Science.gov

Sample records for scale-dependent macroscopic balance

  1. Macroscopic balance model for wave rotors

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  2. Average balance equations, scale dependence, and energy cascade for granular materials.

    PubMed

    Artoni, Riccardo; Richard, Patrick

    2015-03-01

    A new averaging method linking discrete to continuum variables of granular materials is developed and used to derive average balance equations. Its novelty lies in the choice of the decomposition between mean values and fluctuations of properties which takes into account the effect of gradients. Thanks to a local homogeneity hypothesis, whose validity is discussed, simplified balance equations are obtained. This original approach solves the problem of dependence of some variables on the size of the averaging domain obtained in previous approaches which can lead to huge relative errors (several hundred percentages). It also clearly separates affine and nonaffine fields in the balance equations. The resulting energy cascade picture is discussed, with a particular focus on unidirectional steady and fully developed flows for which it appears that the contact terms are dissipated locally unlike the kinetic terms which contribute to a nonlocal balance. Application of the method is demonstrated in the determination of the macroscopic properties such as volume fraction, velocity, stress, and energy of a simple shear flow, where the discrete results are generated by means of discrete particle simulation.

  3. The size of the boat matters: Scale dependence in macroscopic chains thermalized by the motion of a laboratory-scale ocean

    NASA Astrophysics Data System (ADS)

    Welch, Kyle; Kilmer, Clayton; Corwin, Eric

    2015-03-01

    We use a bath of chaotic surface waves in water to mechanically and macroscopically mimic the thermal behavior of various microscopic systems. The chaotic waves provide isotropic and random agitation to which a temperature can be ascribed. This allows us to passively explore the degrees of freedom of a system, in analogy to thermal motion. We report on a study of 2D macroscopic chains thermalized in this fashion. We show that the behavior of short chains is fundamentally different than the behavior of long chains in both winding angle and end-to-end distance. Furthermore, we find that short chains show anomalous compressional stiffness that rapidly softens as chain length increases. We present simulational work exploring this transition from short to long, treating the chains as self-avoiding polymers. We further apply our techniques to explorations of the evolution of a system of many interacting buoyant particles, focusing on transitions from ordered to disordered states.

  4. Macroscopic Thermal Energy Balance on Montane Valley Aquifers and Groundwater Recharge Source Identification

    NASA Astrophysics Data System (ADS)

    Trask, J. C.; Fogg, G. E.

    2010-12-01

    Several recent publications have highlighted the need to improve definition of groundwater flow patterns in montane regions, presenting case studies with several field investigative approaches. Determination of the depth of upland bedrock groundwater circulation and identification of valley aquifer recharge sources in montane areas is needed for improved characterization of montane groundwater flow patterns and for aquifer source protection planning. In most upland bedrock regions, wells and boreholes are scarce, adding to the challenges inherent to investigating groundwater flow in fractured rock systems. Approaches using natural environmental tracers have previously been shown to be effective in quantifying subsurface recharge into valley aquifers from groundwater flow within adjoining mountain-front and mountain-block areas. Thermal tracing of montane groundwater flow is easy and inexpensive relative to other environmental tracer and geophysical techniques, and can complement other approaches (e.g. Manning and Solomon, 2005). We present a heat flow tracer approach to identification of montane valley aquifer recharge sources. A novel application of a macroscopic thermal energy balance is introduced and used in recharge source analysis for two mountain-front bounding basin-fill aquifers located in the Sierra Nevada, USA. We show that robust upper and lower bounds on total heat flow and sources of recharge into montane valley aquifers may be determined without numerical modeling by using a macroscopic thermal energy balance. Several factors tend to enhance focusing of geothermal conductive heat flow from depth toward montane valley margins. Analytic bracketing techniques, applicable to domains with irregular boundary geometry and non-uniform thermal boundary conditions, are used together with thermal data to obtain quantitative bounds on conductive heat flow across aquifer domain boundaries. Thermal data required include: (i) a rough estimate of regional geothermal

  5. Scale - dependent effects on the surface energy fluxes modelling in heterogeneous/complex ecosystems using the Two-Source Energy Balance (TSEB)

    NASA Astrophysics Data System (ADS)

    Ma, S.; Andreu, A.; Verfaillie, J. G.; González-Dugo, M. P.; Hülsmann, S.; Baldocchi, D. D.

    2015-12-01

    A key assumption of two source energy balance models is that the effective source/sink for turbulent flux exchange at the surface and the entire canopy/soil is described by a bulk surface/canopy/soil temperature and resistance. Therefore, the spatial resolution of radiometric surface/canopy/soil temperature (TRAD) used as an input to these models and how well they agreed with this "bulk" concept influence the final estimations. In complex ecosystems, with more than two layers of vegetation, bare soil and heterogeneous distribution patterns, the representativeness of the sensor average temperature and the up-scaling of the ecosystem structural vegetation characteristics will be more crucial for the precision of the results than in more homogeneous landscapes. The aim of this study is to analyze the scale-effects derived from TSEB application, comparing the observed energy fluxes and the estimated ones obtained from multiple TRAD data sources of different nature (tree/grass/soil ground-based observations, tower footprint and low and medium satellite TRAD) and how the up-scaling of the vegetation characteristics contribute to the discrepancies. The area selected for this purpose is a savanna type FLUXNET site (Tonzi ranch, CA, US). These ecosystems present canopy mosaics that differ in phenology, physiology and functioning, and bare soil, all of them influencing the turbulent and radiative exchanges.

  6. The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory

    NASA Astrophysics Data System (ADS)

    Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch.

    2016-10-01

    Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.

  7. Scale-dependent halo bias from scale-dependent growth

    SciTech Connect

    Parfrey, Kyle; Hui, Lam; Sheth, Ravi K.

    2011-03-15

    We derive a general expression for the large-scale halo bias, in theories with a scale-dependent linear growth, using the excursion set formalism. Such theories include modified-gravity models, and models in which the dark energy clustering is non-negligible. A scale dependence is imprinted in both the formation and evolved biases by the scale-dependent growth. Mergers are accounted for in our derivation, which thus extends earlier work which focused on passive evolution. There is a simple analytic form for the bias for those theories in which the nonlinear collapse of perturbations is approximately the same as in general relativity. As an illustration, we apply our results to a simple Yukawa modification of gravity, and use Sloan Digital Sky Survey measurements of the clustering of luminous red galaxies to constrain the theory's parameters.

  8. Scale-Dependent Dispersivity Explained Without Scale-Dependent Heterogeneity

    NASA Astrophysics Data System (ADS)

    Dhaliwal, P.; Engdahl, N. B.; Fogg, G. E.

    2011-12-01

    The observed scale-dependence of dispersivity has often been attributed to the scale-dependence of porous media heterogeneity. However, mass transfer between areas of high and low hydraulic conductivity and preferential solute migration may provide an alternative explanation for this phenomenon. To illustrate this point, we used geostatistical models representing the heterogeneity and interconnectedness of a typical aquifer system and plume modeling via a highly accurate random walk particle tracking method. The apparent dispersivity values were calculated using the statistical moments of the plumes. Apparent dispersivity was seen to grow from 0.01(m)to 100(m) over length scales of 0.06(m) to 500(m) even though heterogeneity scales and facies proportions were stationary and invariant with scale in the simulations. The results suggest that the increase in dispersivity was due solely to a stretching of the plume by two mechanisms. The first mechanism results from the diffusion of solute into areas of low conductivity and the second comes from the movement of solute through well-connected high K zone channels. Under such conditions, an "asymptotic dispersivity" may never be reached.

  9. Statistical mechanical estimation of the free energy of formation of E. coli biomass for use with macroscopic bioreactor balances.

    PubMed

    Grosz, R; Stephanopoulos, G

    1983-09-01

    The need for the determination of the free energy of formation of biomass in bioreactor second law balances is well established. A statistical mechanical method for the calculation of the free energy of formation of E. coli biomass is introduced. In this method, biomass is modelled to consist of a system of biopolymer networks. The partition function of this system is proposed to consist of acoustic and optical modes of vibration. Acoustic modes are described by Tarasov's model, the parameters of which are evaluated with the aid of low-temperature calorimetric data for the crystalline protein bovine chymotrypsinogen A. The optical modes are described by considering the low-temperature thermodynamic properties of biological monomer crystals such as amino acid crystals. Upper and lower bounds are placed on the entropy to establish the maximum error associated with the statistical method. The upper bound is determined by endowing the monomers in biomass with ideal gas properties. The lower bound is obtained by limiting the monomers to complete immobility. On this basis, the free energy of formation is fixed to within 10%. Proposals are made with regard to experimental verification of the calculated value and extension of the calculation to other types of biomass. PMID:18574813

  10. Strongly scale-dependent non-Gaussianity

    SciTech Connect

    Riotto, Antonio; Sloth, Martin S.

    2011-02-15

    We discuss models of primordial density perturbations where the non-Gaussianity is strongly scale dependent. In particular, the non-Gaussianity may have a sharp cutoff and be very suppressed on large cosmological scales, but sizable on small scales. This may have an impact on probes of non-Gaussianity in the large-scale structure and in the cosmic microwave background radiation anisotropies.

  11. Scale dependence of rock friction at high work rate.

    PubMed

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its

  12. Scale dependence of rock friction at high work rate.

    PubMed

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its

  13. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  14. Scale Dependence of Spatiotemporal Intermittence of Rain

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Siddani, Ravi K.

    2011-01-01

    It is a common experience that rainfall is intermittent in space and time. This is reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by a mixed distribution with a nonzero probability of having a sharp value zero. In this paper we have explored the dependence of the probability of zero rain on the averaging space and time scales in large multiyear data sets based on radar and rain gauge observations. A stretched exponential fannula fits the observed scale dependence of the zero-rain probability. The proposed formula makes it apparent that the space-time support of the rain field is not quite a set of measure zero as is sometimes supposed. We also give an ex.planation of the observed behavior in tenus of a simple probabilistic model based on the premise that rainfall process has an intrinsic memory.

  15. Grizzly bear habitat selection is scale dependent.

    PubMed

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  16. Grizzly bear habitat selection is scale dependent.

    PubMed

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  17. The scale dependence of single-nucleon shell structure

    SciTech Connect

    Somà, V.; Hergert, H.; Holt, J. D.

    2015-10-15

    We address the scale dependence of (effective) single-particle energies, non-observable quantities that are commonly used for interpreting nuclear structure observables measured in experiments and computed in many-body theories. We first demonstrate their scale dependence on a formal level, making them intrinsically theoretical objects, before illustrating this point via ab initio calculations in the oxygen isotopes. Finally, we consider a modified definition of effective single-particle energy and investigate its running properties.

  18. Physics in space-time with scale-dependent metrics

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  19. Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model.

    PubMed

    Kalwarczyk, Tomasz; Sozanski, Krzysztof; Ochab-Marcinek, Anna; Szymanski, Jedrzej; Tabaka, Marcin; Hou, Sen; Holyst, Robert

    2015-09-01

    This paper deals with the recent phenomenological model of the motion of nanoscopic objects (colloidal particles, proteins, nanoparticles, molecules) in complex liquids. We analysed motion in polymer, micellar, colloidal and protein solutions and the cytoplasm of living cells using the length-scale dependent viscosity model. Viscosity monotonically approaches macroscopic viscosity as the size of the object increases and thus gives a single, coherent picture of motion at the nano and macro scale. The model includes interparticle interactions (solvent-solute), temperature and the internal structure of a complex liquid. The depletion layer ubiquitously occurring in complex liquids is also incorporated into the model. We also discuss the biological aspects of crowding in terms of the length-scale dependent viscosity model.

  20. The scale-dependence of halo assembly bias

    NASA Astrophysics Data System (ADS)

    Sunayama, Tomomi; Hearin, Andrew P.; Padmanabhan, Nikhil; Leauthaud, Alexie

    2016-05-01

    The two-point clustering of dark matter haloes is influenced by halo properties besides mass, a phenomenon referred to as halo assembly bias. Using the depth of the gravitational potential well, Vmax, as our secondary halo property, in this paper, we present the first study of the scale-dependence of assembly bias. In the large-scale linear regime, r ≥ 10 h-1 Mpc, our findings are in keeping with previous results. In particular, at the low-mass end (scale-dependent `bump' at 500 kpc h-1-5 Mpc h-1. This feature weakens and eventually vanishes for haloes of higher mass. We show that this scale-dependent signature can primarily be attributed to a special subpopulation of ejected haloes, defined as present-day host haloes that were previously members of a higher mass halo at some point in their past history. A corollary of our results is that galaxy clustering on scales of r ˜ 1-2 Mpc h-1 can be impacted by up to ˜15 per cent by the choice of the halo property used in the halo model, even for stellar mass-limited samples.

  1. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  2. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    SciTech Connect

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

  3. Aerobrake plasmadynamics - Macroscopic effects

    NASA Astrophysics Data System (ADS)

    Shebalin, John V.

    1990-06-01

    The flow around an aerobraking spacecraft (such as the Aeroassist Flight Experiment reentry vehicle) will contain a region of partially ionized gas, that is, a plasma. It is shown here by numerical simulation that macroscopic plasmadynamic effects (which are not included in standard aerothermodynamic simulations) will have a noticeable effect on the reentry flow field. In particular, there are thermoelectric phenomena which can have a major influence in flow dynamics at the front of an ionizing bowshock. These thermoelectric phenomena arise because of the presence of large density and temperature gradients at the front of a reentry bowshock, and they include strong local magnetic fields, electric currents, and ohmic heating. One important result is the dramatic increase in temperature (over the case where plasma effects are neglected) at a reentry shock front; the implication is that macroscopic plasmadynamic effects can no longer be neglected in simulations of hypersonic reentry flow fields.

  4. Scale dependency of biocapacity and the fallacy of unsustainable development

    NASA Astrophysics Data System (ADS)

    YUE, Dongxia; MENG, Xingmin; MA, Jinhui

    2014-05-01

    Since the concept of sustainable development was put forward (WCED, 1987), it has become an ideal development mode and a common policy goal, and many indicators have been developed to assess the status of sustainable development. However, among these large numbers of indicators of sustainable development, the EF methodology has gain popularity due to its compatibility with the data format commonly derived from economic and social surveys. To date, area-based information obtained from remote sensing and aerial photography is often used in studies on ecological footprint and sustainability, especially in calculating biocapacity. Given the importance of the modifiable areal unit problem (MAUP; i.e. the scale dependency of area-based information), a comprehensive understanding of how the changes of biocapacity across scales (i.e. the resolution of data) is pivotal for regional sustainable development. To this end, based on the Monte Carlo simulation and the GIS technology, we chose two typical river basins in Northwest China (Jinghe River Watershed and Shiyang River Basin) and calculated the biocapacity at different spatial scales based on remote sensing data, with a nominal resolution of 30m at the scale of 1:100,000. The analysis demonstrated that the area sizes of major land covers and subsequently biocapacity showed strong signals of scale dependency, with minor land covers in the region shrinking while major land covers expanding when using large-grain (low resolution) data. The relationship between land cover sizes and their change ratio across scales was shown to follow a logarithm function. The biocapacity estimated at 10×10 km resolution is 10% lower than the one estimated at 1×1 km resolution, casting doubts on many regional and global studies which often rely on coarse scale datasets. Our results not only suggest that fine-scale biocapacity estimates can be extrapolated from coarse-scale ones according to the specific scale-dependent patterns of land

  5. On the scale dependence of earthquake stress drop

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Tinti, Elisa; Cirella, Antonella

    2016-07-01

    We discuss the debated issue of scale dependence in earthquake source mechanics with the goal of providing supporting evidence to foster the adoption of a coherent interpretative framework. We examine the heterogeneous distribution of source and constitutive parameters during individual ruptures and their scaling with earthquake size. We discuss evidence that slip, slip-weakening distance and breakdown work scale with seismic moment and are interpreted as scale dependent parameters. We integrate our estimates of earthquake stress drop, computed through a pseudo-dynamic approach, with many others available in the literature for both point sources and finite fault models. We obtain a picture of the earthquake stress drop scaling with seismic moment over an exceptional broad range of earthquake sizes (-8 < MW < 9). Our results confirm that stress drop values are scattered over three order of magnitude and emphasize the lack of corroborating evidence that stress drop scales with seismic moment. We discuss these results in terms of scale invariance of stress drop with source dimension to analyse the interpretation of this outcome in terms of self-similarity. Geophysicists are presently unable to provide physical explanations of dynamic self-similarity relying on deterministic descriptions of micro-scale processes. We conclude that the interpretation of the self-similar behaviour of stress drop scaling is strongly model dependent. We emphasize that it relies on a geometric description of source heterogeneity through the statistical properties of initial stress or fault-surface topography, in which only the latter is constrained by observations.

  6. Macroscopic Magnetic Frustration

    NASA Astrophysics Data System (ADS)

    Mellado, Paula; Concha, Andres; Mahadevan, L.

    2012-12-01

    Although geometrical frustration transcends scale, it has primarily been evoked in the micro- and mesoscopic realm to characterize such phases as spin ice, liquids, and glasses and to explain the behavior of such materials as multiferroics, high-temperature superconductors, colloids, and copolymers. Here we introduce a system of macroscopic ferromagnetic rotors arranged in a planar lattice capable of out-of-plane movement that exhibit the characteristic honeycomb spin ice rules studied and seen so far only in its mesoscopic manifestation. We find that a polarized initial state of this system settles into the honeycomb spin ice phase with relaxation on multiple time scales. We explain this relaxation process using a minimal classical mechanical model that includes Coulombic interactions between magnetic charges located at the ends of the magnets and viscous dissipation at the hinges. Our study shows how macroscopic frustration arises in a purely classical setting that is amenable to experiment, easy manipulation, theory, and computation, and shows phenomena that are not visible in their microscopic counterparts.

  7. Runoff Scale-dependency in Burned Dry Eucalyptus

    NASA Astrophysics Data System (ADS)

    Kasmaei, L.; Sheridan, G. J.; Lane, P. N. J.

    2015-12-01

    To examine the impact of wildfire on timing and magnitude of extreme hydrologic events, it is essential to quantify the degree of scale-dependency of post-fire hydro-geomorphic processes. Scaling of hydrologic processes has been shown to increase uncertainties unless they are known to have the same spatio-temporal scale or accurate methods of conversion. Hydrological responses at watershed-scale are linked to peak flows and total volume of overland flow hydrographs. At a burned hillslope, both flow generation and transport responsive to hydrographs dynamics, are determined by post-fire hydro-geomorphic factors and their interaction with rainfall events. A hierarchical monitoring approach consisting of paired rainfall-runoff plots and rainguages with different size from point to hillslope scale were installed on a dry eucalyptus hillslope, south east Australia, burned by wildfire January 2013. Scaling effect of overland flow on the burned hillslope was studied with help of event- seasonal- and annual-based rainfall-runoff data in relation to travel distance, contributing area and rainfall patterns. A linear decrease in runoff ratio with slope length was observed for plots with the same width. However, the rate of runoff production declined exponentially for plots with narrower width. Further investigation of vegetation patches, soil moisture, water repellency, and macropores patterns showed no significant differences in soil-surface factors affecting initial infiltration in these plots comparing to the rest of compound. Thus initial infiltration in narrower plots was similar to the rest of plots; however initiated runoff had less chance to reach the outlet. This could be due to higher positive pore pressures in smaller bounded area per length result in higher macropores and matrix infiltration, overcoming water repellency. Measurement also showed that soil in narrower plots was less repellent in downslope, supporting higher transmission loss downslope in these plots

  8. Characterizing heart rate variability by scale-dependent Lyapunov exponent

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Gao, Jianbo; Tung, Wen-wen

    2009-06-01

    Previous studies on heart rate variability (HRV) using chaos theory, fractal scaling analysis, and many other methods, while fruitful in many aspects, have produced much confusion in the literature. Especially the issue of whether normal HRV is chaotic or stochastic remains highly controversial. Here, we employ a new multiscale complexity measure, the scale-dependent Lyapunov exponent (SDLE), to characterize HRV. SDLE has been shown to readily characterize major models of complex time series including deterministic chaos, noisy chaos, stochastic oscillations, random 1/f processes, random Levy processes, and complex time series with multiple scaling behaviors. Here we use SDLE to characterize the relative importance of nonlinear, chaotic, and stochastic dynamics in HRV of healthy, congestive heart failure, and atrial fibrillation subjects. We show that while HRV data of all these three types are mostly stochastic, the stochasticity is different among the three groups.

  9. Exploring the scale-dependent permeability of fractured andesite

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Kennedy, Ben M.

    2016-08-01

    Extension fractures in volcanic systems exist on all scales, from microscopic fractures to large fissures. They play a fundamental role in the movement of fluids and distribution of pore pressure, and therefore exert considerable influence over volcanic eruption recurrence. We present here laboratory permeability measurements for porous (porosity = 0.03-0.6) andesites before (i.e., intact) and after failure in tension (i.e., the samples host a throughgoing tensile fracture). The permeability of the intact andesites increases with increasing porosity, from 2 ×10-17 to 5 ×10-11 m2. Following fracture formation, the permeability of the samples (the equivalent permeability) falls within a narrow range, 2- 6 ×10-11 m2, regardless of their initial porosity. However, laboratory measurements on fractured samples likely overestimate the equivalent permeability due to the inherent scale-dependence of permeability. To explore this scale-dependence, we first determined the permeability of the tensile fractures using a two-dimensional model that considers flow in parallel layers. Our calculations highlight that tensile fractures in low-porosity samples are more permeable (as high as 3.5 ×10-9 m2) than those in high-porosity samples (as low as 4.1 ×10-10 m2), a difference that can be explained by an increase in fracture tortuosity with porosity. We then use our fracture permeability data to model the equivalent permeability of fractured rock (with different host rock permeabilities, from 10-17 to 10-11 m2) with increasing lengthscale. We highlight that our modelling approach can be used to estimate the equivalent permeability of numerous scenarios at andesitic stratovolcanoes in which the fracture density and width and host rock porosity or permeability are known. The model shows that the equivalent permeability of fractured andesite depends heavily on the initial host rock permeability and the scale of interest. At a given lengthscale, the equivalent permeability of high

  10. Refined scale-dependent permutation entropy to analyze systems complexity

    NASA Astrophysics Data System (ADS)

    Wu, Shuen-De; Wu, Chiu-Wen; Humeau-Heurtier, Anne

    2016-05-01

    Multiscale entropy (MSE) has become a prevailing method to quantify the complexity of systems. Unfortunately, MSE has a temporal complexity in O(N2) , which is unrealistic for long time series. Moreover, MSE relies on the sample entropy computation which is length-dependent and which leads to large variance and possible undefined entropy values for short time series. Here, we propose and introduce a new multiscale complexity measure, the refined scale-dependent permutation entropy (RSDPE). Through the processing of different kinds of synthetic data and real signals, we show that RSDPE has a behavior close to the one of MSE. Furthermore, RSDPE has a temporal complexity in O(N) . Finally, RSDPE has the advantage of being much less length-dependent than MSE. From all this, we conclude that RSDPE over-performs MSE in terms of computational cost and computational accuracy.

  11. Scale-Dependent Dispersion in a Stratified Granular Aquifer

    NASA Astrophysics Data System (ADS)

    Pickens, John F.; Grisak, Gerald E.

    1981-08-01

    The magnitude of longitudinal dispersivity in a sandy stratified aquifer was investigated using laboratory column and field tracer tests. The field investigations included two-single-well injection-withdrawal tracer tests using 131I and a two-well recirculating withdrawal-injection tracer test using 51Cr-EDTA. The tracer movement within the aquifer was monitored in great detail with multilevel point-sampling instrumentation. A constant value for dispersivity of 0.7 cm was found to be representative (and independent of travel distance) at the scale of an individual level within the aquifer. A dispersivity of 0.035 cm was determined from laboratory column tracer tests as a representative laboratory-scale value for sand from the field site. The scale effect observed between the laboratory dispersivity and the dispersivity from individual levels in the aquifer is caused by the greater inhomogeneity of the aquifer (e.g., laminations within individual layers) and the averaging caused by the groundwater sampling system. Full-aquifer dispersivities of 3 and 9 cm obtained from the single-well tests indicate a scale effect with the value obtained being dependent mainly on the effect of transverse migration of tracer between the layers and the total injection volume. The full-aquifer dispersivity of 50 cm from the two-well test is scale-dependent, controlled by the distance between the injection and withdrawal wells (8 m) and hydraulic conductivity distribution in the aquifer. Scale-dependent full-aquifer dispersivity expressions were derived relating dispersivity to the statistical properties of a stratified geologic system where the hydraulic conductivity distribution is normal, log normal or arbitrary. In the developed expressions, dispersivity is a linear function of the mean travel distance. Proportionality constants ranged from 0.041 to 0.256 for the hydraulic conductivity distributions obtained from the field tracer tests.

  12. Nuclear physics: Macroscopic aspects

    SciTech Connect

    Swiatecki, W.J.

    1993-12-01

    A systematic macroscopic, leptodermous approach to nuclear statics and dynamics is described, based formally on the assumptions {h_bar} {yields} 0 and b/R << 1, where b is the surface diffuseness and R the nuclear radius. The resulting static model of shell-corrected nuclear binding energies and deformabilities is accurate to better than 1 part in a thousand and yields a firm determination of the principal properties of the nuclear fluid. As regards dynamics, the above approach suggests that nuclear shape evolutions will often be dominated by dissipation, but quantitative comparisons with experimental data are more difficult than in the case of statics. In its simplest liquid drop version the model exhibits interesting formal connections to the classic astronomical problem of rotating gravitating masses.

  13. Local Realism of Macroscopic Correlations

    NASA Astrophysics Data System (ADS)

    Ramanathan, R.; Paterek, T.; Kay, A.; Kurzyński, P.; Kaszlikowski, D.

    2011-08-01

    We identify conditions under which correlations resulting from quantum measurements performed on macroscopic systems (systems composed of a number of particles of the order of the Avogadro number) can be described by local realism. We argue that the emergence of local realism at the macroscopic level is caused by an interplay between the monogamous nature of quantum correlations and the fact that macroscopic measurements do not reveal properties of individual particles.

  14. On scale-dependent cosmic shear systematic effects

    NASA Astrophysics Data System (ADS)

    Kitching, T. D.; Taylor, A. N.; Cropper, M.; Hoekstra, H.; Hood, R. K. E.; Massey, R.; Niemi, S.

    2016-01-01

    In this paper, we investigate the impact that realistic scale-dependent systematic effects may have on cosmic shear tomography. We model spatially varying residual galaxy ellipticity and galaxy size variations in weak lensing measurements and propagate these through to predicted changes in the uncertainty and bias of cosmological parameters. We show that the survey strategy - whether it is regular or randomized - is an important factor in determining the impact of a systematic effect: a purely randomized survey strategy produces the smallest biases, at the expense of larger parameter uncertainties, and a very regularized survey strategy produces large biases, but unaffected uncertainties. However, by removing, or modelling, the affected scales (ℓ-modes) in the regular cases the biases are reduced to negligible levels. We find that the integral of the systematic power spectrum is not a good metric for dark energy performance, and we advocate that systematic effects should be modelled accurately in real space, where they enter the measurement process, and their effect subsequently propagated into power spectrum contributions.

  15. Analytical description of scale-dependent topology. A toy model

    NASA Astrophysics Data System (ADS)

    Seriu, Masafumi

    1993-12-01

    Based on a (2+1)-dimensional toy model, we present one analytical description of the scale-dependent effective topology of the space-time foam. We describe it in terms of a scattering cross-section. We begin by preparing a two-dimensional space with one topological handle, regarding it as the most elementary building block for the foam-like structure. We then calculate the scattering cross-section of a scalar field on this space. We investigate, how the scattering cross-section changes depending on the variety of topologies as well as the incident energy scale. We also investigate how a twist of the handle affects the cross-section. We find out a systematic topology-dependence and a twist effect in the cross-section. We also try to sketch briefly some basic points of the topological approximation procedure in terms of the homology group. Present address: Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Pune 411007, India

  16. Scale-dependent neighborhood effects: shared doom and associational refuge.

    PubMed

    Emerson, Sara E; Brown, Joel S; Whelan, Christopher J; Schmidt, Kenneth A

    2012-03-01

    A resource's susceptibility to predation may be influenced by its own palatability and the palatability of its neighbors. We tested for effects of plant chemical defenses on seed survival by manipulating the frequency of palatable and less palatable sunflower seeds in food patches subject to harvest by fox squirrels (Sciurus niger) and gray squirrels (Sciurus carolinensis). We varied resource distributions at three scales: among stations (aggregates of patches ca. 50 m apart), among patches immediately adjacent to each other, and within patches. When food patches were segregated into high-palatability and low-palatability stations (Experiment 1), seeds suffered greater mortality at stations with high levels of palatable seeds. In the same experiment, within patches, squirrels selected strongly for palatable seeds over less palatable seeds. When high- and low-palatability food patches were placed together at the same stations (Experiment 2), increasing densities of co-occurring palatable seeds amplified the mortality of less palatable seeds, indicating "shared doom." When palatable and less palatable seeds were partitioned into micropatches (Experiment 3), associational effects disappeared, as predicted. Furthermore, selectivity in less palatable patches increased as the initial densities of palatable seeds increased, and selectivity in palatable patches decreased as the initial densities of less palatable seeds increased. Foraging theory predicts associational effects among prey that vary in palatability. Our results show how the type and magnitude of associational effects emerge from the interplay among the spatial scale of prey heterogeneity, the diet selection strategy, and the scale-dependent foraging responses of the consumer.

  17. Generalized continuum modeling of scale-dependent crystalline plasticity

    NASA Astrophysics Data System (ADS)

    Mayeur, Jason R.

    The use of metallic material systems (e.g. pure metals, alloys, metal matrix composites) in a wide range of engineering applications from medical devices to electronic components to automobiles continues to motivate the development of improved constitutive models to meet increased performance demands while minimizing cost. Emerging technologies often incorporate materials in which the dominant microstructural features have characteristic dimensions reaching into the submicron and nanometer regime. Metals comprised of such fine microstructures often exhibit unique and size-dependent mechanical response, and classical approaches to constitutive model development at engineering (continuum) scales, being local in nature, are inadequate for describing such behavior. Therefore, traditional modeling frameworks must be augmented and/or reformulated to account for such phenomena. Crystal plasticity constitutive models have proven quite capable of capturing first-order microstructural effects such as grain orientation (elastic/plastic anisotropy), grain morphology, phase distribution, etc. on the deformation behavior of both single and polycrystals, yet suffer from the same limitations as other local continuum theories with regard to capturing scale-dependent mechanical response. This research is focused on the development, numerical implementation, and application of a generalized (nonlocal) theory of single crystal plasticity capable of describing the scale-dependent mechanical response of both single and polycrystalline metals that arises as a result of heterogeneous deformation. This research developed a dislocation-based theory of micropolar single crystal plasticity. The majority of nonlocal crystal plasticity theories are predicated on the connection between gradients of slip and geometrically necessary dislocations. Due to the diversity of existing nonlocal crystal plasticity theories, a review, summary, and comparison of representative model classes is presented in

  18. Scale-dependent neighborhood effects: shared doom and associational refuge.

    PubMed

    Emerson, Sara E; Brown, Joel S; Whelan, Christopher J; Schmidt, Kenneth A

    2012-03-01

    A resource's susceptibility to predation may be influenced by its own palatability and the palatability of its neighbors. We tested for effects of plant chemical defenses on seed survival by manipulating the frequency of palatable and less palatable sunflower seeds in food patches subject to harvest by fox squirrels (Sciurus niger) and gray squirrels (Sciurus carolinensis). We varied resource distributions at three scales: among stations (aggregates of patches ca. 50 m apart), among patches immediately adjacent to each other, and within patches. When food patches were segregated into high-palatability and low-palatability stations (Experiment 1), seeds suffered greater mortality at stations with high levels of palatable seeds. In the same experiment, within patches, squirrels selected strongly for palatable seeds over less palatable seeds. When high- and low-palatability food patches were placed together at the same stations (Experiment 2), increasing densities of co-occurring palatable seeds amplified the mortality of less palatable seeds, indicating "shared doom." When palatable and less palatable seeds were partitioned into micropatches (Experiment 3), associational effects disappeared, as predicted. Furthermore, selectivity in less palatable patches increased as the initial densities of palatable seeds increased, and selectivity in palatable patches decreased as the initial densities of less palatable seeds increased. Foraging theory predicts associational effects among prey that vary in palatability. Our results show how the type and magnitude of associational effects emerge from the interplay among the spatial scale of prey heterogeneity, the diet selection strategy, and the scale-dependent foraging responses of the consumer. PMID:21987268

  19. The scale dependence of optical diversity in a prairie ecosystem

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.

    2015-12-01

    Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.

  20. Influence of reheating on the trispectrum and its scale dependence

    SciTech Connect

    Leung, Godfrey; Tarrant, Ewan R. M.; Copeland, Edmund J.; Byrnes, Christian T. E-mail: ppxet@nottingham.ac.uk E-mail: ed.copeland@nottingham.ac.uk

    2013-08-01

    We study the evolution of the non-linear curvature perturbation during perturbative reheating, and hence how observables evolve to their final values which we may compare against observations. Our study includes the evolution of the two trispectrum parameters, g{sub NL} and τ{sub NL}, as well as the scale dependence of both f{sub NL} and τ{sub NL}. In general the evolution is significant and must be taken into account, which means that models of multifield inflation cannot be compared to observations without specifying how the subsequent reheating takes place. If the trispectrum is large at the end of inflation, it normally remains large at the end of reheating. In the classes of models we study, it remains very hard to generate τ{sub NL} >> f{sub NL}{sup 2}, regardless of the decay rates of the fields. Similarly, for the classes of models in which g{sub NL} ≅ τ{sub NL} during slow-roll inflation, we find the relation typically remains valid during reheating. Therefore it is possible to observationally test such classes of models without specifying the parameters of reheating, even though the individual observables are sensitive to the details of reheating. It is hard to generate an observably large g{sub NL} however. The runnings, n{sub f{sub N{sub L}}} and n{sub τ{sub N{sub L}}}, tend to satisfy a consistency relation n{sub τ{sub N{sub L}}} = (3/2)n{sub f{sub N{sub L}}} regardless of the reheating timescale, but are in general too small to be observed for the class of models considered.

  1. A Critical Analysis of the Concept of Scale Dependent Macrodispersivity

    NASA Astrophysics Data System (ADS)

    Zech, A.; Attinger, S.; Cvetkovic, V.; Dagan, G.; Dietrich, P.; Fiori, A.; Rubin, Y.; Teutsch, G.

    2014-12-01

    Transport by groundwater occurs over the different scales encountered by moving solute plumes. Spreading of plumes is often quantified by the longitudinal macrodispersivity αL (half the rate of change of the second spatial moment divided by the mean velocity). It was found that generally αL is scale dependent, increasing with the travel distance L of the plume centroid, stabilizing eventually at a constant value (Fickian regime).It was surmised in the literature that αL(L) scales up with travel distance following a universal scaling law. Attempts to define the scaling law were pursued by several authors (Arya et al, 1988, Neuman, 1990, Xu and Eckstein, 1995, Schulze-Makuch, 2005), by fitting a regression line in the log-log representation of results from an ensemble of field experiment, primarily those experiments included by the compendium of experiments summarized by Gelhar et al, 1992.Despite concerns raised about universality of scaling laws (e.g., Gelhar, 1992, Anderson, 1991), such relationships are being employed by practitioners for modeling multiscale transport (e.g., Fetter, 1999), because they, presumably, offer a convenient prediction tool, with no need for detailed site characterization. Several attempts were made to provide theoretical justifications for the existence of a universal scaling law (e.g. Neuman, 1990 and 2010, Hunt et al, 2011).Our study revisited the concept of universal scaling through detailed analyses of field data (including the most recent tracer tests reported in the literature), coupled with a thorough re-evaluation of the reliability of the reported αL values. Our investigation concludes that transport, and particularly αL(L), is formation-specific, and that modeling of transport cannot be relegated to a universal scaling law. Instead, transport requires characterization of aquifer properties, e.g. spatial distribution of hydraulic conductivity, and the use of adequate models.

  2. A Critical Analysis of the Concept of Scale Dependent Macrodispersivity

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Attinger, Sabine; Cvetkovic, Vladimir; Dagan, Gedeon; Dietrich, Peter; Fiori, Aldo; Rubin, Yoram; Teutsch, Georg

    2015-04-01

    Transport by groundwater occurs over the different scales encountered by moving solute plumes. Spreading of plumes is often quantified by the longitudinal macrodispersivity αL (half the rate of change of the second spatial moment divided by the mean velocity). It was found that generally αL is scale dependent, increasing with the travel distance L of the plume centroid, stabilizing eventually at a constant value (Fickian regime). It was surmised in the literature that αL scales up with travel distance L following a universal scaling law. Attempts to define the scaling law were sursued by several authors (Arya et al, 1988, Neuman, 1990, Xu and Eckstein, 1995, Schulze-Makuch, 2005), by fitting a regression line in the log-log representation of results from an ensemble of field experiment, primarily those experiments included by the compendium of experiments summarized by Gelhar et al, 1992. Despite concerns raised about universality of scaling laws (e.g., Gelhar, 1992, Anderson, 1991), such relationships are being employed by practitioners for modeling multiscale transport (e.g., Fetter, 1999), because they, presumably, offer a convenient prediction tool, with no need for detailed site characterization. Several attempts were made to provide theoretical justifications for the existence of a universal scaling law (e.g. Neuman, 1990 and 2010, Hunt et al, 2011). Our study revisited the concept of universal scaling through detailed analyses of field data (including the most recent tracer tests reported in the literature), coupled with a thorough re-evaluation of the reliability of the reported αL values. Our investigation concludes that transport, and particularly αL, is formation-specific, and that modeling of transport cannot be relegated to a universal scaling law. Instead, transport requires characterization of aquifer properties, e.g. spatial distribution of hydraulic conductivity, and the use of adequate models.

  3. Toward Explaining Scale-dependent Velocity Structure Across an Exposed Brittle Fault Zone

    NASA Astrophysics Data System (ADS)

    Gettemy, G. L.; Tobin, H. J.; Hole, J. A.; Sayed, A. Y.

    2001-12-01

    The lack of preserved surface exposures of faults generally necessitates the use of remote-sensed data to infer lithostructural architecture of the subsurface of any particular fault, particularly seismic experiments which detail physical properties linked to wave propagation phenomena. The exposure of the San Gregorio Fault at Moss Beach (25 km southwest of San Francisco, CA), however, provides a unique opportunity to examine a preserved active fault zone. We combine two scales of geophysical investigation--high-resolution field velocity tomography, and an extensive laboratory ultrasonic velocity measurement program--to produce a 1D across-fault velocity structure that correlates well with the previously mapped structural domains. The absolute velocities within a given domain are strongly scale dependent, with the laboratory velocities 20-50% greater than the field-scale tomography results. This disparity can potentially be attributed to sampling bias (i.e., the inability to sample and ultrasonically test macroscopically fractured rock near \\textit{in situ} conditions), saturation effects, and frequency dispersion. We investigate the importance of the mesoscopic fracture distribution and depositional heterogeneity on the velocity discrepancies through monte carlo analysis by applying an effective medium theory of multi-scaled fractured rock combined with a propagator matrix algorithm. We parameterize the model by generating a 1D model of the fault zone, incorporating dispersion-adjusted saturated rock velocities and mesoscopic fracture distributions consistent with ultrasonic measurements and field-scale geologic mapping. The results clearly demonstrate that differing elastomechanical parameters must be invoked to explain the velocity discrepancy within the hanging wall (massive mudstone) and foot wall (sandstone with interbedded pebble conglomerate). These results highlight the value of conducting multi-scaled investigations when studying complex fault zone

  4. Continuous Feedback and Macroscopic Coherence

    NASA Technical Reports Server (NTRS)

    Tombesi, Paolo; Vitali, David

    1996-01-01

    We show that a model, recently introduced for quantum nondemolition measurements of a quantum observable, can be adapted to obtain a measurement scheme which is able to slow down the destruction of macroscopic coherence due to the measurement apparatus.

  5. Quantal radiation from macroscopic rotation

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.; Plujko, V.

    1988-09-01

    Macroscopic rotation of deformed excited nuclei may under certain conditions be accompanied by radiation of quasi-discrete gamma rays which resemble the cascade of transitions between nuclear rotational states.

  6. Macroscopic constraints on string unification

    SciTech Connect

    Taylor, T.R.

    1989-03-01

    The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs.

  7. Macroscopic-microscopic mass models

    SciTech Connect

    Nix, J.R.; Moller, P.

    1995-07-01

    We discuss recent developments in macroscopic-microscopic mass models, including the 1992 finite-range droplet model, the 1992 extended- Thomas-Fermi Strutinsky-integral model, and the 1994 Thomas-Fermi model, with particular emphasis on how well they extrapolate to new regions of nuclei. We also address what recent developments in macroscopic-microscopic mass models are teaching us about such physically relevant issues as the nuclear curvature energy, a new congruence energy arising from a greater-than-average overlap of neutron and proton wave functions, the nuclear incompressibility coefficient, and the coulomb redistribution energy arising from a central density depression. We conclude with a brief discussion of the recently discovered rock of metastable superheavy nuclei near {sup 272}110 that had been correctly predicted by macroscopic-microscopic models, along with a possible new tack for reaching an island near {sup 290}110 beyond our present horizon.

  8. Are cloned quantum states macroscopic?

    PubMed

    Fröwis, F; Dür, W

    2012-10-26

    We study quantum states produced by optimal phase covariant quantum cloners. We argue that cloned quantum superpositions are not macroscopic superpositions in the spirit of Schrödinger's cat, despite their large particle number. This is indicated by calculating several measures for macroscopic superpositions from the literature, as well as by investigating the distinguishability of the two superposed cloned states. The latter rapidly diminishes when considering imperfect detectors or noisy states and does not increase with the system size. In contrast, we find that cloned quantum states themselves are macroscopic, in the sense of both proposed measures and their usefulness in quantum metrology with an optimal scaling in system size. We investigate the applicability of cloned states for parameter estimation in the presence of different kinds of noise.

  9. Scale-dependent feedbacks between patch size and plant reproduction in desert grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theoretical models suggest that scale-dependent feedbacks between plant reproductive success and plant patch size govern transitions from highly to sparsely vegetated states in drylands, yet there is scant empirical evidence for these mechanisms. Scale-dependent feedback models suggest that an optim...

  10. Macroscopic resonances in planar geometry

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.; Vydrug-Vlasenko, S.; Magner, A.

    1987-09-01

    Resonating response is a characteristic feature of free-particle system contained between two vibrating planar surfaces. Resonance frequencies and widths are determined by a mean period of motion of particles reflected from the walls. Resonances due to quasiperiodic macroscopic motion appear when the interaction among quasi-particles by means of perturbations of the common self-consistent field is included. They have finite widths corresponding to collisionless Landau dissipation. Possible relationship of this phenomenon to nuclear giant resonances is discussed.

  11. A scale dependent black hole in three-dimensional space–time

    NASA Astrophysics Data System (ADS)

    Koch, Benjamin; Reyes, Ignacio A.; Rincón, Ángel

    2016-11-01

    Scale dependence at the level of the effective action is a generic result of quantum field theory. Allowing for scale dependence of the gravitational couplings leads to a generalization of the corresponding field equations. In this work, those equations are solved by imposing the ‘null energy condition’ in three-dimensional space time with stationary spherical symmetry. The constants of integration are given in terms of the classical BTZ parameters plus one additional constant, that parametrizes the strength of the scale dependence. The properties such as asymptotics, horizon structure, and thermodynamics are discussed. It is found that the black hole entropy shows a remarkable transition from the usual ‘area law’ to an ‘area × radius’ law.

  12. Data Resolution and Scale-dependent Fracture Clustering: Implications for Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Roy, A.; Aydin, A.; Mukerji, T.; Cilona, A.

    2015-12-01

    Fracture spacing data collected from scanlines and wells at various resolutions are commonly analyzed for the purposes of aquifer and reservoir characterization. It has been previously found for a certain set of nested fracture networks with similar fractal dimensions that differences in scale of observation hence, resolution lead to differences in clustering. It remains however, to be established whether differences in resolution of fracture spacing data can lead to significant differences in clustering behavior for a wider range of datasets. Most studies on fracture analysis either consider the cumulative frequency of spacing data without regard to the actual sequence of the spacing values or compute an average spacing that may not delineate clustered fractures. The coefficient of variation parameter, Cv is often used to differentiate between clustered, random, and unclustered fractures in a scanline but does not address the issue of scale-dependent variations. Lacunarity is a parameter that has been previously used for quantifying the scale-dependent clustering of spatial patterns and recently, this technique has also been used for identifying scale-dependent pattern changes from scanline data. The current research illustrates the application of this technique for delineating differences between scale-dependent clustering attributes of data collected at various resolutions along the same scanline. Specifically, data were collected at different resolutions from two outcrop exposures, a cliff-section and pavement, of the Cretaceous turbititic sandstones of the Chatsworth Formation widely exposed in southern California (USA). For each scanline, low resolution aerial photographs and high resolution ground measurements are analyzed for scale-dependent clustering attributes. In terms of scale-dependent lacunarity, higher resolution data show larger values than their respective low-resolution counterparts. It is postulated that lower resolution data captures fracture

  13. Indirect measurement of interfacial melting from macroscopic ice observations

    NASA Astrophysics Data System (ADS)

    Saruya, Tomotaka; Kurita, Kei; Rempel, Alan W.

