaptive cruise control (ACC) and Cooperative ACC (CACC), were modeled based on a unified platform, the Intelligent Driver Model (IDM). Simulation experiments were designed and a large number of simulations were then conducted to evaluate safety effects of different LDAS. Results indicate that the FCW and ACC system have poor performance on reducing MVRE crashes during SSI weather. The slight improvement of sight distance of FCW and the limitation of perception-reaction time of ACC lead the failure of avoiding MVRE crashes in most scenarios. The AEB system has the better effect due to automatic perception and reaction, as well as performing the full brake when encountering SSI weather. The CACC system has the best performance because wireless communication provides a larger sight distance and a shorter time delay at the sub-second level. Sensitivity analyses also indicated that the larger number of vehicles and speed changes after encountering SSI weather have negative impacts on safety performances. Results of this study provide useful information for accident prevention during SSI weather. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Power laws reveal phase transitions in landscape controls of fire regimes

    Treesearch

    Donald McKenzie; Maureen C. Kennedy

    2012-01-01

    Understanding the environmental controls on historical wildfires, and how they changed across spatial scales, is difficult because there are no surviving explicit records of either weather or vegetation (fuels). Here we show how power laws associated with fire-event time series arise in limited domains of parameters that represent critical transitions in the controls...

  3. basement reservoir geometry and properties

    NASA Astrophysics Data System (ADS)

    Walter, bastien; Geraud, yves; Diraison, marc

    2017-04-01

    Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre-rift exhumation phases. Macroscopic fracture density is highly dependent on the petrographic nature of the basement, with values up to 80 frac./m in fault damage zones of crystalline rocks. Dense micro-cracks associated to major fault structures can develop porosity and permeability up to 10% and 0.1 D. In some weathered horizons, alteration can develop matrix porosity up to 40% and the permeability reaches up to 1D. This study highlights therefore that basement reservoir properties are the result of the long geodynamic evolution of such formations, and the different fault zone compartments or weathering horizons have to be considered separately for reservoir understanding.

  4. Toward Robust Climate Baselining: Objective Assessment of Climate Change Using Widely Distributed Miniaturized Sensors for Accurate World-Wide Geophysical Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teller, E; Leith, C; Canavan, G

    A gap-free, world-wide, ocean-, atmosphere-, and land surface-spanning geophysical data-set of three decades time-duration containing the full set of geophysical parameters characterizing global weather is the scientific perquisite for defining the climate; the generally-accepted definition in the meteorological community is that climate is the 30-year running-average of weather. Until such a tridecadal climate base line exists, climate change discussions inevitably will have a semi-speculative, vs. a purely scientific, character, as the baseline against which changes are referenced will be at least somewhat uncertain. The contemporary technology base provides ways-and-means for commencing the development of such a meteorological measurement-intensive climate baseline, moreover with a program budget far less than the {approx}more » $2.5 B/year which the US. currently spends on ''global change'' studies. In particular, the recent advent of satellite-based global telephony enables real-time control of, and data-return from, instrument packages of very modest scale, and Silicon Revolution-based sensor, data-processing and -storage advances permit 'intelligent' data-gathering payloads to be created with 10 gram-scale mass budgets. A geophysical measurement system implemented in such modern technology is a populous constellation 03 long-lived, highly-miniaturized robotic weather stations deployed throughout the weather-generating portions of the Earths atmosphere, throughout its oceans and across its land surfaces. Leveraging the technological advances of the OS, the filly-developed atmospheric weather station of this system has a projected weight of the order of 1 ounce, and contains a satellite telephone, a GPS receiver, a full set of atmospheric sensing instruments and a control computer - and has an operational life of the order of 1 year and a mass-production cost of the order of $$20. Such stations are effectively ''intra-atmospheric satellites'' but likely have serial-production unit costs only about twenty-billionths that of a contemporary NASA global change satellite, whose entirely-remote sensing capabilities they complement with entirely-local sensing. It's thus feasible to deploy millions of them, and thereby to intensively monitor all aspects of the Earths weather. Analogs of these atmospheric weather stations will be employed to provide comparable-quality reporting of oceanic and land-surface geophysical parameters affecting weather. This definitive climate baselining system could be in initial-prototype operation on a one-year time-scale, and in intermediate-scale, proof-of-principle operation within three years, at a total cost of {approx}$$95M. Steady-state operating costs are estimated to be {approx} $$75M/year, or {approx}3% of the current US. ''global change'' program-cost. Its data-return would be of great value very quickly as simply the best weather information, and within a few years as the definitive climatic variability-reporting system. It would become the generator of a definitive climate baseline at a total present-value cost of {approx}$$0.9 B.« less

  5. Investigating the mechanisms of shale porosity development to understand hydrologic controls on hillslope scale weathering in a comparison across CZOs

    NASA Astrophysics Data System (ADS)

    Gu, X.; Rempe, D.; Brantley, S. L.

    2016-12-01

    The spatial distribution of weathered rock across actively eroding landscapes strongly influences how water and solutes are routed throughout the landscape. To understand the controls on the evolution of weathering profiles that underlie hilly and mountainous regions, we investigated the porosity formation and chemical weathering of shale (Coastal Belt of the Franciscan Formation) samples from four boreholes at Eel River Critical Zone Observatory (ERCZO) in Northern California. We further compared the characteristics of the shale at ERCZO to the well studied Rose Hill shale at Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania. These two sites have similar mineralogical composition, but are located in vastly different climate and tectonic settings. In particular, the erosion rate at ERCZO (0.2-0.4 mm/yr) is much faster than at SSHCZO (0.015 mm/yr), and the average annual precipitation at ERCZO is higher (1.7 m/yr vs. 1 m/yr at SSHCZO). However, neutron scattering experiments show nearly identical bedrock porosities (3.1-4.6%) of parent rock. Analysis of the chemical and mineralogical compositions of samples throughout the weathering profile reveal that, at both sites, chemical weathering reactions occur at similar depths despite large differences in erosion rate: 1) carbonate and pyrite deplete sharply near the water table. 2) Chlorite oxidation also initiates near water table but shows a wider reaction front. 3) Illite dissolution occurs near the land surface. In both settings, the interface between weathered and unweathered rock roughly coincides with the water table and the porosity and water-accessibility increase toward the land surface. However, at ERCZO, the porosity and the density of micro-fractures are higher in the weathered zone than observed at SSHCZO. It is possible that both sites are moving toward a balance between rates of erosion and weathering advance, and that higher density of microfractures at the rapidly eroding ERCZO promotes faster water infiltration and faster weathering advance relative to the more slowly eroding SSHCZO. Further investigation of the origin and role of these microfractures is needed to understand the interplay between climate, erosion, and weathering that controls hillslope weathering profiles.

  6. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  8. Tailored high-resolution numerical weather forecasts for energy efficient predictive building control

    NASA Astrophysics Data System (ADS)

    Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.

    2010-09-01

    The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the other hand, buildings are affected by particularly local weather conditions at the building site. To overcome this discrepancy, we make use of local measurements to statistically adapt the COSMO-7 model output to the meteorological conditions at the building. For this, we have developed a general correction algorithm that exploits systematic properties of the COSMO-7 prediction error and explicitly estimates the degree of temporal autocorrelation using online recursive estimation. The resulting corrected predictions are improved especially for the first few hours being the most crucial for the predictive controller and, ultimately for the reduction of primary energy consumption using predictive control. The use of numerical weather forecasts in predictive building automation is one example in a wide field of weather dependent advanced energy saving technologies. Our work particularly highlights the need for the development of specifically tailored weather forecast products by (statistical) postprocessing in order to meet the requirements of specific applications.

  9. Public Health System Response to Extreme Weather Events.

    PubMed

    Hunter, Mark D; Hunter, Jennifer C; Yang, Jane E; Crawley, Adam W; Aragón, Tomás J

    2016-01-01

    Extreme weather events, unpredictable and often far-reaching, constitute a persistent challenge for public health preparedness. The goal of this research is to inform public health systems improvement through examination of extreme weather events, comparing across cases to identify recurring patterns in event and response characteristics. Structured telephone-based interviews were conducted with representatives from health departments to assess characteristics of recent extreme weather events and agencies' responses. Response activities were assessed using the Centers for Disease Control and Prevention Public Health Emergency Preparedness Capabilities framework. Challenges that are typical of this response environment are reported. Forty-five local health departments in 20 US states. Respondents described public health system responses to 45 events involving tornadoes, flooding, wildfires, winter weather, hurricanes, and other storms. Events of similar scale were infrequent for a majority (62%) of the communities involved; disruption to critical infrastructure was universal. Public Health Emergency Preparedness Capabilities considered most essential involved environmental health investigations, mass care and sheltering, surveillance and epidemiology, information sharing, and public information and warning. Unanticipated response activities or operational constraints were common. We characterize extreme weather events as a "quadruple threat" because (1) direct threats to population health are accompanied by damage to public health protective and community infrastructure, (2) event characteristics often impose novel and pervasive burdens on communities, (3) responses rely on critical infrastructures whose failure both creates new burdens and diminishes response capacity, and (4) their infrequency and scale further compromise response capacity. Given the challenges associated with extreme weather events, we suggest opportunities for organizational learning and preparedness improvements.

  10. Introducing the Global Fire WEather Database (GFWED)

    NASA Astrophysics Data System (ADS)

    Field, R. D.

    2015-12-01

    The Canadian Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations beginning in 1980 called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded datasets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC=1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously-identified in MERRA's precipitation and reinforce the need to consider alternative sources of precipitation data. GFWED is being used by researchers around the world for analyzing historical relationships between fire weather and fire activity at large scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models. These applications will be discussed. More information on GFWED can be found at http://data.giss.nasa.gov/impacts/gfwed/

  11. The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems

    DTIC Science & Technology

    1999-09-30

    The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems Dr. Melvyn A. Shapiro NOAA/Environmental Technology Laboratory...formulation, and numerical prediction of the life cycles of synoptic-scale and mesoscale extratropical weather systems, including the influence of planetary...scale inter-annual and intra-seasonal variability on their evolution. These weather systems include: extratropical oceanic and land-falling cyclones

  12. Carbon dioxide efficiency of terrestrial enhanced weathering.

    PubMed

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  13. Coupling chemical weathering with soil production across soil-mantled landscapes

    USGS Publications Warehouse

    Burke, B.C.; Heimsath, A.M.; White, A.F.

    2007-01-01

    Soil-covered upland landscapes constitute a critical part of the habitable world. Our understanding of how they evolve as a function of different climatic, tectonic and geological regimes is important across a wide range of disciplines and depends, in part, on understanding the links between chemical and physical weathering processes. Extensive previous work has shown that soil production rates decrease with increasing soil column thickness, but chemical weathering rates were not measured. Here we examine a granitic, soil-mantled hillslope at Point Reyes, California, where soil production rates were determined using in situ produced cosmogenic nuclides (10Be and 26Al), and we quantify the extent as well as the rates of chemical weathering of the saprolite from beneath soil from across the landscape. We collected saprolite samples from the base of soil pits and analysed them for abrasion pH as well as for major and trace elements by X-ray fluorescence spectroscopy, and for clay mineralogy by X-ray diffraction spectroscopy. Our results show for the first time that chemical weathering rates decrease with increasing soil thickness and account for 13 to 51 per cent of total denudation. We also show that spatial variation in chemical weathering appears to be topographically controlled: weathering rate decreases with slope across the divergent ridge and increases with upslope contributing area in the convergent swale. Furthermore, to determine the best measure for the extent of saprolite weathering, we compared four different chemical weathering indices - the Vogt ratio, the chemical index of alteration (CIA), Parker's index, and the silicon-aluminium ratio - with saprolite pH. Measurements of the CIA were the most closely correlated with saprolite pH, showing that weathering intensity decreases linearly with an increase in saprolite pH from 4.7 to almost 7. Data presented here are among the first to couple directly rates of soil production and chemical weathering with how topography is likely to control weathering at a hillslope scale. Copyright ?? 2006 John Wiley & Sons, Ltd.

  14. Rocks and Rain: orographic precipitation and the form of mountain ranges

    NASA Astrophysics Data System (ADS)

    Roe, G. H.; Anders, A. M.; Durran, D. R.; Montgomery, D. R.; Hallet, B.

    2005-12-01

    In mountainous landscapes patterns of erosion reflect patterns of precipitation that are, in turn, controlled by the orography. Ultimately therefore, the feedbacks between orography and the climate it creates are responsible for the sculpting of mountain ranges. Key questions concerning these interactions are: 1) how robust are patterns of precipitation on geologic time scales? and 2) how do those patterns affect landscape form? Since climate is by definition the statistics of weather, there is tremendous information to be gleaned from how patterns of precipitation vary between different weather events. However up to now sparse measurements and computational limitations have hampered our knowledge of such variations. For the Olympics in Washington State, a characteristic midlatitude mountain range, we report results from a high-resolution, state-of-the-art numerical weather prediction model and a dense network of precipitation gauges. Down to scales around 10 km, the patterns of precipitation are remarkably robust both storm-by-storm and year-to-year, lending confidence that they are indeed persistent on the relevant time scales. Secondly, the consequences of the coupled interactions are presented using a landscape evolution model coupled with a simple model of orographic precipitation that is able to substantially reproduce the observed precipitation patterns.

  15. Scaling in nature: From DNA through heartbeats to weather

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Buldyrev, S. V.; Bunde, A.; Goldberger, A. L.; Ivanov, P. Ch.; Peng, C.-K.; Stanley, H. E.

    1999-12-01

    The purpose of this talk is to describe some recent progress in applying scaling concepts to various systems in nature. We review several systems characterized by scaling laws such as DNA sequences, heartbeat rates and weather variations. We discuss the finding that the exponent α quantifying the scaling in DNA in smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the scaling exponent α is smaller during sleep periods compared to wake periods. We also discuss the recent findings that suggest a universal scaling exponent characterizing the weather fluctuations.

  16. Scaling in nature: from DNA through heartbeats to weather

    NASA Technical Reports Server (NTRS)

    Havlin, S.; Buldyrev, S. V.; Bunde, A.; Goldberger, A. L.; Peng, C. K.; Stanley, H. E.

    1999-01-01

    The purpose of this report is to describe some recent progress in applying scaling concepts to various systems in nature. We review several systems characterized by scaling laws such as DNA sequences, heartbeat rates and weather variations. We discuss the finding that the exponent alpha quantifying the scaling in DNA in smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the scaling exponent alpha is smaller during sleep periods compared to wake periods. We also discuss the recent findings that suggest a universal scaling exponent characterizing the weather fluctuations.

  17. Propagation of hydroclimatic variability through the critical zone

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Calabrese, S.; Parolari, A.

    2016-12-01

    The interaction between soil moisture dynamics and mineral-weathering reactions (e.g., ion exchange, precipitation-dissolution) affects the availability of nutrients to plants, composition of soils, soil acidification, as well as CO2 sequestration. Across the critical zone (CZ), this interaction is responsible for propagating hydroclimatic fluctuations to deeper soil layers, controlling weathering rates via leaching events which intermittently alter the alkalinity levels. In this contribution, we analyze these dynamics using a stochastic modeling approach based on spatially lumped description of soil hydrology and chemical weathering reactions forced by multi-scale temporal hydrologic variability. We quantify the role of soil moisture dynamics in filtering the rainfall fluctuations through its impacts on soil water chemistry, described by a system of ordinary differential equations (and algebraic equations, for the equilibrium reactions), driving the evolution of alkalinity, pH, the chemical species of the soil solution, and the mineral-weathering rate. A probabilistic description of the evolution of the critical zone is thus obtained, allowing us to describe the CZ response to long-term climate fluctuations, ecosystem and land-use conditions, in terms of key variables groups. The model is applied to the weathering rate of albite in the Calhoun CZ observatory and then extended to explore similarities and differences across other CZs. Typical time scales of response and degrees of sensitivities of CZ to hydroclimatic fluctuations and human forcing are also explored.

  18. A Generalized Simple Formulation of Convective Adjustment Timescale for Cumulus Convection Parameterizations

    EPA Science Inventory

    Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a pres...

  19. Investigations On Limestone Weathering Of El-Tuba Minaret El Mehalla, Egypt: A Case Study.

    NASA Astrophysics Data System (ADS)

    El-Gohary; A, M.

    The weathering phenomena that have affected El-TUBA Minaret, one of the most important Islamic stone minarets in middle delta in Egypt; that has suffered from several factors of deterioration due to weathering phenomenon. The present investigations concern the weathering factors that may have affected the minaret via the following methods and techniques: a) Contact-free methods used to study the chemical and mineralogical composition of building materials before and after weathering effects such as SEM-EDX and XRD, b) Non-destructive methods to find out percentage of range of decay which has affected these materials as well as the deteriorating roles of the surrounding environment. This method has been used to make an anatomical scheme of these features especially to specific deteriorated parts by GIS and other digital imaging techniques. All results confirm that the degradation factors affecting the minaret building materials are essentially attributed to direct effects of weathering phenomena. These weathering phenomena arise from physical and chemical mechanisms which have lead to many deterioration forms on the following two scales: a) Macro scale of weathering phenomena (e.g. structural damages, crakes, loss of plumb and walls bulging), b) Micro scale of weathering phenomena (e.g. hydrated salts, bursting, flaking, coloration, scaling, skinning, exfoliation and soiling). Discussion on the management and rehabilitation of this monument is made, since it is one of the religious shrines in Egypt.

  20. Measuring U-series Disequilibrium in Weathering Rinds to Study the Influence of Environmental Factors to Weathering Rates in Tropical Basse-Terre Island (French Guadeloupe)

    NASA Astrophysics Data System (ADS)

    Guo, J.; Ma, L.; Sak, P. B.; Gaillardet, J.; Chabaux, F. J.; Brantley, S. L.

    2015-12-01

    Chemical weathering is a critical process to global CO2 consumption, river/ocean chemistry, and nutrient import to biosphere. Weathering rinds experience minimal physical erosion and provide a well-constrained system to study the chemical weathering process. Here, we applied U-series disequilibrium dating method to study weathering advance rates on the wet side of Basse-Terre Island, French Guadeloupe, aiming to understand the role of the precipitation in controlling weathering rates and elucidate the behavior and immobilization mechanisms of U-series isotopes during rind formation. Six weathering clasts from 5 watersheds with mean annual precipitation varying from 2000 to 3000 mm/yr were measured for U-series isotope ratios and major element compositions on linear core-to-rind transects. One sample experienced complete core-to-rind transformation, while the rest clasts contain both rinds and unweathered cores. Our results show that the unweathered cores are under U-series secular equilibrium, while all the rind materials show significant U-series disequilibrium. For most rinds, linear core-to-rind increases of (230Th/232Th) activity ratios suggest a simple continuous U addition history. However, (234U/238U) and (238U/232Th) trends in several clasts show evidences of remobilization of Uranium besides the U addition, complicating the use of U-series dating method. The similarity between U/Th ratios and major elements trends like Fe, Al, P in some transects and the ongoing leaching experiments suggest that redox and organic colloids could control the mobilization of U-series isotopes in the rinds. Rind formation ages and weathering advance rate (0.07-0.29mm/kyr) were calculated for those rinds with a simple U-addition history. Our preliminary results show that local precipitation gradient significantly influenced the weathering advance rate, revealing the potential of estimating weathering advance rates at a large spatial scale using the U-series dating method.

  1. Mountain glaciation drives rapid oxidation of rock-bound organic carbon

    PubMed Central

    Horan, Kate; Hilton, Robert G.; Selby, David; Ottley, Chris J.; Gröcke, Darren R.; Hicks, Murray; Burton, Kevin W.

    2017-01-01

    Over millions of years, the oxidation of organic carbon contained within sedimentary rocks is one of the main sources of carbon dioxide to the atmosphere, yet the controls on this emission remain poorly constrained. We use rhenium to track the oxidation of rock-bound organic carbon in the mountain watersheds of New Zealand, where high rates of physical erosion expose rocks to chemical weathering. Oxidative weathering fluxes are two to three times higher in watersheds dominated by valley glaciers and exposed to frost shattering processes, compared to those with less glacial cover; a feature that we also observe in mountain watersheds globally. Consequently, we show that mountain glaciation can result in an atmospheric carbon dioxide source during weathering and erosion, as fresh minerals are exposed for weathering in an environment with high oxygen availability. This provides a counter mechanism against global cooling over geological time scales. PMID:28983510

  2. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments.

    PubMed

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-08-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF's laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool to monitor the ignitability of oil spills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-06-08

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  4. An overview of 2016 WISE Urban Summer Observation Campaign (WUSOC 2016) in the Seoul metropolitan area of South Korea

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Won; Kim, Sang-Woo; Shim, Jae-Kwan; Kwak, Kyung-Hwan

    2017-04-01

    The Weather Information Service Engine (WISE), launched project of the Korea Meteorological Administration (KMA), aims to operate the urban meteorological observation network from 2012 to 2019 and to test and operate the application weather service (e.g., flash flood, road weather, city ecology, city microclimate, dispersion of hazardous substance etc.) in 2019 through the development of Advanced Storm-scale Analysis Prediction System(ASAPS) for the production of storm-scale hazard weather monitoring and prediction system. The WISE institute has completed construction of 31 urban meteorological observation cities in Seoul metropolitan area and has built a real-time test operation and verification system by improving the ASAPS that produces 1 km and 6 hour forecast information based on the 5 km forecast information of KMA. Field measurements of 2016 WISE Urban Summer Observation Campaign (WUSOC 2016) was conducted in the Seoul metropolitan area of South Korea from August 22 to October 14, 2016. Involving over 70 researchers from more than 12 environmental and atmospheric science research groups in South Korea, WUSOC2016 focused on special observations, severe rain storm observations using mobile observation car and radiosonde, wind profile observations using Wind Doppler Lidar and radiosonde, etc., around the Seoul metropolitan area. WUSOC2016 purpose at data quality control, accuracy verification, usability check, and quality improvement of ASAPS at observation stations constructed in WISE. In addition, we intend to contribute to the activation of urban fusion weather research and risk weather research through joint observation and data sharing.

  5. Integrating petrography, mineralogy and hydrochemistry to constrain the influence and distribution of groundwater contributions to baseflow in poorly productive aquifers: insights from Gortinlieve catchment, Co. Donegal, NW Ireland.

    PubMed

    Caulfield, John; Chelliah, Merlyn; Comte, Jean-Christophe; Cassidy, Rachel; Flynn, Raymond

    2014-12-01

    Identifying groundwater contributions to baseflow forms an essential part of surface water body characterisation. The Gortinlieve catchment (5 km(2)) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite-montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently form the chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Final Report, University of California Merced: Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy Anne

    2016-06-30

    Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from themore » same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.« less

  7. Critical Zone structure inferred from multiscale near surface geophysical and hydrological data across hillslopes at the Eel River CZO

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Rempe, D. M.; Holbrook, W. S.; Schmidt, L.; Hahm, W. J.; Dietrich, W. E.

    2017-12-01

    Except for boreholes and road cut, landslide, and quarry exposures, the subsurface structure of the critical zone (CZ) of weathered bedrock is relatively invisible and unmapped, yet this structure controls the short and long term fluxes of water and solutes. Non-invasive geophysical methods such as seismic refraction are widely applied to image the structure of the CZ at the hillslope scale. However, interpretations of such data are often limited due to heterogeneity and anisotropy contributed from fracturing, moisture content, and mineralogy on the seismic signal. We develop a quantitative framework for using seismic refraction tomography from intersecting geophysical surveys and hydrologic data obtained at the Eel River Critical Zone Observatory (ERCZO) in Northern California to help quantify the nature of subsurface structure across multiple hillslopes of varying topography in the area. To enhance our understanding of modeled velocity gradients and boundaries in relation to lithological properties, we compare refraction tomography results with borehole logs of nuclear magnetic resonance (NMR), gamma and neutron density, standard penetration testing, and observation drilling logs. We also incorporate laboratory scale rock characterization including mineralogical and elemental analyses as well as porosity and density measurements made via pycnometry, helium and mercury porosimetry, and laboratory scale NMR. We evaluate the sensitivity of seismically inferred saprolite-weathered bedrock and weathered-unweathered bedrock boundaries to various velocity and inversion parameters in relation with other macro scale processes such as gravitational and tectonic forces in influencing weathered bedrock velocities. Together, our sensitivity analyses and multi-method data comparison provide insight into the interpretation of seismic refraction tomography for the quantification of CZ structure and hydrologic dynamics.

  8. Linking Teleconnections and Iowa's Climate

    NASA Astrophysics Data System (ADS)

    Rowe, S. T.; Villarini, G.; Lavers, D. A.; Scoccimarro, E.

    2013-12-01

    In recent years Iowa and the U.S. Midwest has experienced both extreme drought and flood periods. With a drought in 2012 bounded by major floods in 2011 and 2013, the rapid progression from one extreme to the next is on the forefront of the public mind. Given that Iowa is a major agricultural state, extreme weather conditions can have severe socioeconomic consequences. In this research we investigate the large-scale climate processes that occurred concurrently and before a range of dry/wet and cold/hot periods to improve process understanding of these events. It is essential to understand the large-scale climate processes, as these can then provide valuable insight toward the development of long-term climate forecasts for Iowa. In this study monthly and seasonal surface temperature and precipitation over 1950-2012 across Iowa are used. Precipitation and surface temperature data are retrieved from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group at Oregon State University. The large-scale atmospheric fields are obtained from the National Center for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) Reanalysis 1 Project. Precipitation is stratified according to wet, normal, and dry conditions, while temperature according to hot, average, and cold periods. Different stratification criteria based on the precipitation and temperature distributions are examined. Mean sea-level pressure and sea-surface temperature composite maps for the northern hemisphere are then produced for the wet/dry conditions, and cold/hot conditions. Further analyses include correlation, anomalies, and assessment of large-scale planetary wave activity, shedding light on the differences and similarities among the opposite weather conditions. The results of this work will highlight regional weather patterns that are related to the climate over Iowa, providing valuable insight into the mechanisms controlling the occurrence of potentially extreme weather conditions over this area.

  9. Contributions of the ARM Program to Radiative Transfer Modeling for Climate and Weather Applications

    NASA Technical Reports Server (NTRS)

    Mlawer, Eli J.; Iacono, Michael J.; Pincus, Robert; Barker, Howard W.; Oreopoulos, Lazaros; Mitchell, David L.

    2016-01-01

    Accurate climate and weather simulations must account for all relevant physical processes and their complex interactions. Each of these atmospheric, ocean, and land processes must be considered on an appropriate spatial and temporal scale, which leads these simulations to require a substantial computational burden. One especially critical physical process is the flow of solar and thermal radiant energy through the atmosphere, which controls planetary heating and cooling and drives the large-scale dynamics that moves energy from the tropics toward the poles. Radiation calculations are therefore essential for climate and weather simulations, but are themselves quite complex even without considering the effects of variable and inhomogeneous clouds. Clear-sky radiative transfer calculations have to account for thousands of absorption lines due to water vapor, carbon dioxide, and other gases, which are irregularly distributed across the spectrum and have shapes dependent on pressure and temperature. The line-by-line (LBL) codes that treat these details have a far greater computational cost than can be afforded by global models. Therefore, the crucial requirement for accurate radiation calculations in climate and weather prediction models must be satisfied by fast solar and thermal radiation parameterizations with a high level of accuracy that has been demonstrated through extensive comparisons with LBL codes. See attachment for continuation.

  10. Simulating spatial and temporally related fire weather

    Treesearch

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  11. Mapping Soil Age at Continental Scales

    NASA Astrophysics Data System (ADS)

    Slessarev, E.; Feng, X.

    2017-12-01

    Soil age controls the balance between weathered and unweathered minerals in soil, and thus strongly influences many of the biological, geochemical, and hydrological functions of the critical zone. However, most quantitative models of soil development do not represent soil age. Instead, they rely on a steady-state assumption: physical erosion controls the residence time of unweathered minerals in soil, and thus fixes the chemical weathering rate. This assumption may hold true in mountainous landscapes, where physical erosion rates are high. However, the steady-state assumption may fail in low-relief landscapes, where physical erosion rates have been insufficient to remove unweathered minerals left by glaciation and dust deposition since the Last Glacial Maximum (LGM). To test the applicability of the steady-state assumption at continental scales, we developed an empirical predictor for physical erosion, and then simulated soil development since LGM with a numerical model. We calibrated the physical erosion predictor using a compilation of watershed-scale sediment yield data, and in-situ 10Be denudation measurements corrected for weathering by Zr/Ti mass-balance. Physical erosion rates can be predicted using a power-law function of local relief and peak ground acceleration, a proxy for tectonic activity. Coupling physical erosion rates with the numerical model reveals that extensive low-relief areas of North America may depart from steady-state because they were glaciated, or received high dust fluxes during LGM. These LGM legacy effects are reflected in topsoil Ca:Al and Quartz:Feldspar ratios derived from United States Geological Survey data, and in a global compilation of soil pH measurements. Our results quantitatively support the classic idea that soils in the mid-high latitudes of the Northern Hemisphere are "young", in the sense that they are undergoing transient response to LGM conditions. Where they occur, such departures from steady-state likely increase mineral weathering rates and the supply of rock-derived nutrients to ecosystems.

  12. Dependence of Snowmelt Simulations on Scaling of the Forcing Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Marks, D. G.; Gurney, R. J.

    2009-12-01

    The spatial organization and scaling relationships of snow distribution in mountain environs is ultimately dependent on the controlling processes. These processes include interactions between weather, topography, vegetation, snow state, and seasonally-dependent radiation inputs. In large scale snow modeling it is vital to know these dependencies to obtain accurate predictions while reducing computational costs. This study examined the scaling characteristics of the forcing processes and the dependency of distributed snowmelt simulations to their scaling. A base model simulation characterized these processes with 10m resolution over a 14.0 km2 basin with an elevation range of 1474 - 2244 masl. Each of the major processes affecting snow accumulation and melt - precipitation, wind speed, solar radiation, thermal radiation, temperature, and vapor pressure - were independently degraded to 1 km resolution. Seasonal and event-specific results were analyzed. Results indicated that scale effects on melt vary by process and weather conditions. The dependence of melt simulations on the scaling of solar radiation fluxes also had a seasonal component. These process-based scaling characteristics should remain static through time as they are based on physical considerations. As such, these results not only provide guidance for current modeling efforts, but are also well suited to predicting how potential climate changes will affect the heterogeneity of mountain snow distributions.

  13. Analysis of weather condition influencing fire regime in Italy

    NASA Astrophysics Data System (ADS)

    Bacciu, Valentina; Masala, Francesco; Salis, Michele; Sirca, Costantino; Spano, Donatella

    2014-05-01

    Fires have a crucial role within Mediterranean ecosystems, with both negative and positive impacts on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In addition, several authors are in agreement suggesting that, during the past decades, changes on fire patterns have occurred, especially in terms of fire-prone areas expansion and fire season lengthening. Climate and weather are two of the main controlling agents, directly and indirectly, of fire regime influencing vegetation productivity, causing water stress, igniting fires through lightning, or modulating fire behavior through wind. On the other hand, these relationships could be not warranted in areas where most ignitions are caused by people (Moreno et al. 2009). Specific analyses of the driving forces of fire regime across countries and scales are thus still required in order to better anticipate fire seasons and also to advance our knowledge of future fire regimes. The objective of this work was to improve our knowledge of the relative effects of several weather variables on forest fires in Italy for the period 1985-2008. Meteorological data were obtained through the MARS (Monitoring Agricultural Resources) database, interpolated at 25x25 km scale. Fire data were provided by the JRC (Join Research Center) and the CFVA (Corpo Forestale e di Vigilanza Ambientale, Sardinia). A hierarchical cluster analysis, based on fire and weather data, allowed the identification of six homogeneous areas in terms of fire occurrence and climate (pyro-climatic areas). Two statistical techniques (linear and non-parametric models) were applied in order to assess if inter-annual variability in weather pattern and fire events had a significant trend. Then, through correlation analysis and multi-linear regression modeling, we investigated the influence of weather variables on fire activity across a range of time- and spatial-scales. The analysis revealed a general decrease of both number of fires and burned area, although not everywhere with the same magnitude. Overall, regression models where highly significant (p<0.001), and the explained variance ranged from 36% to 80% for fire number and from 37% to 76% for burned area, depending on pyro-climatic area. Moreover, our results contributed in determining the relative importance of climate variables acting at different timescales as control on intrinsic (i.e. flammability and moisture) and extrinsic (i.e. fuel amount and structure) characteristics of vegetation, thus strongly influencing fire occurrence. The good performance of our models, especially in the most fire affected pyro-climatic areas of Italy, and the better understanding of the main driver of fire variability gained through this work could be of great help for fire management among the different pyro-climatic areas.

  14. Microhabitats in the tropics buffer temperature in a globally coherent manner

    PubMed Central

    Scheffers, Brett R.; Evans, Theodore A.; Williams, Stephen E.; Edwards, David P.

    2014-01-01

    Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9°C and reduced maximum temperatures by 3.5°C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates. PMID:25540160

  15. Controls on Weathering of Pyrrhotite in a Low-Sulfide, Granitic Mine-Waste Rock in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Langman, J. B.; Holland, S.; Sinclair, S.; Blowes, D.

    2013-12-01

    Increased environmental risk is incurred with expansion of mineral extraction in the Arctic. A greater understanding of geochemical processes associated with hard-rock mining in this cold climate is needed to evaluate and mitigate these risks. A laboratory and in-situ experiment was conducted to examine mineral weathering and the generation of acid rock drainage in a low-sulfide, run-of-mine waste rock in an Arctic climate. Rock with different concentrations of sulfides (primarily pyrrhotite [Fe7S8] containing small amounts of Co and Ni) and carbonates were weathered in the laboratory and in-situ, large-scale test piles to examine leachate composition and mineral weathering. The relatively larger sulfide-containing rock produced sufficient acid to overcome carbonate buffering and produced a declining pH environment with concomitant release of SO4, Fe, Co, and Ni. Following carbonate consumption, aluminosilicate buffering stabilized the pH above 4 until a reduction in acid generation. Results from the laboratory experiment assisted in determining that after consumption of 1.6 percent of the total sulfide, the larger sulfide-concentration test pile likely is at an internal steady-state or maximal weathering rate after seven years of precipitation input and weathering that is controlled by an annual freeze-thaw cycle. Further weathering of the test pile should be driven by external factors of temperature and precipitation in this Arctic, semi-arid region instead of internal factors of wetting and non-equilibrium buffering. It is predicted that maximal weathering will continue until at least 20 percent of the total sulfide is consumed. Using the identified evolution of sulfide consumption in this Arctic climate, a variable rate factor can now be assessed for the possible early evolution and maximal weathering of larger scale waste-rock piles and seasonal differences because of changes in the volume of a waste-rock pile undergoing active weathering due to the freeze-thaw cycle. Such rate factors are necessary to predict acid rock drainage and implement best management practices to minimize environmental impacts. To better understand the early geochemical evolution of the waste rock, sulfide minerals from different periods in the experiments were analyzed for discrete mineral characteristics indicative of a weathered state. Element transfer from the mineral to aqueous phase is transport limited because of the formation of Fe-(oxy)hydroxide weathered rims that can be an inhibitor of dissolution. Application of various x-ray spectroscopy techniques indicated that pyrrhotite transforms to marcasite [FeS2] prior to formation of Fe(II)-(oxy)hydroxides and further to Fe(III)-hydroxide/oxides. Iron appears to migrate through the weathered rims leaving the S-rich layer behind, and oxygen likely is retarded from migrating inward with formation of Fe(III) species. As these Fe-mineral transformations occur, they influence the retention of the secondary metals such as Co and Ni that preferentially remain in the +2 oxidation state and may leave the system as hydroxides, oxides, and sulfates. Understanding mineral evolution in this climate assists in adjusting appropriate rate factors for temporal changes in element release from the weathering of the pyrrhotite.

  16. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maher, K.; Steefel, C. I.; White, A.F.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals inmore » the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.« less

  17. The contribution of changes in P release and CO2 consumption by chemical weathering to the historical trend in land carbon uptake

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Fredriksen, G.; McCalley, C. K.; Sparks, J. P.; Thomas, S. A.

    2011-12-01

    The atmospheric carbon dioxide (CO2) concentration has increased to a level unprecedented in the last 2 million years, and the concentration is projected to increase further with a rate unseen in geological past. The increase in CO2 cause a rise in surface temperatures and changes in the hydrological cycle through the redistribution of rainfall patterns. All of these changes will impact the weathering of rocks, which in turn affect atmospheric CO2 concentrations via two different pathways. On the one hand, CO2 is consumed by the dissolution reaction of the exposed minerals. And on the other hand, biological CO2 fixation is affected due to changes in phosphorus release from minerals, as biological activity is constrained by phosphorus availability at large scales. The traditional view is that both effects are negligible on a centennial time scale, but recent work on catchment scale challenge this view in favor of a potential high sensitivity of weathering to ongoing climate and land use changes. To globally quantify the contribution of CO2 fixation associated with weathering on the historical trend in terrestrial CO2 uptake, we applied a model of chemical weathering and phosphorus release under climate reconstructions from four Earth System Models. The simulations indicate that changes in weathering could have contributed considerably to the trend in terrestrial CO2 uptake since the pre-industrial revolution, with warming being the main driver of change. The increase in biological CO2 fixation is of comparable magnitude as the increase in CO2 consumption by chemical weathering. Our simulations support the previous findings on catchment scale that weathering can change significantly on a centennial time scale. This finding has implications for 21st century climate projections, which ignore changes in weathering, as well as for long-term airborne fraction of CO2 emissions, whose calculation usually neglects changes in phosphorus availability.

  18. The contribution of changes in P release and CO2 consumption by chemical weathering to the historical trend in land carbon uptake

    NASA Astrophysics Data System (ADS)

    Goll, D. S.; Moosdorf, N.; Brovkin, V.; Hartmann, J.

    2013-12-01

    The atmospheric carbon dioxide (CO2) concentration has increased to a level unprecedented in the last 2 million years, and the concentration is projected to increase further with a rate unseen in geological past. The increase in CO2 cause a rise in surface temperatures and changes in the hydrological cycle through the redistribution of rainfall patterns. All of these changes will impact the weathering of rocks, which in turn affect atmospheric CO2 concentrations via two different pathways. On the one hand, CO2 is consumed by the dissolution reaction of the exposed minerals. And on the other hand, biological CO2 fixation is affected due to changes in phosphorus release from minerals, as biological activity is constrained by phosphorus availability at large scales. The traditional view is that both effects are negligible on a centennial time scale, but recent work on catchment scale challenge this view in favor of a potential high sensitivity of weathering to ongoing climate and land use changes. To globally quantify the contribution of CO2 fixation associated with weathering on the historical trend in terrestrial CO2 uptake, we applied a model of chemical weathering and phosphorus release under climate reconstructions from four Earth System Models. The simulations indicate that changes in weathering could have contributed considerably to the trend in terrestrial CO2 uptake since the pre-industrial revolution, with warming being the main driver of change. The increase in biological CO2 fixation is of comparable magnitude as the increase in CO2 consumption by chemical weathering. Our simulations support the previous findings on catchment scale that weathering can change significantly on a centennial time scale. This finding has implications for 21st century climate projections, which ignore changes in weathering, as well as for long-term airborne fraction of CO2 emissions, whose calculation usually neglects changes in phosphorus availability.

  19. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    NASA Astrophysics Data System (ADS)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2017-04-01

    Early non-vascular vegetation in the Late Ordovician may have strongly increased chemical weathering rates of surface rocks at the global scale. This could have led to a drawdown of atmospheric CO2 and, consequently, a decrease in global temperature and an interval of glaciations. Under current climatic conditions, usually field or laboratory experiments are used to quantify enhancement of chemical weathering rates by non-vascular vegetation. However, these experiments are constrained to a small spatial scale and a limited number of species. This complicates the extrapolation to the global scale, even more so for the geological past, where physiological properties of non-vascular vegetation may have differed from current species. Here we present a spatially explicit modelling approach to simulate large-scale chemical weathering by non-vascular vegetation in the Late Ordovician. For this purpose, we use a process-based model of lichens and bryophytes, since these organisms are probably the closest living analogue to Late Ordovician vegetation. The model explicitly represents multiple physiological strategies, which enables the simulated vegetation to adapt to Ordovician climatic conditions. We estimate productivity of Ordovician vegetation with the model, and relate it to chemical weathering by assuming that the organisms dissolve rocks to extract phosphorus for the production of new biomass. Thereby we account for limits on weathering due to reduced supply of unweathered rock material in shallow regions, as well as decreased transport capacity of runoff for dissolved weathered material in dry areas. We simulate a potential global weathering flux of 2.8 km3 (rock) per year, which we define as volume of primary minerals affected by chemical transformation. Our estimate is around 3 times larger than today's global chemical weathering flux. Furthermore, chemical weathering rates simulated by our model are highly sensitive to atmospheric CO2 concentration, which implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate.

  20. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  1. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched standard-sample-bracketing laser ablation analyses on sulfides, oxides and silicates agree within 0.15 permil to measurements done by solution MC-ICP-MS after chromatographic matrix separation. With our laser ablation method all compartments of the weathering zone can be analysed with minimal sample preparation [2]. In a first application, we investigate Si isotope fractionation during deep (10 m) core stone weathering, where crystalline rock is altered, producing secondary clay minerals along 20 micrometer wide (biogenic?) alteration textures. While unweathered centers of plagioclase grains show a homogenous Si isotope composition of δ30Si = -0.20 ± 0.17 permil (2SD, n=12), the secondary weathering products found in fissures within and between plagioclase grains consistently show negative δ30Si values - as low as -1.13 permil. Comparison with isotope studies at the soil and catchment scale suggests that the isotopic weathering signatures found in dissolved and particulate Si in rivers can be traced to processes operating at the micro scale. [1] Horn & von Blanckenburg, Spectrochimica Acta B. 62, 2007 [2] Steinhoefel et al., Chem. Geol. 286, 2011

  2. Observation and modelling of urban dew

    NASA Astrophysics Data System (ADS)

    Richards, Katrina

    Despite its relevance to many aspects of urban climate and to several practical questions, urban dew has largely been ignored. Here, simple observations an out-of-doors scale model, and numerical simulation are used to investigate patterns of dewfall and surface moisture (dew + guttation) in urban environments. Observations and modelling were undertaken in Vancouver, B.C., primarily during the summers of 1993 and 1996. Surveys at several scales (0.02-25 km) show that the main controls on dew are weather, location and site configuration (geometry and surface materials). Weather effects are discussed using an empirical factor, FW . Maximum dew accumulation (up to ~ 0.2 mm per night) is seen on nights with moist air and high FW , i.e., cloudless conditions with light winds. Favoured sites are those with high Ysky and surfaces which cool rapidly after sunset, e.g., grass and well insulated roofs. A 1/8-scale model is designed, constructed, and run at an out-of-doors site to study dew patterns in an urban residential landscape which consists of house lots, a street and an open grassed park. The Internal Thermal Mass (ITM) approach is used to scale the thermal inertia of buildings. The model is validated using data from full-scale sites in Vancouver. Patterns in the model agree with those seen at the full-scale, i.e., dew distribution is governed by weather, site geometry and substrate conditions. Correlation is shown between Ysky and surface moisture accumulation. The feasibility of using a numerical model to simulate urban dew is investigated using a modified version of a rural dew model. Results for simple isolated surfaces-a deciduous tree leaf and an asphalt shingle roof-show promise, especially for built surfaces.

  3. Minor scale weather-watch and microbarograph project experiments 8620, 9415, 9416

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J.W.; Church, H.W.

    1986-01-01

    Predictions and measurements of distant airblast propagations were made to identify, control, and document the environmental impact from this large explosion. Special meteorological observations were made to support this as well as other experiments. Rawinsonde balloon upper-air observations were made to about 30 km altitude. Pilot balloons were tracked by optical theodolite to give frequent wind observations to about 3 km above ground. A Tethersonde balloon was operated to give details on atmospheric structure below about 3 km. Rocketsondes were launched to measure temperature and wind conditions at 35- to 65-km heights, for explaining long range airblast propagations that focusmore » near 200 km distance. A meteorological towere was set up at the Admin Park to give continuous records of wind and temperature at three levels to 23 m height. An anemometer was installed near Ground Zero for reference during wind-sensitive helium bag operations. A weather advisory service was established, using WSMR observations as well as national weather data collections, and communicating through a computer terminal at the Stallion Radiosonde Station. Microbarograph (MB) airblast pressure recorders were operated at thirteen locations, from 3 km to 225 km from GZ. During the 10 days preceding MINOR SCALE, 31 ANFO charges, of 250 lb or 2500 lb yields, were fired to document the long range airblast propagation with MB recordings and upper air weather observations.« less

  4. A Generalized Simple Formulation of Convective Adjustment ...

    EPA Pesticide Factsheets

    Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a prescribed value or ad hoc representation of τ is used in most global and regional climate/weather models making it a tunable parameter and yet still resulting in uncertainties in convective precipitation simulations. In this work, a generalized simple formulation of τ for use in any convection parameterization for shallow and deep clouds is developed to reduce convective precipitation biases at different grid spacing. Unlike existing other methods, our new formulation can be used with field campaign measurements to estimate τ as demonstrated by using data from two different special field campaigns. Then, we implemented our formulation into a regional model (WRF) for testing and evaluation. Results indicate that our simple τ formulation can give realistic temporal and spatial variations of τ across continental U.S. as well as grid-scale and subgrid scale precipitation. We also found that as the grid spacing decreases (e.g., from 36 to 4-km grid spacing), grid-scale precipitation dominants over subgrid-scale precipitation. The generalized τ formulation works for various types of atmospheric conditions (e.g., continental clouds due to heating and large-scale forcing over la

  5. The weathering of organic carbon and pyrite sulfur in Earth's crust and its importance for regulating atmospheric composition, seawater chemistry, and stable isotope records

    NASA Astrophysics Data System (ADS)

    Reinhard, C. T.; Planavsky, N.; Bolton, E. W.

    2016-12-01

    Earth's crust stores extremely large reservoirs of organic carbon and pyrite sulfur, and transient or secular changes in the sizes of these reservoirs have the capacity to dramatically alter atmospheric composition, climate, seawater acid-base chemistry, and the propagation of isotopic signals into the geologic record. This talk will present and discuss new quantitative approaches toward better understanding the factors that control organic carbon and pyrite sulfur weathering under a wide range of Earth surface conditions, as well as their downstream effects on seawater chemistry, stability of atmospheric pO2, and conventional interpretations of stable carbon isotope mass balance during pivotal events in Earth's biogeochemical evolution. In particular, we will focus on (1) development of a weathering-driven scaling between atmospheric pO2 and geologic carbon isotope signals that explains the relative stability of marine δ13C through time and provides a mechanism for protracted negative δ13C excursions during transient increases in atmospheric pO2; (2) experimental and theoretical approaches aimed at better understanding the role of pyrite sulfur weathering in stabilizing atmospheric pO2; and (3) the importance of redox balance in the sedimentary rock cycle for controlling the marine carbonate system and atmospheric pCO2.

  6. Ecological Effects of Weather Modification: A Problem Analysis.

    ERIC Educational Resources Information Center

    Cooper, Charles F.; Jolly, William C.

    This publication reviews the potential hazards to the environment of weather modification techniques as they eventually become capable of producing large scale weather pattern modifications. Such weather modifications could result in ecological changes which would generally require several years to be fully evident, including the alteration of…

  7. Applications of LANCE Data at SPoRT

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew

    2014-01-01

    Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society

  8. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach.

    PubMed

    Taylor, Lyla L; Banwart, Steve A; Valdes, Paul J; Leake, Jonathan R; Beerling, David J

    2012-02-19

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models.

  9. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    PubMed Central

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  10. El Niño and human health.

    PubMed Central

    Kovats, R. S.