    2014-06-01

    Premelted water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state well below the bulk melting temperature and can supply the segregated growth of ice lenses. Using macroscopic measurements of ice-lens initiation position in step-freezing experiments, we infer how the nanometer-scale thicknesses of premelted films depend on temperature depression below bulk melting. The interfacial interactions between ice, liquid, and soda-lime glass particles exhibit a power-law behavior that suggests premelting in our system is dominated by short-range electrostatic forces. Using our inferred film thicknesses as inputs to a simple force-balance model with no adjustable parameters, we obtain good quantitative agreement between numerical predictions and observed ice-lens thickness. Macroscopic observations of lensing behavior have the potential as probes of premelting behavior in other systems.

  14. Indirect measurement of interfacial melting from macroscopic ice observations.

    PubMed

    Saruya, Tomotaka; Kurita, Kei; Rempel, Alan W

    2014-06-01

    Premelted water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state well below the bulk melting temperature and can supply the segregated growth of ice lenses. Using macroscopic measurements of ice-lens initiation position in step-freezing experiments, we infer how the nanometer-scale thicknesses of premelted films depend on temperature depression below bulk melting. The interfacial interactions between ice, liquid, and soda-lime glass particles exhibit a power-law behavior that suggests premelting in our system is dominated by short-range electrostatic forces. Using our inferred film thicknesses as inputs to a simple force-balance model with no adjustable parameters, we obtain good quantitative agreement between numerical predictions and observed ice-lens thickness. Macroscopic observations of lensing behavior have the potential as probes of premelting behavior in other systems.

  15. Macroscopic and microscopic aspects in nuclear fission

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.

    1989-10-01

    Nuclear macroscopic properties are determined as statistical averages and it is then recognized that several levels of macroscopic descriptions may exist. By zooming the averaging scale the gross shell structures are distinguished from the macroscopic background and a theory can be formed consistently combining both the macroscopic and microscopic features. The shell structure varies in the fissioning nucleus on its way to scission leading to a double-humped shape of the fission barrier. This is due to modifications of the classical periodic paths responsible for the quantal non-uniformity of the single-particle phase space. Briefly results of the combined theory for the fission process are outlined.

  16. Effects of scale-dependent non-Gaussianity on cosmological structures

    SciTech Connect

    LoVerde, Marilena; Miller, Amber; Shandera, Sarah; Verde, Licia E-mail: amber@astro.columbia.edu E-mail: verde@ieec.uab.es

    2008-04-15

    The detection of primordial non-Gaussianity could provide a powerful means to test various inflationary scenarios. Although scale-invariant non-Gaussianity (often described by the f{sub NL} formalism) is currently best constrained by the CMB, single-field models with changing sound speed can have strongly scale-dependent non-Gaussianity. Such models could evade the CMB constraints but still have important effects at scales responsible for the formation of cosmological objects such as clusters and galaxies. We compute the effect of scale-dependent primordial non-Gaussianity on cluster number counts as a function of redshift, using a simple ansatz to model scale-dependent features. We forecast constraints on these models achievable with forthcoming datasets. We also examine consequences for the galaxy bispectrum. Our results are relevant for the Dirac-Born-Infeld model of brane inflation, where the scale dependence of the non-Gaussianity is directly related to the geometry of the extra dimensions.

  17. Scale dependence of the hydraulic properties of a fractured aquifer estimated using transfer functions

    NASA Astrophysics Data System (ADS)

    Pedretti, D.; Russian, A.; Sanchez-Vila, X.; Dentz, M.

    2016-07-01

    We present an investigation of the scale dependence of hydraulic parameters in fractured media based on the concept of transfer functions (TF). TF methods provide an inexpensive way to perform aquifer parameter estimation, as they relate the fluctuations of an observation time series (hydraulic head fluctuations) to an input function (aquifer recharge) in frequency domain. Fractured media are specially sensitive to this approach as hydraulic parameters are strongly scale-dependent, involving nonstationary statistical distributions. Our study is based on an extensive data set, involving up to 130 measurement points with periodic head measurements that in some cases extend for more than 30 years. For each point, we use a single-porosity and dual-continuum TF formulation to obtain a distribution of transmissivities and storativities in both mobile and immobile domains. Single-porosity TF estimates are compared with data obtained from the interpretation of over 60 hydraulic tests (slug and pumping tests). Results show that the TF is able to estimate the scale dependence of the hydraulic parameters, and it is consistent with the behavior of estimates from traditional hydraulic tests. In addition, the TF approach seems to provide an estimation of the system variance and the extension of the ergodic behavior of the aquifer (estimated in approximately 500 m in the analyzed aquifer). The scale dependence of transmissivity seems to be independent from the adopted formulation (single or dual-continuum), while storativity is more sensitive to the presence of multiple continua.

  18. The clustering of dark matter haloes: scale-dependent bias on quasi-linear scales

    NASA Astrophysics Data System (ADS)

    Jose, Charles; Lacey, Cedric G.; Baugh, Carlton M.

    2016-11-01

    We investigate the spatial clustering of dark matter haloes, collapsing from 1σ-4σ fluctuations, in the redshift range 0-5 using N-body simulations. The halo bias of high redshift haloes (z ≥ 2) is found to be strongly nonlinear and scale dependent on quasi-linear scales that are larger than their virial radii (0.5-10 Mpc h-1). However, at lower redshifts, the scale dependence of nonlinear bias is weaker and is of the order of a few per cent on quasi-linear scales at z ˜ 0. We find that the redshift evolution of the scale-dependent bias of dark matter haloes can be expressed as a function of four physical parameters: the peak height of haloes, the nonlinear matter correlation function at the scale of interest, an effective power-law index of the rms linear density fluctuations and the matter density of the universe at the given redshift. This suggests that the scale dependence of halo bias is not a universal function of the dark matter power spectrum, which is commonly assumed. We provide a fitting function for the scale-dependent halo bias as a function of these four parameters. Our fit reproduces the simulation results to an accuracy of better than 4 per cent over the redshift range 0 ≤ z ≤ 5. We also extend our model by expressing the nonlinear bias as a function of the linear matter correlation function. It is important to incorporate our results into the clustering models of dark matter haloes at any redshift, including those hosting early generations of stars and galaxies before reionization.

  19. Macroscopic characterisations of Web accessibility

    NASA Astrophysics Data System (ADS)

    Lopes, Rui; Carriço, Luis

    2010-12-01

    The Web Science framework poses fundamental questions on the analysis of the Web, by focusing on how microscopic properties (e.g. at the level of a Web page or Web site) emerge into macroscopic properties and phenomena. One research topic on the analysis of the Web is Web accessibility evaluation, which centres on understanding how accessible a Web page is for people with disabilities. However, when framing Web accessibility evaluation on Web Science, we have found that existing research stays at the microscopic level. This article presents an experimental study on framing Web accessibility evaluation into Web Science's goals. This study resulted in novel accessibility properties of the Web not found at microscopic levels, as well as of Web accessibility evaluation processes themselves. We observed at large scale some of the empirical knowledge on how accessibility is perceived by designers and developers, such as the disparity of interpretations of accessibility evaluation tools warnings. We also found a direct relation between accessibility quality and Web page complexity. We provide a set of guidelines for designing Web pages, education on Web accessibility, as well as on the computational limits of large-scale Web accessibility evaluations.

  20. Scale Dependence of Measurements of Surface-water and Groundwater Interactions in Everglades Wetlands

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.

    2005-05-01

    large component of recharge and discharge fluxes driven by high-frequency (weekly to monthly) reversals in the hydraulic gradient that result from heavy precipitation and/or sudden surface-water releases through water-control structures. In contrast, tritium modeling was not sensitive to those high-frequency signals, and was instead sensitive to the much smaller component of recharge and discharge fluxes that are driven deeper into the aquifer (limit of approximately 8 m) by lower frequency fluctuations in hydraulic gradient resulting from longer term (interannual to decadal) variations in the Everglades water balance. Use of complementary measurement approaches therefore revealed a "scale-dependence" of measurements of surface-water and groundwater interactions in the Everglades that must be considered for specific applications. For example, rates of recharge and discharge based on fast-timescale exchanges between surface water and peat porewater are appropriate for problems involving the possible remobilization of very high levels of nutrients stored in areas of the Everglades that were previously enriched by drainage from agricultural areas.

  1. Scale-dependent hemispherical asymmetry from general initial state during inflation

    SciTech Connect

    Firouzjahi, Hassan; Namjoo, Mohammad Hossein; Gong, Jinn-Ouk E-mail: jinn-ouk.gong@apctp.org

    2014-11-01

    We consider a general initial state for inflation as the mechanism for generating scale-dependent hemispherical asymmetry. An observable scale-dependent non-Gaussianity is generated that leads to observable hemispherical asymmetry from the super-horizon long mode modulation. We show that the amplitude of dipole asymmetry falls off exponentially on small angular scales which can address the absence of dipole asymmetry at these scales. In addition, depending on the nature of non-vaccum initial state, the amplitude of the dipole asymmetry has oscillatory features which can be detected in a careful CMB map analysis. Furthermore, we show that the non-vacuum initial state provides a natural mechanism for enhancing the super horizon long mode perturbation as required to generate the dipole asymmetry.

  2. Characterization of scale-dependent dispersivity in fractured formations through a divergent flow tracer test.

    PubMed

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal; Chen, Zhangxin; Ware, Antony

    2015-04-01

    Scale-dependency of dispersivity has been reported from field tracer tests. We present a simple methodology for characterization of dispersivity as a linear function of scale around an injection well using divergent flow tracer test data conducted in fractured formations. Results show that the slope of this linear dispersivity function can be estimated using tracer concentration measurements in a monitoring well. The characterized dispersivity function has applications in modeling of field-scale transport processes in fractured formations. PMID:24660811

  3. Rank distributions: A panoramic macroscopic outlook

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  4. Rank distributions: a panoramic macroscopic outlook.

    PubMed

    Eliazar, Iddo I; Cohen, Morrel H

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions-top-down, bottom-up, and global-and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails. PMID:24580176

  5. Scale-dependent feedbacks between patch size and plant reproduction in desert grassland

    USGS Publications Warehouse

    Svejcar, Lauren N.; Bestelmeyer, Brandon T.; Duniway, Michael C.; James, Darren K.

    2015-01-01

    Theoretical models suggest that scale-dependent feedbacks between plant reproductive success and plant patch size govern transitions from highly to sparsely vegetated states in drylands, yet there is scant empirical evidence for these mechanisms. Scale-dependent feedback models suggest that an optimal patch size exists for growth and reproduction of plants and that a threshold patch organization exists below which positive feedbacks between vegetation and resources can break down, leading to critical transitions. We examined the relationship between patch size and plant reproduction using an experiment in a Chihuahuan Desert grassland. We tested the hypothesis that reproductive effort and success of a dominant grass (Bouteloua eriopoda) would vary predictably with patch size. We found that focal plants in medium-sized patches featured higher rates of grass reproductive success than when plants occupied either large patch interiors or small patches. These patterns support the existence of scale-dependent feedbacks in Chihuahuan Desert grasslands and indicate an optimal patch size for reproductive effort and success in B. eriopoda. We discuss the implications of these results for detecting ecological thresholds in desert grasslands.

  6. Scale dependencies of proton spin constituents with a nonperturbative αs

    NASA Astrophysics Data System (ADS)

    Jia, Shaoyang; Huang, Feng

    2012-11-01

    By introducing the contribution from dynamically generated gluon mass, we present a brand new parametrized form of QCD beta function to get an inferred limited running behavior of QCD coupling constant αs. This parametrized form is regarded as an essential factor to determine the scale dependencies of the proton spin constituents at the very low scale. In order to compare with experimental results directly, we work within the gauge-invariant framework to decompose the proton spin. Utilizing the updated next-to-next-leading-order evolution equations for angular momentum observables within a modified minimal subtraction scheme, we indicate that gluon contribution to proton spin cannot be ignored. Specifically, by assuming asymptotic limits of the total quark/gluon angular momentum valid, respectively, the scale dependencies of quark angular momentum Jq and gluon angular momentum Jg down to Q2˜1GeV2 are presented, which are comparable with the preliminary analysis of deeply virtual Compton scattering experiments by HERMES and JLab. After solving scale dependencies of quark spin ΔΣq, orbital angular momenta of quarks Lq are given by subtraction, presenting a holistic picture of proton spin partition within up and down quarks at a low scale.

  7. Towards a macroscopic generator coordinate method

    NASA Astrophysics Data System (ADS)

    Strutinsky, V. M.; Ivanyuk, F. A.; Vydrug-Vlasenko, S. M.

    1992-09-01

    Collective quantities are defined as macroscopic statistical averages over many level crossing points where microscopic densities are redistributed. Accordingly, the generator coordinate method (GCM) is reconsidered. It is concluded that, contrary to earlier arguments, the macroscopically defined inertia parameter which appears in the GCM Hamiltonian has a finite value close to that obtained using traditional theories assuming the existence of the adiabatic BCS ground state.

  8. Predictive analysis of scale-dependent habitat association: Juvenile cod ( Gadus spp.) in eastern Newfoundland

    NASA Astrophysics Data System (ADS)

    Schneider, David C.; Norris, Michael J.; Gregory, Robert S.

    2008-08-01

    We used results of laboratory experiments to make predictions about a well-established phenomenon, scale-dependent association of organisms with habitat. Based on shelter seeking behaviour in laboratory experiments, we predicted that age 0 cod would be locally decoupled from vegetated habitat at spatial scales on the order of the limits of underwater visibility, becoming associated at larger scales. On transects at 10 sites in Newman Sound, Bonavista Bay, Newfoundland age 0 juvenile cod were usually found either in or adjacent to the band of tall eelgrass running parallel to the coast. At the scale of 5 m or less along transects perpendicular and parallel to the coast cod were decoupled from habitat, as expected. At the scale of 5-20 m cod were either decoupled or only weakly associated with habitat, contrary to expectation based on underwater visibility and shelter seeking behaviour in the lab. At the scale of 20-100 m along transects perpendicular to the coast cod were positively associated with tall eelgrass, while being negatively associated with short eelgrass. This reflects the negative association of tall with short eelgrass due to parallel band structure at this scale. At scales of 20-100 m along transects parallel to the coast cod were positively associated with short eelgrass. Decoupling of cod density from the amount of habitat at scales of 5-20 m was due to the formation of small shoals near the boundaries between tall and short eelgrasses. The observed change in association of numbers with habitat with change in scale, combined with the theoretical expectation that association with habitat decreases as the risk/reward ratio increases, allowed us to draw the conclusion that the ratio of risk to reward decreases as spatial scale increases from 10 to 100 m. The predictive approach we develop here can be extended to other scale-dependent phenomena, such as scale-dependent association of predator with prey.

  9. Scale dependence of Hortonian rainfall-runoff processes in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Chen, L.; Sela, S.; Svoray, T.; Assouline, S.

    2016-07-01

    Scale dependence of Hortonian rainfall-runoff processes has received much attention in the literature but has not been fully resolved. To further explore this issue, a recently developed model was applied to simulate rainfall-infiltration-runoff processes at multiple spatial scales. The model consists of the coupling between a two-dimensional runoff routing module and a two-layer infiltration module, thus accounting for spatial variability in soil properties, soil surface sealing, topography, and partial vegetation cover. A 76 m2 semiarid experimental plot with sparse cover of vegetation patches and a sealed soil surface in inter-patch bare areas was used as a representative elementary area (REA). A series of four larger artificial plots of different areas was created based on this REA to examine the scale dependence of rainfall-runoff relationships in the case of stationary heterogeneity. Results show that runoff depth (or runoff coefficient) decreases with increasing scale. This trend is more prominent at scales less than 10 times the REA length. Power law relationships can quantitatively describe the scaling law. The major mechanism of the scale effect is run-on infiltration. However, rainfall intensity and soil properties can both affect the scaling trend through their interaction with run-on. Higher intensity and less temporal variability of rainfall can both reduce the scale effect. Temporally intermittent rainfall may produce spatially oscillating infiltration rates at large scales. Vegetation patterns are another factor that may affect the scaling. Random-vegetation patterns, compared with regular patterns with similar statistical properties, change the spatial distributions, but do not significantly change either the total amount and statistical properties of infiltration and runoff or the scale dependence of the rainfall-runoff process.

  10. Scale dependence of the effective matrix diffusion coefficient:some analytical results

    SciTech Connect

    Liu, H.H.; Zhang, Y.Q.; Molz, F.J.

    2005-05-30

    Matrix diffusion is an important process affecting solutetransport in fractured rock, and the matrix diffusion coefficient is akey parameter for describing this process. Previous studies haveindicated that the effective matrix-diffusion coefficient values,obtained from a number of field tracer tests, are enhanced in comparisonwith local values and may increase with test scale. In thiscommunication, we develop analytical expressions for the effective matrixdiffusion coefficient for two simple fracture-matrix systems, anddemonstrate that heterogeneities in the rock matrix at different scalescontribute to the scale dependence of the effective matrix diffusioncoefficient.

  11. General scale-dependent anisotropic turbulence and its impact on free space optical communication system performance.

    PubMed

    Toselli, Italo; Korotkova, Olga

    2015-06-01

    We generalize a recently introduced model for nonclassic turbulent spatial power spectrum involving anisotropy along two mutually orthogonal axes transverse to the direction of beam propagation by including two scale-dependent weighting factors for these directions. Such a turbulent model may be pertinent to atmospheric fluctuations in the refractive index in stratified regions well above the boundary layer and employed for air-air communication channels. When restricting ourselves to an unpolarized, coherent Gaussian beam and a weak turbulence regime, we examine the effects of such a turbulence type on the OOK FSO link performance by including the results on scintillation flux, probability of fade, SNR, and BERs.

  12. Investigation of Intermittency in Magnetohydrodynamics and Solar Wind Turbulence: Scale-dependent Kurtosis

    NASA Astrophysics Data System (ADS)

    Wan, Minping; Osman, Kareem T.; Matthaeus, William H.; Oughton, Sean

    2012-01-01

    The behavior of scale-dependent (or filtered) kurtosis is studied in the solar wind using magnetic field measurements from the ACE and Cluster spacecraft at 1 AU. It is also analyzed numerically with high-resolution magnetohydrodynamic spectral simulations. In each case the filtered kurtosis increases with wavenumber, implying the presence of coherent structures at the smallest scales. This phase coupling is related to intermittency in solar wind turbulence and the emergence of non-Gaussian statistics. However, it is inhibited by the presence of upstream waves and other phase-randomizing structures, which act to reduce the growth of kurtosis.

  13. Scale-dependent relative dispersion measurements from the Grand LAgrangian Deployment (GLAD)

    NASA Astrophysics Data System (ADS)

    Haza, Angelique; Poje, Andrew; Ozgokmen, Tamay; Griffa, Annalisa; Haus, Brian; Huntley, Helga; Hogan, Patrick; Jacobs, Gregg; Kirwan, Danny; Lipphardt, Bruce; Novelli, Guillaume; Olascoaga, Josefina; Beron-Vera, Francisco; Reniers, Ad; Ryan, Edward

    2013-04-01

    The scale-dependent Lagrangian dispersion metrics, such as the Finite Scale Lyapunov Exponent, are suitable to study multi-scale interaction of ocean flows. Of particular interest is the possible impact of submesoscale flows on transport in the ocean, for applied problems such as oil spill. Results will be presented from the GLAD experiment, which was configured to optimize in-situ submesoscale relative dispersion measurements in the Gulf of Mexico near DeSoto Canyon from a release of more than 300 surface drifters.

  14. INVESTIGATION OF INTERMITTENCY IN MAGNETOHYDRODYNAMICS AND SOLAR WIND TURBULENCE: SCALE-DEPENDENT KURTOSIS

    SciTech Connect

    Wan Minping; Osman, Kareem T.; Matthaeus, William H.; Oughton, Sean

    2012-01-10

    The behavior of scale-dependent (or filtered) kurtosis is studied in the solar wind using magnetic field measurements from the ACE and Cluster spacecraft at 1 AU. It is also analyzed numerically with high-resolution magnetohydrodynamic spectral simulations. In each case the filtered kurtosis increases with wavenumber, implying the presence of coherent structures at the smallest scales. This phase coupling is related to intermittency in solar wind turbulence and the emergence of non-Gaussian statistics. However, it is inhibited by the presence of upstream waves and other phase-randomizing structures, which act to reduce the growth of kurtosis.

  15. Balance Problems

    MedlinePlus

    ... version of this page please turn Javascript on. Balance Problems About Balance Problems Have you ever felt dizzy, lightheaded, or ... dizziness problem during the past year. Why Good Balance is Important Having good balance means being able ...

  16. Scale-dependent bias from the reconstruction of non-Gaussian distributions

    SciTech Connect

    Chongchitnan, Sirichai; Silk, Joseph

    2011-04-15

    Primordial non-Gaussianity introduces a scale-dependent variation in the clustering of density peaks corresponding to rare objects. This variation, parametrized by the bias, is investigated on scales where a linear perturbation theory is sufficiently accurate. The bias is obtained directly in real space by comparing the one- and two-point probability distributions of density fluctuations. We show that these distributions can be reconstructed using a bivariate Edgeworth series, presented here up to an arbitrarily high order. The Edgeworth formalism is shown to be well-suited for ''local'' cubic-order non-Gaussianity parametrized by g{sub NL}. We show that a strong scale dependence in the bias can be produced by g{sub NL} of order 10{sup 5}, consistent with cosmic microwave background constraints. On a separation length of {approx}100 Mpc, current constraints on g{sub NL} still allow the bias for the most massive clusters to be enhanced by 20-30% of the Gaussian value. We further examine the bias as a function of mass scale, and also explore the relationship between the clustering and the abundance of massive clusters in the presence of g{sub NL}. We explain why the Edgeworth formalism, though technically challenging, is a very powerful technique for constraining high-order non-Gaussianity with large-scale structures.

  17. A scale-dependent blending scheme for WRFDA: impact on regional weather forecasting

    NASA Astrophysics Data System (ADS)

    Wang, H.; Huang, X.-Y.; Xu, D.; Liu, J.

    2014-08-01

    Due to limitation of the domain size and limited observations used in regional data assimilation and forecasting systems, regional forecasts suffer a general deficiency in effectively representing large-scale features such as those in global analyses and forecasts. In this paper, a scale-dependent blending scheme using a low-pass Raymond tangent implicit filter was implemented in the Data Assimilation system of the Weather Research and Forecasting model (WRFDA) to reintroduce large-scale weather features from global model analysis into the WRFDA analysis. The impact of the blending method on regional forecasts was assessed by conducting full cycle data assimilation and forecasting experiments for a 2-week-long period in September 2012. It is found that there are obvious large-scale forecast errors in the regional WRFDA system running in full cycle mode without the blending scheme. The scale-dependent blending scheme can efficiently reintroduce the large-scale information from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) analyses, and keep small-scale information from WRF analyses. The blending scheme is shown to reduce analysis and forecasting error of wind, temperature and humidity up to 24 h compared to the full cycle experiments without blending. It is also shown to increase precipitation prediction skills in the first 6 h forecasts.

  18. A scale-dependent blending scheme for WRFDA: impact on regional weather forecasting

    NASA Astrophysics Data System (ADS)

    Wang, H.; Huang, X.-Y.; Xu, D.; Liu, J.

    2014-04-01

    Due to limitation of the domain size and limited observations used in regional data assimilation and forecasting systems, regional forecasts suffer a general deficiency in effectively representing large-scale features such as those in global analyses and forecasts. In this paper, a scale-dependent blending scheme using a low-pass Raymond tangent implicit filter was implemented in the Data Assimilation system of the Weather Research and Forecasting model (WRFDA) to re-introduce large-scale weather features from global model analysis into the WRFDA analysis. The impact of the blending method on regional forecasts was assessed by conducting full cycle data assimilation and forecasting experiments for a two-week long period in September 2012. It is found that there are obvious large-scale forecast errors in the regional WRFDA system running in full cycle mode without the blending scheme. The scale-dependent blending scheme can efficiently re-introduce the large-scale information from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) analyses, and keep small-scale information from WRF analyses. The blending scheme is shown to reduce analysis and forecasting error of wind, temperature and humidity up to 24 h compared to the full cycle experiments without blending. It is also shown to increase precipitation prediction skills in the first 6 h forecasts.

  19. Dynamic model with scale-dependent coefficients in the viscous range

    NASA Technical Reports Server (NTRS)

    Meneveau, C.; Lund, T. S.

    1996-01-01

    The standard dynamic procedure is based on the scale-invariance assumption that the model coefficient C is the same at the grid and test-filter levels. In many applications this condition is not met, e.g. when the filter-length, delta, approaches the Kolmogorov scale, and C(delta approaches eta) approaches O. Using a priori tests, we show that the standard dynamic model yields the coefficient corresponding to the test-filter scale (alpha delta) instead of the grid-scale (delta). Several approaches to account for scale dependence are examined and/or tested in large eddy simulation of isotropic turbulence: (a) take the limit alpha approaches 1; (b) solve for two unknown coefficients C(Delta) and C(alpha delta) in the least-square-error formulation; (c) the 'bi-dynamic model', in which two test-filters (e.g. at scales 2(delta) and 4(delta) are employed to gain additional information on possible scale-dependence of the coefficient, and an improved estimate for the grid-level coefficient is obtained by extrapolation, (d) use theoretical predictions for the ratio C(alpha delta)/C(delta) and dynamically solve for C(delta). None of these options is found to be entirely satisfactory, although the last approach appears applicable to the viscous range.

  20. Scale-dependent analysis of an otter-crustacean system in Argentinean Patagonia

    NASA Astrophysics Data System (ADS)

    Cassini, Marcelo H.; Fasola, Laura; Chehébar, Claudio; MacDonald, David W.

    2009-05-01

    The Southern river otter or ‘huillin’, Lontra provocax, is an endangered species endemic of the Andean Patagonian region of Argentina and Chile. It feeds almost exclusively on the genera of macro-crustacea: Aegla and Sammastacus. The aim of this study was to analyse the role of food availability on the huillin’s distribution using a scale-dependent analysis of crustacean and otter distributions. We compared the distributions of otters and macro-crustaceans along a north-south regional gradient, between river basins of northern Patagonia, in an altitudinal gradient within a river basin, and between habitat types within a lake. We investigated the distribution of otters by sign surveys along lake shores, river banks and marine coasts, and of crustaceans using surveys in the water, undigested remains in mink ( Mustela vison) scats, presence of external skeletons at the waterside and through interviews with local people. Our results show that there were heterogeneities in the distributions of macro-crustaceans at four scales and these were generally reflected in the distributions of freshwater otters. We conclude that the main factor limiting the distributions of L. provocax in freshwater environments is the availability of macro-crustaceans. This paper shows how scale-dependent type analyses of population distribution serves as a method for identifying key environmental factors for species for which the use of long-term demographies is unfeasible.

  1. Bias deconstructed: unravelling the scale dependence of halo bias using real-space measurements

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Sefusatti, Emiliano; Chan, Kwan Chuen; Desjacques, Vincent; Monaco, Pierluigi; Sheth, Ravi K.

    2013-11-01

    We explore the scale dependence of halo bias using real-space cross-correlation measurements in N-body simulations and in PINOCCHIO, an algorithm based on Lagrangian Perturbation Theory. Recent work has shown how to interpret such real-space measurements in terms of k-dependent bias in Fourier space, and how to remove the k-dependence to reconstruct the k-independent peak-background split halo bias parameters. We compare our reconstruction of the linear bias, which requires no free parameters, with previous estimates from N-body simulations which were obtained directly in Fourier space at large scales, and find very good agreement. Our reconstruction of the quadratic bias is similarly parameter-free, although in this case there are no previous Fourier space measurements to compare with. Our analysis of N-body simulations explicitly tests the predictions of the excursion set peaks (ESP) formalism of Paranjape et al. for the scale dependence of bias; we find that the ESP predictions accurately describe our measurements. In addition, our measurements in PINOCCHIO serve as a useful, successful consistency check between PINOCCHIO and N-body simulations that is not accessible to traditional measurements.

  2. A crystal plasticity analysis of length-scale dependent internal stresses with image effects

    NASA Astrophysics Data System (ADS)

    Aghababaei, Ramin; Joshi, Shailendra P.

    2012-12-01

    In this work, we present a stress functions approach to include image effects in continuum crystal plasticity arising from the long-range elastic interactions (LRI) between the GND density and free surfaces. The resulting length-scale dependent internal stresses augment those produced by the GND density variation. The formulation is applied to the case of a long, thin specimen subjected to uniform curvature. The analysis shows that under nominally uniform GND density distribution, internal stresses arise from two sources: (1) GND-GND LRI arising from the finite spatial extent of the uniform GND density field and (2) the LRI between the GND density and free surfaces appearing as image fields. A comparison with experimental results suggests that the length-scale for internal stresses, described as a correlation length-scale, should increase with decreasing specimen thickness. This observation is rationalized by associating the internal length-scale with the average slip-plane spacing, which may increase with decreasing specimen size due to paucity of dislocation sources. Finally, we also discuss the length-scale dependent image stress in terms of the Peach-Koehler force density proposed by Gurtin (2002).

  3. Controls on runoff generation and scale-dependence in a distributed hydrologic model

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Entekhabi, D.; Bras, R. L.; Ivanov, V. Y.

    2007-10-01

    Hydrologic response in natural catchments is controlled by a set of complex interactions between storm properties, basin characteristics and antecedent wetness conditions. This study investigates the transient runoff response to spatially-uniform storms of varying properties using a distributed model of the coupled surface-subsurface system, which treats heterogeneities in topography, soils and vegetation. We demonstrate the control that the partitioning into multiple runoff mechanisms (infiltration-excess, saturation-excess, perched return flow and groundwater exfiltration) has on nonlinearities in the rainfall-runoff transformation and its scale-dependence. Antecedent wetness imposed through a distributed water table position is varied to illustrate its effect on runoff generation. Results indicate that transitions observed in basin flood response and its nonlinear and scale-dependent behavior can be explained by shifts in the surface-subsurface partitioning. An analysis of the spatial organization of runoff production also shows that multiple mechanisms have specific catchment niches and can occur simultaneously in the basin. In addition, catchment scale plays an important role in the distribution of runoff production as basin characteristics (soils, vegetation, topography and initial wetness) are varied with basin area. For example, we illustrate how storm characteristics and antecedent wetness play an important role in the scaling properties of the catchment runoff ratio.

  4. Spectral properites and scale dependent transport in simplified stratified systems subject to sporadic threshold adjustment

    NASA Astrophysics Data System (ADS)

    Liu, H.

    2005-12-01

    A stratified atmosphere can be essentially characterized by systems subject to stochastic forcing and threshold adjustment due to convective and shear instability, and the vertical transport can be approximated by eddy diffusion/viscosity. In the linear limit, the equations can be solved explicitly, and the spectra could be determined and are shown to follow power-law distributions, and the eddy transport coefficients are scale independent. The nonlinear equations are also shown to support scale invariance under rather general conditions, and the power-law indices of the spectra are derived from the analysis. These indices, as well as those in the linear limit, are confirmed by numerical simulations. The power-law indices of the ``universal'' spectra of temperature and horizontal wind versus vertical wavenumber and frequency from previous observations are shown to fall in the range determined by the linear and nonlinear limit. This theory, therefore, provides a possible explanation to the universal vertical wavenumber and frequency spectra and their variability. By relating the universal spectra with the sporadic threshold adjustment due to convective or shear instability, which is ubiquitous in stratified fluid systems, the difficulty of previous theories to associate the time and location independent spectral feature with the highly time and location dependent gravity waves is avoided. The analysis also suggests that the vertical eddy transport coefficients are scale dependent, and the implication of this scale dependence will be explored.

  5. Temporal variation in site fidelity: scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore.

    PubMed

    van Beest, F M; Vander Wal, E; Stronen, A V; Paquet, P C; Brook, R K

    2013-10-01

    Large herbivores are typically confronted by considerable spatial and temporal variation in forage abundance and predation risk. Although animals can employ a range of behaviours to balance these limiting factors, scale-dependent movement patterns are expected to be an effective strategy to reduce predation risk and optimise foraging opportunities. We tested this prediction by quantifying site fidelity of global positioning system-collared, non-migratory female elk (Cervus canadensis manitobensis) across multiple nested temporal scales using a long-established elk-wolf (Canis lupus) system in Manitoba, Canada. Using a hierarchical analytical approach, we determined the combined effect of forage abundance and predation risk on variation in site fidelity within four seasons across four nested temporal scales: monthly, biweekly, weekly, daily. Site fidelity of female elk was positively related to forage-rich habitat across all seasons and most temporal scales. At the biweekly, weekly and daily scales, elk became increasingly attached to low forage habitat when risk was high (e.g. when wolves were close or pack sizes were large), which supports the notion that predator-avoidance movements lead to a trade-off between energetic requirements and safety. Unexpectedly, predation risk at the monthly scale increased fidelity, which may indicate that elk use multiple behavioural responses (e.g. movement, vigilance, and aggregation) simultaneously to dilute predation risk, especially at longer temporal scales. Our study clearly shows that forage abundance and predation risk are important scale-dependent determinants of variation in site fidelity of non-migratory female elk and that their combined effect is most apparent at short temporal scales. Insight into the scale-dependent behavioural responses of ungulate populations to limiting factors such as predation risk and forage variability is essential to infer the fitness costs incurred. PMID:23552985

  6. Temporal variation in site fidelity: scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore.

    PubMed

    van Beest, F M; Vander Wal, E; Stronen, A V; Paquet, P C; Brook, R K

    2013-10-01

    Large herbivores are typically confronted by considerable spatial and temporal variation in forage abundance and predation risk. Although animals can employ a range of behaviours to balance these limiting factors, scale-dependent movement patterns are expected to be an effective strategy to reduce predation risk and optimise foraging opportunities. We tested this prediction by quantifying site fidelity of global positioning system-collared, non-migratory female elk (Cervus canadensis manitobensis) across multiple nested temporal scales using a long-established elk-wolf (Canis lupus) system in Manitoba, Canada. Using a hierarchical analytical approach, we determined the combined effect of forage abundance and predation risk on variation in site fidelity within four seasons across four nested temporal scales: monthly, biweekly, weekly, daily. Site fidelity of female elk was positively related to forage-rich habitat across all seasons and most temporal scales. At the biweekly, weekly and daily scales, elk became increasingly attached to low forage habitat when risk was high (e.g. when wolves were close or pack sizes were large), which supports the notion that predator-avoidance movements lead to a trade-off between energetic requirements and safety. Unexpectedly, predation risk at the monthly scale increased fidelity, which may indicate that elk use multiple behavioural responses (e.g. movement, vigilance, and aggregation) simultaneously to dilute predation risk, especially at longer temporal scales. Our study clearly shows that forage abundance and predation risk are important scale-dependent determinants of variation in site fidelity of non-migratory female elk and that their combined effect is most apparent at short temporal scales. Insight into the scale-dependent behavioural responses of ungulate populations to limiting factors such as predation risk and forage variability is essential to infer the fitness costs incurred.

  7. Macroscopic Description for Networks of Spiking Neurons

    NASA Astrophysics Data System (ADS)

    Montbrió, Ernest; Pazó, Diego; Roxin, Alex

    2015-04-01

    A major goal of neuroscience, statistical physics, and nonlinear dynamics is to understand how brain function arises from the collective dynamics of networks of spiking neurons. This challenge has been chiefly addressed through large-scale numerical simulations. Alternatively, researchers have formulated mean-field theories to gain insight into macroscopic states of large neuronal networks in terms of the collective firing activity of the neurons, or the firing rate. However, these theories have not succeeded in establishing an exact correspondence between the firing rate of the network and the underlying microscopic state of the spiking neurons. This has largely constrained the range of applicability of such macroscopic descriptions, particularly when trying to describe neuronal synchronization. Here, we provide the derivation of a set of exact macroscopic equations for a network of spiking neurons. Our results reveal that the spike generation mechanism of individual neurons introduces an effective coupling between two biophysically relevant macroscopic quantities, the firing rate and the mean membrane potential, which together govern the evolution of the neuronal network. The resulting equations exactly describe all possible macroscopic dynamical states of the network, including states of synchronous spiking activity. Finally, we show that the firing-rate description is related, via a conformal map, to a low-dimensional description in terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate that our results will be an important tool in investigating how large networks of spiking neurons self-organize in time to process and encode information in the brain.

  8. Scale-dependent Normalized Amplitude and Weak Spectral Anisotropy of Magnetic Field Fluctuations in the Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tu, Chuanyi; Marsch, Eckart; He, Jiansen; Wang, Linghua

    2016-01-01

    Turbulence in the solar wind was recently reported to be anisotropic, with the average power spectral index close to -2 when sampling parallel to the local mean magnetic field {{\\boldsymbol{B}}}0 and close to -5/3 when sampling perpendicular to the local {{\\boldsymbol{B}}}0. This result was widely considered to be observational evidence for the critical balance theory (CBT), which is derived by making the assumption that the turbulence strength is close to one. However, this basic assumption has not yet been checked carefully with observational data. Here we present for the first time the scale-dependent magnetic-field fluctuation amplitude, which is normalized by the local {{\\boldsymbol{B}}}0 and evaluated for both parallel and perpendicular sampling directions, using two 30-day intervals of Ulysses data. From our results, the turbulence strength is evaluated as much less than one at small scales in the parallel direction. An even stricter criterion is imposed when selecting the wavelet coefficients for a given sampling direction, so that the time stationarity of the local {{\\boldsymbol{B}}}0 is better ensured during the local sampling interval. The spectral index for the parallel direction is then found to be -1.75, whereas the spectral index in the perpendicular direction remains close to -1.65. These two new results, namely that the value of the turbulence strength is much less than one in the parallel direction and that the angle dependence of the spectral index is weak, cannot be explained by existing turbulence theories, like CBT, and thus will require new theoretical considerations and promote further observations of solar-wind turbulence.

  9. Nanoplasmon-enabled macroscopic thermal management

    PubMed Central

    Jonsson, Gustav Edman; Miljkovic, Vladimir; Dmitriev, Alexandre

    2014-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive nanoplasmonic materials. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. Naturally, approaches to the direct experimental probing of macroscopic temperature increase resulting from these absorbers are welcomed. Here we derive a general quantitative method of characterizing heat-generating properties of optically absorptive layers via macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to a large number of applications where thermal management is crucial. PMID:24870613

  10. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    SciTech Connect

    Detwiler, Russell

    2014-06-30

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacent rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion

  11. Quantum communication with macroscopically bright nonclassical states.

    PubMed

    Usenko, Vladyslav C; Ruppert, Laszlo; Filip, Radim

    2015-11-30

    We analyze homodyne detection of macroscopically bright multimode nonclassical states of light and propose their application in quantum communication. We observe that the homodyne detection is sensitive to a mode-matching of the bright light to the highly intense local oscillator. Unmatched bright modes of light result in additional noise which technically limits detection of Gaussian entanglement at macroscopic level. When the mode-matching is sufficient, we show that multimode quantum key distribution with bright beams is feasible. It finally merges the quantum communication with classical optical technology of visible beams of light.

  12. Prioritizing urban sustainability solutions: coordinated approaches must incorporate scale-dependent built environment induced effects

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Chow, W. T. L.; Wang, Z. H.; Brazel, A.; Trapido-Lurie, B.; Roth, M.; Benson-Lira, V.

    2015-06-01

    Because of a projected surge of several billion urban inhabitants by mid-century, a rising urgency exists to advance local and strategically deployed measures intended to ameliorate negative consequences on urban climate (e.g., heat stress, poor air quality, energy/water availability). Here we highlight the importance of incorporating scale-dependent built environment induced solutions within the broader umbrella of urban sustainability outcomes, thereby accounting for fundamental physical principles. Contemporary and future design of settlements demands cooperative participation between planners, architects, and relevant stakeholders, with the urban and global climate community, which recognizes the complexity of the physical systems involved and is ideally fit to quantitatively examine the viability of proposed solutions. Such participatory efforts can aid the development of locally sensible approaches by integrating across the socioeconomic and climatic continuum, therefore providing opportunities facilitating comprehensive solutions that maximize benefits and limit unintended consequences.

  13. Cosmological observables, infrared growth of fluctuations, and scale-dependent anisotropies

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.; Sloth, Martin S.

    2011-09-01

    We simplify and extend semiclassical methods in inflationary cosmology that capture leading IR corrections to correlators. Such IR effects can be absorbed into a coordinate change when examining sufficiently local observables, but not when comparing observations at large separation in scales, such as seen by a late-time observer. The analysis is facilitated by definition of a scale-dependent metric and physical momentum. These assist definition of “IR-safe” observables seen by a postinflationary observer, which are contrasted to those based on the local geometry of the reheating surface. For the former observables, the observer’s horizon provides an effective IR cutoff. IR growth of fluctuations contributes to enhanced statistical inhomogeneities/anisotropies at short scales, observation of which by a present-day observer might be sought in 21 cm measurements. Such IR corrections are argued to become large for a very late-time observer.

  14. Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation

    SciTech Connect

    Garbesi, K.; Sextro, R.G.; Robinson, Arthur L.; Wooley, J.D.; Owens, J.A.; Nazaroff, W.W.

    1995-11-01

    This work investigates the dependence soil air-permeability on sampling scale in near-surface unsaturated soils. A new dual-probe dynamic pressure technique was developed to measure permeability in situ over different length scales and different spatial orientations in the soil. Soils at three sites were studied using the new technique. Each soil was found to have higher horizontal than vertical permeability. Significant scale dependence of permeability was also observed at each site. Permeability increased by a factor of 20 as sampling scale increased from 0.1 to 2 m in a sand soil vegetated with dry grass, and by a factor of 15 as sampling scale increased from 0.1 to 3.5 m in a sandy loam with mature Coast Live Oak trees (Quercus agrifolia). The results indicate that standard methods of permeability assessment can grossly underestimate advective transport of gas-phase contaminants through soils.

  15. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    SciTech Connect

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-05-21

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness.

  16. Phenomenological analysis of the nucleon spin contents and their scale dependence

    SciTech Connect

    Wakamatsu, M.; Nakakoji, Y.

    2008-04-01

    In the past few years, a great deal of evidence has accumulated which indicates that the gluon polarization inside the nucleon is likely to be small at least at the low renormalization scales. On the other hand, the recent lattice QCD analyses suggest that the net orbital angular momentum carried by the quarks is nearly zero. There is also some indication, noted by Brodsky and Gardner based on the COMPASS observation of small single-spin asymmetry on the isoscalar deuteron target, that the gluon orbital angular momentum inside the nucleon is likely to be small. Naively combining all these observations, we are led to a rather embarrassing conclusion that the nucleon constituents altogether do not carry an adequate amount of angular momentum saturating the total nucleon spin. We show that this somewhat confused state of affairs can be cleared up only by paying careful attention to the scale dependencies of the nucleon spin decomposition.

  17. Investigation of intermittency in solar wind turbulence: scale-dependent kurtosis

    NASA Astrophysics Data System (ADS)

    Wan, M.; Osman, K.; Matthaeus, W. H.

    2011-12-01

    A well known feature of turbulence is the existence of intermittency, a feature which has been widely studied in solar wind. The issue of intermittency is investigated by studying the behavior of scale-dependent kurtosis in the solar wind using magnetic field measurements from the ACE and Cluster spacecraft at 1 AU. It is also analyzed numerically with high-resolution magnetohydrodynamic (MHD) spectral simulations. Kurtosis increases with filter wavenumber, implying the presence of coherent structures at the smallest scales. This phase-coupling is related to intermittency in solar wind turbulence and the emergence of non-Gaussian statistics. However, it is inhibited by the presence of upstream waves and other phase-randomizing structures, which act to reduce the growth of kurtosis.

  18. Scale-dependence of processes structuring dung beetle metacommunities using functional diversity and community deconstruction approaches.

    PubMed

    Silva, Pedro Giovâni da; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  19. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators.

    PubMed

    Strickland, Bradley A; Vilella, Francisco J; Belant, Jerrold L

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  20. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators

    PubMed Central

    Strickland, Bradley A.; Vilella, Francisco J.; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  1. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    PubMed Central

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  2. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.; Zachara, John M.; Zhu, Weihuang

    2013-03-15

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on the temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.

  3. Scale-dependent measurements of meteorite strength: Implications for asteroid fragmentation

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desireé; Asphaug, Erik; Garvie, Laurence A. J.; Rai, Ashwin; Johnston, Joel; Borkowski, Luke; Datta, Siddhant; Chattopadhyay, Aditi; Morris, Melissa A.

    2016-10-01

    Measuring the strengths of asteroidal materials is important for developing mitigation strategies for potential Earth impactors and for understanding properties of in situ materials on asteroids during human and robotic exploration. Studies of asteroid disruption and fragmentation have typically used the strengths determined from terrestrial analog materials, although questions have been raised regarding the suitability of these materials. The few published measurements of meteorite strength are typically significantly greater than those estimated from the stratospheric breakup of meter-sized meteoroids. Given the paucity of relevant strength data, the scale-varying strength properties of meteoritic and asteroidal materials are poorly constrained. Based on our uniaxial failure studies of centimeter-sized cubes of a carbonaceous and ordinary chondrite, we develop the first Weibull failure distribution analysis of meteorites. This Weibull distribution projected to meter scales, overlaps the strengths determined from asteroidal airbursts and can be used to predict properties of to the 100 m scale. In addition, our analysis shows that meter-scale boulders on asteroids are significantly weaker than small pieces of meteorites, while large meteorites surviving on Earth are selected by attrition. Further, the common use of terrestrial analog materials to predict scale-dependent strength properties significantly overestimates the strength of meter-sized asteroidal materials and therefore is unlikely well suited for the modeling of asteroid disruption and fragmentation. Given the strength scale-dependence determined for carbonaceous and ordinary chondrite meteorites, our results suggest that boulders of similar composition on asteroids will have compressive strengths significantly less than typical terrestrial rocks.