    2000-01-01

    The El Niño-Southern Oscillation (ENSO) is the best known example of quasi-periodic natural climate variability on the interannual time scale. It comprises changes in sea temperature in the Pacific Ocean (El Niño) and changes in atmospheric pressure across the Pacific Basin (the Southern Oscillation), together with resultant effects on world weather. El Niño events occur at intervals of 2-7 years. In certain countries around the Pacific and beyond, El Niño is associated with extreme weather conditions that can cause floods and drought. Globally it is linked to an increased impact of natural disasters. There is evidence that ENSO is associated with a heightened risk of certain vector-borne diseases in specific geographical areas where weather patterns are linked with the ENSO cycle and disease control is limited. This is particularly true for malaria, but associations are also suggested in respect of epidemics of other mosquito-borne and rodent-borne diseases that can be triggered by extreme weather conditions. Seasonal climate forecasts, predicting the likelihood of weather patterns several months in advance, can be used to provide early indicators of epidemic risk, particularly for malaria. Interdisciplinary research and cooperation are required in order to reduce vulnerability to climate variability and weather extremes. PMID:11019461

  11. Design of a Controllable Weather Balloon to Fly on Mars

    NASA Astrophysics Data System (ADS)

    Ivie, Benjamin

    As the National Aeronautics and Space Administration (NASA) moves closer towards placing humans on Mars, prediction of the weather on the planet becomes more vital to ensure the safety of the astronauts. Currently on Mars NASA has land based weather stations on the rovers and a few satellites orbiting the planet that help to predict the weather. They also use Earth based telescopes to look at the Martian atmosphere similar to what an orbiting satellite would [1]. These resources provide information about what the weather is like on the surface and what the weather looks like from space but there is little information from inside the atmosphere. Having a device that can fly through the atmosphere and collect data would enable scientists to generate more accurate models of the weather on Mars. Another use for these devices could be to get aerial photographs of the planet, which could help to determine possible sites for future exploration. Also the Martian air could be collected and analyzed to determine its composition and whether there could be any airborne signs of life. The research presented in this thesis is a first step towards designing a device to fly on Mars and take weather data. A lifting type is selected and through test flights on Earth the design is modified until a workable platform for flight testing is achieved. Once it is determined, the design is scaled to be able to fly in the Martian atmosphere.

  12. Potential of turbidity monitoring for real time control of pollutant discharge in sewers during rainfall events.

    PubMed

    Lacour, C; Joannis, C; Gromaire, M-C; Chebbo, G

    2009-01-01

    Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification and common parameters, such as the antecedent dry weather period, total event volume per impervious hectare and both the mean and maximum hydraulic flow for each event, was also studied. Moreover, the dynamics of flow and turbidity signals were compared at the event scale. No simple relation between turbidity responses, hydraulic flow dynamics and the chosen parameters was derived from this effort. Knowledge of turbidity dynamics could therefore potentially improve wet weather management, especially when using pollution-based real-time control (P-RTC) since turbidity contains information not included in hydraulic flow dynamics and not readily predictable from such dynamics.

  13. Global comparison reveals biogenic weathering as driven by nutrient limitation at ecosystem scale

    NASA Astrophysics Data System (ADS)

    Boy, Jens; Godoy, Roberto; Dechene, Annika; Shibistova, Olga; Amir, Hamid; Iskandar, Issi; Fogliano, Bruno; Boy, Diana; McCulloch, Robert; Andrino, Alberto; Gschwendtner, Silvia; Marin, Cesar; Sauheitl, Leopold; Dultz, Stefan; Mikutta, Robert; Guggenberger, Georg

    2017-04-01

    A substantial contribution of biogenic weathering in ecosystem nutrition, especially by symbiotic microorganisms, has often been proposed, but large-scale in vivo studies are still missing. Here we compare a set of ecosystems spanning from the Antarctic to tropical forests for their potential biogenic weathering and its drivers. To address biogenic weathering rates, we installed mineral mesocosms only accessible for bacteria and fungi for up to 4 years, which contained freshly broken and defined nutrient-baring minerals in soil A horizons of ecosystems along a gradient of soil development differing in climate and plant species communities. Alterations of the buried minerals were analyzed by grid-intersection, confocal lascer scanning microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy on the surface and on thin sections. On selected sites, carbon fluxes were tracked by 13C labeling, and microbial community was identified by DNA sequencing. In young ecosystems (protosoils) biogenic weathering is almost absent and starts after first carbon accumulation by aeolian (later litter) inputs and is mainly performed by bacteria. With ongoing soil development and appearance of symbiotic (mycorrhized) plants, nutrient availability in soil increasingly drove biogenic weathering, and fungi became the far more important players than bacteria. We found a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. We conclude that nutrient limitations at ecosystem scale are generally counteracted by adapted fungal biogenic weathering. The close relation between fungal weathering and plant-available nutrients over a large range of severely contrasting ecosystems points towards a direct energetic support of these weathering processes by the photoautotrophic community, making biogenic weathering a directional on-demand process common in all types of ecosystems.

  14. A Method for Correlation of Gravestone Weathering and Air Quality (SO2), West Amidlands, UK

    NASA Astrophysics Data System (ADS)

    Carlson, Michael John

    From the beginning of the Industrial Revolution through the environmental revolution of the 1970s Britain suffered the effects of poor air quality primarily from particulate matter and acid in the form of NOx and SO x compounds. Air quality stations across the region recorded SO 2 beginning in the 1960s however the direct measurement of air quality prior to 1960 is lacking and only anecdotal notations exist. Proxy records including lung tissue samples, particulates in sediments cores, lake acidification studies and gravestone weathering have all been used to reconstruct the history of air quality. A 120-year record of acid deposition reconstructed from lead-lettered marble gravestone weathering combined with SO2 measurements from the air monitoring network across the West Midlands, UK region beginning in the 1960s form the framework for this study. The study seeks to create a spatial and temporal correlation between the gravestone weathering and measured SO 2. Successful correlation of the dataset from 1960s to the 2000s would allow a paleo-air quality record to be generated from the 120-year record of gravestone weathering. Decadal gravestone weathering rates can be estimated by non-linear regression analysis of stone loss at individual cemeteries. Gravestone weathering rates are interpolated across the region through Empirical Bayesian Kriging (EBK) methods performed through ArcGISRTM and through a land use based approach based on digitized maps of land use. Both methods of interpolation allow for the direct correlation of gravestone weathering and measured SO2 to be made. Decadal scale correlations of gravestone weathering rates and measured SO2 are very weak and non-existent for both EBK and the land use based approach. Decadal results combined together on a larger scale for each respective method display a better visual correlation. However, the relative clustering of data at lower SO2 concentrations and the lack of data at higher SO2 concentrations make the confidence in the correlations made too weak to rely on. The relation between surrounding land use and gravestone weathering rates was very strong for the 1960s-1980s with diminishing correlations approaching the 2000s. Gravestone weathering of cemeteries is highly influenced by the amount of industrial sources of pollution within a 7km radius. Reduced correlation of land use and weathering beyond the 1980s is solid grounds for the success of environmental regulation and control put in place across the UK during later parts of the 20th century.

  15. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    USGS Publications Warehouse

    Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, David A.

    2009-01-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO2(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws. ?? 2009 Elsevier Ltd.

  16. Fantasy and Reality in the History of Weather and Climate Control

    NASA Astrophysics Data System (ADS)

    Fleming, J. R.

    2005-12-01

    This presentation examines the history of large-scale weather and climate engineering since 1840, with special reference to imaginative and speculative literature and with special relevance to ethical and policy issues. Ultimate control of the weather and climate embodies both our wildest fantasies and our greatest fears. Fantasy often informs reality (and vice-versa). NASA managers know this well, as do Trekkies. The best science fiction authors typically build from the current state of a field to construct futuristic scenarios that reveal and explore the human condition. Scientists as well often venture into flights of fancy. Though not widely documented, the fantasy-reality axis is also a prominent aspect of the history of the geosciences. James Espy's proposal in the 1840s to enhance precipitation by lighting huge fires, thus stimulating convective updrafts, preceded the widespread charlatanism of the rain-makers, or so-called "pluviculturalists," in the western U.S. One hundred years later, promising discoveries in "cloud seeding" by Irving Langmuir and his associates at the General Electric Corporation rapidly devolved into unsupportable proposals and questionable practices by military and commercial rain-makers seeking to control the weather. During the Cold War, Soviet engineers also promoted a chilling vision (to Westerners) of global climate control. Recently, rather immodest proposals to "fix" a climate system perceived to be out of control have received wide circulation. In 2003 the U.S. Pentagon released a report recommending that the government should "explore geo-engineering options that control the climate." In 2004 a symposium in Cambridge, England set out to "identify, debate, and evaluate" possible, but highly controversial options for the design and construction of engineering projects for the management and mitigation of global climate change. This talk will locate the history of weather and climate modification within a long tradition of imaginative and speculative literature involving "control" of nature. The goal is the articulation of a perspective fully informed by history and the initiation of a dialogue, stimulated by this approach, that uncovers otherwise hidden values, ethical implications, social tensions, and public apprehensions.

  17. Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy

    2016-04-02

    Objectives of the project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses tested: - Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments frommore » the same formations. - Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media. - Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling capabilities developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering. Experimental design: Hypotheses were tested by comparing (with a similar set of techniques) the geochemical transformations and transport behaviors that occured in bench-scale studies of waste-sediment interaction with parallel model systems studies of homogeneous nucleation and neo-phase dissolution. Initial plans were to compare results with core sample extractions from the acid uranium waste impacted U-8 and U-12 Cribs at Hanford (see original proposal and letter of collaboration from J. Zachara). However, this part of the project was impossible because funding for core extractions were eliminated from the DoE budget. Three distinct crib waste aqueous simulants (whose composition is based on the most up-to-date information from field site investigations) were reacted with Hanford sediments in batch and column systems. Coupling of contaminant uptake to mineral weathering was monitored using a suite of methods both during waste-sediment interaction, and after, when waste-weathered sediments were subjected to infusion with circumneutral background pore water solutions. Our research was designed to adapt as needed to maintain a strong dialogue between laboratory and modeling investigations so that model development was increasingly constrained by emergent data and understanding. Potential impact of the project to DOE: Better prediction of contaminant uranium transport was achieved by employing multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. By focusing multiple lines and scales of observation on a common experimental design, our collaborative team revealed non-linear and emergent behavior in contaminated weathering systems. A goal of the current project was to expand our modeling capabilities, originally focused on hyperalkaline legacy waste streams, to include acidic weathering reactions that, as described above, were expected to result in profoundly different products. We were able to achieve this goal, and showed that these products nonetheless undergo analogous silicate and non-silicate transformation, ripening and aging processes. Our prediction that these weathering reactions would vary with waste stimulant chemistry resulted in data that was incorporated directly into a reactive transport model structure.« less

  18. From minerals to hillslopes: Towards an integrated framework for interpreting chemical and physical erosion

    NASA Astrophysics Data System (ADS)

    Hahm, W.; Riebe, C. S.; Ferrier, K.; Kirchner, J. W.

    2011-12-01

    Traditional frameworks for conceptualizing hillslope denudation distinguish between the movement of mass in solution (chemical erosion) and mass moved via mechanical processes (physical erosion). At the hillslope scale, physical and chemical erosion rates can be quantified by combining measurements of regolith chemistry with cosmogenic nuclide concentrations in bedrock and sediment, while basin-scale rates are often inferred from riverine solute and sediment loads. These techniques integrate the effects of numerous weathering and erosion mechanisms and do not provide prima facie information about the precise nature and scale of those mechanisms. For insight into erosional process, physical erosion has been considered in terms of two limiting regimes. When physical erosion outpaces weathering front advance, regolith is mobilized downslope as soon as it is sufficiently loosened by weathering, and physical erosion rates are limited by rates of mobile regolith production. This is commonly termed weathering-limited erosion. Conversely, when weathering front advance outpaces erosion, the mobile regolith layer grows thicker over time, and physical erosion rates are limited by the efficiency of downslope transport processes. This is termed transport-limited erosion. This terminology brings the description of hillslope evolution closer to the realm of essential realism, to the extent that measurable quantities from the field can be cast in a process-based framework. An analogous process-limitation framework describes chemical erosion. In supply-limited chemical erosion, chemical weathering depletes regolith of its reactive phases during residence on a hillslope, and chemical erosion rates are limited by the supply of fresh minerals to the weathering zone. Alternatively, hillslopes may exhibit kinetic-limited chemical erosion, where physical erosion transports regolith downslope before weatherable phases are completely removed by chemical erosion. We show how supply- and kinetic-limited chemical erosion can be distinguished from one another using data from a global compilation of physical and chemical erosion rates. As a step towards understanding these rates at the level of essential realism, we explore how the hillslope-scale regimes of supply- and kinetic-limited chemical erosion relate to existing conceptual frameworks that interpret weathering rates in terms of transport- and kinetic-limitation at the mineral scale.

  19. Linking Satellite-Derived Fire Counts to Satellite-Derived Weather Data in Fire Prediction Models to Forecast Extreme Fires in Siberia

    NASA Astrophysics Data System (ADS)

    Westberg, David; Soja, Amber; Stackhouse, Paul, Jr.

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Boreal systems contain the largest pool of terrestrial carbon, and Russia holds 2/3 of the global boreal forests. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under climate change scenarios. Meteorological parameters influence fire danger and fire is a catalyst for ecosystem change. Therefore to predict fire weather and ecosystem change, we must understand the factors that influence fire regimes and at what scale these are viable. Our data consists of NASA Langley Research Center (LaRC)-derived fire weather indices (FWI) and National Climatic Data Center (NCDC) surface station-derived FWI on a domain from 50°N-80°N latitude and 70°E-170°W longitude and the fire season from April through October for the years of 1999, 2002, and 2004. Both of these are calculated using the Canadian Forest Service (CFS) FWI, which is based on local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. The large-scale (1°) LaRC product uses NASA Goddard Earth Observing System version 4 (GEOS-4) reanalysis and NASA Global Precipitation Climatology Project (GEOS-4/GPCP) data to calculate FWI. CFS Natural Resources Canada uses Geographic Information Systems (GIS) to interpolate NCDC station data and calculate FWI. We compare the LaRC GEOS- 4/GPCP FWI and CFS NCDC FWI based on their fraction of 1° grid boxes that contain satellite-derived fire counts and area burned to the domain total number of 1° grid boxes with a common FWI category (very low to extreme). These are separated by International Geosphere-Biosphere Programme (IGBP) 1°x1° resolution vegetation types to determine and compare fire regimes in each FWI/ecosystem class and to estimate the fraction of each of the 18 IGBP ecosystems burned, which are dependent on the FWI. On days with fire counts, the domain total of 1°x1° grid boxes with and without daily fire counts and area burned are totaled. The fraction of 1° grid boxes with fire counts and area burned to the total number of 1° grid boxes having common FWI category and vegetation type are accumulated, and a daily mean for the burning season is calculated. The mean fire counts and mean area burned plots appear to be well related. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to assess fire weather danger and fire regimes, so these data can be confidently used to predict future fire regimes using large-scale fire weather data. Specifically, we related large-scale fire weather, area burned, and the amount of fire-induced ecosystem change. Both the LaRC and CFS FWI showed gradual linear increase in fraction of grid boxes with fire counts and area burned with increasing FWI category, with an exponential increase in the higher FWI categories in some cases, for the majority of the vegetation types. Our analysis shows a direct correlation between increased fire activity and increased FWI, independent of time or the severity of the fire season. During normal and extreme fire seasons, we noticed the fraction of fire counts and area burned per 1° grid box increased with increasing FWI rating. Given this analysis, we are confident large-scale weather and climate data, in this case from the GEOS-4 reanalysis and the GPCP data sets, can be used to accurately assess future fire potential. This increases confidence in the ability of large-scale IPCC weather and climate scenarios to predict future fire regimes in boreal regions.

  20. Microhabitats in the tropics buffer temperature in a globally coherent manner.

    PubMed

    Scheffers, Brett R; Evans, Theodore A; Williams, Stephen E; Edwards, David P

    2014-12-01

    Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9 °C and reduced maximum temperatures by 3.5 °C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  2. Improving High-resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with Upgraded Kain-Fritsch Cumulus Scheme

    EPA Science Inventory

    High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...

  3. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado: ACID-BASE VERSUS OXIDATIVE WEATHERING FLUXES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.

    Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less

  4. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado: ACID-BASE VERSUS OXIDATIVE WEATHERING FLUXES

    DOE PAGES

    Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.; ...

    2017-03-01

    Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less

  5. Evaluating the Large-Scale Environment of Extreme Events Using Reanalyses

    NASA Astrophysics Data System (ADS)

    Bosilovich, M. G.; Schubert, S. D.; Koster, R. D.; da Silva, A. M., Jr.; Eichmann, A.

    2014-12-01

    Extreme conditions and events have always been a long standing concern in weather forecasting and national security. While some evidence indicates extreme weather will increase in global change scenarios, extremes are often related to the large scale atmospheric circulation, but also occurring infrequently. Reanalyses assimilate substantial amounts of weather data and a primary strength of reanalysis data is the representation of the large-scale atmospheric environment. In this effort, we link the occurrences of extreme events or climate indicators to the underlying regional and global weather patterns. Now, with greater than 3o years of data, reanalyses can include multiple cases of extreme events, and thereby identify commonality among the weather to better characterize the large-scale to global environment linked to the indicator or extreme event. Since these features are certainly regionally dependent, and also, the indicators of climate are continually being developed, we outline various methods to analyze the reanalysis data and the development of tools to support regional evaluation of the data. Here, we provide some examples of both individual case studies and composite studies of similar events. For example, we will compare the large scale environment for Northeastern US extreme precipitation with that of highest mean precipitation seasons. Likewise, southerly winds can shown to be a major contributor to very warm days in the Northeast winter. While most of our development has involved NASA's MERRA reanalysis, we are also looking forward to MERRA-2 which includes several new features that greatly improve the representation of weather and climate, especially for the regions and sectors involved in the National Climate Assessment.

  6. The impact of Sun-weather research on forecasting

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.

    1979-01-01

    The possible impact of Sun-weather research on forecasting is examined. The type of knowledge of the effect is evaluated to determine if it is in a form that can be used for forecasting purposes. It is concluded that the present understanding of the effect does not lend itself readily to applications for forecast purposes. The limits of present predictive skill are examined and it is found that skill is most lacking for prediction of the smallest scales of atmospheric motion. However, it is not expected that Sun-weather research will have any significant impact on forecasting the smaller scales since predictability at these scales is limited by the finite grid size resolution and the time scales of turbulent diffusion. The predictability limits for the largest scales are on the order of several weeks although presently only a one week forecast is achievable.

  7. Developing New Strategies for Coping with Weather: Work in Alaskan and Canadian Coastal Communities

    NASA Astrophysics Data System (ADS)

    Atkinson, D. E.

    2014-12-01

    A changing climate is manifested at ground level through the day to day weather. For all Northern residents - community, industrial, operational and response - the need to think about the weather is ever present. Northern residents, and in particular, indigenous community residents, fully understand implications of the weather, however, a comment that has been heard more often is that old ways of knowing are not as reliable as they once were. Weather patterns seem less consistent and subject to more rapid fluctuations. Compromised traditional ways of knowing puts those who need to travel or hunt at greater risk. One response to adapt to this emerging reality is to make greater use of western sources of information, such as weather data and charts provided by NOAA's National Weather Service or Environment Canada. The federal weather agencies have very large and complex forecasting regions to cover, and so one problem is that it can be difficult to provide perfectly tailored forecasts, that cover all possible problems, right down to the very local scale in the communities. Only those affected have a complete feel for their own concerns. Thus, key to a strategy to improve the utility of available weather information is a linking of local-scale manifestations of problematic weather to the larger-scale weather patterns. This is done in two ways: by direct consultation with Northern residents, and by installation of equipment to measure parameters of interest to residents, which are not already being measured. This talk will overview projects in coastal Alaska and Canada targeting this objective. The challenge of designing and conducting interviews, and then of harvesting relevant information, will be visited using examples from the three major contexts: coastal community, industrial, and operational. Examples of how local comments can be married to weather products will be presented.

  8. The problem of predicting the size distribution of sediment supplied by hillslopes to rivers

    NASA Astrophysics Data System (ADS)

    Sklar, Leonard S.; Riebe, Clifford S.; Marshall, Jill A.; Genetti, Jennifer; Leclere, Shirin; Lukens, Claire L.; Merces, Viviane

    2017-01-01

    Sediments link hillslopes to river channels. The size of sediments entering channels is a key control on river morphodynamics across a range of scales, from channel response to human land use to landscape response to changes in tectonic and climatic forcing. However, very little is known about what controls the size distribution of particles eroded from bedrock on hillslopes, and how particle sizes evolve before sediments are delivered to channels. Here we take the first steps toward building a geomorphic transport law to predict the size distribution of particles produced on hillslopes and supplied to channels. We begin by identifying independent variables that can be used to quantify the influence of five key boundary conditions: lithology, climate, life, erosion rate, and topography, which together determine the suite of geomorphic processes that produce and transport sediments on hillslopes. We then consider the physical and chemical mechanisms that determine the initial size distribution of rock fragments supplied to the hillslope weathering system, and the duration and intensity of weathering experienced by particles on their journey from bedrock to the channel. We propose a simple modeling framework with two components. First, the initial rock fragment sizes are set by the distribution of spacing between fractures in unweathered rock, which is influenced by stresses encountered by rock during exhumation and by rock resistance to fracture propagation. That initial size distribution is then transformed by a weathering function that captures the influence of climate and mineralogy on chemical weathering potential, and the influence of erosion rate and soil depth on residence time and the extent of particle size reduction. Model applications illustrate how spatial variation in weathering regime can lead to bimodal size distributions and downstream fining of channel sediment by down-valley fining of hillslope sediment supply, two examples of hillslope control on river sediment size. Overall, this work highlights the rich opportunities for future research into the controls on the size of sediments produced on hillslopes and delivered to channels.

  9. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in windmore » plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.« less

  10. Rainfall extremes, weather and climatic characterization over complex terrain: A data-driven approach based on signal enhancement methods and extreme value modeling

    NASA Astrophysics Data System (ADS)

    Pineda, Luis E.; Willems, Patrick

    2017-04-01

    Weather and climatic characterization of rainfall extremes is both of scientific and societal value for hydrometeorogical risk management, yet discrimination of local and large-scale forcing remains challenging in data-scarce and complex terrain environments. Here, we present an analysis framework that separate weather (seasonal) regimes and climate (inter-annual) influences using data-driven process identification. The approach is based on signal-to-noise separation methods and extreme value (EV) modeling of multisite rainfall extremes. The EV models use a semi-automatic parameter learning [1] for model identification across temporal scales. At weather scale, the EV models are combined with a state-based hidden Markov model [2] to represent the spatio-temporal structure of rainfall as persistent weather states. At climatic scale, the EV models are used to decode the drivers leading to the shift of weather patterns. The decoding is performed into a climate-to-weather signal subspace, built via dimension reduction of climate model proxies (e.g. sea surface temperature and atmospheric circulation) We apply the framework to the Western Andean Ridge (WAR) in Ecuador and Peru (0-6°S) using ground data from the second half of the 20th century. We find that the meridional component of winds is what matters for the in-year and inter-annual variability of high rainfall intensities alongside the northern WAR (0-2.5°S). There, low-level southerly winds are found as advection drivers for oceanic moist of the normal-rainy season and weak/moderate the El Niño (EN) type; but, the strong EN type and its unique moisture surplus is locally advected at lowlands in the central WAR. Moreover, the coastal ridges, south of 3°S dampen meridional airflows, leaving local hygrothermal gradients to control the in-year distribution of rainfall extremes and their anomalies. Overall, we show that the framework, which does not make any prior assumption on the explanatory power of the weather and climate drivers, allows identification of well-known features of the regional climate in a purely data-driven fashion. Thus, this approach shows potential for characterization of precipitation extremes in data-scarce and orographically complex regions in which model reconstructions are the only climate proxies References [1] Mínguez, R., F.J. Méndez, C. Izaguirre, M. Menéndez, and I.J. Losada (2010), Pseudooptimal parameter selection of non-stationary generalized extreme value models for environmental variables, Environ. Modell. Softw. 25, 1592-1607. [2] Pineda, L., P. Willems (2016), Multisite Downscaling of Seasonal Predictions to Daily Rainfall Characteristics over Pacific-Andean River Basins in Ecuador and Peru using a non-homogenous hidden Markov model, J. Hydrometeor, 17(2), 481-498, doi:10.1175/JHM-D-15-0040.1, http://journals.ametsoc.org/doi/full/10.1175/JHM-D-15-0040.1

  11. Controls on rind thickness on basaltic andesite clasts weathering in Guadeloupe

    USGS Publications Warehouse

    Sak, P.B.; Navarre-Sitchler, A. K.; Miller, C.E.; Daniel, C.C.; Gaillardet, J.; Buss, H.L.; Lebedeva, M.I.; Brantley, S.L.

    2010-01-01

    A clast of low porosity basaltic andesite collected from the B horizon of a soil developed on a late Quaternary volcaniclastic debris flow in the Bras David watershed on Basse-Terre Island, Guadeloupe, exhibits weathering like that observed in many weathered clasts of similar composition in other tropical locations. Specifically, elemental profiles measured across the core-rind interface document that primary minerals and glass weather to Fe oxyhydroxides, gibbsite and minor kaolinite in the rind. The earliest reaction identified in the core is oxidation of Fe in pyroxene but the earliest reaction that creates significant porosity is plagioclase dissolution. Elemental loss varies in the order Ca???Na>K???Mg>Si>Al>Fe???P??Ti, consistent with the relative reactivity of phases in the clast from plagioclase???pyroxene???glass>apatite>ilmenite. The rind surrounds a core of unaltered material that is more spherical than the original clast. The distance from the core-rind boundary to a visually prominent rind layer, L, was measured as a proxy for the rind thickness at 36 locations on a slab cut vertically through the nominal center of the clast. This distance averaged 24.4??3.1mm. Maximum and minimum values for L, 35.8 and 20.6mm, were observed where curvature of the core-rind boundary is greatest (0.12mm-1) and smallest (0.018mm-1) respectively. Extrapolating from other rinds in other locations, the rate of rind formation is estimated to vary by a factor of about 2 (from ~4 to 7??10-14ms-1) from low to high curvature. The observation of a higher rate of rind formation for a higher curvature interface is consistent with a diffusion-limited model for weathering rind formation. The diffusion-limited model predicts that, like rind thickness, values of the thickness of the reaction front (h) for a given reaction, defined as the zone over which a parent mineral such as plagioclase completely weathers to rind material, should also increase with curvature. Values of h were quantified as a function of interface curvature using bulk chemical analysis (500

  12. Weather & Climate. Science Syllabus for Middle and Junior High Schools. Block E.

    ERIC Educational Resources Information Center

    Geer, Ira W.

    This syllabus is divided into three sections and three appendices. The first section lists program objectives with corresponding performance criteria for seven areas of weather/climate study: (1) broad-scale weather systems; (2) local weather; (3) the atmospheric environment; (4) energy and motion in the atmosphere; (5) water in the atmosphere;…

  13. The sensitivity of the atmospheric branch of the global water cycle to temperature fluctuations at synoptic to decadal time-scales in different satellite- and model-based products

    NASA Astrophysics Data System (ADS)

    Nogueira, Miguel

    2018-02-01

    Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature, Ts, revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering time-scales < 10 days with β ≥ 1; and the macroweather regime extending from a few months to a few decades with 0 <β <1. Additionally, the spectra showed a generally good statistical agreement amongst several different model- and satellite-based datasets. Detrended cross-correlation analysis (DCCA) revealed three important results which are robust across all datasets: (1) Clausius-Clapeyron (C-C) relationship is the dominant mechanism of W non-periodic variability at multi-year time-scales; (2) C-C is not the dominant control of W, P or E non-periodic variability at time-scales below about 6 months, where the weather regime is approached and other mechanisms become important; (3) C-C is not a dominant control for P or E over land throughout the entire time-scale range considered. Furthermore, it is suggested that the atmosphere and oceans start to act as a single coupled system at time-scales > 1-2 years, while at time-scales < 6 months they are not the dominant drivers of each other. For global-ocean and full-globe averages, ρDCCA showed large spread of the C-C importance for P and E variability amongst different datasets at multi-year time-scales, ranging from negligible (< 0.3) to high ( 0.6-0.8) values. Hence, state-of-the-art climate datasets have significant uncertainties in the representation of macroweather precipitation and evaporation variability and its governing mechanisms.

  14. Post-glacial climate forcing of surface processes in the Ganges-Brahmaputra river basin and implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Hein, Christopher J.; Galy, Valier; Galy, Albert; France-Lanord, Christian; Kudrass, Hermann; Schwenk, Tilmann

    2017-11-01

    Climate has been proposed to control both the rate of terrestrial silicate weathering and the export rate of associated sediments and terrestrial organic carbon to river-dominated margins - and thus the rate of sequestration of atmospheric CO2 in the coastal ocean - over glacial-interglacial timescales. Focused on the Ganges-Brahmaputra rivers, this study presents records of post-glacial changes in basin-scale Indian summer monsoon intensity and vegetation composition based on stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the channel-levee system of the Bengal Fan. It then explores the role of these changes in controlling the provenance and degree of chemical weathering of sediments exported by these rivers, and the potential climate feedbacks through organic-carbon burial in the Bengal Fan. An observed 40‰ shift in δD and a 3-4‰ shift in both bulk organic-carbon and plant-wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlates well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes likely coincided with a subtle focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, grain-size-normalized organic-carbon concentrations in the Bengal Fan remained constant through time, despite order-of-magnitude level changes in catchment-scale monsoon precipitation and enhanced chemical weathering (recorded as a gradual increase in K/Si* and detrital carbonate content, and decrease in H2O+/Si*, proxies) throughout the study period. These findings demonstrate a partial decoupling of climate change and silicate weathering during the Holocene and that marine organic-carbon sequestration rates primary reflect rates of physical erosion and sediment export as modulated by climatic changes. Together, these results reveal the magnitude of climate changes within the Ganges-Brahmaputra basin following deglaciation and a closer coupling of monsoon strength with OC burial than with silicate weathering on millennial timescales.

  15. Impact of different fertilizers on carbonate weathering in a typical karst area, Southwest China: a field column experiment

    NASA Astrophysics Data System (ADS)

    Song, Chao; Liu, Changli; Han, Guilin; Liu, Congqiang

    2017-09-01

    Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, is strongly influenced by agricultural fertilization, since the addition of fertilizers tends to change the chemical characteristics of soil such as the pH. Different fertilizers may exert a different impact on carbonate weathering, but these discrepancies are as yet not well-known. In this study, a field column experiment was conducted to explore the response of carbonate weathering to the addition of different fertilizers. We compared 11 different treatments, including a control treatment, using three replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried at the bottom of soil-filled columns. The results show that the addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly increased carbonate weathering, which was attributed to the nitrification of NH4+. The addition of Ca3(PO4)2, Ca-Mg-P and K2CO3 induced carbonate precipitation due to the common ion effect. The addition of (NH4)3PO4 and NaNO3 had a relatively small impact on carbonate weathering in comparison to those five NH4-based fertilizers above. The results of NaNO3 treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in an overestimation of the impact of N fertilizer on CO2 consumption by carbonate weathering on the regional/global scale if the effects of NO3 and NH4 are not distinguished.

  16. The effects of synoptic weather on influenza infection incidences: a retrospective study utilizing digital disease surveillance

    NASA Astrophysics Data System (ADS)

    Zhao, Naizhuo; Cao, Guofeng; Vanos, Jennifer K.; Vecellio, Daniel J.

    2018-01-01

    The environmental drivers and mechanisms of influenza dynamics remain unclear. The recent development of influenza surveillance-particularly the emergence of digital epidemiology-provides an opportunity to further understand this puzzle as an area within applied human biometeorology. This paper investigates the short-term weather effects on human influenza activity at a synoptic scale during cold seasons. Using 10 years (2005-2014) of municipal level influenza surveillance data (an adjustment of the Google Flu Trends estimation from the Centers for Disease Control's virologic surveillance data) and daily spatial synoptic classification weather types, we explore and compare the effects of weather exposure on the influenza infection incidences in 79 cities across the USA. We find that during the cold seasons the presence of the polar [i.e., dry polar (DP) and moist polar (MP)] weather types is significantly associated with increasing influenza likelihood in 62 and 68% of the studied cities, respectively, while the presence of tropical [i.e., dry tropical (DT) and moist tropical (MT)] weather types is associated with a significantly decreasing occurrence of influenza in 56 and 43% of the cities, respectively. The MP and the DP weather types exhibit similar close positive correlations with influenza infection incidences, indicating that both cold-dry and cold-moist air provide favorable conditions for the occurrence of influenza in the cold seasons. Additionally, when tropical weather types are present, the humid (MT) and the dry (DT) weather types have similar strong impacts to inhibit the occurrence of influenza. These findings suggest that temperature is a more dominating atmospheric factor than moisture that impacts the occurrences of influenza in cold seasons.

  17. Exploring the role of fire, succession, climate, and weather on landscape dynamics using comparative modeling

    Treesearch

    Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan; Russell A. Parsons; Ian D. Davies; Karen J. King; Chao Li; Ross A. Bradstock; Malcolm Gill

    2013-01-01

    An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide...

  18. Influence of meteorological elements on balance control and pain in patients with symptomatic knee osteoarthritis

    NASA Astrophysics Data System (ADS)

    Peultier, Laetitia; Lion, Alexis; Chary-Valckenaere, Isabelle; Loeuille, Damien; Zhang, Zheng; Rat, Anne-Christine; Gueguen, René; Paysant, Jean; Perrin, Philippe P.

    2017-05-01

    This study aimed to determine if pain and balance control are related to meteorological modifications in patients with knee osteoarthritis (OA). One hundred and thirteen patients with knee OA (mean age = 65 ± 9 years old, 78 women) participated in this study. Static posturography was performed, sway area covered and sway path traveled by the center of foot pressure being recorded under six standing postural conditions that combine three visual situations (eyes open, eyes closed, vision altered) with two platform situations (firm and foam supports). Knee pain score was assessed using a visual analog scale. Balance control and pain measurements recorded in the morning were correlated with the meteorological data. Morning and daily values for temperature, precipitation, sunshine, height of rain in 1 h, wind speed, humidity, and atmospheric pressure were obtained from the nearest data collecting weather station. The relationship between postural control, pain, and weather variations were assessed for each patient on a given day with multiple linear regressions. A decrease of postural stability was observed when atmospheric pressure and maximum humidity decreased in the morning ( p < 0.05) and when atmospheric pressure decreased within a day ( p < 0.05). Patient's knee pain was more enhanced when it is warmer in the morning ( p < 0.05) and when it is wetter and warmer within a day ( p < 0.05). The relationship between weather, pain, and postural control can help patients and health professionals to better manage daily activities.

  19. Assessing Weather Curiosity in University Students

    NASA Astrophysics Data System (ADS)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of trait curiosity about the weather using the Weather Curiosity Scale (WCS). The measure consists of 15 self-report items that describe weather preferences and/or behaviors that people may perform more or less frequently. The author reports on two initial studies of the WCS that have used the responses of 710 undergraduate students from a large university in the southeastern United States. In the first study, factor analysis of the 15 items indicated that the measure was unidimensional - suggesting that its items singularly assessed weather curiosity. The WCS also was internally consistent as evidenced by an acceptable Cronbach's alpha, a = .81). The second study sought to identify other personality variables that may relate with the WCS scores and thus illuminate the nature of weather curiosity. Several clusters of personality variables appear to underlie the curiosity levels people exhibited, the first of which related to perceptual curiosity (r = .59). Being curious about sights, sounds, smells, and textures generally related somewhat to curiosity about weather. Two measures of trait sensitivity to environmental stimulation, the Highly Sensitive Person Scale (r = .47) and the Orientation Sensitivity Scale of the Adult Temperament Questionnaire (r = .43), also predicted weather curiosity levels. Finally, possessing extraverted personality traits (r = .34) and an intense style of experiencing one's emotions (r = .33) related to weather curiosity. How can this measure be used in K-12 or post-secondary settings to further climate literacy? First, the WCS can identify students with natural curiosities about weather and climate so these students may be given more challenging instruction that will leverage their natural interests. Second, high-WCS students may function as weather and climate ambassadors during inquiry-based learning activities and thus help other students who are not as oriented to the atmosphere. Finally the results of this study reveal some of the underlying psychological mechanisms that are associated with weather curiosity. Building greater perceptual curiosity or increasing perceptual sensitivity and discrimination skills may make it possible to increase students' levels of weather curiosity.

  20. Co-evolution of Climate, Soil, and Vegetation and their interplay with Hydrological Partitioning at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Zapata-Rios, X.; Brooks, P. D.; Troch, P. A. A.; McIntosh, J. C.

    2014-12-01

    Landscape, climate, and vegetation interactions play a fundamental role in controlling the distribution of available water in hillslopes and catchments. In mid-latitudes, terrain aspect can regulate surface and subsurface hydrological processes, which not only affect the partitioning of energy and precipitation on short time scales, but also soil development, vegetation characteristics on long time scales. In Redondo Peak in northern New Mexico, a volcanic resurgent dome, first order streams drain different slopes around the mountain. In this setting, we study three adjacent first order catchments that share similar physical characteristics, but drain different aspects, allowing for an empirical study of how topographically controlled microclimate and soil influence the integrated hydrological and vegetation response. From 2008 to 2012, catchments were compared for the way they partition precipitation and how vegetation responds to variable water fluxes. Meteorological variables were monitored in 5 stations around Redondo Peak and surface runoff was monitored at the catchments' outlets. Hydrological partitioning at the catchment scale was estimated with the Horton Index, defined as the ratio between vaporization and wetting and it represents a measure of catchment-scale vegetation water use. Vegetation response was estimated using remotely sensed vegetation greenness (NDVI) derived from MODIS every 16 days with a spatial resolution of 250 m. Results show that the predominantly north facing catchment has the largest and least variable baseflow and discharge, consistent with greater mineral weathering fluxes and longer water transit times. In addition, vaporization, wetting and Horton Index, as well as NDVI, are smaller in the north facing catchment compared to the south east facing catchments. The predominant terrain aspect controls soil development, which affects the partitioning of precipitation and vegetation response at the catchment scale. These results also demonstrate how landscape evolution (e.g. depth of weathering profile) can affect various hydrologic processes, including streamflow response to precipitation and water residence time. In turn these processes are first-order controls on the sensitivity of the landscape to land use and climate change.

  1. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa

    PubMed Central

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-01-01

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region. PMID:28290474

  2. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa.

    PubMed

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-03-14

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth's climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region.

  3. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal

    USGS Publications Warehouse

    Tank, Suzanne; Frey, Karen E.; Striegl, Robert G.; Raymond, Peter A.; Holmes, R. Max; McClelland, James W.; Peterson, Bruce J.

    2012-01-01

    While much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3-) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3-. We explored landscape-level controls on DOC and HCO3- flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3- flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3- yields, while increasing permafrost extent was associated with decreases in HCO3-. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.

  4. Trace fossils, sedimentary facies and parasequence architecture from the Lower Cretaceous Mulichinco Formation of Argentina: The role of fair-weather waves in shoreface deposits

    NASA Astrophysics Data System (ADS)

    Wesolowski, Lindsey J. N.; Buatois, Luis A.; Mángano, M. Gabriela; Ponce, Juan José; Carmona, Noelia B.

    2018-05-01

    Shorefaces can display strong facies variability and integration of sedimentology and ichnology provides a high-resolution model to identify variations among strongly storm-dominated (high energy), moderately storm-affected (intermediate energy), and weakly storm-affected (low energy) shoreface deposits. In addition, ichnology has proved to be of help to delineate parasequences as trace-fossil associations are excellent indicators of environmental conditions which typically change along the depositional profile. Shallow-marine deposits and associated ichnofaunas from the Mulichinco Formation (Valanginian, Lower Cretaceous) in Puerta Curaco, Neuquén Basin, western Argentina, were analyzed to evaluate stress factors on shoreface benthos and parasequence architecture. During storm-dominated conditions, the Skolithos Ichnofacies prevails within the offshore transition and lower shoreface represented by assemblages dominated by Thalassinoides isp. and Ophiomorpha irregulaire. Under weakly storm-affected conditions, the Cruziana Ichnofacies is recognized, characterized by assemblages dominated by Thalassinoides isp. and Gyrochorte comosa in the offshore transition, and by Gyrochorte comosa within the lower shoreface. Storm-influenced conditions yield wider ichnologic variability, showing elements of both ichnofacies. Storm influence on sedimentation is affected by both allogenic (e.g. tectonic subsidence, sea-level, and sediment influx) and autogenic (e.g. hydrodynamic) controls at both parasequence and intra-parasequence scales. Four distinct types of parasequences were recognized, strongly storm-dominated, moderately storm-affected, moderately storm-affected - strongly fair-weather reworked, and weakly storm-affected, categorized based on parasequence architectural variability derived from varying degrees of storm and fair-weather wave influence. The new type of shoreface described here, the moderately storm-affected - strongly fair-weather reworked shoreface, features storm deposits reworked thoroughly by fair-weather waves. During fair-weather wave reworking, elements of the Cruziana Ichnofacies are overprinted upon relict elements of the Skolithos Ichnofacies from previous storm induced deposition. This type of shoreface, commonly overlooked in past literature, expands our understanding of the sedimentary dynamics and stratigraphic architecture in a shoreface susceptible to various parasequence and intra-parasequence scale degrees of storm and fair-weather wave influence.

  5. Silicon isotopes fractionation in meteoric chemical weathering and hydrothermal alteration systems of volcanic rocks (Mayotte)

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Puyraveau, Romain-Arnaud; Guihou, Abel; Haurine, Frederic; Deschamps, Pierre; rad, Setareh; Nehlig, Pierre

    2017-04-01

    Low temperature chemical weathering fractionates silicon (Si) isotopes while forming secondary silicates. The Si fractionation ranges of high temperature secondary phyllosilicates formed in hydrothermal alteration environments have not been investigated to date. Several parameters, including temperature, reaction rates, pH, ionic concentrations in solution, precipitation/dissolution series or kinetic versus equilibrium regime are not the same in hydrothermal alteration and surface weathering systems and may lead to different fractionation factors. In this work, we analyzed Si isotopes in these two types of alteration conditions in two profiles sampled on the volcanic island of Mayotte. In both profiles, Si-bearing secondary mineral was kaolinite. Both profiles showed 30Si depletion as a function of the degree of alteration but each with a distinct pattern. In the meteoric weathering profile, from the bottom to the top, a gradual decrease of the δ30Si from parent rock (-0.29 ± 0.13 ‰) towards the most weathered product (-2.05 ± 0.13 ‰) was observed. In the hydrothermal alteration profile, in which meteoric weathering was also superimposed at the top of the profile, an abrupt transition of the δ30Si was measured at the interface between parent-rock (-0.21 ± 0.11 ‰) and the altered products, with a minimum value of -3.06 ± 0.16 ‰˙ At the scale of Si-bearing secondary minerals, in the chemical weathering system, a Δ30Sikaol-parentrock of -1.9 ‰ was observed, in agreement with results in the literature. A low temperature kinetic fractionation 30ɛ of -2.29 ‰ was calculated using a simple steady state model. However, an unexpected Δ30Sikaol-parentrock of -2.85 ‰ was measured in the hydrothermal alteration site, pointing to possible mechanisms linked to dissolution/precipitation series and/or to ionic composition of the solution as the main controlling factors of fractionation in hydrothermal conditions. At the scale of the profiles, both δ30Si bulk rocks showed linear correlations with the SiO2:Al2O3 ratios, suggesting an alternative alteration index based on Si isotopic composition.

  6. The Evolution of Land Plants and the Silicate Weathering Feedback

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Caves Rugenstein, J. K.; Bachan, A.; Baresch, A.; Lau, K. V.; Thomas, D.; Lee, J. E.; Boyce, C. K.; Chamberlain, C. P.

    2017-12-01

    It has long been recognized that the advent of vascular plants in the Paleozoic must have changed silicate weathering and fundamentally altered the long-term carbon cycle. Efforts to quantify these effects have been formulated in carbon cycle models that are, in part, calibrated by weathering studies of modern plant communities. In models of the long-term carbon cycle, plants play a key role in controlling atmospheric CO2, particularly in the late Paleozoic. We test the impact of some established and recent theories regarding plant-enhanced weathering by coupling a one-dimensional vapor transport model to a reactive transport model of silicate weathering. In this coupled model, we evaluate consequences of plant evolutionary innovation that have not been mechanistically incorporated into most existing models: 1) the role of evolutionary shifts in plant transpiration in enhancing silicate weathering by increasing downwind transport and recycling of water vapor to continental interiors; 2) the importance of deeply-rooted plants and their associated microbial communities in increasing soil CO2 and weathering zone length scales; and, 3) the cumulative effect of these processes. Our modeling approach is framed by energy/supply constraints calibrated for minimally vegetated-, vascular plant forested-, and angiosperm-worlds. We find that the emergence of widespread transpiration and associated inland vapor recycling approximately doubles weathering solute concentrations when deep-rooted vascular plants (Devonian-Carboniferous) fully replace a minimally vegetated (pre-Devonian) world. The later evolution of angiosperms (Cretaceous and Cenozoic) and subsequent increase in transpiration fluxes increase weathering solute concentrations by approximately an additional 20%. Our estimates of the changes in weatherability caused by land plant evolution are of a similar magnitude, but explained with new process-based mechanisms, than those used in existing carbon cycle models. We suggest a feedback where the increase in solute concentrations is compensated by a decrease in runoff and temperature, permitting lower steady-state atmospheric pCO2. Consequently, plants have increased the strength of the climatic feedback on silicate weathering since the late Paleozoic.

  7. Life on rock. Scaling down biological weathering in a new experimental design at Biosphere-2

    NASA Astrophysics Data System (ADS)

    Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Chorover, J.; Maier, R.; Perdrial, J. N.

    2012-12-01

    Biological colonization and weathering of bedrock on Earth is a major driver of landscape and ecosystem development, its effects reaching out into other major systems such climate and geochemical cycles of elements. In order to understand how microbe-plant-mycorrhizae communities interact with bedrock in the first phases of mineral weathering we developed a novel experimental design in the Desert Biome at Biosphere-2, University of Arizona (U.S.A). This presentation will focus on the development of the experimental setup. Briefly, six enclosed modules were designed to hold 288 experimental columns that will accommodate 4 rock types and 6 biological treatments. Each module is developed on 3 levels. A lower volume, able to withstand the weight of both, rock material and the rest of the structure, accommodates the sampling elements. A middle volume, houses the experimental columns in a dark chamber. A clear, upper section forms the habitat exposed to sunlight. This volume is completely sealed form exterior and it allows a complete control of its air and water parameters. All modules are connected in parallel with a double air purification system that delivers a permanent air flow. This setup is expected to provide a model experiment, able to test important processes in the interaction rock-life at grain-to- molecular scale.

  8. Coupled hydrological and geochemical process evolution at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, P. A. A.

    2015-12-01

    Predictions of hydrologic and biogeochemical responses to natural and anthropogenic forcing at the landscape scale are highly uncertain due to the effects of heterogeneity on the scaling of reaction, flow and transport phenomena. The physical, chemical and biological structures and processes controlling reaction, flow and transport in natural landscapes interact at multiple space and time scales and are difficult to quantify. The current paradigm of hydrological and geochemical theory is that process descriptions derived from observations at small scales in controlled systems can be applied to predict system response at much larger scales, as long as some 'equivalent' or 'effective' values of the scale-dependent parameters can be identified. Furthermore, natural systems evolve in time in a way that is hard to observe in short-run laboratory experiments or in natural landscapes with unknown initial conditions and time-variant forcing. The spatial structure of flow pathways along hillslopes determines the rate, extent and distribution of geochemical reactions (and biological colonization) that drive weathering, the transport and precipitation of solutes and sediments, and the further evolution of soil structure. The resulting evolution of structures and processes, in turn, produces spatiotemporal variability of hydrological states and flow pathways. There is thus a need for experimental research to improve our understanding of hydrology-biogeochemistry interactions and feedbacks at appropriate spatial scales larger than laboratory soil column experiments. Such research is complicated in real-world settings because of poorly constrained impacts of initial conditions, climate variability, ecosystems dynamics, and geomorphic evolution. The Landscape Evolution Observatory (LEO) at Biosphere 2 offers a unique research facility that allows real-time observations of incipient hydrologic and biogeochemical response under well-constrained initial conditions and climate forcing. The LEO allows to close the water, carbon and energy budgets at hillslope scales, thereby enabling elucidation of the tight coupling between the time water spends along subsurface flow paths and geochemical weathering reactions, including the feedbacks between flow and pedogenesis.

  9. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dontsova, K.; Steefel, C.I.; Desilets, S.

    2009-07-15

    A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled tomore » reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.« less

  10. Estimation of climate change impact on dead fuel moisture at local scale by using weather generators

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Bortolu, Sara; Dubrovsky, Martin; Arca, Bachisio; Ventura, Andrea; Duce, Pierpaolo

    2015-04-01

    The moisture content of dead fuel is an important variable in fire ignition and fire propagation. Moisture exchange in dead materials is controlled by physical processes, and is clearly dependent on atmospheric changes. According to projections of future climate in Southern Europe, changes in temperature, precipitation and extreme events are expected. More prolonged drought seasons could influence fuel moisture content and, consequently, the number of days characterized by high ignition danger in Mediterranean ecosystems. The low resolution of the climate data provided by the general circulation models (GCMs) represents a limitation for evaluating climate change impacts at local scale. For this reason, the climate research community has called to develop appropriate downscaling techniques. One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking a stochastic weather generator with the climate model outputs. Weather generators linked to climate change scenarios can therefore be used to create synthetic weather series (air temperature and relative humidity, wind speed and precipitation) representing present and future climates at local scale. The main aims of this work are to identify useful tools to determine potential impacts of expected climate change on dead fuel status in Mediterranean shrubland and, in particular, to estimate the effect of climate changes on the number of days characterized by critical values of dead fuel moisture. Measurements of dead fuel moisture content (FMC) in Mediterranean shrubland were performed by using humidity sensors in North Western Sardinia (Italy) for six years. Meteorological variables were also recorded. Data were used to determine the accuracy of the Canadian Fine Fuels Moisture Code (FFM code) in modelling moisture dynamics of dead fuel in Mediterranean vegetation. Critical threshold values of FFM code for Mediterranean climate were identified by percentile analysis, and new fuel moisture code classes were also defined. A stochastic weather generator (M&Rfi), linked to climate change scenarios derived from 17 available General Circulation Models (GCMs), was used to produce synthetic weather series, representing present and future climates, for four selected sites located in North Western Sardinia, Italy. The number of days with critical FFM code values for present and future climate were calculated and the potential impact of future climate change was analysed.

  11. The role of rock moisture on regulating hydrologic and solute fluxes in the critical zone

    NASA Astrophysics Data System (ADS)

    Rempe, D. M.; Druhan, J. L.; Hahm, W. J.; Wang, J.; Murphy, C.; Cargill, S.; Dietrich, W. E.; Tune, A. K.

    2017-12-01

    In environments where the vadose zone extends below the soil layer into underlying weathered bedrock, the water held in the weathering -generated pores can be an important source of moisture to vegetation. The heterogeneous distribution of pore space in weathered bedrock, furthermore, controls the subsurface water flowpaths that dictate how water is partitioned in the critical zone (CZ) and evolves geochemically. Here, we present the results of direct monitoring of the fluxes of water and solutes through the deep CZ using a novel vadose zone monitoring system (VMS) as well as geophysical logging and sampling in a network of deep wells across a steep hillslope in Northern California. At our study site (Eel River CZO), multi-year monitoring reveals that a significant fraction of incoming rainfall (up to 30%) is seasonally stored in the fractures and matrix of the upper 12 m of weathered bedrock as rock moisture. Intensive geochemical and geophysical observations distributed from the surface to the depth of unweathered bedrock indicate that the seasonal addition and depletion of rock moisture has key implications for hydrologic and geochemical processes. First, rock moisture storage provides an annually consistent water storage reservoir for use by vegetation during the summer, which buffers transpiration fluxes against variability in seasonal precipitation. Second, because the timing and magnitude of groundwater recharge and streamflow are controlled by the annual filling and drainage of the rock moisture, rock moisture regulates the partitioning of hydrologic fluxes. Third, we find that rock moisture dynamics—which influence the myriad geochemical and microbial processes that weather bedrock—strongly correspond with the observed vertical weathering profile. As a result of the coupling between chemical weathering reactions and hydrologic fluxes, the geochemical composition of groundwater and streamflow is influenced by the temporal dynamics of rock moisture. Our findings highlight the strong influence of water transport and storage dynamics in the weathered bedrock beneath the soil layer on catchment-scale hydrologic and geochemical fluxes, and underscore the need for further exploration of the fractured bedrock vadose zones common to many upland landscapes.

  12. Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon.

    PubMed

    Preisler, Haiganoush K; Hicke, Jeffrey A; Ager, Alan A; Hayes, Jane L

    2012-11-01

    Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process models that simulate climate suitability for mountain pine beetle outbreaks have advanced our understanding of beetle population dynamics; however, there are few studies that have assessed their accuracy across multiple outbreaks or at larger spatial scales. This study used the observed number of trees killed by mountain pine beetles per square kilometer in Oregon and Washington, USA, over the past three decades to quantify and assess the influence of climate and weather variables on beetle activity over longer time periods and larger scales than previously studied. Influences of temperature and precipitation in addition to process model output variables were assessed at annual and climatological time scales. The statistical analysis showed that new attacks are more likely to occur at locations with climatological mean August temperatures >15 degrees C. After controlling for beetle pressure, the variables with the largest effect on the odds of an outbreak exceeding a certain size were minimum winter temperature (positive relationship) and drought conditions in current and previous years. Precipitation levels in the year prior to the outbreak had a positive effect, possibly an indication of the influence of this driver on brood size. Two-year cumulative precipitation had a negative effect, a possible indication of the influence of drought on tree stress. Among the process model variables, cold tolerance was the strongest indicator of an outbreak increasing to epidemic size. A weather suitability index developed from the regression analysis indicated a 2.5x increase in the odds of outbreak at locations with highly suitable weather vs. locations with low suitability. The models were useful for estimating expected amounts of damage (total area with outbreaks) and for quantifying the contribution of climate to total damage. Overall, the results confirm the importance of climate and weather on the spatial expansion of bark beetle outbreaks over time.

  13. Assessing Individual Weather Risk-Taking and Its Role in Modeling Likelihood of Hurricane Evacuation

    NASA Astrophysics Data System (ADS)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of perceived risk of different severe and extreme weather conditions using a new self-report measure, the Weather Risk-Taking Scale (WRTS). For 32 severe and extreme situations in which people could perform an unsafe behavior (e. g., remaining outside with lightning striking close by, driving over roadways covered with water, not evacuating ahead of an approaching hurricane, etc.), people rated: 1.their likelihood of performing the behavior, 2. The perceived risk of performing the behavior, 3. the expected benefits of performing the behavior, and 4. whether the behavior has actually been performed in the past. Initial development research with the measure using 246 undergraduate students examined its psychometric properties and found that it was internally consistent (Cronbach's a ranged from .87 to .93 for the four scales) and that the scales possessed good temporal (test-retest) reliability (r's ranged from .84 to .91). A second regression study involving 86 undergraduate students found that taking weather risks was associated with having taken similar risks in one's past and with the personality trait of sensation-seeking. Being more attentive to the weather and perceiving its risks when it became extreme was associated with lower likelihoods of taking weather risks (overall regression model, R2adj = 0.60). A third study involving 334 people examined the contributions of weather risk perceptions and risk-taking in modeling the self-reported likelihood of complying with a recommended evacuation ahead of a hurricane. Here, higher perceptions of hurricane risks and lower perceived benefits of risk-taking along with fear of severe weather and hurricane personal self-efficacy ratings were all statistically significant contributors to the likelihood of evacuating ahead of a hurricane. Psychological rootedness and attachment to one's home also tend to predict lack of evacuation. This research highlights the contributions that a psychological approach can offer in understanding preparations for severe weather. This approach also suggests that a great deal of individual variation exists in weather-protective behaviors, which may explain in part why some people take weather-related risks despite receiving warnings for severe weather.

  14. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soilmore » erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.« less

  15. Mesocosm-Scale Experimental Quantification of Plant-Fungi Associations on Carbon Fluxes and Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Andrews, M. Y.; Palmer, B.; Leake, J. R.; Banwart, S. A.; Beerling, D. J.

    2009-12-01

    The rise of land plants in the Paleozoic is classically implicated as driving lower atmospheric CO2 levels through enhanced weathering of Ca and Mg bearing silicate minerals. However, this view overlooks the fact that plants coevolved with associated mycorrhizal fungi over this time, with many of the weathering processes usually ascribed to plants actually being driven by the combined activities of roots and mycorrhizal fungi. Here we present initial results from a novel mesocosm-scale laboratory experiment designed to allow investigation of plant-driven carbon flux and mineral weathering at different soil depths under ambient (400 ppm) and elevated (1500 ppm) atmospheric CO2. Four species of plants were chosen to address evolutionary trends in symbiotic mycorrhizal association and rooting depth on biologically driven silicate weathering under the different CO2 regimes. Gymnosperms were used to investigate potential differences in weathering capabilities of two fungal symbioses: Sequoia sempervirens and Metasequoia glyptostroboides (arbuscular mycorrhizal, AM) and Pinus sylvestris (ectomycorrhizal, EM), and the shallow rooted ancient fern, Osmunda regalis, used to provide a contrast to the three more deeply rooted trees. Plants were grown in a cylindrical mesocosm with four horizontal inserts at each depth. These inserts are a mesh-covered dual-core unit whereby an inner core containing silicate minerals can be rotated within an outer core. The mesh excludes roots from the cylinders allowing fungal-rock pairings to be examined at each depth. Each core contains either basalt or granite, each with severed (rotated cores) or intact (static cores) mycorrhizae. This system provides a unique opportunity to examine the ability of a plant to weather minerals with and without its symbiotic fungi. Preliminary results indicate marked differences in nutritional and water requirements, and response to elevated CO2 between the species. The bulk solution chemistries (pH, conductivity, and geochemistry) are very different from each other, and from the plant-free controls. 14C labelling of the above-ground shoots indicates preferential allocation of photosynthate to fungal partners associated with basalt as compared to granite. Ongoing measurements will characterize the effects of fungal colonization on basalt and granite weathering in these systems. The novel ability to simultaneously measure biological and geochemical processes with depth allows us to better understand the role of plant and fungal evolution in the shaping Earth’s CO2 history.

  16. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Meg A. Krawchuck; Mike D. Flannigan; Lynn M. Bowman; Max A. Moritz

    2011-01-01

    In the boreal forest of North America, as in any fire-prone biome, three environmental factors must coincide for a wildfire to occur: an ignition source, flammable vegetation, and weather that is conducive to fire. Despite recent advances, the relative importance of these factors remains the subject of some debate. The aim of this study was to develop models that...

  17. The weather and Climate: emergent laws and multifractal cascades

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.

    2016-12-01

    In the atmosphere, nonlinear terms are typically about a trillion times larger than linear ones; we anticipate the emergence of high level turbulence laws. The classical turbulence laws were restricted to homogeneous and isotropic systems; to apply them to the atmosphere they must be generalized to account for strong anisotropy (especially stratification) and variability (intermittency). Over the last 30 years, using scaling symmetry principles and multifractal cascades, this has been done. While hitherto they were believed applicable only up to ≈ 100 m, (generalized) turbulence laws now anisotropic and multifractal, they cover spatial scales up planetary in extent and in time well beyond weather scales to include the climate. These higher level laws are stochastic in nature and provide the theoretical basis both for stochastic parametrizations as well as stochastic forecasting. In the time domain the emergent laws for fluctuations DT (for example in temperature T) have means T > ≈ DtH i.e. they are scaling (power laws) in the time interval Dt. We find find exponents H>0 (fluctuations increase with scale) up to ≈ Dt ≈10 days (the lifetime of planetary scale structures, the analogous transition in the ocean is at Dt ≈ 1 year on Mars it is Dt ≈ 2 sols). At larger Dt, there is a transition to a new "macroweather" regime with H<0: successive fluctuations tend cancel each; at Dt >≈30 years (anthropocene; larger in the pre-industrial epoch), new climate processes begin to dominate, leading to H>0. "The climate is what you expect, the weather is what you get": the climate is thought to be a kind of "average weather". However this "expected" behavior is macroweather, not the climate. On the contrary, the climate is the new even lower frequency regime at scales Dt> 30 yrs and it has statistical properties very similar to the weather. At these scales, "macroweather is what you expect, the climate is what you get". The scaling in the macroweather regime implies that there is a long-term memory. We show how the memory can be exploited for more accurate monthly, seasonal, interannual and decadal forecasts. For a review, see Lovejoy, S., D. Schertzer, 2013: The weather and Climate: emergent laws and multifractal cascades, 496pp, Cambridge U. Press.

  18. Subject Matter Expert Evaluation of Multi-Flight Common Route Advisories

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl; Hayashi, Miwa; Sheth, Kapil S.

    2017-01-01

    Traffic flow management seeks to balance the demand for National Airspace System (NAS) flight resources, such as airspace and airports, with the available supply. When forecasted weather blocks nominal air traffic routes, traffic managers must re-route affected flights for weather avoidance. Depending on the nature and scope of the weather, traffic managers may use pre-coordinated re-routes such as Playbook Routes or Coded Departure Routes, or may design ad hoc local re-routes. The routes of affected flights are modified accordingly. These weather avoidance routes will, of course, be less efficient than the nominal routes due to increased flight time and fuel burn. In current traffic management operations, the transition into a weather avoidance re-routing initiative is typically implemented more aggressively than the transition out of that initiative after the weather has dissipated or moved away. For example, strategic large-scale Playbook re-routes are sometimes left in place (as initially implemented) for many hours before being lifted entirely when the weather dissipates. There is an opportunity to periodically modify the re-routing plan as weather evolves, thereby attenuating its adverse impact on flight time and fuel consumption; this is called delay recovery. Multi-Flight Common Routes (MFCR) is a NASA-developed operational concept and associated decision support tool for delay recovery, designed to assist traffic managers to efficiently update weather avoidance traffic routes after the original re-routes have become stale due to subsequent evolution of the convective weather system. MFCR groups multiple flights to reduce the number of advisories that the traffic manager needs to evaluate, and also merges these flights on a common route segment to provide an orderly flow of re-routed traffic. The advisory is presented to the appropriate traffic manager who evaluates it and has the option to modify it using MFCRs graphical user interface. If the traffic manager finds the advisory to be operationally appropriate, he or she would coordinate with the Area Supervisor(s) of the sectors that currently control the flights in the advisory. When the traffic manager accepts the MFCR advisory via the user interface, the corresponding flight plan amendments would be sent to the displays of the appropriate sector controllers, using the Airborne Re-Routing (ABRR) capability which is scheduled for nationwide operation in 2017. The sector controllers would then offer this time-saving route modification to the pilots of the affected flights via datalink (or voice), and implement the corresponding flight plan amendment if the pilots accept it. MFCR is implemented as an application in the software environment of the Future Air traffic management Concepts Evaluation Tool (FACET). This paper focuses on an initial subject matter expert (SME) evaluation of MFCR. The evaluation covers MFCRs operational concept, algorithm, and user interface.

  19. Evaluating the accuracy of VEMAP daily weather data for application in crop simulations on a regional scale

    USDA-ARS?s Scientific Manuscript database

    Weather plays a critical role in eco-environmental and agricultural systems. Limited availability of meteorological records often constrains the applications of simulation models and related decision support tools. The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) provides daily weather...

  20. Convective scale weather analysis and forecasting

    NASA Technical Reports Server (NTRS)

    Purdom, J. F. W.

    1984-01-01

    How satellite data can be used to improve insight into the mesoscale behavior of the atmosphere is demonstrated with emphasis on the GOES-VAS sounding and image data. This geostationary satellite has the unique ability to observe frequently the atmosphere (sounders) and its cloud cover (visible and infrared) from the synoptic scale down to the cloud scale. These uniformly calibrated data sets can be combined with conventional data to reveal many of the features important in mesoscale weather development and evolution.

  1. Fixing the Sky: Why the History of Climate Engineering Matters (Invited)

    NASA Astrophysics Data System (ADS)

    Fleming, J. R.

    2010-12-01

    What shall we do about climate change? Is a planetary-scale technological fix possible or desirable? The joint AMS and AGU “Policy Statement on Geoengineering the Climate System” (2009) recommends “Coordinated study of historical, ethical, legal, and social implications of geoengineering that integrates international, interdisciplinary, and intergenerational issues and perspectives and includes lessons from past efforts to modify weather and climate.” I wrote Fixing the Sky: The Checkered History of Weather and Climate Control (Columbia University Press, 2010) with this recommendation in mind, to be fully accessible to scientists, policymakers, and the general public, while meeting or exceeding the scholarly standards of history. It is my intent, with this book, to bring history to bear on public policy issues.

  2. How accurate are the weather forecasts for Bierun (southern Poland)?

    NASA Astrophysics Data System (ADS)

    Gawor, J.

    2012-04-01

    Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why are some weather elements easier to verify than others? 5) What factors may contribute to the quality of the weather forecast?

  3. Extratropical Cyclogenesis and Frontal Waves on Mars: Influences on Dust, Weather and the Planet's climate

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, Melinda A.

    2012-01-01

    Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  4. Influence of Diffuse Radiation and Its Timescale Effects on Gross Primary Productivity in a Mid-subtropical Planted Coniferous Forest Ecosystem.

    NASA Astrophysics Data System (ADS)

    Han, J.; Zhang, L.; Li, S.

    2017-12-01

    The mid-subtropical forests in East Asia monsoon zone act as an important carbon sink. Planted coniferous forests are important vegetation types in this area. However, we lack an in-depth understanding of both controlling mechanisms of environmental and biotic factors in gross primary productivity (GPP) and their timescale effects. Based on eddy covariance carbon flux data and micro-meteorological data (2003-2015) observed at a mid-subtropical planted coniferous forest in Qianyanzhou, along with leaf area index derived from MODIS products, we used the path analysis mothed to quantify standardized total effects (STE) of environmental factors on GPP and their variabilities at different timescales. We found that GPP was mainly affected by photosynthetically active radiation (PAR) at half-hour scale. Furthermore, GPP under cloudy weather conditions was greater than under sunny weather conditions across seasons. From daily to yearly scales, PAR had the positive STE with GPP, but such STE was gradually reduced toward yearly scale; diffuse radiation or air temperature had the positive STE with GPP at daily and monthly scales, while negative STE occurred at seasonal and yearly scales. Vapor pressure deficit exhibited the negative STE with GPP at all timescales, and such STE increased gradually toward the yearly scale. Therefore, on one hand, GPP was controlled by light conditions, but on the other hand, high air temperature in summer and water availability had a significant restraining effect over GPP, and such effect increased with the timescales from day to year. Based on the simulation results by the light use efficiency (LUE) model, it indicated that modelled GPP agreed well with the measurements when the influence of the seasonal variations of LUE and diffuse radiation were incorporated into the model, especially at the yearly scale. This further indicated that diffuse radiation, together with changes in air temperature and water supply, had a significant effect on the variations of yearly GPP.

  5. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    PubMed Central

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  6. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.

  7. Spatial variability of characteristics and origins of urban wet weather pollution in combined sewers.

    PubMed

    Kafi-Benyahia, M; Gromaire, M G; Chebbo, G

    2005-01-01

    An experimental on-site observatory of urban pollutant loads in combined sewers was created in the centre of Paris to quantify and characterise the dry and wet weather flow in relation to spatial scale. Eight rainfall events were studied from April 2003 to May 2004. Samples were analysed for suspended solids, organic matter, nitrogen and heavy metals. Results confirm the extent of wet weather pollution. They have shown the relative homogeneity of SS and organic matter characteristics from one urban catchment area to another. Two groups of heavy metals were identified. The first one concerns Cu, which has a higher concentration in wet weather flow (WWF) than in dry weather flow (DWF), and runoff. The second includes Cd, Pb and Zn, where higher concentrations were measured in urban runoff than in WWF and DWF. A first evaluation of contribution of wastewater, urban runoff and sewer deposit erosion sources to wet weather pollution was established and has highlighted the contribution of wastewater and sewer deposits to this pollution. However, it has shown that sewer deposit erosion remains an important source of wet weather pollution at different spatial scales.

  8. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2

    USGS Publications Warehouse

    Sundquist, E.T.

    1991-01-01

    Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.

  9. TRACON controller weather information needs : I. literature review.

    DOT National Transportation Integrated Search

    2003-01-01

    This report is the first in a series on the use of weather information by Terminal Radar Approach Control (TRACON) controllers and weather displays for the cockpit. The document provides a literature review with an emphasis on research relating to th...

  10. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guohui; Um, Wooyong; Wang, Zheming

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitatedmore » as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.« less

  11. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments.

    PubMed

    Wang, Guohui; Um, Wooyong; Wang, Zheming; Reinoso-Maset, Estela; Washton, Nancy M; Mueller, Karl T; Perdrial, Nicolas; O'Day, Peggy A; Chorover, Jon

    2017-10-03

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO 2 )(PO 4 )·3H 2 O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K 2 (UO 2 ) 6 O 4 (OH) 6 ·7H 2 O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10 -12 mol g -1 s -1 . In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10 -10 mol g -1 s -1 . The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  12. Session on techniques and resources for storm-scale numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Droegemeier, Kelvin

    1993-01-01

    The session on techniques and resources for storm-scale numerical weather prediction are reviewed. The recommendations of this group are broken down into three area: modeling and prediction, data requirements in support of modeling and prediction, and data management. The current status, modeling and technological recommendations, data requirements in support of modeling and prediction, and data management are addressed.

  13. Climatic and weather factors affecting fire occurrence and behavior

    Treesearch

    Randall P. Benson; John O. Roads; David R. Weise

    2009-01-01

    Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...

  14. Bridging the Gap Between the iLEAPS and GEWEX Land-Surface Modeling Communities

    NASA Technical Reports Server (NTRS)

    Bonan, Gordon; Santanello, Joseph A., Jr.

    2013-01-01

    Models of Earth's weather and climate require fluxes of momentum, energy, and moisture across the land-atmosphere interface to solve the equations of atmospheric physics and dynamics. Just as atmospheric models can, and do, differ between weather and climate applications, mostly related to issues of scale, resolved or parameterised physics,and computational requirements, so too can the land models that provide the required surface fluxes differ between weather and climate models. Here, however, the issue is less one of scale-dependent parameterisations.Computational demands can influence other minor land model differences, especially with respect to initialisation, data assimilation, and forecast skill. However, the distinction among land models (and their development and application) is largely driven by the different science and research needs of the weather and climate communities.

  15. Importance of scale, land cover, and weather on the abundance of bird species in a managed forest

    USGS Publications Warehouse

    Grinde, Alexis R.; Hiemi, Gerald J.; Sturtevant, Brian R.; Panci, Hannah; Thogmartin, Wayne E.; Wolter, Peter

    2017-01-01

    Climate change and habitat loss are projected to be the two greatest drivers of biodiversity loss over the coming century. While public lands have the potential to increase regional resilience of bird populations to these threats, long-term data are necessary to document species responses to changes in climate and habitat to better understand population vulnerabilities. We used generalized linear mixed models to determine the importance of stand-level characteristics, multi-scale land cover, and annual weather factors to the abundance of 61 bird species over a 20-year time frame in Chippewa National Forest, Minnesota, USA. Of the 61 species modeled, we were able to build final models with R-squared values that ranged from 26% to 69% for 37 species; the remaining 24 species models had issues with convergence or low explanatory power (R-squared < 20%). Models for the 37 species show that stand-level characteristics, land cover factors, and annual weather effects on species abundance were species-specific and varied within guilds. Forty-one percent of the final species models included stand-level characteristics, 92% included land cover variables at the 200 m scale, 51% included land cover variables at the 500 m scale, 46% included land cover variables at the 1000 m scale, and 38% included weather variables in best models. Three species models (8%) included significant weather and land cover interaction terms. Overall, models indicated that aboveground tree biomass and land cover variables drove changes in the majority of species. Of those species models including weather variables, more included annual variation in precipitation or drought than temperature. Annual weather variability was significantly more likely to impact abundance of species associated with deciduous forests and bird species that are considered climate sensitive. The long-term data and models we developed are particularly suited to informing science-based adaptive forest management plans that incorporate climate sensitivity, aim to conserve large areas of forest habitat, and maintain an historical mosaic of cover types for conserving a diverse and abundant avian assemblage.

  16. Integrating K-means Clustering with Kernel Density Estimation for the Development of a Conditional Weather Generation Downscaling Model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ho, C.; Chang, L.

    2011-12-01

    In previous decades, the climate change caused by global warming increases the occurrence frequency of extreme hydrological events. Water supply shortages caused by extreme events create great challenges for water resource management. To evaluate future climate variations, general circulation models (GCMs) are the most wildly known tools which shows possible weather conditions under pre-defined CO2 emission scenarios announced by IPCC. Because the study area of GCMs is the entire earth, the grid sizes of GCMs are much larger than the basin scale. To overcome the gap, a statistic downscaling technique can transform the regional scale weather factors into basin scale precipitations. The statistic downscaling technique can be divided into three categories include transfer function, weather generator and weather type. The first two categories describe the relationships between the weather factors and precipitations respectively based on deterministic algorithms, such as linear or nonlinear regression and ANN, and stochastic approaches, such as Markov chain theory and statistical distributions. In the weather type, the method has ability to cluster weather factors, which are high dimensional and continuous variables, into weather types, which are limited number of discrete states. In this study, the proposed downscaling model integrates the weather type, using the K-means clustering algorithm, and the weather generator, using the kernel density estimation. The study area is Shihmen basin in northern of Taiwan. In this study, the research process contains two steps, a calibration step and a synthesis step. Three sub-steps were used in the calibration step. First, weather factors, such as pressures, humidities and wind speeds, obtained from NCEP and the precipitations observed from rainfall stations were collected for downscaling. Second, the K-means clustering grouped the weather factors into four weather types. Third, the Markov chain transition matrixes and the conditional probability density function (PDF) of precipitations approximated by the kernel density estimation are calculated respectively for each weather types. In the synthesis step, 100 patterns of synthesis data are generated. First, the weather type of the n-th day are determined by the results of K-means clustering. The associated transition matrix and PDF of the weather type were also determined for the usage of the next sub-step in the synthesis process. Second, the precipitation condition, dry or wet, can be synthesized basing on the transition matrix. If the synthesized condition is dry, the quantity of precipitation is zero; otherwise, the quantity should be further determined in the third sub-step. Third, the quantity of the synthesized precipitation is assigned as the random variable of the PDF defined above. The synthesis efficiency compares the gap of the monthly mean curves and monthly standard deviation curves between the historical precipitation data and the 100 patterns of synthesis data.

  17. A dynamical systems approach to studying midlatitude weather extremes

    NASA Astrophysics Data System (ADS)

    Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide

    2017-04-01

    Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.

  18. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective

    NASA Astrophysics Data System (ADS)

    Schroeer, K.; Kirchengast, G.

    2018-06-01

    Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.

  19. A Multiscale Analysis of Upstream Precursors associated with High Impact Severe Weather Events across the Upper Midwest

    NASA Astrophysics Data System (ADS)

    Metz, N. D.; Cordeira, J. M.

    2014-12-01

    Between 30 June and 1 July 2011, a heavy-rain-producing mesoscale convective system (MCS) occurred over Lake Michigan. A second MCS subsequently occurred over Minnesota, Iowa, and Wisconsin on 1 July 2011 resulting in more than 200 severe weather reports. The antecedent large-scale flow evolution was strongly influenced by early-season tropical cyclones (TCs) Haima and Meari in the western North Pacific. The recurvature and subsequent interaction of these TCs with the extratropical large-scale flow was associated with Rossby wave train (RWT) amplification on 22-26 June 2011 over the western North Pacific and dispersion across North America on 28-30 June 2011. The RWT dispersion was associated with trough (ridge) development over western (central) North America at the time of MCS development over the Midwestern United States. This evolution of the large-scale flow and attendant meso-synoptic scale forcing for ascent were particularly conducive to heavy rainfall and severe weather as a surface-based mixed layer over the Intermountain Western United States was advected eastward, transitioning to an elevated mixed layer (EML) over the Midwestern United States. These two MCSs serve as motivation for a climatology of EML days and their relationship to severe weather over the Midwestern United States. The climatology illustrates that severe weather reports near Minneapolis, MN during the summer are twice as numerous on EML days as compared to normal. The increase in severe weather reports are primarily driven by more large hail and severe wind, which account for 95% of all severe weather reports on EML days. A time-lagged composite analysis indicates that RWT amplification over the central North Pacific and RWT dispersion across the eastern North Pacific and North American, as occurred prior to the 30 June-1 July period, is a common upstream precursor to EML days over the Midwestern United States. These results suggest that investigations of far upstream precursors to RWT amplification and dispersion over the North Pacific may be particularly useful in better understanding warm-season severe weather outbreaks over North America.

  20. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    NASA Astrophysics Data System (ADS)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any assimilation. Non-assimilated fields are improved as well (e.g., RMSE from 40% to 29% and R 0.1 to 0.5 improved in TCC). Similarly, the assimilation of other variables shows improvements in atmospheric fields. These findings indicate the potential to reconstruct historical weather for the last five centuries by assimilating available weather descriptions.

  1. North Atlantic weather regimes: A synoptic study of phase space. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Orrhede, Anna Karin

    1990-01-01

    In the phase space of weather, low frequency variability (LFV) of the atmosphere can be captured in a large scale subspace, where a trajectory connects consecutive large scale weather maps, thus revealing flow changes and recurrences. Using this approach, Vautard applied the trajectory speed minimization method (Vautard and Legras) to atmospheric data. From 37 winters of 700 mb geopotential height anomalies over the North Atlantic and the adjacent land masses, four persistent and recurrent weather patterns, interpreted as weather regimes, were discernable: a blocking regime, a zonal regime, a Greenland anticyclone regime, and an Atlantic regime. These regimes are studied further in terms of maintenance and transitions. A regime survey unveils preferences regarding event durations and precursors for the onset or break of an event. The transition frequencies between regimes vary, and together with the transition times, suggest the existence of easier transition routes. These matters are more systematically studied using complete synoptic map sequences from a number of events.

  2. Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices

    Treesearch

    Haiganoush K. Preisler; Shyh-Chin Chen; Francis Fujioka; John W. Benoit; Anthony L. Westerling

    2008-01-01

    The National Fire Danger Rating System indices deduced from a regional simulation weather model were used to estimate probabilities and numbers of large fire events on monthly and 1-degree grid scales. The weather model simulations and forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the Scripps Institution of Oceanography...

  3. Economic Value of Weather and Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Katz, Richard W.; Murphy, Allan H.

    1997-06-01

    Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects of weather prediction. Chapters by area specialists provide a comprehensive view of this timely topic. They encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behavior. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential text for economists, statisticians, and meteorologists.

  4. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

    USGS Publications Warehouse

    Bradford, J.B.

    2011-01-01

    Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  5. Large-Scale Traveling Weather Systems in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-10-01

    Between late fall and early spring, Mars’ middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  6. ESiWACE: A Center of Excellence for HPC applications to support cloud resolving earth system modelling

    NASA Astrophysics Data System (ADS)

    Biercamp, Joachim; Adamidis, Panagiotis; Neumann, Philipp

    2017-04-01

    With the exa-scale era approaching, length and time scales used for climate research on one hand and numerical weather prediction on the other hand blend into each other. The Centre of Excellence in Simulation of Weather and Climate in Europe (ESiWACE) represents a European consortium comprising partners from climate, weather and HPC in their effort to address key scientific challenges that both communities have in common. A particular challenge is to reach global models with spatial resolutions that allow simulating convective clouds and small-scale ocean eddies. These simulations would produce better predictions of trends and provide much more fidelity in the representation of high-impact regional events. However, running such models in operational mode, i.e with sufficient throughput in ensemble mode clearly will require exa-scale computing and data handling capability. We will discuss the ESiWACE initiative and relate it to work-in-progress on high-resolution simulations in Europe. We present recent strong scalability measurements from ESiWACE to demonstrate current computability in weather and climate simulation. A special focus in this particular talk is on the Icosahedal Nonhydrostatic (ICON) model used for a comparison of high resolution regional and global simulations with high quality observation data. We demonstrate that close-to-optimal parallel efficiency can be achieved in strong scaling global resolution experiments on Mistral/DKRZ, e.g. 94% for 5km resolution simulations using 36k cores on Mistral/DKRZ. Based on our scalability and high-resolution experiments, we deduce and extrapolate future capabilities for ICON that are expected for weather and climate research at exascale.

  7. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  8. Global perspectives on oxidative weathering of organic carbon in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; Hilton, R. G.; West, A. J.; Horan, K.; Gaillardet, J.

    2016-12-01

    Over geological timescales, the oxidation of organic carbon in sedimentary rocks is major source of carbon dioxide (CO2) to the atmosphere. The global magnitude of this flux remains poorly constrained, but it is likely to be between 40-100 x 1012 g C yr-1, similar to the CO2 emissions from volcanism. The rates of CO2 emission ultimately set the rate of silicate weathering by carbonic acid and new organic carbon burial, which act together to stabilise the climate system. To constrain how the geological carbon cycle operates and modifies Earth's climate over millions of years, we must better understand the controls on the oxidation of sedimentary rock-derived organic carbon (`petrogenic' OC, OCpetro). Here we examine new and published constraints on OCpetro oxidation flux, which come from indirect measurements (e.g. trace element proxies such as rhenium) and direct measurements (e.g. CO2 trapping and 14C). Existing datasets track the gaseous and dissolved products of weathering as well as the solid residues over a range of spatial scales, from soil profiles to large river catchments. Although the datasets are still sparse, they indicate that physical denudation plays a major role in setting OCpetro oxidation flux. These measurements are interrogated in the framework of a catchment-scale numerical model of OCpetro oxidation. By harnessing approaches developed to examine and quantify acid-hydrolysis reactions (i.e. silicate mineral weathering by carbonic acid) the model considers realistic geochemical processes and the links between erosion and weathering. Key parameters emerge, such as the `weathering thickness' which describes a depth to which oxidative waters penetrate. The reaction kinetics of OCpetro remain poorly constrained, but nevertheless, the model predicts that the kinetic limitation of OCpetro oxidation is not reached until physical erosion rates exceed 2 mm yr-1, which is much higher than for CO2 consumption by silicate weathering. These findings mirror data on sulphide oxidation, demonstrating that physical erosion can drive an important CO2 release to the atmosphere both from inorganic and organic reduced phases in sedimentary rocks. The degree to which this release is compensated by CO2 drawdown associated with the erosion and transfer of biospheric OC will also be considered.

  9. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    PubMed

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  10. In situ extraction and analysis of volatile elements and molecules from carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Hartmetz, C. P.; Gibson, E. K., Jr.; Blanford, G. E.

    1991-01-01

    A laser microprobe mass spectrometer was used to measure volatiles released, on a scale of 30-50 microns, from freshly broken, sawed, and weathered surfaces in fragments of the Allende, Murchison, Coolidge, Felix, and Orgueil carbonaceous chondrites. Samples were heated to about 120 C under a vacuum of 200 ntorr and illuminated with the focused beam of a Q-switched Nd:glass laser of variable energy output (0.1-1.0 J); the gases released were analyzed using a computer-controlled mass-selective detector. The results are presented in tables and graphs and discussed in detail, with particular attention to aqueous alteration; weathering; thermal metamorphism; the distribution of sulfur-bearing phases; and differences in the amounts of volatiles in matrix, inclusions, and chondrules.

  11. More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators?

    PubMed Central

    Palmer, T. N.

    2014-01-01

    This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic–dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only. PMID:24842038

  12. More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators?

    PubMed

    Palmer, T N

    2014-06-28

    This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic-dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only.

  13. Improving Estimates of Regional Infrasound Propagation by Incorporating Three-Dimensional Weather Modeling

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; Alter, R. E.; Swearingen, M. E.; Wilson, D. K.

    2017-12-01

    Many larger sources, such as volcanic eruptions and nuclear detonations, produce infrasound (acoustic waves with a frequency lower than humans can hear, namely 0.1-20 Hz) that can propagate over global scales. But many smaller infrastructure sources, such as bridges, dams, and buildings, also produce infrasound, though with a lower amplitude that tends to propagate only over regional scales (up to 150 km). In order to accurately calculate regional-scale infrasound propagation, we have incorporated high-resolution, three-dimensional forecasts from the Weather Research and Forecasting (WRF) meteorological model into a signal propagation modeling system called Environmental Awareness for Sensor and Emitter Employment (EASEE), developed at the US Army Engineer Research and Development Center. To quantify the improvement of infrasound propagation predictions with more realistic weather data, we conducted sensitivity studies with different propagation ranges and horizontal resolutions and compared them to default predictions with no weather model data. We describe the process of incorporating WRF output into EASEE for conducting these acoustic propagation simulations and present the results of the aforementioned sensitivity studies.

  14. Exploring the correlation between annual precipitation and potential evaporation

    NASA Astrophysics Data System (ADS)

    Chen, X.; Buchberger, S. G.

    2017-12-01

    The interdependence between precipitation and potential evaporation is closely related to the classic Budyko framework. In this study, a systematic investigation of the correlation between precipitation and potential evaporation at the annual time step is conducted at both point scale and watershed scale. The point scale precipitation and potential evaporation data over the period of 1984-2015 are collected from 259 weather stations across the United States. The watershed scale precipitation data of 203 watersheds across the United States are obtained from the Model Parameter Estimation Experiment (MOPEX) dataset from 1983 to 2002; and potential evaporation data of these 203 watersheds in the same period are obtained from a remote-sensing algorithm. The results show that majority of the weather stations (77%) and watersheds (79%) exhibit a statistically significant negative correlation between annual precipitation and annual potential evaporation. The aggregated data cloud of precipitation versus potential evaporation follows a curve based on the combination of the Budyko-type equation and Bouchet's complementary relationship. Our result suggests that annual precipitation and potential evaporation are not independent when both Budyko's hypothesis and Bouchet's hypothesis are valid. Furthermore, we find that the wet surface evaporation, which is controlled primarily by short wave radiation as defined in Bouchet's hypothesis, exhibits less dependence on precipitation than the potential evaporation. As a result, we suggest that wet surface evaporation is a better representation of energy supply than potential evaporation in the Budyko framework.

  15. Understanding the Geographic Controls of Hazardous Convective Weather Environments in the United States

    NASA Astrophysics Data System (ADS)

    Reed, K. A.; Chavas, D. R.

    2017-12-01

    Hazardous Convective Weather (HCW), such as severe thunderstorms and tornadoes, poses significant risk to life and property in the United States every year. While these HCW events are small scale, they develop principally within favorable larger-scale environments (i.e., HCW environments). Why these large-scale environments are confined to specific regions, particularly the Eastern United States, is not well understood. This can, in part, be related to a limited fundamental knowledge of how the climate system creates HCW environment, which provides uncertainty in how HCW environments may be altered in a changing climate. Previous research has identified the Gulf of Mexico to the south and elevated terrain upstream as key geographic contributors to the generation of HCW environments over the Eastern United States. This work investigates the relative role of these geographic features through "component denial" experiments in the Community Atmosphere Model version 5 (CAM5). In particular, CAM5 simulations where topography is removed (globally and regionally) and/or the Gulf of Mexico is converted to land is compared to a CAM5 control simulation of current climate following the Atmospheric Model Intercomparison Project (AMIP) protocols. In addition to exploring differences in general characteristics of the large-scale environments amongst the experiments, HCW changes will be explored through a combination of high shear and high Convective Available Potential Energy (CAPE) environments. Preliminary work suggests that the removal of elevated terrain reduces the inland extent of HCW environments in the United States, but not the existence of these events altogether. This indicates that topography is crucial for inland HCW environments but perhaps not for their existence in general (e.g., near the Gulf of Mexico). This initial work is a crucial first step to building a reduced-complexity framework within CAM5 to quantify how land-ocean contrast and elevated terrain control HCW environments.

  16. Contribution of the infrasound technology to characterize large scale atmospheric disturbances and impact on infrasound monitoring

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter

    2016-04-01

    The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.

  17. Weather Augmented Risk Determination (WARD) System

    NASA Astrophysics Data System (ADS)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves labor productivity (e.g., farming) and work stoppage due to weather conditions (e.g., transportation, agriculture industry).

  18. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  19. Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering

    NASA Astrophysics Data System (ADS)

    Calabrese, Salvatore; Parolari, Anthony J.; Porporato, Amilcare

    2017-10-01

    Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates.

  20. Decreasing trend in severe weather occurrence over China during the past 50 years.

    PubMed

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-17

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  1. Decreasing trend in severe weather occurrence over China during the past 50 years

    PubMed Central

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-01-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China. PMID:28211465

  2. Decreasing trend in severe weather occurrence over China during the past 50 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-04-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  3. Decreasing trend in severe weather occurrence over China during the past 50 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  4. Statistical modeling of interannual shoreline change driven by North Atlantic climate variability spanning 2000-2014 in the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Robinet, A.; Castelle, B.; Idier, D.; Le Cozannet, G.; Déqué, M.; Charles, E.

    2016-12-01

    Modeling studies addressing daily to interannual coastal evolution typically relate shoreline change with waves, currents and sediment transport through complex processes and feedbacks. For wave-dominated environments, the main driver (waves) is controlled by the regional atmospheric circulation. Here a simple weather regime-driven shoreline model is developed for a 15-year shoreline dataset (2000-2014) collected at Truc Vert beach, Bay of Biscay, SW France. In all, 16 weather regimes (four per season) are considered. The centroids and occurrences are computed using the ERA-40 and ERA-Interim reanalyses, applying k-means and EOF methods to the anomalies of the 500-hPa geopotential height over the North Atlantic Basin. The weather regime-driven shoreline model explains 70% of the observed interannual shoreline variability. The application of a proven wave-driven equilibrium shoreline model to the same period shows that both models have similar skills at the interannual scale. Relation between the weather regimes and the wave climate in the Bay of Biscay is investigated and the primary weather regimes impacting shoreline change are identified. For instance, the winter zonal regime characterized by a strengthening of the pressure gradient between the Iceland low and the Azores high is associated with high-energy wave conditions and is found to drive an increase in the shoreline erosion rate. The study demonstrates the predictability of interannual shoreline change from a limited number of weather regimes, which opens new perspectives for shoreline change modeling and encourages long-term shoreline monitoring programs.

  5. Spatial variability of polycyclic aromatic hydrocarbon load of urban wet weather pollution in combined sewers.

    PubMed

    Gasperi, J; Moilleron, R; Chebbo, G

    2006-01-01

    In Paris, the OPUR research programme created an experimental on-site observatory of urban pollutant loads in combined sewer systems in order to characterise the dry and wet weather flows at different spatial scales. This article presents the first results on the spatial variability of the polycyclic aromatic hydrocarbon (PAH) load during wet weather flow (WWF). At the scale of a rain event, investigations revealed that (i) PAH concentrations were relatively homogenous whatever the spatial scale and were greater than those of the dry weather flow (DWF), (ii) PAH distributions between dissolved and particulate phases were constant, and (iii) PAH fingerprints exhibited a similar pattern for all catchments. Moreover, an evaluation of the contribution of DWF, runoff and erosion of sewer deposits to WWF load was established. According to the hypothesis on the runoff concentration, the contributions were evaluated at 14, 8 and 78%, respectively, at the scale of the Marais catchment. For all the catchments, the runoff contribution was found quite constant and evaluated at approximately 10%. The DWF contribution seems to increase with the catchment area, contrary to the sewer erosion contribution, which seems to decrease. However, this latter still remains an important source of pollution. These first trends should be confirmed and completed by more investigations of rain events.

  6. Crystallization and dissolution of airborne sea-salts on weathered marble in a coastal environment at Delos (Cyclades-Greece)

    NASA Astrophysics Data System (ADS)

    Chabas, A.; Jeannette, D.; Lefèvre, R. A.

    Far from the ground moisture zone, marble remains of Delos archaeological site have undergone an extensive weathering through contour scaling and granular disintegration. Comparison of the analytical results from analytical scanning electron microscopy examination of surface samples of weathered marble and air filtration membranes confirms the atmospheric transport of marine salts and their deposition on stone surface. A laboratory experiment emphasizes the role of these atmospheric salts in the weathering process of marbles in coastal environment.

  7. Team Training for Command and Control Systems. Volume IV. Recommendations for Simulation Facility.

    DTIC Science & Technology

    1982-04-01

    free - play war gaming exercises. The tactical situation models should allow the researcher to specify certain relevant environmental conditions: weather...emphasizes dynamic free - play and task-oriented responses. The individualized CBT exercises would not necessarily replace or even reduce the amount of time...intercept exercises and bump-heads free - play , but they cannot currently be used to simulate larger-scale, two-sided, free - play engagements. 69 . All

  8. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  9. Climate control: United States weather modification in the cold war and beyond.

    PubMed

    Harper, Kristine C

    2008-03-01

    Rainmaking, hail busting, fog lifting, snowpack enhancing, lightning suppressing, hurricane snuffing...weather control. At the lunatic fringe of scientific discussion in the early twentieth century--and the subject of newspaper articles with tones ranging from skeptical titters to awestruck wonder--weather modification research became more serious after World War II. In the United States, the 'seeds' of silver iodide and dry ice purported to enhance rainfall and bust hailstorms soon became seeds of controversy from which sprouted attempts by federal, state and local government to control the controllers and exploit 'designer weather' for their own purposes.

  10. Aviation weather : FAA and the National Weather Service are considering plans to consolidate weather service offices, but face significant challenges.

    DOT National Transportation Integrated Search

    2009-07-01

    The National Weather Services (NWS) weather products are a vital component of the Federal Aviation Administrations (FAA) air traffic control system. In addition to providing aviation weather products developed at its own facilities, NWS also pr...

  11. Field data collection, analysis, and adaptive management of green infrastructure in the urban water cycle in Cleveland and Columbus, OH

    NASA Astrophysics Data System (ADS)

    Darner, R.; Shuster, W.

    2016-12-01

    Expansion of the urban environment can alter the landscape and creates challenges for how cities deal with energy and water. Large volumes of stormwater in areas that have combined septic and stormwater systems present on challenge. Managing the water as near to the source as possible by creates an environment that allows more infiltration and evapotranspiration. Stormwater control measures (SCM) associated with this type of development, often called green infrastructure, include rain gardens, pervious or porous pavements, bioswales, green or blue roofs, and others. In this presentation, we examine the hydrology of green infrastructure in urban sewersheds in Cleveland and Columbus, OH. We present the need for data throughout the water cycle and challenges to collecting field data at a small scale (single rain garden instrumented to measure inflows, outflow, weather, soil moisture, and groundwater levels) and at a macro scale (a project including low-cost rain gardens, highly engineered rain gardens, groundwater wells, weather stations, soil moisture, and combined sewer flow monitoring). Results will include quantifying the effectiveness of SCMs in intercepting stormwater for different precipitation event sizes. Small scale deployment analysis will demonstrate the role of active adaptive management in the ongoing optimization over multiple years of data collection.

  12. Assessing reference evapotranspiration at regional scale based on remote sensing, weather forecast and GIS tools

    NASA Astrophysics Data System (ADS)

    Ramírez-Cuesta, J. M.; Cruz-Blanco, M.; Santos, C.; Lorite, I. J.

    2017-03-01

    Reference evapotranspiration (ETo) is a key component in efficient water management, especially in arid and semi-arid environments. However, accurate ETo assessment at the regional scale is complicated by the limited number of weather stations and the strict requirements in terms of their location and surrounding physical conditions for the collection of valid weather data. In an attempt to overcome this limitation, new approaches based on the use of remote sensing techniques and weather forecast tools have been proposed. Use of the Land Surface Analysis Satellite Application Facility (LSA SAF) tool and Geographic Information Systems (GIS) have allowed the design and development of innovative approaches for ETo assessment, which are especially useful for areas lacking available weather data from weather stations. Thus, by identifying the best-performing interpolation approaches (such as the Thin Plate Splines, TPS) and by developing new approaches (such as the use of data from the most similar weather station, TS, or spatially distributed correction factors, CITS), errors as low as 1.1% were achieved for ETo assessment. Spatial and temporal analyses reveal that the generated errors were smaller during spring and summer as well as in homogenous topographic areas. The proposed approaches not only enabled accurate calculations of seasonal and daily ETo values, but also contributed to the development of a useful methodology for evaluating the optimum number of weather stations to be integrated into a weather station network and the appropriateness of their locations. In addition to ETo, other variables included in weather forecast datasets (such as temperature or rainfall) could be evaluated using the same innovative methodology proposed in this study.

  13. Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang; Lu, Jian; Burrows, Alex D.

    Midlatitude extreme weather events are responsible for a large part of climate related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite-amplitude wave activity (LWA) of Huang and Nakamura [2015] is introduced as a diagnostic of the 500-hPa geopotential height (Z500) to characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation (AO) agree broadly with the previously reported blocking frequency in literature. There is a strong seasonal and spatial dependencemore » in the trend13 s of LWA in recent decades. While there is no observational evidence for a hemispheric-scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change.« less

  14. Weather observations on Whistler Mountain during five storms

    NASA Astrophysics Data System (ADS)

    Thériault, Julie M.; Rasmussen, Kristen L.; Fisico, Teresa; Stewart, Ronald E.; Joe, Paul; Gultepe, Ismail; Clément, Marilys; Isaac, George A.