  4. Balance Problems

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Balance Problems Basic Facts & Information What are Balance Problems? Having good balance means being able to ... Only then can you “keep your balance.” Why Balance is Important Your feelings of dizziness may last ...

  5. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    NASA Astrophysics Data System (ADS)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  6. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    SciTech Connect

    Packard, Richard

    2006-09-07

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He.

  7. Macroscopic Modeling of Polymer-Electrolyte Membranes

    SciTech Connect

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  8. [Macroscopic hematuria in an adolescent in Chad].

    PubMed

    Ballivet de Régloix, S; Maurin, O; Douniama Ondaï, C

    2012-01-01

    We report the case of a 16-year-old Chadian boy referred for chronic macroscopic hematuria and dysuria, diagnosed as urinary schistosomiasis, contracted while bathing in contaminated fresh water. The diagnostic approach and treatment in light of the limited resources available in Africa are described in detail.

  9. Separation of the Microscopic and Macroscopic Domains

    ERIC Educational Resources Information Center

    Van Zandt, L. L.

    1977-01-01

    Examines the possibility of observing interference in quantum magnification experiments such as the celebrated "Schroedinger cat". Uses the possibility of observing interference for separating the realm of microscopic from macroscopic dynamics; estimates the dividing line to fall at system sizes of about 100 Daltons. (MLH)

  10. Balance Problems

    MedlinePlus

    ... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady or as ... fall-related injuries, such as hip fracture. Some balance problems are due to problems in the inner ...

  11. Measurement error causes scale-dependent threshold erosion of biological signals in animal movement data.

    PubMed

    Bradshaw, Corey J A; Sims, David W; Hays, Graeme C

    2007-03-01

    Recent advances in telemetry technology have created a wealth of tracking data available for many animal species moving over spatial scales from tens of meters to tens of thousands of kilometers. Increasingly, such data sets are being used for quantitative movement analyses aimed at extracting fundamental biological signals such as optimal searching behavior and scale-dependent foraging decisions. We show here that the location error inherent in various tracking technologies reduces the ability to detect patterns of behavior within movements. Our analyses endeavored to set out a series of initial ground rules for ecologists to help ensure that sampling noise is not misinterpreted as a real biological signal. We simulated animal movement tracks using specialized random walks known as Lévy flights at three spatial scales of investigation: 100-km, 10-km, and 1-km maximum daily step lengths. The locations generated in the simulations were then blurred using known error distributions associated with commonly applied tracking methods: the Global Positioning System (GPS), Argos polar-orbiting satellites, and light-level geolocation. Deviations from the idealized Lévy flight pattern were assessed for each track after incrementing levels of location error were applied at each spatial scale, with additional assessments of the effect of error on scale-dependent movement patterns measured using fractal mean dimension and first-passage time (FPT) analyses. The accuracy of parameter estimation (Lévy mu, fractal mean D, and variance in FPT) declined precipitously at threshold errors relative to each spatial scale. At 100-km maximum daily step lengths, error standard deviations of > or = 10 km seriously eroded the biological patterns evident in the simulated tracks, with analogous thresholds at the 10-km and 1-km scales (error SD > or = 1.3 km and 0.07 km, respectively). Temporal subsampling of the simulated tracks maintained some elements of the biological signals depending on

  12. Mapping and decomposing scale-dependent soil moisture variability within an Inner Bluegrass landscape

    NASA Astrophysics Data System (ADS)

    Landrum, Carla Jill

    There is a shared desire among public and private sectors to produce more reliable predictions, accurate mapping, and appropriate scaling of soil moisture and associated parameters across landscapes. A discrepancy often exists between the scale at which soil hydrologic properties are measured and the scale at which they are modeled for management purposes. Moreover, little is known about the relative importance of hydrologic modeling parameters as soil moisture fluctuates with time. More research is needed to establish which observation scales in space and time are optimal for managing soil moisture variation over large spatial extents and how these scales are affected by fluctuations in soil moisture content with time. This research fuses high resolution geoelectric and light detection and ranging (LiDAR) as auxiliary measures to support sparse direct soil sampling over a 40 hectare inner BluegrassKentucky (USA) landscape. A Veris 3100 was used to measure shallow and deep apparent electrical conductivity (aEC) in tandem with soil moisture sampling on three separate dates with ascending soil moisture contents ranging from plant wilting point to near field capacity. Terrain attributes were produced from 2010 LiDAR ground returns collected at ≤1 m nominal pulse spacing. Exploratory statistics revealed several variables best associate with soil moisture, including terrain features (slope, profile curvature, and elevation), soil physical and chemical properties (calcium, cation exchange capacity, organic matter, clay and sand) and aEC for each date. Multivariate geostatistics, time stability analyses, and spatial regression were performed to characterize scale-dependent soil moisture patterns in space with time to determine which soil-terrain parameters influence soil moisture distribution. Results showed that soil moisture variation was time stable across the landscape and primarily associated with long-range (˜250 m) soil physicochemical properties. When the soils

  13. Scale dependent dynamic capillary pressure effect for two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Abidoye, Luqman K.; Das, Diganta B.

    2014-12-01

    Causes and effects of non-uniqueness in capillary pressure and saturation (Pc-S) relationship in porous media are of considerable concern to researchers of two-phase flow. In particular, a significant amounts of discussion have been generated regarding a parameter termed as dynamic coefficient (τ) which has been proposed for inclusion in the functional dependence of Pc-S relationship to quantify dynamic Pc and its relation with time derivative of saturation. While the dependence of the coefficient on fluid and porous media properties is less controversial, its relation to domain scale appears to be dependent on artefacts of experiments, mathematical models and the intra-domain averaging techniques. In an attempt to establish the reality of the scale dependency of the τ-S relationships, we carry out a series of well-defined laboratory experiments to determine τ-S relationships using three different sizes of cylindrical porous domains of silica sand. In this paper, we present our findings on the scale dependence of τ and its relation to high viscosity ratio (μr) silicone oil-water system, where μr is defined as the viscosity of non-wetting phase over that of the wetting phase. An order of magnitude increase in the value of τ was observed across various μr and domain scales. Also, an order of magnitude increase in τ is observed when τ at the top and the bottom sections in a domain are compared. Viscosity ratio and domain scales are found to have similar effects on the trend in τ-S relationship. We carry out a dimensional analysis of τ which shows how different variables, e.g., dimensionless τ and dimensionless domain volume (scale), may be correlated and provides a means to determine the influences of relevant variables on τ. A scaling relationship for τ was derived from the dimensionless analysis which was then validated against independent literature data. This showed that the τ-S relationships obtained from the literature and the scaling

  14. Measurement error causes scale-dependent threshold erosion of biological signals in animal movement data.

    PubMed

    Bradshaw, Corey J A; Sims, David W; Hays, Graeme C

    2007-03-01

    Recent advances in telemetry technology have created a wealth of tracking data available for many animal species moving over spatial scales from tens of meters to tens of thousands of kilometers. Increasingly, such data sets are being used for quantitative movement analyses aimed at extracting fundamental biological signals such as optimal searching behavior and scale-dependent foraging decisions. We show here that the location error inherent in various tracking technologies reduces the ability to detect patterns of behavior within movements. Our analyses endeavored to set out a series of initial ground rules for ecologists to help ensure that sampling noise is not misinterpreted as a real biological signal. We simulated animal movement tracks using specialized random walks known as Lévy flights at three spatial scales of investigation: 100-km, 10-km, and 1-km maximum daily step lengths. The locations generated in the simulations were then blurred using known error distributions associated with commonly applied tracking methods: the Global Positioning System (GPS), Argos polar-orbiting satellites, and light-level geolocation. Deviations from the idealized Lévy flight pattern were assessed for each track after incrementing levels of location error were applied at each spatial scale, with additional assessments of the effect of error on scale-dependent movement patterns measured using fractal mean dimension and first-passage time (FPT) analyses. The accuracy of parameter estimation (Lévy mu, fractal mean D, and variance in FPT) declined precipitously at threshold errors relative to each spatial scale. At 100-km maximum daily step lengths, error standard deviations of > or = 10 km seriously eroded the biological patterns evident in the simulated tracks, with analogous thresholds at the 10-km and 1-km scales (error SD > or = 1.3 km and 0.07 km, respectively). Temporal subsampling of the simulated tracks maintained some elements of the biological signals depending on

  15. Scale-dependent hierarchical adjustments of movement patterns in a long-range foraging seabird.

    PubMed Central

    Fritz, Hervé; Said, Sonia; Weimerskirch, Henri

    2003-01-01

    Foraging animals are expected to adjust their path according to the hierarchical spatial distribution of food resources and environmental factors. Studying such behaviour requires methods that allow for the detection of changes in pathways' characteristics across scales, i.e. a definition of scale boundaries and techniques to continuously monitor the precise movement of the animal over a sufficiently long period. We used a recently developed application of fractals, the changes in fractal dimension within a path and applied it to foraging trips over scales ranging across five orders of magnitude (10 m to 1000 km), using locations of wandering albatrosses (Diomedea exulans) recorded at 1 s intervals with a miniaturized global positioning system. Remarkably, all animals consistently showed the same pattern: the use of three scale-dependent nested domains where they adjust tortuosity to different environmental and behavioural constraints. At a small scale (ca. 100 m) they use a zigzag movement as they continuously adjust for optimal use of wind; at a medium scale (1-10 km), the movement shows changes in tortuosity consistent with food-searching behaviour; and at a large scale (greater than 10 km) the movement corresponds to commuting between patches and is probably influenced by large-scale weather systems. Our results demonstrate the possibility of identifying the hierarchical spatial scales at which long-ranging animals adjust their foraging behaviour, even in featureless environments such as oceans, and hence how to relate their movement patterns to environmental factors using an objective mathematical approach. PMID:12816652

  16. Size scale dependence of compressive instabilities in layered composites in the presence of stress gradients

    NASA Astrophysics Data System (ADS)

    Poulios, K.; Niordson, C. F.

    2016-07-01

    The compressive strength of unidirectionally or layer-wise reinforced composite materials in direction parallel to their reinforcement is limited by micro-buckling instabilities. Although the inherent compressive strength of a given material micro-structure can easily be determined by assessing its stability under a uniform compressive load, this is often not sufficient for predicting failure initiation within a larger structure. In cases, where the composite material micro-structure is locally subjected to strongly non-uniform loadings, compressive instabilities depend not only on the maximum compressive stress but also on spatial stress or strain gradients, rendering failure initiation size scale dependent. The present work demonstrates and investigates the aforementioned effect through numerical simulations of periodically layered structures with notches and holes under bending and compressive loads, respectively. The presented results emphasize the importance of the reinforcing layer thickness on the load carrying capacity of the investigated structures, at a constant volumetric fraction of the reinforcement. The observed strengthening at higher values of the relative layer thickness is attributed to the bending stiffness of the reinforcing layers.

  17. Spatial scale-dependent policy planning for land management in southern Europe.

    PubMed

    Papadimitriou, F; Mairota, P

    1996-01-01

    This study outlines and original tool for rural policy planning in southern Europe. This new tool is a process-based, scale-dependent, rural policy-making approach, which is designed to address increasing land degradation problems in southern Europe. Seven important processes are identified (land abandonment, devegetation, intensification in agriculture, global climate change, accelerated soil erosion, increasing water demands, urbanisation) and plotted on a space-time diagram, which clearly shows the spatial and temporal scales for which these processes are significant for landscape change in southern Europe. Conclusions are derived concerning, in particular, sustainable (optimal) rural policy-making for southern Europe's problematic land management. An optimal spatial-temporal scale for land management in southern Europe may range spatially from the "farm" (0.5 km(2)) to "sub-provincial" level (450 km(2)) and temporally from 7 to 30 years. The study delineates methods and results derivable from such a new policy-planning approach and suggests the usefulness of combining this approach with ecological land classification at the landscape level.

  18. Scale-dependent hierarchical adjustments of movement patterns in a long-range foraging seabird.

    PubMed

    Fritz, Hervé; Said, Sonia; Weimerskirch, Henri

    2003-06-01

    Foraging animals are expected to adjust their path according to the hierarchical spatial distribution of food resources and environmental factors. Studying such behaviour requires methods that allow for the detection of changes in pathways' characteristics across scales, i.e. a definition of scale boundaries and techniques to continuously monitor the precise movement of the animal over a sufficiently long period. We used a recently developed application of fractals, the changes in fractal dimension within a path and applied it to foraging trips over scales ranging across five orders of magnitude (10 m to 1000 km), using locations of wandering albatrosses (Diomedea exulans) recorded at 1 s intervals with a miniaturized global positioning system. Remarkably, all animals consistently showed the same pattern: the use of three scale-dependent nested domains where they adjust tortuosity to different environmental and behavioural constraints. At a small scale (ca. 100 m) they use a zigzag movement as they continuously adjust for optimal use of wind; at a medium scale (1-10 km), the movement shows changes in tortuosity consistent with food-searching behaviour; and at a large scale (greater than 10 km) the movement corresponds to commuting between patches and is probably influenced by large-scale weather systems. Our results demonstrate the possibility of identifying the hierarchical spatial scales at which long-ranging animals adjust their foraging behaviour, even in featureless environments such as oceans, and hence how to relate their movement patterns to environmental factors using an objective mathematical approach. PMID:12816652

  19. Multivariate analysis of scale-dependent associations between bats and landscape structure

    USGS Publications Warehouse

    Gorresen, P.M.; Willig, M.R.; Strauss, R.E.

    2005-01-01

    The assessment of biotic responses to habitat disturbance and fragmentation generally has been limited to analyses at a single spatial scale. Furthermore, methods to compare responses between scales have lacked the ability to discriminate among patterns related to the identity, strength, or direction of associations of biotic variables with landscape attributes. We present an examination of the relationship of population- and community-level characteristics of phyllostomid bats with habitat features that were measured at multiple spatial scales in Atlantic rain forest of eastern Paraguay. We used a matrix of partial correlations between each biotic response variable (i.e., species abundance, species richness, and evenness) and a suite of landscape characteristics to represent the multifaceted associations of bats with spatial structure. Correlation matrices can correspond based on either the strength (i.e., magnitude) or direction (i.e., sign) of association. Therefore, a simulation model independently evaluated correspondence in the magnitude and sign of correlations among scales, and results were combined via a meta-analysis to provide an overall test of significance. Our approach detected both species-specific differences in response to landscape structure and scale dependence in those responses. This matrix-simulation approach has broad applicability to ecological situations in which multiple intercorrelated factors contribute to patterns in space or time. ?? 2005 by the Ecological Society of America.

  20. Controls on runoff generation and scale-dependence in a distributed hydrologic model

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Entekhabi, D.; Bras, R. L.; Ivanov, V. Y.

    2007-05-01

    Hydrologic response in natural catchments is controlled by a set of complex interactions between storm properties, basin characteristics and antecedent wetness conditions. This study investigates the transient runoff response to spatially-uniform storms of varying properties using a distributed model of the coupled surface-subsurface system, which treats heterogeneities in topography, soils and vegetation. We demonstrate the control that the partitioning into multiple runoff mechanisms (infiltration-excess, saturation-excess, perched return flow and groundwater exfiltration) has on nonlinearities in the rainfall-runoff transformation and its scale-dependence. Antecedent wetness imposed through a distributed water table position is varied to illustrate its effect on runoff generation. Results indicate that transitions observed in basin flood response (magnitude, timing and volume) can be explained by shifts in the surface-subsurface partitioning. An analysis of the spatial organization of runoff production also shows that multiple mechanisms have specific catchment niches and can occur simultaneously in the basin. In addition, catchment scale plays an important role in the distribution of runoff production as basin characteristics (soils, vegetation, topography and initial wetness) are varied with basin area. For example, we illustrate how storm characteristics and antecedent wetness play a dramatic role in the scaling properties of the catchment runoff ratio.

  1. Multiscale Analysis of Biological Data by Scale-Dependent Lyapunov Exponent

    PubMed Central

    Gao, Jianbo; Hu, Jing; Tung, Wen-wen; Blasch, Erik

    2012-01-01

    Physiological signals often are highly non-stationary (i.e., mean and variance change with time) and multiscaled (i.e., dependent on the spatial or temporal interval lengths). They may exhibit different behaviors, such as non-linearity, sensitive dependence on small disturbances, long memory, and extreme variations. Such data have been accumulating in all areas of health sciences and rapid analysis can serve quality testing, physician assessment, and patient diagnosis. To support patient care, it is very desirable to characterize the different signal behaviors on a wide range of scales simultaneously. The Scale-Dependent Lyapunov Exponent (SDLE) is capable of such a fundamental task. In particular, SDLE can readily characterize all known types of signal data, including deterministic chaos, noisy chaos, random 1/fα processes, stochastic limit cycles, among others. SDLE also has some unique capabilities that are not shared by other methods, such as detecting fractal structures from non-stationary data and detecting intermittent chaos. In this article, we describe SDLE in such a way that it can be readily understood and implemented by non-mathematically oriented researchers, develop a SDLE-based consistent, unifying theory for the multiscale analysis, and demonstrate the power of SDLE on analysis of heart-rate variability (HRV) data to detect congestive heart failure and analysis of electroencephalography (EEG) data to detect seizures. PMID:22291653

  2. Scale-dependence of land use effects on water quality of streams in agricultural catchments.

    PubMed

    Buck, Oliver; Niyogi, Dev K; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive.

  3. Scale dependent behavior the foredune: Implications for barrier island response to storms and sea level rise

    NASA Astrophysics Data System (ADS)

    Houser, C.; Wernette, P. A.; Weymer, B. A.

    2015-12-01

    The impact of elevated storm surge on a barrier island tends to be considered from a single cross-shore dimension and dependent only on the relative elevations of the storm surge and dune. However, the foredune line is rarely uniform and can exhibit considerable variation in height and width alongshore at a range of length scales ranging from tens of meters to several kilometers. LiDAR data from Santa Rosa Island in northwest Florida, Padre Island, Texas and Assateague Island, Maryland are used to explore how the dune morphology varies alongshore and how this variability is altered by storms and post-storm recovery. While the alongshore variation in dune height can be approximated by a power law, there are scale-dependent variations in the dune that exhibit different responses to storm erosion and post-storm recovery. This suggests that the alongshore variation in dune morphology reflects the history of storm impact and recovery, and that changes in the variance magnitude through time may provide insight into whether the island will be resilient as it transgresses with rising sea level. The difference in variance magnitude at large spatial scales is associated with the framework geology unique to each island and a dominant control on island response to sea level rise.

  4. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  5. Macroscopic invisibility cloaking of visible light.

    PubMed

    Chen, Xianzhong; Luo, Yu; Zhang, Jingjing; Jiang, Kyle; Pendry, John B; Zhang, Shuang

    2011-01-01

    Invisibility cloaks, which used to be confined to the realm of fiction, have now been turned into a scientific reality thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realization of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices.

  6. Macroscopic Quantum Superposition in Cavity Optomechanics

    NASA Astrophysics Data System (ADS)

    Liao, Jie-Qiao; Tian, Lin

    Quantum superposition in mechanical systems is not only a key evidence of macroscopic quantum coherence, but can also be utilized in modern quantum technology. Here we propose an efficient approach for creating macroscopically distinct mechanical superposition states in a two-mode optomechanical system. Photon hopping between the two cavity-modes is modulated sinusoidally. The modulated photon tunneling enables an ultrastrong radiation-pressure force acting on the mechanical resonator, and hence significantly increases the mechanical displacement induced by a single photon. We present systematic studies on the generation of the Yurke-Stoler-like states in the presence of system dissipations. The state generation method is general and it can be implemented with either optomechanical or electromechanical systems. The authors are supported by the National Science Foundation under Award No. NSF-DMR-0956064 and the DARPA ORCHID program through AFOSR.

  7. Macroscopic invisibility cloaking of visible light

    PubMed Central

    Chen, Xianzhong; Luo, Yu; Zhang, Jingjing; Jiang, Kyle; Pendry, John B.; Zhang, Shuang

    2011-01-01

    Invisibility cloaks, which used to be confined to the realm of fiction, have now been turned into a scientific reality thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realization of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices. PMID:21285954

  8. Macroscopic invisibility cloak for visible light.

    PubMed

    Zhang, Baile; Luo, Yuan; Liu, Xiaogang; Barbastathis, George

    2011-01-21

    Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green, and blue light is also demonstrated.

  9. Polarization properties of macroscopic Bell states

    SciTech Connect

    Iskhakov, Timur Sh.; Chekhova, Maria V.; Leuchs, Gerd

    2011-10-15

    The four two-photon polarization Bell states are one of the main instruments in the toolbox of quantum optics and quantum information. In our experiment we produce their multiphoton counterparts, macroscopic Bell states. These are relevant to applications in quantum technologies because they provide efficient interactions with material quantum objects and with each other via nonlinear interactions. Furthermore, we study the polarization properties of these states using the concept of second-order degree of polarization and its higher-order generalization.

  10. Can a macroscopic gyroscope feel torsion

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.; Yasskin, P. B.

    1979-01-01

    We demonstrate that for a large class of Lagrangian-based torsion theories a macroscopic gyroscope is insensitive to the torsion field: there can be no coupling of the torsion to the gyroscope's angular momentum of rotation. To detect torsion a polarized system with a net elementary particle spin is needed. These conclusions are evident from the conservation laws, which form the basis for deriving the equations of motion.

  11. Active Polar Two-Fluid Macroscopic Dynamics

    NASA Astrophysics Data System (ADS)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  12. Macroscopic aspects of the Unruh effect

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Verch, Rainer

    2015-12-01

    Macroscopic concepts pertaining to the Unruh effect are elaborated and used to clarify its physical manifestations. Based on a description of the motion of accelerated, spatially extended laboratories in Minkowski space in terms of Poincaré transformations, it is shown that, from a macroscopic perspective, an accelerated observer will not register with his measuring instruments any global thermal effects of acceleration in the inertial (Minkowskian) vacuum state. As is explained, this result is not in conflict with the well-known fact that microscopic probes used as thermometers respond non-trivially to acceleration if coupled to the vacuum. But this response cannot be interpreted as the effect of some exchange of thermal energy with a gas surrounding the observer; in fact, it is induced by the measuring process itself. It is also shown that genuine equilibrium states in a uniformly accelerated laboratory cannot be spatially homogeneous. In particular, these states coincide with the homogeneous inertial vacuum at sufficiently large distances from the horizon of the observer and consequently have the same (zero) temperature there. The analysis is carried out in the theory of a free massless scalar field; however the conclusion that the Unruh effect is not of a macroscopic thermal origin is generally valid.

  13. Toward a macroscopic parameterization of iceberg calving

    NASA Astrophysics Data System (ADS)

    Amundson, J. M.

    2014-12-01

    Parameterization of iceberg calving for prognostic glacier and ice sheet models remains a major challenge due to a poor understanding of the physical processes governing calving. Here, I propose a semi-empirical, macroscopic parameterization of calving that ignores the complex physics of the glacier-ocean interface, can be applied to any calving margin, and is easy to implement with very little computational cost. To test the parameterization, I apply it to a one-dimensional flowline model of an Alaskan-style tidewater glacier and subject the model to various climatic forcings. The model produces results that are roughly consistent with observations, i.e., rapid retreat and flow acceleration through an overdeepening over decades and slow re-advance over millenia. Model results are compared to the previously proposed water depth, height above flotation, and crevasse-depth calving parameterizations to show that they are consistent with the macroscopic parameterization under certain conditions. Although there remains a great deal of uncertainty in the exact form of the macroscopic parameterization, it does appear to be a promising and simple way to model the glacier-ocean boundary.

  14. Scale dependence of halo and galaxy bias: Effects in real space

    NASA Astrophysics Data System (ADS)

    Smith, Robert E.; Scoccimarro, Román; Sheth, Ravi K.

    2007-03-01

    We examine the scale dependence of dark matter halo and galaxy clustering on very large scales (0.01scale dependence is a strong function of halo mass. High mass haloes show no suppression of power on scales k<0.07[hMpc-1], and only show amplification on smaller scales, whereas low mass haloes show strong, ˜5% 10%, suppression over the range 0.05

  15. The generalized BLM approach to fix scale- dependence in QCD: the current status of investigations

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.

    2015-05-01

    I present a brief review of the generalized Brodsky-Lepage-McKenzie (BLM) approaches to fix the scale-dependence of the renormalization group (RG) invariant quantities in QCD. At first, these approaches are based on the expansions of the coefficients of the perturbative series for the RG-invariant quantities in the products of the coefficients βi of the QCD β-function, which are evaluated in the MS-like schemes. As a next step all βi-dependent terms are absorbed into the BLM-type scale(s) of the powers of the QCD couplings. The difference between two existing formulations of the above mentioned generalizations based on the seBLM approach and the Principle of Maximal Conformality (PMC) are clarified in the case of the Bjorken polarized deep-inelastic scattering sum rule. Using the conformal symmetry-based relations for the non-singlet coefficient functions of the Adler D-function and of Bjorken polarized deep-inelastic scattering sum rules CBjpNS (as) the βi-dependent structure of the NNLO approximation for CBjpNS (as) is predicted in QCD with ngl-multiplet of gluino degrees of freedom, which appear in SUSY extension of QCD. The importance of performing the analytical calculation of the N3LO additional contributions of ngl gluino multiplet to CBjpNS (as) for checking the presented in the report NNLO prediction and for the studies of the possibility to determine the discussed β-expansion pattern of this sum rule at the O(a4s)-level is emphasised.

  16. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  17. Scale-dependent effects of habitat area on species interaction networks: invasive species alter relationships

    PubMed Central

    2012-01-01

    Background The positive relationship between habitat area and species number is considered a fundamental rule in ecology. This relationship predicts that the link number of species interactions increases with habitat area, and structure is related to habitat area. Biological invasions can affect species interactions and area relationships. However, how these relationships change at different spatial scales has remained unexplored. We analysed understory plant–pollinator networks in seven temperate forest sites at 20 spatial scales (radius 120–2020 m) to clarify scale-associated relationships between forest area and plant–pollinator networks. Results The pooled data described interactions between 18 plant (including an exotic) and 89 pollinator (including an exotic) species. The total number of species and the number of interaction links between plant and pollinator species were negatively correlated with forest area, with the highest correlation coefficient at radii of 1520 and 1620 m, respectively. These results are not concordant with the pattern predicted by species–area relationships. However, when associations with exotic species were excluded, the total number of species and the number of interaction links were positively correlated with forest area (the highest correlation coefficient at a radius of 820 m). The network structure, i.e., connectance and nestedness, was also related to forest area (the highest correlation coefficients at radii of 720–820 m), when associations with exotics were excluded. In the study area, the exotic plant species Alliaria petiolata, which has invaded relatively small forest patches surrounded by agricultural fields, may have supported more native pollinator species than initially expected. Therefore, this invasive plant may have altered the original relationships between forest area and plant–pollinator networks. Conclusions Our results demonstrate scale-dependent effects of forest area on the size and

  18. Scale-dependent shifts in the species composition of flower visitors with changing floral density.

    PubMed

    Essenberg, Carla J

    2013-01-01

    Responses of flower-visiting animals to floral density can alter interactions between plants, influencing a variety of biological processes, including plant population dynamics and the evolution of flowering phenology. Many studies have found effects of floral or plant density on pollinator visitation rates at patch scales, but little is known about responses of flower visitors to floral densities at larger scales. Here, I present data from an observational field study in which I measured the effects of floral density on visitation to the annual composite Holocarpha virgata at both patch (4 m(2)) and site (12.6 ha) spatial scales. The species composition of flower visitors changed with floral density, and did so in different ways at the two scales. At the site scale, average floral density within patches of H. virgata or within patches of all summer-flowering species combined had a significant positive effect on per-flowerhead visitation by the long-horned bee Melissodes lupina and no significant effects on visitation by any other taxa. At the patch scale, per-flowerhead visitation by honeybees significantly increased whereas visitation by M. lupina often decreased with increasing floral density. For both species, responses to patch-scale floral density were strongest when site-scale floral density was high. The scale-dependence of flower visitor responses to floral density and the interactions between site- and patch-scale effects of floral density observed in this study underscore the importance of improving our understanding of pollinators' responses to floral density at population scales.

  19. Context- and scale-dependent effects of floral CO2 on nectar foraging by Manduca sexta

    PubMed Central

    Goyret, Joaquín; Markwell, Poppy M.; Raguso, Robert A.

    2008-01-01

    Typically, animal pollinators are attracted to flowers by sensory stimuli in the form of pigments, volatiles, and cuticular substances (hairs, waxes) derived from plant secondary metabolism. Few studies have addressed the extent to which primary plant metabolites, such as respiratory carbon dioxide (CO2), may function as pollinator attractants. Night-blooming flowers of Datura wrightii show transient emissions of up to 200 ppm above-ambient CO2 at anthesis, when nectar rewards are richest. Their main hawkmoth pollinator, Manduca sexta, can perceive minute variation (0.5 ppm) in CO2 concentration through labial pit organs whose receptor neurons project afferents to the antennal lobe. We explored the behavioral responses of M. sexta to artificial flowers with different combinations of CO2, visual, and olfactory stimuli using a laminar flow wind tunnel. Responses in no-choice assays were scale-dependent; CO2 functioned as an olfactory distance-attractant redundant to floral scent, as each stimulus elicited upwind tracking flights. However, CO2 played no role in probing behavior at the flower. Male moths showed significant bias in first-approach and probing choice of scented flowers with above-ambient CO2 over those with ambient CO2, whereas females showed similar bias only in the presence of host plant (tomato) leaf volatiles. Nevertheless, all males and females probed both flowers regardless of their first choice. While floral CO2 unequivocally affects male appetitive responses, the context-dependence of female responses suggests that they may use floral CO2 as a distance indicator of host plant quality during mixed feeding-oviposition bouts on Datura and Nicotiana plants. PMID:18212123

  20. Scale-Dependent Measurements of Meteorite Strength and Fragmentation: Tamdakht (H5) and Allende (CV3)

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desireé; Asphaug, Erik; Garvie, Laurence; Morris, Melissa; Rai, Ashwin; Chattopadhyay, Aditi; Chawla, Nikhilesh

    2015-11-01

    Meteorites are pieces of natural space debris, which have survived ejection from their parent bodies and passage through the Earth’s atmosphere. As such, they provide a unique opportunity to study the fundamental physical and mechanical properties of early Solar System materials. But to date, few direct studies of physical properties have been conducted on meteoritic materials, in contrast to extensive chemical and isotopic analyses. It is important to determine these properties as they are related to disruption and fragmentation of bolides and asteroids, and activities related to sample return and hazardous asteroid mitigation. Here we present results from an ongoing suite of scale-dependent studies of meteorite strength and fragmentation. The meteorites studied are Tamdakht (H5), an ordinary chondrite that exhibits a heterogeneous structure criss-crossed with shock veins and centimeter-sized regions of white and light grey, and the carbonaceous chondrite Allende (CV3), which suitable pieces are light grey with abundant chondrules and CAIs. Uniaxial compression tests are performed on meteorite cubes ranging from 0.5 to 4 centimeters using an Instron 5985 frame with a 250 kN load cell and compression fixtures with 145mm diameter radial platens. All tests are conducted at room temperature and in displacement control with a displacement rate of 0.25 mm per minute to ensure quasi-static conditions. A three-dimensional digital image correlation (DIC) system that enables noncontact measurement of displacement and strain fields is also used. Analysis of the strength and failure process of the two meteorite types is conducted and compared to terrestrial materials.

  1. Scale-Dependent Measurements of Meteorite Strength and Fragmentation: Tamdakht (H5) and Allende (CV3).

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, D.; Asphaug, E. I.; Garvie, L. A. J.; Morris, M. A.; Rai, A.; Chattopadhyay, A.; Johnston, J.; Borkowski, L.

    2015-12-01

    Meteorites are pieces of natural space debris, which have survived ejection from their parent bodies and passage through the Earth's atmosphere. As such, they provide a unique opportunity to study the fundamental physical and mechanical properties of early Solar System materials. But to date, few direct studies of physical properties have been conducted on meteoritic materials, in contrast to extensive chemical and isotopic analyses. It is important to determine these properties as they are related to disruption and fragmentation of bolides and asteroids, and activities related to sample return and hazardous asteroid mitigation. Here we present results from an ongoing suite of scale-dependent studies of meteorite strength and fragmentation. The meteorites studied are Tamdakht (H5), an ordinary chondrite that exhibits a heterogeneous structure criss-crossed with shock veins and centimeter-sized regions of white and light grey, and the carbonaceous chondrite Allende (CV3), which suitable pieces are light grey with abundant chondrules and CAIs. Uniaxial compression tests are performed on meteorite cubes ranging from 0.5 to 4 centimeters using an Instron 5985 frame with a 250 kN load cell and compression fixtures with 145mm diameter radial platens. All tests are conducted at room temperature and in displacement control with a displacement rate of 0.25 mm per minute to ensure quasi-static conditions. A three-dimensional digital image correlation (DIC) system that enables noncontact measurement of displacement and strain fields is also used. Analysis of the strength and failure process of the two meteorite types is conducted and compared to terrestrial materials.

  2. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new

  3. Scale-dependent habitat use in three species of prairie wetland birds

    USGS Publications Warehouse

    Naugle, D.E.; Higgins, K.F.; Nusser, S.M.; Johnson, W.C.

    1999-01-01

    We evaluated the influence of scale on habitat use for three wetland-obligate bird species with divergent life history characteristics and possible scale-dependent criteria for nesting and foraging in South Dakota, USA. A stratified, two-stage cluster sample was used to randomly select survey wetlands within strata defined by region, wetland density, and wetland surface area. We used 18-m (0.1 ha) fixed radius circular-plots to survey birds in 412 semipermanent wetlands during the summers of 1995 and 1996. Variation in habitat use by pied-billed grebes (Podilymbus podiceps) and yellow-headed blackbirds (Xanthocephalus xanthocephalus), two sedentary species that rarely exploit resources outside the vicinity of nest wetlands, was explained solely by within-patch variation. Yellow-headed blackbirds were a cosmopolitan species that commonly nested in small wetlands, whereas pied-billed grebes were an area-sensitive species that used larger wetlands regardless of landscape pattern. Area requirements for black terns (Chlidonias niger), a vagile species that typically forages up to 4 km away from the nest wetland, fluctuated in response to landscape structure. Black tern area requirements were small (6.5 ha) in heterogeneous landscapes compared to those in homogeneous landscapes (15.4-32.6 ha). Low wetland density landscapes composed of small wetlands, where few nesting wetlands occurred and potential food sources were spread over large distances, were not widely used by black terns. Landscape-level measurements related to black tern occurrence extended past relationships between wetlands into the surrounding matrix. Black terns were more likely to occur in landscapes where grasslands had not been tilled for agricultural production. Our findings represent empirical evidence that characteristics of entire landscapes, rather than individual patches, must be quantified to assess habitat suitability for wide-ranging species that use resources over large areas.

  4. An examination of scale-dependent resource use by Eastern Hognose snakes in southcentral New Hampshire.

    SciTech Connect

    LaGory, K. E.; Walston, L. J.; Goulet, C; Van Lonkhuyzen, R. A.; Najjar, S.; Andrews, C.; Environmental Science Division; Univ. of New Hampshire; U.S. Air Force

    2009-11-01

    The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 {+-} 14.7 ha) was similar to that reported in other parts of the species range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the

  5. Transient Macroscopic Chemistry in the DSMC Method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, M. J.; Macrossan, M. N.; Abdel-Jawad, M.

    2008-12-01

    In the Direct Simulation Monte Carlo method, a combination of statistical and deterministic procedures applied to a finite number of `simulator' particles are used to model rarefied gas-kinetic processes. Traditionally, chemical reactions are modelled using information from specific colliding particle pairs. In the Macroscopic Chemistry Method (MCM), the reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell is used to determine a reaction rate coefficient for that cell. MCM has previously been applied to steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation and during the unsteady development of 2-D flow through a cavity. For the shock tube simulation, close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature and species mole fractions. For the cavity flow, a high degree of thermal non-equilibrium is present and non-equilibrium reaction rate correction factors are employed in MCM. Very close agreement is demonstrated for ensemble averaged mole fraction contours predicted by the particle and macroscopic methods at three different flow-times. A comparison of the accumulated number of net reactions per cell shows that both methods compute identical numbers of reaction events. For the 2-D flow, MCM required similar CPU and memory resources to the particle chemistry method. The Macroscopic Chemistry Method is applicable to any general DSMC code using any viscosity or non-reacting collision models and any non-reacting energy exchange models. MCM can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies.

  6. Macroscopic nanowire networks from hierarchically assembled mesostructures

    NASA Astrophysics Data System (ADS)

    Wang, Donghai

    Nanoscale building blocks, such as nanocrystals and one-dimensional (1D) nanostructures, have attracted tremendous attention due to their peculiar and fascinating properties. It is necessary to assemble the low dimensional nanoscale building blocks into macroscopic nanostructured architectures for potential applications in energy storage, separation, catalysis, computation, sensing, etc. This dissertation demonstrates synthesis, characterization and applications of macroscopic hierarchical metal or semiconductor (e.g., Pt, CdSe) nanowire networks. These nanowire networks were synthesized by electrodeposition within the pores of highly-ordered mesoporous silica template followed by removal of the silica template, resulting in robust nanowire networks with replicated mesopore structure. The nanowire diameter (3-10 nm) and network mesostructures (e.g. 2D, 3D and superstructures) are controlled by the pore size and the mesostructure of the silica template. As-synthesized metal nanowires self support to form networks with high electrochemical active surface area, which are further applied in enzymatic glucose sensing. Semiconductor CdSe nanowire networks show tunable optical properties dependent on nanowire diameter and have been demonstrated as a good electron acceptor in CdSe nanowire network/polymer photovoltaic devices. The dissertation also describes self-assembly behavior of composite mesostructures under physical confined environment. Novel mesostructures and mesostructured nanowire superstructures have been achieved by the confined assembly and the replication procedure mentioned above. Our approach provides an easy and efficient way to synthesize macroscopic hierarchical nanowire networks with well-controlled diameter and mesoscale arrangement, which will be of great interest for sensor, photovoltaic, and other applications.

  7. Scale-dependent galaxy bias in the Sloan Digital Sky Survey as a function of luminosity and colour

    NASA Astrophysics Data System (ADS)

    Cresswell, James G.; Percival, Will J.

    2009-01-01

    It has been known for a long time that the clustering of galaxies changes as a function of galaxy type. This galaxy bias acts as a hindrance to the extraction of cosmological information from the galaxy power spectrum or correlation function. Theoretical arguments show that a change in the amplitude of the clustering between galaxies and mass on large scales is unavoidable, but cosmological information can be easily extracted from the shape of the power spectrum or correlation function if this bias is independent of scale. Scale-dependent bias is generally small on large scales, k < 0.1hMpc-1, but on smaller scales can affect the recovery of Ωmh from the measured shape of the clustering signal, and have a small effect on the Baryon Acoustic Oscillations. In this paper, we investigate the transition from scale-independent to scale-dependent galaxy bias as a function of galaxy population. We use the Sloan Digital Sky Survey Data Release 5 sample to fit various models, which attempt to parametrize the turn-off from scale-independent behaviour. For blue galaxies, we find that the strength of the turn-off is strongly dependent on galaxy luminosity, with stronger scale-dependent bias on larger scales for more luminous galaxies. For red galaxies, the scale dependence is a weaker function of luminosity. Such trends need to be modelled in order to optimally extract the information available in future surveys, and can help with the design of such surveys.

  8. Compressor Has No Moving Macroscopic Parts

    NASA Technical Reports Server (NTRS)

    Gasser, Max

    1995-01-01

    Compressor containing no moving macroscopic parts functions by alternating piston and valve actions of successive beds of magnetic particles. Fabricated easily because no need for precisely fitting parts rotating or sliding on each other. Also no need for lubricant fluid contaminating fluid to be compressed. Compressor operates continuously, eliminating troublesome on/off cycling of other compressors, and decreasing consumption of energy. Phased cells push fluid from bottom to top, adding increments of pressure. Each cell contains magnetic powder particles loose when electromagnet coil deenergized, but tightly packed when coil energized.

  9. Theoretical and empirical scale dependency of Z-R relationships: Evidence, impacts, and correction

    NASA Astrophysics Data System (ADS)

    Verrier, Sébastien; Barthès, Laurent; Mallet, Cécile

    2013-07-01

    Estimation of rainfall intensities from radar measurements relies to a large extent on power-laws relationships between rain rates R and radar reflectivities Z, i.e., Z = a*R^b. These relationships are generally applied unawarely of the scale, which is questionable since the nonlinearity of these relations could lead to undesirable discrepancies when combined with scale aggregation. Since the parameters (a,b) are expectedly related with drop size distribution (DSD) properties, they are often derived at disdrometer scale, not at radar scale, which could lead to errors at the latter. We propose to investigate the statistical behavior of Z-R relationships across scales both on theoretical and empirical sides. Theoretically, it is shown that claimed multifractal properties of rainfall processes could constrain the parameters (a,b) such that the exponent b would be scale independent but the prefactor a would be growing as a (slow) power law of time or space scale. In the empirical part (which may be read independently of theoretical considerations), high-resolution disdrometer (Dual-Beam Spectropluviometer) data of rain rates and reflectivity factors are considered at various integration times comprised in the range 15 s - 64 min. A variety of regression techniques is applied on Z-R scatterplots at all these time scales, establishing empirical evidence of a behavior coherent with theoretical considerations: a grows as a 0.1 power law of scale while b decreases more slightly. The properties of a are suggested to be closely linked to inhomogeneities in the DSDs since extensions of Z-R relationships involving (here, strongly nonconstant) normalization parameters of the DSDs seem to be more robust across scales. The scale dependence of simple Z = a*R^b relationships is advocated to be a possible source of overestimation of rainfall intensities or accumulations. Several ways for correcting such scaling biases (which can reach >15-20% in terms of relative error) are suggested

  10. Scale-Dependence of the Response of Tropopause Height to Deep Cumulus Convection

    NASA Astrophysics Data System (ADS)

    Fishbein, E.; Wong, S.

    2014-12-01

    Deep cumulus convection can influence the height of the tropopause either through plumes which penetration into the tropical tropopause layer (TTL) or by forcing broad-scale vertical motion. This study uses the unique capabilities of satellite-based cross-track sounders to provide three-dimensional images of temperature in the TTL. These are used to derive thermal tropopause height and to study the scale-dependence of tropopause height variability and its relation to distance and intensity of deep convection. The data used in this study are 10 years of tropical Atmospheric Infrared Sounder (AIRS) swath (level 2) temperature profile data. Localized spatial power spectra are derived from swaths of tropopause height, which are ordered relative to the timing of deep convective clouds. The relative contributions of small-scale and large-scale power are use to characterize the influence of the scale of the vertical motion in the TTL. The highest spatial scales sampled by the AIRS temperature field are mesoscale systems of deep cumulus convection approximately 200 to 400 km across because the horizontal spatial resolution of the AIRS temperature profile product is approximately 50 km. AIRS temperature profiles have state-dependent errors correlated with cloud amount, but are more useful than temperature profiles from microwave sounders because of their higher vertical resolution. TTL temperature has less sampling error then mid and lower troposphere temperature, and the time binning is used to characterize and reduce these errors. The intensity of cumulus convection is inferred from the derived cloud properties, specifically cloud-top height, cloud-ice effective diameter and their power. The height difference between tropopause and cloud-top is used to characterize the likelihood that vertical motions extend to the tropopause, while the cloud-ice effective diameter provides a measure of the intensity of the convective vertical velocity and its ability to lift larger ice

  11. Delineation of Flood Prone Areas using Digital Elevation Models: Scale Dependence

    NASA Astrophysics Data System (ADS)

    di Leo, M.; Manfreda, S.; Sole, A.; Fiorentino, M.

    2009-04-01

    discriminate between areas exposed to flood inundation and non exposed areas. The objective of the study is to estimate the optimal threshold level for the identification of flood prone areas and the scale dependence of the methodology. This approach was applied over several Italian catchments and sub-catchments of different sizes and using DEMs at resolution changing from 2m up to 230m.

  12. Macroscopic theory for capillary-pressure hysteresis.

    PubMed

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-01

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  13. Macroscopic theory for capillary-pressure hysteresis.

    PubMed

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-01

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials. PMID:25646688

  14. A Macroscopic Realization of the Weak Interaction

    NASA Technical Reports Server (NTRS)

    Nishimori, Arito

    2003-01-01

    A.J.Leggett suggested in 1977 that a permanent electric dipole moment due to the parity-nonconserving electron-nucleon interaction, even though it is extremely small, could be measured in the superfluid He-3 B because the moment should be proportional to the size of the sample in this system. If this moment is observed, it will be the first example of a macroscopic realization of the weak interaction. In our planned experiments, a high electric field of up to 6 kV/cm is applied between two parallel electrodes in the He-3 sample. We expect to observe the NMR frequency of the lowest-lying spin-wave mode trapped by the liquid crystal-like texture of the B phase rotation axis in our geometry. The interaction of the electric field and the macroscopic permanent electric dipole moment, which is oriented along the rotation axis, will cause a small change in the texture and hence a small increase in the frequency of the spin wave mode. Besides the basic ideas, we present the purpose and the design of our first cell that is under construction.

  15. Macroscopic strain potentials in nonlinear porous materials

    NASA Astrophysics Data System (ADS)

    Yi, Liu; Zhuping, Huang

    2003-02-01

    By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper. According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed, and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castañeda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.

  16. Measurement contextuality is implied by macroscopic realism

    SciTech Connect

    Chen Zeqian; Montina, A.

    2011-04-15

    Ontological theories of quantum mechanics provide a realistic description of single systems by means of well-defined quantities conditioning the measurement outcomes. In order to be complete, they should also fulfill the minimal condition of macroscopic realism. Under the assumption of outcome determinism and for Hilbert space dimension greater than 2, they were all proved to be contextual for projective measurements. In recent years a generalized concept of noncontextuality was introduced that applies also to the case of outcome indeterminism and unsharp measurements. It was pointed out that the Beltrametti-Bugajski model is an example of measurement noncontextual indeterminist theory. Here we provide a simple proof that this model is the only one with such a feature for projective measurements and Hilbert space dimension greater than 2. In other words, there is no extension of quantum theory providing more accurate predictions of outcomes and simultaneously preserving the minimal labeling of events through projective operators. As a corollary, noncontextuality for projective measurements implies noncontextuality for unsharp measurements. By noting that the condition of macroscopic realism requires an extension of quantum theory, unless a breaking of unitarity is invoked, we arrive at the conclusion that the only way to solve the measurement problem in the framework of an ontological theory is by relaxing the hypothesis of measurement noncontextuality in its generalized sense.

  17. Deterministic Creation of Macroscopic Cat States

    PubMed Central

    Lombardo, Daniel; Twamley, Jason

    2015-01-01

    Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane’s opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane’s position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157

  18. Scale dependency of fracture energy and estimates thereof via dynamic rupture solutions with strong thermal weakening

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Garagash, D.

    2013-12-01

    Seismological estimates of fracture energy show a scaling with the total slip of an earthquake [e.g., Abercrombie and Rice, GJI 2005]. Potential sources for this scale dependency are coseismic fault strength reductions that continue with increasing slip or an increasing amount of off-fault inelastic deformation with dynamic rupture propagation [e.g., Andrews, JGR 2005; Rice, JGR 2006]. Here, we investigate the former mechanism by solving for the slip dependence of fracture energy at the crack tip of a dynamically propagating rupture in which weakening takes place by strong reductions of friction via flash heating of asperity contacts and thermal pressurization of pore fluid leading to reductions in effective normal stress. Laboratory measurements of small characteristic slip evolution distances for friction (~10 μm at low slip rates of μm-mm/s, possibly up to 1 mm for slip rates near 0.1 m/s) [e.g., Marone and Kilgore, Nature 1993; Kohli et al., JGR 2011] imply that flash weakening of friction occurs at small slips before any significant thermal pressurization and may thus have a negligible contribution to the total fracture energy [Brantut and Rice, GRL 2011; Garagash, AGU 2011]. The subsequent manner of weakening under thermal pressurization (the dominant contributor to fracture energy) spans a range of behavior from the deformation of a finite-thickness shear zone in which diffusion is negligible (i.e., undrained-adiabatic) to that in which large-scale diffusion obscures the existence of a thin shear zone and thermal pressurization effectively occurs by the heating of slip on a plane. Separating the contribution of flash heating, the dynamic rupture solutions reduce to a problem with a single parameter, which is the ratio of the undrained-adiabatic slip-weakening distance (δc) to the characteristic slip-on-a-plane slip-weakening distance (L*). However, for any value of the parameter, there are two end-member scalings of the fracture energy: for small slip

  19. Local heterogeneity and scaled dependence of eco-hydrology in mire

    NASA Astrophysics Data System (ADS)

    Nakayama, T.

    2011-12-01

    Japanese governments recently started nature conservation project to restore meandering former river channel in order to prevent invasive forest and to recover original ecosystem because various anthropogenic stressors have caused mire degradation in subarctic northern Japan such as drying and invasion of alder-dominant shrub forest. In order to predict effectiveness of this restoration, the author has so far developed the process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a, 2008b, 2010, 2011a, 2011b; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Watanabe, 2004, 2006, 2008a, 2008b; Nakayama et al., 2006, 2007, 2010, 2011), which includes complex interactions between canopy, surface water, unsaturated water, aquifer, lake, and rivers. Because the model simulates the hydrologic cycle, elevation change, and vegetation succession processes iteratively including competition between native reed-sedge vegetation and invasive alder, it is possible to estimate nonlinear interaction between hydro-geomorphic and vegetation dynamics. In this study, the author further improved the model to evaluate positive feedback between heterogeneous drying and alder invasion in relation to stability and regime shift beyond previous researches about constant slope and its relation to regular pattern. In particular, he evaluated local heterogeneity of groundwater and surface water in both horizontal and vertical directions, and clarified relationship between microtopography about ridge-depression and hydrologic cycle about divergence-convergence in short-term period. This mechanism is also related to interaction between groundwater and inundated flow, scaled dependence of hydrologic cycle, and its effect on sediment deposition and vegetation change. These results will throw some light on two conflicting conceptualizations of peatland hydrology, so-called, shallow-flow and groundwater-flow models (Reeve et al., 2000), and bring

  20. Scale-dependent response from the invariant rescaling of stress in a self-gravitating thermomechanical Earth

    NASA Astrophysics Data System (ADS)

    Watkinson, John; Patton, Regan

    2014-05-01

    It is widely known that gravitation can be accounted for via general relativity in a four-dimensional manifold called spacetime. A direct corollary of this is that the observable characteristics of any self-gravitating body in space are closely tied to its 'rheology' - how stress and deformation are related to one another. The large-scale/long-term response of terrestrial planets to loading is arguably dissipative, which can be modeled using purely viscous rheology. Evidence for this includes Earth's flattened ellipsoidal configuration, the likely result of self-gravity and rotation. On the other hand, the small scale, short-term response of solid earth materials is arguably conservative, which can be modeled using purely elastic rheology. Evidence for this includes the propagation of shear waves throughout the crust and mantle. These general observations, combined with long-term creep and attenuation of seismic signals at the longest wavelengths, seems to suggest that networks of springs, dash pots, and sliding masses, although vogue, comprise only one possible family of an otherwise infinite number of rheological models. The response of solid earth materials to loading is a scale-dependent process and involves both elasticity (strain-energy storage) and viscosity (energy dissipation). Tectonic processes are controlled by regional stratification, lithology, thermal structure, fluid content, metamorphic reactions, and deformation rates, many aspects of which are inherited through geological time. Clearly, topography and igneous activity on terrestrial planets are closely allied phenomena, consistent with global and regional isostatic balance demonstrated through gravity-topography analysis. It is reasonable to conclude that crustal stratification and igneous activity are inherent features of the Earth system, which must be predicted by any self-consistent model. We have assumed that solid earth rheology can be modeled using the differential grade-2 (DG-2) material

  1. Population dynamics of the modified theta model: macroscopic phase reduction and bifurcation analysis link microscopic neuronal interactions to macroscopic gamma oscillation

    PubMed Central

    Kotani, Kiyoshi; Yamaguchi, Ikuhiro; Yoshida, Lui; Jimbo, Yasuhiko; Ermentrout, G. Bard

    2014-01-01

    Gamma oscillations of the local field potential are organized by collective dynamics of numerous neurons and have many functional roles in cognition and/or attention. To mathematically and physiologically analyse relationships between individual inhibitory neurons and macroscopic oscillations, we derive a modification of the theta model, which possesses voltage-dependent dynamics with appropriate synaptic interactions. Bifurcation analysis of the corresponding Fokker–Planck equation (FPE) enables us to consider how synaptic interactions organize collective oscillations. We also develop the adjoint method (infinitesimal phase resetting curve) for simultaneous equations consisting of ordinary differential equations representing synaptic dynamics and a partial differential equation for determining the probability distribution of the membrane potential. This method provides a macroscopic phase response function (PRF), which gives insights into how it is modulated by external perturbation or internal changes of parameters. We investigate the effects of synaptic time constants and shunting inhibition on these gamma oscillations. The sensitivity of rising and decaying time constants is analysed in the oscillatory parameter regions; we find that these sensitivities are not largely dependent on rate of synaptic coupling but, rather, on current and noise intensity. Analyses of shunting inhibition reveal that it can affect both promotion and elimination of gamma oscillations. When the macroscopic oscillation is far from the bifurcation, shunting promotes the gamma oscillations and the PRF becomes flatter as the reversal potential of the synapse increases, indicating the insensitivity of gamma oscillations to perturbations. By contrast, when the macroscopic oscillation is near the bifurcation, shunting eliminates gamma oscillations and a stable firing state appears. More interestingly, under appropriate balance of parameters, two branches of bifurcation are found in our

  2. Macroscopic definition of distributed swarm morphogenesis

    NASA Astrophysics Data System (ADS)

    Aznar, Fidel; Pujol, Mar; Rizo, Ramón

    2012-12-01

    In this paper, we present a system that will be able to obtain microscopic assembly behaviours for a robotic swarm to achieve an assembly target (macroscopic model). It will be designed taking into consideration the essential features of a self-assembling system needed to be implemented in a real robotic swarm. This system is composed of a typology of generative languages PD0L, and an algorithm for generating individual rules to be processed by the robots. The assembly process will be performed in a distributed manner, and will be also designed to require minimal communication capabilities between robots. Both the expressive capacities of language and the rule generation algorithm will be demonstrated by evaluating their performance with a core set of test morphologies widely used in self-assembly tasks. Furthermore, we compare the assembly time and the number of messages required between a classic controller (centralised) and our distributed approach.

  3. Microscopic versus macroscopic calculation of dielectric nanospheres

    NASA Astrophysics Data System (ADS)

    Kühn, M.; Kliem, H.

    2008-12-01

    The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.

  4. Macroscopically local correlations can violate information causality.

    PubMed

    Cavalcanti, Daniel; Salles, Alejo; Scarani, Valerio

    2010-01-01

    Although quantum mechanics is a very successful theory, its foundations are still a subject of intense debate. One of the main problems is that quantum mechanics is based on abstract mathematical axioms, rather than on physical principles. Quantum information theory has recently provided new ideas from which one could obtain physical axioms constraining the resulting statistics one can obtain in experiments. Information causality (IC) and macroscopic locality (ML) are two principles recently proposed to solve this problem. However, none of them were proven to define the set of correlations one can observe. In this study, we show an extension of IC and study its consequences. It is shown that the two above-mentioned principles are inequivalent: if the correlations allowed by nature were the ones satisfying ML, IC would be violated. This gives more confidence in IC as a physical principle, defining the possible correlation allowed by nature. PMID:21266986

  5. Making Macroscopic Assemblies of Aligned Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; Colbert, Daniel T.; Smith, Ken A.; Walters, Deron A.; Casavant, Michael J.; Qin, Xiaochuan; Yakobson, Boris; Hauge, Robert H.; Saini, Rajesh Kumar; Chiung, Wan-Ting; Huffman, Charles B.

    2005-01-01

    A method of aligning and assembling single-wall carbon nanotubes (SWNTs) to fabricate macroscopic structures has been invented. The method entails suspending SWNTs in a fluid, orienting the SWNTs by use of a magnetic and/or electric field, and then removing the aligned SWNTs from suspension in such a way as to assemble them while maintaining the alignment. SWNTs are essentially tubular extensions of fullerene molecules. It is desirable to assemble aligned SWNTs into macroscopic structures because the common alignment of the SWNTs in such a structure makes it possible to exploit, on a macroscopic scale, the unique mechanical, chemical, and electrical properties that individual oriented SWNTs exhibit at the molecular level. Because of their small size and high electrical conductivity, carbon nanotubes, and especially SWNTs, are useful for making electrical connectors in integrated circuits. Carbon nanotubes can be used as antennas at optical frequencies, and as probes in scanning tunneling microscopes, atomic-force microscopes, and the like. Carbon nanotubes can be used with or instead of carbon black in tires. Carbon nanotubes are useful as supports for catalysts. Ropes of SWNTs are metallic and, as such, are potentially useful in some applications in which electrical conductors are needed - for example, they could be used as additives in formulating electrically conductive paints. Finally, macroscopic assemblies of aligned SWNTs can serve as templates for the growth of more and larger structures of the same type. The great variety of tubular fullerene molecules and of the structures that could be formed by assembling them in various ways precludes a complete description of the present method within the limits of this article. It must suffice to present a typical example of the use of one of many possible variants of the method to form a membrane comprising SWNTs aligned substantially parallel to each other in the membrane plane. The apparatus used in this variant

  6. Macroscopic model of scanning force microscope

    DOEpatents

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  7. Taming macroscopic jamming in transportation networks

    NASA Astrophysics Data System (ADS)

    Ezaki, Takahiro; Nishi, Ryosuke; Nishinari, Katsuhiro

    2015-06-01

    In transportation networks, a spontaneous jamming transition is often observed, e.g. in urban road networks and airport networks. Because of this instability, flow distribution is significantly imbalanced on a macroscopic level. To mitigate the congestion, we consider a simple control method, in which congested nodes are closed temporarily, and investigate how it influences the overall system. Depending on the timing of the node closure and opening, and congestion level of a network, the system displays three different phases: free-flow phase, controlled phase, and deadlock phase. We show that when the system is in the controlled phase, the average flow is significantly improved, whereas when in the deadlock phase, the flow drops to zero. We study how the control method increases the network flow and obtain their transition boundary analytically.

  8. Parameters driving strain localization in the lithosphere are highly scale-dependent

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent

    2016-04-01

    material that can promote strain localization. Brittle deformation can initiate the formation of ductile shear zones in homogeneous materials if it is paired with fluid-rock interaction and phase changes. Large-scale localizing factors, beside temperature decrease, all pertain (1) to the lithological heterogeneity of the lithosphere (crust and mantle), due to its tectonic, metamorphic or magmatic heritage, and/or (2) to an inhomogeneous stress field due to asymmetric or changing boundary conditions on the side or below (model geometry and its evolution). Using ad hoc mechanical parameters, possibly different from those obtained in the lab, is justified in numerical experiments at large scale by two main facts: (a) localizing mechanisms cannot be all taken into account in numerical models and only those significant at the scale concerned by the model should be used, and (b) the model geometry, i.e. the initial and boundary conditions in general supersede the small-scale parameters that are then active in nature only to focus deformation where it has been first initiated. It thus seems reasonable to use macroscopic numbers integrating all the small-scale processes that cannot be resolved in large-scale numerical models if one is willing to study the long-term tectonic evolution of the lithosphere through time in its 3D natural complexity.

  9. Modeling scale-dependent bias on the baryonic acoustic scale with the statistics of peaks of Gaussian random fields

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Crocce, Martin; Scoccimarro, Roman; Sheth, Ravi K.

    2010-11-01

    Models of galaxy and halo clustering commonly assume that the tracers can be treated as a continuous field locally biased with respect to the underlying mass distribution. In the peak model pioneered by Bardeen et al. [Astrophys. J. 304, 15 (1986)ASJOAB0004-637X10.1086/164143], one considers instead density maxima of the initial, Gaussian mass density field as an approximation to the formation site of virialized objects. In this paper, the peak model is extended in two ways to improve its predictive accuracy. First, we derive the two-point correlation function of initial density peaks up to second order and demonstrate that a peak-background split approach can be applied to obtain the k-independent and k-dependent peak bias factors at all orders. Second, we explore the gravitational evolution of the peak correlation function within the Zel’dovich approximation. We show that the local (Lagrangian) bias approach emerges as a special case of the peak model, in which all bias parameters are scale independent and there is no statistical velocity bias. We apply our formulas to study how the Lagrangian peak biasing, the diffusion due to large scale flows, and the mode coupling due to nonlocal interactions affect the scale dependence of bias from small separations up to the baryon acoustic oscillation (BAO) scale. For 2σ density peaks collapsing at z=0.3, our model predicts a ˜5% residual scale-dependent bias around the acoustic scale that arises mostly from first order Lagrangian peak biasing (as opposed to second order gravity mode coupling). We also search for a scale dependence of bias in the large scale autocorrelation of massive halos extracted from a very large N-body simulation provided by the MICE Collaboration. For halos with mass M≳1014M⊙/h, our measurements demonstrate a scale-dependent bias across the BAO feature which is very well reproduced by a prediction based on the peak model.

  10. Interactions between plant traits and sediment characteristics influencing species establishment and scale-dependent feedbacks in salt marsh ecosystems

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Bouma, T. J.; Zhang, L. Q.; Temmerman, S.; Ysebaert, T.; Herman, P. M. J.

    2015-12-01

    The importance of ecosystem engineering and biogeomorphic processes in shaping many aquatic and semi-aquatic landscapes is increasingly acknowledged. Ecosystem engineering and biogeomorphic landscape formation involves two critical processes: (1) species establishment, and (2) scale-dependent feedbacks, meaning that organisms improve their living conditions on a local scale but at the same time worsen them at larger scales. However, the influence of organism traits in combination with physical factors (e.g. hydrodynamics, sediments) on early establishment and successive development due to scale-dependent feedbacks is still unclear. As a model system, this was tested for salt marsh pioneer plants by conducting flume experiments: i) on the influence of species-specific traits (such as stiffness) of two contrasting dominant pioneer species (Spartina alterniflora and Scirpus mariqueter) to withstand current-induced stress during establishment; and ii) to study the impact of species-specific traits (stiffness) and physical forcing (water level, current stress) on the large-scale negative feedback at established tussocks (induced scour at tussock edges) of the two model species. The results indicate that, not only do species-specific plant traits, such as stiffness, exert a major control on species establishment thresholds, but also potentially physiologically triggered plant properties, such as adapted root morphology due to sediment properties. Moreover, the results show a clear relation between species-specific plant traits, abiotics (i.e. sediment, currents) and the magnitude of the large-scale negative scale-dependent feedback. These findings suggest that the ecosystem engineering ability, resulting from physical plant properties can be disadvantageous for plant survival through promoted dislodgement (stem stiffness increases the amount of drag experienced at the root system), underlying the importance of scale-dependent feedbacks on landscape development.

  11. Macroscopic entanglement in many-particle quantum states

    NASA Astrophysics Data System (ADS)

    Tichy, Malte C.; Park, Chae-Yeun; Kang, Minsu; Jeong, Hyunseok; Mølmer, Klaus

    2016-04-01

    We elucidate the relationship between Schrödinger-cat-like macroscopicity and geometric entanglement and argue that these quantities are not interchangeable. While both properties are lost due to decoherence, we show that macroscopicity is rare in uniform and in so-called random physical ensembles of pure quantum states, despite possibly large geometric entanglement. In contrast, permutation-symmetric pure states feature rather low geometric entanglement and strong and robust macroscopicity.

  12. Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Mercolli, Lorenzo; Zaldarriaga, Matias

    2015-12-01

    We study the effective field theory (EFT) of large-scale structure for cosmic density and momentum fields. We show that the finite part of the two-loop calculation and its counterterms introduces an apparent scale dependence for the leading-order parameter cs2 of the EFT starting at k =0.1 h Mpc-1 . These terms limit the range over which one can trust the one-loop EFT calculation at the 1% level to k <0.1 h Mpc-1 at redshift z =0 . We construct a well-motivated one-parameter ansatz to fix the relative size of the one- and two-loop counterterms using their high-k sensitivity. Although this one-parameter model is a very restrictive choice for the counterterms, it explains the apparent scale dependence of cs2 seen in simulations. It is also able to capture the scale dependence of the density power spectrum up to k ≈0.3 h Mpc-1 at the 1% level at redshift z =0 . Considering a simple scheme for the resummation of large-scale motions, we find that the two-loop calculation reduces the need for this IR resummation at k <0.2 h Mpc-1 . Finally, we extend our calculation to momentum statistics and show that the same one-parameter model can also describe density-momentum and momentum-momentum statistics.

  13. Scale dependence of the simulated impact of Amazonian deforestation on regional climate

    NASA Astrophysics Data System (ADS)

    Pitman, A. J.; Lorenz, R.

    2016-09-01

    Using a global climate model, Amazonian deforestation experiments are conducted perturbing 1, 9, 25, 81 and 121 grid points, each with 5 ensemble members. All experiments show warming and drying over Amazonia. The impact of deforestation on temperature, averaged either over the affected area or a wider area, decreases by a factor of two as the scale of the perturbation increases from 1 to 121 grid points. This is associated with changes in the surface energy balance and consequential impacts on the atmosphere above the regions deforested. For precipitation, as the scale of deforestation increases from 9 to 121 grid points, the reduction in rainfall over the perturbed area decreases from ˜1.5 to ˜1 mm d-1. However, if the surrounding area is considered and large deforestation perturbations made, compensatory increases in precipitation occur such that there is little net change. This is largely associated with changes in horizontal advection of moisture. Disagreements between climate model experiments on how Amazonian deforestation affects precipitation and temperature are, at least in part, due to the spatial scale of the region deforested, differences in the areas used to calculate averages and whether areas surrounding deforestation are included in the overall averages.

  14. Laser Balancing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  15. Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation

    NASA Astrophysics Data System (ADS)

    Long, Di; Singh, Vijay P.; Scanlon, Bridget R.

    2012-03-01

    Satellite-based triangle models for evapotranspiration estimation are unique in interpreting the relationship between the normalized difference vegetation index (NDVI)/factional vegetation cover (fc) and surface radiative temperature (Trad) across large heterogeneous areas. However, output and performance of triangle models may depend on the size of the domain being studied and resolution of the satellite images being used. The objective of this study was to assess domain and resolution dependencies of triangle models using progressively larger domains and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus and Moderate Resolution Imaging Spectroradiometer sensors at the Soil Moisture-Atmosphere Coupling Experiment site in central Iowa on days of year 174 and 182 in 2002. Results show domain and resolution dependencies of the triangle models with large uncertainties in evaporative fraction (EF) estimates in terms of a mean absolute percentage difference (MAPD) up to ˜50%. A trapezoid model which requires derivation of theoretical limiting edges of the NDVI-Trad space is proposed to constrain domain and resolution dependencies of triangle models. The theoretical warm edge can be derived by solving for temperatures of the driest bare surface and the fully vegetated surface with the largest water stress implicit in both radiation budget and energy balance equations. Areal average air temperature can be taken as the theoretical cold edge. The triangle model appears to perform well across large areas (˜104 km2) but fails to predict EF over small areas (˜102 km2). The trapezoid model can effectively reduce domain and resolution dependencies and constrain errors of the EF estimates with an MAPD of ˜10%.

  16. The Proell Effect: A Macroscopic Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  17. Cloud Macroscopic Organization: Order Emerging from Randomness

    NASA Technical Reports Server (NTRS)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  18. Macroscopic hematuria in patients on anticoagulation therapy

    PubMed Central

    Mariyanovski, Valeri; Hadzhiyska, Valeria

    2015-01-01

    Introduction Visible hematuria is not rare in patients on anticoagulant therapy. There is no consensus regarding the diagnostic approach for them; some authors suggest restricted volume of diagnostic procedures because of the low number of urological etiology found. Some antibiotics have been reported to potentiate the effect of oral anticoagulants. Material and methods The study addresses the need for urological assessment of patients on anticoagulation therapy and the possible role of some drugs administrated simultaneously with an oral anticoagulant, for the onset of macroscopic hematuria. Patients hospitalized with hematuria, both with or without anticoagulation therapy, were investigated and followed up. Results The onset of hematuria depends on the monitoring of oral anticoagulation. INR (International Normalized Ratio) value corresponds with the probability of non-urological etiology, where INR>4 carries relatively low risk for urological and malignant etiology. Some antibiotics may influence the anticoagulation effect, so INR value may be elevated and hematuria may occur. Conclusions Anticoagulation therapy should be administrated carefully and individually. The risk of urological etiology of hematuria is lower in patients on oral anticoagulants (especially when INR >4), however, it is not zero. PMID:26568876

  19. Macroscopic characteristics of the praying mantis electroretinogram.

    PubMed

    Popkiewicz, Barbara; Prete, Frederick R

    2013-08-01

    We described the macroscopic characteristics of the praying mantis ERG in three species, Tenodera aridifolia sinensis, Sphodromantis lineola, and Popa spurca. In all cases, when elicited by square wave light pulses longer than 400 ms, light adapted (LA) ERGs consisted of four component waveforms: a cornea negative transient and sustained ON, a cornea negative transient OFF, and a cornea positive sustained OFF. The former two ON, and the latter OFF components were attributed to photoreceptor depolarization and repolarization, respectively. Metabolic stress via CO2 induced anoxia selectively eliminated the transient OFF (independent of its effect on the other components) suggesting the transient OFF represents activity of the lamina interneurons on which the photoreceptors synapse. Dark adapted (DA) ERGs differed from LA ERGs in that the sustained ON and OFF amplitudes were larger, and the transient ON and OFF components were absent. Increased stimulus durations increased the amplitudes and derivatives of, and decreased the latencies to the maximum amplitudes of the OFF components. Increasing stimulus intensity increased the amplitude of the sustained ON and OFF components, but not the transient OFF. These results suggest that the mantis' visual system displays increased contrast coding efficiency with increased light adaptation, and that there are differences in gain between photoreceptor and lamina interneuron responses. Finally, responses to luminance decrements as brief a 1 ms were evident in LA recordings, and were resolved at frequencies up to 60 Hz. PMID:23684801

  20. Macroscopic resonant tunnelling through Andreev interferometers

    NASA Astrophysics Data System (ADS)

    Goorden, M. C.; Jacquod, Ph; Weiss, J.

    2008-04-01

    We investigate the conductance through and the spectrum of ballistic chaotic quantum dots attached to two s-wave superconductors, as a function of the phase difference phi between the two order parameters. A combination of analytical techniques—random matrix theory, Nazarov's circuit theory and the trajectory-based semiclassical theory—allows us to explore the quantum-to-classical crossover in detail. When the superconductors are not phase-biased, phi = 0, we recover known results that the spectrum of the quantum dot exhibits an excitation gap, while the conductance across two normal leads carrying NN channels and connected to the dot via tunnel contacts of transparency ΓN is \\propto \\Gamma_{\\mathrm {N}}^2 N_{\\mathrm {N}} . In contrast, when phi = π, the excitation gap closes and the conductance becomes G \\propto \\Gamma_{\\mathrm {N}} N_{\\mathrm {N}} in the universal regime. For \\Gamma_{\\mathrm {N}} \\ll 1 , we observe an order-of-magnitude enhancement of the conductance towards G \\propto N_{\\mathrm {N}} in the short-wavelength limit. We relate this enhancement to resonant tunnelling through a macroscopic number of levels close to the Fermi energy. Our predictions are corroborated by numerical simulations.

  1. Macroscopic resonant tunnelling through Andreev interferometers.

    PubMed

    Goorden, M C; Jacquod, Ph; Weiss, J

    2008-04-01

    We investigate the conductance through and the spectrum of ballistic chaotic quantum dots attached to two s-wave superconductors, as a function of the phase difference phi between the two order parameters. A combination of analytical techniques-random matrix theory, Nazarov's circuit theory and the trajectory-based semiclassical theory-allows us to explore the quantum-to-classical crossover in detail. When the superconductors are not phase-biased, phi = 0, we recover known results that the spectrum of the quantum dot exhibits an excitation gap, while the conductance across two normal leads carrying N(N) channels and connected to the dot via tunnel contacts of transparency Gamma(N) is [Formula: see text]. In contrast, when phi = pi, the excitation gap closes and the conductance becomes [Formula: see text] in the universal regime. For [Formula: see text], we observe an order-of-magnitude enhancement of the conductance towards [Formula: see text] in the short-wavelength limit. We relate this enhancement to resonant tunnelling through a macroscopic number of levels close to the Fermi energy. Our predictions are corroborated by numerical simulations. PMID:19636148

  2. Predicting metapopulation lifetime from macroscopic network properties.

    PubMed

    Drechsler, Martin

    2009-03-01

    This paper presents a comparatively simple approximation formula for the mean life time of a metapopulation in a habitat network where habitat patch arrangement may be irregular and patch sizes differ. It is based on previous work on the development of an analytical approximation formula by Frank and Wissel [K. Frank, C. Wissel, A formula for the mean lifetime of metapopulations in heterogeneous landscapes, Am. Nat. 159 (2002) 530] and extends it by abstracting from individual patch locations. The mean metapopulation lifetime is expressed as a function of four macroscopic network properties: the ratio of dispersal range and network size, the ratio of range of environmental correlation and network size, and the total number and (geometric mean) size of the patches. The analysis takes into account that (ceteris paribus) patches close to the boundary of the habitat network contribute less to metapopulation survival than patches close to the centre of the network. Ignoring this fact can lead to a substantial overestimation of the mean metapopulation lifetime. Due to its numerical simplicity, the formula can be used as a conservation objective function even in complex network design problems where the number of patches to be allocated is very large. Numerical tests of the formula show that it performs very well within a wide range of network structures. PMID:19159631

  3. Investigation of dissipative forces near macroscopic media

    SciTech Connect

    Becker, R.S.

    1982-12-01

    The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.

  4. Macroscopic quantum tunnelling in a current biased Josephson junction

    SciTech Connect

    Martinis, J.M.; Devoret, M.H.; Clarke, J.; Urbina, C.

    1984-11-01

    We discuss in this work an attempt to answer experimentally the question: do macroscopic variables obey quantum mechanics. More precisely, this experiment deals with the question of quantum-mechanical tunnelling of a macroscopic variable, a subject related to the famous Schrodinger's cat problem in the theory of measurement.

  5. Balancing Acts

    MedlinePlus

    ... a new type of balance therapy using computerized, virtual reality. UPMC associate professor Susan Whitney, Ph.D., developed ... a virtual grocery store in the university's Medical Virtual Reality Center. Patients walk on a treadmill and safely ...

  6. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient

  7. A Graphene Surface Force Balance

    PubMed Central

    2014-01-01

    We report a method for transferring graphene, grown by chemical vapor deposition, which produces ultraflat graphene surfaces (root-mean-square roughness of 0.19 nm) free from polymer residues over macroscopic areas (>1 cm2). The critical step in preparing such surfaces involves the use of an intermediate mica template, which itself is atomically smooth. We demonstrate the compatibility of these model surfaces with the surface force balance, opening up the possibility of measuring normal and lateral forces, including friction and adhesion, between two graphene sheets either in contact or across a liquid medium. The conductivity of the graphene surfaces allows forces to be measured while controlling the surface potential. This new apparatus, the graphene surface force balance, is expected to be of importance to the future understanding of graphene in applications from lubrication to electrochemical energy storage systems. PMID:25171130

  8. Modeling Dissociation-Vibration Coupling with the Macroscopic Chemistry Method

    NASA Astrophysics Data System (ADS)

    Lilley, Charles R.; Macrossan, Michael N.

    2005-05-01

    We test the recently developed macroscopic approach to modeling chemistry in DSMC, by simulating the flow of rarefied dissociating nitrogen over a blunt cylinder. In this macroscopic method, chemical reactions are decoupled from the collision routine. Molecules are chosen to undergo dissociation at each time step, after the collisions are calculated. The required number of reaction events is calculated from macroscopic reaction rate expressions with macroscopic information taken from the time-averaged cell properties. One advantage of this method is that "state-of-the-art" macroscopic information about reaction rates can be used directly in DSMC in the same way as in continuum codes. Hybrid Navier-Stokes/DSMC codes can therefore easily use the same chemical models in both rarefied and continuum flow regions. Here we show that the macroscopic method can capture dissociation-vibration (DV) coupling, which is an important effect in vibrationally cold blunt body flows because it results in increased surface heat fluxes. We use the macroscopic method with Park's two-temperature rate model, often used in continuum studies, to capture DV coupling in DSMC. This produces a flowfield in reasonable agreement with that calculated using the conventional collision-based threshold line dissociation model.

  9. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    PubMed

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  10. Area volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence

    NASA Astrophysics Data System (ADS)

    Catrakis, Haris J.; Aguirre, Roberto C.; Ruiz-Plancarte, Jesus

    2002-07-01

    Area volume properties of fluid interfaces are investigated to quantify the scale-local and cumulative structure. An area volume density g3([lambda]) and ratio [Omega]3([lambda]) are introduced to examine the interfacial behaviour as a function of scale [lambda] or across a range of scales, respectively. These measures are demonstrated on mixed-fluid interfaces from whole-field [similar]10003 three-dimensional space time concentration measurements in turbulent jets above the mixing transition, at Re [similar] 20000 and Sc [similar] 2000, recorded by laser-induced-fluorescence and digital-imaging techniques, with Taylor's hypothesis applied. The cumulative structure is scale dependent in [Omega]3([lambda]), with a dimension D3([lambda]) that increases with increasing scale. In contrast, the scale-local structure exhibits self-similarity in g3([lambda]) with an exponent [alpha]g [approximate]1.3 for these interfaces. The scale dependence in the cumulative structure arises from the large scales, while the self-similarity corresponds to the small-scale area volume contributions. The small scales exhibit the largest area volume density and provide the dominant contributions to the total area volume ratio, which corresponds to [similar]10 times the area of a purely large-scale interface for the present flow conditions. The self-similarity in the scale-local structure at small scales provides the key ingredient to extrapolate the area volume behaviour to higher Reynolds numbers.

  11. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming

    PubMed Central

    Lin, Yong; Franzke, Christian L. E.

    2015-01-01

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary. PMID:26259555

  12. Exploring scale-dependent ecohydrological responses in a large endorheic river basin through integrated surface water-groundwater modeling

    NASA Astrophysics Data System (ADS)

    Tian, Yong; Zheng, Yi; Zheng, Chunmiao; Xiao, Honglang; Fan, Wenjie; Zou, Songbing; Wu, Bin; Yao, Yingying; Zhang, Aijing; Liu, Jie

    2015-06-01

    Ecohydrological processes in a water-limited environment are sensitive to both climate conditions and human activities, but the response mechanisms have rarely been explored for large endorheic river basins via an integrated modeling approach. This study established an integrated surface water-groundwater model for the Heihe River Basin (HRB), China's second largest endorheic river basin, using GSFLOW as the modeling platform. Evapotranspiration (ET) and Leaf Area Index (LAI) data independently derived from remote sensing products were compared and correlated, respectively, with the modeling results. Scale-dependent interrelationships among ecological, hydrological, and human-impact (i.e., diversion and pumping) variables were revealed through multiple regression analyses. Major study findings include: (1) the independent ET and LAI data enabled the modeler to crosscheck the modeling results from a unique angle not possible with conventional groundwater and streamflow observations; (2) controlling factors for the temporal variability of ET and LAI exhibit notable scale-dependence, reflecting distinctive climate, and human impacts on different land covers; and (3) there exists an intricate linkage between the hydrological regimes in the lower HRB and the middle HRB, essentially equivalent to a tradeoff between the ecosystem health of the lower HRB and the sustainable development of the middle HRB. Overall, the integrated modeling assisted by the independent ET and LAI data has provided a coherent understanding on the regional water cycle, and led to new insights on tackling the existing water conflicts in HRB.

  13. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    SciTech Connect

    Marquardt, Christoph; Leuchs, Gerd; Andersen, Ulrik L.; Takeno, Yuishi; Yukawa, Mitsuyoshi; Yonezawa, Hidehiro; Furusawa, Akira

    2007-09-15

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51{+-}0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any nonclassical effect. For squeezed and entangled states the effect may be larger but depends critically on the state purity.

  14. Balance System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    TherEx Inc.'s AT-1 Computerized Ataxiameter precisely evaluates posture and balance disturbances that commonly accompany neurological and musculoskeletal disorders. Complete system includes two-strain gauged footplates, signal conditioning circuitry, a computer monitor, printer and a stand-alone tiltable balance platform. AT-1 serves as assessment tool, treatment monitor, and rehabilitation training device. It allows clinician to document quantitatively the outcome of treatment and analyze data over time to develop outcome standards for several classifications of patients. It can evaluate specifically the effects of surgery, drug treatment, physical therapy or prosthetic devices.

  15. Microscopic and Macroscopic Studies on Resistance Responses to Daylily Rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection process of Puccinia hemerocallidis, the causal agent of daylily rust, and resistance responses in eight daylily cultivars were studied macroscopically and microscopically. After germination of urediniospores, appressoria formed at the tip of germ tubes and penetrated through stomatal openi...

  16. Assembly of graphene sheets into 3D macroscopic structures.

    PubMed

    Yin, Shengyan; Niu, Zhiqiang; Chen, Xiaodong

    2012-08-20

    Integration of graphene sheets, 2D nanoscale building blocks, into 3D macroscopic assemblies and ultimately into a functional system is essential to explore the advanced properties of individual graphene sheets for macroscopic applications. This Concept paper summarizes different ways, such as flow-directed assembly, layer-by-layer deposition, template-directed method, and leavening strategy to assemble graphene sheets into the layered and porous 3D macroscopic structures. The obtained structures show unique properties, such as flexible network, high specific surface area, and outstanding electrical and mechanical properties. Furthermore, the functional systems based on such graphene 3D macroscopic structures have shown enhanced performance in the applications of energy storage, catalysis, environmental remediation, and sensing.

  17. Hyperspectral unmixing using macroscopic and microscopic mixture models

    NASA Astrophysics Data System (ADS)

    Close, Ryan; Gader, Paul; Wilson, Joseph

    2014-01-01

    Macroscopic and microscopic mixture models and algorithms for hyperspectral unmixing are presented. Unmixing algorithms are derived from an objective function. The objective function incorporates the linear mixture model for macroscopic unmixing and a nonlinear mixture model for microscopic unmixing. The nonlinear mixture model is derived from a bidirectional reflectance distribution function for microscopic mixtures. The algorithm is designed to unmix hyperspectral images composed of macroscopic or microscopic mixtures. The mixture types and abundances at each pixel can be estimated directly from the data without prior knowledge of mixture types. Endmembers can also be estimated. Results are presented using synthetic data sets of macroscopic and microscopic mixtures and using well-known, well-characterized laboratory data sets. The unmixing accuracy of this new physics-based algorithm is compared to linear methods and to results published for other nonlinear models. The proposed method achieves the best unmixing accuracy.

  18. Comment on 'How macroscopic properties dictate microscopic probabilities'

    SciTech Connect

    Finkelstein, J.

    2003-02-01

    Aharonov and Reznik have argued [in Phys. Rev A 65, 052116 (2002)] that the form of the probabilistic predictions of quantum theory can be seen to follow from properties of macroscopic systems. An error in their argument is identified.

  19. Macroscopic quantum effects in intrinsic Josephson junction stacks

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Machida, M.

    2008-09-01

    A macroscopic quantum theory for the capacitively-coupled intrinsic Josephson junctions (IJJ’s) is constructed. We clarify the multi-junction effect for the macroscopic quantum tunneling (MQT) to the first resistive branch. It is shown that the escape rate is greatly enhanced by the capacitive coupling between junctions. We also discuss the origin of the N2-enhancement in the escape rate observed in the uniformly switching in Bi-2212 IJJ’s.

  20. Balancing Eggs

    ERIC Educational Resources Information Center

    Mills, Allan

    2014-01-01

    Theory predicts that an egg-shaped body should rest in stable equilibrium when on its side, balance vertically in metastable equilibrium on its broad end and be completely unstable on its narrow end. A homogeneous solid egg made from wood, clay or plastic behaves in this way, but a real egg will not stand on either end. It is shown that this…

  1. Stability and anomalous compressibility of Bose gases near resonance: The scale-dependent interactions and thermal effects

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Jian; Zhou, Fei

    2015-07-01

    The stability of Bose gases near resonance has been a puzzling problem in recent years. In this article, we demonstrate that in addition to generating thermal pressure, thermal atoms enhance the repulsiveness of the scale-dependent interactions between condensed atoms due to a renormalization effect and further stabilize the Bose gases. Consequently, we find that, as a precursor of instability, the compressibility develops an anomalous structure as a function of scattering length and is drastically reduced compared with the mean-field value. Furthermore, the density profile of a Bose gas in a harmonic trap is found to develop a flat top near the center. This is due to the anomalous behavior of compressibility and can be a potential smoking gun for probing such an effect.

  2. Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model

    NASA Astrophysics Data System (ADS)

    Shen, Bo-Wen

    2016-07-01

    In this study, we construct a seven-dimensional Lorenz model (7DLM) to discuss the impact of an extended nonlinear feedback loop on solutions' stability and illustrate the hierarchical scale dependence of chaotic solutions. Compared to the 5DLM, the 7DLM includes two additional high wavenumber modes that are selected based on an analysis of the nonlinear temperature advection term, a Jacobian term (J(ψ, θ)), where, ψ and θ represent the streamfunction and temperature perturbations, respectively. Fourier modes that represent temperature in the 7DLM can be categorized into three major scales as the primary (the largest scale), secondary, and tertiary (the smallest scale) modes. Further extension of the nonlinear feedback loop within the 7DLM can provide negative nonlinear feedback to stabilize solutions, thus leading to a much larger critical value for the Rayleigh parameter (rc ˜ 116.9) for the onset of chaos, as compared to an rc of 42.9 for the 5DLM as well as an rc of 24.74 for the 3DLM. The rc is determined by an analysis of ensemble Lyapunov exponents (eLEs) with a Prandtl number (σ) of 10. To examine the dependence of rc on the value of the Prandtl number, a linear stability analysis is performed near the nontrivial critical point using a wide range of the Rayleigh parameter (40 ≤ r ≤ 195) and the Prandtl number (5 ≤ σ ≤ 25). Then an eLE analysis is conducted using selected values of the Prandtl number. The linear stability analysis is done by solving for the analytical solutions of the critical points, by linearizing the 7DLM with respect to the analytical solutions, and by calculating the eigenvalues of the linearized system. Within the range of (5 ≤ σ ≤ 25), the 7DLM requires a larger rc for the onset of chaos than the 5DLM. In addition to the negative nonlinear feedback illustrated and emulated by the quasi-equilibrium state solutions for high wavenumber modes, the 7DLM reveals the hierarchical scale dependence of chaotic solutions. For

  3. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  4. A macroscopic approach to glacier dynamics

    USGS Publications Warehouse

    Harrison, W.D.; Raymond, C.F.; Echelmeyer, K.A.; Krimmel, R.M.

    2003-01-01

    A simple approach to glacier dynamics is explored in which there is postulated to be a relationship between area and volume with three parameters: the time for area to respond to changes in volume, a thickness scale, and an area characterizing the condition of the initial state. This approach gives a good fit to the measurements of cumulative balance and area on South Cascade Glacier from 1970-97; the area time-scale is roughly 8 years, the thickness scale about 123 m, and the 1970 area roughly 4% larger than required for adjustment with volume. Combining this relationship with a version of mass continuity expressed in terms of area and volume produces a theory of glacier area and volume response to climate in which another time constant, the volume time-scale, appears. Area and volume both respond like a damped spring and mass system. The damping of the South Cascade response is approximately critical, and the volume time-scale is roughly 48 years, six times the area time-scale. The critically damped spring and mass analogy reproduces the time dependence predicted by the more complicated traditional theory of Nye.

  5. Macroscopic Velocity Amplification in Stacked Disks

    NASA Astrophysics Data System (ADS)

    Murthy, Srividya; White, Gary

    2015-04-01

    When a small sphere rests atop a larger sphere (for example, a basketball with a tennis ball balanced on top), and both are released from a height, the resulting ``velocity amplification'' of the small sphere when the pair rebound from a hard floor, is a staple of the physics demonstration toolkit--usually impressive, sometimes dangerous. While this phenomenon has been studied in the literature in some detail, we set out to explore this effect by constructing a device involving stacked disks falling in a plane, fashioned after an online design by Wayne Peterson of Brigham Young University. When two disks, stacked edge to edge atop one another and confined to a vertical plane, are dropped, the top disk rebounds to a much greater height than it started from, as expected. In this talk, we report on experiments conducted by dropping the disks and recording the heights to which they rise on rebound, and the comparison of these results with our theoretical predictions and computer simulations. Frances E. Walker Fellowship.

  6. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    PubMed

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  7. Balance (or Vestibular) Rehabilitation

    MedlinePlus

    ... for the Public / Hearing and Balance Balance (or Vestibular) Rehabilitation Audiologic (hearing), balance, and medical diagnostic tests help indicate whether you are a candidate for vestibular (balance) rehabilitation. Vestibular rehabilitation is an individualized balance ...

  8. Balanced Can

    NASA Astrophysics Data System (ADS)

    Shakerin, Said

    2013-12-01

    The ordinary 12-oz beverage cans in the figures below are not held up with any props or glue. The bottom of such cans is stepped at its circumference for better stacking. When this kind of can is tilted, as shown in Fig. 1, the outside corners of the step touch the surface beneath, providing an effective contact about 1 cm wide. Because the contact is relatively wide and the geometry is symmetrical, it is easy to balance an empty can by simply adding an appropriate amount of water so that the overall center of mass is located directly above the contact. In fact, any amount of water between about 40 and 210 mL will work. A computational animation of this trick by Sijia Liang and Bruce Atwood that shows center of mass as a function of amount of added water is available at http://demonstrations.wolfram.com. Once there, search "balancing can."