    2014-01-01

    A greater understanding of precipitation formation processes over complex terrain near the west coast of British Colombia will contribute to many relevant applications, such as climate studies, local hydrology, transportation, and winter sport competition. The phase of precipitation is difficult to determine because of the warm and moist weather conditions experienced during the wintertime in coastal mountain ranges. The goal of this study is to investigate the wide range of meteorological conditions that generated precipitation on Whistler Mountain from 4-12 March 2010 during the SNOW-V10 field campaign. During this time period, five different storms were documented in detail and were associated with noticeably different meteorological conditions in the vicinity of Whistler Mountain. New measurement techniques, along with the SNOW-V10 instrumentation, were used to obtain in situ observations during precipitation events along the Whistler mountainside. The results demonstrate a high variability of weather conditions ranging from the synoptic-scale to the macro-scale. These weather events were associated with a variation of precipitation along the mountainside, such as events associated with snow, snow pellets, and rain. Only two events associated with a rain-snow transition along the mountainside were observed, even though above-freezing temperatures along the mountainside were recorded 90 % of the time. On a smaller scale, these events were also associated with a high variability of snowflake types that were observed simultaneously near the top of Whistler Mountain. Overall, these detailed observations demonstrate the importance of understanding small-scale processes to improve observational techniques, short-term weather prediction, and longer-term climate projections over mountainous regions.

  15. Processes controlling soil P amounts and availability along a weathering gradient

    NASA Astrophysics Data System (ADS)

    Helfenstein, Julian; Tamburini, Federica; von Sperber, Christian; Massey, Michael; Pistocchi, Chiara; Chadwick, Oliver; Vitousek, Peter; Frossard, Emmanuel

    2017-04-01

    In 1976 Walker and Syers presented a model describing the development of P pools with increasing weathering status of a soil (Walker and Syers 1976). This model has been repeatedly confirmed along gradients of different soil ages as well as gradients of different climatic conditions (Crews et al. 1995, Tamburini et al. 2012, Roberts et al. 2015, Feng et al. 2016). However, limited information is available on the processes controlling P amounts and availability along a weathering gradient. We used isotopic (33P, 18O), spectroscopic (P K-edge XANES), and other (enzymatic activity, chemical P speciation) methods to reveal drivers of P dynamics along the 150'000-year-old Kohala lava flow on Hawai'i, which stretches from 250 mm to over 3000 of mean annual precipitation. Chemical extractions and X-ray absorption spectroscopy show the gradual disappearance of apatite in favor of Fe- and Al-sorbed P species as well as organic P. We then distinguish two different types of processes: 1) processes determining the total amount of P in the topsoil, and 2) processes determining P availability. While weathering of apatite and eolian erosion control P amounts on less weathered and arid soils, leaching and biological uplift become increasingly important with increasing soil weathering status. On very weathered sites, leaching becomes the dominant process controlling P amounts, though it is partially counteracted by biological uptake and atmospheric dust deposition. In terms of P availability, dissolution of mineral P adds to the available P pool up to the intermediate range. Activity of acid phosphatase suggests that mineralization becomes increasingly important with higher weathering of soils. Despite this, P availability decreases drastically, as a result of continued loss of highly-mobile P through immobilization by biomass, increased P-sorption capacity by soils, and leaching. Crews, T. E., K. Kitayama, J. H. Fownes, R. H. Riley, A. Darrell, D. Mueller-dombois, and P. M. Vitousek. 1995. Changes in Soil Phosphorus Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii. Ecology 76:1407-1424. Feng, J., B. L. Turner, X. Lü, Z. Chen, K. Wei, J. Tian, C. Wang, W. Luo, and L. Chen. 2016. Phosphorus transformations along a large-scale climosequence in arid and semiarid grasslands of northern China. Global Biogeochemical Cycles 30. Roberts, K., D. Defforey, B. L. Turner, L. M. Condron, S. Peek, S. Silva, C. Kendall, and A. Paytan. 2015. Oxygen isotopes of phosphate and soil phosphorus cycling across a 6500 year chronosequence under lowland temperate rainforest. Geoderma 257-258:14-21. Tamburini, F., V. Pfahler, E. K. Bünemann, K. Guelland, S. M. Bernasconi, and E. Frossard. 2012. Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils. Environmental Science and Technology 46:5956-5962. Walker, T. W., and J. K. Syers. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1-19.

  16. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model that does not contain AIRS profiles.

  17. URBAN WET-WEATHER FLOW POLLUTION MANAGEMENT AND CONTROL

    EPA Science Inventory

    One of the challenges in protecting urban watersheds lies in effectively controlling the contaminants in both overland runoff and sewerage system overflows during wet-weather events. Abatement of wet-weather flow (WWF) pollution can be implemented at the source by land managemen...

  18. Development of a WRF-RTFDDA-based high-resolution hybrid data-assimilation and forecasting system toward to operation in the Middle East

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.

    2012-12-01

    Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.

  19. Understanding the roles of ligand promoted dissolution, water column saturation and hydrological properties on intense basalt weathering using reactive transport and watershed-scale hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Perez Fodich, A.; Walter, M. T.; Derry, L. A.

    2016-12-01

    The interaction of rocks with rainwater generates physical and chemical changes, which ultimately culminates in soil development. The addition of catalyzers such as plants, atmospheric gases and hydrological properties will result in more intense and/or faster weathering transformations. The intensity of weathering across the Island of Hawaii is strongly correlated with exposure age and time-integrated precipitation. Intense weathering has resulted from interaction between a thermodynamically unstable lithology, high water/rock ratios, atmospheric gases (O2, CO2) and biota as an organic acid and CO2 producer. To further investigate the role of different weathering agents we have developed 1-D reactive transport models (RTM) to understand mineralogical and fluid chemistry changes in the initially basaltic porous media. The initial meso-scale heterogeneity of porosity makes it difficult for RTMs to capture changes in runoff/groundwater partitioning. Therefore, hydraulic properties (hydraulic conductivity and aquifer depth) are modeled as a watershed parameter appropriate for this system where sub-surface hydraulic data is scarce(1). Initial results agree with field data in a broad sense: different rainfall regimes and timescales show depletion of mobile cations, increasingly low pH, congruent dissolution of olivine and pyroxene, incongruent dissolution of plagioclase and basaltic glass, precipitation of non-crystalline allophane and ferrihydrite, and porosity changes due to dissolution and precipitation of minerals; ultimately Al and Fe are also exported from the system. RTM is used to examine the roles of unsaturation in the soil profile, ligand promoted dissolution of Al- and Fe-bearing phases, and Fe-oxide precipitation at the outcrop scale. Also, we aim to test the use of recession flow analysis to model watershed-scale hydrological properties to extrapolate changes in the runoff/groundwater partitioning. The coupling between weathering processes and hydrologic properties is a fundamental driver of the evolution of volcanic landscapes and weathering fluxes. 1. G. F. Mendoza, T. S. Steenhuis, M. T. Walter, J. Y. Parlange, Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis. Journal of Hydrology 279, 57-69 (2003).

  20. Resolving the Multi-scale Behavior of Geochemical Weathering in the Critical Zone Using High Resolution Hydro-geochemical Models

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Rajaram, H.

    2015-12-01

    This work investigates hydrologic and geochemical interactions in the Critical Zone (CZ) using high-resolution reactive transport modeling. Reactive transport models can be used to predict the response of geochemical weathering and solute fluxes in the CZ to changes in a dynamic environment, such as those pertaining to human activities and climate change in recent years. The scales of hydrology and geochemistry in the CZ range from days to eons in time and centimeters to kilometers in space. Here, we present results of a multi-dimensional, multi-scale hydro-geochemical model to investigate the role of subsurface heterogeneity on the formation of mineral weathering fronts in the CZ, which requires consideration of many of these spatio-temporal scales. The model is implemented using the reactive transport code PFLOTRAN, an open source subsurface flow and reactive transport code that utilizes parallelization over multiple processing nodes and provides a strong framework for simulating weathering in the CZ. The model is set up to simulate weathering dynamics in the mountainous catchments representative of the Colorado Front Range. Model parameters were constrained based on hydrologic, geochemical, and geophysical observations from the Boulder Creek Critical Zone Observatory (BcCZO). Simulations were performed in fractured rock systems and compared with systems of heterogeneous and homogeneous permeability fields. Tracer simulations revealed that the mean residence time of solutes was drastically accelerated as fracture density increased. In simulations that include mineral reactions, distinct signatures of transport limitations on weathering arose when discrete flow paths were included. This transport limitation was related to both advective and diffusive processes in the highly heterogeneous systems (i.e. fractured media and correlated random permeability fields with σlnk > 3). The well-known time-dependence of mineral weathering rates was found to be the most pronounced in the fractured systems, with a departure from the maximum system-averaged dissolution rate occurring after ~100 kyr followed by a gradual decrease in the reaction rate with time that persists beyond 104 kyr.

  1. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical schemes. Depending on the application, we find that different time stepping methods are optimal. Several of the time integration schemes exploit the block-based granularity of the grid structure. The framework and the adaptive algorithms enable physics based space weather modeling and even forecasting.

  2. Plant and mycorrhizal weathering at the laboratory mesocosm scale

    NASA Astrophysics Data System (ADS)

    Andrews, M. Y.; Leake, J.; Banwart, S. A.; Beerling, D. J.

    2011-12-01

    The evolutionary development of large vascular land plants in the Paleozoic is hypothesized to have enhanced weathering of Ca and Mg silicate minerals. This plant-centric view overlooks the fact that plants and their associated mycorrhizal fungi co-evolved. Many weathering processes usually ascribed to plants may actually be driven by the combined activities of roots and mycorrhizal fungi. This study focuses on two key evolutionary events in plant and fungal evolution: 1) the transition from gymnosperm-only to mixed angiosperm-gymnosperm forests in the Mesozoic and 2) the similarly timed rise of ectomycorrhizal fungi (EM) in a previously arbuscular mycorrhizal (AM) only world. Here we present results from a novel mesocosm-scale laboratory experiment designed to allow investigation of plant- and mycorrhizae-driven carbon fluxes and mineral weathering at different soil depths, and under ambient (400 ppm) and elevated (1500 ppm) atmospheric CO2. To test our hypothesis that photosynthetic carbon flux from the plant to the roots and fungal partner drives biological weathering of minerals, we studied five mycorrhizal plant species: the gymnosperms Sequoia sempervirens (AM), Pinus sylvestris (EM) and Ginkgo biloba (AM), and two angiosperms, Magnolia grandiflora (AM) and Betula pendula (EM). This long term (7-9 months) experiment was grown in controlled environment chambers, with replicated systems at two atmospheric CO2 levels. Each mycorrhizal plant had access to isolated horizontal mesh cores containing crushed granite and basalt at three depths, in a compost:sand (50:50 vol:vol) bulk substrate, with appropriate plant-free and mineral-free controls. 14CO2 pulse-labeling provided a snapshot of the magnitude, timing, and allocation of carbon through the atmosphere-plant-fungi-soil system and also measured mycorrhizal fungal activity associated with the target granite and basalt. Total plant and fungal biomass were also assessed in relation to +/- mineral treatments and response to elevated vs. ambient CO2 levels. Biological uptake of mineral elements is measured as one component of quantifying mineral weathering. Additionally, an operationally defined wet chemical sequential extraction protocol performed on the minerals themselves explores changes in exchangeable ion pools as well as alteration of the solid mineral phases. After 14CO2 pulse-labeling, the observed carbon flux timing and magnitude were significantly different for each species. Additionally, the peak carbon flux under elevated CO2 lagged by several hours (2-16 hours depending on species) relative to the same species grown under ambient CO2. The deciduous Ginkgo and Betula had much larger leaves under elevated CO2 conditions, although the total plant biomass was not significantly different between the two CO2 treatments for any of the species. Ongoing analyses will elucidate how these disparate responses to elevated CO2 and varied carbon flux profiles may affect mycorrhizal biomass, elemental uptake, and mineral weathering in the mesocosm systems.

  3. Subarctic physicochemical weathering of serpentinized peridotite

    NASA Astrophysics Data System (ADS)

    Ulven, O. I.; Beinlich, A.; Hövelmann, J.; Austrheim, H.; Jamtveit, B.

    2017-06-01

    Frost weathering is effective in arctic and subarctic climate zones where chemical reactions are limited by the reduced availability of liquid water and the prevailing low temperature. However, small scale mineral dissolution reactions are nevertheless important for the generation of porosity by allowing infiltration of surface water with subsequent fracturing due to growth of ice and carbonate minerals. Here we combine textural and mineralogical observations in natural samples of partly serpentinized ultramafic rocks with a discrete element model describing the fracture mechanics of a solid when subject to pressure from the growth of ice and carbonate minerals in surface-near fractures. The mechanical model is coupled with a reaction-diffusion model that describes an initial stage of brucite dissolution as observed during weathering of serpentinized harzburgites and dunites from the Feragen Ultramafic Body (FUB), SE-Norway. Olivine and serpentine are effectively inert at relevant conditions and time scales, whereas brucite dissolution produces well-defined cm to dm thick weathering rinds with elevated porosity that allows influx of water. Brucite dissolution also increases the water saturation state with respect to hydrous Mg carbonate minerals, which are commonly found as infill in fractures in the fresh rock. This suggests that fracture propagation is at least partly driven by carbonate precipitation. Dissolution of secondary carbonate minerals during favorable climatic conditions provides open space available for ice crystallization that drives fracturing during winter. Our model reproduces the observed cm-scale meandering fractures that propagate into the fresh part of the rock, as well as dm-scale fractures that initiate the breakup of larger domains. Rock disintegration increases the reactive surface area and hence the rate of chemical weathering, enhances transport of dissolved and particulate matter in the weathering fluid, and facilitates CO2 uptake by carbonate precipitation. Our observations have implications for element cycling and CO2 sequestration in natural gravel and mine tailings.

  4. Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses

    PubMed Central

    Kielmanowicz, Merav Gleit; Inberg, Alex; Lerner, Inbar Maayan; Golani, Yael; Brown, Nicholas; Turner, Catherine Louise; Hayes, Gerald J. R.; Ballam, Joan M.

    2015-01-01

    Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health. PMID:25875764

  5. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  6. Guidelines for disseminating road weather advisory & control information.

    DOT National Transportation Integrated Search

    2012-06-01

    The tremendous growth in the amount of available weather and road condition informationincluding devices that gather weather information, models and forecasting tools for predicting weather conditions, and electronic devices used by travelersha...

  7. 47 CFR 73.686 - Field strength measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... earth radius, of the largest available scale. (c) Collection of field strength data to determine... measurements in inclement weather or when major weather fronts are moving through the measurement area. (iii....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...

  8. Bearingless helicopter main rotor development. Volume 2: Combined load fatigue evaluation of weathered graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Rackiewicz, J. J.

    1977-01-01

    Small scale combined load fatigue tests were conducted on six artificially and six naturally weathered test specimens. The test specimen material was unidirectionally oriented A-S graphite - woven glass scrim epoxy resin laminate.

  9. The Operational Meteorology of Convective Weather. Volume 1. Operational Mesoanalysis.

    DTIC Science & Technology

    1982-11-01

    instabilities and ,]low a clearer picture to emerge of what "mesoscale" really imnlies about the dynamics of systems . At this time , it seems plausible to...and explains why the term is quasigeostrophic) and its validity is seen in its value for diagnosis of real weather systems . Vorticity advection is...is, the time scale generally decreases with size scale. Mesoscale systems _ an develop vertical motions in the range of several m s , but their life

  10. Terrestrial photography as a complementary measurement in weather stations for snow monitoring

    NASA Astrophysics Data System (ADS)

    Pimentel, Rafael; José Pérez-Palazón, María; Herrero, Javier; José Polo, María

    2015-04-01

    Snow monitoring constitutes a basic key to know snow behaviour and evolution, which have particular features in semiarid regions (i.e. highly strong spatiotemporal variability, and the occurrence of several accumulation-melting cycles throughout the year). On one hand, traditional snow observation, such as snow surveys and snow pillows have the inconvenience of a limited accessibility during snow season and the impossibility to cover a vast extension. On the other hand, satellite remote sensing techniques, largely employed in medium to large scale regional studies, has the disadvantage of a fixed spatial and temporal resolutions which in some cases are not able to reproduce snow processes at small scale. An economic alternative is the use of terrestrial photography which scales are adapted to the study problem. At the microscale resolution permits the continuous monitoring of snow, adapting the resolution of the observation to the scales of the processes. Besides its use as raw observation datasets to calibrate and validate models' results, terrestrial photography constitutes valuable information to complement weather stations observations. It allows the discriminating possible mistakes in meteorological observations (i.e. overestimation on rain measurements) and a better understanding of snow behaviour against certain weather agents (i.e. blowing snow). Thus, terrestrial photography is a feasible and convenient technique to be included in weather monitoring stations in mountainous areas in semiarid regions.

  11. Synoptic-scale fire weather conditions in Alaska

    NASA Astrophysics Data System (ADS)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  12. Implementing of lognormal humidity and cloud-related control variables for the NCEP GSI hybrid EnVAR Assimilation scheme.

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.; Kleist, D.; Ide, K.

    2017-12-01

    As the resolution of operational global numerical weather prediction system approach the meso-scale, then the assumption of Gaussianity for the errors at these scales may not valid. However, it is also true that synoptic variables that are positive definite in behavior, for example humidity, cannot be optimally analyzed with a Gaussian error structure, where the increment could force the full field to go negative. In this presentation we present the initial work of implementing a mixed Gaussian-lognormal approximation for the temperature and moisture variable in both the ensemble and variational component of the NCEP GSI hybrid EnVAR. We shall also lay the foundation for the implementation of the lognormal approximation to cloud related control variables to allow for a possible more consistent assimilation of cloudy radiances.

  13. Directable weathering of concave rock using curvature estimation.

    PubMed

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  14. Effects of weather on the abundance and distribution on populations of 103 breeding bird species across the United States

    NASA Astrophysics Data System (ADS)

    Allstadt, A. J.; Gorzo, J.; Bateman, B. L.; Heglund, P. J.; Pidgeon, A. M.; Thogmartin, W.; Vavrus, S. J.; Radeloff, V.

    2016-12-01

    Often, fewer birds are often observed in an area experiencing extreme weather, as local populations tend to leave an area (via out-migration or concentration in refugia) or experience a change in population size (via mortality or reduced fecundity). Further, weather patterns are often coherent over large areas so unsuitable weather may threaten large portions of an entire species range simultaneously. However, beyond a few iconic irruptive species, rarely have studies applied both the necessary scale and sensitivity required to assess avian population responses over entire species range. Here, we examined the effects of pre-breeding season weather on the distribution and abundances of 103 North American bird species from the late 1966-2010 using observed abundance records from the Breeding Bird Survey. We compared abundances with measures of drought and temperature over each species' range, and with three atmospheric teleconnections that describe large-scale circulation patterns influencing conditions on the ground. More than 90% of the species responded to at least one of our five weather variables. Grassland bird species tended to be most responsive to weather conditions and forest birds the least, though we found relations among all habitat types. For most species, the response was movement rather than large effects on the overall population size. Maps of these responses indicate that concentration and out-migration are both common strategies for coping with challenging weather conditions across a species range. The dynamic distribution of many bird species makes clear the need to account for temporal variability in conservation planning, as areas that are less important for a species' breeding success in most years may be very important in years with abnormal weather conditions.

  15. A new parameterization of regolith formation and the response time of weathering front propagation to climate and tectonic forcing

    NASA Astrophysics Data System (ADS)

    Braun, Jean

    2017-04-01

    The thickness of the regolith remains one of the most difficult elements of the critical zone to predict or quantify. The regolith hosts a substantial proportion of the world's freshwater reservoir and its shape and physical properties control the hydrology of most river catchments, which is essential to the development and evolution of many eco-systems. The base of the regolith is controlled by the propagation of a weathering front through a range of chemical and physical processes, such as primary mineral dissolution, frost cracking or fracturing helped by topographic stress. We have recently parameterize the evolution of the weathering front under the relatively well accepted assumption that the rate of weathering front propagation, Ḃ, is directly proportional to the velocity of the fluid circulating within the regolith v, i.e. Ḃ = Fv. This approach is justified in most situations where chemical dissolution of highly soluble minerals is thought to dominate the transformation of bedrock into regolith. Under this assumption, the thickness of the regolith reaches a steady-state under the combined effects of weathering front propagation at its base and surface erosion, and the distribution of the regolith is controlled by two dimensionless numbers. The first : Ω = FKS/˙ɛ depends on the surface slope, S, and the steady-state erosion rate, ˙ɛ, through the hydraulic conductivity K and F ; the second: Γ = KS2/P depends on the surface slope and the mean precipitation rate, P . Ω controls the mean thickness of the regolith layer and needs to be larger than unity (i.e. ɛ˙ < FKS) for the regolith layer to exists. We have also shown that Ω is the ratio between the erosional response time of the system LS/ɛ˙ and the weathering response time of the system LF/K implying that where regolith is present at the Earth surface and erosional steady-state, i.e. between uplift and surface erosion, has been reached, the regolith thickness must have reached steady-state as well. On the other hand, Γ controls the shape of the regolith layer and, more precisely, whether it thickens towards the top (Γ > 1) or towards the base (Γ < 1) of topographic features. Our simple parameterization therefore explains why the regolith is thickest on top of hills in tectonically active areas, i.e. where slopes are elevated, and more uniformly distributed or even thickest near base level in tectonically quiescent areas, i.e. in anorogenic areas such as in most continental interiors. These fundamental results have now been expanded to more realistic two-dimensional numerical simulations in which drainage density is dynamically determined by the onset of surface flow, i.e. where the water table intersects the topographic surface. In this way, the length scale of water table connectivity, L, which controls the value of all of the system response times (erosional, weathering and hydraulic) is determined in a self-consistent manner which allows us to predict more accurately the range of responses of the system to tectonic and climatic changes at a variety of forcing periods.

  16. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant sensitivity responses are found over the karst regions, including pronounced warming and cooling effects on the near-surface atmosphere from barren and forested land cover, respectively; (3) the barren ground in the karst regions provides conditions favourable for convective development under certain conditions. Therefore, it is suggested that karst and non-karst landscapes should be distinguished, and their physical processes should be considered for future model development.

  17. Modeling Silicate Weathering for Elevated CO2 and Temperature

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  18. Seamless atmospheric modeling across the hydrostatic-nonhydrostatic scales - preliminary results using an unstructured-Voronoi mesh for weather prediction.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2015-12-01

    One of the major problems in atmospheric model applications is the representation of deep convection within the models; explicit simulation of deep convection on fine meshes performs much better than sub-grid parameterized deep convection on coarse meshes. Unfortunately, the high cost of explicit convective simulation has meant it has only been used to down-scale global simulations in weather prediction and regional climate applications, typically using traditional one-way interactive nesting technology. We have been performing real-time weather forecast tests using a global non-hydrostatic atmospheric model (the Model for Prediction Across Scales, MPAS) that employs a variable-resolution unstructured Voronoi horizontal mesh (nominally hexagons) to span hydrostatic to nonhydrostatic scales. The smoothly varying Voronoi mesh eliminates many downscaling problems encountered using traditional one- or two-way grid nesting. Our test weather forecasts cover two periods - the 2015 Spring Forecast Experiment conducted at the NOAA Storm Prediction Center during the month of May in which we used a 50-3 km mesh, and the PECAN field program examining nocturnal convection over the US during the months of June and July in which we used a 15-3 km mesh. An important aspect of this modeling system is that the model physics be scale-aware, particularly the deep convection parameterization. These MPAS simulations employ the Grell-Freitas scale-aware convection scheme. Our test forecasts show that the scheme produces a gradual transition in the deep convection, from the deep unstable convection being handled entirely by the convection scheme on the coarse mesh regions (dx > 15 km), to the deep convection being almost entirely explicit on the 3 km NA region of the meshes. We will present results illustrating the performance of critical aspects of the MPAS model in these tests.

  19. A study of ASRS reports involving general aviation and weather encounters

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Roach, D. E.; Griffin, W. C.

    1981-01-01

    Consideration is given to the nature and characteristics of problems involving dissemination of weather information, use of this information by pilots, its adequacy for the purpose intended, the ability of the air traffic control system to cope with weather related incidents, and the various aspects of pilot behavior, aircraft equipment, and NAVAIDS affecting flights in which weather figures. It is concluded from the study that skill and training deficiencies of general aviation pilots are not major factors in weather related occurrences, nor is lack of aircraft equipment. Major problem causes are identified with timely and easily interpreted weather information, judgement and attitude factors of pilots, and the functioning of the air traffic control system.

  20. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.

    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering,more » but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.« less

  1. Development of predictive weather scenarios for early prediction of rice yield in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Cho, J.; Jung, I.

    2017-12-01

    International grain prices are becoming unstable due to frequent occurrence of abnormal weather phenomena caused by climate change. Early prediction of grain yield using weather forecast data is important for stabilization of international grain prices. The APEC Climate Center (APCC) is providing seasonal forecast data based on monthly climate prediction models for global seasonal forecasting services. The 3-month and 6-month seasonal forecast data using the multi-model ensemble (MME) technique are provided in their own website, ADSS (APCC Data Service System, http://adss.apcc21.org/). The spatial resolution of seasonal forecast data for each individual model is 2.5°×2.5°(about 250km) and the time scale is created as monthly. In this study, we developed customized weather forecast scenarios that are combined seasonal forecast data and observational data apply to early rice yield prediction model. Statistical downscale method was applied to produce meteorological input data of crop model because field scale crop model (ORYZA2000) requires daily weather data. In order to determine whether the forecasting data is suitable for the crop model, we produced spatio-temporal downscaled weather scenarios and evaluated the predictability by comparison with observed weather data at 57 ASOS stations in South Korea. The customized weather forecast scenarios can be applied to various application fields not only early rice yield prediction. Acknowledgement This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No: PJ012855022017)" Rural Development Administration, Republic of Korea.

  2. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    NASA Astrophysics Data System (ADS)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex problem. The comparatively slower error growth in the tropics and in the stratosphere indicates that certain weather phenomena could potentially have longer predictability than currently thought.

  3. Using weather forecasts for predicting forest-fire danger

    Treesearch

    H. T. Gisborne

    1925-01-01

    Three kinds of weather control the fluctuations of forest-fire danger-wet weather, dry weather, and windy weather. Two other conditions also contribute to the fluctuation of fire danger. These are the occurrence of lightning and the activities of man. But neither of these fire-starting agencies is fully effective unless the weather has dried out the forest materials so...

  4. Evaluating the effect of lithology on porosity development in ridgetops in the Appalachian Piedmont

    NASA Astrophysics Data System (ADS)

    Marcon, V.; Gu, X.; Fisher, B.; Brantley, S. L.

    2016-12-01

    Together, chemical and physical processes transform fresh bedrock into friable weathered material. Even in systems where lithology, tectonic history, and climatic history are all known, it is challenging to predict the depth of weathering because the mechanisms that control the rate of regolith formation are not understood. In the Appalachian Piedmont, where rates of regolith formation and erosion are thought to be in a rough steady state, the depth of weathering varies with lithology. The Piedmont provides a controlled natural environment to isolate the effects of lithology on weathering processes so we can start to understand the mechanisms that initiate and drive weathering. Weathering is deepest over feldspathic rocks (schist/granite) with regolith 20-30m thick and thinnest over mafic and ultramafic rocks (diabase/serpentinite) with regolith <5m thick (Pavich et al., 1989). We are exploring both chemical and physical controls on weathering. For example, when regolith thickness is plotted versus fracture toughness of each lithology, regolith thickness generally increases with decreasing fracture toughness. However, serpentinite, a rheologically weak rock, does not follow this trend with thin soils. To understand this observation, physical weathering parameters (porosity, connectivity, and surface area) were evaluated using neutron scattering on Piedmont rocks at different degrees of weathering. Samples of both weathered diabase and serpentinite are dominated by small pores (<0.1micron), whereas pores in schist are characteristically larger (1-10microns). As serpentinite weathers, porosity is created by serpentinization reactions and lost from collapse during weathering. Serpentinite consists of easily weathered hydrous minerals with little quartz. Comparatively, rocks with more quartz (e.g. schist) have a supportive skeleton as the rock weathers. This quartz skeleton could prevent the collapse of pores and result in isovolumetric weathering. Non-isovolumetric weathering limits infiltration of reactive fluids deeper into the rock, minimizing regolith formation in serpentinite due to its lack of a quartz skeleton. Given this, fracture toughness may be an important parameter to consider in terms of predicting regolith thickness.

  5. Gauging climate change effects at local scales: weather-based indices to monitor insect harassment in caribou.

    PubMed

    Witter, Leslie A; Johnson, Chris J; Croft, Bruno; Gunn, Anne; Poirier, Lisa M

    2012-09-01

    Climate change is occurring at an accelerated rate in the Arctic. Insect harassment may be an important link between increased summer temperature and reduced body condition in caribou and reindeer (both Rangifer tarandus). To examine the effects of climate change at a scale relevant to Rangifer herds, we developed monitoring indices using weather to predict activity of parasitic insects across the central Arctic. During 2007-2009, we recorded weather conditions and used carbon dioxide baited traps to monitor activity of mosquitoes (Culicidae), black flies (Simuliidae), and oestrid flies (Oestridae) on the post-calving and summer range of the Bathurst barren-ground caribou (Rangifer tarandus groenlandicus) herd in Northwest Territories and Nunavut, Canada. We developed statistical models representing hypotheses about effects of weather, habitat, location, and temporal variables on insect activity. We used multinomial logistic regression to model mosquito and black fly activity, and logistic regression to model oestrid fly presence. We used information theory to select models to predict activity levels of insects. Using historical weather data, we used hindcasting to develop a chronology of insect activity on the Bathurst range from 1957 to 2008. Oestrid presence and mosquito and black fly activity levels were explained by temperature. Wind speed, light intensity, barometric pressure, relative humidity, vegetation, topography, location, time of day, and growing degree-days also affected mosquito and black fly levels. High predictive ability of all models justified the use of weather to index insect activity. Retrospective analyses indicated conditions favoring mosquito activity declined since the late 1950s, while predicted black fly and oestrid activity increased. Our indices can be used as monitoring tools to gauge potential changes in insect harassment due to climate change at scales relevant to caribou herds.

  6. Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest

    USGS Publications Warehouse

    Barrett, Kirsten; Loboda, Tatiana; McGuire, A. David; Genet, Hélène; Hoy, Elizabeth; Kasischke, Eric

    2016-01-01

    Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we employ some of these new data to analyze variations in fire activity by developing three explanatory models to examine the occurrence of (1) seasonal periods of elevated fire activity using the number of MODIS active fire detections data set (MCD14DL) within an 11-day moving window, (2) unburned patches within a burned area using the Monitoring Trends in Burn Severity fire severity product, and (3) short-to-moderate interval (<60 yr) fires using areas of burned area overlap in the Alaska Large Fire Database. Explanatory variables for these three models included dynamic variables that can change over the course of the fire season, such as weather and burn date, as well as static variables that remain constant over a fire season, such as topography, drainage, vegetation cover, and fire history. We found that seasonal periods of high fire activity are associated with both seasonal timing and aggregated weather conditions, as well as the landscape composition of areas that are burning. Important static inputs to the model of seasonal fire activity indicate that when fire weather conditions are suitable, areas that typically resist fire (e.g., deciduous stands) may become more vulnerable to burning and therefore less effective as fire breaks. The occurrence of short-to-moderate interval fires appears to be primarily driven by weather conditions, as these were the only relevant explanatory variables in the model. The unique importance of weather in explaining short-to-moderate interval fires implies that fire return intervals (FRIs) will be sensitive to projected climate changes in the region. Unburned patches occur most often in younger stands, which may be related to a greater deciduous fraction of vegetation as well as lower fuel loads compared with mature stands. The fraction of unburned patches may therefore increase in response to decreasing FRIs and increased deciduousness in the region, or these may decrease if fire weather conditions become more severe.

  7. Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel

    2018-06-01

    Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  8. Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.

  9. Testing and Evaluation of Preliminary Design Guidelines for Disseminating Road Weather Advisory & Control Information

    DOT National Transportation Integrated Search

    2012-06-01

    The tremendous growth in the amount of available weather and road condition informationincluding devices that gather weather information, models and forecasting tools for predicting weather conditions, and electronic devices used by travelersha...

  10. Guidelines for disseminating road weather messages : improved road weather information for travelers.

    DOT National Transportation Integrated Search

    2013-01-01

    The Federal Highway Administration (FHWA) Road Weather Management Program (RWMP) recently published a document titled Guidelines for Disseminating Road Weather Advisory and Control Information (FHWA-JPO-12- 046). The guidelines are intended for use b...

  11. A study on the integrity and authentication of weather observation data using Identity Based Encryption.

    PubMed

    Seo, Jung Woo; Lee, Sang Jin

    2016-01-01

    Weather information provides a safe working environment by contributing to the economic activity of the nation, and plays role of the prevention of natural disasters, which can cause large scaled casualties and damage of property. Especially during times of war, weather information plays a more important role than strategy, tactics and information about trends of the enemy. Also, it plays an essential role for the taking off and landing of fighter jet and the sailing of warships. If weather information, which plays a major role in national security and economy, gets misused for cyber terrorism resulting false weather information, it could be a huge threat for national security and the economy. We propose a plan to safely transmit the measured value from meteorological sensors through a meteorological telecommunication network in order to guarantee the confidentiality and integrity of the data despite cyber-attacks. Also, such a plan allows one to produce reliable weather forecasts by performing mutual authentication through authentication devices. To make sure of this, one can apply an Identity Based Signature to ensure the integrity of measured data, and transmit the encrypted weather information with mutual authentication about the authentication devices. There are merits of this research: It is not necessary to manage authentication certificates unlike the Public Key Infrastructure methodology, and it provides a powerful security measure with the capability to be realized in a small scale computing environment, such as the meteorological observation system due to the low burden on managing keys.

  12. Large-Scale, Extratropical Weather Systems within Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.

    2013-04-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.

  13. Large-Scale Extratropical Weather Systems in Mars' Atmosphere

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.

    2013-01-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.

  14. Exploiting OSPaN (Optical Solar Patrol Network) Data to Understand Large-Scale Solar Eruptions Impacting Space Weather

    DTIC Science & Technology

    2011-12-28

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...by CMEs; (2) the angular orientation of newly emerged magnetic flux on the solar surface relative to stable filaments plays a role in how rapidly the...potential of exploiting ISOON observations to increase our understanding of solar eruptions, a requirement for improved prediction and mitigation of space

  15. A HIERARCHIAL STOCHASTIC MODEL OF LARGE SCALE ATMOSPHERIC CIRCULATION PATTERNS AND MULTIPLE STATION DAILY PRECIPITATION

    EPA Science Inventory

    A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...

  16. Climate, weather, socio-economic and electricity usage data for the residential and commercial sectors in FL, U.S.

    PubMed

    Mukhopadhyay, Sayanti; Nateghi, Roshanak

    2017-08-01

    This paper presents the data that is used in the article entitled "Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States" (Mukhopadhyay and Nateghi, 2017) [1]. The data described in this paper pertains to the state of Florida (during the period of January 1990 to November 2015). It can be classified into four categories of (i) state-level electricity consumption data; (ii) climate data; (iii) weather data; and (iv) socio-economic data. While, electricity consumption data and climate data are obtained at monthly scale directly from the source, the weather data was initially obtained at daily-level, and then aggregated to monthly level for the purpose of analysis. The time scale of socio-economic data varies from monthly-level to yearly-level. This dataset can be used to analyze the influence of climate and weather on the electricity demand as described in Mukhopadhyay and Nateghi (2017) [1].

  17. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.

    2016-01-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  18. Traveling Weather Disturbances in Mars' Southern Extratropics: Sway of the Great Impact Basins

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.

    2016-04-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e., globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  19. Synoptic versus regional causes of icing on wind turbines at an exposed wind farm site in Germany

    NASA Astrophysics Data System (ADS)

    Weissinger, Maximilian; Strauss, Lukas; Serafin, Stefano; Dorninger, Manfred; Burchhart, Thomas; Fink, Martin

    2017-04-01

    Ice accretion on wind turbine blades can lead to significant power production loss or even permanent structural damage on the turbine. With the ongoing construction of wind farms at sites with increased icing potential in cold climates, accurate icing predictions are needed to optimise power plant operation. To this end, the frequency of occurrence and the causes of meteorological icing need to be better understood. The project ICE CONTROL, an Austrian research initiative, aims to improve icing forecasts through measurements, probabilistic forecasting, and verification of icing on wind turbine blades. The project focuses on a wind farm site near Ellern, Germany, located on the Hunsrück, a hilly terrain rising above the surrounding plain by 200-300 metres. Production data from the last three winters show that icing events tend to occur more often at the wind turbines on top of the highest hills. The present study aims to investigate historical cases of wind turbine icing and their meteorological causes at the Ellern wind farm. The data available consists of a three-year period (2013-2016) of operational data from the Ellern wind farm as well as meteorological measurements at nearby stations operated by the German Weather Service (DWD). In addition, radiosondes and weather charts are taken into account. The main objective of this work is, first, to link the local and regional weather conditions to larger-scale weather patterns and prevailing air masses, and second, to determine the types of icing (in-cloud vs. freezing precipation). Results show that in most icing cases the cloud base height was below the hub height while the temperature was just below the freezing point. Precipitation was absent in most cases. This suggests that most of the observed icing events were due to in-cloud icing. Icing conditions occurred often (but not exclusively) under specific synoptic-scale weather conditions, such as north-westerly flow advecting maritime polar air masses to Central Europe. In other cases, icing events were favoured by the development of low-level thermal inversions during weak south-easterly flow conditions.

  20. Temporal and spatial structure in a daily wildfire-start data set from the western United States (198696)

    USGS Publications Warehouse

    Bartlein, P.J.; Hostetler, S.W.; Shafer, S.L.; Holman, J.O.; Solomon, A.M.

    2008-01-01

    The temporal and spatial structure of 332 404 daily fire-start records from the western United States for the period 1986 through 1996 is illustrated using several complimentary visualisation techniques. We supplement maps and time series plots with Hovmo??ller diagrams that reduce the spatial dimensionality of the daily data in order to reveal the underlying space?time structure. The mapped distributions of all lightning- and human-started fires during the 11-year interval show similar first-order patterns that reflect the broad-scale distribution of vegetation across the West and the annual cycle of climate. Lightning-started fires are concentrated in the summer half-year and occur in widespread outbreaks that last a few days and reflect coherent weather-related controls. In contrast, fires started by humans occur throughout the year and tend to be concentrated in regions surrounding large-population centres or intensive-agricultural areas. Although the primary controls of human-started fires are their location relative to burnable fuel and the level of human activity, spatially coherent, weather-related variations in their incidence can also be noted. ?? IAWF 2008.

  1. Adapting to the Weather: Lessons from U.S. History.

    PubMed

    Bleakley, Hoyt; Hong, Sok Chul

    2017-09-01

    An important unknown in understanding the impact of climate change is the scope of adaptation, which requires observations on historical time scales. We consider how weather across U.S. history (1860-2000) has affected various measures of productivity. Using cross-sectional and panel methods, we document significant responses of agricultural and individual productivity to weather. We find strong effects of hotter and wetter weather early in U.S. history, but these effects have been attenuated in recent decades. The results suggest that estimates from a given period may be of limited use in forecasting the longer-term impacts of climate change.

  2. Using Remote Sensing, Weather, and Demographic Data to Create Risk Maps for Zika, Dengue, and Chikungunya in Brazil

    NASA Astrophysics Data System (ADS)

    Manore, C.; Conrad, J.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Generous, E. N.

    2017-12-01

    Mosquito-borne diseases such as Zika, dengue, and chikungunya viruses have dynamics coupled to weather, ecology, human infrastructure, socio-economic demographics, and behavior. We use time-varying remote sensing and weather data, along with demographics and ecozones to predict risk through time for Zika, dengue, and chikungunya outbreaks in Brazil. We use distributed lag methods to quantify the lag between outbreaks and weather. Our statistical model indicates that the relationships between the variables are complex, but that quantifying risk is possible with the right data at appropriate spatio-temporal scales.

  3. A Synoptic Weather Typing Approach and Its application to Assess Climate Change Impacts on Extreme Weather Events at Local Scale in South-Central Canada

    NASA Astrophysics Data System (ADS)

    Shouquan Cheng, Chad; Li, Qian; Li, Guilong

    2010-05-01

    The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.

  4. Accelerating the carbon cycle: the ethics of enhanced weathering.

    PubMed

    Lawford-Smith, H; Currie, A

    2017-04-01

    Enhanced weathering, in comparison to other geoengineering measures, creates the possibility of a reduced cost, reduced impact way of decreasing atmospheric carbon, with positive knock-on effects such as decreased oceanic acidity. We argue that ethical concerns have a place alongside empirical, political and social factors as we consider how to best respond to the critical challenge that anthropogenic climate change poses. We review these concerns, considering the ethical issues that arise (or would arise) in the large-scale deployment of enhanced weathering. We discuss post-implementation scenarios, failures of collective action, the distribution of risk and externalities and redress for damage. We also discuss issues surrounding 'dirty hands' (taking conventionally immoral action to avoid having to take action that is even worse), whether enhanced weathering research might present a moral hazard, the importance of international governance and the notion that the implementation of large-scale enhanced weathering would reveal problematic hubris. Ethics and scientific research interrelate in complex ways: some ethical considerations caution against research and implementation, while others encourage them. Indeed, the ethical perspective encourages us to think more carefully about how, and what types of, geoengineering should be researched and implemented. © 2017 The Author(s).

  5. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    PubMed Central

    Porada, P.; Lenton, T. M.; Pohl, A.; Weber, B.; Mander, L.; Donnadieu, Y.; Beer, C.; Pöschl, U.; Kleidon, A.

    2016-01-01

    It has been hypothesized that predecessors of today's bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today's global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate. PMID:27385026

  6. Road weather information for travelers : improving road weather messages and dissemination methods.

    DOT National Transportation Integrated Search

    2010-01-01

    The Federal Highway Administration (FHWA) Road Weather Management Program (RWMP) recently completed a study titled Human Factors Analysis of Road Weather Advisory and Control Information (Publication No. FHWAJPO- 10-053). The goal of the study was to...

  7. A review of the relationships between drought and forest fire in the United States

    USGS Publications Warehouse

    Littell, Jeremy; Peterson, David L.; Riley, Karin L.; Yongquiang Liu,; Luce, Charles H.

    2016-01-01

    The historical and pre-settlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate—including short- and long-term droughts—are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem.

  8. Modeling Mars Cyclogenesis and Frontal Waves: Seasonal Variations and Implications on Dust Activity

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, M. A.

    2014-01-01

    Between late autumn through early spring,middle and high latitudes onMars exhibit strong equator-to-polemean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic period waves) [1, 2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wave-like disturbances serve as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars' extratropical weather systems have significant sub-synoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  9. Elevation Gradients and Climatic Consequences

    NASA Astrophysics Data System (ADS)

    Redmond, K. T.

    2006-12-01

    Steep topography usually results in gradients in surface meteorological elements. Sometimes these gradients are extremely sharp. Frequent or persistent gradients are expressed in climatic statistics as well. Most commonly, higher elevations are wetter and cooler than lower elevations. The magnitude of these climate gradients vary both spatially and temporally, generally on smaller scales for the former and on a greater variety of scales for the latter. Orographic contributions to precipitation vary on hourly to annual scales, and temperature inversions of different durations can alter or reverse the vertical temperature lapse rate normally found in the atmosphere. The presence of these factors affects the probability distributions of climate elements as a function of elevation. This leads in turn to consequences for ecology, resource management, and data. Orographic enhancement of Sierra precipitation varies by a factor of about three on seasonal time scales, and more on shorter scales. Particularly strong gradients in temperature climate are observed along the California coast, resulting in large changes in long-term climatological probability distributions over quite short distances in elevation. These have significant implications for plant life. For specific noteworthy events, such as the California heat wave of July 2006, striking differences were seen over a horizontal distance of merely 2-3 km along the Big Sur Coast, related entirely to elevation. There is evidence of differential warming with elevation between California's Central Valley and the Sierra Nevada. As a practical matter, the three-dimensional correlation fields of weather and climate elements in topographically diverse regions, on differing time scales, have complex structure, but also have certain regularities. This makes quality control of weather and climate data sets in highly diverse topography much more challenging. Quality control decisions that do not properly take this correlation structure (which varies in time) into account can result in degraded data sets, a variety of Type I and Type II errors, and paradoxically, hinder or prevent the discovery and description of the effects of climate gradients by incorrectly altering the data sets needed to uncover and quantify the relationships.

  10. Local Climate Changes Forced by Changes in Land Use and topography in the Aburrá Valley, Colombia.

    NASA Astrophysics Data System (ADS)

    Zapata Henao, M. Z.; Hoyos Ortiz, C. D.

    2017-12-01

    One of the challenges in the numerical weather models is the adequate representation of soil-vegetation-atmosphere interaction at different spatial scales, including scenarios with heterogeneous land cover and complex mountainous terrain. The interaction determines the energy, mass and momentum exchange at the surface and could affect different variables including precipitation, temperature and wind. In order to quantify the long-term climate impact of changes in local land use and to assess the role of topography, two numerical experiments were examined. The first experiment allows assessing the continuous growth of urban areas within the Aburrá Valley, a complex terrain region located in Colombian Andes. The Weather Research Forecast model (WRF) is used as the basis of the experiment. The basic setup involves two nested domains, one representing the continental scale (18 km) and the other the regional scale (2 km). The second experiment allows drastic topography modification, including changing the valley configuration to a plateau. The control run for both experiments corresponds to a climatological scenario. In both experiments the boundary conditions correspond to the climatological continental domain output. Surface temperature, surface winds and precipitation are used as the main variables to compare both experiments relative to the control run. The results of the first experiment show a strong relationship between land cover and the variables, specially for surface temperature and wind speed, due to the strong forcing land cover imposes on the albedo, heat capacity and surface roughness, changing temperature and wind speed magnitudes. The second experiment removes the winds spatial variability related with hill slopes, the direction and magnitude are modulated only by the trade winds and roughness of land cover.

  11. Assessing the implementation of bias correction in the climate prediction

    NASA Astrophysics Data System (ADS)

    Nadrah Aqilah Tukimat, Nurul

    2018-04-01

    An issue of the climate changes nowadays becomes trigger and irregular. The increment of the greenhouse gases (GHGs) emission into the atmospheric system day by day gives huge impact to the fluctuated weather and global warming. It becomes significant to analyse the changes of climate parameters in the long term. However, the accuracy in the climate simulation is always be questioned to control the reliability of the projection results. Thus, the Linear Scaling (LS) as a bias correction method (BC) had been applied to treat the gaps between observed and simulated results. About two rainfall stations were selected in Pahang state there are Station Lubuk Paku and Station Temerloh. Statistical Downscaling Model (SDSM) used to perform the relationship between local weather and atmospheric parameters in projecting the long term rainfall trend. The result revealed the LS was successfully to reduce the error up to 3% and produced better climate simulated results.

  12. Space Weathering on 4 Vesta: Processes and Products

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Blewett, D. T.; Gaffey, M.; Mittlefehldt, D. W.; De Sanctis, M. C.; Reddy, V.; Nathues, A.; Denevi, B. W.; Li, J. Y.; McCord, T. B.; hide

    2012-01-01

    The bulk properties of Vesta have previously been linked directly to the howardite, eucrite, and diogenite (HED) meteorites through remote mineral characterization of its surface from Earth-based spectroscopy [e.g., 1]. A long-standing enigma has been why does Vesta s surface appear to have suffered so little alteration from the space environment, whereas materials exposed on the Moon and some S-type asteroids are significantly changed (grains develop rims containing nano-phase opaques [e.g. 2]). The Dawn spacecraft is well suited to address this issue and is half through its extended mapping phase of this remarkable proto-planet [3]. On a local scale Dawn sees evidence of recent exposures at craters, but distinctive surface materials blend into background at older craters. The presence of space weathering processes are thus evident at Vesta, but the character and form are controlled by the unique environment and geologic history of this small body.

  13. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.

    PubMed

    Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.

    2000-06-01

    An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.