  9. Assessing the Scale-Dependence of the Effects of Deforestation on the Regional Hydrological Cycle in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Dalmeida, C.; Vorosmarty, C. J.; Fekete, B.; Marengo, J. A.; de Guenni, L. B.; Willmott, C. J.

    2002-12-01

    The Amazon Basin is the largest watershed in the world, with a drainage area of about 7,000,000 km2 and is responsible for approximately 13% of the total global runoff into the oceans. Since the mid-1970's, deforestation has been an intensive activity in several parts of the basin and despite all the concern and awareness of the scientific community, its effects on the regional hydrological cycle are still unclear. While many large-scale modeling studies have observed that conversion of the Amazonian rainforest into pastures or croplands tend to induce an overall reduction in precipitation and runoff, there are also mesoscale experiments that predicted the establishment of an enhanced water cycle over deforested areas. Such contrasting results suggest that the net hydrological effect of deforestation might depend on the size of the clearing area. In fact, observational studies support that assumption, showing enhanced runoff at the catchment level and contrasting results at the basin-scale. In order to illustrate the scale dependence concept suggested above and explain the contrast between predictions and observations at different scales in Amazonia, a very simple conceptual model that connects precipitation, evapotranspiration and runoff, and relates them to a deforestation factor is developed. Furthermore, while precipitation in Amazonia follows more closely the fluctuations in the general circulation of the atmosphere - which seems to be offsetting the effects of deforestation - runoff is not directly dependent on such remote forcings and it then may, unlike precipitation, carry the signal of deforestation and permit a better assessment of the scale dependence of its effects. In order to access that, the present work applies different methods of Trend and Spectral Analysis to historical records from Amazonia, focusing on discharge time series. Based on current and predicted deforestation scenarios, a numerical model representing the Water Budget Closure (WBC

  10. Fibrous random materials: From microstructure to macroscopic properties

    NASA Astrophysics Data System (ADS)

    Yazdchi, K.; Luding, S.

    2013-06-01

    Fibrous porous materials are involved in a wide range of applications including composite materials, fuel cells, heat exchangers and (biological)filters. Fluid flow through these materials plays an important role in many engineering applications and processes, such as textiles and paper manufacturing or transport of (under)ground water and pollutants. While most porous materials have complex geometry, some can be seen as two-dimensional particulate/fibrous systems, in which we introduce several microscopic quantities, based on Voronoi and Delaunay tessellations, to characterize their microstructure. In particular, by analyzing the topological properties of Voronoi polygons, we observe a smooth transition from disorder to order, for increasing packing fraction. Using fully resolved finite element (FE) simulations of Newtonian, incompressible fluid flow perpendicular to the fibres, the macroscopic permeability is calculated in creeping flow regimes. The effect of fibre arrangement and local crystalline regions on the macroscopic permeability is discussed and the macroscopic property is linked to the microscopic structural quantities.

  11. Graphene chiral liquid crystals and macroscopic assembled fibres

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Gao, Chao

    2011-12-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles.

  12. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  13. [Studies on macroscopic and microscopic characteristics of Ophiocordyceps xuefengensis].

    PubMed

    Liu, Hao; Zhen, Lan-ping; Zhu, Ru-cai; Zhang, Shui-han; Huang, Hui-yong

    2015-07-01

    The macroscopic characteristics, tissue, caterpillar body wall and powder of Ophiocordyceps xuefengensis in different batch numbers were observed and researched by the macroscopic and microscopic identification methods. The result shows that the morphology, size, abdominal annulations of caterpillar, etc. of 0. xuefengensis are the macroscopic identification characteristics, the caterpillar body surface mycelium, body wall sculpture and crochets on abdominal legs are the microscopic identification characteristics. These characters are stable and regular discriminant features, which are proved to be the identification basis of O. xuefengensis. In addition, The characters such as crochets on abdominal legs arrange in two parallel ellipse rings, the inner crochets are long strip, and the external toes are unciform, are specific. PMID:26666033

  14. Atomistic Simulation of the Transition from Atomistic to Macroscopic Cratering

    SciTech Connect

    Samela, Juha; Nordlund, Kai

    2008-07-11

    Using large-scale atomistic simulations, we show that the macroscopic cratering behavior emerges for projectile impacts on Au at projectile sizes between 1000 and 10 000 Au atoms at impact velocities comparable to typical meteoroid velocities. In this size regime, we detect a compression of material in Au nanoparticle impacts similar to that observed for hypervelocity macroscopic impacts. The simulated crater volumes agree with the values calculated using the macroscopic crater size scaling law, in spite of a downwards extrapolation over more than 15 orders of magnitude in terms of the impactor volume. The result demonstrates that atomistic simulations can be used as a tool to understand the strength properties of materials in cases where only continuum models have been possible before.

  15. Macroscopic quantumness: Theory and applications in optical sciences

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunseok; Sasaki, Masahide

    2015-02-01

    Since the early days of quantum mechanics, as illustrated by Schrödinger's Gedankenexperiment, macroscopic quantum phenomena have attracted great interest among scientists and general audience. As highlighted by the Nobel prize in Physics in 2012, the scientific community could assent that the state-of-the-art technology to measure and manipulate individual quantum systems is now available in laboratories. We believe that the next step in order is to collectively control large quantum systems even at a 'macroscopic' level. This will be an intriguing challenge, from the fundamental point of view, for testing quantum mechanics in the macroscopic limit. Furthermore, it will make another major step forward to practical implementations of quantum information technologies.

  16. Optimal Estimation of Ion-Channel Kinetics from Macroscopic Currents

    PubMed Central

    Zeng, Xuhui; Yao, Jing; Yuchi, Ming; Ding, Jiuping

    2012-01-01

    Markov modeling provides an effective approach for modeling ion channel kinetics. There are several search algorithms for global fitting of macroscopic or single-channel currents across different experimental conditions. Here we present a particle swarm optimization(PSO)-based approach which, when used in combination with golden section search (GSS), can fit macroscopic voltage responses with a high degree of accuracy (errors within 1%) and reasonable amount of calculation time (less than 10 hours for 20 free parameters) on a desktop computer. We also describe a method for initial value estimation of the model parameters, which appears to favor identification of global optimum and can further reduce the computational cost. The PSO-GSS algorithm is applicable for kinetic models of arbitrary topology and size and compatible with common stimulation protocols, which provides a convenient approach for establishing kinetic models at the macroscopic level. PMID:22536358

  17. Broadband macroscopic cortical oscillations emerge from intrinsic neuronal response failures.

    PubMed

    Goldental, Amir; Vardi, Roni; Sardi, Shira; Sabo, Pinhas; Kanter, Ido

    2015-01-01

    Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which were extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism-the intrinsic stochastic neuronal response failures (NRFs). These NRFs, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives. PMID:26578893

  18. Role of macroscopic particles in deep-sea oxygen consumption.

    PubMed

    Bochdansky, Alexander B; van Aken, Hendrik M; Herndl, Gerhard J

    2010-05-01

    Macroscopic particles (>500 mum), including marine snow, large migrating zooplankton, and their fast-sinking fecal pellets, represent primary vehicles of organic carbon flux from the surface to the deep sea. In contrast, freely suspended microscopic particles such as bacteria and protists do not sink, and they contribute the largest portion of metabolism in the upper ocean. In bathy- and abyssopelagic layers of the ocean (2,000-6,000 m), however, microscopic particles may not dominate oxygen consumption. In a section across the tropical Atlantic, we show that macroscopic particle peaks occurred frequently in the deep sea, whereas microscopic particles were barely detectable. In 10 of 17 deep-sea profiles (>2,000 m depth), macroscopic particle abundances were more strongly cross-correlated with oxygen deficits than microscopic particles, suggesting that biomass bound to large particles dominates overall deep-sea metabolism.

  19. The Advantages of Not Entangling Macroscopic Diamonds at Room Temperature

    PubMed Central

    Brezinski, Mark E.

    2013-01-01

    The recent paper entitled by K. C. Lee et al. (2011) establishes nonlocal macroscopic quantum correlations, which they term “entanglement”, under ambient conditions. Photon(s)-phonon entanglements are established within each interferometer arm. However, our analysis demonstrates, the phonon fields between arms become correlated as a result of single-photon wavepacket path indistinguishability, not true nonlocal entanglement. We also note that a coherence expansion (as opposed to decoherence) resulted from local entanglement which was not recognized. It occurred from nearly identical Raman scattering in each arm (importantly not meeting the Born and Markovian approximations). The ability to establish nonlocal macroscopic quantum correlations through path indistinguishability rather than entanglement offers the opportunity to greatly expand quantum macroscopic theory and application, even though it was not true nonlocal entanglement. PMID:27429619

  20. Broadband macroscopic cortical oscillations emerge from intrinsic neuronal response failures

    PubMed Central

    Goldental, Amir; Vardi, Roni; Sardi, Shira; Sabo, Pinhas; Kanter, Ido

    2015-01-01

    Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which were extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism—the intrinsic stochastic neuronal response failures (NRFs). These NRFs, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives. PMID:26578893

  1. Collaboration and nested environmental governance: Scale dependency, scale framing, and cross-scale interactions in collaborative conservation.

    PubMed

    Wyborn, Carina; Bixler, R Patrick

    2013-07-15

    The problem of fit between social institutions and ecological systems is an enduring challenge in natural resource management and conservation. Developments in the science of conservation biology encourage the management of landscapes at increasingly larger scales. In contrast, sociological approaches to conservation emphasize the importance of ownership, collaboration and stewardship at scales relevant to the individual or local community. Despite the proliferation of initiatives seeking to work with local communities to undertake conservation across large landscapes, there is an inherent tension between these scales of operation. Consequently, questions about the changing nature of effective conservation across scales abound. Through an analysis of three nested cases working in a semiautonomous fashion in the Northern Rocky Mountains in North America, this paper makes an empirical contribution to the literature on nested governance, collaboration and communication across scales. Despite different scales of operation, constituencies and scale frames, we demonstrate a surprising similarity in organizational structure and an implicit dependency between these initiatives. This paper examines the different capacities and capabilities of collaborative conservation from the local to regional to supra regional. We draw on the underexplored concept of 'scale-dependent comparative advantage' (Cash and Moser, 2000), to gain insight into what activities take place at which scale and what those activities contribute to nested governance and collaborative conservation. The comparison of these semiautonomous cases provides fruitful territory to draw lessons for understanding the roles and relationships of organizations operating at different scales in more connected networks of nested governance.

  2. Macroscopicity in an optomechanical matter-wave interferometer

    NASA Astrophysics Data System (ADS)

    Xuereb, André; Ulbricht, Hendrik; Paternostro, Mauro

    2015-02-01

    We analyse a proposal that we have recently put forward for an interface between matter-wave and optomechanical technologies from the perspective of macroscopic quantumness. In particular, by making use of a measure of macroscopicity in quantum superpositions that is particularly well suited for continuous variables systems, we demonstrate the existence of working points for our interface at which a quantum mechanical superposition of genuinely mesoscopic states is achieved. Our proposal thus holds the potential to affirm itself as a viable atom-to-mechanics transducer of quantum coherences.

  3. CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface

    PubMed Central

    Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei

    2015-01-01

    Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level. PMID:26510671

  4. CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface

    NASA Astrophysics Data System (ADS)

    Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei

    2015-10-01

    Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.

  5. Shaft balancing

    DOEpatents

    Irwin, John A.

    1979-01-01

    A gas turbine engine has an internal drive shaft including one end connected to a driven load and an opposite end connected to a turbine wheel and wherein the shaft has an in situ adjustable balance system near the critical center of a bearing span for the shaft including two 360.degree. rings piloted on the outer diameter of the shaft at a point accessible through an internal engine panel; each of the rings has a small amount of material removed from its periphery whereby both of the rings are precisely unbalanced an equivalent amount; the rings are locked circumferentially together by radial serrations thereon; numbered tangs on the outside diameter of each ring identify the circumferential location of unbalance once the rings are locked together; an aft ring of the pair of rings has a spline on its inside diameter that mates with a like spline on the shaft to lock the entire assembly together.

  6. Scale-dependent effects of a heterogeneous landscape on genetic differentiation in the Central American squirrel monkey (Saimiri oerstedii).

    PubMed

    Blair, Mary E; Melnick, Don J

    2012-01-01

    Landscape genetic studies offer a fine-scale understanding of how habitat heterogeneity influences population genetic structure. We examined population genetic structure and conducted a landscape genetic analysis for the endangered Central American Squirrel Monkey (Saimiri oerstedii) that lives in the fragmented, human-modified habitats of the Central Pacific region of Costa Rica. We analyzed non-invasively collected fecal samples from 244 individuals from 14 groups for 16 microsatellite markers. We found two geographically separate genetic clusters in the Central Pacific region with evidence of recent gene flow among them. We also found significant differentiation among groups of S. o. citrinellus using pairwise F(ST) comparisons. These groups are in fragments of secondary forest separated by unsuitable "matrix" habitats such as cattle pasture, commercial African oil palm plantations, and human residential areas. We used an individual-based landscape genetic approach to measure spatial patterns of genetic variance while taking into account landscape heterogeneity. We found that large, commercial oil palm plantations represent moderate barriers to gene flow between populations, but cattle pastures, rivers, and residential areas do not. However, the influence of oil palm plantations on genetic variance was diminished when we restricted analyses to within population pairs, suggesting that their effect is scale-dependent and manifests during longer dispersal events among populations. We show that when landscape genetic methods are applied rigorously and at the right scale, they are sensitive enough to track population processes even in species with long, overlapping generations such as primates. Thus landscape genetic approaches are extremely valuable for the conservation management of a diverse array of endangered species in heterogeneous, human-modified habitats. Our results also stress the importance of explicitly considering the heterogeneity of matrix habitats in

  7. Modeling scale-dependent runoff generation in a small semi-arid watershed accounting for rainfall intensity and water depth

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Govers, Gerard; Diels, Jan; Stone, Jeffry J.; Nearing, Mark A.

    2014-07-01

    Observed scale effects of runoff on hillslopes and small watersheds derive from complex interactions of time-varying rainfall rates with runoff, infiltration and macro- and microtopographic structures. A little studied aspect of scale effects is the concept of water depth-dependent infiltration. For semi-arid rangeland it has been demonstrated that mounds underneath shrubs have a high infiltrability and lower lying compacted or stony inter-shrub areas have a lower infiltrability. It is hypothesized that runoff accumulation further downslope leads to increased water depth, inundating high infiltrability areas, which increases the area-averaged infiltration rate. A model was developed that combines the concepts of water depth-dependent infiltration, partial contributing area under variable rainfall intensity, and the Green-Ampt theory for point-scale infiltration. The model was applied to rainfall simulation data and natural rainfall-runoff data from a small sub-watershed (0.4 ha) of the Walnut Gulch Experimental Watershed in the semi-arid US Southwest. Its performance to reproduce observed hydrographs was compared to that of a conventional Green-Ampt model assuming complete inundation sheet flow, with runon infiltration, which is infiltration of runoff onto pervious downstream areas. Parameters were derived from rainfall simulations and from watershed-scale calibration directly from the rainfall-runoff events. The performance of the water depth-dependent model was better than that of the conventional model on the scale of a rainfall simulator plot, but on the scale of a small watershed the performance of both model types was similar. We believe that the proposed model contributes to a less scale-dependent way of modeling runoff and erosion on the hillslope-scale.

  8. Scale Dependence of Female Ungulate Reproductive Success in Relation to Nutritional Condition, Resource Selection and Multi-Predator Avoidance.

    PubMed

    Duquette, Jared F; Belant, Jerrold L; Svoboda, Nathan J; Beyer, Dean E; Lederle, Patrick E

    2015-01-01

    study emphasizes understanding the scale-dependent hierarchy of factors limiting reproductive success is essential to providing reliable knowledge for ungulate management.

  9. Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Fang, Zhufeng; Bogena, Heye; Kollet, Stefan; Vereecken, Harry

    2016-05-01

    In distributed hydrological modelling one often faces the problem that input data need to be aggregated to match the model resolution. However, aggregated data may be too coarse for the parametrization of the processes represented. This dilemma can be circumvented by the adjustment of certain model parameters. For instance, the reduction of local hydraulic gradients due to spatial aggregation can be partially compensated by increasing soil hydraulic conductivity. In this study, we employed the information entropy concept for the scale dependent parameterization of soil hydraulic conductivity. The loss of information content of terrain curvature as consequence of spatial aggregation was used to determine an amplification factor for soil hydraulic conductivity to compensate the resulting retardation of water flow. To test the usefulness of this approach, continuous 3D hydrological simulations were conducted with different spatial resolutions in the highly instrumented Wüstebach catchment, Germany. Our results indicated that the introduction of an amplification factor can effectively improve model performances both in terms of soil moisture and runoff simulation. However, comparing simulated soil moisture pattern with observation indicated that uniform application of an amplification factor can lead to local overcorrection of soil hydraulic conductivity. This problem could be circumvented by applying the amplification factor only to model grid cells that suffer from high information loss. To this end, we tested two schemes to define appropriate location-specific correction factors. Both schemes led to improved model performance both in terms of soil water content and runoff simulation. Thus, we anticipate that our proposed scaling approach is useful for the application of next-generation hyper-resolution global land surface models.

  10. The recent hiatus in global warming of the land surface: Scale-dependent breakpoint occurrences in space and time

    NASA Astrophysics Data System (ADS)

    Ying, Lingxiao; Shen, Zehao; Piao, Shilong

    2015-08-01

    The spatial and temporal variability of the recent land warming hiatus have seldom been explored, despite their importance for understanding the mechanisms underlying the phenomenon. In this study, we applied piecewise linear regression to investigate the spatiotemporal patterns of the breakpoint time of warming over 40 years (1974-2013). Our results showed that at the global scale, mean annual temperature (MAT) over the land increased significantly until 2005 and that the warming trend then stalled. However, the breakpoint time of the warming varied greatly among different seasons and continents. We found no statistically significant breakpoint in MAT over the Northern Hemisphere, but MAT over the Southern Hemisphere showed a significant breakpoint (P < 0.001) in 1979. At the seasonal scale, only the winter season (December-January-February) showed a statistically significant breakpoint in global land temperature. The other seasons showed continuous increasing temperature during the whole study period. Our study examined the recent global warming hiatus on the land surface using an area-weighted summary of a scale-dependent phenomenon with substantial spatiotemporal heterogeneity and revealed the winter cooling in the Northern Hemisphere low-middle latitudes in 1999-2008 as the major contributor to the global warming hiatus on land surface in 2005. This result highlights the importance of using a statistical method to identify the timing of climate phase change. A better understanding of the processes behind the spatiotemporal patterns of local-scale breakpoint occurrences in land surface temperature would shed new light on the mechanisms of the recent global warming hiatus.

  11. Scale Dependence of Female Ungulate Reproductive Success in Relation to Nutritional Condition, Resource Selection and Multi-Predator Avoidance

    PubMed Central

    Duquette, Jared F.; Belant, Jerrold L.; Svoboda, Nathan J.; Beyer, Dean E.; Lederle, Patrick E.

    2015-01-01

    study emphasizes understanding the scale-dependent hierarchy of factors limiting reproductive success is essential to providing reliable knowledge for ungulate management. PMID:26473968

  12. Scale Dependence of Female Ungulate Reproductive Success in Relation to Nutritional Condition, Resource Selection and Multi-Predator Avoidance.

    PubMed

    Duquette, Jared F; Belant, Jerrold L; Svoboda, Nathan J; Beyer, Dean E; Lederle, Patrick E

    2015-01-01

    study emphasizes understanding the scale-dependent hierarchy of factors limiting reproductive success is essential to providing reliable knowledge for ungulate management. PMID:26473968

  13. From macroscopic yield criteria to atomic stresses in polymer glasses

    SciTech Connect

    MacNeill, David; Rottler, Joerg

    2010-01-15

    The relationship between macroscopic shear yield criteria and local stress distributions in deformed polymer glasses is investigated via molecular dynamics simulations on different scales of coarse-graining. Macroscopic shear stresses at the yield point obey a pressure-modified von Mises (pmvM) criterion for many different loading conditions and strain rates. Average local stresses in small volume elements obey the same yield criterion for volumes containing approx. 100 atoms or more. Qualitatively different behavior is observed on smaller scales: the average octahedral atomic shear stress has a simple linear relationship to hydrostatic pressure regardless of macroscopic stress state and failure mode. Local plastic events are identified through a threshold in the mean-squared nonaffine displacement and compared to the local stress state. We find that the pmvM criterion only predicts local yield events when stress and displacements are averaged over at least 100 atoms. By contrast, macroscopic shear yield criteria appear to lose their ability to predict plastic activity on the atomic scale.

  14. A Macroscopic Analogue of the Nuclear Pairing Potential

    ERIC Educational Resources Information Center

    Dunlap, Richard A.

    2013-01-01

    A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…

  15. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. PMID:27389477

  16. Implementing the Deutsch-Jozsa algorithm with macroscopic ensembles

    NASA Astrophysics Data System (ADS)

    Semenenko, Henry; Byrnes, Tim

    2016-05-01

    Quantum computing implementations under consideration today typically deal with systems with microscopic degrees of freedom such as photons, ions, cold atoms, and superconducting circuits. The quantum information is stored typically in low-dimensional Hilbert spaces such as qubits, as quantum effects are strongest in such systems. It has, however, been demonstrated that quantum effects can be observed in mesoscopic and macroscopic systems, such as nanomechanical systems and gas ensembles. While few-qubit quantum information demonstrations have been performed with such macroscopic systems, a quantum algorithm showing exponential speedup over classical algorithms is yet to be shown. Here, we show that the Deutsch-Jozsa algorithm can be implemented with macroscopic ensembles. The encoding that we use avoids the detrimental effects of decoherence that normally plagues macroscopic implementations. We discuss two mapping procedures which can be chosen depending upon the constraints of the oracle and the experiment. Both methods have an exponential speedup over the classical case, and only require control of the ensembles at the level of the total spin of the ensembles. It is shown that both approaches reproduce the qubit Deutsch-Jozsa algorithm, and are robust under decoherence.

  17. Testing macroscopic realism through high-mass interferometry

    NASA Astrophysics Data System (ADS)

    Emary, Clive; Cotter, J. P.; Arndt, Markus

    2014-10-01

    We define a quantum witness for high-mass matter-wave interferometers that allows us to test fundamental assumptions of macroscopic realism. We propose an experimental realization using absorptive laser gratings and show that such systems can strongly violate a macrorealistic quantum-witness equality. The measurement of the witness can therefore provide clear evidence of physics beyond macrorealism for macromolecules and nanoparticles.

  18. Generation of macroscopic superposition states with small nonlinearity

    SciTech Connect

    Jeong, H.; Ralph, T.C.; Kim, M. S.; Ham, B.S.

    2004-12-01

    We suggest a scheme to generate a macroscopic superposition state ('Schroedinger cat state') of a free-propagating optical field using a beam splitter, homodyne measurement, and a very small Kerr nonlinear effect. Our scheme makes it possible to reduce considerably the required nonlinear effect to generate an optical cat state using simple and efficient optical elements.

  19. Stereodynamics: From elementary processes to macroscopic chemical reactions

    SciTech Connect

    Kasai, Toshio; Che, Dock-Chil; Tsai, Po-Yu; Lin, King-Chuen; Palazzetti, Federico; Aquilanti, Vincenzo

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  20. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

  1. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  2. Geometry- and Length Scale-Dependent Deformation and Recovery on Micro- and Nanopatterned Shape Memory Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Wei Li; Low, Hong Yee

    2016-03-01

    Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets.

  3. Geometry- and Length Scale-Dependent Deformation and Recovery on Micro- and Nanopatterned Shape Memory Polymer Surfaces

    PubMed Central

    Lee, Wei Li; Low, Hong Yee

    2016-01-01

    Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290

  4. Impact of scale dependent bias and nonlinear structure growth on the integrated Sachs-Wolfe effect: Angular power spectra

    SciTech Connect

    Smith, Robert E.; Hernandez-Monteagudo, Carlos; Seljak, Uros

    2009-09-15

    We investigate the impact of nonlinear evolution of the gravitational potentials in the {lambda}CDM model on the integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) temperature power spectrum, and on the cross-power spectrum of the CMB and a set of biased tracers of the mass. We use an ensemble of N-body simulations to directly follow the potentials and compare the results to analytic PT methods. The predictions from the PT match the results to high precision for k<0.2h Mpc{sup -1}. We compute the nonlinear corrections to the angular power spectrum and find them to be <10% of linear theory for l<100. These corrections are swamped by the cosmic variance. On scales l>100 the departures are more significant; however, the CMB signal is more than a factor 10{sup 3} larger at this scale. Nonlinear ISW effects therefore play no role in shaping the CMB power spectrum for l<1500. We analyze the CMB-density tracer cross spectrum using simulations and renormalized bias PT, and find good agreement. The usual assumption is that nonlinear evolution enhances the growth of structure and counteracts the linear ISW on small scales, leading to a change in sign of the CMB large-scale structure cross spectrum at small scales. However, PT analysis suggests that this trend reverses at late times when the logarithmic growth rate f=dlnD/dlna<0.5 or {omega}{sub m}(z)<0.3. Numerical results confirm these expectations and we find no sign change in ISW large-scale structure cross power for low redshifts. Corrections due to nonlinearity and scale dependence of the bias are found to be <10% for l<100, and are therefore below the signal to noise of the current and future measurements. Finally, we estimate the cross-correlation coefficient between the CMB and halos and show that it can be made to match that for the dark matter and CMB to within 5% for thin redshift shells, thus mitigating the need to model bias evolution.

  5. Scale-Dependent Fracture-Matrix Interactions and Their Impact on Radionuclide Transport: Development of efficient particle-tracking methods

    SciTech Connect

    Rajaram, Harihar; Brutz, Michael; Klein, Dylan R; Mallikamas, Wasin

    2014-09-18

    Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in “effective” parameters used in these models, such as the “effective matrix diffusivity”. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between the effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in “effective matrix diffusion” coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in flow fields

  6. Topographic Roughness of Hawaiian Volcanic Terrains: A Scale-Dependent Analysis of a Potential Mars Landing Site Analog

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; Anderson, F.; Mouginis-Mark, P.; Haldemann, A.

    2006-12-01

    The roughness of a natural surface is often defined by the topography of the surface at scales of a few tens of meters or less and can be quantitatively described by self-affine, or fractal, statistics. To ensure the safety of rovers and scientific instruments on Mars, these scales are of critical importance during landing site selection and rover traverse operations. Published work on terrestrial and Martian topography datasets has demonstrated that statistical values such as the Hurst exponent can be used in conjunction with other statistical measures such as RMS slope to understand the relationship between scale-dependent roughness characteristics and the morphology of a surface. We seek to understand the effects of dataset resolution on the interpretation of various volcanic surfaces on Kilauea volcano, with applications to rover traverse navigation on remote, planetary surfaces. Extensive Light Detection and Ranging (LiDAR) coverage of the summit of Kilauea volcano, Hawaii, (30 cm posting, 1 m DEM, 2 cm vertical resolution) provides an opportunity for simulating higher resolution Martian topography data such as will be obtained from photoclinometry and stereo imaging using the High Resolution Imaging Science Experiment (HiRISE) camera on Mars Reconnaissance Orbiter (MRO). Using the method of calculating fractal statistics described in detail by previous authors, we develop two-dimensional maps of the Hurst exponent of Martian analog flows in Hawaii to understand the effects of limited resolution topographic and imaging data on the interpretation of volcanic features on the surface of Mars. In addition to the LiDAR data, we use high resolution topographic data generated from controlled stereo imaging of volcanic surfaces within Kilauea caldera to provide a detailed view of sub-meter surface roughness of the young volcanic terrains covered by the LiDAR data. To obtain the stereo data, we moved a 12.8 mega- pixel digital camera, pointed perpendicular to the

  7. Experimental study of stable imbibition displacements in a model open fracture. II. Scale-dependent avalanche dynamics

    NASA Astrophysics Data System (ADS)

    Clotet, Xavier; Santucci, Stéphane; Ortín, Jordi

    2016-01-01

    We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions. We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension, and forced them to slowly invade a model open fracture at very different flow rates v . In this second part of the study we have carried out a scale-dependent statistical analysis of the front dynamics. We have specifically analyzed the influence of μ and v on the statistical properties of the velocity Vℓ, the spatial average of the local front velocities over a window of lateral size ℓ . We have varied ℓ from the local scale defined by our spatial resolution up to the lateral system size L . Even though the imposed flow rate is constant, the signals Vℓ(t ) present very strong fluctuations which evolve systematically with the parameters μ , v , and ℓ . We have verified that the non-Gaussian fluctuations of the global velocity Vℓ(t ) are very well described by a generalized Gumbel statistics. The asymmetric shape and the exponential tail of those distributions are controlled by the number of effective degrees of freedom of the imbibition fronts, given by Neff=ℓ /ℓc (the ratio of the lateral size of the measuring window ℓ to the correlation length ℓc˜1 /√{μ v } ). The large correlated excursions of Vℓ(t ) correspond to global avalanches, which reflect extra displacements of the imbibition fronts. We show that global avalanches are power-law distributed, both in sizes and durations, with robustly defined exponents—independent of μ , v , and ℓ . Nevertheless, the exponential upper cutoffs of the distributions evolve systematically with those parameters. We have found, moreover, that maximum sizes ξS and maximum durations ξT of global avalanches are not controlled by the same mechanism. While ξS are also determined by

  8. Experimental study of stable imbibition displacements in a model open fracture. II. Scale-dependent avalanche dynamics.

    PubMed

    Clotet, Xavier; Santucci, Stéphane; Ortín, Jordi

    2016-01-01

    We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions. We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension, and forced them to slowly invade a model open fracture at very different flow rates v. In this second part of the study we have carried out a scale-dependent statistical analysis of the front dynamics. We have specifically analyzed the influence of μ and v on the statistical properties of the velocity V_{ℓ}, the spatial average of the local front velocities over a window of lateral size ℓ. We have varied ℓ from the local scale defined by our spatial resolution up to the lateral system size L. Even though the imposed flow rate is constant, the signals V_{ℓ}(t) present very strong fluctuations which evolve systematically with the parameters μ, v, and ℓ. We have verified that the non-Gaussian fluctuations of the global velocity V_{ℓ}(t) are very well described by a generalized Gumbel statistics. The asymmetric shape and the exponential tail of those distributions are controlled by the number of effective degrees of freedom of the imbibition fronts, given by N_{eff}=ℓ/ℓ_{c} (the ratio of the lateral size of the measuring window ℓ to the correlation length ℓ_{c}∼1/sqrt[μv]). The large correlated excursions of V_{ℓ}(t) correspond to global avalanches, which reflect extra displacements of the imbibition fronts. We show that global avalanches are power-law distributed, both in sizes and durations, with robustly defined exponents-independent of μ, v, and ℓ. Nevertheless, the exponential upper cutoffs of the distributions evolve systematically with those parameters. We have found, moreover, that maximum sizes ξ_{S} and maximum durations ξ_{T} of global avalanches are not controlled by the same mechanism. While ξ_{S} are also

  9. From 1D to 3D - macroscopic nanowire aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  10. Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically

    PubMed Central

    Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro

    2015-01-01

    Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (∼10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure. PMID:26416086

  11. Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically

    NASA Astrophysics Data System (ADS)

    Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro

    2015-09-01

    Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (~10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure.

  12. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    SciTech Connect

    Borghero, F.; Demontis, F.; Pennisi, S.

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  13. Macroscopically Separated Gaps in Dimer Coverings of Aztec Rectangles

    NASA Astrophysics Data System (ADS)

    Ciucu, Mihai

    2016-05-01

    In this paper we determine the interaction of diagonal defect clusters in regions of an Aztec rectangle that scale to arbitrary points on its symmetry axis (in earlier work we treated the case when this point was the center of the scaled Aztec rectangle). We use the resulting formulas to determine the asymptotics of the correlation of defects that are macroscopically separated from one another and feel the influence of the boundary. In several of the treated situations this seems not to be accomplishable by previous methods. Our applications include the case of two long neutral strings, which turn out to interact by an analog of the Casimir force, two families of neutral doublets that turn out to interact completely independently of one another, a neutral doublet and a very long neutral string, a general collection of macroscopically separated monomer and separation defects, and the case of long strings consisting of consecutive monomers.

  14. Has Macroscopic Superposition in Superconducting Qubits Really Been Demonstrated?

    NASA Astrophysics Data System (ADS)

    Kadin, Alan M.; Kaplan, Steven B.

    Quantum computing depends on many qubits coupled via quantum entanglement, where each qubit must be a simultaneous superposition of two quantum states of different energies, rather than one state or the other as in classical bits. It is widely believed that observations of energy quantization and Rabi oscillations in macroscopic superconducting circuits prove that these are proper qubits with quantum superposition. But is this really the only interpretration? We propose a novel paradigm for macroscopic quantum systems, in which energies are quantized (with photon-mediated transitions), but the quantized states are realistic objects without superposition. For example, a circuit could make a transition from one quantized value of flux to another, but would never have both at the same time. We further suggest a superconducting circuit that can put this proposal to a test. Without quantum superposition, most of the potential benefit of quantum computing would be lost.

  15. Macroscopic view of light pressure on a continuous medium

    NASA Astrophysics Data System (ADS)

    Gorkunov, M. V.; Kondratov, A. V.

    2013-07-01

    The ambiguity of the macroscopic description of light pressure on a continuous medium originates from the uncertainty of dividing the energy-momentum tensor of electromagnetically excited matter into a material and field parts or, equivalently, the total acting force into pressure and deformation terms. We show that, although there exists a continuum of formally correct formulations, one can adopt the appropriate form of the macroscopic field stress tensor that allows a unified description of pressure during elementary light-matter interactions, such as reflection, refraction, absorption, and nonlinear conversion. The derived simple expressions for the pressure force are compatible with the polariton momentum ℏk. The corresponding relation for the electromagnetic momentum density generalizes Rytov's definition for right-handed and left-handed frequency dispersive media.

  16. Optical detection of the Casimir force between macroscopic objects.

    PubMed

    Petrov, Victor; Petrov, Mikhail; Bryksin, Valeriy; Petter, Juergen; Tschudi, Theo

    2006-11-01

    We report the optical detection of mechanical deformation of a macroscopic object induced by the Casimir force. An adaptive holographic interferometer based on a photorefractive BaTiO3:Co crystal was used to measure periodical nonlinear deformations of a thin pellicle caused by an oscillating Casimir force. A reasonable agreement between the experimental and calculated values of the first and second harmonics of the Casimir force oscillations has been obtained. PMID:17041670

  17. Random-phase approximation as a macroscopic description

    NASA Astrophysics Data System (ADS)

    Strutinsky, V. M.; Abrosimov, V. I.

    1990-09-01

    Analysis of nuclear processes in terms of cross-sections averaged over the many microscopic channels, as in the “poor resolution” experiments, corresponds to a macroscopic level of description. In this paper energy-averaged strength function is considered. In order to determine the frequency dependence of this quantity statistically averaged single-particle density is introduced for which equations are obtained analogous to random phase approximation.

  18. Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations*

    PubMed Central

    Xu, Zhenli; Cai, Wei

    2013-01-01

    We review recent developments of fast analytical methods for macroscopic electrostatic calculations in biological applications, including the Poisson–Boltzmann (PB) and the generalized Born models for electrostatic solvation energy. The focus is on analytical approaches for hybrid solvation models, especially the image charge method for a spherical cavity, and also the generalized Born theory as an approximation to the PB model. This review places much emphasis on the mathematical details behind these methods. PMID:23745011

  19. Macroscopic phase separation in high-temperature superconductors

    PubMed Central

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  20. Macroscopic vacuum effects in an inhomogeneous and nonstationary electromagnetic field

    SciTech Connect

    Gal'tsov, D.V.; Nikitina, N.S.

    1983-04-01

    Macroscopic effects of vacuum polarization by a strong nonuniform and nonstationary fields, which are kinematically forbidden in the case of a uniform magnetic field, are considered. Calculations are perfomed for the deflection of a light beam in the field of a magnetic dipole, for the production of photon pairs by an inclined rotator, and for doubling and modulation of the frequency in scattering of low-frequency electromagnetic waves by the magnetic field of an inclined rotator.

  1. Fission barriers in a macroscopic-microscopic model

    SciTech Connect

    Dobrowolski, A.; Pomorski, K.; Bartel, J.

    2007-02-15

    In the framework of the macroscopic-microscopic model, this study investigates fission barriers in the region of actinide nuclei. A very effective four-dimensional shape parametrization for fissioning nuclei is proposed. Taking, in particular, the left-right mass asymmetric and nonaxial shapes into account is demonstrated to have a substantial effect on fission barrier heights. The influence of proton versus neutron deformation differences on the potential energy landscape of fissioning nuclei is also discussed.

  2. Optimal asymptotic learning rate: Macroscopic versus microscopic dynamics

    NASA Astrophysics Data System (ADS)

    Leen, Todd K.; Schottky, Bernhard; Saad, David

    1999-01-01

    We investigate the asymptotic dynamics of on-line learning for neural networks, and provide an exact solution to the network dynamics at late times under various annealing schedules. The dynamics is solved using two different frameworks: the master equation and order parameter dynamics, which concentrate on microscopic and macroscopic parameters, respectively. The two approaches provide complementary descriptions of the dynamics. Optimal annealing rates and the corresponding prefactors are derived for soft committee machine networks with hidden layers of arbitrary size.

  3. Macroscopic superposition of ultracold atoms with orbital degrees of freedom

    SciTech Connect

    Garcia-March, M. A.; Carr, L. D.; Dounas-Frazer, D. R.

    2011-04-15

    We introduce higher dimensions into the problem of Bose-Einstein condensates in a double-well potential, taking into account orbital angular momentum. We completely characterize the eigenstates of this system, delineating new regimes via both analytical high-order perturbation theory and numerical exact diagonalization. Among these regimes are mixed Josephson- and Fock-like behavior, crossings in both excited and ground states, and shadows of macroscopic superposition states.

  4. Quantitatively Resolving Multivalent Interactions on Macroscopic Scale Using Force Spectroscopy

    PubMed Central

    Hu, Qiongzheng; Yang, Haopeng; Wang, Yuhong; Xu, Shoujun

    2016-01-01

    Multivalent interactions remain difficult to be characterized and consequently controlled, particularly on a macroscopic scale. Using force-induced remnant magnetization spectroscopy (FIRMS), we have resolved the single-, double-, and triple- biotin—streptavidin interactions, multivalent DNA interactions and CXCL12-CXCR4 interactions, on millimetre-scale surfaces. Our results establish FIRMS as a viable method for systematic resolution and controlled formation of multivalent interactions. PMID:26864087

  5. Optomechanical entanglement of a macroscopic oscillator by quantum feedback

    NASA Astrophysics Data System (ADS)

    Wu, E.; Li, Fengzhi; Zhang, Xuefeng; Ma, Yonghong

    2016-07-01

    We propose a scheme to generate the case of macroscopic entanglement in the optomechanical system, which consist of Fabry-Perot cavity and a mechanical oscillator by applying a homodyne-mediated quantum feedback. We explore the effect of feedback on the entanglement in vacuum and coherent state, respectively. The results show that the introduction of quantum feedback can increase the entanglement effectively between the cavity mode and the oscillator mode.

  6. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics

    NASA Astrophysics Data System (ADS)

    Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2016-09-01

    A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.

  7. Anisotropic magnetothermopower in ferromagnetic thin films grown on macroscopic substrates

    NASA Astrophysics Data System (ADS)

    Jayathilaka, P. B.; Belyea, D. D.; Fawcett, T. J.; Miller, Casey W.

    2015-05-01

    We report observing the anisotropic magnetothermopower in a variety of ferromagnetic thin films grown on macroscopic substrates. These measurements were enabled by eliminating spurious signals related to the Anomalous Nernst Effect by butt-mounting the sample to the heat source and sink, and appropriate positioning of electrical contacts to avoid unwanted thermal gradients. This protocol enabled detailed measurements of the magnetothermopower in the transverse and longitudinal configurations. This may enable Spin Seebeck Effect studies in the in-plane geometry.

  8. The macroscopic polarization effect on thermal conductivity of binary nitrides

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Sahoo, B. K.; Sahoo, S.

    2013-10-01

    We theoretically investigate the effect of macroscopic polarization on phonon thermal conductivity of wurtzite (WZ) binary nitrides (AlN, GaN and InN). Our results show that macroscopic polarization contributes to the effective elastic constant of the wurtzite nitrides and modifies the phonon group velocity, Debye frequency, and Debye temperature. Using revised phonon velocity and Debye temperature, different phonon scattering rates and combined scattering rate are calculated as functions of the phonon frequency at room temperature. We estimate phonon thermal conductivity of binary nitrides using these modified parameters. The theoretical analysis shows that up to a certain temperature (different for AlN, GaN, and InN) the polarization effect acts as ill effect and reduces the thermal conductivity. However, after this temperature, the thermal conductivity is significantly enhanced by the polarization effect. The revised thermal conductivity at room temperature is found to be increased by 12% in GaN, 18% in InN and 20% in case of AlN due to macroscopic polarization, i.e., maximum polarization effect is observed in AlN and minimum in GaN. The method we have developed can be used for calculation of thermal energy in the active region of nitride optoelectronic devices.

  9. Macroscopic Equations Governing Noisy Spiking Neuronal Populations with Linear Synapses

    PubMed Central

    Galtier, Mathieu N.; Touboul, Jonathan

    2013-01-01

    Deriving tractable reduced equations of biological neural networks capturing the macroscopic dynamics of sub-populations of neurons has been a longstanding problem in computational neuroscience. In this paper, we propose a reduction of large-scale multi-population stochastic networks based on the mean-field theory. We derive, for a wide class of spiking neuron models, a system of differential equations of the type of the usual Wilson-Cowan systems describing the macroscopic activity of populations, under the assumption that synaptic integration is linear with random coefficients. Our reduction involves one unknown function, the effective non-linearity of the network of populations, which can be analytically determined in simple cases, and numerically computed in general. This function depends on the underlying properties of the cells, and in particular the noise level. Appropriate parameters and functions involved in the reduction are given for different models of neurons: McKean, Fitzhugh-Nagumo and Hodgkin-Huxley models. Simulations of the reduced model show a precise agreement with the macroscopic dynamics of the networks for the first two models. PMID:24236067

  10. The mirrors model: macroscopic diffusion without noise or chaos

    NASA Astrophysics Data System (ADS)

    Chiffaudel, Yann; Lefevere, Raphaël

    2016-03-01

    Before stating our main result, we first clarify through classical examples the status of the laws of macroscopic physics as laws of large numbers. We next consider the mirrors model in a finite d-dimensional domain and connected to particles reservoirs at fixed chemical potentials. The dynamics is purely deterministic and non-ergodic but takes place in a random environment. We study the macroscopic current of particles in the stationary regime. We show first that when the size of the system goes to infinity, the behaviour of the stationary current of particles is governed by the proportion of orbits crossing the system. This allows us to formulate a necessary and sufficient condition on the distribution of the set of orbits that ensures the validity of Fick’s law. Using this approach, we show that Fick’s law relating the stationary macroscopic current of particles to the concentration difference holds in three dimensions and above. The negative correlations between crossing orbits play a key role in the argument.

  11. Entanglement analysis for macroscopic Schrödinger's Cat state

    NASA Astrophysics Data System (ADS)

    Sheng, Yu-Bo; Zhou, Lan

    2015-02-01

    Macroscopic entanglement, or say the Schrödinger's Cat state has attracted much attention for a long time. Recently, the first theoretical work of Fröwis and Dür (Phys. Rev. Lett., 106 (2011) 110402) and the first experiment of Lu et al. (Nat. Photon., 8 (2014) 364) both showed that, a new type of Schrödinger's Cat state, the logic-qubit entanglement (concatenated Greenberger-Horne-Zeilinger (C-GHZ) state) is immune and robust to the noise, and is possible to be applied in future large-scale quantum networks. In this paper, we describe a protocol of entanglement analysis for this kind of Schrödinger's Cat state. Both the Bell-state type of logic-qubit entanglement and multipartite C-GHZ state can be completely distinguished. Based on the entanglement analysis, an arbitrary unknown macroscopic Schrödinger's Cat superposed state can be teleportated and we can also perform the macroscopic entanglement swapping. Our protocol shows that it is possible to realize long-distance quantum communication and large-scale quantum network based on logic-qubit entanglement.