  14. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    NASA Astrophysics Data System (ADS)

    Chardon, Jérémy; Hingray, Benoit; Favre, Anne-Catherine

    2018-01-01

    Statistical downscaling models (SDMs) are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  15. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW CONTROL

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow (WWF). Cost/benefit relationships were compared to construction of new conventional control and treatment facilities. Desktop...

  16. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  17. Modeling rock weathering in small watersheds

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Van der Weijden, Cornelis H.

    2014-05-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and Van der Weijden, 2012a, 2014), which integrates topographic, hydrologic, rock structure and chemical data to calculate weathering rates at the watershed scale, validated the conceptual models in the River Sordo basin, a small watershed located in the Marão cordillera (North of Portugal). The coupling of weathering, groundwater flow and landscape evolution analyses, as accomplished in this study, is innovative and represents a remarkable achievement towards regionalization of rock weathering at the watershed scale. The River Sordo basin occupies an area of approximately 51.2 km2 and was shaped on granite and metassediment terrains between the altitudes 185-1300 m. The groundwater flow system is composed of recharge areas located at elevations >700 m, identified on the basis of δ18O data. Discharge cells comprehend terminations of local, intermediate and regional flow systems, identified on the basis of spring density patterns, infiltration depth estimates based on 87Sr/86Sr data, and spatial distributions of groundwater pH and natural mineralization. Intermediate and regional flow systems, defined where infiltration depths >125 m, develop solely along the contact zone between granites and metassediments, because fractures in this region are profound and their density is very large. Weathering is accelerated where rocks are covered by thick soils, being five times faster relative to sectors of the basin where rocks are covered by thin soils. Differential weathering of bare and soil-mantled rock is also revealed by the spatial distribution of calculated aquifer hydraulic diffusivities and groundwater travel times.

  18. A drainage basin scale model for earthflow-prone landscapes over geomorphic timescales

    NASA Astrophysics Data System (ADS)

    Booth, A. M.; Roering, J. J.

    2009-12-01

    Landscape evolution models can be informative tools for understanding how sediment transport processes, regulated by tectonic and climatic forcing, interact to control fundamental landscape characteristics such as relief, channel network organization, and hillslope form. Many studies have proposed simple mathematical geomorphic transport laws for modeling hillslope and fluvial processes, and these models are capable of generating synthetic landscapes similar to many of those observed in nature. However, deep-seated mass movements dominate the topographic development of many tectonically active landscapes, yet few compelling transport laws exist for accurately describing these processes at the drainage basin scale. Specifically, several detailed field and theoretical studies describe the mechanics of deep-seated earthflows, such as those found throughout the northern California coast ranges, but these studies are often restricted to a single earthflow site. Here, we generalize earthflow behavior to larger spatial and geomorphically significant temporal scales using a mathematical model to determine how interactions between earthflow, weathering, hillslope, and fluvial processes control sediment flux and topographic form. The model couples the evolution of the land surface with the evolution of a weathered zone driven by fluctuations in the groundwater table. The lower boundary of this weathered zone sets the potential failure plane for earthflows, which occur once the shear stress on this plane exceeds a threshold value. Earthflows deform downslope with a non-Newtonian viscous rheology while gullying, modeled with a stream power equation, and soil creep, modeled with a diffusion equation, continuously act on the land surface. To compare the intensities of these different processes, we define a characteristic timescale for each modeled process, and demonstrate how the ratios of these timescales control the steady-state topographic characteristics of the simulated landscapes. As changes in earthflow rheological properties or thickening of the weathered zone increase the intensity of earthflow processes, relief decreases, hillslopes become more planar, and fluvial incision is inhibited at low drainage areas. The model also predicts that earthflows make their most significant contribution to long term lowering of the land surface at mid- and upper-slope locations. Fluvial processes dominate at high drainage area hillslope toes, and soil creep dominates at highly convex ridgelines. We find the predictions of our model in agreement with the following general observations of earthflow prone terrain, drawn from analysis of a 1m resolution LiDAR digital elevation model of terrain adjacent to the main stem of the Eel River, northern California: (1) hillslope profiles tend to be slightly convex at the foot, broadly concave through the mid-slope, and highly convex at the ridgeline, (2) gully incision of earthflow transport zones and toes may be important in delivering sediment from hillslopes to high order streams, and (3) as with shallow landsliding, magnitude-frequency distributions of active earthflows tend to be heavy tailed.

  19. Irrigation analysis based on long-term weather data

    USDA-ARS?s Scientific Manuscript database

    Irrigation-management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994 an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. ...

  20. Thresholds for soil cover and weathering in mountainous landscapes

    NASA Astrophysics Data System (ADS)

    Dixon, Jean; Benjaram, Sarah

    2017-04-01

    The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.

  1. Sources and characteristics of medium-scale traveling ionospheric disturbances observed by high-frequency radars in the North American sector

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.

    2016-04-01

    Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between ˜150 and 650 km and horizontal velocities between ˜75 and 325 m s-1. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from ˜125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.

  2. Sources and Characteristics of Medium Scale Traveling Ionospheric Disturbances Observed by High Frequency Radars in the North American Sector

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.

    2016-12-01

    Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between 150 and 650 km and horizontal velocities between 75 and 325 m/s. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from 125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.

  3. Chemical weathering as a mechanism for the climatic control of bedrock river incision

    NASA Astrophysics Data System (ADS)

    Murphy, Brendan P.; Johnson, Joel P. L.; Gasparini, Nicole M.; Sklar, Leonard S.

    2016-04-01

    Feedbacks between climate, erosion and tectonics influence the rates of chemical weathering reactions, which can consume atmospheric CO2 and modulate global climate. However, quantitative predictions for the coupling of these feedbacks are limited because the specific mechanisms by which climate controls erosion are poorly understood. Here we show that climate-dependent chemical weathering controls the erodibility of bedrock-floored rivers across a rainfall gradient on the Big Island of Hawai‘i. Field data demonstrate that the physical strength of bedrock in streambeds varies with the degree of chemical weathering, which increases systematically with local rainfall rate. We find that incorporating the quantified relationships between local rainfall and erodibility into a commonly used river incision model is necessary to predict the rates and patterns of downcutting of these rivers. In contrast to using only precipitation-dependent river discharge to explain the climatic control of bedrock river incision, the mechanism of chemical weathering can explain strong coupling between local climate and river incision.

  4. The weather and climate: emergent laws and multifractal cascades

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; Schertzer, Daniel

    2013-04-01

    Science in general and physics and geophysics in particular are hierarchies of interlocking theories and models with low level, fundamental laws such as quantum mechanics and statistical mechanics providing the underpinnings for the emergence of the qualitatively new, higher level laws of thermodynamics and continuum mechanics that provide the current bases for modelling the weather and climate. Yest it was the belief of generations of turbulence pioneers (notably Richardson, Kolmogorov, Obhukhov, Corrsin, Bolgiano) that at sufficiently high levels of nonlinearity (quantified by the Reynold's number, of the order 10**12 in the atmosphere) that new even higher level laws would emerge describing "fully developed turbulence". However for atmospheric applications, the pioneers' eponymous laws suffered from two basic restrictions - isotropy and homogeneity - that prevented them from being valid over wide ranges of scale. Over the last thirty years both of these restrictions have been overcome - the former with the generalization from isotropic to strongly anisotropic notions of scale (to account notably for stratification), and from homogeneity to strong heterogeneity (intermittency) via multifractal cascades. In this presentation we give an overview of recent developments and analyses covering huge ranges of space-time scales (including weather, macroweather and climate time scales). We show how the combination of strong anisotropy and strong intermittency commonly leads to the "phenomenological fallacy" in which morphology is confounded with mechanism. With the help of stochastic models, we show how processes with vastly different large and small scale morphologies can arise from a unique multifractal dynamical mechanisms [Lovejoy and Schertzer, 2013]. References: Lovejoy, S., and D. Schertzer (2013), The Weather and Climate: Emergent Laws and Multifractal Cascades, 480 pp., Cambridge University Press, Cambridge.

  5. Urban Flow and Pollutant Dispersion Simulation with Multi-scale coupling of Meteorological Model with Computational Fluid Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yushi; Poh, Hee Joo

    2014-11-01

    The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.

  6. Multi-scale Drivers of Variations in Atmospheric Evaporative Demand Based on Observations and Physically-based Modeling

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.; Li, D.

    2015-12-01

    Evapotranspiration (ET) is a key link between the availability of water resources and climate change and climate variability. Variability of ET has important environmental and socioeconomic implications for managing hydrological hazards, food and energy production. Although there have been many observational and modeling studies of ET, how ET has varied and the drivers of the variations at different temporal scales remain elusive. Much of the uncertainty comes from the atmospheric evaporative demand (AED), which is the combined effect of radiative and aerodynamic controls. The inconsistencies among modeled AED estimates and the limited observational data may originate from multiple sources including the limited time span and uncertainties in the data. To fully investigate and untangle the intertwined drivers of AED, we present a spectrum analysis to identify key controls of AED across multiple temporal scales. We use long-term records of observed pan evaporation for 1961-2006 from 317 weather stations across China and physically-based model estimates of potential evapotranspiration (PET). The model estimates are based on surface meteorology and radiation derived from reanalysis, satellite retrievals and station data. Our analyses show that temperature plays a dominant role in regulating variability of AED at the inter-annual scale. At the monthly and seasonal scales, the primary control of AED shifts from radiation in humid regions to humidity in dry regions. Unlike many studies focusing on the spatial pattern of ET drivers based on a traditional supply and demand framework, this study underlines the importance of temporal scales when discussing controls of ET variations.

  7. The fluid dynamics of atmospheric clouds

    NASA Astrophysics Data System (ADS)

    Randall, David A.

    2017-11-01

    Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.

  8. An assessment of potential weather effects due to operation of the Space Orbiting Light Augmentation Reflector Energy System (SOLARES)

    NASA Technical Reports Server (NTRS)

    Allen, N. C.

    1978-01-01

    Implementation of SOLARES will input large quantities of heat continuously into a stationary location on the Earth's surface. The quantity of heat released by each of the SOlARES ground receivers, having a reflector orbit height of 6378 km, exceeds by 30 times that released by large power parks which were studied in detail. Using atmospheric models, estimates are presented for the local weather effects, the synoptic scale effects, and the global scale effects from such intense thermal radiation.

  9. Connected Vehicle-Enabled Weather Responsive Traffic Management

    DOT National Transportation Integrated Search

    2018-04-01

    Weather Responsive Traffic Management (WRTM) is an initiative under the Federal Highway Administration's (FHWA) Road Weather Management Program that supports traffic management agencies and professionals in implementing effective advisory, control, a...

  10. 14 CFR 121.119 - Weather reporting facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Weather reporting facilities. 121.119... Operations § 121.119 Weather reporting facilities. (a) No certificate holder conducting supplemental operations may use any weather report to control flight unless it was prepared and released by the U.S...

  11. 14 CFR 121.119 - Weather reporting facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Weather reporting facilities. 121.119... Operations § 121.119 Weather reporting facilities. (a) No certificate holder conducting supplemental operations may use any weather report to control flight unless it was prepared and released by the U.S...

  12. 14 CFR 121.119 - Weather reporting facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Weather reporting facilities. 121.119... Operations § 121.119 Weather reporting facilities. (a) No certificate holder conducting supplemental operations may use any weather report to control flight unless it was prepared and released by the U.S...

  13. 14 CFR 121.119 - Weather reporting facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Weather reporting facilities. 121.119... Operations § 121.119 Weather reporting facilities. (a) No certificate holder conducting supplemental operations may use any weather report to control flight unless it was prepared and released by the U.S...

  14. 14 CFR 121.119 - Weather reporting facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Weather reporting facilities. 121.119... Operations § 121.119 Weather reporting facilities. (a) No certificate holder conducting supplemental operations may use any weather report to control flight unless it was prepared and released by the U.S...

  15. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean.

    PubMed

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Crave, Alain; Viers, Jérôme; Filizola, Naziano; Martinez, Jean-Michel; Oliveira, Tereza Cristina; Sánchez, Liz Stefanny Hidalgo; Lagane, Christelle; Casimiro, Waldo Sven Lavado; Noriega, Luis; Pombosa, Rodrigo

    2016-06-01

    The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the "Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia" (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983-1992 and 2000-2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 10(6) t year(-1) (263-278) of TDS during the 2003-2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes-sedimentary area-shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have been characterized over all the studied stations and for all elements. The analysis of the slope of the relationship within the selected contexts reveals that the variability in TDS flux is mainly controlled by the discharge variability throughout the hydrological year. At the outlet of the basin, a clockwise hysteresis is observed for TDS concentration and is mainly controlled by Ca and HCO3 hysteresis, highlighting the need for a sampling strategy with a monthly frequency to accurately determine the TDS fluxes of the basin. The evaporite dissolution flux tends to be constant, whereas dissolved load fluxes released from other sources (silicate weathering, carbonate weathering, biological and/or atmospheric inputs) are mainly driven by variability in discharge. These results suggest that past and further climate variability had or will have a direct impact on the variability of dissolved fluxes in the Amazon. Further studies need to be performed to better understand the processes controlling the dynamics of weathering fluxes and their applicability to present-day concentration-discharge relationships at longer timescales.

  16. A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims

    PubMed Central

    Scheel, Ida; Ferkingstad, Egil; Frigessi, Arnoldo; Haug, Ola; Hinnerichsen, Mikkel; Meze-Hausken, Elisabeth

    2013-01-01

    Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models. PMID:23396890

  17. Structural evolution of the Mount Wall region in the Hamersley province, Western Australia and its control on hydrothermal alteration and formation of high-grade iron deposits

    NASA Astrophysics Data System (ADS)

    Dalstra, Hilke J.

    2014-10-01

    The discovery of two relatively small but high-grade iron ore deposits near Mt Wall, an intensely faulted part of the southwestern Hamersley province provides unique insights into the structural control on ore formation in this region. The deposits have many geological features typical of the high grade microplaty hematite group which also contains the much larger Mt Tom Price, Paraburdoo and Mt Whaleback deposits. The deposits are structurally controlled along early normal faults and contain abundant microplaty hematite and martite, and are largely confined to the Dales Gorge member of the Brockman Iron Formation. In addition to the microplaty hematite-martite ore, there are martite-goethite ores and rare magnetite-goethite or magnetite-hematite ores. Below the modern weathering surface, hydrothermally altered zones in wallrock BIF from the Lower Dales Gorge member contain magnetite, hematite and carbonate/talc bearing mineral assemblages. A staged ore genesis model involving early extension and fluid circulation along normal faults, hypogene silica leaching and carbonate alteration, followed by deep meteoric oxidation with microplaty hematite formation and finally weathering can explain most features of the Mt Wall deposits. The role of deformation was to provide pathways for mineralising fluids and initiate the seed points for the mineralised systems. High grade iron in the Wellthandalthaluna deposit is situated between the NW to NNW trending Boolgeeda Creek fault and a synthetic joining splay, the Northern fault. Both are high angle normal faults and formed during early extension in this part of the province. Faults are characterised by localised small scale deformation and brecciation, deep carbonate alteration and oxidation. Recent weathering has penetrated deeply into the fault zones, converting the carbonate-rich assemblages into goethite. Mineralisation in the Arochar deposit is situated in the overlap or relay zone between two segments of the Mt Wall fault zone, a moderately to steeply southerly dipping normal fault system which at Arochar is intruded by dolerite dykes. At both locations, the ore controlling faults are offset by later NW trending dextral and normal faults. Fault relay zones or fault splay zones were likely zones of increased permeability and fluid flow during fault development or reactivation and may also have been important in initiating mineralisation in larger deposits such as Mt Tom Price and Mt Whaleback. However structural controls on the largest iron ore deposits are often obscured due to the intensity and scale of ore development, whereas they are better preserved in the smaller deposits. Recognition that carbonate bearing protores at Mt Wall survived for nearly two billion years until intense recent weathering converted them to martite-goethite or magnetite-goethite ores may imply that more of the giant hematite-goethite deposits of the Hamersley province had hydrothermal precursors and were not formed by supergene processes alone.

  18. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  19. A Geosynchronous Lidar System for Atmospheric Winds and Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    2001-01-01

    An observing system comprised of two lidars in geosychronous orbit would enable the synoptic and meso-scale measurement of atmospheric winds and moisture both of which are key first-order variables of the Earth's weather equation. Simultaneous measurement of these parameters at fast revisit rates promises large advancements in our weather prediction skills. Such capabilities would be unprecedented and a) yield greatly improved and finer resolution initial conditions for models, b) make existing costly and cumbersome measurement approaches obsolete, and c) obviate the use of numerical techniques needed to correct data obtained using present observing systems. Additionally, simultaneous synoptic wind and moisture observations would lead to improvements in model parameterizations, and in our knowledge of small-scale weather processes. Technology and science data product assessments are ongoing. Results will be presented during the conference.

  20. A coupled synoptic-hydrological model for climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Wilby, Robert; Greenfield, Brian; Glenny, Cathy

    1994-01-01

    A coupled atmospheric-hydrological model is presented. Sequences of daily rainfall occurrence for the 20 year period 1971-1990 at sites in the British Isles are related to the Lamb's Weather Types (LWT) by using conditional probabilities. Time series of circulation patterns and hence rainfall were then generated using a Markov representation of matrices of transition probabilities between weather types. The resultant precipitation data were used as input to a semidistributed catchment model to simulate daily flows. The combined model successfully reproduced aspects of the daily weather, precipitation and flow regimes. A range of synoptic scenarios were further investigated with particular reference to low flows in the River Coln, UK. The modelling approach represents a means of translating general circulation model (GCM) climate change predictions at the macro-scale into hydrological concerns at the catchment scale.

  1. Subsurface Evolution: Weathering and Mechanical Strength Reduction in Bedrock of Lower Gordon Gulch, Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Anderson, R. S.; Blum, A.; Foster, M. A.; Langston, A. L.

    2011-12-01

    Weathering processes drive mobile regolith production at the surface of the earth. Chemical and physical weathering weakens rock by creating porosity, opening fractures, and transforming minerals. Increased porosity provides habitat for living organisms, which aid in further breakdown of the rock, leaving it more susceptible to displacement and transport. In this study, we test mechanical and chemical characteristics of weathered profiles to better understand weathering processes. We collect shallow bedrock cores from tors and isovolumetrically weathered bedrock in lower Gordon Gulch to characterize the mechanical strength, mineralogy, and bulk chemistry of samples to track changes in the subsurface as bedrock weathers to mobile regolith. Gordon Gulch is a small (2.7 km2), E-W trending catchment within the Boulder Creek Critical Zone Observatory underlain by Pre-Cambrian gneiss and granitic bedrock. The basin is typical of the "Rocky Mountain Surface" of the Front Range, characterized by low relief, a lack of glacial or fluvial incision, and deep weathering. Although the low-curvature, low-relief Rocky Mountain Surface would appear to indicate a landscape roughly in steady-state, shallow seismic surveys (Befus et al., 2011, Vadose Zone Journal) indicate depth to bedrock is highly variable. Block style release of saprolite into mobile regolith could explain this high variability and should be observable in geotechnical testing. Gordon Gulch also displays a systematic slope-aspect dependent control on weathering, with N-facing hillslopes exhibiting deeper weathering profiles than the S-facing hillslope. We believe comparisons of paired geotechnical-testing, XRD, and XRF analyses may explain this hillslope anisotropy. Rock quality designation (RQD) values, a commonly used indicator of rock mass quality (ASTM D6032), from both N- and S- facing aspects in Gordon Gulch indicate that granitic bedrock in both outcrop and saprolitic rock masses is poor to very poor. Brazilian tensile testing of outcrop core samples show relatively low tensile failure forces, and exhibit a roughly logarithmic increase in failure force, and hence tensile strength, with depth. For many of the granitic strength profiles, the point of greatest curvature is around 0.5 m depth. Tests reveal small-scale variation in the tensile strength, suggesting that the tight fracture-spacing bounding blocks of saprolite plays an important role in regolith production. The origin of the micro- and macro-fractures is unclear. Preliminary results do not correlate clear depth-trends in mineralogy or bulk chemistry with mechanical strength. The lack of a strong signature from chemical or mineralogical weathering suggests that mechanical processes, such as frost cracking or biotite hydration, may dominate.

  2. METHODS FOR OPTIMIZING URBAN WET-WEATHER CONTROL SYSTEM

    EPA Science Inventory

    To minimize impacts of urban nonpoint source pollution and associated costs of control (storage and treatment) associated with wet-weather flows (WWFs), stormwater runoff volumes and pollutant loads must be reduced. A number of control strategies, so-called “best management pract...

  3. A survey of customers of space weather information

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Rabanal, J. P.

    2013-09-01

    We present an analysis of the users of space weather information based on 2783 responses to an online survey among subscribers of NOAA's Space Weather Prediction Center e-mail services. The survey requested information focused on the three NOAA space weather scales: geomagnetic storms, solar radiation storms, and radio blackouts. Space weather information is most commonly obtained for reasons of human safety and continuity or reliability of operations. The information is primarily used for situational awareness, as aid to understand anomalies, to avoid impacts on current and near-future operations by implementing mitigating strategies, and to prepare for potential near-future impacts that might occur in conjunction with contingencies that include electric power outages or GPS perturbations. Interest in, anticipated impacts from, and responses to the three main categories of space weather are quite uniform across societal sectors. Approximately 40% of the respondents expect serious to very serious impacts from space weather events if no action were taken to mitigate or in the absence of adequate space weather information. The impacts of space weather are deemed to be substantially reduced because of the availability of, and their response to, space weather forecasts and alerts. Current and near-future space weather conditions are generally highly valued, considered useful, and generally, though not fully, adequate to avoid or mitigate societal impacts. We conclude that even among those receiving space weather information, there is considerable uncertainty about the possible impacts of space weather and thus about how to act on the space weather information that is provided.

  4. The effects of lithology and landsliding on hillslope sediment supply: case study from southern Italy

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; McDonald, Jordan

    2017-04-01

    Sediment supply from hillslopes -including volumes, rates and grain size distributions- controls the sediment fluxes from upland areas and modulates how landscapes respond to tectonics. Here, we present new field data from tectonically-active areas in southern Italy that quantifies how lithology and rock-mass strength control the delivery processes and grain size distributions of sediment supplied from hillslopes. We evaluate the influence of landslides on sediment supply along 8 normal faults with excellent tectonic constraints. Frequency-area analysis of the landslide inventory, and a new field-calibrated area-volume scaling relationship, reveal that landsliding in the area is not dominated by large landslides (β ˜2), with 83% of landslides being < 0.1 km2 and shallower than 3 m. Based on volumetric estimates and published erosion rates, we infer that our inventory likely represents the integrated record of landsliding over 1-3 kyrs, implying minimum sediment fluxes between 6.90 x 102 and 2.07 x 103 m3/yr. We demonstrate that outcrop-scale rock-mass strength controls both landslide occurrence and the grain sizes supplied by bedrock weathering, for different lithologies. Comparisons of particle size distributions from bedrock weathering with those measured on landslide deposits demonstrates that landslides supply systematically coarser material, with lithology influencing the degree of coarsening. Finally, we evaluate the effect of landslide supply on fluvial sediment export, and show that D84 grain size increases by ˜ 6 mm for each 100-m increment in incision depth, due to the combination of enhanced landsliding and transport capacity in more incised catchments. Our results reveal a dual control of lithology and rock-mass strength on both the sediment volumes and grain sizes supplied to the fluvial system, which we demonstrate has a significant impact on sediment export from upland areas. This study provides a uniquely detailed field data set for studying how tectonics and lithology control hillslope erosion and sediment characteristics.

  5. Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells.

    PubMed

    Tang, Qunwei; Zhu, Wanlu; He, Benlin; Yang, Peizhi

    2017-02-28

    A great challenge for state-of-the-art solar cells is to generate electricity in all weather. We present here the rapid conversion of carbon quantum dots (CQDs) from carbohydrates (including glucose, maltol, sucrose) for an all-weather solar cell, which comprises a CQD-sensitized mesoscopic titanium dioxide/long-persistence phosphor (m-TiO 2 /LPP) photoanode, a I - /I 3 - redox electrolyte, and a platinum counter electrode. In virtue of the light storing and luminescent behaviors of LPP phosphors, the generated all-weather solar cells can not only convert sunlight into electricity on sunny days but persistently realize electricity output in all dark-light conditions. The maximized photoelectric conversion efficiency is as high as 15.1% for so-called all-weather CQD solar cells in dark conditions.

  6. Atmospheric conditions create freeways, detours and tailbacks for migrating birds.

    PubMed

    Shamoun-Baranes, Judy; Liechti, Felix; Vansteelant, Wouter M G

    2017-07-01

    The extraordinary adaptations of birds to contend with atmospheric conditions during their migratory flights have captivated ecologists for decades. During the 21st century technological advances have sparked a revival of research into the influence of weather on migrating birds. Using biologging technology, flight behaviour is measured across entire flyways, weather radar networks quantify large-scale migratory fluxes, citizen scientists gather observations of migrant birds and mechanistic models are used to simulate migration in dynamic aerial environments. In this review, we first introduce the most relevant microscale, mesoscale and synoptic scale atmospheric phenomena from the point of view of a migrating bird. We then provide an overview of the individual responses of migrant birds (when, where and how to fly) in relation to these phenomena. We explore the cumulative impact of individual responses to weather during migration, and the consequences thereof for populations and migratory systems. In general, individual birds seem to have a much more flexible response to weather than previously thought, but we also note similarities in migratory behaviour across taxa. We propose various avenues for future research through which we expect to derive more fundamental insights into the influence of weather on the evolution of migratory behaviour and the life-history, population dynamics and species distributions of migrant birds.

  7. The Role of Boundary-Layer and Cumulus Convection on Dust Emission, Mixing, and Transport Over Desert Regions

    NASA Astrophysics Data System (ADS)

    Takemi, T.; Yasui, M.

    2005-12-01

    Recent studies on dust emission and transport have been concerning the small-scale atmospheric processes in order to incorporate them as a subgrid-scale effect in large-scale numerical prediction models. In the present study, we investigated the dynamical processes and mechanisms of dust emission, mixing, and transport induced by boundary-layer and cumulus convection under a fair-weather condition over a Chinese desert. We performed a set of sensitivity experiments as well as a control simulation in order to examine the effects of vertical wind shear, upper-level wind speed, and moist convection by using a simplified and idealized modeling framework. The results of the control experiment showed that surface dust emission was at first caused before the noon time by intense convective motion which not only developed in the boundary layer but also penetrated into the free troposphere. In the afternoon hours, boundary-layer dry convection actively mixed and transported dust within the boundary layer. Some of the convective cells penetrated above the boundary layer, which led to the generation of cumulus clouds and hence gradually increased the dust content in the free troposphere. Coupled effects of the dry and moist convection played an important role in inducing surface dust emission and transporting dust vertically. This was clearly demonstrated through the comparison of the results between the control and the sensitivity experiments. The results of the control simulation were compared with lidar measurements. The simulation well captured the observed diurnal features of the upward transport of dust. We also examined the dependence of the simulated results on grid resolution: the grid size was changed from 250 m up to 4 km. It was found that there was a significant difference between the 2-km and 4-km grids. If a cumulus parameterization was added to the 4-km grid run, the column content was comparable to the other cases. This result suggests that subgrid parameterizations are required if the grid size is larger than the order of 1 km in a fair-weather condition.

  8. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    NASA Astrophysics Data System (ADS)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  9. Tornado activity at SRP during 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pepper, D.W.; Schubert, J.F.

    1978-07-01

    Tracks of three small tornadoes were confirmed on the site of the Savannah River Plant during 1976. Only minor damage to buildings and vehicles was experienced. The tornadoes were rated F1 on the Fujita-Pearson scale. Synoptic weather conditions from the National Weather Service and from the SRP seven-tower data system were recorded.

  10. The capacity of radar, crowdsourced personal weather stations and commercial microwave links to monitor small scale urban rainfall

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.

    2017-12-01

    For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.

  11. The evolutionary origin of feathers.

    PubMed

    Regal, P J

    1975-03-01

    Previous theories relating the origin of feathers to flight or to heat conservation are considered to be inadequate. There is need for a model of feather evolution that gives attention to the function and adaptive advantage of intermediate structures. The present model attempts to reveal and to deal with, the spectrum of complex questions that must be considered. In several genera of modern lizards, scales are elongated in warm climates. It is argued that these scales act as small shields to solar radiation. Experiments are reported that tend to confirm this. Using lizards as a conceptual model, it is argued that feathers likewise arose as adaptations to intense solar radiation. Elongated scales are assumed to have subdivided into finely branched structures that produced a heat-shield, flexible as well as long and broad. Associated muscles had the function of allowing the organism fine control over rates of heat gain and loss: the specialized scales or early feathers could be moved to allow basking in cool weather or protection in hot weather. Subdivision of the scales also allowed a close fit between the elements of the insulative integument. There would have been mechanical and thermal advantages to having branches that interlocked into a pennaceous structure early in evolution, so the first feathers may have been pennaceous. A versatile insulation of movable, branched scales would have been a preadaptation for endothermy. As birds took to the air they faced cooling problems despite their insulative covering because of high convective heat loss. Short glides may have initially been advantageous in cooling an animal under heat stress, but at some point the problem may have shifted from one of heat exclusion to one of heat retention. Endothermy probably evolved in conjunction with flight. If so, it is an unnecessary assumption to postulate that the climate cooled and made endothermy advantageous. The development of feathers is complex and a model is proposed that gives attention to the fundamental problems of deriving a branched structure with a cylindrical base from an elongated scale.

  12. On the role of snow cover ablation variability and synoptic-scale atmospheric forcings at the sub-basin scale within the Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Suriano, Zachary J.

    2018-02-01

    Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.

  13. 14 CFR 121.655 - Applicability of reported weather minimums.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Applicability of reported weather minimums... § 121.655 Applicability of reported weather minimums. In conducting operations under §§ 121.649 through 121.653, the ceiling and visibility values in the main body of the latest weather report control for...

  14. 14 CFR 121.655 - Applicability of reported weather minimums.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Applicability of reported weather minimums... § 121.655 Applicability of reported weather minimums. In conducting operations under §§ 121.649 through 121.653, the ceiling and visibility values in the main body of the latest weather report control for...

  15. 14 CFR 121.655 - Applicability of reported weather minimums.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Applicability of reported weather minimums... § 121.655 Applicability of reported weather minimums. In conducting operations under §§ 121.649 through 121.653, the ceiling and visibility values in the main body of the latest weather report control for...

  16. 14 CFR 121.655 - Applicability of reported weather minimums.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Applicability of reported weather minimums... § 121.655 Applicability of reported weather minimums. In conducting operations under §§ 121.649 through 121.653, the ceiling and visibility values in the main body of the latest weather report control for...

  17. 14 CFR 121.655 - Applicability of reported weather minimums.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Applicability of reported weather minimums... § 121.655 Applicability of reported weather minimums. In conducting operations under §§ 121.649 through 121.653, the ceiling and visibility values in the main body of the latest weather report control for...

  18. Ensemble-based diagnosis of the large-scale processes associated with multiple high-impact weather events over North America during late October 2007

    NASA Astrophysics Data System (ADS)

    Moore, B. J.; Bosart, L. F.; Keyser, D.

    2013-12-01

    During late October 2007, the interaction between a deep polar trough and Tropical Cyclone (TC) Kajiki off the eastern Asian coast perturbed the North Pacific jet stream and resulted in the development of a high-amplitude Rossby wave train extending into North America, contributing to three concurrent high-impact weather events in North America: wildfires in southern California associated with strong Santa Ana winds, a cold surge into eastern Mexico, and widespread heavy rainfall (~150 mm) in the south-central United States. Observational analysis indicates that these high-impact weather events were all dynamically linked with the development of a major high-latitude ridge over the eastern North Pacific and western North America and a deep trough over central North America. In this study, global operational ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) obtained from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive are used to characterize the medium-range predictability of the large-scale flow pattern associated with the three events and to diagnose the large-scale atmospheric processes favorable, or unfavorable, for the occurrence of the three events. Examination of the ECMWF forecasts leading up to the time period of the three high-impact weather events (~23-25 October 2007) indicates that ensemble spread (i.e., uncertainty) in the 500-hPa geopotential height field develops in connection with downstream baroclinic development (DBD) across the North Pacific, associated with the interaction between TC Kajiki and the polar trough along the eastern Asian coast, and subsequently moves downstream into North America, yielding considerable uncertainty with respect to the structure, amplitude, and position of the ridge-trough pattern over North America. Ensemble sensitivity analysis conducted for key sensible weather parameters corresponding to the three high-impact weather events, including relative humidity, temperature, and precipitation, demonstrates quantitatively that all three high-impact weather events are closely linked with the development of the ridge-trough pattern over North America. Moreover, results of this analysis indicate that the development of the ridge-trough pattern is modulated by DBD and cyclogenesis upstream over the central and eastern North Pacific. Specifically, ensemble members exhibiting less intense cyclogenesis and a more poleward cyclone track over the central and eastern North Pacific feature the development of a poleward-displaced ridge over the eastern North Pacific and western North America and a cut-off low over the Intermountain West, an unfavorable scenario for the occurrence the three high-impact weather events. Conversely, ensemble members exhibiting more intense cyclogenesis and a less poleward cyclone track feature persistent ridging along the western coast of North America and trough development over central North America, establishing a favorable flow pattern for the three high-impact weather events. Results demonstrate that relatively small initial differences in the large-scale flow pattern over the North Pacific among ensemble members can result in large uncertainty in the forecast downstream flow response over North America.

  19. Concentration-Discharge Relationships, Nested Reaction Fronts, and the Balance of Oxidative and Acid-Base Weathering Fluxes in an Alpine Catchment, East River, Colorado

    NASA Astrophysics Data System (ADS)

    Winnick, M.; Carroll, R. W. H.; Williams, K. H.; Maxwell, R. M.; Maher, K.

    2016-12-01

    Although important for solute production and transport, the varied interactions between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the headwaters of the East River, CO, a high-elevation shale-dominated catchment system in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with well-defined clockwise hysteresis, indicating the mobilization and depletion of DOC in the upper soil horizons and highlighting the importance of shallow flowpaths through the snowmelt period. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both carbonic acid and sulfuric acid derived from oxidation of pyrite in the shale bedrock. Sulfuric acid weathering in the deep subsurface dominates during base flow conditions when waters have infiltrated below the hypothesized pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during the snowmelt period as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This increase in CO2(aq) at the expense of HCO3- results in outgassing of CO2 when waters equilibrate to surface conditions, and reduces the export of carbon and alkalinity from the East River by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering therefore have the capacity to substantially alter the cycling of carbon in the East River catchment. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.

  20. The potential predictability of fire danger provided by ECMWF forecast

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Francesca

    2017-04-01

    The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.

  1. A neural network controller for hydronic heating systems of solar buildings.

    PubMed

    Argiriou, Athanassios A; Bellas-Velidis, Ioannis; Kummert, Michaël; André, Philippe

    2004-04-01

    An artificial neural network (ANN)-based controller for hydronic heating plants of buildings is presented. The controller has forecasting capabilities: it includes a meteorological module, forecasting the ambient temperature and solar irradiance, an indoor temperature predictor module, a supply temperature predictor module and an optimizing module for the water supply temperature. All ANN modules are based on the Feed Forward Back Propagation (FFBP) model. The operation of the controller has been tested experimentally, on a real-scale office building during real operating conditions. The operation results were compared to those of a conventional controller. The performance was also assessed via numerical simulation. The detailed thermal simulation tool for solar systems and buildings TRNSYS was used. Both experimental and numerical results showed that the expected percentage of energy savings with respect to a conventional controller is of about 15% under North European weather conditions.

  2. The impact of synoptic weather on UK surface ozone and implications for premature mortality

    NASA Astrophysics Data System (ADS)

    Pope, R. J.; Butt, E. W.; Chipperfield, M. P.; Doherty, R. M.; Fenech, S.; Schmidt, A.; Arnold, S. R.; Savage, N. H.

    2016-12-01

    Air pollutants, such as ozone, have adverse impacts on human health and cause, for example, respiratory and cardiovascular problems. In the United Kingdom (UK), peak surface ozone concentrations typically occur in the spring and summer and are controlled by emission of precursor gases, tropospheric chemistry and local meteorology which can be influenced by large-scale synoptic weather regimes. In this study we composite surface and satellite observations of summer-time (April to September) ozone under different UK atmospheric circulation patterns, as defined by the Lamb weather types. Anticyclonic conditions and easterly flows are shown to significantly enhance ozone concentrations over the UK relative to summer-time average values. Anticyclonic stability and light winds aid the trapping of ozone and its precursor gases near the surface. Easterly flows (NE, E, SE) transport ozone and precursor gases from polluted regions in continental Europe (e.g. the Benelux region) to the UK. Cyclonic conditions and westerly flows, associated with unstable weather, transport ozone from the UK mainland, replacing it with clean maritime (North Atlantic) air masses. Increased cloud cover also likely decrease ozone production rates. We show that the UK Met Office regional air quality model successfully reproduces UK summer-time ozone concentrations and ozone enhancements under anticyclonic and south-easterly conditions for the summer of 2006. By using established ozone exposure-health burden metrics, anticyclonic and easterly condition enhanced surface ozone concentrations pose the greatest public health risk.

  3. SEWER-SEDIMENT CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents a historical overview of the sewer sediment control projects conducted by the Wet-Weather Flow Research Program of the USEPA. Research presented includes studies of the causes of sewer solids deposition and development/evaluation of control methods that can pr...

  4. IET. Weather instrumentation tower, located south of control building. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Weather instrumentation tower, located south of control building. Camera facing west. Date: August 17, 1955. INEEL negative no. 55-2414 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. EMD-regression for modelling multi-scale relationships, and application to weather-related cardiovascular mortality

    NASA Astrophysics Data System (ADS)

    Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B. M. J.

    2018-01-01

    In a number of environmental studies, relationships between natural processes are often assessed through regression analyses, using time series data. Such data are often multi-scale and non-stationary, leading to a poor accuracy of the resulting regression models and therefore to results with moderate reliability. To deal with this issue, the present paper introduces the EMD-regression methodology consisting in applying the empirical mode decomposition (EMD) algorithm on data series and then using the resulting components in regression models. The proposed methodology presents a number of advantages. First, it accounts of the issues of non-stationarity associated to the data series. Second, this approach acts as a scan for the relationship between a response variable and the predictors at different time scales, providing new insights about this relationship. To illustrate the proposed methodology it is applied to study the relationship between weather and cardiovascular mortality in Montreal, Canada. The results shed new knowledge concerning the studied relationship. For instance, they show that the humidity can cause excess mortality at the monthly time scale, which is a scale not visible in classical models. A comparison is also conducted with state of the art methods which are the generalized additive models and distributed lag models, both widely used in weather-related health studies. The comparison shows that EMD-regression achieves better prediction performances and provides more details than classical models concerning the relationship.

  6. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today's integrated FMS/datalink. Auxiliary(lat/long) waypoints define a minimum delay reroute between current position and a downstream capture fix beyond the weather. These auxiliary waypoints can be uplinked to equipped aircraft and auto-loaded into the FMS. Alternatively, for unequipped aircraft, auxiliary waypoints can be replaced by nearby named fixes, but this could reduce potential savings. The presentation includes an overview of the automation approach and focuses on several cases in terms of potential savings, reroute complexity, best auxiliary waypoint solution vs. named fix solution, and other metrics.

  7. Learning and Risk Exposure in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  8. Large-Scale, Synoptic-Period Weather Systems in Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M.

    2013-10-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts associated with its waxing and waning seasonal polar ice caps. The imposition of this strong meridional temperature gradient supports intense eastward-traveling, synoptic-period weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. These disturbances grow, mature and decay within the east-west varying seasonal-mean middle and high-latitude westerly jet stream (i.e., the polar vortex) on the planet. Near the surface, such weather disturbances indicated distinctive, spiraling "comma"-shaped dust cloud structures of large scale, and scimitar-shaped dust fronts, indicative of processes associated with cyclo- and fronto-genesis. The weather systems are most intense during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances appear to be significantly more vigorous than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). Regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this atmospheric aerosol. A brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by various modeling studies (i.e., ranging from highly simplified, mechanistic and fully complex global circulation modeling investigations) that we are pursuing. In particular, transport of scalar quantities (e.g., tracers and high-order dynamically revealing diagnostic fields) are investigated. A discussion of outstanding issues and future modeling pursuits is offered related to Mars' extratropical traveling weather systems.

  9. Will Somebody do the Dishes? Weathering Analogies, Geologic Processes and Geologic Time

    NASA Astrophysics Data System (ADS)

    Stelling, P.; Wuotila, S.; Giuliani, M.

    2006-12-01

    A good analogy is one of the most powerful tools in any instructors' arsenal, and encouraging students to explore the links between an analogy and a scientific concept can cement both ideas in a student's mind. A common analogy for weathering and erosion processes is doing the dishes. Oxidation, hydration, and solution reactions can be intimidating on the chalkboard but easily understood in the context of cleaning up after dinner. Rather than present this analogy as a lecture demonstration, students are encouraged to experimentally determine which type of weathering works best on their dirty dishes. The experiment must use at least four identically dirty dishes: three experimental dishes and one control dish. The experimental dishes are subjected to simulated weathering and erosion processes of the student's design. Common techniques developed by students are cold or warm water baths, baths with and without acid (lemon juice or soda), and freeze-thaw cycles. Occasionally creative experiments result in unexpected discoveries, such the inefficiency of abrasion from wind-blown sand, especially when compared to soaking dishes in Canadian Whiskey. The effectiveness of each experimental run is determined by comparison to the control plate after loose debris is removed from each. The dish with the smallest aerial extent of remaining food is the declared the most effective. Discussion sections of the experimental write-up includes a description of which geologic processes were being simulated in each experiment, comparisons of the effectiveness of each techniques, and statements of how these experiments differ from reality. In order to advance this project, a second stage of the assignment, a direct comparison of weathering and erosion techniques on food and on geologic materials, will be added this fall. Ideally, students will empirically derive erosion rates and calculate the time required to remove the volume of material represented by a geologically important feature, such as Mt. Rainier or the Grand Canyon. In the end, students completing this project gain an understanding of how geologic processes work, the time scales required, the differences between analogies and the real thing, and arguably the most important aspect, a best-practices approach to doing the dishes.

  10. The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil

    NASA Astrophysics Data System (ADS)

    Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.

    2017-12-01

    Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.

  11. Observational Simulation of Icing in Extreme Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew; Agelin-Chaab, Martin; Komar, John; Elfstrom, Garry; Baumgardner, Darrel

    2017-04-01

    Observations and prediction of icing in extreme weather conditions are important for aviation, transportation, and shipping applications, and icing adversely affects the economy. Icing environments can be studied either in the outdoor atmosphere or in the laboratory. There have been several aircraft based in-situ studies related to weather conditions affecting aviation operations, transportation, and marine shipping that includes icing, wind, and turbulence. However, studying severe weather conditions from aircraft observations are limited due to safety and sampling issues, instrumental uncertainties, and even the possibility of aircraft producing its own physical and dynamical effects. Remote sensing based techniques (e.g. retrieval techniques) for studying severe weather conditions represent usually a volume that cannot characterize the important scales and also represents indirect observations. Therefore, laboratory simulations of atmospheric processes can help us better understand the interactions among microphysical and dynamical processes. The Climatic Wind Tunnel (CWT) in ACE at the University of Ontario Institute of Technology (UOIT) has a large semi-open jet test chamber with flow area 7-13 m2 that can precisely control temperatures down to -40°C, and up to 250 km hr-1 wind speeds, for heavy or dry snow conditions with low visibility, similar to ones observed in the Arctic and cold climate regions, or at high altitude aeronautical conditions. In this study, the ACE CWT employed a spray nozzle array suspended in its settling chamber and fed by pressurized water, creating various particle sizes from a few microns up to mm size range. This array, together with cold temperature and high wind speed, enabled simulation of severe weather conditions, including icing, visibility, strong wind and turbulence, ice fog and frost, freezing fog, heavy snow and blizzard conditions. In this study, the test results will be summarized, and their application to aircraft icing will be provided in detail. Overall, based on these results, scientific challenges related to icing environments will be emphasized for Arctic and cold environments in future projects in the ACE CWT.

  12. Coring the deep critical zone in the Jemez River Basin Critical Zone Observatory, Valles Caldera National Preserve, Northern New Mexico

    NASA Astrophysics Data System (ADS)

    Moravec, B. G.; White, A. M.; Paras, B.; Sanchez, A.; McGuffy, C.; Fairbanks, D.; McIntosh, J. C.; Pelletier, J. D.; Gallery, R. E.; Rasmussen, C.; Carr, B.; Holbrook, W. S.; Chorover, J.

    2016-12-01

    The Critical Zone (CZ) is the focus of current interdisciplinary Earth surface science research that aims to describe the interactions between geological and biological processes that influence ecosystem function, soil formation, nutrient and carbon cycling, hydrologic partitioning, biological activity and diversity, and mineral weathering. Prior research at the Catalina-Jemez (C-J) CZO has focused on the CZ near-surface, including remote sensing, and sampling/analysis of vegetation and soil microbiota, soils and saprolite, and surface water. However, the extent to which weathering, water/rock interaction, and solute mobility along flowpaths in the deep CZ respond to near surface CZ processes (i.e. water, energy, and mass fluxes) is not well understood. The goal of the present research is to understand depth-dependent trends in weathering dynamics from the mobile soil to unweathered bedrock in relation to landscape position (hillslope aspect and downgradient hollow). We used diamond core drilling techniques to excavate three boreholes to depths of 18.9, 41.8, and 46.3 meters in an instrumented forested sub-catchment of the C-J CZO in northern New Mexico. Here we present field methodology and preliminary data collected during the field campaign conducted during summer 2016. Element concentrations were measured during core extractions using portable X-ray fluorescence (XRF), which was subsequently validated against bench-scale XRF. Depth-dependent trends in both regolith depth and chemical depletion patterns show significant variation with landscape position. All three boreholes show complex weathering profiles with differences potentially due to textural controls on weathering, development of preferential flowpaths, and differing hydrologic base levels. Preliminary data indicate that chemical depletion patterns are not monotonic, but rather comprise large excursions that are being investigated for their relation to variation in local mineralogical composition and incongruent weathering reactions.

  13. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  14. Assessing the Implications of Changing Extreme Value Distributions of Weather on Carbon and Water Cycling in Grasslands

    NASA Astrophysics Data System (ADS)

    Brunsell, N. A.; Nippert, J. B.

    2011-12-01

    As the climate warms, it is generally acknowledged that the number and magnitude of extreme weather events will increase. We examined an ecophysiological model's responses to precipitation and temperature anomalies in relation to the mean and variance of annual precipitation along a pronounced precipitation gradient from eastern to western Kansas. This natural gradient creates a template of potential responses for both the mean and variance of annual precipitation to compare the timescales of carbon and water fluxes. Using data from several Ameriflux sites (KZU and KFS) and a third eddy covariance tower (K4B) along the gradient, BIOME-BGC was used to characterize water and carbon cycle responses to extreme weather events. Changes in the extreme value distributions were based on SRES A1B and A2 scenarios using an ensemble mean of 21 GCMs for the region, downscaled using a stochastic weather generator. We focused on changing the timing and magnitude of precipitation and altering the diurnal and seasonal temperature ranges. Biome-BGC was then forced with daily output from the stochastic weather generator, and we examined how potential changes in these extreme value distributions impact carbon and water cycling at the sites across the Kansas precipitation gradient at time scales ranging from daily to interannual. To decompose the time scales of response, we applied a wavelet based information theory analysis approach. Results indicate impacts in soil moisture memory and carbon allocation processes, which vary in response to both the mean and variance of precipitation along the precipitation gradient. These results suggest a more pronounced focus ecosystem responses to extreme events across a range of temporal scales in order to fully characterize the water and carbon cycle responses to global climate change.

  15. COLLECTION SYSTEM SOLIDS CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents an historical overview of the sewer-solids control projects conducted by the Wet-Weather Flow Research Program of the US EPA. Research includes studies of the causes of sewer-solids deposition and development/evaluation of control methods that can prevent sewe...

  16. Demystifying the Complexities of Gravity Wave Dynamics in the Middle Atmosphere: a Roadmap to Improved Weather Forecasts through High-Fidelity Modeling

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Bossert, K.; Laughman, B.; Wang, L.; Lund, T.; Kantha, L. H.