  12. Broken detailed balance at mesoscopic scales in active biological systems.

    PubMed

    Battle, Christopher; Broedersz, Chase P; Fakhri, Nikta; Geyer, Veikko F; Howard, Jonathon; Schmidt, Christoph F; MacKintosh, Fred C

    2016-04-29

    Systems in thermodynamic equilibrium are not only characterized by time-independent macroscopic properties, but also satisfy the principle of detailed balance in the transitions between microscopic configurations. Living systems function out of equilibrium and are characterized by directed fluxes through chemical states, which violate detailed balance at the molecular scale. Here we introduce a method to probe for broken detailed balance and demonstrate how such nonequilibrium dynamics are manifest at the mesosopic scale. The periodic beating of an isolated flagellum from Chlamydomonas reinhardtii exhibits probability flux in the phase space of shapes. With a model, we show how the breaking of detailed balance can also be quantified in stationary, nonequilibrium stochastic systems in the absence of periodic motion. We further demonstrate such broken detailed balance in the nonperiodic fluctuations of primary cilia of epithelial cells. Our analysis provides a general tool to identify nonequilibrium dynamics in cells and tissues. PMID:27126047

  13. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    NASA Technical Reports Server (NTRS)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  14. Evaluation of the scale dependent dynamic SGS model in the open source code caffa3d.MBRi in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Draper, Martin; Usera, Gabriel

    2015-04-01

    The Scale Dependent Dynamic Model (SDDM) has been widely validated in large-eddy simulations using pseudo-spectral codes [1][2][3]. The scale dependency, particularly the potential law, has been proved also in a priori studies [4][5]. To the authors' knowledge there have been only few attempts to use the SDDM in finite difference (FD) and finite volume (FV) codes [6][7], finding some improvements with the dynamic procedures (scale independent or scale dependent approach), but not showing the behavior of the scale-dependence parameter when using the SDDM. The aim of the present paper is to evaluate the SDDM in the open source code caffa3d.MBRi, an updated version of the code presented in [8]. caffa3d.MBRi is a FV code, second-order accurate, parallelized with MPI, in which the domain is divided in unstructured blocks of structured grids. To accomplish this, 2 cases are considered: flow between flat plates and flow over a rough surface with the presence of a model wind turbine, taking for this case the experimental data presented in [9]. In both cases the standard Smagorinsky Model (SM), the Scale Independent Dynamic Model (SIDM) and the SDDM are tested. As presented in [6][7] slight improvements are obtained with the SDDM. Nevertheless, the behavior of the scale-dependence parameter supports the generalization of the dynamic procedure proposed in the SDDM, particularly taking into account that no explicit filter is used (the implicit filter is unknown). [1] F. Porté-Agel, C. Meneveau, M.B. Parlange. "A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer". Journal of Fluid Mechanics, 2000, 415, 261-284. [2] E. Bou-Zeid, C. Meneveau, M. Parlante. "A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows". Physics of Fluids, 2005, 17, 025105 (18p). [3] R. Stoll, F. Porté-Agel. "Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of

  15. A self-consistent synthesis description of magnetosphere-ionosphere coupling and scale-dependent auroral process using shear Alfvén wave

    NASA Astrophysics Data System (ADS)

    Yoshikawa, A.; Amm, O.; Vanhamäki, H.; Fujii, R.

    2011-08-01

    In order to correctly describe the dynamical behavior of the magnetosphere-ionosphere (MI) coupling system and the scale-dependent auroral process, we develop a synthesis formulation that combines the process of (1) the inverse Walen separation of MHD disturbance into parallel- and antiparallel-propagating shear Alfvén wave to the ambient magnetic field, (2) the shear Alfvén wave reflection process including (3) the scale-dependent electrostatic coupling process through the linearized Knight relation, (4) two-layer ionosphere model, and (5) dynamic conductance variations. A novel procedure that applies the inverse Walen relation to the incompressional MHD disturbances at the inner boundary of the MHD region enables to extract the component of the shear Alfvén wave incident to the ionosphere. The extracted incident electric field supplies an electromotive force for the generation of the MI coupling system, and the reflected electric field is generated such that it totally satisfies the synthesis MI-coupling equation. A three-dimensional ionospheric current system is represented by a two-layer model in which the Pedersen and the Hall current are confined in the separated layers, which are connected by field-aligned currents driven by the linear current-voltage relation between two layers. Hence, our scheme possibly reproduces two types of the scale-dependent MI-decoupling process of the perpendicular potential structure: due to the parallel potential drop at the auroral acceleration region and the other due to the parallel potential differences inside the ionosphere. Our newly formulation may be well suited for description of scale-dependent auroral process and mesoscale ionospheric electrodynamics interlocked with the dynamical development of magnetospheric processes.

  16. Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: A flume study on three intertidal plant species

    NASA Astrophysics Data System (ADS)

    Bouma, T. J.; Temmerman, S.; van Duren, L. A.; Martini, E.; Vandenbruwaene, W.; Callaghan, D. P.; Balke, T.; Biermans, G.; Klaassen, P. C.; van Steeg, P.; Dekker, F.; van de Koppel, J.; de Vries, M. B.; Herman, P. M. J.

    2013-01-01

    There is a growing recognition of the important role of scale-dependent feedback for biogeomorphological landscape formation, where organisms locally improve survival and growth but at the same time negatively affect organisms at larger distance. However, little is known on how scale-dependent bio-geomorphic feedback is influenced by organism traits in combination with abiotic forcing. This was studied by measuring in a flume, the flow patterns around patches of three contrasting marsh species (Spartina anglica, Puccinellia maritima and Salicornia procumbens), using the flow acceleration around vegetation patches and deceleration within vegetation patches as quantitative proxy for the negative and positive feedback to the vegetation performance. The importance of external forcing was assessed by comparing three realistic current velocities: 0.1, 0.2 and 0.3 m s- 1. Our results showed that the dense clonal growth of stiff Spartina anglica shoots caused strongest flow deviations, irrespective of the applied current velocity. In contrast, the more sparsely growing, shorter stiff shoots of Salicornia procumbens induced much less flow deviation, allowing more water to pass through and over the vegetation canopy. The dense but highly flexible shoots of Puccinellia maritima caused strong flow deviations at low velocities, which diminished at higher velocities due to bending of the vegetation. Overall, these hydrodynamic results demonstrate that plant species traits interact with environmental conditions in creating scale-dependent feedbacks explaining why the effects of vegetation on landscape formation in saltmarshes are species specific.

  17. Macroscopic noncontextuality as a principle for almost-quantum correlations

    NASA Astrophysics Data System (ADS)

    Henson, Joe; Sainz, Ana Belén

    2015-04-01

    Quantum mechanics allows only certain sets of experimental results (or "probabilistic models") for Bell-type quantum nonlocality experiments. A derivation of this set from simple physical or information theoretic principles would represent an important step forward in our understanding of quantum mechanics, and this problem has been intensely investigated in recent years. "Macroscopic locality," which requires the recovery of locality in the limit of large numbers of trials, is one of several principles discussed in the literature that place a bound on the set of quantum probabilistic models. A similar question can also be asked about probabilistic models for the more general class of quantum contextuality experiments. Here, we extend the macroscopic locality principle to this more general setting, using the hypergraph approach of Acín, Fritz, Leverrier, and Sainz [Comm. Math. Phys. 334(2), 533-628 (2015), 10.1007/s00220-014-2260-1], which provides a framework to study both phenomena of nonlocality and contextuality in a unified manner. We find that the set of probabilistic models allowed by our macroscopic noncontextuality principle is equivalent to an important and previously studied set in this formalism, which is slightly larger than the quantum set. In the particular case of Bell scenarios, this set is equivalent to the set of "almost-quantum" models, which is of particular interest since the latter was recently shown to satisfy all but one of the principles that have been proposed to bound quantum probabilistic models, without being implied by any of them (or even their conjunction). Our condition is the first characterization of the almost-quantum set from a simple physical principle.

  18. Macroscopic polarization in crystalline dielectrics: the geometric phase approach

    NASA Astrophysics Data System (ADS)

    Resta, Raffaele

    1994-07-01

    The macroscopic electric polarization of a crystal is often defined as the dipole of a unit cell. In fact, such a dipole moment is ill defined, and the above definition is incorrect. Looking more closely, the quantity generally measured is differential polarization, defined with respect to a "reference state" of the same material. Such differential polarizations include either derivatives of the polarization (dielectric permittivity, Born effective charges, piezoelectricity, pyroelectricity) or finite differences (ferroelectricity). On the theoretical side, the differential concept is basic as well. Owing to continuity, a polarization difference is equivalent to a macroscopic current, which is directly accessible to the theory as a bulk property. Polarization is a quantum phenomenon and cannot be treated with a classical model, particularly whenever delocalized valence electrons are present in the dielectric. In a quantum picture, the current is basically a property of the phase of the wave functions, as opposed to the charge, which is a property of their modulus. An elegant and complete theory has recently been developed by King-Smith and Vanderbilt, in which the polarization difference between any two crystal states-in a null electric field-takes the form of a geometric quantum phase. The author gives a comprehensive account of this theory, which is relevant for dealing with transverse-optic phonons, piezoelectricity, and ferroelectricity. Its relation to the established concepts of linear-response theory is also discussed. Within the geometric phase approach, the relevant polarization difference occurs as the circuit integral of a Berry connection (or "vector potential"), while the corresponding curvature (or "magnetic field") provides the macroscopic linear response.

  19. Entanglement of mixed macroscopic superpositions: An entangling-power study

    SciTech Connect

    Paternostro, M.; Kim, M. S.; Jeong, H.

    2006-01-15

    We investigate entanglement properties of a recently introduced class of macroscopic quantum superpositions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables. We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modification of the protocol which makes our proposal realizable within the current experimental capabilities.

  20. Macroscopic traffic modeling with the finite difference method

    SciTech Connect

    Mughabghab, S.; Azarm, A.; Stock, D.

    1996-03-15

    A traffic congestion forecasting model (ATOP), developed in the present investigation, is described briefly. Several macroscopic models, based on the solution of the partial differential equation of conservation of vehicles by the finite difference method, were tested using actual traffic data. The functional form, as well as the parameters, of the equation of state which describes the relation between traffic speed and traffic density, were determined for a section of the Long Island Expressway. The Lax method and the forward difference technique were applied. The results of extensive tests showed that the Lax method, in addition to giving very good agreement with the traffic data, produces stable solutions.

  1. Microscopic time-reversibility and macroscopic irreversibility: Still a paradox

    SciTech Connect

    Posch, H.A.; Dellago, Ch.; Hoover, W.G.; Kum, O. |

    1995-09-13

    Microscopic time reversibility and macroscopic irreversibility are a paradoxical combination. This was first observed by J. Loschmidt in 1876 and was explained, for conservative systems, by L. Boltzmann the following year. Both these features are also present in modern simulations of classic many-body systems in steady nonequilibrium states. We illustrate them here for the simplest possible models, a continuous one-dimensional model of field-driven diffusion, the so-called driven Lorentz gas or Galton Board, and an ergodic time reversible dissipative map.

  2. Effects of Microstructure Variations on Macroscopic Terahertz Metafilm Properties

    DOE PAGES

    O'Hara, John F.; Smirnova, Evgenya; Azad, Abul K.; Chen, Hou-Tong; Taylor, Antoinette J.

    2007-01-01

    The properties of planar, single-layer metamaterials, or metafilms, are studied by varying the structural components of the split-ring resonators used to comprise the overall medium. Measurements and simulations reveal how minor design variations in split-ring resonator structures can result in significant changes in the macroscopic properties of the metafilm. A transmission-line/circuit model is also used to clarify some of the behavior and design limitations of the metafilms. Though our results are illustrated in the terahertz frequency range, the work has broader implications, particularly with respect to filtering, modulation, and switching devices.

  3. Violation of smooth observable macroscopic realism in a harmonic oscillator.

    PubMed

    Leshem, Amir; Gat, Omri

    2009-08-14

    We study the emergence of macrorealism in a harmonic oscillator subject to consecutive measurements of a squeezed action. We demonstrate a breakdown of dynamical realism in a wide parameter range that is maximized in a scaling limit of extreme squeezing, where it is based on measurements of smooth observables, implying that macroscopic realism is not valid in the harmonic oscillator. We propose an indirect experimental test of these predictions with entangled photons by demonstrating that local realism in a composite system implies dynamical realism in a subsystem.

  4. Interdisciplinary applications of network dynamics: From microscopic to Macroscopic

    NASA Astrophysics Data System (ADS)

    Jeong, Hawoong

    ``Everything touches everything.'' We are living in a connected world, which has been modeled successfully by complex networks. Ever since, network science becomes new paradigm for understanding our connected yet complex world. After investigating network structure itself, our focus naturally moved to dynamics of/on the network because our connected world is not static but dynamic. In this presentation, we will briefly review the historical development of network science and show some applications of network dynamics ranging from microscopic (metabolic engineering, PNAS, 104 13638) to macroscopic scale (price of anarchy in transportation network, Phys.Rev.Lett. 101 128701). Supported by National Research Foundation of Korea through Grant No. 2011-0028908.

  5. Macroscopic Test of the Aharonov-Bohm Effect

    SciTech Connect

    Caprez, Adam; Barwick, Brett; Batelaan, Herman

    2007-11-23

    The Aharonov-Bohm (AB) effect is a purely quantum mechanical effect. The original (classified as type-I) AB-phase shift exists in experimental conditions where the electromagnetic fields and forces are zero. It is the absence of forces that makes the AB effect entirely quantum mechanical. Although the AB-phase shift has been demonstrated unambiguously, the absence of forces in type-I AB effects has never been shown. Here, we report the observation of the absence of time delays associated with forces of the magnitude needed to explain the AB-phase shift for a macroscopic system.

  6. Single-atom quantum control of macroscopic mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Bariani, F.; Otterbach, J.; Tan, Huatang; Meystre, P.

    2014-01-01

    We investigate a hybrid electromechanical system consisting of a pair of charged macroscopic mechanical oscillators coupled to a small ensemble of Rydberg atoms. The resonant dipole-dipole coupling between an internal atomic Rydberg transition and the mechanics allows cooling to its motional ground state with a single atom despite the considerable mass imbalance between the two subsystems. We show that the rich electronic spectrum of Rydberg atoms, combined with their high degree of optical control, paves the way towards implementing various quantum-control protocols for the mechanical oscillators.

  7. Balance in Assessment

    ERIC Educational Resources Information Center

    White, Richard

    2007-01-01

    The review by Black and Wiliam of national systems makes clear the complexity of assessment, and identifies important issues. One of these is "balance": balance between local and central responsibilities, balance between the weights given to various purposes of schooling, balance between weights for various functions of assessment, and balance…

  8. Dynamic balance improvement program

    NASA Technical Reports Server (NTRS)

    Butner, M. F.

    1983-01-01

    The reduction of residual unbalance in the space shuttle main engine (SSME) high pressure turbopump rotors was addressed. Elastic rotor response to unbalance and balancing requirements, multiplane and in housing balancing, and balance related rotor design considerations were assessed. Recommendations are made for near term improvement of the SSME balancing and for future study and development efforts.

  9. A Question of Balance

    ERIC Educational Resources Information Center

    Claxton, David B.; Troy, Maridy; Dupree, Sarah

    2006-01-01

    Most authorities consider balance to be a component of skill-related physical fitness. Balance, however, is directly related to health, especially for older adults. Falls are a leading cause of injury and death among the elderly. Improved balance can help reduce falls and contribute to older people remaining physically active. Balance is a…

  10. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.

    PubMed

    Nottale, Laurent; Auffray, Charles

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential

  11. Balancing Vanguard Satellites

    NASA Technical Reports Server (NTRS)

    Simkovich, A.; Baumann, Robert C.

    1961-01-01

    The Vanguard satellites and component parts were balanced within the specified limits by using a Gisholt Type-S balancer in combination with a portable International Research and Development vibration analyzer and filter, with low-frequency pickups. Equipment and procedures used for balancing are described; and the determination of residual imbalance is accomplished by two methods: calculation, and graphical interpretation. Between-the-bearings balancing is recommended for future balancing of payloads.

  12. Macroscopic Subdivision of Silica Aerogel Collectors for Sample Return Missions

    SciTech Connect

    Ishii, H A; Bradley, J P

    2005-09-14

    Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large-scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller-scale cutting capabilities previously described [Westphal (2004), Ishii (2005a, 2005b)] for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis.

  13. Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Cohen, Morrel H.

    2014-01-01

    An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.

  14. Friction in macroscopic thermodynamics: A kinetic point of view

    NASA Astrophysics Data System (ADS)

    Bizarro, João P. S.

    2015-12-01

    To provide a solid support to a macroscopic framework developed to explicitly account for friction in thermodynamics, a kinetic description of frictional dissipation is developed. Using either a dissipative Fokker-Planck equation for Brownian motion or a Boltzmann equation with a friction-force term added, it is shown that both approaches lead to the emergence of the macroscopic thermodynamic relations that state the first and second laws with friction. The analysis is directly applied to the problem of determining the minimum amount of heating generated by memory erasure, known in computer science as Landauer's bound, and leads to a better understanding of the energetics behind the latter. A generalisation of Boltzmann's H theorem to include friction explicitly is also recovered, and the thermodynamics of granular rotators acted by a frictional torque and of radio-frequency (RF) current drive of fusion plasmas, in which collisional drag is present, are addressed as well. Various physics results are revisited employing the first and second laws with friction that have been derived from the appropriate dissipative kinetic equations, lower bounds for entropy production rates being derived both for granular rotators and for RF current drive.

  15. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  16. Duality in entanglement of macroscopic states of light

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yong; Lee, Chang-Woo; Kurzyński, Paweł; Kaszlikowski, Dagomir; Kim, Jaewan

    2016-08-01

    We investigate duality in entanglement of a bipartite multiphoton system generated from a coherent state of light. The system can exhibit polarization entanglement if the two parts are distinguished by their parity, or parity entanglement if the parts are distinguished by polarization. It was shown in Phys. Rev. Lett. 110, 140404 (2013), 10.1103/PhysRevLett.110.140404 that this phenomenon can be exploited as a method to test indistinguishability of two particles and it was conjectured that one can also test indistinguishability of macroscopic systems. We propose a setup to test this conjecture. Contrary to the previous studies using two-particle interference effect as in the Hong-Ou- Mandel setup, our setup neither assumes that the tested state is composed of single particles nor requires that the total number of particles be fixed. Consequently, the notion of entanglement duality is shown to be compatible with a broader class of physical systems. Moreover, by observing duality in entanglement in the above system one can confirm that macroscopic systems exhibit quantum behavior. As a practical side, entanglement duality is a useful concept that enables adaptive conversion of entanglement of one degree of freedom (DOF) to that of another DOF according to varying quantum protocols.

  17. Improved macroscopic traffic flow model for aggressive drivers

    SciTech Connect

    Mendez, A. R.; Velasco, R. M.

    2011-03-24

    As has been done for the treatment of diluted gases, kinetic methods are formulated for the study of unidirectional freeway traffic. Fluid dynamic models obtained from kinetic equations have inherent restrictions, the principal one is the restriction to the low density regime. Macroscopic models obtained from kinetic equations tends to selfrestrict to this regime and makes impossible to observe the medium density region. In this work, we present some results heading to improve this model and extend the observable region. Now, we are presenting a fluid dynamic model for aggressive drivers obtained from kinetic assumptions to extend the model to the medium density region in order to study synchronization phenomena which is a very interesting transition phase between free flow and traffic jams. We are changing the constant variance prefactor condition imposed before by a variance prefactor density dependent, the numerical solution of the model is presented, analyzed and contrasted with the previous one. We are also comparing our results with heuristic macroscopic models and real traffic observations.

  18. Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram

    NASA Astrophysics Data System (ADS)

    Knoop, Victor L.; van Lint, Hans; Hoogendoorn, Serge P.

    2015-11-01

    Literature shows that-under specific conditions-the Macroscopic Fundamental Diagram (MFD) describes a crisp relationship between the average flow (production) and the average density in an entire network. The limiting condition is that traffic conditions must be homogeneous over the whole network. Recent works describe hysteresis effects: systematic deviations from the MFD as a result of loading and unloading. This article proposes a two dimensional generalization of the MFD, the so-called Generalized Macroscopic Fundamental Diagram (GMFD), which relates the average flow to both the average density and the (spatial) inhomogeneity of density. The most important contribution is that we show this is a continuous function, of which the MFD is a projection. Using the GMFD, we can describe the mentioned hysteresis patterns in the MFD. The underlying traffic phenomenon explaining the two dimensional surface described by the GMFD is that congestion concentrates (and subsequently spreads out) around the bottlenecks that oversaturate first. We call this the nucleation effect. Due to this effect, the network flow is not constant for a fixed number of vehicles as predicted by the MFD, but decreases due to local queueing and spill back processes around the congestion "nuclei". During this build up of congestion, the production hence decreases, which gives the hysteresis effects.

  19. Macroscopic Biological Characteristics of Individualized Therapy in Chinese Mongolian Osteopathy

    NASA Astrophysics Data System (ADS)

    Namula, Zhao; Mei, Wang; Li, Xue-en

    Objective: Chinese Mongolian osteopathy has been passed down from ancient times and includes unique practices and favorable efficacy. In this study, we investigate the macroscopic biological characteristics of individualized Chinese Mongolian osteopathy, in order to provide new principle and methods for the treatment of bone fracture. Method: With a view to provide a vital link between nature and humans, the four stages of Chinese Mongolian osteopathy focus on the unity of the mind and body, the limbs and body organs, the body and its functions, and humans and nature. Results: We discuss the merits of individualized osteopathy in terms of the underlying concepts, and evaluate the approaches and principles of traditional medicine, as well as biomechanics. Conclusions: Individualized Mongolian osteopathy targets macroscopic biological components including dynamic reduction, natural fixation, and functional healing. Chinese Mongolian osteopathy is a natural, ecological and non-invasive osteopathy that values the link between nature and humans, including the unity of mind and body. The biological components not only serve as a foundation for Chinese Mongolian osteopathy but are also important for the future development of modern osteopathy, focusing on individualization, actualization and integration.

  20. How does Planck’s constant influence the macroscopic world?

    NASA Astrophysics Data System (ADS)

    Yang, Pao-Keng

    2016-09-01

    In physics, Planck’s constant is a fundamental physical constant accounting for the energy-quantization phenomenon in the microscopic world. The value of Planck’s constant also determines in which length scale the quantum phenomenon will become conspicuous. Some students think that if Planck’s constant were to have a larger value than it has now, the quantum effect would only become observable in a world with a larger size, whereas the macroscopic world might remain almost unchanged. After reasoning from some basic physical principles and theories, we found that doubling Planck’s constant might result in a radical change on the geometric sizes and apparent colors of macroscopic objects, the solar spectrum and luminosity, the climate and gravity on Earth, as well as energy conversion between light and materials such as the efficiency of solar cells and light-emitting diodes. From the discussions in this paper, students can appreciate how Planck’s constant affects various aspects of the world in which we are living now.

  1. Macroscopic model and truncation error of discrete Boltzmann method

    NASA Astrophysics Data System (ADS)

    Hwang, Yao-Hsin

    2016-10-01

    A derivation procedure to secure the macroscopically equivalent equation and its truncation error for discrete Boltzmann method is proffered in this paper. Essential presumptions of two time scales and a small parameter in the Chapman-Enskog expansion are disposed of in the present formulation. Equilibrium particle distribution function instead of its original non-equilibrium form is chosen as key variable in the derivation route. Taylor series expansion encompassing fundamental algebraic manipulations is adequate to realize the macroscopically differential counterpart. A self-contained and comprehensive practice for the linear one-dimensional convection-diffusion equation is illustrated in details. Numerical validations on the incurred truncation error in one- and two-dimensional cases with various distribution functions are conducted to verify present formulation. As shown in the computational results, excellent agreement between numerical result and theoretical prediction are found in the test problems. Straightforward extensions to more complicated systems including convection-diffusion-reaction, multi-relaxation times in collision operator as well as multi-dimensional Navier-Stokes equations are also exposed in the Appendix to point out its expediency in solving complicated flow problems.

  2. 'Bigger data' on scale-dependent effects of invasive species on biodiversity cannot overcome confounded analyses: a comment on Stohlgren & Rejmánek (2014).

    PubMed

    Chase, Jonathan M; Powell, Kristin I; Knight, Tiffany M

    2015-08-01

    A recent study by Stohlgren & Rejmánek (SR: Stohlgren TJ, Rejmánek M. 2014 Biol. Lett. 10. (doi:10.1098/rsbl.2013.0939)) purported to test the generality of a recent finding of scale-dependent effects of invasive plants on native diversity; dominant invasive plants decreased the intercept and increased the slope of the species-area relationship. SR (2014) find little correlation between invasive species cover and the slopes and intercepts of SARs across a diversity of sites. We show that the analyses of SR (2014) are inappropriate because of confounding causality.

  3. 'Bigger data' on scale-dependent effects of invasive species on biodiversity cannot overcome confounded analyses: a comment on Stohlgren & Rejmánek (2014).

    PubMed

    Chase, Jonathan M; Powell, Kristin I; Knight, Tiffany M

    2015-08-01

    A recent study by Stohlgren & Rejmánek (SR: Stohlgren TJ, Rejmánek M. 2014 Biol. Lett. 10. (doi:10.1098/rsbl.2013.0939)) purported to test the generality of a recent finding of scale-dependent effects of invasive plants on native diversity; dominant invasive plants decreased the intercept and increased the slope of the species-area relationship. SR (2014) find little correlation between invasive species cover and the slopes and intercepts of SARs across a diversity of sites. We show that the analyses of SR (2014) are inappropriate because of confounding causality. PMID:26246332

  4. Celestial bodies macroscopic movement is due to the radiation

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-03-01

    The star is radiate, also as the planet. In fact, all the real objects are radiate, but the strength of the radiation is different. Radiation will reduce the quality of the object, but time is not long enough to reduce the mass of the subject, so it is difficult for us to observe. Due to the large object lifecycle, to study the changing rule of the object, we must consider the radiation on the quality of the celestial bodies, and the outer space radiate particles' motion, also consider objects interact with objects of radiation. The reason Celestial bodies moves is that the radiation of those Celestial bodies Interact with each other, Celestial bodies macroscopic movement is due to the radiation. The earth's rotation and revolution is a measure of the survive ability. Author: hanyongquan TEL: 15611860790

  5. Imparting large macroscopic changes with small changes in polypeptide composition

    NASA Astrophysics Data System (ADS)

    Sing, Michelle; McKinley, Gareth; Olsen, Bradley

    Block copolymers composed of polypeptides provide an excellent platform for exploring the underlying physics surrounding macroscopic associative network behavior. Previous work in our group has elucidated a difference in the mechanical properties of two nearly identical elastin-like polypeptide (ELP) endblocks. In poly(ELP)s, this substitution is known to result in tighter beta turns. These beta turns exhibit slower responses to changes in temperature within the material. Under shear, the modulus for the alanine-containing ELP triblock is almost three times higher than the glycine-containing ELP. Additionally, preliminary tensile tests show higher stress and strain at break for the alanine ELP triblock. We are able to explain the reasons for this behavior using a variety of spectroscopic and analytical techniques. Small angle neutron and x-ray scattering indicate differences in ordering between the alanine and glycine containing ELP materials both in shear and in stagnant flow.

  6. On the approach to thermal equilibrium of macroscopic quantum systems

    SciTech Connect

    Goldstein, Sheldon; Tumulka, Roderich

    2011-03-24

    In joint work with J. L. Lebowitz, C. Mastrodonato, and N. Zanghi[2, 3, 4], we considered an isolated, macroscopic quantum system. Let H be a micro-canonical 'energy shell', i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E+{delta}E. The thermal equilibrium macro-state at energy E corresponds to a subspace H{sub eq} of H such that dimHeq/dimH is close to 1. We say that a system with state vector {psi}{epsilon}H is in thermal equilibrium if {psi} is 'close' to H{sub eq}. We argue that for 'typical' Hamiltonians, all initial state vectors {psi}{sub 0} evolve in such a way that {psi}{sub t} is in thermal equilibrium for most times t. This is closely related to von Neumann's quantum ergodic theorem of 1929.

  7. Microscopic reversibility and macroscopic irreversibility: A lattice gas model

    NASA Astrophysics Data System (ADS)

    Pérez-Cárdenas, Fernando C.; Resca, Lorenzo; Pegg, Ian L.

    2016-09-01

    We present coarse-grained descriptions and computations of the time evolution of a lattice gas system of indistinguishable particles, whose microscopic laws of motion are exactly reversible, in order to investigate how or what kind of macroscopically irreversible behavior may eventually arise. With increasing coarse-graining and number of particles, relative fluctuations of entropy rapidly decrease and apparently irreversible behavior unfolds. Although that behavior becomes typical in those limits and within a certain range, it is never absolutely irreversible for any individual system with specific initial conditions. Irreversible behavior may arise in various ways. We illustrate one possibility by replacing detailed integer occupation numbers at lattice sites with particle probability densities that evolve diffusively.

  8. Macroscopic and direct light propulsion of bulk graphene material

    NASA Astrophysics Data System (ADS)

    Zhang, Tengfei; Chang, Huicong; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-07-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work the direct light propulsion of matter is observed on a macroscopic scale using a bulk graphene-based material. The unique structure and properties of graphene, and the novel morphology of the bulk three-dimensional linked graphene material make it capable not only of absorbing light at various wavelengths but also of emitting energetic electrons efficiently enough to drive the bulk material, following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk-scale light manipulation with the potential to realize long-sought applications in areas such as the solar sail and space transportation driven directly by sunlight.

  9. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions.

    PubMed

    Massarotti, D; Pal, A; Rotoli, G; Longobardi, L; Blamire, M G; Tafuri, F

    2015-01-01

    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits. PMID:26054495

  10. Macroscopic chirality of a liquid crystal from nonchiral molecules

    SciTech Connect

    Jakli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.

    2001-06-01

    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment.

  11. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions

    PubMed Central

    Massarotti, D.; Pal, A.; Rotoli, G.; Longobardi, L.; Blamire, M. G.; Tafuri, F.

    2015-01-01

    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits. PMID:26054495

  12. Macroscopic quantum entanglement of a Kondo cloud at finite temperature.

    PubMed

    Lee, S-S B; Park, Jinhong; Sim, H-S

    2015-02-01

    We propose a variational approach for computing the macroscopic entanglement in a many-body mixed state, based on entanglement witness operators, and compute the entanglement of formation (EoF), a mixed-state generalization of the entanglement entropy, in single- and two-channel Kondo systems at finite temperature. The thermal suppression of the EoF obeys power-law scaling at low temperature. The scaling exponent is halved from the single- to the two-channel system, which is attributed, using a bosonization method, to the non-Fermi liquid behavior of a Majorana fermion, a "half" of a complex fermion, emerging in the two-channel system. Moreover, the EoF characterizes the size and power-law tail of the Kondo screening cloud of the single-channel system.

  13. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States.

    PubMed

    Abdi, M; Degenfeld-Schonburg, P; Sameti, M; Navarrete-Benlloch, C; Hartmann, M J

    2016-06-10

    The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition. PMID:27341233

  14. Macroscopic self-reorientation of interacting two-dimensional crystals

    PubMed Central

    Woods, C. R.; Withers, F.; Zhu, M. J.; Cao, Y.; Yu, G.; Kozikov, A.; Ben Shalom, M.; Morozov, S. V.; van Wijk, M. M.; Fasolino, A.; Katsnelson, M. I.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; Mishchenko, A.; Novoselov, K. S.

    2016-01-01

    Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures. PMID:26960435

  15. Photoacoustic brain imaging: from microscopic to macroscopic scales

    PubMed Central

    Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Abstract. Human brain mapping has become one of the most exciting contemporary research areas, with major breakthroughs expected in the coming decades. Modern brain imaging techniques have allowed neuroscientists to gather a wealth of anatomic and functional information about the brain. Among these techniques, by virtue of its rich optical absorption contrast, high spatial and temporal resolutions, and deep penetration, photoacoustic tomography (PAT) has attracted more and more attention, and is playing an increasingly important role in brain studies. In particular, PAT complements other brain imaging modalities by providing high-resolution functional and metabolic imaging. More importantly, PAT’s unique scalability enables scrutinizing the brain at both microscopic and macroscopic scales, using the same imaging contrast. In this review, we present the state-of-the-art PAT techniques for brain imaging, summarize representative neuroscience applications, outline the technical challenges in translating PAT to human brain imaging, and envision potential technological deliverables. PMID:25401121

  16. Macroscopic self-reorientation of interacting two-dimensional crystals.

    PubMed

    Woods, C R; Withers, F; Zhu, M J; Cao, Y; Yu, G; Kozikov, A; Ben Shalom, M; Morozov, S V; van Wijk, M M; Fasolino, A; Katsnelson, M I; Watanabe, K; Taniguchi, T; Geim, A K; Mishchenko, A; Novoselov, K S

    2016-01-01

    Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures. PMID:26960435

  17. Macroscopic self-reorientation of interacting two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Woods, C. R.; Withers, F.; Zhu, M. J.; Cao, Y.; Yu, G.; Kozikov, A.; Ben Shalom, M.; Morozov, S. V.; van Wijk, M. M.; Fasolino, A.; Katsnelson, M. I.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; Mishchenko, A.; Novoselov, K. S.

    2016-03-01

    Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures.

  18. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Savinov, V.; Fedotov, V. A.; Zheludev, N. I.

    2014-05-01

    The toroidal dipole is a peculiar electromagnetic excitation that can not be presented in terms of standard electric and magnetic multipoles. A static toroidal dipole has been shown to lead to violation of parity in atomic spectra and many other unusual electromagnetic phenomena. The existence of electromagnetic resonances of toroidal nature was experimentally demonstrated only recently, first in the microwave metamaterials, and then at optical frequencies, where they could be important in spectroscopy analysis of a wide class of media with constituents of toroidal symmetry, such as complex organic molecules, fullerenes, bacteriophages, etc. Despite the experimental progress in studying toroidal resonances, no direct link has yet been established between microscopic toroidal excitations and macroscopic scattering characteristics of the medium. To address this essential gap in the electromagnetic theory, we have developed an analytical approach for calculating the transmissivity and reflectivity of thin slabs of materials that exhibit toroidal dipolar excitations.

  19. Double-Slit Interference Pattern for a Macroscopic Quantum System

    NASA Astrophysics Data System (ADS)

    Naeij, Hamid Reza; Shafiee, Afshin

    2016-07-01

    In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.

  20. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States

    NASA Astrophysics Data System (ADS)

    Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.

    2016-06-01

    The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.

  1. Tunable Broadband Transparency of Macroscopic Quantum Superconducting Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Anlage, Steven M.

    2015-10-01

    Narrow-band invisibility in an otherwise opaque medium has been achieved by electromagnetically induced transparency (EIT) in atomic systems. The quantum EIT behavior can be classically mimicked by specially engineered metamaterials via carefully controlled interference with a "dark mode." However, the narrow transparency window limits the potential applications that require a tunable wideband transparent performance. Here, we present a macroscopic quantum superconducting metamaterial with manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional EIT or its classical analogs. A near-complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bistability of the meta-atoms and can be tuned on and off easily by altering rf and dc magnetic fields, temperature, and history. Hysteretic in situ 100% tunability of transparency paves the way for autocloaking metamaterials, intensity-dependent filters, and fast-tunable power limiters.

  2. Macroscopic modeling of plant water uptake: soil and root resistances

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir

    2014-05-01

    The macroscopic physically-based plant root water uptake (RWU) model, based on water-potential-gradient formulation (Vogel et al., 2013), was used to simulate the observed soil-plant-atmosphere interactions at a forest site located in a temperate humid climate of central Europe and to gain an improved insight into the mutual interplay of RWU parameters that affects the soil water distribution in the root zone. In the applied RWU model, the uptake rates are directly proportional to the potential gradient and indirectly proportional to the local soil and root resistances to water flow. The RWU algorithm is implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation. The RWU model is defined by four parameters (root length density distribution, average active root radius, radial root resistance, and the threshold value of the root xylem potential). In addition, soil resistance to water extraction by roots is related to soil hydraulic conductivity function and actual soil water content. The RWU model is capable of simulating both the compensatory root water uptake, in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers, and the root-mediated hydraulic redistribution of soil water, contributing to more natural soil moisture distribution throughout the root zone. The present study focusses on the sensitivity analysis of the combined soil water flow and RWU model responses in respect to variations of RWU model parameters. Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154.

  3. Skylab water balance analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    The water balance of the Skylab crew was analyzed. Evaporative water loss using a whole body input/output balance equation, water, body tissue, and energy balance was analyzed. The approach utilizes the results of several major Skylab medical experiments. Subsystems were designed for the use of the software necessary for the analysis. A partitional water balance that graphically depicts the changes due to water intake is presented. The energy balance analysis determines the net available energy to the individual crewman during any period. The balances produce a visual description of the total change of a particular body component during the course of the mission. The information is salvaged from metabolic balance data if certain techniques are used to reduce errors inherent in the balance method.

  4. Polarization-balanced beamsplitter

    DOEpatents

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  5. Polarization-balanced beamsplitter

    DOEpatents

    Decker, Derek E.

    1998-01-01

    A beamsplitter assembly that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting.

  6. Macroscopic dynamics near the isotropic{endash}smectic-A phase transition

    SciTech Connect

    Brand, Helmut R.; Mukherjee, Prabir K.; Pleiner, Harald

    2001-06-01

    The hydrodynamic theory for the smectic-A phase and the isotropic phase is generalized to the macroscopic dynamics in the vicinity of the isotropic{endash}smectic-A phase transition. The macroscopic dynamic equations are presented on the isotropic side as well as on the smectic-A side of the phase transition, incorporating the effect of an external electric field. Specific experiments to test some of the effects contained in the macroscopic dynamic equations are suggested.

  7. Testing the weak equivalence principle with macroscopic proof masses on ground and in space: A brief review

    NASA Astrophysics Data System (ADS)

    Nobili, Anna M.

    2014-05-01

    General relativity is founded on the experimental fact that in a gravitational field all bodies fall with the same acceleration regardless of their mass and composition. This is the weak equivalence principle, or universality of free fall. Experimental evidence of a violation would require either that general relativity is to be amended or that another force of nature is at play. In 1916 Einstein brought as evidence the torsion balance experiments by Eötvös, to 10-8-10-9. In the 1960s and early 70s, by exploiting the "passive" daily rotation of the Earth, torsion balance tests improved to 10-11 and 10-12. More recently, active rotation of the balance at higher frequencies has reached 10-13. No other experimental tests of general relativity are both so crucial for the theory and so precise and accurate. If a similar differential experiment is performed inside a spacecraft passively stabilized by 1 Hz rotation while orbiting the Earth at ≃ 600 km altitude the test would improve by 4 orders of magnitude, to 10-17, thus probing a totally unexplored field of physics. This is unique to weakly coupled concentric macroscopic test cylinders inside a rapidly rotating spacecraft.

  8. Get the Balance Right.

    ERIC Educational Resources Information Center

    Haddock, Rebecca Jaurigue

    Today work goes on 24 hours a day, 7 days a week, and is about acceleration and access. Workers need balance more than ever. In fact, recent college graduates value work/life balance as their key factor in selecting employers. This paper, written for career counselors, defines balance as encompassing emotional, spiritual, physical, and…

  9. Sagnac interferometry as a probe to the commutation relation of a macroscopic quantum mirror

    SciTech Connect

    Yang Ran; Gong Xuefei; Pei Shouyong; Luo Ziren; Lau, Y. K.

    2010-09-15

    Single photon Sagnac interferometry as a probe to macroscopic quantum mechanics is considered at the theoretical level. For a freely moving macroscopic quantum mirror susceptible to radiation pressure force inside a Sagnac interferometer, a careful analysis of the input-output relation reveals that the particle spectrum readout at the bright and dark ports encode information concerning the noncommutativity of position and momentum of the macroscopic mirror. A feasible experimental scheme to probe the commutation relation of a macroscopic quantum mirror is outlined to explore the possible frontier between classical and quantum regimes. In the Appendix, the case of Michelson interferometry as a feasible probe is also sketched.

  10. Local detailed balance: a microscopic derivation

    NASA Astrophysics Data System (ADS)

    Bauer, M.; Cornu, F.

    2015-01-01

    Thermal contact is the archetype of non-equilibrium processes driven by constant non-equilibrium constraints when the latter are enforced by reservoirs exchanging conserved microscopic quantities. At a mesoscopic scale only the energies of the macroscopic bodies are accessible together with the configurations of the contact system. We consider a class of models where the contact system, as well as macroscopic bodies, have a finite number of possible configurations. The global system, with only discrete degrees of freedom, has no microscopic Hamiltonian dynamics, but it is shown that, if the microscopic dynamics is assumed to be deterministic and ergodic and to conserve energy according to some specific pattern, and if the mesoscopic evolution of the global system is approximated by a Markov process as closely as possible, then the mesoscopic transition rates obey three constraints. In the limit where macroscopic bodies can be considered as reservoirs at thermodynamic equilibrium (but with different intensive parameters), the mesoscopic transition rates turn into transition rates for the contact system and the third constraint becomes local detailed balance; the latter is generically expressed in terms of the microscopic exchange entropy variation, namely the opposite of the variation of the thermodynamic entropy of the reservoir involved in a given microscopic jump of the contact system configuration. For a finite-time evolution after contact has been switched on, we derive a fluctuation relation for the joint probability of the heat amounts received from the various reservoirs. The generalization to systems exchanging energy, volume and matter with several reservoirs, with a possible conservative external force acting on the contact system, is given explicitly.

  11. Reconceptualizing balance: attributes associated with balance performance.

    PubMed

    Thomas, Julia C; Odonkor, Charles; Griffith, Laura; Holt, Nicole; Percac-Lima, Sanja; Leveille, Suzanne; Ni, Pensheng; Latham, Nancy K; Jette, Alan M; Bean, Jonathan F

    2014-09-01

    Balance tests are commonly used to screen for impairments that put older adults at risk for falls. The purpose of this study was to determine the attributes that were associated with balance performance as measured by the Frailty and Injuries: Cooperative Studies of Intervention Techniques (FICSIT) balance test. This study was a cross-sectional secondary analysis of baseline data from a longitudinal cohort study, the Boston Rehabilitative Impairment Study of the Elderly (Boston RISE). Boston RISE was performed in an outpatient rehabilitation research center and evaluated Boston area primary care patients aged 65 to 96 (N=364) with self-reported difficulty or task-modification climbing a flight of stairs or walking 1/2 of a mile. The outcome measure was standing balance as measured by the FICSIT-4 balance assessment. Other measures included: self-efficacy, pain, depression, executive function, vision, sensory loss, reaction time, kyphosis, leg range of motion, trunk extensor muscle endurance, leg strength and leg velocity at peak power. Participants were 67% female, had an average age of 76.5 (±7.0) years, an average of 4.1 (±2.0) chronic conditions, and an average FICSIT-4 score of 6.7 (±2.2) out of 9. After adjusting for age and gender, attributes significantly associated with balance performance were falls self-efficacy, trunk extensor muscle endurance, sensory loss, and leg velocity at peak power. FICSIT-4 balance performance is associated with a number of behavioral and physiologic attributes, many of which are amenable to rehabilitative treatment. Our findings support a consideration of balance as multidimensional activity as proposed by the current International Classification of Functioning, Disability, and Health (ICF) model. PMID:24952097

  12. Improving macroscopic modeling of the effect of water and osmotic stresses on root water uptake.

    NASA Astrophysics Data System (ADS)

    Jorda Guerra, Helena; Vanderborght, Jan

    2015-04-01

    Accurate modeling of water and salt stresses on root water uptake is critical for predicting impacts of global change and climate variability on crop production and soil water balances. Soil-hydrological models use reduction functions to represent the effect of osmotic stress in transpiration. However, these functions, which were developed empirically, present limitations in relation to the time and spatial scale at which they need to be used, fail to include compensation processes and do not agree on how water and salt stresses interact. This research intends to develop a macroscopic reduction function for water and osmotic stresses based on biophysical knowledge. Simulation experiments are conducted for a range of atmospheric conditions, soil and plant properties, irrigation water quality and scheduling using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system (Schröder et al., 2013). The effect of salt concentrations on water flow in the soil-root system is accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. In a first step, simulation experiments are carried out in a soil volume around a single root segment. We discuss how the simulation setup can be defined so as to represent: (i) certain characteristics of the root system such as rooting depth and root length density, (ii) plant transpiration rate, (iii) leaching fraction of the irrigation, and (iii) salinity of the irrigation water. The output of these simulation experiments gives a first insight in the effect of salinity on transpiration and on the relation between the bulk salinity in the soil voxel, which is used in macroscopic salt stress functions of models that do not resolve processes at the root segment scale, and the salinity at the soil-root interface, which determines the actual

  13. Bose-Einstein-condensate interferometer with macroscopic arm separation

    NASA Astrophysics Data System (ADS)

    Garcia-Salazar, Ofir

    The basis of our study was to implement an atom interferometer using 87Rb Bose Einstein condensates which has advantages in sensitivity over current interferometers that use cold atoms and light. Interferometers are devices which can accurately measure phase differences between waves that interfere and originate from a coherent source (or sources). We developed a weakly confining waveguide having o x ≈ 3 Hz, oz ≈ 3 Hz, o y ≈ 1 Hz as characteristic oscillation frequencies. Weak confinement, specially along the "y" direction, means the condensate can displace along this axis and interaction energies of the atoms in the condensate are reduced [43]. We have been able to successfully demonstrate condensate interference in our waveguide using a Mach Zehnder configuration. Coherence times of up to 40 ms have been observed, and the maximum center to center separation of the condensates recorded was of 240 mum. At this separation length, the two clouds corresponding to each of the interferometer's arms are completely separated. To our knowledge, this is the first time a picture has been taken of two groups of atoms separated by a macroscopic distance while in a quantum superposition of being in either cloud. The coherence time and length measurements presented in our work have been among the longest ones achieved so far for interferometry using condensed atoms. Interference visibility of 60% was observed up to 40 ms. We believe technical limitations in the techniques used to manipulate the atoms are responsible for the sudden drop in visibility at 44 ms. For example, unwanted laser reflections and interference patterns in our chamber affect the techniques used to split and reflect the atoms. However, we see coherence up to 80 ms from shot to shot, suggesting we could dramatically improve coherence times. Because of the weak confinement of our trap, we expect to improve coherence times up to an order of magnitude before running into phase diffusion effects [27]. It is

  14. Nonlocal quantum macroscopic superposition in a high-thermal low-purity state.

    PubMed

    Brezinski, Mark E; Liu, Bin

    2008-12-16

    chirping frequency with medium disappears when second-order correlations are removed by dual balanced detection, confirming the proposed mechanism. We demonstrated that increasing position uncertainty at one site leads to position uncertainty (quantum position probability amplitude) nonlocally via second-order correlations (two-photon probability amplitude) from a low coherence thermal source (low purity, high local entropy). The implications, first, are that the phenomenon cannot be explained through classical mechanisms but can be explained within the context of quantum mechanics, particularly relevant to the second-order correlations where controversy exists. More specifically, we provide the theoretical framework that these results indicate a nonlocal macroscopic superposition is occurring through a two-photon probability amplitude-induced increase in the target position probability amplitude uncertainty. In addition, as the experiments were performed with a classical source at room temperature, it supports both the quantum-mechanical properties of second-order correlations and that macroscopic superposition is obtainable in a target not in a single coherent state (mixed state). Future work will focus on generalizing the observations outside the current experimental design and creating embodiments that allow practical application of the phenomenon.

  15. Nonlocal quantum macroscopic superposition in a high-thermal low-purity state.

    PubMed

    Brezinski, Mark E; Liu, Bin

    2008-12-16

    chirping frequency with medium disappears when second-order correlations are removed by dual balanced detection, confirming the proposed mechanism. We demonstrated that increasing position uncertainty at one site leads to position uncertainty (quantum position probability amplitude) nonlocally via second-order correlations (two-photon probability amplitude) from a low coherence thermal source (low purity, high local entropy). The implications, first, are that the phenomenon cannot be explained through classical mechanisms but can be explained within the context of quantum mechanics, particularly relevant to the second-order correlations where controversy exists. More specifically, we provide the theoretical framework that these results indicate a nonlocal macroscopic superposition is occurring through a two-photon probability amplitude-induced increase in the target position probability amplitude uncertainty. In addition, as the experiments were performed with a classical source at room temperature, it supports both the quantum-mechanical properties of second-order correlations and that macroscopic superposition is obtainable in a target not in a single coherent state (mixed state). Future work will focus on generalizing the observations outside the current experimental design and creating embodiments that allow practical application of the phenomenon. PMID:24204102

  16. Nonlocal quantum macroscopic superposition in a high-thermal low-purity state

    NASA Astrophysics Data System (ADS)

    Brezinski, Mark E.; Liu, Bin

    2008-12-01

    in chirping frequency with medium disappears when second-order correlations are removed by dual balanced detection, confirming the proposed mechanism. We demonstrated that increasing position uncertainty at one site leads to position uncertainty (quantum position probability amplitude) nonlocally via second-order correlations (two-photon probability amplitude) from a low coherence thermal source (low purity, high local entropy). The implications, first, are that the phenomenon cannot be explained through classical mechanisms but can be explained within the context of quantum mechanics, particularly relevant to the second-order correlations where controversy exists. More specifically, we provide the theoretical framework that these results indicate a nonlocal macroscopic superposition is occurring through a two-photon probability amplitude-induced increase in the target position probability amplitude uncertainty. In addition, as the experiments were performed with a classical source at room temperature, it supports both the quantum-mechanical properties of second-order correlations and that macroscopic superposition is obtainable in a target not in a single coherent state (mixed state). Future work will focus on generalizing the observations outside the current experimental design and creating embodiments that allow practical application of the phenomenon.

  17. Macroscopic rotation of photon polarization induced by a single spin.

    PubMed

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-01-01

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. PMID:25687134

  18. The assembly of C. elegans lamins into macroscopic fibers.

    PubMed

    Zingerman-Koladko, Irena; Khayat, Maayan; Harapin, Jan; Shoseyov, Oded; Gruenbaum, Yosef; Salman, Ahmad; Medalia, Ohad; Ben-Harush, Kfir

    2016-10-01

    Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties.

  19. Accumulation of small protein molecules in a macroscopic complex coacervate.

    PubMed

    Lindhoud, Saskia; Claessens, Mireille M A E

    2016-01-14

    To obtain insight into the accumulation of proteins into macroscopic complex coacervate phases, the lysozyme concentration in complex coacervates containing the cationic polyelectrolyte poly-(N,N dimethylaminoethyl methacrylate) and the anionic polyelectrolyte polyacrylic acid was investigated as a function of the mixing ratio, protein concentration and ionic strength. Maximal protein enrichment of the complex coacervate phase was observed to require the presence of all three macromolecules. Under optimized conditions the protein concentrations in the complex coacervate were as high as 200 g L(-1). Such high concentrations are comparable to the protein concentration in the cytosol, suggesting that these interesting liquid phases may serve a suitable model system for the phase behavior of the cytosol and genesis and function of membrane-less organelles. The high stability of the complexes and the salt dependent uptake of protein suggest that complex coacervates may provide a way to store hydrated proteins at high concentrations and might therefore be of interest in the formulation of high protein foods.

  20. Atomistic study of macroscopic analogs to short-chain molecules

    NASA Astrophysics Data System (ADS)

    Welch, Kyle J.; Kilmer, Clayton S. G.; Corwin, Eric I.

    2015-02-01

    We use a bath of chaotic surface waves in water to mechanically and macroscopically mimic the thermal behavior of a short articulated chain with only nearest-neighbor interactions. The chaotic waves provide isotropic and random agitation to which a temperature can be ascribed, allowing the chain to passively explore its degrees of freedom in analogy to thermal motion. We track the chain in real time and infer end-to-end potentials using Boltzmann statistics. We extrapolate our results, by using Monte Carlo simulations of self-avoiding polymers, to lengths not accessible in our system. In the long-chain limit we demonstrate universal scaling of the statistical parameters of all chains in agreement with well-known predictions for self-avoiding walks. However, we find that the behavior of chains below a characteristic length scale fundamentally differs. We find that short chains have much greater compressional stiffness than would be expected. However, chains rapidly soften as length increases to meet with expected scalings.

  1. Electrokinetic assembly of selenium and silver nanowires into macroscopic fibers.

    PubMed

    Wang, Michael C P; Zhang, Xin; Majidi, Elham; Nedelec, Kevin; Gates, Byron D

    2010-05-25

    Solution-phase synthesized nanowires with high aspect ratios can be a challenge to assemble into desired structures. As synthesized, these nanostructures readily bend and entangle with each other to form larger aggregates. This manuscript reports a general procedure for directing the assembly of semiconducting and metallic nanowires into fibers that can easily span distances >1 cm. Dispersions of these nanostructures in a low dielectric solution are organized by electrokinetic techniques into fibers that can be isolated from solution. Theoretical studies suggest that the assembled fibers adopt an orientation along electric field lines in the solution. The number of assembled fibers is a function of the duration of the assembly process, the magnitude of the electric potential, and the initial concentration of nanowires dispersed in solution. These findings offer a general method for the assembly of nanowires into macroscopic fibers of tunable dimensions. Fibers of selenium nanowires isolated from solution can reversibly bend in response to a source of electrostatic charges positioned in close proximity to the free-standing fiber. These flexible selenium fibers also exhibit a photoconductive response when illuminated with white light.

  2. Experiments testing macroscopic quantum superpositions must be slow

    PubMed Central

    Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio

    2016-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation. PMID:26959656

  3. Macroscopic effects of the spectral structure in turbulent flows

    NASA Astrophysics Data System (ADS)

    Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G.

    2010-11-01

    There is a missing link between macroscopic properties of turbulent flows, such as the frictional drag of a wall-bounded flow, and the turbulent spectrum. To seek the missing link we carry out unprecedented experimental measurements of the frictional drag in turbulent soap-film flows over smooth walls. These flows are effectively two-dimensional, and we are able to create soap-film flows with the two types of turbulent spectrum that are theoretically possible in two dimensions: the "enstrophy cascade," for which the spectral exponent α= 3, and the "inverse energy cascade," for which the spectral exponent α= 5/3. We find that the functional relation between the frictional drag f and the Reynolds number Re depends on the spectral exponent: where α= 3, f ˜Re-1/2; where α= 5/3, f ˜Re-1/4. Each of these scalings may be predicted from the attendant value of α by using a recently proposed spectral theory of the frictional drag. In this theory the frictional drag of turbulent flows on smooth walls is predicted to be f ˜Re^(1-α)/(1+α).

  4. Macroscopic strain controlled ion current in an elastomeric microchannel

    SciTech Connect

    Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven; Innes, Laura; Dennin, Michael; Li, Yongxue; Esser-Kahn, Aaron P.; Valdevit, Lorenzo; Sun, Lizhi; Siwy, Zuzanna

    2015-05-07

    We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.

  5. Macroscopic Quantum Tunneling of Solitons in Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Glick, Joseph A.; Carr, Lincoln D.

    2011-05-01

    We study the macroscopic quantum tunneling of ultracold bosons in one-dimensional optical lattices. A bright matter-wave soliton behind a potential barrier is allowed to tunnel out of confinement by tuning the barrier width and the attractive particle-particle interactions. We predict the escape time for the soliton, that is, when the norm remaining behind the barrier drops to 1/e, modeling how the interaction strength, the system size, and the barrier dimensions affect the escape time. We preform quasi-exact simulations of the quantum many-body entangled dynamics with Time-Evolving Block Decimation (TEBD), a matrix product state numerical method. Independently, we check our results near the weakly interacting limit with mean-field theory. Our findings show the regimes in which mean-field theory is widely inadequate, and the appreciable differences between a mean-field and a full quantum many-body approach. We then use TEBD to model the dynamics far beyond the mean-field limit. We calculate the entropy of entanglement between the soliton body behind the barrier and the escaped soliton tail past the barrier over time. We use density-density correlation functions to examine how particles in different regions of the system (behind, under, or past the barrier) are entangled to one another. Funded by NSF

  6. Macroscopic strain controlled ion current in an elastomeric microchannel

    NASA Astrophysics Data System (ADS)

    Kuo, Chin-Chang; Li, Yongxue; Nguyen, Du; Buchsbaum, Steven; Innes, Laura; Esser-Kahn, Aaron P.; Valdevit, Lorenzo; Sun, Lizhi; Siwy, Zuzanna; Dennin, Michael

    2015-05-01

    We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.

  7. Experiments testing macroscopic quantum superpositions must be slow.

    PubMed

    Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio

    2016-03-09

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.

  8. Subseafloor Macroscopic Biofilms Involved in Anaerobic Oxidization of Methane

    NASA Astrophysics Data System (ADS)

    Briggs, B. R.; Hieter, J.; Pohlman, J.; Torres, M. E.; Riedel, M.; Rose, K.; Joseph, C.; Colwell, F. S.

    2009-12-01

    The release of methane from seafloor sediments is moderated in part by the anaerobic oxidation of methane (AOM), a process carried out by a consortium of archaea and bacteria within the sulfate methane transition zone (SMTZ). We collected macroscopic biofilms in subseafloor fractures that intersect the SMTZ and, for the first time, have conducted molecular analyses of these biofilms to describe their phylogenetic affiliations. Non-metric multidimensional scaling (NMS) of terminal restriction fragment length polymorphism (t-RFLP) profiles indicate archaea in the biofilm are similar to those present in sediment adjacent to the biofilm. However, cores lacking observable biofilms contained different archaeal taxa. By contrast, NMS also showed the bacterial taxa in the biofilm are distinct from sediment adjacent to the biofilm. Sequencing of 386 bacterial clones indicates a diverse presence of alpha, beta, delta and gammaproteobacteria related to sulfate reducers (52% of clones, 79-89% similarity) and iron reducers (20% of clones, 83-89% similarity,). In addition, 204 archaeal clones were sequenced and the major taxa found are related to ANME-1 (40% of clones, 95% similarity) and archaeoglobus (30% of clones, 93% similarity). Biofilms inhabiting fractures in very fine to fine-grained sediment may play a crucial role in the carbon cycle.

  9. Quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  10. Theory and feasibility tests for a seismic scanning tunnelling macroscope

    NASA Astrophysics Data System (ADS)

    Schuster, Gerard T.; Hanafy, Sherif; Huang, Yunsong

    2012-09-01

    We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.

  11. Macroscopic Neural Oscillation during Skilled Reaching Movements in Humans

    PubMed Central

    Chung, Chun Kee

    2016-01-01

    The neural mechanism of skilled movements, such as reaching, has been considered to differ from that of rhythmic movement such as locomotion. It is generally thought that skilled movements are consciously controlled by the brain, while rhythmic movements are usually controlled autonomously by the spinal cord and brain stem. However, several studies in recent decades have suggested that neural networks in the spinal cord may also be involved in the generation of skilled movements. Moreover, a recent study revealed that neural activities in the motor cortex exhibit rhythmic oscillations corresponding to movement frequency during reaching movements as rhythmic movements. However, whether the oscillations are generated in the spinal cord or the cortical circuit in the motor cortex causes the oscillations is unclear. If the spinal cord is involved in the skilled movements, then similar rhythmic oscillations with time delays should be found in macroscopic neural activity. We measured whole-brain MEG signals during reaching. The MEG signals were analyzed using a dynamical analysis method. We found that rhythmic oscillations with time delays occur in all subjects during reaching movements. The results suggest that the corticospinal system is involved in the generation and control of the skilled movements as rhythmic movements. PMID:27524996

  12. Single-file diffusion of macroscopic charged particles.

    PubMed

    Coste, C; Delfau, J-B; Even, C; Saint Jean, M

    2010-05-01

    In this paper, we study a macroscopic system of electrically interacting metallic beads organized as a sequence along an annulus. A random mechanical shaking mimics the thermal excitation. We exhibit non-Fickian diffusion (single-file diffusion) at large time. We measure the mobility of the particles and compare it to theoretical expectations. We show that our system cannot be accurately described by theories assuming only hard-sphere interactions. Its behavior is qualitatively described by a theory extended to more realistic potentials [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)]. A correct quantitative agreement is shown and we interpret the discrepancies by the violation of the assumption of overdamped dynamics, which is a key point in the theory. We recast previous results on colloids with known interaction potentials and compare them quantitatively to the theory. Focusing on the transition between ordinary and single-file diffusions, we exhibit a dimensionless crossover time that is of order 1 both for colloids and our system, although the time and length scales differ by several orders of magnitude.

  13. LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views

    NASA Astrophysics Data System (ADS)

    Anacleto, Joaquim; Pereira, Mário G.

    2009-05-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.

  14. Nanospheres, nanotubes, toroids, and gels with controlled macroscopic chirality.

    PubMed

    Arias, Sandra; Freire, Félix; Quiñoá, Emilio; Riguera, Ricardo

    2014-12-01

    The interaction of a highly dynamic poly(aryl acetylene) (poly-1) with Li(+), Na(+), and Ag(+) leads to macroscopically chiral supramolecular nanospheres, nanotubes, toroids, and gels. With Ag(+), nanospheres with M helicity and tunable sizes are generated, which complement those obtained from the same polymer with divalent cations. With Li(+) or Na(+), poly-1 yields chiral nanotubes, gels, or toroids with encapsulating properties and M helicity. Right-handed supramolecular structures can be obtained by using the enantiomeric polymer. The interaction of poly-1 with Na(+) produces nanostructures whose helicity is highly dependent on the solvation state of the cation. Therefore, structures with either of the two helicities can be prepared from the same polymer by manipulation of the cosolvent. Such chiral nanotubes, toroids, and gels have previously not been obtained from helical polymer-metal complexes. Chiral nanospheres made of poly(aryl acetylene) that were previously assembled with metal(II) species can now be obtained with metal(I) species. PMID:25209219

  15. Quantum-limited heat conduction over macroscopic distances

    PubMed Central

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-01-01

    The emerging quantum technological apparatuses1, 2, such as the quantum computer3–6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8–10. However, the short distance between the heat-exchanging bodies in the previous experiments11–14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15–17 which provides a basis for the superconducting quantum computer18–21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26. PMID:27239219

  16. Experiments testing macroscopic quantum superpositions must be slow

    NASA Astrophysics Data System (ADS)

    Mari, Andrea; de Palma, Giacomo; Giovannetti, Vittorio

    2016-03-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.

  17. Observation of quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Mottonen, Mikko; Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell; Makela, Miika; Tanttu, Tuomo

    The emerging quantum technological devices, such as the quantum computer, call for extreme performance in thermal engineering at the nanoscale. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. We present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a meter. We achieved this striking improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus it seems that quantum-limited heat conduction has no fundamental restriction in its distance. This work lays the foundation for the integration of normal-metal components into superconducting transmission lines, and hence provides an important tool for circuit quantum electrodynamics, the basis of the emerging superconducting quantum computer. In particular, our results may lead to remote cooling of nanoelectronic devices with the help of a far-away in-situ-tunable heat sink. European Research Council (ERC) is acknowledged for funding under the Grant No. 278117 (SINGLEOUT).

  18. The macroscopic delamination of thin films from elastic substrates

    PubMed Central

    Vella, Dominic; Bico, José; Boudaoud, Arezki; Roman, Benoit; Reis, Pedro M.

    2009-01-01

    The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical properties because stretching or twisting of the substrate is mostly accommodated through bending of the film, which minimizes fatigue or fracture. To date, applications in this context have used substrate patterning to create an anisotropic substrate-film adhesion energy, thereby producing a controlled array of delamination “blisters.” However, even in the absence of such patterning, blisters appear spontaneously, with a characteristic size. Here, we perform well-controlled experiments at macroscopic scales to study what sets the dimensions of these blisters in terms of the material properties and explain our results by using a combination of scaling and analytical methods. Besides pointing to a method for determining the interfacial toughness, our analysis suggests a number of design guidelines for the thin films used in flexible electronic applications. Crucially, we show that, to avoid the possibility that delamination may cause fatigue damage, the thin film thickness must be greater than a critical value, which we determine. PMID:19556551

  19. Tinnitus does not require macroscopic tonotopic map reorganization

    PubMed Central

    Langers, Dave R. M.; de Kleine, Emile; van Dijk, Pim

    2012-01-01

    The pathophysiology underlying tinnitus, a hearing disorder characterized by the chronic perception of phantom sound, has been related to aberrant plastic reorganization of the central auditory system. More specifically, tinnitus is thought to involve changes in the tonotopic representation of sound. In the present study we used high-resolution functional magnetic resonance imaging to determine tonotopic maps in the auditory cortex of 20 patients with tinnitus but otherwise near-normal hearing, and compared these to equivalent outcomes from 20 healthy controls with matched hearing thresholds. Using a dedicated experimental paradigm and data-driven analysis techniques, multiple tonotopic gradients could be robustly distinguished in both hemispheres, arranged in a pattern consistent with previous findings. Yet, maps were not found to significantly differ between the two groups in any way. In particular, we found no evidence for an overrepresentation of high sound frequencies, matching the tinnitus pitch. A significant difference in evoked response magnitude was found near the low-frequency tonotopic endpoint on the lateral extreme of left Heschl’s gyrus. Our results suggest that macroscopic tonotopic reorganization in the auditory cortex is not required for the emergence of tinnitus, and is not typical for tinnitus that accompanies normal hearing to mild hearing loss. PMID:22347171

  20. Properties of nuclear matter from macroscopic-microscopic mass formulas

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun

    2015-12-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  1. The assembly of C. elegans lamins into macroscopic fibers.

    PubMed

    Zingerman-Koladko, Irena; Khayat, Maayan; Harapin, Jan; Shoseyov, Oded; Gruenbaum, Yosef; Salman, Ahmad; Medalia, Ohad; Ben-Harush, Kfir

    2016-10-01

    Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties. PMID:27341289

  2. Macroscopic Carbon Nanotube-based 3D Monoliths.

    PubMed

    Du, Ran; Zhao, Qiuchen; Zhang, Na; Zhang, Jin

    2015-07-15

    Carbon nanotubes (CNTs) are one of the most promising carbon allotropes with incredible diverse physicochemical properties, thereby enjoying continuous worldwide attention since their discovery about two decades ago. From the point of view of practical applications, assembling individual CNTs into macroscopic functional and high-performance materials is of paramount importance. For example, multiscaled CNT-based assemblies including 1D fibers, 2D films, and 3D monoliths have been developed. Among all of these, monolithic 3D CNT architectures with porous structures have attracted increasing interest in the last few years. In this form, theoretically all individual CNTs are well connected and fully expose their surfaces. These 3D architectures have huge specific surface areas, hierarchical pores, and interconnected conductive networks, resulting in enhanced mass/electron transport and countless accessible active sites for diverse applications (e.g. catalysis, capacitors, and sorption). More importantly, the monolithic form of 3D CNT assemblies can impart additional application potentials to materials, such as free-standing electrodes, sensors, and recyclable sorbents. However, scaling the properties of individual CNTs to 3D assemblies, improving use of the diverse, structure-dependent properties of CNTs, and increasing the performance-to-cost ratio are great unsolved challenges for their real commercialization. This review aims to provide a comprehensive introduction of this young and energetic field, i.e., CNT-based 3D monoliths, with a focus on the preparation principles, current synthetic methods, and typical applications. Opportunities and challenges in this field are also presented.

  3. Macroscopic Evidence for the Hibernating Behavior of Materials Stock.

    PubMed

    Daigo, Ichiro; Iwata, Kohei; Ohkata, Ikumi; Goto, Yoshikazu

    2015-07-21

    Hibernating stock is defined as material stock that is no longer used, but is not yet recovered. Although hibernating stock plays a role in materials recoverability, its contribution to the overall material cycle is not clearly understood. Therefore, an analysis of the time-series potential generation of steel scrap in Japan was performed and compared against the actual recovery, proving that the steel scrap recovered each year exceeds the annual generation potential and providing the first macroscopic evidence of hibernating stock recovery. These results indicate that hibernation behavior should be considered when evaluating materials recoverability. The particular characteristics of hibernating stock were also identified. These materials tend to be located far from scrap yards and/or have low bulk density, while also minimally obstructing new activity. In fact, hibernating materials are typically only recovered when they obstruct new activity. Hence, in order to increase steel recoverability, the recovery cost must be reduced. The end-of-life recycling rates (EoL-RRs) were also evaluated, and were found to exhibit a significant change over time. Consequently, the annual EoL-RR cannot be considered as a representative value, and a value for the EoL-RR(s) of relevant year(s) that has been evaluated over the entire period should be used instead.

  4. Experiments testing macroscopic quantum superpositions must be slow.

    PubMed

    Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio

    2016-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation. PMID:26959656

  5. Grasping the Second Law of Thermodynamics at University: The Consistency of Macroscopic and Microscopic Explanations

    ERIC Educational Resources Information Center

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2015-01-01

    This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N = 48) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data…

  6. Reduced Gyral Window and Corpus Callosum Size in Autism: Possible Macroscopic Correlates of a Minicolumnopathy

    ERIC Educational Resources Information Center

    Casanova, Manuel F.; El-Baz, Ayman; Mott, Meghan; Mannheim, Glenn; Hassan, Hossam; Fahmi, Rachid; Giedd, Jay; Rumsey, Judith M.; Switala, Andrew E.; Farag, Aly

    2009-01-01

    Minicolumnar changes that generalize throughout a significant portion of the cortex have macroscopic structural correlates that may be visualized with modern structural neuroimaging techniques. In magnetic resonance images (MRIs) of fourteen autistic patients and 28 controls, the present study found macroscopic morphological correlates to recent…

  7. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks

    SciTech Connect

    Leggett, A.J.; Garg, A.

    1985-03-04

    It is shown that, in the contect of an idealized ''macroscopic quantum coherence'' experiment, the prediction of quantum mechanics are incompattible with the conjunction of two general assimptions which are designated ''macroscopic realism'' and ''noninvasive measurability at the macroscopiclevel.'' The conditions under which quantum mechanics can be tested against these assumptions in a realistic experiment are discussed.

  8. Scale-dependent bi-trophic interactions in a semi-arid savanna: how herbivores eliminate benefits of nutrient patchiness to plants.

    PubMed

    van der Waal, Cornelis; de Kroon, Hans; van Langevelde, Frank; de Boer, Willem F; Heitkönig, Ignas M A; Slotow, Rob; Pretorius, Yolanda; Prins, Herbert H T

    2016-08-01

    The scale of resource heterogeneity may influence how resources are locally partitioned between co-existing large and small organisms such as trees and grasses in savannas. Scale-related plant responses may, in turn, influence herbivore use of the vegetation. To examine these scale-dependent bi-trophic interactions, we varied fertilizer [(nitrogen (N)/phosphorus (P)/potassium (K)] applications to patches to create different scales of nutrient patchiness (patch size 2 × 2 m, 10 × 10 m, or whole-plot 50 × 50 m) in a large field experiment in intact African savanna. Within-patch fertilizer concentration and the total fertilizer load per plot were independently varied. We found that fertilization increased the leaf N and P concentrations of trees and grasses, resulting in elevated utilization by browsers and grazers. Herbivory off-take was particularly considerable at higher nutrient concentrations. Scale-dependent effects were weak. The net effect of fertilization and herbivory was that plants in fertilized areas tended to grow less and develop smaller rather than larger standing biomass compared to plants growing in areas that remained unfertilized. When all of these effects were considered together at the community (plot) level, herbivory completely eliminated the positive effects of fertilization on the plant community. While this was true for all scales of fertilization, grasses tended to profit more from coarse-grained fertilization and trees from fine-grained fertilization. We conclude that in herbivore-dominated communities, such as the African savanna, nutrient patchiness results in the herbivore community profiting rather more than the plant community, irrespective of the scale of patchiness. At the community level, the allometric scaling theory's prediction of plant-and probably also animal-production does not hold or may even be reversed as a result of complex bi-trophic interactions. PMID:27094543

  9. Implications of the change in confinement status of a heterogeneous aquifer for scale-dependent dispersion and mass-transfer processes

    NASA Astrophysics Data System (ADS)

    Pedretti, D.; Molinari, A.; Fallico, C.; Guzzi, S.

    2016-10-01

    A series of experimental tracer tests were performed to explore the implications of the change in the pressure status of a heterogeneous bimodal aquifer for scale-dependent dispersion and mass-transfer processes. The sandbox was filled with sands and gravel channels and patches to form an alluvial-like bimodal aquifer. We performed multiple injections of a conservative tracer from 26 different locations of the sandbox and interpreted the resulting depth-integrated breakthrough curves (BTCs) at the central pumping well to obtain a scale-dependent distribution of local and field-integrated apparent longitudinal dispersivity (respectively, αLloc and αLapp). We repeated the experiments under confined (CS) and unconfined (UNS) pressure status, keeping the same heterogeneous configuration. Results showed that αLloc(associated with transport through gravel zones) was poorly influenced by the change in aquifer pressure and the presence of channels. Instead, αLapp(i.e. macrodispersion) strongly increased when changing from CS to UNS. In specific, we found αLapp ≈ 0.03 r for the CS and αLapp ≈ 0.15 r for the UNS (being r the distance from the well). Second-to-fourth-order temporal moments showed strong spatial dependence in the UNS and no spatial dependence in the CS. These results seem consistent with a "vadose-zone-driven" kinetic mass-transfer process occurring in the UNS but not in the CS. The vadose zone enhances vertical flow due to the presence of free surface and large contrasts in hydraulic conductivity triggered by the desaturation of gravel channels nearby the pumping well. The vadose zone enhances vertical mixing between gravel and sands and generates BTC tailing. In the CS vertical mixing is negligible and anomalous transport is not observed.

  10. Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes.

    PubMed

    Li, Ying; Shen, Xiangying; Wu, Zuhui; Huang, Junying; Chen, Yixuan; Ni, Yushan; Huang, Jiping

    2015-11-01

    The macroscopic control of ubiquitous heat flow remains poorly explored due to the lack of a fundamental theoretical method. Here, by establishing temperature-dependent transformation thermotics for treating materials whose conductivity depends on temperature, we show analytical and simulation evidence for switchable thermal cloaking and a macroscopic thermal diode based on the cloaking. The latter allows heat flow in one direction but prohibits the flow in the opposite direction, which is also confirmed by our experiments. Our results suggest that the temperature-dependent transformation thermotics could be a fundamental theoretical method for achieving macroscopic heat rectification, and it could provide guidance both for the macroscopic control of heat flow and for the design of the counterparts of switchable thermal cloaks or macroscopic thermal diodes in other fields like seismology, acoustics, electromagnetics, and matter waves. PMID:26588397

  11. [Macroscopic findings of brains are helpful in differential diagnosis of neurological disorders].

    PubMed

    Yoshida, Mari

    2013-01-01

    Neuropathological diagnosis is essential in neurological disorders. Neurological signs and neuroimaging play a major role in clinical diagnosis. Although neuroimaging indicates the location and size of lesions, which is useful to longitudinal evaluation of edema or atrophy, pathological diagnosis is absolutely necessary to qualitative diagnosis. The first step of pathological diagnosis starts to observe macroscopic findings of brains, which reveal the distribution of lesions specific to individual disorders. Since the macroscopic abnormal findings are based on the microscopic degenerative findings, it may be no exaggeration to say that macroscopic findings enable to make neuropathological diagnosis. Accuracy of macroscopic finding is corrected or revised with microscopic findings and finally compared with neuroimaging and clinical diagnosis. Therefore it is very important and useful to learn macroscopic findings of neurological disorders. PMID:24291833

  12. A quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glasses

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Chen, G. L.; Hui, X. D.; Liu, C. T.; Lin, Y.; Shang, X. C.; Lu, Z. P.

    2009-10-01

    Based on mechanical instability of individual shear transformation zones (STZs), a quantitative link between the microplastic instability and macroscopic deformation behavior of metallic glasses was proposed. Our analysis confirms that macroscopic metallic glasses comprise a statistical distribution of STZ embryos with distributed values of activation energy, and the microplastic instability of all the individual STZs dictates the macroscopic deformation behavior of amorphous solids. The statistical model presented in this paper can successfully reproduce the macroscopic stress-strain curves determined experimentally and readily be used to predict strain-rate effects on the macroscopic responses with the availability of the material parameters at a certain strain rate, which offer new insights into understanding the actual deformation mechanism in amorphous solids.

  13. Emergence of macroscopic directed motion in populations of motile colloids

    NASA Astrophysics Data System (ADS)

    Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis

    2013-11-01

    From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic `flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our

  14. Nonclassical interactions portrait in a macroscopic pedestrian flow model

    NASA Astrophysics Data System (ADS)

    Rosini, Massimiliano D.

    In this paper we describe the main characteristics of the macroscopic model for pedestrian flows introduced in [R.M. Colombo, M.D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci. 28 (13) (2005) 1553-1567] and recently sperimentally verified in [D. Helbing, A. Johansson, H.Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 75 (4) (2007) 046109]. After a detailed study of all the possible wave interactions, we prove the existence of a weighted total variation that does not increase after any interaction. This is the main ingredient used in [R.M. Colombo, M.D. Rosini, Existence of nonclassical Cauchy problem modeling pedestrian flows, technical report, Brescia Department of Mathematics, 2008] to tackle the Cauchy problem through wave front tracking, see [A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl., vol. 20, Oxford Univ. Press, Oxford, 2000, The one-dimensional Cauchy problem; A. Bressan, The front tracking method for systems of conservation laws, in: C.M. Dafermos, E. Feireisl (Eds.), Handbook of Differential Equations; Evolutionary Equations, vol. 1, Elsevier, 2004, pp. 87-168; R.M. Colombo, Wave front tracking in systems of conservation laws, Appl. Math. 49 (6) (2004) 501-537]. From the mathematical point of view, this model is one of the few examples of conservation laws in which nonclassical solutions have a physical motivation, see [P.G. Lefloch, Hyperbolic Systems of Conservation Laws, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2002, The theory of classical and nonclassical shock waves], and an existence result is available.

  15. Proton irradiation effects on beryllium - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  16. Macroscopic hotspots identification: A Bayesian spatio-temporal interaction approach.

    PubMed

    Dong, Ni; Huang, Helai; Lee, Jaeyoung; Gao, Mingyun; Abdel-Aty, Mohamed

    2016-07-01

    This study proposes a Bayesian spatio-temporal interaction approach for hotspot identification by applying the full Bayesian (FB) technique in the context of macroscopic safety analysis. Compared with the emerging Bayesian spatial and temporal approach, the Bayesian spatio-temporal interaction model contributes to a detailed understanding of differential trends through analyzing and mapping probabilities of area-specific crash trends as differing from the mean trend and highlights specific locations where crash occurrence is deteriorating or improving over time. With traffic analysis zones (TAZs) crash data collected in Florida, an empirical analysis was conducted to evaluate the following three approaches for hotspot identification: FB ranking using a Poisson-lognormal (PLN) model, FB ranking using a Bayesian spatial and temporal (B-ST) model and FB ranking using a Bayesian spatio-temporal interaction (B-ST-I) model. The results show that (a) the models accounting for space-time effects perform better in safety ranking than does the PLN model, and (b) the FB approach using the B-ST-I model significantly outperforms the B-ST approach in correctly identifying hotspots by explicitly accounting for the space-time variation in addition to the stable spatial/temporal patterns of crash occurrence. In practice, the B-ST-I approach plays key roles in addressing two issues: (a) how the identified hotspots have evolved over time and (b) the identification of areas that, whilst not yet hotspots, show a tendency to become hotspots. Finally, it can provide guidance to policy decision makers to efficiently improve zonal-level safety.

  17. Innovations in macroscopic evaluation of pancreatic specimens and radiologic correlation.

    PubMed

    Triantopoulou, Charikleia; Papaparaskeva, Kleo; Agalianos, Christos; Dervenis, Christos

    2016-01-01

    The purpose of this study was to evaluate the feasibility of a novel dissection technique of surgical specimens in different cases of pancreatic tumors and provide a radiologic pathologic correlation. In our hospital, that is a referral center for pancreatic diseases, the macroscopic evaluation of the pancreatectomy specimens is performed by the pathologists using the axial slicing technique (instead of the traditional procedure with longitudinal opening of the main pancreatic and/or common bile duct and slicing along the plane defined by both ducts). The specimen is sliced in an axial plane that is perpendicular to the longitudinal axis of the descending duodenum. The procedure results in a large number of thin slices (3-4 mm). This plane is identical to that of CT or MRI and correlation between pathology and imaging is straightforward. We studied 70 cases of suspected different solid and cystic pancreatic tumors and we correlated the tumor size and location, the structure-consistency (areas of necrosis-hemorrhage-fibrosis-inflammation), the degree of vessels' infiltration, the size of pancreatic and common bile duct and the distance from resection margins. Missed findings by imaging or pitfalls were recorded and we tried to explain all discrepancies between radiology evaluation and the histopathological findings. Radiologic-pathologic correlation is extremely important, adding crucial information on imaging limitations and enabling quality assessment of surgical specimens. The deep knowledge of different pancreatic tumors' consistency and way of extension helps to improve radiologists' diagnostic accuracy and minimize the radiological-surgical mismatching, preventing patients from unnecessary surgery. PMID:27069980

  18. Detection of cancer metastasis using a novel macroscopic hyperspectral method

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Halig, Luma V.; Zhang, Hongzheng; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei

    2012-03-01

    The proposed macroscopic optical histopathology includes a broad-band light source which is selected to illuminate the tissue glass slide of suspicious pathology, and a hyperspectral camera that captures all wavelength bands from 450 to 950 nm. The system has been trained to classify each histologic slide based on predetermined pathology with light having a wavelength within a predetermined range of wavelengths. This technology is able to capture both the spatial and spectral data of tissue. Highly metastatic human head and neck cancer cells were transplanted to nude mice. After 2- 3 weeks, the mice were euthanized and the lymph nodes and lung tissues were sent to pathology. The metastatic cancer is studied in lymph nodes and lungs. The pathological slides were imaged using the hyperspectral camera. The results of the proposed method were compared to the pathologic report. Using hyperspectral images, a library of spectral signatures for different tissues was created. The high-dimensional data were classified using a support vector machine (SVM). The spectra are extracted in cancerous and non-cancerous tissues in lymph nodes and lung tissues. The spectral dimension is used as the input of SVM. Twelve glasses are employed for training and evaluation. The leave-one-out cross-validation method is used in the study. After training, the proposed SVM method can detect the metastatic cancer in lung histologic slides with the specificity of 97.7% and the sensitivity of 92.6%, and in lymph node slides with the specificity of 98.3% and the sensitivity of 96.2%. This method may be able to help pathologists to evaluate many histologic slides in a short time.

  19. Innovations in macroscopic evaluation of pancreatic specimens and radiologic correlation

    PubMed Central

    Triantopoulou, Charikleia; Papaparaskeva, Kleo; Agalianos, Christos; Dervenis, Christos

    2016-01-01

    The purpose of this study was to evaluate the feasibility of a novel dissection technique of surgical specimens in different cases of pancreatic tumors and provide a radiologic pathologic correlation. In our hospital, that is a referral center for pancreatic diseases, the macroscopic evaluation of the pancreatectomy specimens is performed by the pathologists using the axial slicing technique (instead of the traditional procedure with longitudinal opening of the main pancreatic and/or common bile duct and slicing along the plane defined by both ducts). The specimen is sliced in an axial plane that is perpendicular to the longitudinal axis of the descending duodenum. The procedure results in a large number of thin slices (3–4 mm). This plane is identical to that of CT or MRI and correlation between pathology and imaging is straightforward. We studied 70 cases of suspected different solid and cystic pancreatic tumors and we correlated the tumor size and location, the structure—consistency (areas of necrosis—hemorrhage—fibrosis—inflammation), the degree of vessels’ infiltration, the size of pancreatic and common bile duct and the distance from resection margins. Missed findings by imaging or pitfalls were recorded and we tried to explain all discrepancies between radiology evaluation and the histopathological findings. Radiologic-pathologic correlation is extremely important, adding crucial information on imaging limitations and enabling quality assessment of surgical specimens. The deep knowledge of different pancreatic tumors’ consistency and way of extension helps to improve radiologists’ diagnostic accuracy and minimize the radiological-surgical mismatching, preventing patients from unnecessary surgery. PMID:27069980

  20. Macroscopic hotspots identification: A Bayesian spatio-temporal interaction approach.

    PubMed

    Dong, Ni; Huang, Helai; Lee, Jaeyoung; Gao, Mingyun; Abdel-Aty, Mohamed

    2016-07-01

    This study proposes a Bayesian spatio-temporal interaction approach for hotspot identification by applying the full Bayesian (FB) technique in the context of macroscopic safety analysis. Compared with the emerging Bayesian spatial and temporal approach, the Bayesian spatio-temporal interaction model contributes to a detailed understanding of differential trends through analyzing and mapping probabilities of area-specific crash trends as differing from the mean trend and highlights specific locations where crash occurrence is deteriorating or improving over time. With traffic analysis zones (TAZs) crash data collected in Florida, an empirical analysis was conducted to evaluate the following three approaches for hotspot identification: FB ranking using a Poisson-lognormal (PLN) model, FB ranking using a Bayesian spatial and temporal (B-ST) model and FB ranking using a Bayesian spatio-temporal interaction (B-ST-I) model. The results show that (a) the models accounting for space-time effects perform better in safety ranking than does the PLN model, and (b) the FB approach using the B-ST-I model significantly outperforms the B-ST approach in correctly identifying hotspots by explicitly accounting for the space-time variation in addition to the stable spatial/temporal patterns of crash occurrence. In practice, the B-ST-I approach plays key roles in addressing two issues: (a) how the identified hotspots have evolved over time and (b) the identification of areas that, whilst not yet hotspots, show a tendency to become hotspots. Finally, it can provide guidance to policy decision makers to efficiently improve zonal-level safety. PMID:27110645

  1. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    SciTech Connect

    Barrall, G A

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  2. Heterogeneous microstructures and macroscopic creep behavior of polycrystalline ice (Invited)

    NASA Astrophysics Data System (ADS)

    Lebensohn, R.

    2009-12-01

    We present results of two complementary formulations, a full-field approach based on fast Fourier transforms (FFT) [1] and a mean-field approach based on rigorous nonlinear homogenization [2] to study the influence of different microstructural features on the macroscopic behavior of polycrystalline ice. The FFT-based model is used for the prediction of local fields in columnar ice polycrystals deforming in compression by dislocation creep [3]. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals. In turn, this numerically-intensive full-field formulation is used to validate the predictions of different, more efficient homogenization approaches. We show that a recent second-order formulation, which explicitly uses information on average intragranular field fluctuations, implemented within the widely used ViscoPlastic Self-Consistent (VPSC) code [4], yields the most accurate results. References: [1] H. Moulinec and P. Suquet, Comput. Methods Appl. Mech. Eng. 157, 69 (1998). [2] P. Ponte Castañeda, J. Mech. Phys. Solids 50, 737 (2002). [3] R.A. Lebensohn, M. Montagnat, P. Mansuy et al. Acta Mater. 57, 1405, (2009). [4] R.A. Lebensohn, C.N. Tomé and P. Ponte Castañeda. Phil. Mag. 87, 4287 (2007).

  3. Transport Theoretical Studies of Some Microscopic and Macroscopic Systems

    NASA Astrophysics Data System (ADS)

    Astwood, Alden Matthew

    This dissertation is a report on theoretical transport studies of two systems of vastly different sizes. The first topic is electronic motion in quantum wires. In recent years, it has become possible to fabricate wires that are so small that quantum effects become important. The conduction properties of these wires are quite different than those of macroscopic wires. In this dissertation, we seek to understand scattering effects in quantum wires in a simple way. Some of the existing formalisms for studying transport in quantum wires are reviewed, and one such formalism is applied to calculate conductance in some simple systems. The second topic concerns animals which move in groups, such as flocking birds or schooling fish. Exact analytic calculations of the transport properties of such systems are very difficult because a flock is a system that is far from equilibrium and consists of many interacting particles. We introduce two simplified models of flocking which are amenable to analytic study. The first model consists of a set of overdamped Brownian particles that interact via spring forces. The exact solution for the probability distribution is calculated, and equations of motion for continuous coarse-grained quantities, such as the density, are obtained from the full solution. The second model consists of particles which move in one dimension at constant speed, but which change their directions at random. The flipping rates are constructed in such a way that particles tend to align their directions with each other. The model is solved exactly for one and two particles, the first two moments are obtained, and equations of motion for continuous coarse-grained quantities are written. The model cannot be solved exactly for many particles, but the first and second moments are calculated. Finally, two additional topics are briefly discussed. The first is transport in disordered lattices, and the second is a static magnetic model of flocking.

  4. A balanced view of balanced solutions.

    PubMed

    Guidet, Bertrand; Soni, Neil; Della Rocca, Giorgio; Kozek, Sibylle; Vallet, Benoît; Annane, Djillali; James, Mike

    2010-01-01

    The present review of fluid therapy studies using balanced solutions versus isotonic saline fluids (both crystalloids and colloids) aims to address recent controversy in this topic. The change to the acid-base equilibrium based on fluid selection is described. Key terms such as dilutional-hyperchloraemic acidosis (correctly used instead of dilutional acidosis or hyperchloraemic metabolic acidosis to account for both the Henderson-Hasselbalch and Stewart equations), isotonic saline and balanced solutions are defined. The review concludes that dilutional-hyperchloraemic acidosis is a side effect, mainly observed after the administration of large volumes of isotonic saline as a crystalloid. Its effect is moderate and relatively transient, and is minimised by limiting crystalloid administration through the use of colloids (in any carrier). Convincing evidence for clinically relevant adverse effects of dilutional-hyperchloraemic acidosis on renal function, coagulation, blood loss, the need for transfusion, gastrointestinal function or mortality cannot be found. In view of the long-term use of isotonic saline either as a crystalloid or as a colloid carrier, the paucity of data documenting detrimental effects of dilutional-hyperchloraemic acidosis and the limited published information on the effects of balanced solutions on outcome, we cannot currently recommend changing fluid therapy to the use of a balanced colloid preparation.

  5. Identifying Balance in a Balanced Scorecard System

    ERIC Educational Resources Information Center

    Aravamudhan, Suhanya; Kamalanabhan, T. J.

    2007-01-01

    In recent years, strategic management concepts seem to be gaining greater attention from the academicians and the practitioner's alike. Balanced Scorecard (BSC) concept is one such management concepts that has spread in worldwide business and consulting communities. The BSC translates mission and vision statements into a comprehensive set of…

  6. A macroscopic model for magnetic shape-memory single crystals

    NASA Astrophysics Data System (ADS)

    Bessoud, Anne-Laure; Kružík, Martin; Stefanelli, Ulisse

    2013-04-01

    A rate-independent model for the quasi-static magneto-elastic evolution of a magnetic shape-memory single crystal is presented. In particular, the purely mechanical Souza-Auricchio model for shape-memory alloys is here combined with classical micro-magnetism by suitably associating magnetization and inelastic strain. By balancing the effect of conservative and dissipative actions, a nonlinear evolution PDE system of rate-independent type is obtained. We prove the existence of so-called energetic solutions to this system. Moreover, we discuss several limits for the model corresponding to parameter asymptotics by means of a rigorous Γ-convergence argument.

  7. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  8. Leadership: A Balancing Act

    ERIC Educational Resources Information Center

    Hines, Thomas E.