    2017-12-01

    Gravity waves play a profound role in the mixing of the atmosphere, transporting vast amounts of momentum and energy among different altitudes as they propagate vertically. Above 60km in the middle atmosphere, high wave amplitudes enable a series of complex, nonlinear interactions with the background environment that produce highly-localized wind and temperature variations which alter the layering structure of the atmosphere. These small-scale interactions account for a significant portion of energy transport in the middle atmosphere, but they are difficult to characterize, occurring at spatial scales that are both challenging to observe with ground instruments and prohibitively small to include in weather forecasting models. Using high fidelity numerical simulations, these nuanced wave interactions are analyzed to better our understanding of these dynamics and improve the accuracy of long-term weather forecasting.

  17. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  18. Atlas of the global distribution of atmospheric heating during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  19. Don Quixote Pond: A Small Scale Model of Weathering and Salt Accumulation

    NASA Technical Reports Server (NTRS)

    Englert, P.; Bishop, J. L.; Patel, S. N.; Gibson, E. K.; Koeberl, C.

    2015-01-01

    The formation of Don Quixote Pond in the North Fork of Wright Valley, Antarctica, is a model for unique terrestrial calcium, chlorine, and sulfate weathering, accumulation, and distribution processes. The formation of Don Quixote Pond by simple shallow and deep groundwater contrasts more complex models for Don Juan Pond in the South Fork of Wright Valley. Our study intends to understand the formation of Don Quixote Pond as unique terrestrial processes and as a model for Ca, C1, and S weathering and distribution on Mars.

  20. Regional Data Assimilation of AIRS Profiles and Radiances at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Chou, Shih-hung; Jedlovec, Gary

    2009-01-01

    This slide presentation reviews the Short Term Prediction Research and Transition (SPoRT) Center's mission to improve short-term weather prediction at the regional and local scale. It includes information on the cold bias in Weather Research and Forcasting (WRF), troposphere recordings from the Atmospheric Infrared Sounder (AIRS), and vertical resolution of analysis grid.

  1. NOAA's world-class weather and climate prediction center opens at

    Science.gov Websites

    StumbleUpon Digg More Destinations NOAA's world-class weather and climate prediction center opens at currents and large-scale rain and snow storms. Billions of earth observations from around the world flow operations. Investing in this center is an investment in our human capital, serving as a world class facility

  2. RETROFITTING CONTROL FACILITIES FOR WET WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost-effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilitie...

  3. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  4. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    NASA Astrophysics Data System (ADS)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  5. Terminal Area Simulation System User's Guide - Version 10.0

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.

    2014-01-01

    The Terminal Area Simulation System (TASS) is a three-dimensional, time-dependent, large eddy simulation model that has been developed for studies of wake vortex and weather hazards to aviation, along with other atmospheric turbulence, and cloud-scale weather phenomenology. This document describes the source code for TASS version 10.0 and provides users with needed documentation to run the model. The source code is programed in Fortran language and is formulated to take advantage of vector and efficient multi-processor scaling for execution on massively-parallel supercomputer clusters. The code contains different initialization modules allowing the study of aircraft wake vortex interaction with the atmosphere and ground, atmospheric turbulence, atmospheric boundary layers, precipitating convective clouds, hail storms, gust fronts, microburst windshear, supercell and mesoscale convective systems, tornadic storms, and ring vortices. The model is able to operate in either two- or three-dimensions with equations numerically formulated on a Cartesian grid. The primary output from the TASS is time-dependent domain fields generated by the prognostic equations and diagnosed variables. This document will enable a user to understand the general logic of TASS, and will show how to configure and initialize the model domain. Also described are the formats of the input and output files, as well as the parameters that control the input and output.

  6. Human factors analysis of road weather advisory and control information : final report.

    DOT National Transportation Integrated Search

    2010-03-31

    The amount of available weather information and the methods by which this information can be disseminated to travelers have grown considerably in recent years. This growth includes weather gathering devices (sensors, satellites), models and forecasti...

  7. A hierarchical framework for air traffic control

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.

  8. Risk of Fall-Related Injury due to Adverse Weather Events, Philadelphia, Pennsylvania, 2006-2011.

    PubMed

    Gevitz, Kathryn; Madera, Robbie; Newbern, Claire; Lojo, José; Johnson, Caroline C

    Following a surge in fall-related visits to local hospital emergency departments (EDs) after a severe ice storm, the Philadelphia Department of Public Health examined the association between inclement winter weather events and fall-related ED visits during a 5-year period. Using a standardized set of keywords, we identified fall-related injuries in ED chief complaint logs submitted as part of Philadelphia Department of Public Health's syndromic surveillance from December 2006 through March 2011. We compared days when falls exceeded the winter fall threshold (ie, "high-fall days") with control days within the same winter season. We then conducted matched case-control analysis to identify weather and patient characteristics related to increased fall-related ED visits. Fifteen high-fall days occurred during winter months in the 5-year period. In multivariable analysis, 18- to 64-year-olds were twice as likely to receive ED care for fall-related injuries on high-fall days than on control days. The crude odds of ED visits occurring from 7:00 am to 10:59 am were 70% higher on high-fall days vs control days. Snow was a predictor of a high-fall day: the adjusted odds of snow before a high-fall day as compared with snow before a control day was 13.4. The association between the number of fall-related ED visits and weather-related fall injuries, age, and timing suggests that many events occurred en route to work in the morning. Promoting work closures or delaying openings after severe winter weather would allow time for better snow or ice removal, and including "fall risk" in winter weather advisories might effectively warn morning commuters. Both strategies could help reduce the number of weather-related fall injuries.

  9. Nutrient inputs via rock weathering point to enhanced CO2 uptake capacity of the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Dass, P.; Houlton, B. Z.; Wang, Y.; Pak, B. C.; Morford, S.

    2016-12-01

    Empirical evidence of widespread scarcity of nitrogen (N) and phosphorus (P) availability in natural land ecosystems constrains the carbon dioxide (CO2) uptake capacity of the global biosphere. Recent studies have pointed to the importance of rock weathering in supplying both N and P to terrestrial soils and vegetation; however, the potential for N and P to rapidly weather from different rocks and thereby alter the global carbon (C) cycle remains an open question, particularly at the global scale. Here, we combine empirical measurements and a new global simulation model to quantify the flux of N and P released from rocks to the terrestrial biosphere. Our model considers the role of tectonic uplift and physical and chemical weathering on rock nutrient cycling by using a probabilistic approach that is anchored in watershed-scale 10Be and Na data from the world's rivers. We use USGS DEM data for relief, monthly averaged MODIS evapotranspiration data and global precipitation datasets. Based on simulations using mean climate data for the past 10 years, we estimate annual values of 11 Tg of N and 6 Tg of P to weather from rocks to the terrestrial biosphere. The rate of N weathering rivals that of atmospheric N deposition in natural ecosystems, and the P weathering flux is approximately 6 times higher than prior estimates based on a modeling approach where the chemical weathering is dependant on lithology and runoff with further factors correcting for soil shielding and temperature. The increase in nutrient inputs we simulate reveals an important role for rock weathering to support new production in terrestrial ecosystems, and thereby allow for additional CO2 uptake in sectors of the biosphere where weathering rates are substantial. Given that current generation of models are yet to consider how short-term weathering of rocks can affect nutrient limited C storage, these results will help to advance the geochemical aspects of carbon-climate feedback this century. Moreover, we will present results for CO2 uptake capacity based on the future climate scenario involving the least mitigation storyline, i.e. RCP 8.5 as well as historic uptake from the beginning of the retreat if the glaciers, i.e. the Last Glacial Maximum.

  10. Long-range Weather Prediction and Prevention of Climate Catastrophes: A Status Report

    DOE R&D Accomplishments Database

    Caldeira, K.; Caravan, G.; Govindasamy, B.; Grossman, A.; Hyde, R.; Ishikawa, M.; Ledebuhr, A.; Leith, C.; Molenkamp, C.; Teller, E.; Wood, L.

    1999-08-18

    As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge--and then control--of the future of the state of the terrestrial biosphere grow apace. Convenience of living--and, indeed, reliability of life itself--become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one. Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual atmosphere; overall, the enterprise seems more technically feasible than originally anticipated.

  11. Rock Erodibility as a Dynamic Variable Driven by the Interplay between Erosion and Weathering in Bedrock Channels: Examples from Great Falls, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Hancock, G. S.; Huettenmoser, J.; Shobe, C. M.; Eppes, M. C.

    2016-12-01

    Rock erodibility in channels is a primary control on the stresses required to erode bedrock (e.g., Sklar and Dietrich, 2001). Erodibility tends to be treated as a uniform and fixed variable at the scale of channel cross-sections, particularly in models of channel profile evolution. Here we present field data supporting the hypothesis (Hancock et al., 2011) that erodibility is a dynamic variable, driven by the interplay between erosion rate and weathering processes within cross-sections. We hypothesize that rock weathering varies in cross-sections from virtually unweathered in the thalweg, where frequent stripping removes weathered rock, to a degree of weathering determined by the frequency of erosive events higher on the channel margin. We test this hypothesis on three tributaries to the Potomac River underlain by similar bedrock but with varying erosion rates ( 0.01 to 0.8 m/ky). At multiple heights within three cross-sections on three tributaries, we measured compressive strength with a Schmidt hammer, surface roughness with a contour gage, and density and length of visible cracks. Compressive strength decreased with height in all nine cross-sections by 10% to 50%, and surface roughness increased with height in seven cross-sections by 25% - 45%, with the remaining two showing minimal change. Crack density increased with height in the three cross-sections measured. Taken together these data demonstrate increases in weathering intensity, and presumably, rock erodibility, with height. The y-intercept of the relation between height and the three measured variables were nearly identical, suggesting that thalweg erodibility was similar on each channel, as predicted, even though erodibility higher in the cross-section were markedly different. The rate at which the three variables changed with height in each cross-section is strongly related to stream power. Assuming stream power is a reasonable surrogate for erosion rate, this result implies that erosion rate can be a primary influence on the distribution of erodibility within channel cross-sections. We conclude that the interplay between rates of erosion and weathering produces spatial as well as temporal variability in erodibility which, in turn, influences channel form and gradient.

  12. Summary report of the General Aviation Committee

    NASA Technical Reports Server (NTRS)

    Goodrich, W. C.

    1977-01-01

    Fatal weather involved general aviation accidents and the criteria for weather observations at general aviation airports were discussed. It was generally agreed that: (1) meteorologists do not seem to have sufficient understanding of general aviation requirements, (2) pilots are not aware of the meteorological services and publications which are available to them; (3) Uniform capability is not being utilized to the degree possible; and (4) there is a wealth of weather data available within the Department of Defense which is not available in the system for civil use. The committee recommends that student pilot training programs include actual inflight weather experience accomplished through instructor training, and efforts be made to make real time weather data available to the pilot from all sources to include military installations, Unicom operators, tower and approach controllers, and air traffic controllers.

  13. Regulating continent growth and composition by chemical weathering

    PubMed Central

    Lee, Cin-Ty Aeolus; Morton, Douglas M.; Little, Mark G.; Kistler, Ronald; Horodyskyj, Ulyana N.; Leeman, William P.; Agranier, Arnaud

    2008-01-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms. PMID:18362343

  14. Advanced Topics in Wet-Weather Discharge Control

    EPA Science Inventory

    This report discusses four related but generally independent wet-weather flow (WWF) topic areas, namely: i) opportunities for advanced practices in WWF control technology, particularly as it applies to sewered systems; ii) tradeoffs between storage facilities (tanks) and enlarged...

  15. The Landscape Evolution Observatory: a large-scale controllable infrastructure to study coupled Earth-surface processes

    USGS Publications Warehouse

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-01-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  16. Solar EUV irradiance for space weather applications

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  17. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  18. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.

    PubMed

    Hashim, Jamal Hisham; Hashim, Zailina

    2016-03-01

    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity. © 2015 APJPH.

  19. 40 CFR 1060.102 - What permeation emission control requirements apply for fuel lines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... handheld Small SI engines installed in cold-weather equipment must meet the standards for EPA Cold-Weather... when measured according to the test procedure described in § 1060.515. (3) EPA Cold-Weather Fuel Lines... described in § 1060.515: Table 1 to § 1060.102—Permeation Standards for EPA Cold-Weather Fuel Lines Model...

  20. Using fire-weather forecasts and local weather observations in predicting burning index for individual fire-danger stations.

    Treesearch

    Owen P. Cramer

    1958-01-01

    Any agency engaged in forest-fire control needs accurate weather forecasts and systematic procedures for making the best use of predicted and reported weather information. This study explores the practicability of using several tabular and graphical aids for converting area forecasts and local observations of relative humidity and wind speed into predicted values for...

  1. Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Morcrette, J. J.

    1999-01-01

    Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better understanding of the upscale cascade and suggesting new cloud-radiation parameterizations for climate models.

  2. Predicting soil formation on the basis of transport-limited chemical weathering

    NASA Astrophysics Data System (ADS)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  3. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.; hide

    2014-01-01

    Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury's relatively featureless visible-near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size less than 45 micron) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury's surface composition.

  4. Sub-kilometer Numerical Weather Prediction in complex urban areas

    NASA Astrophysics Data System (ADS)

    Leroyer, S.; Bélair, S.; Husain, S.; Vionnet, V.

    2013-12-01

    A Sub-kilometer atmospheric modeling system with grid-spacings of 2.5 km, 1 km and 250 m and including urban processes is currently being developed at the Meteorological Service of Canada (MSC) in order to provide more accurate weather forecasts at the city scale. Atmospheric lateral boundary conditions are provided with the 15-km Canadian Regional Deterministic Prediction System (RDPS). Surface physical processes are represented with the Town Energy Balance (TEB) model for the built-up covers and with the Interactions between the Surface, Biosphere, and Atmosphere (ISBA) land surface model for the natural covers. In this study, several research experiments over large metropolitan areas and using observational networks at the urban scale are presented, with a special emphasis on the representation of local atmospheric circulations and their impact on extreme weather forecasting. First, numerical simulations are performed over the Vancouver metropolitan area during a summertime Intense Observing Period (IOP of 14-15 August 2008) of the Environmental Prediction in Canadian Cities (EPiCC) observational network. The influence of the horizontal resolution on the fine-scale representation of the sea-breeze development over the city is highlighted (Leroyer et al., 2013). Then severe storms cases occurring in summertime within the Greater Toronto Area (GTA) are simulated. In view of supporting the 2015 PanAmerican and Para-Pan games to be hold in GTA, a dense observational network has been recently deployed over this region to support model evaluations at the urban and meso scales. In particular, simulations are conducted for the case of 8 July 2013 when exceptional rainfalls were recorded. Leroyer, S., S. Bélair, J. Mailhot, S.Z. Husain, 2013: Sub-kilometer Numerical Weather Prediction in an Urban Coastal Area: A case study over the Vancouver Metropolitan Area, submitted to Journal of Applied Meteorology and Climatology.

  5. Trajectory-Based Complexity (TBX): A Modified Aircraft Count to Predict Sector Complexity During Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Lee, Paul U.

    2011-01-01

    In this paper we introduce a new complexity metric to predict -in real-time- sector complexity for trajectory-based operations (TBO). TBO will be implemented in the Next Generation Air Transportation System (NextGen). Trajectory-Based Complexity (TBX) is a modified aircraft count that can easily be computed and communicated in a TBO environment based upon predictions of aircraft and weather trajectories. TBX is scaled to aircraft count and represents an alternate and additional means to manage air traffic demand and capacity with more consideration of dynamic factors such as weather, aircraft equipage or predicted separation violations, as well as static factors such as sector size. We have developed and evaluated TBX in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center during human-in-the-loop studies of trajectory-based concepts since 2009. In this paper we will describe the TBX computation in detail and present the underlying algorithm. Next, we will describe the specific TBX used in an experiment at NASA's AOL. We will evaluate the performance of this metric using data collected during a controller-inthe- loop study on trajectory-based operations at different equipage levels. In this study controllers were prompted at regular intervals to rate their current workload on a numeric scale. When comparing this real-time workload rating to the TBX values predicted for these time periods we demonstrate that TBX is a better predictor of workload than aircraft count. Furthermore we demonstrate that TBX is well suited to be used for complexity management in TBO and can easily be adjusted to future operational concepts.

  6. Multi-time scale Climate Informed Stochastic Hybrid Simulation-Optimization Model (McISH model) for Multi-Purpose Reservoir System

    NASA Astrophysics Data System (ADS)

    Lu, M.; Lall, U.

    2013-12-01

    In order to mitigate the impacts of climate change, proactive management strategies to operate reservoirs and dams are needed. A multi-time scale climate informed stochastic model is developed to optimize the operations for a multi-purpose single reservoir by simulating decadal, interannual, seasonal and sub-seasonal variability. We apply the model to a setting motivated by the largest multi-purpose dam in N. India, the Bhakhra reservoir on the Sutlej River, a tributary of the Indus. This leads to a focus on timing and amplitude of the flows for the monsoon and snowmelt periods. The flow simulations are constrained by multiple sources of historical data and GCM future projections, that are being developed through a NSF funded project titled 'Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoon Asia'. The model presented is a multilevel, nonlinear programming model that aims to optimize the reservoir operating policy on a decadal horizon and the operation strategy on an updated annual basis. The model is hierarchical, in terms of having a structure that two optimization models designated for different time scales are nested as a matryoshka doll. The two optimization models have similar mathematical formulations with some modifications to meet the constraints within that time frame. The first level of the model is designated to provide optimization solution for policy makers to determine contracted annual releases to different uses with a prescribed reliability; the second level is a within-the-period (e.g., year) operation optimization scheme that allocates the contracted annual releases on a subperiod (e.g. monthly) basis, with additional benefit for extra release and penalty for failure. The model maximizes the net benefit of irrigation, hydropower generation and flood control in each of the periods. The model design thus facilitates the consistent application of weather and climate forecasts to improve operations of reservoir systems. The decadal flow simulations are re-initialized every year with updated climate projections to improve the reliability of the operation rules for the next year, within which the seasonal operation strategies are nested. The multi-level structure can be repeated for monthly operation with weekly subperiods to take advantage of evolving weather forecasts and seasonal climate forecasts. As a result of the hierarchical structure, sub-seasonal even weather time scale updates and adjustment can be achieved. Given an ensemble of these scenarios, the McISH reservoir simulation-optimization model is able to derive the desired reservoir storage levels, including minimum and maximum, as a function of calendar date, and the associated release patterns. The multi-time scale approach allows adaptive management of water supplies acknowledging the changing risks, meeting both the objectives over the decade in expected value and controlling the near term and planning period risk through probabilistic reliability constraints. For the applications presented, the target season is the monsoon season from June to September. The model also includes a monthly flood volume forecast model, based on a Copula density fit to the monthly flow and the flood volume flow. This is used to guide dynamic allocation of the flood control volume given the forecasts.

  7. The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Delvigne, C.; Ponzevera, E.; Borges, A. V.; Darchambeau, F.; De Deckker, P.; Lambert, T.; Monin, L.; Toucanne, S.; André, L.

    2018-05-01

    The δ30Si stable isotopic composition of silicon in soils and fine-grained sediments can provide insights into weathering processes on continents, with important implications on the Si budget of modern and past oceans. To further constrain the factors controlling the distribution of Si isotopes in sediments, we have analysed a large number (n = 50) of separate size-fractions of sediments and suspended particulate materials collected near the mouth of rivers worldwide. This includes some of the world's largest rivers (e.g. Amazon, Congo, Mackenzie, Mississippi, Murray-Darling, Nile, Yangtze) and rivers from the case study areas of the Congo River Basin and Northern Ireland. Silt-size fractions exhibit a mean Si isotopic composition (δ30Si = -0.21 ± 0.19‰; 2 s.d.) similar to that previously inferred for the upper continental crust. In contrast, clay-size fractions display a much larger range of δ30Si values from -0.11‰ to -2.16‰, which yield a global δ30Siclay of -0.57 ± 0.60‰ (2 s.d.) representative of the mean composition of the average weathered continental crust. Overall, these new data show that the Si isotopic signature transported by river clays is controlled by the degree of chemical weathering, as inferred from strong relationships with Al/Si ratios. At a global scale, the clay-bound Si isotopic composition of the world's largest river systems demonstrates a link with climate, defining a general correlation with mean annual temperature (MAT) in corresponding drainage basins. While the distribution of Si isotopes in river sediments also appears to be influenced by the tectonic setting, lithological effects and sediment recycling from former sedimentary cycles, our results pave the way for their use as paleo-weathering and paleo-climate proxies in the sedimentary record.

  8. OPTIMIZATION OF INTEGRATED URBAN WET-WEATHER CONTROL STRATEGIES

    EPA Science Inventory

    An optimization method for urban wet weather control (WWC) strategies is presented. The developed optimization model can be used to determine the most cost-effective strategies for the combination of centralized storage-release systems and distributed on-site WWC alternatives. T...

  9. WaterSense Labeled Weather-Based Irrigation Controller Fact Sheet

    EPA Pesticide Factsheets

    WaterSense labeled irrigation controllers, which act like a thermostat for your sprinkler system by telling it when to turn on and off, use local weather and landscape conditions to tailor watering schedules to actual conditions on the site.

  10. HISTORICAL DEVELOPMENT OF WET-WEATHER FLOW MANAGEMENT

    EPA Science Inventory

    The management of wet-weather flow (WWF) is necessary to maintain the quality of urban water resources. Throughout history strategies were implemented to control WWF for reasons, e.g., flood and water quality control, aesthetic improvement, waste removal and others. A comprehen...

  11. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    NASA Astrophysics Data System (ADS)

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-03-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change.

  12. Near Real Time Data for Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2014-12-01

    Space weather operations presents unique challenges for data systems and providers. Space weather events evolve more quickly than terrestrial weather events. While terrestrial weather occurs on timescales of minutes to hours, space weather storms evolve on timescales of seconds to minutes. For example, the degradation of the High Frequency Radio communications between the ground and commercial airlines is nearly instantaneous when a solar flare occurs. Thus the customer is observing impacts at the same time that the operational forecast center is seeing the event unfold. The diversity and spatial scale of the space weather system is such that no single observation can capture the salient features. The vast space that encompasses space weather and the scarcity of observations further exacerbates the situation and make each observation even more valuable. The physics of interplanetary space, through which many major storms propagate, is very different from the physics of the ionosphere where most of the impacts are felt. And while some observations can be made from ground-based observatories, many of the most critical data comes from satellites, often in unique orbits far from Earth. In this presentation, I will describe some of the more important sources and types of data that feed into the operational alerts, watches, and warnings of space weather storms. Included will be a discussion of some of the new space weather forecast models and the data challenges that they bring forward.

  13. Carbonate Mineral Weathering Contributions to the HCO3- Flux from Headwater Mid-latitude Streams in the Face of Increasing Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Szramek, K.; Ogrinc, N.; Walter, L. M.

    2007-12-01

    As anthropogenic liberated CO2 increases in the atmosphere, landscape level responses of the carbon cycle to perturbations associated with global warming are likely to be observed in carbonate bearing regions. Within physically open weathering environments, carbonate (calcite and dolomite) mineral solubility is proportional to pCO2 and inversely proportional to temperature, with the solubility of dolomite progressively greater than calcite below 25°C. Changes in weathering zone CO2 occur as CO2 drawdown is increased due to CO2 fertilization effects on plant growth, to warmer mean annual temperatures, or to land use changes. The rise in weathering zone CO2 will significantly augment the open system solubility of carbonate minerals and increase the DIC content of surface waters (unconfined groundwaters and rivers). The thermodynamic relationships between calcite and dolomite indicate the further need to examine the role of dolomite on the global riverine DIC budget. On a continental scale, the global weathering budget indicates the importance of northern hemisphere landmasses to riverine fluxes of Ca2+, Mg2+ and DIC as HCO3-. The results of a hydrogeochemical study of carbonate mineral equilibria and weathering fluxes for headwater streams within the Danube, the James and the St. Lawrence River Basins is presented. Available long-term geochemical and discharge data along with detailed catchment geochemical views of surface water and soil weathering zones were determined to examine the historical and current contribution of carbonate weathering to the geochemical fluctuations of the these headwater regions and the ability of these watersheds to maintain current conditions in the facing of increasing CO2. In order to gauge how these streams with variable climates, land use practices, lithologies, and weathering zone thicknesses compare to each other, river runoff and HCO3- concentrations are normalized to catchment area. The resulting carbonate weathering intensity on a global scale, shows the study regions exceeding the world average by factors of between 2 to 20. Within each stream, variability of HCO3- concentrations are minimal over a wide range of discharges indicating that carbonate weathering is not limited by solubility. A closer look at dolomite weathering contributions estimated from riverine Mg2+ fluxes exceeds the world average by factors between 2 to 15. Our results indicate that both calcite and dolomite mineral weathering within temperate zone watersheds will be able to carry an increased flux of HCO3- to the ocean as global atmospheric CO2 increases. In addition this work reinforces the significant contribution of dolomite weathering to the global HCO3- flux.

  14. Intra- and Interseasonal Autoregressive Prediction of Dengue Outbreaks Using Local Weather and Regional Climate for a Tropical Environment in Colombia

    PubMed Central

    Eastin, Matthew D.; Delmelle, Eric; Casas, Irene; Wexler, Joshua; Self, Cameron

    2014-01-01

    Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors—all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C—the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts. PMID:24957546

  15. Seasonal prevailing surface winds in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tošić, Ivana; Gavrilov, Milivoj B.; Marković, Slobodan B.; Ruman, Albert; Putniković, Suzana

    2018-02-01

    Seasonal prevailing surface winds are analyzed in the territory of Northern Serbia, using observational data from 12 meteorological stations over several decades. In accordance with the general definition of prevailing wind, two special definitions of this term are used. The seasonal wind roses in 16 directions at each station are analyzed. This study shows that the prevailing winds in Northern Serbia have northwestern and southeastern directions. Circulation weather types over Serbia are presented in order to determine the connections between the synoptic circulations and prevailing surface winds. Three controlling pressure centers, i.e., the Mediterranean cyclone, Siberian high, and the Azores anticyclone, appear as the most important large-scale factors that influence the creation of the prevailing winds over Northern Serbia. Beside the synoptic cause of the prevailing winds, it is noted that the orography of the eastern Balkans has a major influence on the winds from the second quadrant. It was found that the frequencies of circulation weather types are in agreement with those of the prevailing winds over Northern Serbia.

  16. Mineralogy maketh mountains: Granitic landscapes shaped by dissolution

    NASA Astrophysics Data System (ADS)

    Eggleton, Richard A.

    2017-05-01

    In tectonically quiet regions, the shape of the landscape is controlled by the erosion resistance of the rocks. Erosion largely depends on the release of particles from the weathering rock, which in turn requires a degree of dissolution of the more soluble grains. The rate of dissolution of the common rock forming minerals allows the construction of a numerical Rock Weatherability Scale (RWS) based on the rock's modal mineralogical analysis. Applied regionally to three granitic landscape regions of the Bega Valley of southern New South Wales, the Tate Batholith and Featherbed Volcanics of north Queensland, and granitoids in the Beaufort region of Victoria, the mean elevation of the larger plutons in each region correlates highly (r = 0.83-0.93) with their RWS. Variation in composition within a pluton also shows there is a clear connection between changes in RWS and relief within the pluton. From these results it is apparent that the landscape of such granitic terrains is determined very largely by mineral dissolution rates, with plagioclase composition and content being a major factor.

  17. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE PAGES

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...

    2016-01-01

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  18. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  19. Deep Learning for Extreme Weather Detection

    NASA Astrophysics Data System (ADS)

    Prabhat, M.; Racah, E.; Biard, J.; Liu, Y.; Mudigonda, M.; Kashinath, K.; Beckham, C.; Maharaj, T.; Kahou, S.; Pal, C.; O'Brien, T. A.; Wehner, M. F.; Kunkel, K.; Collins, W. D.

    2017-12-01

    We will present our latest results from the application of Deep Learning methods for detecting, localizing and segmenting extreme weather patterns in climate data. We have successfully applied supervised convolutional architectures for the binary classification tasks of detecting tropical cyclones and atmospheric rivers in centered, cropped patches. We have subsequently extended our architecture to a semi-supervised formulation, which is capable of learning a unified representation of multiple weather patterns, predicting bounding boxes and object categories, and has the capability to detect novel patterns (w/ few, or no labels). We will briefly present our efforts in scaling the semi-supervised architecture to 9600 nodes of the Cori supercomputer, obtaining 15PF performance. Time permitting, we will highlight our efforts in pixel-level segmentation of weather patterns.

  20. Field Studies Delve Into the Intricacies of Mountain Weather

    NASA Astrophysics Data System (ADS)

    Fernando, Harindra J. S.; Pardyjak, Eric R.

    2013-09-01

    Mountain meteorology, in particular weather prediction in complex (rugged) terrain, is emerging as an important topic for science and society. Large urban settlements such as Los Angeles, Hong Kong, and Rio de Janeiro have grown within or in the shadow of complex terrain, and managing the air quality of such cities requires a good understanding of the air flow patterns that spill off of mountains. On a daily time scale, the interconnected engineered and natural systems that sustain urban metabolism and quality of life are affected by weather [Fernando, 2010]. Further, recent military engagements in remote mountainous areas have heightened the need for better weather predictions—alpine warfare is considered to be one of the most dangerous types of combat.

  1. The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.

    2017-12-01

    Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.

  2. Chemical and mineralogical heterogeneities of weathered igneous profiles: implications for landslide investigations

    NASA Astrophysics Data System (ADS)

    Duzgoren-Aydin, N. S.; Aydin, A.

    2006-05-01

    Landslides in tropical and sub-tropical regions are generally associated with weathered rock profiles which often possess chemical and mineralogical heterogeneities at material- and mineral-scales. Such heterogeneities reach a climax by the occurrences of oxyhydroxide- and clay-rich zones. Weakness and low permeability of these zones makes them ideal for the development of slip zones along which landslides take place. This paper describes the nature and distribution of chemical and mineralogical heterogeneities within weathered profiles developed from felsic igneous rocks in Hong Kong. It sets out the use of integrated geochemical and mineralogical studies to improve understanding of the development of critical heterogeneities and hence to predict their types and presence in a given weathered profile.

  3. Evaluating Changes in Extreme Weather During the North American Monsoon in the Southwest U.S. Using High Resolution, Convective-Permitting Regional Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Castro, C. L.; Chang, H. I.; Luong, T. M.; Lahmers, T.; Jares, M.; Mazon, J.; Carrillo, C. M.; Adams, D. K.

    2015-12-01

    The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. Monsoon convection typically initiates during daytime over the mountains and may organize into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. A convective resolving grid spacing (on the kilometer scale) model is required to explicitly represent the physical characteristics of organized convection, for example the presence of leading convective lines and trailing stratiform precipitation regions. Our objective is to analyze how monsoon severe weather is changing in relation to anthropogenic climate change. We first consider a dynamically downscaled reanalysis during a historical period 1948-2010. Individual severe weather event days, identified by favorable thermodynamic conditions, are then simulated for short-term, numerical weather prediction-type simulations of 30h at a convective-permitting scale. Changes in modeled severe weather events indicate increases in precipitation intensity in association with long-term increases in atmospheric instability and moisture, particularly with organized convection downwind of mountain ranges. However, because the frequency of synoptic transients is decreasing during the monsoon, organized convection is less frequent and convective precipitation tends to be more phased locked to terrain. These types of modeled changes also similarly appear in observed CPC precipitation, when the severe weather event days are selected using historical radiosonde data. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future with respect to occurrence and intensity and if these changes correspond with what is already occurring in the historical record. The CMIP5 models we are downscaling (HadGEM2-ES and MPI-ESM-LR) will be included as part of North American COordinated Regional climate Downscaling EXperiment (CORDEX). Results from this project will be used for climate change impacts assessment for U.S. military installations in the region.

  4. Modeling fire behavior on tropical islands with high-resolution weather data

    Treesearch

    John W. Benoit; Francis M. Fujioka; David R. Weise

    2009-01-01

    In this study, we consider fire behavior simulation in tropical island scenarios such as Hawaii and Puerto Rico. The development of a system to provide real-time fire behavior prediction in Hawaii is discussed. This involves obtaining fuels and topography information at a fine scale, as well as supplying daily high-resolution weather forecast data for the area of...

  5. Large-Scale Aerosol Modeling and Analysis

    DTIC Science & Technology

    2008-09-30

    novel method of simultaneous real- time measurements of ice-nucleating particle concentrations and size- resolved chemical composition of individual...is to develop a practical predictive capability for visibility and weather effects of aerosol particles for the entire globe for timely use in...prediction follows that used in numerical weather prediction, namely real- time assessment for initialization of first-principles models. The Naval

  6. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) at Johnson Space Center in Houston, TX have used a local data integration system (LDIS) as part of their forecast and warning operations. The original LDIS was developed by NASA's Applied Meteorology Unit (AMU; Bauman et ai, 2004) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features

  7. A Study into the Impact of Physical Structures on the Runway Velocity Field at the Atlantic City International Airport

    NASA Astrophysics Data System (ADS)

    King, David, Jr.; Manson, Russell; Trout, Joseph; Decicco, Nicholas; Rios, Manny

    2015-04-01

    Wake vortices are generated by airplanes in flight. These vortices decay slowly and may persist for several minutes after their creation. These vortices and associated smaller scale turbulent structures present a hazard to incoming flights. It is for this reason that incoming flights are timed to arrive after these vortices have dissipated. Local weather conditions, mainly prevailing winds, can affect the transport and evolution of these vortices; therefore, there is a need to fully understand localized wind patterns at the airport-sized mircoscale. Here we have undertaken a computational investigation into the impacts of localized wind flows and physical structures on the velocity field at Atlantic City International Airport. The simulations are undertaken in OpenFOAM, an open source computational fluid dynamics software package, using an optimized geometric mesh of the airport. Initial conditions for the simulations are based on historical data with the option to run simulations based on projected weather conditions imported from the Weather Research & Forcasting (WRF) Model. Sub-grid scale turbulence is modeled using a Large Eddy Simulation (LES) approach. The initial results gathered from the WRF Model simulations and historical weather data analysis are presented elsewhere.

  8. Predictability of short-range forecasting: a multimodel approach

    NASA Astrophysics Data System (ADS)

    García-Moya, Jose-Antonio; Callado, Alfons; Escribà, Pau; Santos, Carlos; Santos-Muñoz, Daniel; Simarro, Juan

    2011-05-01

    Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast based on an ensemble of slightly different model runs may help to address this issue. Among other ensemble techniques, Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the weather up to 72 h has been developed at the Spanish Meteorological Service (AEMET). The system uses five different limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5 (PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution precipitation networks, and compared with ECMWF-EPS (EC).

  9. Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region

    USGS Publications Warehouse

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.; Crimmins, Shawn M.

    2015-01-01

    Knowledge of factors influencing animal abundance is important to wildlife biologists developing management plans. This is especially true for economically important species such as blackbirds (Icteridae), which cause more than $100 million in crop damages annually in the United States. Using data from the North American Breeding Bird Survey, the National Land Cover Dataset, and the National Climatic Data Center, we modeled effects of regional environmental variables on relative abundance of 3 blackbird species (red-winged blackbird,Agelaius phoeniceus; yellow-headed blackbird, Xanthocephalus xanthocephalus; common grackle, Quiscalus quiscula) in the Prairie Pothole Region of the central United States. We evaluated landscape covariates at 3 logarithmically related spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and modeled weather variables at the 100,000-ha scale. We constructed models a priori using information from published habitat associations. We fit models with WinBUGS using Markov chain Monte Carlo techniques. Both landscape and weather variables contributed strongly to predicting blackbird relative abundance (95% credibility interval did not overlap 0). Variables with the strongest associations with blackbird relative abundance were the percentage of wetland area and precipitation amount from the year before bird surveys were conducted. The influence of spatial scale appeared small—models with the same variables expressed at different scales were often in the best model subset. This large-scale study elucidated regional effects of weather and landscape variables, suggesting that management strategies aimed at reducing damages caused by these species should consider the broader landscape, including weather effects, because such factors may outweigh the influence of localized conditions or site-specific management actions. The regional species distributional models we developed for blackbirds provide a tool for understanding these broader landscape effects and guiding wildlife management practices to areas that are optimally beneficial. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961-2000

    NASA Astrophysics Data System (ADS)

    Sanchez-Gomez, Emilia; Somot, S.; Déqué, M.

    2009-10-01

    One of the main concerns in regional climate modeling is to which extent limited-area regional climate models (RCM) reproduce the large-scale atmospheric conditions of their driving general circulation model (GCM). In this work we investigate the ability of a multi-model ensemble of regional climate simulations to reproduce the large-scale weather regimes of the driving conditions. The ensemble consists of a set of 13 RCMs on a European domain, driven at their lateral boundaries by the ERA40 reanalysis for the time period 1961-2000. Two sets of experiments have been completed with horizontal resolutions of 50 and 25 km, respectively. The spectral nudging technique has been applied to one of the models within the ensemble. The RCMs reproduce the weather regimes behavior in terms of composite pattern, mean frequency of occurrence and persistence reasonably well. The models also simulate well the long-term trends and the inter-annual variability of the frequency of occurrence. However, there is a non-negligible spread among the models which is stronger in summer than in winter. This spread is due to two reasons: (1) we are dealing with different models and (2) each RCM produces an internal variability. As far as the day-to-day weather regime history is concerned, the ensemble shows large discrepancies. At daily time scale, the model spread has also a seasonal dependence, being stronger in summer than in winter. Results also show that the spectral nudging technique improves the model performance in reproducing the large-scale of the driving field. In addition, the impact of increasing the number of grid points has been addressed by comparing the 25 and 50 km experiments. We show that the horizontal resolution does not affect significantly the model performance for large-scale circulation.

  11. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.

    2017-01-01

    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  12. Application of global weather and climate model output to the design and operation of wind-energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Judith

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatorymore » environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.« less

  13. Image-based optimization of coronal magnetic field models for improved space weather forecasting

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.; MacNeice, P. J.

    2017-12-01

    The existing space weather forecasting frameworks show a significant dependence on the accuracy of the photospheric magnetograms and the extrapolation models used to reconstruct the magnetic filed in the solar corona. Minor uncertainties in the magnetic field magnitude and direction near the Sun, when propagated through the heliosphere, can lead to unacceptible prediction errors at 1 AU. We argue that ground based and satellite coronagraph images can provide valid geometric constraints that could be used for improving coronal magnetic field extrapolation results, enabling more reliable forecasts of extreme space weather events such as major CMEs. In contrast to the previously developed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions up to 1-2 solar radii above the photosphere. By applying the developed image processing techniques to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code developed S. Jones at al. (ApJ 2016, 2017). Our tracing results are shown to be in a good qualitative agreement with the large-scale configuration of the optical corona, and lead to a more consistent reconstruction of the large-scale coronal magnetic field geometry, and potentially more accurate global heliospheric simulation results. Several upcoming data products for the space weather forecasting community will be also discussed.

  14. Elevational species shifts in a warmer climate are overestimated when based on weather station data.

    PubMed

    Scherrer, Daniel; Schmid, Samuel; Körner, Christian

    2011-07-01

    Strong topographic variation interacting with low stature alpine vegetation creates a multitude of micro-habitats poorly represented by common 2 m above the ground meteorological measurements (weather station data). However, the extent to which the actual habitat temperatures in alpine landscapes deviate from meteorological data at different spatial scales has rarely been quantified. In this study, we assessed thermal surface and soil conditions across topographically rich alpine landscapes by thermal imagery and miniature data loggers from regional (2-km(2)) to plot (1-m(2)) scale. The data were used to quantify the effects of spatial sampling resolution on current micro-habitat distributions and habitat loss due to climate warming scenarios. Soil temperatures showed substantial variation among slopes (2-3 K) dependent on slope exposure, within slopes (3-4 K) due to micro-topography and within 1-m(2) plots (1 K) as a result of plant cover effects. A reduction of spatial sampling resolution from 1 × 1 m to 100 × 100 m leads to an underestimation of current habitat diversity by 25% and predicts a six-times higher habitat loss in a 2-K warming scenario. Our results demonstrate that weather station data are unable to reflect the complex thermal patterns of aerodynamically decoupled alpine vegetation at the investigated scales. Thus, the use of interpolated weather station data to describe alpine life conditions without considering the micro-topographically induced thermal mosaic might lead to misinterpretation and inaccurate prediction.

  15. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle, aggregate and solute fluxes.

  16. Impacts from urban water systems on receiving waters - How to account for severe wet-weather events in LCA?

    PubMed

    Risch, Eva; Gasperi, Johnny; Gromaire, Marie-Christine; Chebbo, Ghassan; Azimi, Sam; Rocher, Vincent; Roux, Philippe; Rosenbaum, Ralph K; Sinfort, Carole

    2018-01-01

    Sewage systems are a vital part of the urban infrastructure in most cities. They provide drainage, which protects public health, prevents the flooding of property and protects the water environment around urban areas. On some occasions sewers will overflow into the water environment during heavy rain potentially causing unacceptable impacts from releases of untreated sewage into the environment. In typical Life Cycle Assessment (LCA) studies of urban wastewater systems (UWS), average dry-weather conditions are modelled while wet-weather flows from UWS, presenting a high temporal variability, are not currently accounted for. In this context, the loads from several storm events could be important contributors to the impact categories freshwater eutrophication and ecotoxicity. In this study we investigated the contributions of these wet-weather-induced discharges relative to average dry-weather conditions in the life cycle inventory for UWS. In collaboration with the Paris public sanitation service (SIAAP) and Observatory of Urban Pollutants (OPUR) program researchers, this work aimed at identifying and comparing contributing flows from the UWS in the Paris area by a selection of routine wastewater parameters and priority pollutants. This collected data is organized according to archetypal weather days during a reference year. Then, for each archetypal weather day and its associated flows to the receiving river waters (Seine), the parameters of pollutant loads (statistical distribution of concentrations and volumes) were determined. The resulting inventory flows (i.e. the potential loads from the UWS) were used as LCA input data to assess the associated impacts. This allowed investigating the relative importance of episodic wet-weather versus "continuous" dry-weather loads with a probabilistic approach to account for pollutant variability within the urban flows. The analysis at the scale of one year showed that storm events are significant contributors to the impacts of freshwater eutrophication and ecotoxicity compared to those arising from treated effluents. At the rain event scale the wet-weather contributions to these impacts are even more significant, accounting for example for up to 62% of the total impact on freshwater ecotoxicity. This also allowed investigating and discussing the ecotoxicity contribution of each class of pollutants among the broad range of inventoried substances. Finally, with such significant contributions of pollutant loads and associated impacts from wet-weather events, further research is required to better include temporally-differentiated emissions when evaluating eutrophication and ecotoxicity. This will provide a better understanding of how the performance of an UWS system affects the receiving environment for given local weather conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Use of observational and model-derived fields and regime model output statistics in mesoscale forecasting

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.; Pielke, R. A.

    1985-01-01

    Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.

  18. Weather and Death on Mount Everest: Is there a link between Storms and Human Physiology?

    NASA Astrophysics Data System (ADS)

    Moore, K.; Semple, J.

    2004-05-01

    Scientific interest in Mount Everest has been largely focused on the hypoxia caused by the summit's low barometric pressure. Although weather is recognized as a significant risk factor, it has not been extensively studied. Through the use of observations made at the mountain's South Col, elevation 7986m, and other datasets, we show that high impact weather events on Mount Everest, including the May 1996 storm in which 8 climbers perished, are often associated with continental-scale intrusions of stratospheric air into the upper-troposphere. The variability in wind speeds associated with these intrusions triggered convective activity that resulted in the high impact weather. In addition, the validation of existing meteorological data allows for useful insights into the possibility of forecasting these high impact weather events and their physiological impacts thereby mitigating deaths that occur on the exposed upper slopes of Mount Everest.

  19. Online Visualization and Analysis of Global Half-Hourly Infrared Satellite Data

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    nfrared (IR) images (approximately 11-micron channel) recorded by satellite sensors have been widely used in weather forecasting, research, and classroom education since the Nimbus program. Unlike visible images, IR imagery can reveal cloud features without sunlight illumination; therefore, they can be used to monitor weather phenomena day and night. With geostationary satellites deployed around the globe, it is possible to monitor weather events 24/7 at a temporal resolution that polar-orbiting satellites cannot achieve at the present time. When IR data from multiple geostationary satellites are merged to form a single product--also known as a merged product--it allows for observing weather on a global scale. Its high temporal resolution (e.g., every half hour) also makes it an ideal ancillary dataset for supporting other satellite missions, such as the Tropical Rainfall Measuring Mission (TRMM), etc., by providing additional background information about weather system evolution.

  20. Local air temperature tolerance: a sensible basis for estimating climate variability

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi; Post, Piia

    2016-11-01

    The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.

  1. Large-scale derived flood frequency analysis based on continuous simulation

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several drawbacks reported in traditional approaches for the derived flood frequency analysis and therefore is recommended for large scale flood risk case studies.

  2. The drivers of wildfire enlargement do not exhibit scale thresholds in southeastern Australian forests.

    PubMed

    Price, Owen F; Penman, Trent; Bradstock, Ross; Borah, Rittick

    2016-10-01

    Wildfires are complex adaptive systems, and have been hypothesized to exhibit scale-dependent transitions in the drivers of fire spread. Among other things, this makes the prediction of final fire size from conditions at the ignition difficult. We test this hypothesis by conducting a multi-scale statistical modelling of the factors determining whether fires reached 10 ha, then 100 ha then 1000 ha and the final size of fires >1000 ha. At each stage, the predictors were measures of weather, fuels, topography and fire suppression. The objectives were to identify differences among the models indicative of scale transitions, assess the accuracy of the multi-step method for predicting fire size (compared to predicting final size from initial conditions) and to quantify the importance of the predictors. The data were 1116 fires that occurred in the eucalypt forests of New South Wales between 1985 and 2010. The models were similar at the different scales, though there were subtle differences. For example, the presence of roads affected whether fires reached 10 ha but not larger scales. Weather was the most important predictor overall, though fuel load, topography and ease of suppression all showed effects. Overall, there was no evidence that fires have scale-dependent transitions in behaviour. The models had a predictive accuracy of 73%, 66%, 72% and 53% accuracy at 10 ha, 100 ha, 1000 ha and final size scales. When these steps were combined, the overall accuracy for predicting the size of fires was 62%, while the accuracy of the one step model was only 20%. Thus, the multi-scale approach was an improvement on the single scale approach, even though the predictive accuracy was probably insufficient for use as an operational tool. The analysis has also provided further evidence of the important role of weather, compared to fuel, suppression and topography in driving fire behaviour. Copyright © 2016. Published by Elsevier Ltd.

  3. The Federal Aviation Administration/Massachusetts Institute of Technology (FAA/MIT) Lincoln Laboratory Doppler weather radar program

    NASA Technical Reports Server (NTRS)

    Evans, James E.

    1988-01-01

    The program focuses on providing real-time information on hazardous aviation weather to end users such as air traffic control and pilots. Existing systems will soon be replaced by a Next Generation Weather Radar (NEXRAD), which will be concerned with detecting such hazards as heavy rain and hail, turbulence, low-altitude wind shear, and mesocyclones and tornadoes. Other systems in process are the Central Weather Processor (CWP), and the terminal Doppler weather radar (TDWR). Weather measurements near Memphis are central to ongoing work, especially in the area of microbursts and wind shear.

  4. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  5. Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control

    EPA Science Inventory

    The “Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control: State of the Technology” project investigated a range of innovative technology and management strategies emerging outside the normal realm of business within the continental United States, fo...

  6. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  7. A Prototype Nonhydrostatic Regional-to-Global Nested-Grid Atmosphere Model for Medium-range Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Harris, L.; Lin, S. J.; Zhou, L.; Chen, J. H.; Benson, R.; Rees, S.

    2016-12-01

    Limited-area convection-permitting models have proven useful for short-range NWP, but are unable to interact with the larger scales needed for longer lead-time skill. A new global forecast model, fvGFS, has been designed combining a modern nonhydrostatic dynamical core, the GFDL Finite-Volume Cubed-Sphere dynamical core (FV3) with operational GFS physics and initial conditions, and has been shown to provide excellent global skill while improving representation of small-scale phenomena. The nested-grid capability of FV3 allows us to build a regional-to-global variable-resolution model to efficiently refine to 3-km grid spacing over the Continental US. The use of two-way grid nesting allows us to reach these resolutions very efficiently, with the operational requirement easily attainable on current supercomputing systems.Even without a boundary-layer or advanced microphysical scheme appropriate for convection-perrmitting resolutions, the effectiveness of fvGFS can be demonstrated for a variety of weather events. We demonstrate successful proof-of-concept simulations of a variety of phenomena. We show the capability to develop intense hurricanes with realistic fine-scale eyewalls and rainbands. The new model also produces skillful predictions of severe weather outbreaks and of organized mesoscale convective systems. Fine-scale orographic and boundary-layer phenomena are also simulated with excellent fidelity by fvGFS. Further expected improvements are discussed, including the introduction of more sophisticated microphysics and of scale-aware convection schemes.

  8. Simulation of all-scale atmospheric dynamics on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng

    2016-10-01

    The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed.

  9. Temporal Associations between Weather and Headache: Analysis by Empirical Mode Decomposition

    PubMed Central

    Yang, Albert C.; Fuh, Jong-Ling; Huang, Norden E.; Shia, Ben-Chang; Peng, Chung-Kang; Wang, Shuu-Jiun

    2011-01-01

    Background Patients frequently report that weather changes trigger headache or worsen existing headache symptoms. Recently, the method of empirical mode decomposition (EMD) has been used to delineate temporal relationships in certain diseases, and we applied this technique to identify intrinsic weather components associated with headache incidence data derived from a large-scale epidemiological survey of headache in the Greater Taipei area. Methodology/Principal Findings The study sample consisted of 52 randomly selected headache patients. The weather time-series parameters were detrended by the EMD method into a set of embedded oscillatory components, i.e. intrinsic mode functions (IMFs). Multiple linear regression models with forward stepwise methods were used to analyze the temporal associations between weather and headaches. We found no associations between the raw time series of weather variables and headache incidence. For decomposed intrinsic weather IMFs, temperature, sunshine duration, humidity, pressure, and maximal wind speed were associated with headache incidence during the cold period, whereas only maximal wind speed was associated during the warm period. In analyses examining all significant weather variables, IMFs derived from temperature and sunshine duration data accounted for up to 33.3% of the variance in headache incidence during the cold period. The association of headache incidence and weather IMFs in the cold period coincided with the cold fronts. Conclusions/Significance Using EMD analysis, we found a significant association between headache and intrinsic weather components, which was not detected by direct comparisons of raw weather data. Contributing weather parameters may vary in different geographic regions and different seasons. PMID:21297940

  10. Precipitation factors leading to arc cloud formation

    NASA Technical Reports Server (NTRS)

    Brundidge, Kenneth C.

    1987-01-01

    The combined efforts of three graduate students and the principal investigator are presented. Satellite observations and interpretation have become increasingly important in the areas of weather research and operational forecasting. One reason is that geostationary satellite imagery is the only meteorological observing tool that can follow the evolution of clouds from the synoptic scale down to the cumulas scale. Therefore, it can depict atmospheric activity which is up to two orders of magnitude smaller than can be resolved by conventional meteorological observations. This unique ability of the satellite provides the meteorologist a mechanism to infer weather events down to the mesoscale. This evolution is the subject of this report.

  11. Intense sub-kilometer-scale boundary layer rolls observed in hurricane fran

    PubMed

    Wurman; Winslow

    1998-04-24

    High-resolution observations obtained with the Doppler On Wheels (DOW) mobile weather radar near the point of landfall of hurricane Fran (1996) revealed the existence of intense, sub-kilometer-scale, boundary layer rolls that strongly modulated the near-surface wind speed. It is proposed that these structures are one cause of geographically varying surface damage patterns that have been observed after some landfalling hurricanes and that they cause much of the observed gustiness, bringing high-velocity air from aloft to the lowest observable levels. High-resolution DOW radar observations are contrasted with lower-resolution observations obtained with an operational weather radar, which underestimated peak low-level wind speeds.

  12. The Amazon and climate

    NASA Technical Reports Server (NTRS)

    Nobre, C. A.

    1984-01-01

    The climatologies of cloudiness and precipitation for the Amazon, are reviewed and the physical causes of some of the observed features and those which are not well known are explained. The atmospheric circulation over the Amazon is discussed on the large scale tropical circulations forced by deep diabatic heating sources. Weather deforestation which leads to a reduction in evapotranspiration into the atmosphere, and a reduction in precipitation and its implicated for the gobal climate is discussed. It is indicated that a large scale clearing of tropical rainforests there would be a reduction in rainfall which would have global effects on climate and weather both in the tropical and extratropical regions.

  13. Impact of the 1997-1998 El-Nino of Regional Hydrology

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1998-01-01

    The 1997-1998 El-Nino brought with it a range of severe local-regional hydrological phenomena. Record high temperatures and extremely dry soil conditions in Texas is an example of this regional effect. The El-Nino and La-Nina change the continental weather patterns considerably. However, connections between continental weather anomalies and regional or local anomalies have not been established to a high degree of confidence. There are several unique features of the recent El-Nino and La-Nina. Due to the recognition of the present El-Nino well in advance, there have been several coupled model studies on global and regional scales. Secondly, there is a near real-time monitoring of the situation using data from satellite sensors, namely, SeaWIFS, TOVS, AVHRR and GOES. Both observations and modeling characterize the large scale features of this El-Nino fairly well. However the connection to the local and regional hydrological phenomenon still needs to be made. This paper will use satellite observations and analysis data to establish a relation between local hydrology and large scale weather patterns. This will be the first step in using satellite data to perform regional hydrological simulations of surface temperature and soil moisture.

  14. Attic or Roof? An Evaluation of Two Advanced Weatherization Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, Ken

    2012-06-01

    This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

  15. The Contribution of Mesoscale Convective Weather Systems to the Warm-Season Precipitation in the United States.

    NASA Astrophysics Data System (ADS)

    Fritsch, J. M.; Kane, R. J.; Chelius, C. R.

    1986-10-01

    The contribution of precipitation from mesoscale convective weather systems to the warm-season (April-September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a `normal' year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April-September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the `normal' year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by mesoscale convective weather systems in the drought year accounted for most of the precipitation received during the critical crop growth period.It is concluded that mesoscale convective weather systems may be a crucial precipitation-producing deterrent to drought and an important mechanism for enhancing midsummer crop growth throughout the midwestern United States. Furthermore, because mesoscale convective weather systems account for such a large fraction of the warm-season precipitation, significant improvements in prediction of such systems would likely translate into significant improvements in quantitative precipitation forecast skill and corresponding improvements in hydrologic forecasts of runoff.

  16. Current problems in communication from the weather forecast in the prevention of hydraulic and hydrogeological risk

    NASA Astrophysics Data System (ADS)

    Fazzini, Massimiliano; Vaccaro, Carmela

    2014-05-01

    The Italian territory is one of the most fragile hydraulic and hydro geologic of the world, due to its complexity physiographic, lithological and above meteo-climatic too. Moreover, In recent years, the unhappy urbanization, the abandonment of mountain areas and countryside have fostered hydro geological instability, ever more devastating, in relation to the extremes of meteorological events. After the dramatic floods and landscapes of the last 24 months - in which more than 50 people died - it is actually open a public debate on the issues related to prevention, forecasting and management of hydro-meteorological risk. Aim of the correct weather forecasting at different spatial and temporal scales is to avoid or minimize the potential occurrence of damage or human losses resulting from the increasingly of frequent extreme weather events. In Italy, there are two major complex problems that do not allow for effective dissemination of the correct weather forecasting. First, the absence of a national meteorological service - which can ensure the quality of information. In this regard, it is at an advanced stage the establishment of a unified national weather service - formed by technicians to national and regional civil protection and the Meteorological Service of the Air Force, which will ensure the quality of the prediction, especially through exclusive processing of national and local weather forecasting and hydro geological weather alert. At present, however, this lack favors the increasing diffusion of meteorological sites more or less professional - often totally not "ethical" - which, at different spatial scales, tend to amplify the signals from the weather prediction models, describing them the users of the web such as exceptional or rare phenomena and often causing unjustified alarmism. This behavior is almost always aimed at the desire of give a forecast before other sites and therefore looking for new commercial sponsors, with easy profits. On the other hand, however, the almost complete absence of education to environmental risks - also from as primary school - does not allow the users to know to select the information ethically and technically correct, increasingly favoring the proliferation of most of the "weather-commercial" or private weather websites. It would seem therefore essential to implement the activities of specific information by the universities and public institutions responsible for forecasting and prevention-hydrological forecast.

  17. Assessment of the scale effect on statistical downscaling quality at a station scale using a weather generator-based model

    USDA-ARS?s Scientific Manuscript database

    The resolution of General Circulation Models (GCMs) is too coarse to assess the fine scale or site-specific impacts of climate change. Downscaling approaches including dynamical and statistical downscaling have been developed to meet this requirement. As the resolution of climate model increases, it...

  18. Portable Weather Applications for General Aviation Pilots.

    PubMed

    Ahlstrom, Ulf; Ohneiser, Oliver; Caddigan, Eamon

    2016-09-01

    The objective of this study was to examine the potential benefits and impact on pilot behavior from the use of portable weather applications. Seventy general aviation (GA) pilots participated in the study. Each pilot was randomly assigned to an experimental or a control group and flew a simulated single-engine GA aircraft, initially under visual meteorological conditions (VMC). The experimental group was equipped with a portable weather application during flight. We recorded measures for weather situation awareness (WSA), decision making, cognitive engagement, and distance from the aircraft to hazardous weather. We found positive effects from the use of the portable weather application, with an increased WSA for the experimental group, which resulted in credibly larger route deviations and credibly greater distances to hazardous weather (≥30 dBZ cells) compared with the control group. Nevertheless, both groups flew less than 20 statute miles from hazardous weather cells, thus failing to follow current weather-avoidance guidelines. We also found a credibly higher cognitive engagement (prefrontal oxygenation levels) for the experimental group, possibly reflecting increased flight planning and decision making on the part of the pilots. Overall, the study outcome supports our hypothesis that portable weather displays can be used without degrading pilot performance on safety-related flight tasks, actions, and decisions as measured within the constraints of the present study. However, it also shows that an increased WSA does not automatically translate to enhanced flight behavior. The study outcome contributes to our knowledge of the effect of portable weather applications on pilot behavior and decision making. © 2016, Human Factors and Ergonomics Society.

  19. Soil chemical weathering under morphologic and climatic controls in the Northern Rockies, Montana

    NASA Astrophysics Data System (ADS)

    Benjaram, S. S.; Dixon, J. L.

    2015-12-01

    Climate influences soil weathering via moisture availability and temperatures, but globally physical erosion rate appears to be a more important control on weathering rate than climate. Understanding these links requires investigation into landscapes where the climate's influence on weathering is discernable despite the signal of physical erosion rate—in kinetically limited regimes. However, in these systems, rapid erosion rates and complex morphologies add complexity and heterogeneity to soil weathering. To investigate the dual controls of landscape morphology and climate on chemical weathering, we quantify soil distribution, thickness, and weathering extent by focusing on catchments within two adjacent mountain ranges in the Northern Rockies. The Bitterroot Mtns present previously-glaciated valleys with steep ridges and high present-day MAP, which contrast with the drier and more gentle, nonglaciated hillslopes of the Sapphire Mtns to the east. We use field and remotely sensed data to quantify soil distribution and thickness, and elemental geochemistry to measure the variability of chemical weathering across these systems.Mean slopes in the Bitterroots are ~1.3x higher than those in our Sapphire catchment, leading to large differences in soil distribution. Initial mapping of soils using remotely sensed data and rock exposure indices (REI) indicate that ~50% of the Bitterroot system is bare of soil, compared to <5% in the Sapphire system. REIs are distinct between these systems, with ~10˚ difference in slope thresholds for soil cover. Additionally, field data indicate that sparse soils of the Bitterroots are significantly thinner than those in Sapphire system (B=17±2cm, n=161; S=32±3, n=31). Initial XRF data suggest soil weathering intensity is more than two times greater in the Sapphires. These results suggest that the morphologic landscape legacy left by now-extinct glaciers imposes a kinetic limitation on soil weathering, even despite high modern moisture availability.

  20. Balancing Flood Risk and Water Supply in California: Policy Search Combining Short-Term Forecast Ensembles and Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Steinschneider, S.; Nayak, M. A.

    2017-12-01

    Short-term weather forecasts are not codified into the operating policies of federal, multi-purpose reservoirs, despite their potential to improve service provision. This is particularly true for facilities that provide flood protection and water supply, since the potential flood damages are often too severe to accept the risk of inaccurate forecasts. Instead, operators must maintain empty storage capacity to mitigate flood risk, even if the system is currently in drought, as occurred in California from 2012-2016. This study investigates the potential for forecast-informed operating rules to improve water supply efficiency while maintaining flood protection, combining state-of-the-art weather hindcasts with a novel tree-based policy optimization framework. We hypothesize that forecasts need only accurately predict the occurrence of a storm, rather than its intensity, to be effective in regions like California where wintertime, synoptic-scale storms dominate the flood regime. We also investigate the potential for downstream groundwater injection to improve the utility of forecasts. These hypotheses are tested in a case study of Folsom Reservoir on the American River. Because available weather hindcasts are relatively short (10-20 years), we propose a new statistical framework to develop synthetic forecasts to assess the risk associated with inaccurate forecasts. The efficiency of operating policies is tested across a range of scenarios that include varying forecast skill and additional groundwater pumping capacity. Results suggest that the combined use of groundwater storage and short-term weather forecasts can substantially improve the tradeoff between water supply and flood control objectives in large, multi-purpose reservoirs in California.

  1. A new precipitation and drought climatology based on weather patterns.

    PubMed

    Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert

    2018-02-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.

  2. Introducing Subrid-scale Cloud Feedbacks to Radiation for Regional Meteorological and Cllimate Modeling

    EPA Science Inventory

    Convection systems and associated cloudiness directly influence regional and local radiation budgets, and dynamics and thermodynamics through feedbacks. However, most subgrid-scale convective parameterizations in regional weather and climate models do not consider cumulus cloud ...

  3. A conditional approach to determining the effect of anthropogenic climate change on very rare events.

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Pall, Pardeep; Zarzycki, Colin; Stone, Daithi

    2016-04-01

    Probabilistic extreme event attribution is especially difficult for weather events that are caused by extremely rare large-scale meteorological patterns. Traditional modeling techniques have involved using ensembles of climate models, either fully coupled or with prescribed ocean and sea ice. Ensemble sizes for the latter case ranges from several 100 to tens of thousand. However, even if the simulations are constrained by the observed ocean state, the requisite large-scale meteorological pattern may not occur frequently enough or even at all in free running climate model simulations. We present a method to ensure that simulated events similar to the observed event are modeled with enough fidelity that robust statistics can be determined given the large scale meteorological conditions. By initializing suitably constrained short term ensemble hindcasts of both the actual weather system and a counterfactual weather system where the human interference in the climate system is removed, the human contribution to the magnitude of the event can be determined. However, the change (if any) in the probability of an event of the observed magnitude is conditional not only on the state of the ocean/sea ice system but also on the prescribed initial conditions determined by the causal large scale meteorological pattern. We will discuss the implications of this technique through two examples; the 2013 Colorado flood and the 2014 Typhoon Haiyan.

  4. A landscape-scale wildland fire study using coupled weather-wildland fire model and airborne remote sensing

    Treesearch

    J.L. Coen; Philip Riggan

    2011-01-01

    We examine the Esperanza fire, a Santa Ana-driven wildland fire that occurred in complex terrain in spatially heterogeneous chaparral fuels, using airborne remote sensing imagery from the FireMapper thermal-imaging radiometer and a coupled weather-wildland fire model. The radiometer data maps fire intensity and is used to evaluate the error in the extent of the...

  5. Prediction Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the climate community. An improved understanding of the nature of decadal variability and its predictability has important implications for efforts to assess the impacts of global change in the coming decades. In fact, the GMAO has taken on the challenge of carrying out experimental decadal predictions in support of the IPCC AR5 effort.

  6. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  7. Distribution of lithium in agricultural and grazing land soils at European continental scale (GEMAS project)

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Reimann, Clemens; Ladenberger, Anna; Birke, Manfred

    2017-04-01

    The environmental chemistry of Li has received attention because Li has been shown to have numerous and important implications for human health and agriculture and the stable isotope composition of lithium is a powerful geochemical tool that provides quantitative information about Earth processes such as sediment recycling, global chemical weathering and its role in the carbon cycle, hydrothermal alteration, and groundwater evolution. However, the role of bedrock sources, weathering and climate changes in the repartition of Li at the continental scale has been scarcely investigated. Agricultural soil (Ap-horizon, 0-20 cm) and grazing land soil (Gr-horizon, 0-10 cm) samples were collected from a large part of Europe (33 countries, 5.6 million km2) as a part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil mapping project. GEMAS soil data have been used to provide a general view of element mobility and source rocks at the continental scale, either by reference to average crustal abundances or to normalized patterns of element mobility during weathering processes. The survey area includes a diverse group of soil parent materials with varying geological history, a wide range of climate zones and landscapes. The concentrations of Li in European soil were determined by ICP-MS after a hot aqua regia extraction, and their spatial distribution patterns generated by means of a GIS software. Due to the partial nature of the aqua regia extraction, the mean concentration of Li in the European agricultural soil (ca 11.4 mg/kg in Ap and Gr soils) is about four times lower than in the Earth's upper continental crust (UCC = 41 mg/kg). The combined plot histogram - density trace one- dimensional scattergram - boxplot of the aqua regia data displays the univariate data distribution of Li. The one-dimensional scattergram and boxplot highlight the existence of many outliers at the lower end of the Li distribution and very few at the upper end. Though the density trace, histogram and boxplot suggest a slight skew, the data distributions are still rather symmetrical in the log-scale. The median values of the Ap and Gr samples do overlap, demonstrating they are not statistically different at the 5 % significance level. The maps of Li in the aqua regia extraction show a distinct difference between northern Europe with predominantly low concentrations (median 6.4 mg/kg) and southern Europe with significantly higher values (median 15 mg/kg). The maximum extent of the last glaciation is visible as a discrete concentration break on the maps. The principal Li anomalies occur spatially associated with the granitic rocks and Li-pegmatites and their weathering products throughout Europe, e.g. in central Sweden (Central Scandinavian Clay Belt) and in the western part of the Alpine Region (higher Li concentrations). Even the new Li-deposit near Wolfsberg, Austria is marked by a clear anomaly. In southern Europe, high Li values occurring over limestone areas can be attributed to secondary Li enrichment during weathering controlled by climate (temperature and precipitation).

  8. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    NASA Astrophysics Data System (ADS)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected to be congruent, meaning that the Mg released to solutes during mineral dissolution should have the same composition as the host rock. Some of this difference is likely accounted for by atmospheric deposition or cyclic inputs, but this cannot account for all of the 1.5permil shift between rock and water. It is plausible that some of the difference is explained by trace levels of Mg-silicate dissolution (with a delta26Mg of circa 0permil), but equally carbonate precipitation and attendant Mg isotope fractionation could theoretically account for the difference between rock and water. The various plausible explications will be discussed, as well as the implications of the data for better understanding carbonate weathering.

  9. Weather is not significantly correlated with destination-specific transport-related physical activity among adults: A large-scale temporally matched analysis.

    PubMed

    Durand, Casey P; Zhang, Kai; Salvo, Deborah

    2017-08-01

    Weather is an element of the natural environment that could have a significant effect on physical activity. Existing research, however, indicates only modest correlations between measures of weather and physical activity. This prior work has been limited by a failure to use time-matched weather and physical activity data, or has not adequately examined the different domains of physical activity (transport, leisure, occupational, etc.). Our objective was to identify the correlation between weather variables and destination-specific transport-related physical activity in adults. Data were sourced from the California Household Travel Survey, collected in 2012-3. Weather variables included: relative humidity, temperature, wind speed, and precipitation. Transport-related physical activity (walking) was sourced from participant-recorded travel diaries. Three-part hurdle models were used to analyze the data. Results indicate statistically or substantively insignificant correlations between the weather variables and transport-related physical activity for all destination types. These results provide the strongest evidence to date that transport-related physical activity may occur relatively independently of weather conditions. The knowledge that weather conditions do not seem to be a significant barrier to this domain of activity may potentially expand the universe of geographic locations that are amenable to environmental and programmatic interventions to increase transport-related walking. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Innovative Approaches for Urban Watershed Management Wet-Weather Flow Management and Control

    EPA Science Inventory

    The overall objective of this project was to identify innovative strategies for managing the effects of wet-weather flow (WWF) control and failing infrastructure in an urban setting. The intent was to establish areas where external information can benefit US Environmental Protec...

  11. JPL's Real-Time Weather Processor project (RWP) metrics and observations at system completion

    NASA Technical Reports Server (NTRS)

    Loesh, Robert E.; Conover, Robert A.; Malhotra, Shan

    1990-01-01

    As an integral part of the overall upgraded National Airspace System (NAS), the objective of the Real-Time Weather Processor (RWP) project is to improve the quality of weather information and the timeliness of its dissemination to system users. To accomplish this, an RWP will be installed in each of the Center Weather Service Units (CWSUs), located in 21 of the 23 Air Route Traffic Control Centers (ARTCCs). The RWP System is a prototype system. It is planned that the software will be GFE and that production hardware will be acquired via industry competitive procurement. The ARTCC is a facility established to provide air traffic control service to aircraft operating on Instrument Flight Rules (IFR) flight plans within controlled airspace, principally during the en route phase of the flight. Covered here are requirement metrics, Software Problem Failure Reports (SPFRs), and Ada portability metrics and observations.

  12. Regulating continent growth and composition by chemical weathering

    USGS Publications Warehouse

    Lee, C.-T.A.; Morton, D.M.; Little, M.G.; Kistler, R.; Horodyskyj, U.N.; Leeman, W.P.; Agranier, A.

    2008-01-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms. ?? 2008 by The National Academy of Sciences of the USA.

  13. Estimating the Exceedance Probability of the Reservoir Inflow Based on the Long-Term Weather Outlooks

    NASA Astrophysics Data System (ADS)

    Huang, Q. Z.; Hsu, S. Y.; Li, M. H.

    2016-12-01

    The long-term streamflow prediction is important not only to estimate water-storage of a reservoir but also to the surface water intakes, which supply people's livelihood, agriculture, and industry. Climatology forecasts of streamflow have been traditionally used for calculating the exceedance probability curve of streamflow and water resource management. In this study, we proposed a stochastic approach to predict the exceedance probability curve of long-term streamflow with the seasonal weather outlook from Central Weather Bureau (CWB), Taiwan. The approach incorporates a statistical downscale weather generator and a catchment-scale hydrological model to convert the monthly outlook into daily rainfall and temperature series and to simulate the streamflow based on the outlook information. Moreover, we applied Bayes' theorem to derive a method for calculating the exceedance probability curve of the reservoir inflow based on the seasonal weather outlook and its imperfection. The results show that our approach can give the exceedance probability curves reflecting the three-month weather outlook and its accuracy. We also show how the improvement of the weather outlook affects the predicted exceedance probability curves of the streamflow. Our approach should be useful for the seasonal planning and management of water resource and their risk assessment.

  14. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  15. Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia

    NASA Astrophysics Data System (ADS)

    Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep

    2014-05-01

    Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the dates involving observations from multiple sites (rain gauges). The approach combines the POT (Peaks Over Threshold) with 'declustering' of the data to approximate independence based on the autocorrelation structure of each rainfall series. The cross correlation among sites is considered also to develop the event's criteria yielding a rational choice of the extreme dates given the 'spotty' nature of the intense convection. Based on the identified dates, we are developing a supporting tool for forecasting extreme rainfall based on the corresponding large-scale meteorological patterns (LSMPs). The LSMPs methodology focuses on the larger-scale patterns that the model are better able to forecast, as those larger-scale patterns create the conditions fostering the local EWE. Bootstrap resampling method is applied to highlight the key features that statistically significant with the extreme events. Grotjahn, R., and G. Faure. 2008: Composite Predictor Maps of Extraordinary Weather Events in the Sacramento California Region. Weather and Forecasting. 23: 313-335.

  16. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    PubMed Central

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-01-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change. PMID:28303943

  17. weather@home 2: validation of an improved global-regional climate modelling system

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Jones, Richard G.; Bowery, Andy; Haustein, Karsten; Massey, Neil R.; Mitchell, Daniel M.; Otto, Friederike E. L.; Sparrow, Sarah N.; Uhe, Peter; Wallom, David C. H.; Wilson, Simon; Allen, Myles R.

    2017-05-01

    Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.

  18. Predators determine how weather affects the spatial niche of lizard prey: exploring niche dynamics at a fine scale.

    PubMed

    Lopez-Darias, Marta; Schoener, Thomas W; Spiller, David A; Losos, Jonathan B

    2012-12-01

    Although abiotic and biotic factors can interact to shape the spatial niche of a species, studies that explore the interactive effects of both at a local scale are rare. We demonstrate that one of the main axes (perch height) characterizing the spatial niche of a common lizard, Anolis sagrei, varies according to the interactive effects of weather and the activity of a larger predatory lizard, Leiocephalus carinatus. Results were completely consistent: no matter how favorable the weather conditions for using the ground (mainly characterized by temperature, humidity, wind speed, rain), A. sagrei did not do so if the predator was present. Hence, great behavioral plasticity enabled A. sagrei to adjust its use of space very quickly. To the best of our knowledge, these results constitute the first field demonstration for anoles (and possibly for other animals as well) of how time-varying environmental conditions and predator presence interact to produce short-term changes in utilization along a major niche axis.

  19. Impact of climate change on European weather extremes

    NASA Astrophysics Data System (ADS)

    Duchez, Aurelie; Forryan, Alex; Hirschi, Joel; Sinha, Bablu; New, Adrian; Freychet, Nicolas; Scaife, Adam; Graham, Tim

    2015-04-01

    An emerging science consensus is that global climate change will result in more extreme weather events with concomitant increasing financial losses. Key questions that arise are: Can an upward trend in natural extreme events be recognised and predicted at the European scale? What are the key drivers within the climate system that are changing and making extreme weather events more frequent, more intense, or both? Using state-of-the-art coupled climate simulations from the UK Met Office (HadGEM3-GC2, historical and future scenario runs) as well as reanalysis data, we highlight the potential of the currently most advanced forecasting systems to progress understanding of the causative drivers of European weather extremes, and assess future frequency and intensity of extreme weather under various climate change scenarios. We characterize European extremes in these simulations using a subset of the 27 core indices for temperature and precipitation from The Expert Team on Climate Change Detection and Indices (Tank et al., 2009). We focus on temperature and precipitation extremes (e.g. extremes in daily and monthly precipitation and temperatures) and relate them to the atmospheric modes of variability over Europe in order to establish the large-scale atmospheric circulation patterns that are conducive to the occurrence of extreme precipitation and temperature events. Klein Tank, Albert M.G., and Francis W. Zwiers. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation. WMO-TD No. 1500. Climate Data and Monitoring. World Meteorological Organization, 2009.

  20. On the linkage between Arctic sea ice and Mid-latitude weather pattern: the situation in East Asia

    NASA Astrophysics Data System (ADS)

    Gu, S.; Zhang, Y.; Wu, Q.

    2017-12-01

    The influence of Arctic changes on the weather patterns in the highly populated mid-latitude is a complex and controversial topic with considerable uncertainties such as the low signal-to-noise, ill-suited metrics of circulation changes and the missing of dynamical understanding. In this study, the possible linkage between the Arctic sea ice concentration (SIC) and the wintertime weather patterns in East Asia is investigated by comparing groups of statistical and diagnostic analyses. Our study shows a robust relationship between the early autumn SIC in Barents, Kara, Laptev and East Siberia Sea and the energies of wintertime transient activities corresponding to the weather patterns over East Asia on inter-annual time scales. With the reduction of SIC in autumn, the wintertime synoptic (2-10 day) kinetic energy in the north of Eurasia decreases while the low-frequency (10-30 days) kinetic energy, which corresponds to persistent weather patterns, exhibits an evident and dominant increase over the north of Caspian Sea, Lake Baikal and the Ural Mountain. With the reduction of SIC, the intra-seasonal temperature fluctuations present coherent changes over a broader region as well, with significant increase of the low-frequency variability in the vast north of Tibet Plateau and East Asia. The changes of the low-frequency transient activities may be attributed to the slowly southward propagating wave energies from polar regions. However, no consistent stratosphere signals are found associated with such linkage on inter-annual time scales.

  1. Hydrological controls on chemical weathering in the typical carbonated river basin, SW China

    NASA Astrophysics Data System (ADS)

    LI, S. L.; Jin, L.; Zhong, J., Sr.

    2016-12-01

    The dynamics of dissolved load in the riverine system could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. The Xijiang River is a typical carbonated river basin, located at southwestern China. The Xijiang River catchment is controlled by a humid subtropical climate. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Xijiang River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and d13CDIC) of the major branch and outlet of Xijiang River were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) exploring the impact of hydrological controls on chemical weathering of the Xijiang River Basin. The results show that the concentrations of Cl, Na, Ca, Mg, and HCO3 are generally decreased during monsoon season, which should be mainly caused by dilution. However, the dilution effect does not strictly follow the theoretical dilution curve. Moreover, d13CDIC in the high-flow period has more negative values than in low-flow period. More negative δ13CDIC values in the river during the wet season reflected the influx of rain water with biological CO2 during the rain event. This study suggested that hydrochemistry and d13CDIC had a large variation responding to rainstorm events. The calculated results show that the weathering rates of silicate and carbonate as well as that of related CO2 consumption have a positive relation with water discharge, highlighting the hydrological controls on chemical weathering and CO2 consumption rates. The results indicated carbonated weathering rate responding to hydrological condition sensitivity in the typical carbonate river basin. This work was supported by The China National Science Fund for Outstanding Young Scholars (Grant No. 41422303).

  2. The significance of mid-latitude rivers for weathering rates and chemical fluxes: Evidence from northern Xinjiang rivers

    NASA Astrophysics Data System (ADS)

    Zhu, Bingqi; Yu, Jingjie; Qin, Xiaoguang; Rioual, Patrick; Liu, Ziting; Zhang, YiChi; Jiang, Fengqing; Mu, Yan; Li, Hongwei; Ren, Xiaozong; Xiong, Heigang

    2013-04-01

    SummaryRivers draining the sedimentary platform of northern Xinjiang (the center of Asian continent) are characterized by low discharge under a temperate and arid climate. The influence of rock mineralogy, climate, relief and human activity on natural water composition and export as a result of weathering is a major scientific concern both at the local and the global scale. While comprehensive work on the controlling mechanism of chemical weathering has been less carried out in the sedimentary platform of northern Xinjiang. Thus, the effects of climate and rock weathering on the inorganic hydrogeochemical processes are not well quantified at this climatic extreme. To remedy this lack a comprehensive survey has been carried out of the geochemistry of the large, pristine rivers in northern Xinjiang, the Erlqis, Yili, Wulungu, Jingou and numerous lesser streams which has not experienced the pervasive effects of glaciation and subsequent anthropogenic impacts. The scale of the terrain sampled, in terms of area, is comparable to that of the Huanghe and includes a diverse range of geologic and climatic environments. In this paper the chemical fluxes from the stable sedimentary basin of the northern Xinjiang platform will be presented and compared to published results from analogous terrains in the monsoon basins of China and world. Overall, the fluvial geochemistry of northern Xinjiang in westerly climate is similar to that of the Chinese rivers (Huanghe and Yangtze) in the East-Asian monsoon Climate, both in property-property relationships and concentration magnitudes. The range in the chemical signatures of the various tributaries is large; this reflects that lithology exerts the dominant influence in determining the weathering yield from the sedimentary terrains rather than the weathering environment. The effect of different rock weathering ranges from rivers dominated by aluminosilicate weathering, mainly of granites, sandstones and shales, to those bearing the signatures of dissolution of carbonates and evaporites and of continental playa deposits. Carbonates are the general predominant lithology undergoing dissolution particularly within the lesser arid areas. The pCO2 in the study rivers is out of equilibrium with respect to atmospheric pCO2, about up to ˜20 times supersaturated relative to the atmosphere but not to such an extent as the Amazon in the floodplain. A roughly positive relationship is observed between solute concentrations and the drought index (DI) for natural waters in the region, indicating a coupled mountain-basin climate has a direct effect. The relative contributions of end-member solute sources to the total dissolved cations from each watershed have been quantitatively estimated using dissolved load balance models, showing the results as evaporite dissolution > carbonate weathering > silicate weathering > atmospheric input for the whole catchment. The areal total dissolved fluxes range from 0.05 to 2.53 × 106 mol/km2/yr, 0.02-2.09 × 106 mol/km2/yr and 0.01-1.04 × 106 mol/km2/yr in the Yili, Zhungarer and Erlqis, respectively, comparable to those of Chinese and Siberia rivers draining sedimentary platforms, even though they are in drastically different climatic regimes. In general, the fluxes from rivers in sedimentary basins are comparable to those from orogenic zones, but are much higher than in the shield regions. The CO2 consumption by aluminosilicate weathering (0.2-284 × 103 mol/km2/yr) is much smaller than in active orogenic belts (19-1750 × 103 mol/km2/yr in similar latitudes and 143-1000 × 103 mol/km2/yr in the tropical basins), but comparable to those of the Chinese (7-106 × 103 mol/km2/yr) and Siberia (16-112 × 103 mol/km2/yr) rivers.

  3. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches

    PubMed Central

    Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D.; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel

    2016-01-01

    Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability. PMID:27560980

  4. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.

    PubMed

    Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel

    2016-01-01

    Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability.

  5. Introduction of the Mobile Platform for the Meteorological Observations in Seoul Metropolitan City of Korea

    NASA Astrophysics Data System (ADS)

    Baek, K. T.; Lee, S.; Kang, M.; Lee, G.

    2016-12-01

    Traffic accidents due to adverse weather such as fog, heavy rainfall, flooding and road surface freezing have been increasing in Korea. To reduce damages caused by the severe weather on the road, a forecast service of combined real-time road-wise weather and the traffic situation is required. Conventional stationary meteorological observations in sparse location system are limited to observe the detailed road environment. For this reason, a mobile meteorological observation platform has been coupled in Weather Information Service Engine (WISE) which is the prototype of urban-scale high resolution weather prediction system in Seoul metropolitan area of Korea in early August 2016. The instruments onboard are designed to measure 15 meteorological parameters; pressure, temperature, relative humidity, precipitation, up/down net radiation, up/down longwave radiation, up/down shortwave radiation, road surface condition, friction coefficient, water depth, wind direction and speed. The observations from mobile platform show a distinctive advantage of data collection in need for road conditions and inputs for the numerical forecast model. In this study, we introduce and examine the feasibility of mobile observations in urban weather prediction and applications.

  6. Monitoring a local extreme weather event with the scope of hyperspectral sounding

    NASA Astrophysics Data System (ADS)

    Satapathy, Jyotirmayee; Jangid, Buddhi Prakash

    2018-06-01

    Operational space-based hyperspectral Infrared sounders retrieve atmospheric temperature and humidity profiles from the measured radiances. These sounders like Atmospheric InfraRed Sounder, Infrared Atmospheric Sounding Interferometer as well as INSAT-3D sounders on geostationary orbit have proved to be very successful in providing these retrievals on global and regional scales, respectively, with good enough spatio-temporal resolutions and are well competent with that of traditional profiles from radiosondes and models fields. The aim of this work is to show how these new generation hyperspectral Infrared sounders can benefit in real-time weather monitoring. We have considered a regional extreme weather event to demonstrate how the profiles retrieved from these operational sounders are consistent with the environmental conditions which have led to this severe weather event. This work has also made use of data products of Moderate Resolution Imaging Spectroradiometer as well as by radiative transfer simulation of clear and cloudy atmospheric conditions using Numerical Weather Prediction profiles in conjunction with INSAT-3D sounder. Our results indicate the potential use of high-quality hyperspectral atmospheric profiles to aid in delineation of real-time weather prediction.

  7. NASA Products to Enhance Energy Utility Load Forecasting

    NASA Technical Reports Server (NTRS)

    Lough, G.; Zell, E.; Engel-Cox, J.; Fungard, Y.; Jedlovec, G.; Stackhouse, P.; Homer, R.; Biley, S.

    2012-01-01

    Existing energy load forecasting tools rely upon historical load and forecasted weather to predict load within energy company service areas. The shortcomings of load forecasts are often the result of weather forecasts that are not at a fine enough spatial or temporal resolution to capture local-scale weather events. This project aims to improve the performance of load forecasting tools through the integration of high-resolution, weather-related NASA Earth Science Data, such as temperature, relative humidity, and wind speed. Three companies are participating in operational testing one natural gas company, and two electric providers. Operational results comparing load forecasts with and without NASA weather forecasts have been generated since March 2010. We have worked with end users at the three companies to refine selection of weather forecast information and optimize load forecast model performance. The project will conclude in 2012 with transitioning documented improvements from the inclusion of NASA forecasts for sustained use by energy utilities nationwide in a variety of load forecasting tools. In addition, Battelle has consulted with energy companies nationwide to document their information needs for long-term planning, in light of climate change and regulatory impacts.

  8. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    NASA Astrophysics Data System (ADS)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  9. NERSC News

    Science.gov Websites

    Performance Data, Analytics & Services Job Logs & Statistics Training & Tutorials Software Outages NERSC Training Spectrum Scale User Group Meeting Live Status Now Computing Queue Look MOTD » Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale March 29, 2018

  10. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1978-01-01

    The solar tracking control system, Sun Chaser, a method of tracking the Sun in all types of weather conditions is described. The Sun Chaser follows the Sun from east to west in clear or cloudy weather, and resets itself to the east position after sundown in readiness for the next sunrise.

  11. Cross-scale controls on carbon emissions from boreal forest megafires.

    PubMed

    Walker, Xanthe J; Rogers, Brendan M; Baltzer, Jennifer L; Cumming, Steven G; Day, Nicola J; Goetz, Scott J; Johnstone, Jill F; Schuur, Edward A G; Turetsky, Merritt R; Mack, Michelle C

    2018-04-26

    Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m -2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine-scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale. © 2018 John Wiley & Sons Ltd.

  12. A new precipitation and meteorological drought climatology based on weather patterns

    NASA Astrophysics Data System (ADS)

    Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.

    2017-12-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined weather patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. Weather pattern definitions and daily occurrences are mapped to the commonly-used Lamb Weather Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 weather patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. Weather patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a global seasonal forecast model) can predict weather pattern occurrences then regional drought outlooks may be derived from the forecasted weather patterns.

  13. Overview of current research on atmospheric interactions with wildland fires

    Treesearch

    Warren E. Heilman

    1996-01-01

    Changes in the large-scale mean thermal structure of the atmosphere have the potential for affecting the dynamics of the atmosphere across the entire spectrum of scales that govern atmospheric processes. Inherent in these changes are interactions among the scales that could change, resulting in an alteration in the frequency of regional weather systems conducive to...

  14. Weather Impact on Airport Arrival Meter Fix Throughput

    NASA Technical Reports Server (NTRS)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  15. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  16. Physical and chemical controls on the critical zone

    USGS Publications Warehouse

    Anderson, S.P.; Von Blanckenburg, F.; White, A.F.

    2007-01-01

    Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.

  17. Prediction of severe thunderstorms over Sriharikota Island by using the WRF-ARW operational model

    NASA Astrophysics Data System (ADS)

    Papa Rao, G.; Rajasekhar, M.; Pushpa Saroja, R.; Sreeshna, T.; Rajeevan, M.; Ramakrishna, S. S. V. S.

    2016-05-01

    Operational short range prediction of Meso-scale thunderstorms for Sriharikota(13.7°N ,80.18°E) has been performed using two nested domains 27 & 9Km configuration of Weather Research & Forecasting-Advanced Research Weather Model (WRF- ARW V3.4).Thunderstorm is a Mesoscale system with spatial scale of few kilometers to a couple of 100 kilometers and time scale of less than an one hour to several hours, which produces heavy rain, lightning, thunder, surface wind squalls and down-bursts. Numerical study of Thunderstorms at Sriharikota and its neighborhood have been discussed with its antecedent thermodynamic stability indices and Parameters that are usually favorable for the development of convective instability based on WRF ARW model predictions. Instability is a prerequisite for the occurrence of severe weather, the greater the instability, the greater will be the potential of thunderstorm. In the present study, K Index, Total totals Index (TTI), Convective Available Potential Energy (CAPE), Convective Inhibition Energy (CINE), Lifted Index (LI), Precipitable Water (PW), etc. are the instability indices used for the short range prediction of thunderstorms. In this study we have made an attempt to estimate the skill of WRF ARW predictability and diagnosed three thunderstorms that occurred during the late evening to late night of 31st July, 20th September and 2nd October of 2015 over Sriharikota Island which are validated with Local Electric Field Mill (EFM), rainfall observations and Chennai Doppler Weather Radar products. The model predicted thermodynamic indices (CAPE, CINE, K Index, LI, TTI and PW) over Sriharikota which act as good indicators for severe thunderstorm activity.

  18. Integrated Modelling in CRUCIAL Science Education

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and discussed.

  19. Towards a unified Global Weather-Climate Prediction System

    NASA Astrophysics Data System (ADS)

    Lin, S. J.

    2016-12-01

    The Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions and kilometer scale regional climate simulations within a unified global modeling system. The foundation of this flexible modeling system is the nonhydrostatic Finite-Volume Dynamical Core on the Cubed-Sphere (FV3). A unique aspect of FV3 is that it is "vertically Lagrangian" (Lin 2004), essentially reducing the equation sets to two dimensions, and is the single most important reason why FV3 outperforms other non-hydrostatic cores. Owning to its accuracy, adaptability, and computational efficiency, the FV3 has been selected as the "engine" for NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched grid, a two-way regional-global nested grid, and an optimal combination of the stretched and two-way nests capability, making kilometer-scale regional simulations within a global modeling system feasible. Our main scientific goal is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that, with the FV3, it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornado-like vortices using a global model that was originally designed for climate simulations. The development and tuning strategy between traditional weather and climate models are fundamentally different due to different metrics. We were able to adapt and use traditional "climate" metrics or standards, such as angular momentum conservation, energy conservation, and flux balance at top of the atmosphere, and gain insight into problems of traditional weather prediction model for medium-range weather prediction, and vice versa. Therefore, the unification in weather and climate models can happen not just at the algorithm or parameterization level, but also in the metric and tuning strategy used for both applications, and ultimately, with benefits to both weather and climate applications.

  20. Are Clay Minerals a Climate Constraint? A Review of Prior Data and New Insights on Martian "Weathering Sequences"

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Dundar, M.

    2016-12-01

    Most clay minerals on Mars are Fe/Mg smectites or chlorites, which typically form from mafic protoliths in aqueous chemical systems that are relatively closed and thus require liquid water but not large amounts of water throughput and large-scale chemical leaching. They may thus form either in the subsurface or under select conditions at the surface. However, Al clay minerals, discovered in multiple locations on Mars (Arabia Terra, Northeast Syrtis, Libya Montes Terra Sirenum, Eridania, circum-Hellas, Valles Marineris) may provide evidence of substantial water throughput, if their protolith materials were basaltic. This is because formation of Al clays from a mafic protolith requires removal of Mg and either formation of accompanying Fe oxides or removal of Fe. Thus, the observed sequences of Al clays atop Fe/Mg clays were proposed to represent open system weathering and possibly a late climate optimum around the late Noachian/early Hesperian [1]. Later, they were comprehensively cataloged and reported to represent "weathering sequences" similar to those in terrestrial tropical environments [2]. However, key questions remain; in particular, how much water throughput over what time scale is required? The answer to this question has substantial bearing on the climate of early Mars. Recently, we employed a newly developed, non-parametric Bayesian algorithm [3,4] for semi-automatic identification of rare spectral classes on 139 CRISM images in areas with reported regional-scale occurrences of Al clays. Dozens of detections of the minerals alunite and jarosite were made with the algorithm and then verified by manual analysis. These sulfate hydroxides form only at low pHs, and thus their presence tightly constrains water chemistry. Here, we discuss the evidence for low pH surface waters associated with the weathering sequences and their implications for the cumulative duration of surface weathering. [1] Ehlmann et al., 2011, Nature | [2] Carter et al., 2015, Icarus | [3] Dundar et al., 2016, IEEE WHISPERS proceedings | [4] Ehlmann & Dundar, submitted

  1. Catchment chemostasis revisited: water quality responds differently to variations in weather and climate

    NASA Astrophysics Data System (ADS)

    Godsey, Sarah; Kirchner, James

    2017-04-01

    Solute concentrations in streamflow typically vary systematically with stream discharge, and the resulting concentration-discharge relationships are important signatures of catchment (bio)geochemical processes. Solutes derived from mineral weathering often exhibit decreasing concentrations with increasing flows, suggesting dilution of a kinetically limited weathering flux by a variable flux of water. However, Godsey et al. (2009) showed that concentration-discharge relationships of weathering-derived solutes in 59 headwater catchments were much flatter than this simple dilution model would predict. Instead, their analysis showed that these catchments behaved almost like chemostats, with rates of solute production and/or mobilization that were nearly proportional to water fluxes, on both event and inter-annual time scales. Here we re-examine these findings using data from roughly 1000 catchments, ranging from ˜10 to >1,000,000 km2 in drainage area, and spanning a wide range of lithologic and climatic settings. Concentration-discharge relationships among this much larger set of much larger catchments are broadly consistent with the chemostatic behavior described by Godsey et al. (2009). Among these same catchments, however, site-to-site variations in mean concentrations are strongly (negatively) correlated with long-term average precipitation and discharge, suggesting strong dilution of stream concentrations under long-term leaching of the critical zone. The picture that emerges is one in which, on event and inter-annual time scales, stream solute concentrations are chemostatically buffered by groundwater storage and fast chemical reactions (such as ion exchange), but on much longer time scales, the catchment's chemostatic "set point" is determined by climatically driven critical zone evolution. Examples illustrating the different influences of (short-term) weather and (long-term) climate on water quality will be presented, and their implications will be discussed. Godsey, S.E., J.W. Kirchner and D.W. Clow, Concentration-discharge relationships reflect chemostatic characteristics of US catchments, Hydrological Processes, 23, 1844-1864, 2009.

  2. Extreme weather events in southern Germany - Climatological risk and development of a large-scale identification procedure

    NASA Astrophysics Data System (ADS)

    Matthies, A.; Leckebusch, G. C.; Rohlfing, G.; Ulbrich, U.

    2009-04-01

    Extreme weather events such as thunderstorms, hail and heavy rain or snowfall can pose a threat to human life and to considerable tangible assets. Yet there is a lack of knowledge about present day climatological risk and its economic effects, and its changes due to rising greenhouse gas concentrations. Therefore, parts of economy particularly sensitve to extreme weather events such as insurance companies and airports require regional risk-analyses, early warning and prediction systems to cope with such events. Such an attempt is made for southern Germany, in close cooperation with stakeholders. Comparing ERA40 and station data with impact records of Munich Re and Munich Airport, the 90th percentile was found to be a suitable threshold for extreme impact relevant precipitation events. Different methods for the classification of causing synoptic situations have been tested on ERA40 reanalyses. An objective scheme for the classification of Lamb's circulation weather types (CWT's) has proved to be most suitable for correct classification of the large-scale flow conditions. Certain CWT's have been turned out to be prone to heavy precipitation or on the other side to have a very low risk of such events. Other large-scale parameters are tested in connection with CWT's to find out a combination that has the highest skill to identify extreme precipitation events in climate model data (ECHAM5 and CLM). For example vorticity advection in 700 hPa shows good results, but assumes knowledge of regional orographic particularities. Therefore ongoing work is focused on additional testing of parameters that indicate deviations of a basic state of the atmosphere like the Eady Growth Rate or the newly developed Dynamic State Index. Evaluation results will be used to estimate the skill of the regional climate model CLM concerning the simulation of frequency and intensity of the extreme weather events. Data of the A1B scenario (2000-2050) will be examined for a possible climate change signal.

  3. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    PubMed

    Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  4. Controls of Soil Spatial Variability in a Dry Tropical Forest

    PubMed Central

    Pulla, Sandeep; Riotte, Jean; Suresh, H. S.; Dattaraja, H. S.; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  5. A review of the relationships between drought and forest fire in the United States.

    PubMed

    Littell, Jeremy S; Peterson, David L; Riley, Karin L; Liu, Yongquiang; Luce, Charles H

    2016-07-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate - including short- and long-term droughts - are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. COSMOS: COsmic-ray Soil Moisture Observing System planned for the United States

    NASA Astrophysics Data System (ADS)

    Zweck, C.; Zreda, M.; Shuttleworth, J.; Zeng, X.

    2008-12-01

    Because soil water exerts a critical control on weather, climate, ecosystem, and water cycle, understanding soil moisture changes in time and space is crucial for many fields within natural sciences. A serious handicap in soil moisture measurements is the mismatch between limited point measurements using contact methods and remote sensing estimates over large areas. We present a novel method to measure soil moisture non- invasively at an intermediate spatial scale that will alleviate this problem. The method takes advantage of the dependence of cosmic-ray neutron intensity on the hydrogen content of soils (Zreda et al., Geophysical Research Letters, accepted). Low-energy cosmic-ray neutrons are produced and moderated in the soil, transported from the soil into the atmosphere where they are measured with a cosmic-ray neutron probe to provide integrated soil moisture content over a footprint of several hundred meters and a depth of a few decimeters. The method and the instrument are intended for deployment in the continental-scale COSMOS network that is designed to cover the contiguous region of the USA. Fully deployed, the COSMOS network will consist of up to 500 probes, and will provide continuous soil moisture content (together with atmospheric pressure, temperature and relative humidity) measured and reported hourly. These data will be used for initialization and assimilation of soil moisture conditions in weather and short-term (seasonal) climate forecasting, and for other land-surface applications.

  7. An Extended Objective Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    NASA Technical Reports Server (NTRS)

    Nutter, Paul; Manobianco, John

    1998-01-01

    This report describes the Applied Meteorology Unit's objective verification of the National Centers for Environmental Prediction 29-km eta model during separate warm and cool season periods from May 1996 through January 1998. The verification of surface and upper-air point forecasts was performed at three selected stations important for 45th Weather Squadron, Spaceflight Meteorology Group, and National Weather Service, Melbourne operational weather concerns. The statistical evaluation identified model biases that may result from inadequate parameterization of physical processes. Since model biases are relatively small compared to the random error component, most of the total model error results from day-to-day variability in the forecasts and/or observations. To some extent, these nonsystematic errors reflect the variability in point observations that sample spatial and temporal scales of atmospheric phenomena that cannot be resolved by the model. On average, Meso-Eta point forecasts provide useful guidance for predicting the evolution of the larger scale environment. A more substantial challenge facing model users in real time is the discrimination of nonsystematic errors that tend to inflate the total forecast error. It is important that model users maintain awareness of ongoing model changes. Such changes are likely to modify the basic error characteristics, particularly near the surface.

  8. Effects of climatic variables on weight loss: a global analysis.

    PubMed

    Ustulin, Morena; Keum, Changwon; Woo, Junghoon; Woo, Jeong-Taek; Rhee, Sang Youl

    2017-01-20

    Several studies have analyzed the effects of weather on factors associated with weight loss. In this study, we directly analyzed the effect of weather on intentional weight loss using global-scale data provided by smartphone applications. Through Weather Underground API and the Noom Coach application, we extracted information on weather and body weight for each user located in each of several geographic areas on all login days. We identified meteorological information (pressure, precipitation, wind speed, dew point, and temperature) and self-monitored body weight data simultaneously. A linear mixed-effects model was performed analyzing 3274 subjects. Subjects in North America had higher initial BMIs than those of subjects in Eastern Asia. During the study period, most subjects who used the smartphone application experienced weight loss in a significant way (80.39%, p-value < 0.001). Subjects who infrequently recorded information about dinner had smaller variations than those of other subjects (β freq.users dinner*time  = 0.007, p-value < 0.001). Colder temperature, lower dew point, and higher values for wind speed and precipitation were significantly associated with weight loss. In conclusion, we found a direct and independent impact of meteorological conditions on intentional weight loss efforts on a global scale (not only on a local level).

  9. Effects of climatic variables on weight loss: a global analysis

    PubMed Central

    Ustulin, Morena; Keum, Changwon; Woo, Junghoon; Woo, Jeong-taek; Rhee, Sang Youl

    2017-01-01

    Several studies have analyzed the effects of weather on factors associated with weight loss. In this study, we directly analyzed the effect of weather on intentional weight loss using global-scale data provided by smartphone applications. Through Weather Underground API and the Noom Coach application, we extracted information on weather and body weight for each user located in each of several geographic areas on all login days. We identified meteorological information (pressure, precipitation, wind speed, dew point, and temperature) and self-monitored body weight data simultaneously. A linear mixed-effects model was performed analyzing 3274 subjects. Subjects in North America had higher initial BMIs than those of subjects in Eastern Asia. During the study period, most subjects who used the smartphone application experienced weight loss in a significant way (80.39%, p-value < 0.001). Subjects who infrequently recorded information about dinner had smaller variations than those of other subjects (βfreq.users dinner*time = 0.007, p-value < 0.001). Colder temperature, lower dew point, and higher values for wind speed and precipitation were significantly associated with weight loss. In conclusion, we found a direct and independent impact of meteorological conditions on intentional weight loss efforts on a global scale (not only on a local level). PMID:28106167

  10. Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models

    PubMed Central

    Chen, Feng; Chen, Suren; Ma, Xiaoxiang

    2016-01-01

    Traffic and environmental conditions (e.g., weather conditions), which frequently change with time, have a significant impact on crash occurrence. Traditional crash frequency models with large temporal scales and aggregated variables are not sufficient to capture the time-varying nature of driving environmental factors, causing significant loss of critical information on crash frequency modeling. This paper aims at developing crash frequency models with refined temporal scales for complex driving environments, with such an effort providing more detailed and accurate crash risk information which can allow for more effective and proactive traffic management and law enforcement intervention. Zero-inflated, negative binomial (ZINB) models with site-specific random effects are developed with unbalanced panel data to analyze hourly crash frequency on highway segments. The real-time driving environment information, including traffic, weather and road surface condition data, sourced primarily from the Road Weather Information System, is incorporated into the models along with site-specific road characteristics. The estimation results of unbalanced panel data ZINB models suggest there are a number of factors influencing crash frequency, including time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed limit). The study confirms the unique significance of the real-time weather, road surface condition and traffic data to crash frequency modeling. PMID:27322306

  11. A Synoptic Weather Typing Approach to Assess Climate Change Impacts on Meteorological and Hydrological Risks at Local Scale in South-Central Canada

    NASA Astrophysics Data System (ADS)

    Cheng, Chad Shouquan; Li, Qian; Li, Guilong

    2010-05-01

    The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been applied in Environment Canada to analyze climatic change impacts on various meteorological/hydrological risks, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the hazardous events, (2) statistical downscaling to provide station-scale future climate information, and (3) estimates of changes in frequency and magnitude of future hazardous meteorological/hydrological events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and various linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This paper will briefly summarize these research projects, focusing on the modeling exercise and results.

  12. Assessment of marine weather forecasts over the Indian sector of Southern Ocean

    NASA Astrophysics Data System (ADS)

    Gera, Anitha; Mahapatra, D. K.; Sharma, Kuldeep; Prakash, Satya; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.; Anilkumar, N.

    2017-09-01

    The Southern Ocean (SO) is one of the important regions where significant processes and feedbacks of the Earth's climate take place. Expeditions to the SO provide useful data for improving global weather/climate simulations and understanding many processes. Some of the uncertainties in these weather/climate models arise during the first few days of simulation/forecast and do not grow much further. NCMRWF issued real-time five day weather forecasts of mean sea level pressure, surface winds, winds at 500 hPa & 850 hPa and rainfall, daily to NCAOR to provide guidance for their expedition to Indian sector of SO during the austral summer of 2014-2015. Evaluation of the skill of these forecasts indicates possible error growth in the atmospheric model at shorter time scales. The error growth is assessed using the model analysis/reanalysis, satellite data and observations made during the expedition. The observed variability of sub-seasonal rainfall associated with mid-latitude systems is seen to exhibit eastward propagations and are well reproduced in the model forecasts. All cyclonic disturbances including the sub-polar lows and tropical cyclones that occurred during this period were well captured in the model forecasts. Overall, this model performs reasonably well over the Indian sector of the SO in medium range time scale.

  13. Utilization of satellite data and regional scale numerical models in short range weather forecasting

    NASA Technical Reports Server (NTRS)

    Kreitzberg, C. W.

    1985-01-01

    Overwhelming evidence was developed in a number of studies of satellite data impact on numerical weather prediction that it is unrealistic to expect satellite temperature soundings to improve detailed regional numerical weather prediction. It is likely that satellite data over the United States would substantially impact mesoscale dynamical predictions if the effort were made to develop a composite moisture analysis system. The horizontal variability of moisture, most clearly depicited in images from satellite water vapor channels, would not be determined from conventional rawinsondes even if that network were increased by a doubling of both the number of sites and the time frequency.

  14. Notes on a Vision for the Global Space Weather Enterprise

    NASA Astrophysics Data System (ADS)

    Head, James N.

    2015-07-01

    Space weather phenomena impacts human civilization on a global scale and hence calls for a global approach to research, monitoring, and operational forecasting. The Global Space Weather Enterprise (GSWE) could be arranged along lines well established in existing international frameworks related to space exploration or to the use of space to benefit humanity. The Enterprise need not establish a new organization, but could evolve from existing international organizations. A GSWE employing open architectural concepts could be arranged to promote participation by all interested States regardless of current differences in science and technical capacity. Such an Enterprise would engender capacity building and burden sharing opportunities.

  15. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    PubMed Central

    Jensen, Tue V.; Pinson, Pierre

    2017-01-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation. PMID:29182600

  16. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.

    PubMed

    Jensen, Tue V; Pinson, Pierre

    2017-11-28

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  17. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    NASA Astrophysics Data System (ADS)

    Jensen, Tue V.; Pinson, Pierre

    2017-11-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  18. Summer temperature variability across four urban neighborhoods in Knoxville, Tennessee, USA

    NASA Astrophysics Data System (ADS)

    Ellis, Kelsey N.; Hathaway, Jon M.; Mason, Lisa Reyes; Howe, David A.; Epps, Thomas H.; Brown, Vincent M.

    2017-02-01

    The urban heat island (UHI) is a well-documented effect of urbanization on local climate, identified by higher temperatures compared to surrounding areas, especially at night and during the warm season. The details of a UHI are city-specific, and microclimates may even exist within a given city. Thus, investigating the spatiotemporal variability of a city's UHI is an ongoing and critical research need. We deploy ten weather stations across Knoxville, Tennessee, to analyze the city's UHI and its differential impacts across urban neighborhoods: two each in four neighborhoods, one in more dense tree cover and one in less dense tree cover, and one each in downtown Knoxville and Ijams Nature Center that serve as control locations. Three months of temperature data (beginning 2 July 2014) are analyzed using paired-sample t tests and a three-way analysis of variance. Major findings include the following: (1) Within a given neighborhood, tree cover helps negate daytime heat (resulting in up to 1.19 ∘C lower maximum temperature), but does not have as large of an influence on minimum temperature; (2) largest temperature differences between neighborhoods occur during the day (0.38-1.16 ∘C difference), but larger differences between neighborhoods and the downtown control occur at night (1.04-1.88 ∘C difference); (3) presiding weather (i.e., air mass type) has a significant, consistent impact on the temperature in a given city, and lacks the differential impacts found at a larger-scale in previous studies; (4) distance from city center does not impact temperature as much as land use factors. This is a preliminary step towards informing local planning with a scientific understanding of how mitigation strategies may help minimize the UHI and reduce the effects of extreme weather on public health and well-being.

  19. Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buss, Heather; Brantley, S. L.; Scatena, Fred

    2013-01-01

    Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world s oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g., soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed inmore » the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared to the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream.« less

  20. Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico

    USGS Publications Warehouse

    Buss, Heather L.; Brantley, Susan L.; Scatena, Fred; Bazilevskaya, Katya; Blum, Alex E.; Schulz, Marjorie S.; Jiménez, Rafael; White, Arthur F.; Rother, G.; Cole, D.

    2013-01-01

    Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world's oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g. soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared with the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream

  1. Physiological Evaluation of A1 (Extreme-Cold-Weather) and A2 (Buoyant, Intermediate-Cold-Weather) Jackets.

    DTIC Science & Technology

    1983-08-01

    the resting metabolic heat will be dissipated through the clothing with the remaining 25% lost through the respiratory tract and insensible sweating...AD-A258 410 PHYSIOLOGICAL EVALUATION OF Al (EXTREME-COLD-WEATHER) AND A2 (BUOYANT, INTERMEDIATE-COLD-WEATHER) JACKETS NAVY CLOTHING AND TEXTILE...Navy Clothing and Textile Research Facility 523-003-30-06 21 Strathmore Road 523-003-30-08 Natick, MA 01760 11. CONTROLLING OFFICE NAME AND ADDRESS

  2. Surficial weathering of iron sulfide mine tailings under semi-arid climate.

    PubMed

    Hayes, Sarah M; Root, Robert A; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-09-15

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg -1 , respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s.

  3. Post-Glacial Climate Forcing of Surface Processes in the Ganges-Brahmaputra Basin and Implications for the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Hein, C. J.; Galy, V.; France-Lanord, C.; Galy, A.; Kudrass, H. R.; Peucker-Ehrenbrink, B.

    2016-12-01

    Silicate weathering coupled with carbonate precipitation and organic carbon (OC) burial in marine sediments are the primary mechanisms sequestering atmospheric CO2 over a range of timescales. The efficiency of both processes has long been mechanistically linked to climate: increased atmospheric CO2 sequestration under warm/wet conditions acts as a negative feedback, thereby contributing to global climate regulation. Over glacial-interglacial timescales, climate has been proposed to control the export rate of terrestrial silicate weathering products and terrestrial OC to river-dominated margins, as well as the rates of chemical weathering (i.e., the efficiency of carbon sequestration). Focused on the Ganges-Brahmaputra drainage basin, this study quantifies the relative role of climate change in the efficiency of silicate weathering and OC burial following the last glacial maximum. Stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the Bengal Fan channel-levee system capture variations in the strength of the Indian summer monsoon and vegetation dynamics. Specifically, a 40‰ shift in δD and a 4‰ shift in both bulk OC and plant wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlate well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes coincided with a focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, OC loading, and thus carbon burial efficiency, in the Bengal Fan remained constant through time, demonstrating the primacy of physical erosion and climate-driven sediment export in marine OC sequestration. In contrast, a gradual increase in K/Si* and Ca/Si, and decrease in H2O+/Si*, throughout the study period may demonstrate the decoupling of climate and silicate weathering during the late Holocene, if those ratios are valid proxies for catchment-scale chemical weathering intensity. Together, these results reveal the dominant feedback between climate and sediment-export / OC-burial within the Ganges-Brahmaputra / Bengal Fan system following deglaciation.

  4. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    PubMed Central

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-01-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130–140 and 100–120 g kg−1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s. PMID:25197102

  5. A Modeling Framework for Predicting the Size of Sediments Produced on Hillslopes and Supplied to Channels

    NASA Astrophysics Data System (ADS)

    Sklar, L. S.; Mahmoudi, M.

    2016-12-01

    Landscape evolution models rarely represent sediment size explicitly, despite the importance of sediment size in regulating rates of bedload sediment transport, river incision into bedrock, and many other processes in channels and on hillslopes. A key limitation has been the lack of a general model for predicting the size of sediments produced on hillslopes and supplied to channels. Here we present a framework for such a model, as a first step toward building a `geomorphic transport law' that balances mechanistic realism with computational simplicity and is widely applicable across diverse landscapes. The goal is to take as inputs landscape-scale boundary conditions such as lithology, climate and tectonics, and predict the spatial variation in the size distribution of sediments supplied to channels across catchments. The model framework has two components. The first predicts the initial size distribution of particles produced by erosion of bedrock underlying hillslopes, while the second accounts for the effects of physical and chemical weathering during transport down slopes and delivery to channels. The initial size distribution can be related to the spacing and orientation of fractures within bedrock, which depend on the stresses and deformation experienced during exhumation and on rock resistance to fracture propagation. Other controls on initial size include the sizes of mineral grains in crystalline rocks, the sizes of cemented particles in clastic sedimentary rocks, and the potential for characteristic size distributions produced by tree throw, frost cracking, and other erosional processes. To model how weathering processes transform the initial size distribution we consider the effects of erosion rate and the thickness of soil and weathered bedrock on hillslope residence time. Residence time determines the extent of size reduction, for given values of model terms that represent the potential for chemical and physical weathering. Chemical weathering potential is parameterized in terms of mean annual precipitation and temperature, and the fraction of soluble minerals. Physical weathering potential can be parameterized in terms of topographic attributes, including slope, curvature and aspect. Finally, we compare model predictions with field data from Inyo Creek in the Sierra Nevada Mtns, USA.

  6. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina M.; Chorover, Jon

    2014-09-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering in a semi-arid climate at an EPA Superfund Site in central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg-1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in samples with the lowest pH, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s.

  7. Observations of ionospheric electric fields above atmospheric weather systems

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  8. A method to assess the inter-annual weather-dependent variability in air pollution concentration and deposition based on weather typing

    NASA Astrophysics Data System (ADS)

    Pleijel, Håkan; Grundström, Maria; Karlsson, Gunilla Pihl; Karlsson, Per Erik; Chen, Deliang

    2016-02-01

    Annual anomalies in air pollutant concentrations, and deposition (bulk and throughfall) of sulphate, nitrate and ammonium, in the Gothenburg region, south-west Sweden, were correlated with optimized linear combinations of the yearly frequency of Lamb Weather Types (LWTs) to determine the extent to which the year-to-year variation in pollution exposure can be partly explained by weather related variability. Air concentrations of urban NO2, CO, PM10, as well as O3 at both an urban and a rural monitoring site, and the deposition of sulphate, nitrate and ammonium for the period 1997-2010 were included in the analysis. Linear detrending of the time series was performed to estimate trend-independent anomalies. These estimated anomalies were subtracted from observed annual values. Then the statistical significance of temporal trends with and without LWT adjustment was tested. For the pollutants studied, the annual anomaly was well correlated with the annual LWT combination (R2 in the range 0.52-0.90). Some negative (annual average [NO2], ammonia bulk deposition) or positive (average urban [O3]) temporal trends became statistically significant (p < 0.05) when the LWT adjustment was applied. In all the cases but one (NH4 throughfall, for which no temporal trend existed) the significance of temporal trends became stronger with LWT adjustment. For nitrate and ammonium, the LWT based adjustment explained a larger fraction of the inter-annual variation for bulk deposition than for throughfall. This is probably linked to the longer time scale of canopy related dry deposition processes influencing throughfall being explained to a lesser extent by LWTs than the meteorological factors controlling bulk deposition. The proposed novel methodology can be used by authorities responsible for air pollution management, and by researchers studying temporal trends in pollution, to evaluate e.g. the relative importance of changes in emissions and weather variability in annual air pollution exposure.

  9. Euro-Climhist - a data platform for weather-, climate- and disaster history

    NASA Astrophysics Data System (ADS)

    Pfister, Christian

    2017-04-01

    The Euro-Climhist data base (http://www.euroclimhist.unibe.ch/de)/ presents evidence about weather and climate in space and time mostly originating from the archives of societies. It facilitates the cross-checking of proxy data with contemporaneous high-resolution narrative weather reports. Contemporary and non-contemporary data are distinguished for quality control. The original Euro-Climhist database was established between 1992 and 1994 to investigate weather patterns in Europe during the cold period of the late Maunder Minimum (1675-1715). The present-day internet version of Euro-Climhist went online in November 2015 with the Module Switzerland. It currently provides 160'000 records from 1501 to present, available in German, French, Italian and English. The module serves as a pilot project for developing an adequate methodology and user-friendly software. Currently a module "Middle Ages" led by Christian Rohr from the Bern University is being worked out. It includes evidence for the whole of Europe prior to 1501. Further modules may be established by regional working groups. The classification scheme includes 300 categories. A complementary facility—COMP—has been also been created to permit a still more precise description of events. For example, the facility can be used to describe in detail the impacts of nature-induced hazards. Moreover, it makes possible to rate quantitative evidence such as phenological data or the frequency of rain-days at a given location according to standard criteria. The elements of COMP are translated and can be augmented to an almost unlimited extent. The data are mapped according to the administrative organization of a country and to geographical units. Results are presented in the form of text and geographical charts. The structure of Euro-Climhist may be readily adapted to amplifications in relationship to content, spatial dimension and translation into further languages. In the long term, it may be possible to release evidence on weather and climate on a large scale, in order to improve knowledge of interconnections between humans and climate.

  10. Weathering-limited hillslope evolution in carbonate landscapes

    NASA Astrophysics Data System (ADS)

    Godard, Vincent; Ollivier, Vincent; Bellier, Olivier; Miramont, Cécile; Shabanian, Esmaeil; Fleury, Jules; Benedetti, Lucilla; Guillou, Valéry; Aster Team

    2016-07-01

    Understanding topographic evolution requires integrating elementary processes acting at the hillslope scale into the long-wavelength framework of landscape dynamics. Recent progress has been made in the quantification of denudation of eroding landscapes and its links with topography. Despite these advances, data is still sparse in carbonate terrain, which covers a significant part of the Earth's surface. In this study, we measured both long-term denudation rates using in situ-produced 36Cl concentrations in bedrock and regolith clasts and surface convexity at 12 sites along ridges of the Luberon carbonate range in Provence, Southeastern France. Starting from ∼30 mm/ka for the lowering of the summit plateau surface, denudation linearly increases with increasing hilltop convexity up to ∼70 mm/ka, as predicted by diffusive mass transport theory. Beyond this point denudation rates appear to be insensitive to the increase in hilltop convexity. We interpret this constant denudation as indicating a transition from a regime where hillslope evolution is primarily controlled by diffusive downslope regolith transport, toward a situation in which denudation is limited by the rate at which physical and chemical weathering processes can produce clasts and lower the hilltop. Such an abrupt transition into a weathering-limited dynamics may prevent hillslope denudation from balancing the rate of base level fall imposed by the river network and could potentially explain the development of high local relief in many Mediterranean carbonate landscapes.

  11. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates and controls based on soil concentration-depth profiles

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, David A.; Anderson, S.P.

    2008-01-01

    The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those for other marine terraces along the Pacific Coast of North America. Residual amounts of plagioclase and K-feldspar decrease with terrace depth and increasing age. The gradient of the weathering profile bs is defined by the ratio of the weathering rate, R to the velocity at which the profile penetrates into the protolith. A spreadsheet calculator further refines profile geometries, demonstrating that the non-linear regions at low residual feldspar concentrations at shallow depth are dominated by exponential changes in mineral surface-to-volume ratios and at high residual feldspar concentrations, at greater depth, by the approach to thermodynamic saturation. These parameters are of secondary importance to the fluid flux qh, which in thermodynamically saturated pore water, controls the weathering velocity and mineral losses from the profiles. Long-term fluid fluxes required to reproduce the feldspar weathering profiles are in agreement with contemporary values based on solute Cl balances (qh = 0.025-0.17 m yr-1). During saturation-controlled and solute-limited weathering, the greater loss of plagioclase relative to K-feldspar is dependent on the large difference in their respective solubilities instead of the small difference between their respective reaction kinetics. The steady-state weathering rate under such conditions is defined asR = fenced(qh ?? frac(msol, Mtotal)) ?? fenced(frac(1, Sv ?? bs)) ??. The product of qh and the ratio of solubilized to solid state feldspar (msat/Mtotal) define the weathering velocity. The weathering gradient bs reflects the kinetic rate of reaction where Sv is the volumetric surface area of the residual feldspar. Both this rate expression and the spreadsheet calculations produce similar plagioclase weathering rates (R = 5-14 ?? 10-16 mol m-2 s-1) which agree with those reported for other environments of comparable climate and age. Weathering-dependent concentration profiles are commonly described in literature. The present paper provides methods by which these data can yield a more fundamental understanding of the weathering processes involved.

  12. Pricing Weather Index Insurance Based on Artificial Controlled Experiment - A Case Study of Cold Temperature for Early Rice in Jiangxi, China

    NASA Astrophysics Data System (ADS)

    SUN, Q.; Yang, Z.

    2017-12-01

    The growth of early rice is often threated by a phenomenon known as Grain Buds Cold, a period of anomalously cold temperature that occurs during the booting and flowering stage. Therefore, quantifying the impact of weather on crop yield is a core issue in design of weather index insurance. A high yield loss will lead to an increasing premium rate. In this paper, we explored a new way to investigate the relationship between yield loss rate and cold temperature durations. A two-year artificial controlled experiment was used to build logarithm and linear yield loss model. Moreover, an information diffusion model was applied to calculate the probability of different durations which lasting for 3-20 days. The results show that pure premium rates of logarithm yield loss model had better premium rates performance than that of linear yield loss model. The premium rates of Grain Buds Cold Weather Index Insurance fluctuated between 7.085% and 10.151% in Jiangxi Province. Compared with common statistical methods, the artificial controlled experiment provides an easier and more robust way to determine the relationship between yield and single meteorological factor. Meanwhile, this experiment would be very important for some regions where were lacking in historical yield data and climate data and could help farmers cope with extreme cold weather risks under varying weather conditions.

  13. Bio-inspired wooden actuators for large scale applications.

    PubMed

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.

  14. Bio-Inspired Wooden Actuators for Large Scale Applications

    PubMed Central

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386

  15. An Early Prediction of Sunspot Cycle 25

    NASA Astrophysics Data System (ADS)

    Nandy, D.; Bhowmik, P.

    2017-12-01

    The Sun's magnetic activity governs our space environment, creates space weather and impacts our technologies and climate. With increasing reliance on space- and ground-based technologies that are subject to space weather, the need to be able to forecast the future activity of the Sun has assumed increasing importance. However, such long-range, decadal-scale space weather prediction has remained a great challenge as evident in the diverging forecasts for solar cycle 24. Based on recently acquired understanding of the physics of solar cycle predictability, we have devised a scheme to extend the forecasting window of solar cycles. Utilizing this we present an early forecast for sunspot cycle 25 which would be of use for space mission planning, satellite life-time estimates, and assessment of the long-term impacts of space weather on technological assets and planetary atmospheres.

  16. Airline flight planning - The weather connection

    NASA Technical Reports Server (NTRS)

    Steinberg, R.

    1981-01-01

    The history of airline flight planning is briefly reviewed. Over half a century ago, when scheduled airline services began, weather data were almost nonexistent. By the early 1950's a reliable synoptic network provided upper air reports. The next 15 years saw a rapid growth in commercial aviation, and airlines introduced computer techniques to flight planning. The 1970's saw the development of weather satellites. The current state of flight planning activities is analyzed. It is found that accurate flight planning will require meteorological information on a finer scale than can be provided by a synoptic forecast. Opportunities for a new approach are examined, giving attention to the available options, a mesoscale numerical weather prediction model, limited area fine mesh models, man-computer interactive display systems, the use of interactive techniques with the present upper air data base, and the implementation of interactive techniques.

  17. Atlantic multi-decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring and summer

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Toreti, A.; Schindler, A.; Scoccimarro, E.; Gualdi, S.

    2017-04-01

    We analyze the influence of the Atlantic sea surface temperature multi-decadal variability on the day-by-day sequence of large-scale atmospheric circulation patterns (i.e. the ;weather regimes;) over the Euro-Atlantic region. In particular, we examine of occurrence of weather regimes from 1871 to present. This analysis is conducted by applying a clustering technique on the daily mean sea level pressure field provided by the 20th Century Reanalysis project, which was successfully applied in other studies focused on the Atlantic Multi-decadal Oscillation (AMO). In spring and summer, results show significant changes in the frequencies of certain weather regimes associated with the phase shifts of the AMO. These changes are consistent with the seasonal surface pressure, precipitation, and temperature anomalies associated with the AMO shifts in Europe.

  18. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, Virendra Bahadur; Ramanathan, Al; Pottakkal, Jose George; Sharma, Parmanand; Linda, Anurag; Azam, Mohd Farooq; Chatterjee, C.

    2012-06-01

    A detailed analytical study of major cations (Ca2 + , Mg2 + , Na + , K + ) and anions (SO4^{2-}, HCO3-, Cl - , NO3-) of meltwater draining from Gangotri Glacier was carried out to understand major ion chemistry and to get an insight into geochemical weathering processes controlling hydrochemistry of the glacier. In the meltwater, the abundance order of cations and anions varied as follows: Ca2 + > Mg2 + > K + > Na + and SO4^{2-} > HCO3- > Cl - > NO3-, respectively. Calcium and magnesium are dominant cations while sulphate and bicarbonate are dominant anions. Weathering of rocks is the dominant mechanism controlling the hydrochemistry of drainage basin. The relative high contribution of (Ca+Mg) to the total cations (TZ + ), high (Ca+Mg)/(Na+K) ratio (2.63) and low (Na+K)/TZ + ratio (0.29) indicate the dominance of carbonate weathering as a major source for dissolved ions in the glacier meltwater. Sulphide oxidation and carbonation are the main proton supplying geochemical reactions controlling the rock weathering in the study area. Statistical analysis was done to identify various factors controlling the dissolved ionic strength of Gangotri Glacier meltwater.

  19. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  20. Identifying when weather influences life-history traits of grazing herbivores.

    PubMed

    Sims, Michelle; Elston, David A; Larkham, Ann; Nussey, Daniel H; Albon, Steve D

    2007-07-01

    1. There is increasing evidence that density-independent weather effects influence life-history traits and hence the dynamics of populations of animals. Here, we present a novel statistical approach to estimate when such influences are strongest. The method is demonstrated by analyses investigating the timing of the influence of weather on the birth weight of sheep and deer. 2. The statistical technique allowed for the pattern of temporal correlation in the weather data enabling the effects of weather in many fine-scale time intervals to be investigated simultaneously. Thus, while previous studies have typically considered weather averaged across a single broad time interval during pregnancy, our approach enabled examination simultaneously of the relationships with weekly and fortnightly averages throughout the whole of pregnancy. 3. We detected a positive effect of temperature on the birth weight of deer, which is strongest in late pregnancy (mid-March to mid-April), and a negative effect of rainfall on the birthweight of sheep, which is strongest during mid-pregnancy (late January to early February). The possible mechanisms underlying these weather-birth weight relationships are discussed. 4. This study enhances our insight into the pattern of the timing of influence of weather on early development. The method is of much more general application and could provide valuable insights in other areas of ecology in which sequences of intercorrelated explanatory variables have been collected in space or in time.

  1. An Evaluation of Controller and Pilot Performance, Workload and Acceptability under a NextGen Concept for Dynamic Weather Adapted Arrival Routing

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Battiste, Vernol

    2012-01-01

    In todays terminal operations, controller workload increases and throughput decreases when fixed standard terminal arrival routes (STARs) are impacted by storms. To circumvent this operational constraint, Prete, Krozel, Mitchell, Kim and Zou (2008) proposed to use automation to dynamically adapt arrival and departure routing based on weather predictions. The present study examined this proposal in the context of a NextGen trajectory-based operation concept, focusing on the acceptability and its effect on the controllers ability to manage traffic flows. Six controllers and twelve transport pilots participated in a human-in-the-loop simulation of arrival operations into Louisville International Airport with interval management requirements. Three types of routing structures were used: Static STARs (similar to current routing, which require the trajectories of individual aircraft to be modified to avoid the weather), Dynamic routing (automated adaptive routing around weather), and Dynamic Adjusted routing (automated adaptive routing around weather with aircraft entry time adjusted to account for differences in route length). Spacing Responsibility, whether responsibility for interval management resided with the controllers (as today), or resided with the pilot (who used a flight deck based automated spacing algorithm), was also manipulated. Dynamic routing as a whole was rated superior to static routing, especially by pilots, both in terms of workload reduction and flight path safety. A downside of using dynamic routing was that the paths flown in the dynamic conditions tended to be somewhat longer than the paths flown in the static condition.

  2. Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).

  3. Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud – radiation interactions

    EPA Science Inventory

    The radiation schemes in the Weather Research and Forecasting (WRF) model have previously not accounted for the presence of subgrid-scale cumulus clouds, thereby resulting in unattenuated shortwave radiation, which can lead to overly energetic convection and overpredicted surface...

  4. Simulations of Tornadoes, Tropical Cyclones, MJOs, and QBOs, using GFDL's multi-scale global climate modeling system

    NASA Astrophysics Data System (ADS)

    Lin, Shian-Jiann; Harris, Lucas; Chen, Jan-Huey; Zhao, Ming

    2014-05-01

    A multi-scale High-Resolution Atmosphere Model (HiRAM) is being developed at NOAA/Geophysical Fluid Dynamics Laboratory. The model's dynamical framework is the non-hydrostatic extension of the vertically Lagrangian finite-volume dynamical core (Lin 2004, Monthly Wea. Rev.) constructed on a stretchable (via Schmidt transformation) cubed-sphere grid. Physical parametrizations originally designed for IPCC-type climate predictions are in the process of being modified and made more "scale-aware", in an effort to make the model suitable for multi-scale weather-climate applications, with horizontal resolution ranging from 1 km (near the target high-resolution region) to as low as 400 km (near the antipodal point). One of the main goals of this development is to enable simulation of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously thought impossible. We will present preliminary results, covering a very wide spectrum of temporal-spatial scales, ranging from simulation of tornado genesis (hours), Madden-Julian Oscillations (intra-seasonal), topical cyclones (seasonal), to Quasi Biennial Oscillations (intra-decadal), using the same global multi-scale modeling system.

  5. Sensitivity of proxies on non-linear interactions in the climate system

    PubMed Central

    Schultz, Johannes A.; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas

    2015-01-01

    Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics. PMID:26686001

  6. Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K.; Keyser, D. A.; Mccumber, M. C.

    1983-01-01

    The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered.

  7. Large-scale data analysis of power grid resilience across multiple US service regions

    NASA Astrophysics Data System (ADS)

    Ji, Chuanyi; Wei, Yun; Mei, Henry; Calzada, Jorge; Carey, Matthew; Church, Steve; Hayes, Timothy; Nugent, Brian; Stella, Gregory; Wallace, Matthew; White, Joe; Wilcox, Robert

    2016-05-01

    Severe weather events frequently result in large-scale power failures, affecting millions of people for extended durations. However, the lack of comprehensive, detailed failure and recovery data has impeded large-scale resilience studies. Here, we analyse data from four major service regions representing Upstate New York during Super Storm Sandy and daily operations. Using non-stationary spatiotemporal random processes that relate infrastructural failures to recoveries and cost, our data analysis shows that local power failures have a disproportionally large non-local impact on people (that is, the top 20% of failures interrupted 84% of services to customers). A large number (89%) of small failures, represented by the bottom 34% of customers and commonplace devices, resulted in 56% of the total cost of 28 million customer interruption hours. Our study shows that extreme weather does not cause, but rather exacerbates, existing vulnerabilities, which are obscured in daily operations.

  8. Adaptation of Mesoscale Weather Models to Local Forecasting

    NASA Technical Reports Server (NTRS)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes objective and subjective verification methodologies. Objective (e.g., statistical) verification of point forecasts is a stringent measure of model performance, but when used alone, it is not usually sufficient for quantifying the value of the overall contribution of the model to the weather-forecasting process. This is especially true for mesoscale models with enhanced spatial and temporal resolution that may be capable of predicting meteorologically consistent, though not necessarily accurate, fine-scale weather phenomena. Therefore, subjective (phenomenological) evaluation, focusing on selected case studies and specific weather features, such as sea breezes and precipitation, has been performed to help quantify the added value that cannot be inferred solely from objective evaluation.

  9. Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests

    PubMed Central

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853

  10. Simulation of an ensemble of future climate time series with an hourly weather generator

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.; Kim, J.

    2010-12-01

    There is evidence that climate change is occurring in many regions of the world. The necessity of climate change predictions at the local scale and fine temporal resolution is thus warranted for hydrological, ecological, geomorphological, and agricultural applications that can provide thematic insights into the corresponding impacts. Numerous downscaling techniques have been proposed to bridge the gap between the spatial scales adopted in General Circulation Models (GCM) and regional analyses. Nevertheless, the time and spatial resolutions obtained as well as the type of meteorological variables may not be sufficient for detailed studies of climate change effects at the local scales. In this context, this study presents a stochastic downscaling technique that makes use of an hourly weather generator to simulate time series of predicted future climate. Using a Bayesian approach, the downscaling procedure derives distributions of factors of change for several climate statistics from a multi-model ensemble of GCMs. Factors of change are sampled from their distributions using a Monte Carlo technique to entirely account for the probabilistic information obtained with the Bayesian multi-model ensemble. Factors of change are subsequently applied to the statistics derived from observations to re-evaluate the parameters of the weather generator. The weather generator can reproduce a wide set of climate variables and statistics over a range of temporal scales, from extremes, to the low-frequency inter-annual variability. The final result of such a procedure is the generation of an ensemble of hourly time series of meteorological variables that can be considered as representative of future climate, as inferred from GCMs. The generated ensemble of scenarios also accounts for the uncertainty derived from multiple GCMs used in downscaling. Applications of the procedure in reproducing present and future climates are presented for different locations world-wide: Tucson (AZ), Detroit (MI), and Firenze (Italy). The stochastic downscaling is carried out with eight GCMs from the CMIP3 multi-model dataset (IPCC 4AR, A1B scenario).

  11. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    PubMed

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.

  12. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  13. Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach

    USGS Publications Warehouse

    Senay, Gabriel B.; Bohms, Stefanie; Singh, Ramesh K.; Gowda, Prasanna H.; Velpuri, Naga Manohar; Alemu, Henok; Verdin, James P.

    2013-01-01

    The increasing availability of multi-scale remotely sensed data and global weather datasets is allowing the estimation of evapotranspiration (ET) at multiple scales. We present a simple but robust method that uses remotely sensed thermal data and model-assimilated weather fields to produce ET for the contiguous United States (CONUS) at monthly and seasonal time scales. The method is based on the Simplified Surface Energy Balance (SSEB) model, which is now parameterized for operational applications, renamed as SSEBop. The innovative aspect of the SSEBop is that it uses predefined boundary conditions that are unique to each pixel for the "hot" and "cold" reference conditions. The SSEBop model was used for computing ET for 12 years (2000-2011) using the MODIS and Global Data Assimilation System (GDAS) data streams. SSEBop ET results compared reasonably well with monthly eddy covariance ET data explaining 64% of the observed variability across diverse ecosystems in the CONUS during 2005. Twelve annual ET anomalies (2000-2011) depicted the spatial extent and severity of the commonly known drought years in the CONUS. More research is required to improve the representation of the predefined boundary conditions in complex terrain at small spatial scales. SSEBop model was found to be a promising approach to conduct water use studies in the CONUS, with a similar opportunity in other parts of the world. The approach can also be applied with other thermal sensors such as Landsat.

  14. The role of sediments stored in valleys in modulating the Quaternary weathering flux variations

    NASA Astrophysics Data System (ADS)

    Carretier, Sebastien; Goddéris, Yves; Vigier, Nathalie; Maffre, Pierre

    2017-04-01

    Silicate weathering is known to be central to the regulation of atmospheric CO2. Yet it is unclear how weathering responds to climatic variations. Data sets based on different proxies in sediment cores suggest either negligible Quaternary silicate weathering variations, or more weathering during wet and hot periods, or even the reverse. For example, a recent study based on d7Li in clay of Himalayan river terraces suggests, counter-intuitively, a less intense weathering during hot and wet periods compared to dry periods for the last 40 ka, with no clear physical explanation. We analyse catchment scale weathering signals using the numerical model Cidre, coupling landscape evolution with chemical weathering. Chemical weathering occurs within a regolith, either produced in situ at a rate depending on regolith thickness, temperature and precipitation, or corresponding to a deposit. The chemical flux is calculated from the dissolution of granitoid clasts, first exhumed on the hillslopes and then transported and potentially stocked in the valleys. This approach accounts for part of the stochastic nature of grain weathering within a catchment. We prescribe an uplift to an initial horizontal surface to reach a dynamic equilibrium under a constant climate. Then, we vary the precipitation rate and the temperature, alternating cold and dry periods with hot and wet periods (10 to 400 ka tested). When these variations are applied to an equilibrium mountain covered by a regolith ("transport-limited"), the weathering outlfux and the erosion flux are larger during wet and hot periods. On the contrary, for less weatherable conditions such that the mountain is not covered by regolith ("kinetically-limited"), the weathering is the highest at the beginning of the dry, cold and low erosive periods. This apparent paradox is explained by the temporary accumulation of sediment in the valleys in response to the drought. The hillslopes being striped, these valley deposits constitute the only weathering reservoir, whose large volume compensates for the unfavourable climatic conditions. Such a behaviour explains out-of-phase weathering signals, and suggests that the dominant weathering reservoir goes back and forth between the hillslopes and the valleys during climatic oscillations.

  15. Use of the LANDSAT-2 Data Collection System in the Colorado River Basin Weather Modification Program. [San Juan Mountains, Colorado

    NASA Technical Reports Server (NTRS)

    Kahan, A. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The LANDSAT data collection system has proven itself to be a valuable tool for control of cloud seeding operations and for verification of weather forecasts. These platforms have proven to be reliable weather resistant units suitable for the collection of hydrometeorological data from remote severe weather environments. The detailed design of the wind speed and direction system and the wire-wrapping of the logic boards were completed.

  16. Unweathered and weathered aviation kerosine: chemical characterization and effects on hatching success of duck eggs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albers, P.H.; Gay, M.L.

    The results of a study of the effects of unweathered and weathered aviation kerosine on the hatchability of mallard duck eggs are reported. Egg hatching succes of the control group was not significantly different from that of any of the groups treated with unweathered or weathered aviation kerosine. These results mean that the eggs of waterfowl are probably not endangered by plumage transfer of small amounts of partially weathered kerosine to the eggs. (JMT)

  17. Tracking spatial variation in river load from Andean highlands to inter-Andean valleys

    NASA Astrophysics Data System (ADS)

    Tenorio, Gustavo E.; Vanacker, Veerle; Campforts, Benjamin; Álvarez, Lenín; Zhiminaicela, Santiago; Vercruysse, Kim; Molina, Armando; Govers, Gerard

    2018-05-01

    Mountains play an important role in the denudation of continents and transfer erosion and weathering products to lowlands and oceans. The rates at which erosion and weathering processes take place in mountain regions have a substantial impact on the morphology and biogeochemistry of downstream reaches and lowlands. The controlling factors of physical erosion and chemical weathering and the coupling between the two processes are not yet fully understood. In this study, we report physical erosion and chemical weathering rates for five Andean catchments located in the southern Ecuadorian Andes and investigate their mutual interaction. During a 4-year monitoring period, we sampled river water at biweekly intervals, and we analyzed water samples for major ions and suspended solids. We derived the total annual dissolved, suspended sediment, and ionic loads from the flow frequency curves and adjusted rating curves and used the dissolved and suspended sediment yields as proxies for chemical weathering and erosion rates. In the 4-year period of monitoring, chemical weathering exceeds physical erosion in the high Andean catchments. Whereas physical erosion rates do not exceed 30 t km-2 y-1 in the relict glaciated morphology, chemical weathering rates range between 22 and 59 t km-2 y-1. The variation in chemical weathering is primarily controlled by intrinsic differences in bedrock lithology. Land use has no discernible impact on the weathering rate but leads to a small increase in base cation concentrations because of fertilizer leaching in surface water. When extending our analysis with published data on dissolved and suspended sediment yields from the northern and central Andes, we observe that the river load composition strongly changes in the downstream direction, indicating large heterogeneity of weathering processes and rates within large Andean basins.

  18. Major ion chemistry in the headwaters of the Yamuna river system:. Chemical weathering, its temperature dependence and CO 2 consumption in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dalai, T. K.; Krishnaswami, S.; Sarin, M. M.

    2002-10-01

    The Yamuna river and its tributaries in the Himalaya constitute the Yamuna River System (YRS). The YRS basin has a drainage area and discharge comparable in magnitude to those of the Bhagirathi and the Alaknanda rivers, which merge to form the Ganga at the foothills of the Himalaya. A detailed geochemical study of the YRS was carried out to determine: (i) the relative significance of silicate, carbonate and evaporite weathering in contributing to its major ion composition; (ii) CO 2 consumption via silicate weathering; and (iii) the factors regulating chemical weathering of silicates in the basin. The results show that the YRS waters are mildly alkaline, with a wide range of TDS, ˜32 to ˜620 mg l-1. In these waters, the abundances of Ca, Mg and alkalinity, which account for most of TDS, are derived mainly from carbonates. Many of the tributaries in the lower reaches of the Yamuna basin are supersaturated with calcite. In addition to carbonic acid, sulphuric acid generated by oxidation of pyrites also seems to be supplying protons for chemical weathering. Silicate weathering in YRS basin contributes, on average, ˜25% (molar basis) of total cations on a basin wide scale. Silicate weathering, however, does not seem to be intense in the basin as evident from low Si/(Na*+K) in the waters, ˜1.2 and low values of chemical index of alteration (CIA) in bed sediments, ˜60. CO 2 drawdown resulting from silicate weathering in the YRS basin in the Himalaya during monsoon ranges between (4 to 7) × 10 5 moles km -2 y -1. This is higher than that estimated for the Ganga at Rishikesh for the same season. The CO 2 consumption rates in the Yamuna and the Ganga basins in the Himalaya are higher than the global average value, suggesting enhanced CO 2 drawdown in the southern slopes of the Himalaya. The impact of this enhanced drawdown on the global CO 2 budget may not be pronounced, as the drainage area of the YRS and the Ganga in the Himalaya is small. The CO 2 drawdown by silicates in the YRS basin is marginally higher than the reported values of CO 2 release from oxidation of organic rich sediments, estimated using Re as a proxy. This comparison shows the need to constrain CO 2 sources and sinks better to balance its budget in a regional scale. The results also show that silicate weathering rate in the YRS basin is ˜10 mm ky -1 and on the Ganga basin, it is ˜5 mm ky -1, which are several times lower than the carbonate weathering rates. The significantly higher silicate weathering rate observed in the YRS basin seems to be governed by rapid physical erosion in this region. The apparent activation energy for overall silicate weathering in the YRS basin, derived from Na* and Si concentrations and water temperature, ranges from ˜50 to 80 kJ mol -1. These values are comparable to those reported for granitoid weathering in natural watersheds and feldspar weathering in laboratory experiments. This study brings to light the sources contributing to major ions, enhanced chemical weathering rates in the Yamuna River Basin and interdependence of silicate weathering on physical erosion and temperature.

  19. Forecast of dengue incidence using temperature and rainfall.

    PubMed

    Hii, Yien Ling; Zhu, Huaiping; Ng, Nawi; Ng, Lee Ching; Rocklöv, Joacim

    2012-01-01

    An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore. We developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000-2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaike's Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93-98%) in 2004-2010 and 98% (CI = 95%-100%) in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm. We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.

  20. Historical Time Series of Extreme Convective Weather in Finland

    NASA Astrophysics Data System (ADS)

    Laurila, T. K.; Mäkelä, A.; Rauhala, J.; Olsson, T.; Jylhä, K.

    2016-12-01

    Thunderstorms, lightning, tornadoes, downbursts, large hail and heavy precipitation are well-known for their impacts to human life. In the high latitudes as in Finland, these hazardous warm season convective weather events are focused in the summer season, roughly from May to September with peak in the midsummer. The position of Finland between the maritime Atlantic and the continental Asian climate zones makes possible large variability in weather in general which reflects also to the occurrence of severe weather; the hot, moist and extremely unstable air masses sometimes reach Finland and makes possible for the occurrence of extreme and devastating weather events. Compared to lower latitudes, the Finnish climate of severe convection is "moderate" and contains a large year-to-year variation; however, behind the modest annual average is hidden the climate of severe weather events that practically every year cause large economical losses and sometimes even losses of life. Because of the increased vulnerability of our modern society, these episodes have gained recently plenty of interest. During the decades, the Finnish Meteorological Institute (FMI) has collected observations and damage descriptions of severe weather episodes in Finland; thunderstorm days (1887-present), annual number of lightning flashes (1960-present), tornados (1796-present), large hail (1930-present), heavy rainfall (1922-present). The research findings show e.g. that a severe weather event may occur practically anywhere in the country, although in general the probability of occurrence is smaller in the Northern Finland. This study, funded by the Finnish Research Programme on Nuclear Power Plant Safety (SAFIR), combines the individual Finnish severe weather time series' and examines their trends, cross-correlation and correlations with other atmospheric parameters. Furthermore, a numerical weather model (HARMONIE) simulation is performed for a historical severe weather case for analyzing how well the present state-of-the-art models grasp these small-scale weather phenomena. Our results give important background for estimating the Finnish severe weather climate in the future.

Top