    2011-01-01

    Maintaining balance in leadership can be difficult because balance is affected by the personality, strengths, and attitudes of the leader as well as the complicated environment within and outside the community college itself. This article explores what being a leader at the community college means, what the threats are to effective leadership, and…

  9. Judicial Checks and Balances

    ERIC Educational Resources Information Center

    La Porta, Rafael; Lopez-de-Silanes, Florencio; Pop-Eleches, Cristian; Shleifer, Andrei

    2004-01-01

    In the Anglo-American constitutional tradition, judicial checks and balances are often seen as crucial guarantees of freedom. Hayek distinguishes two ways in which the judiciary provides such checks and balances: judicial independence and constitutional review. We create a new database of constitutional rules in 71 countries that reflect these…

  10. The Technology Balance Beam

    ERIC Educational Resources Information Center

    Coulson, Eddie K.

    2006-01-01

    "The Technology Balance Beam" is designed to question the role of technology within school districts. This case study chronicles a typical school district in relation to the school district's implementation of technology beginning in the 1995-1996 school year. The fundamental question that this scenario raises is, What is the balance between…

  11. A Balance of Power?

    ERIC Educational Resources Information Center

    Mosey, Edward

    1991-01-01

    The booming economy of the Pacific Northwest region promotes the dilemma of balancing the need for increased electrical power with the desire to maintain that region's unspoiled natural environment. Pertinent factors discussed within the balance equation are population trends, economic considerations, industrial power requirements, and…

  12. Macroscopic behavior of ferrocholesteric liquid crystals and ferrocholesteric gels and elastomers.

    PubMed

    Brand, Helmut R; Fink, Alexander; Pleiner, Harald

    2015-06-01

    We study the influence of macroscopic chirality on the macroscopic properties of superparamagnetic liquid crystals and gels. Specifically we derive macroscopic dynamic equations for ferrocholesteric low molecular weight (LMW) liquid crystals and for ferrocholesteric gels and elastomers in the local description using the director field as macroscopic variable. The magnetization is treated as a macroscopic dynamic degree of freedom and its coupling to all other macroscopic variables is examined in detail. We incorporate into our dynamic analysis terms that are linear in a magnetic field giving rise to a number of cross-coupling terms not possible otherwise. A number of properties that are unique to the class of systems studied arise. As an example for a static property we find a term in the generalized energy which is linear in the electric field and quadratic in the magnetic field. We find that applying a magnetic field to a ferrocholesteric can lead to reversible electric currents, heat currents and concentration currents, which change their sign with a sign change of macroscopic chirality. As an example of a rather intriguing dissipative dynamic contribution we point out that for ferrocholesterics and for ferrocholesteric gels and elastomers in a magnetic field extensional flow leads to electric and heat currents.

  13. Structured pathology reporting improves the macroscopic assessment of rectal tumour resection specimens.

    PubMed

    King, Simon; Dimech, Margaret; Johnstone, Susan

    2016-06-01

    We examined whether introduction of a structured macroscopic reporting template for rectal tumour resection specimens improved the completeness and efficiency in collecting key macroscopic data elements. Fifty free text (narrative) macroscopic reports retrieved from 2012 to 2014 were compared with 50 structured macroscopic reports from 2013 to 2015, all of which were generated at John Hunter Hospital, Newcastle, NSW. The six standard macroscopic data elements examined in this study were reported in all 50 anatomical pathology reports using a structured macroscopic reporting dictation template. Free text reports demonstrated significantly impaired data collection when recording intactness of mesorectum (p<0.001), relationship to anterior peritoneal reflection (p=0.028) and distance of tumour to the non-peritonealised circumferential margin (p<0.001). The number of words used was also significantly (p<0.001) reduced using pre-formatted structured reports compared to free text reports. The introduction of a structured reporting dictation template improves data collection and may reduce the subsequent administrative burden when macroscopically evaluating rectal resections. PMID:27114373

  14. Finite-difference large-eddy simulations of atmospheric turbulence using a Lagrangian scale-dependent sub-grid scale model

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Xie, S.; Ghaisas, N.

    2014-12-01

    Large-eddy simulations (LES) have been successfully utilized in many atmospheric turbulence studies. In LES, grid spacing acts like a low-pass filter such that flow features larger than the grid spacing can be resolved, whereas the effects of smaller, sub-grid scale (SGS) eddies are modeled. Therefore, a well-designed SGS model plays a vital role in a successful LES. One of the most sophisticated SGS models is the Lagrangian scale-dependent (LASD) model, in which the scale-dependence of the Smagorinsky coefficient CS is taken into account by performing two explicit filtering processes with different filter widths. Then Lagrangian averaging in time along flow trajectories is used to eliminate the numerical instability caused by backscattering. The LASD model has been successfully implemented in atmospheric boundary layer (ABL) studies using the spectral/pseudo-spectral methods. However, it has not been coupled with finite-difference methods. In this study, the finite-difference method is used for the first time in LES of the ABL using an LASD subgrid scale model. First, a-posteriori tests with a fully conservative 4th-order scheme are performed by simulating turbulent channel flows with . Vertical profiles of mean wind velocity, turbulence intensity, and momentum fluxes, and 1-D spectra of streamwise velocity are compared to those from an existing direct numerical simulation (DNS) database. Several different SGS models are compared and a sensitivity test of spatial resolution is also performed. Second, LES of a neutral ABL with (i.e., molecular viscosity is negligible) are performed using the same numerical methods. The classic logarithmic profile of the streamwise velocity in the inertial subrange is examined in particular. Third, the numerical methods are extended to LES of a stable ABL where the buoyancy effect is considered by using the Boussinesq approximation. The SGS heat flux is calculated via an LASD model similar to that for the SGS stress. The results are

  15. Effect of ultraviolet light irradiation on macroscopic single-walled carbon nanotube bundles

    SciTech Connect

    Miko, Cs.; Milas, M.; Seo, J.W.; Gaal, R.; Kulik, A.; Forro, L.

    2006-04-10

    We have measured the electrical conductivity and the Young modulus of macroscopic oriented ropes containing single-walled carbon nanotubes under ultraviolet (UV) irradiation. We found that UV irradiation increases both the electrical conductivity and the strength of the macroscopic bundle. These phenomena are explained by the generation of cross-links between the tubes in the macroscopic bundle due to the UV-induced interaction between the solvent dimethyl-formamide and the free radicals present on the surface of carbon nanotubes. Transmission electron microscopy investigation shows that the wall structure of nanotubes is preserved during this process, which is a valuable advantage compared to electron irradiation.

  16. Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation

    SciTech Connect

    Jeong, Hyunseok

    2005-09-15

    Recently, there have been several suggestions that weak Kerr nonlinearity can be used for generation of macroscopic superpositions and entanglement and for linear optics quantum computation. However, it is not immediately clear that this approach can overcome decoherence effects. Our numerical study shows that nonlinearity of weak strength could be useful for macroscopic entanglement generation and quantum gate operations in the presence of decoherence. We suggest specific values for real experiments based on our analysis. Our discussion shows that the generation of macroscopic entanglement using this approach is within the reach of current technology.

  17. Studies into the averaging problem: Macroscopic gravity and precision cosmology

    NASA Astrophysics Data System (ADS)

    Wijenayake, Tharake S.

    With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model

  18. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  19. Load Balancing Scientific Applications

    SciTech Connect

    Pearce, Olga Tkachyshyn

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  20. Scale-dependency of stream gradients derived from LiDAR DEM and its relationship to watershed morphology in the Southern Japanese Alps

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y. S.; Imaizumi, F.; Hattanji, T.

    2008-12-01

    Bedrock erosion in streams is a key element in determining topography of mountain watershed. Failures in steep slopes can often be controlled by riverbed incision with regard to base level changes, where knickzone propagation often has a significant impact on such stream incision. Here we analyze longitudinal morphology of bedrock rivers in a steep mountain watershed in terms of stream gradient, using a high-resolution (1 m) LiDAR DEM in a steep mountain watershed at Ikawa, central Japan. By computing stream gradients with different measure lengths, scale-dependent changes in the gradient are revealed. Relative steepness of riverbed is then quantified using the scaling gradients. Spatial distribution of relative steepness in the watershed indicates that longitudinal riverbed morphology often correspond to morphological condition of slopes with differing types of channel head. Streams in subwatersheds with gentle slopes have less steepness while those in subwatersheds with steep slopes in which failures are frequent. These differences are not likely derived from lithological or tectonic factors, but from geomorphic history in the watershed. The steepness index can also be used for detection of knickzones comprising small knickpoints and waterfalls, whereas location of knickzones has rarely been identified quantitatively in such an uppermost steep mountainous watersheds. The distribution of relative steepness and knickzones possibly reflect incision waves occurring in the watershed: late- or post-glacial base level lowering could have caused formation of knickzones, and some of the propagating knickzones reached upper portions in the watershed while the uppermost area seems to be preserved.

  1. Consideration of Dynamical Balances

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    The quasi-balance of extra-tropical tropospheric dynamics is a fundamental aspect of nature. If an atmospheric analysis does not reflect such balance sufficiently well, the subsequent forecast will exhibit unrealistic behavior associated with spurious fast-propagating gravity waves. Even if these eventually damp, they can create poor background fields for a subsequent analysis or interact with moist physics to create spurious precipitation. The nature of this problem will be described along with the reasons for atmospheric balance and techniques for mitigating imbalances. Attention will be focused on fundamental issues rather than on recipes for various techniques.

  2. Balance Evaluation Systems

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NeuroCom's Balance Master is a system to assess and then retrain patients with balance and mobility problems and is used in several medical centers. NeuroCom received assistance in research and funding from NASA, and incorporated technology from testing mechanisms for astronauts after shuttle flights. The EquiTest and Balance Master Systems are computerized posturography machines that measure patient responses to movement of a platform on which the subject is standing or sitting, then provide assessments of the patient's postural alignment and stability.

  3. Errors in potassium balance

    SciTech Connect

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by /sup 40/K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies.

  4. A question of balance

    SciTech Connect

    Cook, G.; Brown, H.; Strawn, N.

    1996-12-31

    Nature seeks a balance. The global carbon cycle, in which carbon is exchanged between the atmosphere, biosphere, and oceans through natural processes such as absorption, photosynthesis, and respiration, is one of those balances. This constant exchange promotes an equilibrium in which atmospheric carbon dioxide is keep relatively steady over long periods of time. For the last 10,000 years, up to the 19th century, the global carbon cycle has maintained atmospheric concentrations of carbon dioxide between 260 and 290 ppm. This article discusses the disturbance of the balance, how ethanol fuels address the carbon dioxide imbalance, and a bioethanol strategy.

  5. Microscopic and Macroscopic Studies on the Development of Puccinia hemerocallidis in Resistance and Susceptible Daylily Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection process of Puccinia hemerocallidis, the causal agent of daylily rust, and resistance responses in eight daylily cultivars were studied macroscopically and microscopically. After germination of urediniospores, appressoria formed at the tip of germ tubes and penetrated through stomatal openi...

  6. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond.

    PubMed

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-01-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  7. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    PubMed Central

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-01-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287

  8. Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state

    PubMed Central

    Haghpanah, Babak; Papadopoulos, Jim; Mousanezhad, Davood; Nayeb-Hashemi, Hamid; Vaziri, Ashkan

    2014-01-01

    An approach to obtain analytical closed-form expressions for the macroscopic ‘buckling strength’ of various two-dimensional cellular structures is presented. The method is based on classical beam-column end-moment behaviour expressed in a matrix form. It is applied to sample honeycombs with square, triangular and hexagonal unit cells to determine their buckling strength under a general macroscopic in-plane stress state. The results were verified using finite-element Eigenvalue analysis. PMID:25002823

  9. Wind Conditions in Idealized Building Clusters: Macroscopic Simulations Using a Porous Turbulence Model

    NASA Astrophysics Data System (ADS)

    Hang, Jian; Li, Yuguo

    2010-07-01

    Simulating turbulent flows in a city of many thousands of buildings using general high-resolution microscopic simulations requires a grid number that is beyond present computer resources. We thus regard a city as porous media and divide the whole hybrid domain into a porous city region and a clear fluid region, which are represented by a macroscopic k-{\\varepsilon} model. Some microscopic information is neglected by the volume-averaging technique in the porous city to reduce the calculation load. A single domain approach is used to account for the interface conditions. We investigated the turbulent airflow through aligned cube arrays (with 7, 14 or 21 rows). The building height H, the street width W, and the building width B are the same (0.15 m), and the fraction of the volume occupied by fluid (i.e. the porosity) is 0.75; the approaching flow is parallel to the main streets. There are both microscopic and macroscopic simulations, with microscopic simulations being well validated by experimental data. We analysed microscopic wind conditions and the ventilation capacity in such cube arrays, and then calculated macroscopic time-averaged properties to provide a comparison for macroscopic simulations. We found that the macroscopic k-{\\varepsilon} turbulence model predicted the macroscopic flow reduction through porous cube clusters relatively well, but under-predicted the macroscopic turbulent kinetic energy (TKE) near the windward edge of the porous region. For a sufficiently long porous cube array, macroscopic flow quantities maintain constant conditions in a fully developed region.

  10. Uncertainty limits for the macroscopic elastic moduli of random polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Chinh, Pham Duc

    2000-08-01

    Practical polycrystalline aggregates are expected to have macroscopic properties that depend upon the properties of constituent crystals and the aggregate geometry. Since that microgeometry is usually random, there will be some uncertainty in the observed macroscopic behavior of the aggregates. The general shape-independent upper and lower estimates for those uncertainty intervals for the elastic moduli of completely random polycrystals are constructed from the minimum energy and complementary energy principles. Applications to aggregates of cubic crystals are presented.

  11. Linking measures for macroscopic quantum states via photon-spin mapping

    NASA Astrophysics Data System (ADS)

    Fröwis, F.; Sangouard, N.; Gisin, N.

    2015-02-01

    We review and compare several measures that identify quantum states that are 'macroscopically quantum'. These measures were initially formulated either for photonic systems or for spin ensembles. Here, we compare them through a simple model which maps photonic states to spin ensembles. On one hand, we reveal problems for some spin measures to handle correctly photonic states that typically are considered to be macroscopically quantum. On the other hand, we find significant similarities between other measures even though they were differently motivated.

  12. Mars Balance Challenge

    NASA Video Gallery

    The Challenge is to develop ideas for how NASA can turn available entry, descent, and landing balance mass on a future Mars mission into a scientific or technological payload. Proposed concepts sho...

  13. The Balancing Act

    SciTech Connect

    Fowler, Kimberly M.

    2008-05-01

    This essay is being proposed as part of a book titled: "Motherhood: The Elephant in the Laboratory." It offers professional and personal advice on how to balance working in the research field with a family life.

  14. Posttraumatic balance disorders.

    PubMed

    Hoffer, Michael E; Balough, Ben J; Gottshall, Kim R

    2007-01-01

    Head trauma is being more frequently recognized as a causative agent in balance disorders. Most of the published literature examining traumatic brain injury (TBI) after head trauma has focused on short-term prognostic indicators and neurocognitive disorders. Few data are available to guide those individuals who see patients with balance disorders secondary to TBI. Our group has previously examined balance disorders after mild head trauma. In this study, we study all classes of head trauma. We provide a classification system that is useful in the diagnosis and management of balance disorders after head trauma and we examine treatment outcomes. As dizziness is one of the most common outcomes of TBI, it is essential that those who study and treat dizziness be familiar with this subject. PMID:17691667

  15. Balance Function Disorders

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Researchers at the Balance Function Laboratory and Clinic at the Minneapolis (MN) Neuroscience Institute on the Abbot Northwestern Hospital Campus are using a rotational chair (technically a "sinusoidal harmonic acceleration system") originally developed by NASA to investigate vestibular (inner ear) function in weightlessness to diagnose and treat patients with balance function disorders. Manufactured by ICS Medical Corporation, Schaumberg, IL, the chair system turns a patient and monitors his or her responses to rotational stimulation.

  16. Watt and joule balances

    NASA Astrophysics Data System (ADS)

    Robinson, Ian A.

    2014-04-01

    The time is fast approaching when the SI unit of mass will cease to be based on a single material artefact and will instead be based upon the defined value of a fundamental constant—the Planck constant—h . This change requires that techniques exist both to determine the appropriate value to be assigned to the constant, and to measure mass in terms of the redefined unit. It is important to ensure that these techniques are accurate and reliable to allow full advantage to be taken of the stability and universality provided by the new definition and to guarantee the continuity of the world's mass measurements, which can affect the measurement of many other quantities such as energy and force. Up to now, efforts to provide the basis for such a redefinition of the kilogram were mainly concerned with resolving the discrepancies between individual implementations of the two principal techniques: the x-ray crystal density (XRCD) method [1] and the watt and joule balance methods which are the subject of this special issue. The first three papers report results from the NRC and NIST watt balance groups and the NIM joule balance group. The result from the NRC (formerly the NPL Mk II) watt balance is the first to be reported with a relative standard uncertainty below 2 × 10-8 and the NIST result has a relative standard uncertainty below 5 × 10-8. Both results are shown in figure 1 along with some previous results; the result from the NIM group is not shown on the plot but has a relative uncertainty of 8.9 × 10-6 and is consistent with all the results shown. The Consultative Committee for Mass and Related Quantities (CCM) in its meeting in 2013 produced a resolution [2] which set out the requirements for the number, type and quality of results intended to support the redefinition of the kilogram and required that there should be agreement between them. These results from NRC, NIST and the IAC may be considered to meet these requirements and are likely to be widely debated

  17. Cavendish Balance Automation

    NASA Technical Reports Server (NTRS)

    Thompson, Bryan

    2000-01-01

    This is the final report for a project carried out to modify a manual commercial Cavendish Balance for automated use in cryostat. The scope of this project was to modify an off-the-shelf manually operated Cavendish Balance to allow for automated operation for periods of hours or days in cryostat. The purpose of this modification was to allow the balance to be used in the study of effects of superconducting materials on the local gravitational field strength to determine if the strength of gravitational fields can be reduced. A Cavendish Balance was chosen because it is a fairly simple piece of equipment for measuring gravity, one the least accurately known and least understood physical constants. The principle activities that occurred under this purchase order were: (1) All the components necessary to hold and automate the Cavendish Balance in a cryostat were designed. Engineering drawings were made of custom parts to be fabricated, other off-the-shelf parts were procured; (2) Software was written in LabView to control the automation process via a stepper motor controller and stepper motor, and to collect data from the balance during testing; (3)Software was written to take the data collected from the Cavendish Balance and reduce it to give a value for the gravitational constant; (4) The components of the system were assembled and fitted to a cryostat. Also the LabView hardware including the control computer, stepper motor driver, data collection boards, and necessary cabling were assembled; and (5) The system was operated for a number of periods, data collected, and reduced to give an average value for the gravitational constant.

  18. The cryogenic balance design and balance calibration methods

    NASA Astrophysics Data System (ADS)

    Ewald, B.; Polanski, L.; Graewe, E.

    1992-07-01

    The current status of a program aimed at the development of a cryogenic balance for the European Transonic Wind Tunnel is reviewed. In particular, attention is given to the cryogenic balance design philosophy, mechanical balance design, reliability and accuracy, cryogenic balance calibration concept, and the concept of an automatic calibration machine. It is shown that the use of the automatic calibration machine will improve the accuracy of calibration while reducing the man power and time required for balance calibration.

  19. The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass

    NASA Astrophysics Data System (ADS)

    Robinson, Ian A.; Schlamminger, Stephan

    2016-10-01

    The redefinition of the SI unit of mass in terms of a fixed value of the Planck constant has been made possible by the Kibble balance, previously known as the watt balance. Once the new definition has been adopted, the Kibble balance technique will permit the realisation of the mass unit over a range from milligrams to kilograms. We describe the theory underlying the Kibble balance and practical techniques required to construct such an instrument to relate a macroscopic physical mass to the Planck constant with an uncertainty, which is achievable at present, in the region of 2 parts in 108. A number of Kibble balances have either been built or are under construction and we compare the principal features of these balances.

  20. Rotary and Magnus balances

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.

    1981-01-01

    Two wind tunnel techniques for determining part of the aerodynamic information required to describe the dynamic bahavior of various types of vehicles in flight are described. Force and moment measurements are determined with a rotary-balance apparatus in a coning motion and with a Magnus balance in a high-speed spinning motion. Coning motion is pertinent to both aircraft and missiles, and spinning is important for spin stabilized missiles. Basic principles of both techniques are described, and specific examples of each type of apparatus are presented. Typical experimental results are also discussed.

  1. Multidimensional spectral load balancing

    SciTech Connect

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  2. A new method to detect transitory signatures and local time/space variability structures in the climate system: the scale-dependent correlation analysis

    NASA Astrophysics Data System (ADS)

    Rodó, Xavier; Rodríguez-Arias, Miquel-Àngel

    2006-10-01

    The study of transitory signals and local variability structures in both/either time and space and their role as sources of climatic memory, is an important but often neglected topic in climate research despite its obvious importance and extensive coverage in the literature. Transitory signals arise either from non-linearities, in the climate system, transitory atmosphere-ocean couplings, and other processes in the climate system evolving after a critical threshold is crossed. These temporary interactions that, though intense, may not last long, can be responsible for a large amount of unexplained variability but are normally considered of limited relevance and often, discarded. With most of the current techniques at hand these typology of signatures are difficult to isolate because the low signal-to-noise ratio in midlatitudes, the limited recurrence of the transitory signals during a customary interval of data considered. Also, there is often a serious problem arising from the smoothing of local or transitory processes if statistical techniques are applied, that consider all the length of data available, rather than taking into account the size of the specific variability structure under investigation. Scale-dependent correlation (SDC) analysis is a new statistical method capable of highlighting the presence of transitory processes, these former being understood as temporary significant lag-dependent autocovariance in a single series, or covariance structures between two series. This approach, therefore, complements other approaches such as those resulting from the families of wavelet analysis, singular-spectrum analysis and recurrence plots. A main feature of SDC is its high-performance for short time series, its ability to characterize phase-relationships and thresholds in the bivariate domain. Ultimately, SDC helps tracking short-lagged relationships among processes that locally or temporarily couple and uncouple. The use of SDC is illustrated in the present

  3. Thermal Equilibrium of a Macroscopic Quantum System in a Pure State.

    PubMed

    Goldstein, Sheldon; Huse, David A; Lebowitz, Joel L; Tumulka, Roderich

    2015-09-01

    We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.

  4. Hydrodynamic description of elastic or viscoelastic composite materials: Relative strains as macroscopic variables.

    PubMed

    Menzel, Andreas M

    2016-08-01

    One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotations that were previously introduced in different contexts. As a central point, our approach reveals and classifies the importance of a macroscopic variable termed relative strains. We analyze two simplified minimal example geometries as an illustration. PMID:27627384

  5. Tough and Thermosensitive Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures.

    PubMed

    Zhu, Zhongcheng; Li, Yang; Xu, Hui; Peng, Xin; Chen, Ya-Nan; Shang, Cong; Zhang, Qin; Liu, Jiaqi; Wang, Huiliang

    2016-06-22

    Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assistance of a flow field induced by vacuum degassing and the in situ polymerization accelerated by GO. The hydrogel prepared with a GO concentration of 5.0 mg mL(-1) exhibits macroscopically aligned LC structures, which endow the gels with anisotropic optical, mechanical properties, and dimensional changes during the phase transition. The hydrogels show dramatically enhanced tensile mechanical properties and phase transition rates. The oriented LC structures are not damaged during the phase transition of the PNIPAM/GO hydrogels, and hence their LC behavior undergoes reversible change. Moreover, highly oriented LC structures can also be formed when the gels are elongated, even for the gels which do not have macroscopically oriented LC structures. Very impressively, the oriented LC structures in the hydrogels can be permanently maintained by drying the gel samples elongated to and then kept at a constant tensile strain. The thermosensitive nature of PNIPAM and the angle-dependent nature of the macroscopically aligned GO LC structures allow the practical applications of the PNIPAM/GO hydrogels as optical switches, soft sensors, and actuators and so on.

  6. Hydrodynamic description of elastic or viscoelastic composite materials: Relative strains as macroscopic variables

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2016-08-01

    One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotations that were previously introduced in different contexts. As a central point, our approach reveals and classifies the importance of a macroscopic variable termed relative strains. We analyze two simplified minimal example geometries as an illustration.

  7. Thermal Equilibrium of a Macroscopic Quantum System in a Pure State

    NASA Astrophysics Data System (ADS)

    Goldstein, Sheldon; Huse, David A.; Lebowitz, Joel L.; Tumulka, Roderich

    2015-09-01

    We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.

  8. Crack Coalescence in Molded Gypsum and Carrara Marble: Part 1. Macroscopic Observations and Interpretation

    NASA Astrophysics Data System (ADS)

    Wong, L. N. Y.; Einstein, H. H.

    2009-06-01

    Cracking and coalescence behavior has been studied experimentally with prismatic laboratory-molded gypsum and Carrara marble specimens containing two parallel pre-existing open flaws. This was done at both the macroscopic and the microscopic scales, and the results are presented in two separate papers. This paper (the first of two) summarizes the macroscopic experimental results and investigates the influence of the different flaw geometries and material, on the cracking processes. In the companion paper (also in this issue), most of the macroscopic deformation and cracking processes shown in this present paper will be related to the underlying microscopic changes. In the present study, a high speed video system was used, which allowed us to precisely observe the cracking mechanisms. Nine crack coalescence categories with different crack types and trajectories were identified. The flaw inclination angle ( β), the ligament length ( L), that is, intact rock length between the flaws, and the bridging angle ( α), that is, the inclination of a line linking up the inner flaw tips, between two flaws, had different effects on the coalescence patterns. One of the pronounced differences observed between marble and gypsum during the compression loading test was the development of macroscopic white patches prior to the initiation of macroscopic cracks in marble, but not in gypsum. Comparing the cracking and coalescence behaviors in the two tested materials, tensile cracking generally occurred more often in marble than in gypsum for the same flaw pair geometries.

  9. Impact of Scale-Dependent Coupled Processes on Solute Fate and Transport in the Critical Zone: Case Studies Involving Inorganic and Radioactive Contaminants

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Gentry, R. W.

    2011-12-01

    Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.

  10. Maintaining an Environmental Balance

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1976

    1976-01-01

    A recent conference of the National Environmental Development Association focused on the concepts of environment, energy and economy and underscored the necessity for balancing the critical needs embodied in these issues. Topics discussed included: nuclear energy and wastes, water pollution control, federal regulations, environmental technology…

  11. Balancing Family and Work.

    ERIC Educational Resources Information Center

    Yahnke, Sally; And Others

    The purpose of this monograph is to present a series of activities designed to teach strategies needed for effectively managing the multiple responsibilities of family and work. The guide contains 11 lesson plans dealing with balancing family and work that can be used in any home economics class, from middle school through college. The lesson…

  12. A Balancing Act

    ERIC Educational Resources Information Center

    Lewis, Tamika; Mobley, Mary; Huttenlock, Daniel

    2013-01-01

    It's the season for the job hunt, whether one is looking for their first job or taking the next step along their career path. This article presents first-person accounts to see how teachers balance the rewards and challenges of working in different types of schools. Tamica Lewis, a third-grade teacher, states that faculty at her school is…

  13. Multidimensional spectral load balancing

    DOEpatents

    Hendrickson, Bruce A.; Leland, Robert W.

    1996-12-24

    A method of and apparatus for graph partitioning involving the use of a plurality of eigenvectors of the Laplacian matrix of the graph of the problem for which load balancing is desired. The invention is particularly useful for optimizing parallel computer processing of a problem and for minimizing total pathway lengths of integrated circuits in the design stage.

  14. Finding a Balance.

    ERIC Educational Resources Information Center

    Gordon, Milton A.; Gordon, Margaret F.

    1996-01-01

    New college presidents are inundated with requests for their time, and their private life is often sacrificed. Each administrator must decide what is the appropriate balance among various aspects of his/her position. Physical separation of public and private lives is essential, and the role of the spouse, who may have other professional…

  15. On the macroscopic quantization in mesoscopic rings and single-electron devices

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.

    2016-05-01

    In this letter we investigate the phenomenon of macroscopic quantization and consider particle on the ring interacting with the dissipative bath as an example. We demonstrate that even in presence of environment, there is macroscopically quantized observable which can take only integer values in the zero temperature limit. This fact follows from the total angular momentum conservation combined with momentum quantization for bare particle on the ring. The nontrivial thing is that the model under consideration, including the notion of quantized observable, can be mapped onto the Ambegaokar-Eckern-Schon model of the single-electron box (SEB). We evaluate SEB observable, originating after mapping, and reveal new physics, which follows from the macroscopic quantization phenomenon and the existence of additional conservation law. Some generalizations of the obtained results are also presented.

  16. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  17. Student views of macroscopic and microscopic energy in physics and biology

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Redish, Edward F.; Watkins, Jessica

    2012-02-01

    Energy concepts are fundamental across the sciences, yet these concepts can be fragmented along disciplinary boundaries, rather than integrated into a coherent whole. To teach physics effectively to biology students, we need to understand students' disciplinary perspectives. We present interview data from an undergraduate student who displays multiple stances towards the concept of energy. At times he views energy in macroscopic contexts as a separate entity from energy in microscopic (particularly biological) contexts, while at other times he uses macroscopic physics phenomena as productive analogies for understanding energy in the microscopic biological context, and he reasons about energy transformations between the microscopic and macroscopic scales. This case study displays preliminary evidence for the context dependence of students' ability to translate energy concepts across scientific disciplines. This points to challenges that must be taken into account in developing curricula for biology students that integrate physics and biology concepts.

  18. Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal.

    PubMed

    Soberats, Bartolome; Uchida, Emi; Yoshio, Masafumi; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2014-07-01

    The photocontrol of the macroscopic alignment of nanostructured 2D ion-transporting pathways is described. The uniplanar homogeneous alignment of the thermotropic smectic (Sm) liquid-crystalline (LC) phase has been successfully achieved via photoinduced reorientation of the azobenzene groups of the imidazolium-based LC material. The ionic layers of the Sm LC phase are macroscopically oriented perpendicular to the surface of the glass substrate. The oriented films show anisotropic ion conduction in the Sm phase. This is the first example of the macroscopic photoalignment of ion-conductive LC arrays. Reversible switching of homeotropic and homogeneous alignments has also been achieved for the LC material. These materials and the alignment methodology may be useful in the development of ion-based circuits and memory devices. PMID:24958446

  19. Bouncing droplets: a classroom experiment to visualize wave-particle duality on the macroscopic level

    NASA Astrophysics Data System (ADS)

    Sleutel, Pascal; Dietrich, Erik; Van der Veen, Jan T.; van Joolingen, Wouter R.

    2016-09-01

    This study brings a recently discovered macroscopic phenomenon with wave-particle characteristics into the classroom. The system consists of a liquid droplet levitating over a vertically shaken liquid pool. The droplets allow visualization of a wave-particle system in a directly observable way. We show how to interpret this macroscopic phenomenon and how to set up and carry out this experiment. A class of students performed single slit diffraction experiments with droplets. By scoring individual droplet trajectories students find a diffraction pattern. This pilot application in the classroom shows that students can study and discuss the wave-particle nature of the bouncing droplet experiment. The experiment therefore provides a useful opportunity to show wave-particle behavior on the macroscopic level.

  20. Correlations between Nanoindentation Hardness and Macroscopic Mechanical Properties in DP980 Steels

    SciTech Connect

    Taylor, Mark D.; Choi, Kyoo Sil; Sun, Xin; Matlock, David K.; Packard, Corrine; Xu, Le; Barlat, Frederic

    2014-03-01

    Multiphase advanced high strength steels (AHSS) are being increasingly used in the automotive industry due to their low cost, good availability and excellent combination of strength and ductility. There is a keen interest from the automotive and steel industry for more fundamental understandings on the key microstructure features influencing the macroscopic properties, i.e., tensile properties, hole-expansion ratio and localized formability of AHSS. In this study, the micro- and macro-level properties for eight commercial DP980 steels are first characterized and quantified with various experimental methods. Correlations between macroscopic-level properties and relationships between various micro- and macro- properties for these steels are then established based on the experimental measurements. It is found that, despite their differences in their chemistry, processing parameters and sheet thickness, the eight DP980 steels do have common microstructural level properties governing their specific macroscopic properties in terms of strength, elongation and hole expansion performance.

  1. Ground testing of bioconvective variables such as morphological characterizations and mechanisms which regulate macroscopic patterns

    NASA Technical Reports Server (NTRS)

    Johnson, Adriel D.

    1992-01-01

    Conditions simulating low- and high-gravity, reveal changes in macroscopic pattern formation in selected microorganisms, but whether these structures are gravity dependent is not clear. Two theories have been identified in the fluid dynamics community which support macroscopic pattern formation. The first one is gravity dependent (fluid density models) where small concentrated regions of organisms sink unstably, and the second is gravity independent (wave reinforcement theory) where organisms align their movements in concert, such that either their swimming strokes beat in phase or their vortices entrain neighbors to follow parallel paths. Studies have shown that macroscopic pattern formation is consistent with the fluid density models for protozoa and algae and wave reinforcement hypothesis for caprine spermatozoa.

  2. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers.

    PubMed

    Gao, Yun; Liu, Lu-Qi; Zu, Sheng-Zhen; Peng, Ke; Zhou, Ding; Han, Bao-Hang; Zhang, Zhong

    2011-03-22

    High mechanical performances of macroscopic graphene oxide (GO) papers are attracting great interest owing to their merits of lightweight and multiple functionalities. However, the loading role of individual nanosheets and its effect on the mechanical properties of the macroscopic GO papers are not yet well understood. Herein, we effectively tailored the interlayer adhesions of the GO papers by introducing small molecules, that is, glutaraldehyde (GA) and water molecules, into the gallery regions. With the help of in situ Raman spectroscopy, we compared the varied load-reinforcing roles of nanosheets, and further predicted the Young's moduli of the GO papers. Systematic mechanical tests have proven that the enhancement of the tensile modulus and strength of the GA-treated GO paper arose from the improved load-bearing capability of the nanosheets. On the basis of Raman and macroscopic mechanical tests, the influences of interlayer adhesions on the fracture mechanisms of the strained GO papers were inferred.

  3. Entangling macroscopic diamonds at room temperature: Bounds on the continuous-spontaneous-localization parameters

    NASA Astrophysics Data System (ADS)

    Belli, Sebastiano; Bonsignori, Riccarda; D'Auria, Giuseppe; Fant, Lorenzo; Martini, Mirco; Peirone, Simone; Donadi, Sandro; Bassi, Angelo

    2016-07-01

    A recent experiment [K. C. Lee et al., Science 334, 1253 (2011)], 10.1126/science.1211914 succeeded in detecting entanglement between two macroscopic specks of diamonds, separated by a macroscopic distance, at room temperature. This impressive result is a further confirmation of the validity of quantum theory in (at least parts of) the mesoscopic and macroscopic domain, and poses a challenge to collapse models, which predict a violation of the quantum superposition principle, which is bigger the larger the system. We analyze the experiment in the light of such models. We will show that the bounds placed by experimental data are weaker than those coming from matter-wave interferometry and noninterferometric tests of collapse models.

  4. Bouncing droplets: a classroom experiment to visualize wave-particle duality on the macroscopic level

    NASA Astrophysics Data System (ADS)

    Sleutel, Pascal; Dietrich, Erik; Van der Veen, Jan T.; van Joolingen, Wouter R.

    2016-09-01

    This study brings a recently discovered macroscopic phenomenon with wave-particle characteristics into the classroom. The system consists of a liquid droplet levitating over a vertically shaken liquid pool. The droplets allow visualization of a wave–particle system in a directly observable way. We show how to interpret this macroscopic phenomenon and how to set up and carry out this experiment. A class of students performed single slit diffraction experiments with droplets. By scoring individual droplet trajectories students find a diffraction pattern. This pilot application in the classroom shows that students can study and discuss the wave–particle nature of the bouncing droplet experiment. The experiment therefore provides a useful opportunity to show wave–particle behavior on the macroscopic level.

  5. Macroscopic quantum tunneling in a stack of capacitively-coupled intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Koyama, Tomio; Machida, Masahiko

    2008-04-01

    A macroscopic quantum theory for the phase dynamics in capacitively-coupled intrinsic Josephson junctions (IJJ's) is constructed. We quantize the capacitively-coupled IJJ model in terms of the canonical quantization method. The multi-junction effect for the macroscopic quantum tunneling (MQT) to the first resistive branch is clarified. It is shown that the escape rate is greatly enhanced by the capacitive coupling between junctions. We also discuss the origin of the N2 -enhancement in the escape rate observed in the uniformly switching in Bi-2212 IJJ's.

  6. Analyses and models of the autogenous shrinkage of hardening cement paste. 1: Modeling at macroscopic scale

    SciTech Connect

    Hua, C.; Ehrlacher, A.; Acker, P.

    1995-10-01

    After having studied phenomena linked to hydration and self-desiccation, one notes that capillary depression is the main origin of the autogenous shrinkage of hardening cement paste. Based on this mechanism, modeling at macroscopic scale is undertaken for a commonly used cement paste (CPA 55) with a W/C ratio = 0.42. It consists in introducing a macroscopic stress due to the capillary depression and characterizing the viscoelastic aging behavior of the material. The result is in satisfactory agreement with measurements.

  7. Macroscopic Measurement of Resonant Magnetization Tunneling in High-Spin Molecules

    NASA Astrophysics Data System (ADS)

    Friedman, Jonathan R.; Sarachik, M. P.; Tejada, J.; Ziolo, R.

    1996-05-01

    We report the observation of steps at regular intervals of magnetic field in the hysteresis loop of a macroscopic sample of oriented Mn12O12(CH3COO)16(H2O)4 crystals. The magnetic relaxation rate increases substantially when the field is tuned to a step. We propose that these effects are manifestations of thermally assisted, field-tuned resonant tunneling between quantum spin states, and attribute the observation of quantum-mechanical phenomena on a macroscopic scale to tunneling in a large (Avogadro's) number of magnetically identical molecules.

  8. Macroscopic Conduction Models by Volume Averaging for Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Goyeau, Benoît

    The aim here is to describe macroscopic models of conductive heat transfer within systems comprising two solid phases, using the method of volume averaging. The presentation of this technique largely stems from work by Carbonell, Quintard, and Whitaker [1-3]. The macroscopic conservation equations are set up under the assumption of local thermal equilibrium, leading to a model governed by a single equation. The effective thermal conductivity of the equivalent medium is obtained by solving the associated closure problems. The case where thermal equilibrium does not pertain, leading to a model with two energy conservation equations, is discussed briefly.

  9. Concise relation of substitution energy to macroscopic deformation in a deformed system

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Wei-Lu; Fang, Q. F.; Liu, C. S.; Huang, Qun-Ying; Wu, Yi-Can

    2011-12-01

    An ab initio study of the effect of macroscopic deformation on energetics of twelve alloying elements in bcc Fe has been performed under three specially designed strain modes. A concise relation of the macroscopic deformation effect on the substitution energy of alloying elements with linear dependences on defect formation volume and relative volume change was found. Based on this concise relationship, the following behaviors can be predicted by comparing defect formation volumes: the strain-induced solubility change of alloying atoms and then the degree or possibility of redistribution and segregation of alloying atoms, the stability transition between monovacancy and divacancy, and self-interstitial atom reorientation under heavy loading.

  10. Macroscopic crack formation and extension in pristine and artificially aged PBX 9501

    SciTech Connect

    Liu, Cheng; Thompson, Darla G

    2010-01-01

    A technique has been developed to quantitatively describe macroscopic cracks, both their location and extent, in heterogeneous high explosive and mock materials. By combining such a technique with the deformation field measurement using digital image correlation (DIC), we conduct observation and measurement of the initiation, extension, and coalescence of internal cracks in the compression of Brazilian disk made of pristine and artificially aged PBX 9501 hjgh explosives. Our results conclude quantitatively that aged PBX 9501 is not only weaker but also much more brittle than the pristine one, thus is more susceptible to macroscopic cracking.

  11. Light tries the expert eye: the introduction of photography in nineteenth-century macroscopic neuroanatomy.

    PubMed

    de Rijcke, Sarah

    2008-01-01

    It is often argued that photography's scientific inauguration meaningfully coincided with a shift towards the ideal of mechanical objectivity. Values of disinterestedness and precision were readily attributed to photography and were cherished by the emerging field of neurology as well. However, after the publication of the first neuroanatomical atlas to contain photographs, Jules Bernard Luys' Iconographie Photographique des Centres Nerveux (1873), the use of photography in macroscopic neuroanatomy remained rare. The present article sketches this largely overlooked terrain of investigation and will expand on why in macroscopical neuroanatomy photography failed to offer a satisfactory alternative to drawing or engraving.

  12. Departure of microscopic friction from macroscopic drag in molecular fluid dynamics.

    PubMed

    Hanasaki, Itsuo; Fujiwara, Daiki; Kawano, Satoyuki

    2016-03-01

    Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.

  13. Metastable states and macroscopic quantum tunneling in a cold atom josephson ring

    SciTech Connect

    Solenov, Dmitry; Mozyrsky, Dmitry

    2009-01-01

    We study macroscopic properties of a system of weakly interacting neutral bosons confined in a ring-shaped potential with a Josephson junction. We derive an effective low energy action for this system and evaluate its properties. In particular we find that the system possesses a set of metastable current-carrying states and evaluate the rates of transitions between these states due to macroscopic quantum tunneling. Finally we discuss signatures of different metastable states in the time-of-flight images and argue that the effect is observable within currently available experimental technique.

  14. Addressing a single spin in diamond with a macroscopic dielectric microwave cavity

    SciTech Connect

    Le Floch, J.-M.; Tobar, M. E.; Bradac, C.; Nand, N.; Volz, T.; Castelletto, S.

    2014-09-29

    We present a technique for addressing single nitrogen-vacancy (NV) center spins in diamond over macroscopic distances using a tunable dielectric microwave cavity. We demonstrate optically detected magnetic resonance (ODMR) for a single negatively charged NV center (NV{sup –}) in a nanodiamond (ND) located directly under the macroscopic microwave cavity. By moving the cavity relative to the ND, we record the ODMR signal as a function of position, mapping out the distribution of the cavity magnetic field along one axis. In addition, we argue that our system could be used to determine the orientation of the NV{sup –} major axis in a straightforward manner.

  15. Anomalous current-voltage characteristics due to macroscopic resonant tunneling in a small Josephson junction

    SciTech Connect

    Hatakenaka, N.; Kurihara, S. ); Takayanagi, H. )

    1990-09-01

    Current-voltage characteristics of a small Josephson junction are studied, taking into account quantized energy levels in the Josephson potential. In the energy regions where the Josephson coupling energy is greater than the charging energy at zero temperature, it is predicted that voltage spikes in a usual zero-voltage state branch will appear due to resonant phase slips by macroscopic quantum tunneling. These spikes are very different from those expected by the Bloch oscillation mechanism based on the band motion of the macroscopic variable.

  16. Networks of theta neurons with time-varying excitability: Macroscopic chaos, multistability, and final-state uncertainty

    NASA Astrophysics Data System (ADS)

    So, Paul; Luke, Tanushree B.; Barreto, Ernest

    2014-01-01

    Using recently developed analytical techniques, we study the macroscopic dynamics of a large heterogeneous network of theta neurons in which the neurons’ excitability parameter varies in time. We demonstrate that such periodic variation can lead to the emergence of macroscopic chaos, multistability, and final-state uncertainty in the collective behavior of the network. Finite-size network effects and rudimentary control via an accessible macroscopic network parameter is also investigated.

  17. Geometrical and geochemical properties of isotope exchange and reaction fronts in the Alta aureole, Utah: evidence for scale-dependent heterogeneity and anisotropy in permeability of marbles

    NASA Astrophysics Data System (ADS)

    Bowman, J. R.

    2012-12-01

    and δ13C gradients accompany the sharp reaction boundary between periclase and dolomite marble. The variable characteristics of the exchange and reaction fronts can be explained by scale-dependent heterogeneity and anisotropy in permeability of the marbles. Both the exchange and reaction fronts are characterized by significant dispersion at the aureole scale because of significant bed-to-bed variations in permeability, which are reflected by significant bed-to-bed variations in δ18O and δ13C values. As original sedimentary bedding is sub-horizontal and fluid infiltration is outward from the igneous contact and bedding concordant, the bedding-controlled variations in permeability also lead to significant permeability anisotropy, with effective permeability parallel to bedding>>permeability normal to bedding. In contrast, permeability within individual beds appears to be relatively homogeneous, as suggested by relatively consistent mineral modes and homogeneous δ18O and δ13C values within individual beds, and by steep, highly coherent δ18O and δ13C gradients preserved at or near bedding boundaries.

  18. Balancing innovation and evidence.

    PubMed

    Pilcher, Jobeth W

    2015-01-01

    Nurse educators are encouraged to use evidence to guide their teaching strategies. However, evidence is not always available. How can educators make decisions regarding strategies when data are limited or absent? Where do innovation and creativity fit? How can innovation be balanced with evidence? This article provides a discussion regarding other sources of evidence, such as extrapolations, theories and principles, and collective expertise. Readers are encouraged to review the options and then analyze how they might be applied to innovation in education.

  19. Simple Cell Balance Circuit

    NASA Technical Reports Server (NTRS)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  20. Seismic offset balancing

    SciTech Connect

    Ross, C.P.; Beale, P.L.

    1994-01-01

    The ability to successfully predict lithology and fluid content from reflection seismic records using AVO techniques is contingent upon accurate pre-analysis conditioning of the seismic data. However, all too often, residual amplitude effects remain after the many offset-dependent processing steps are completed. Residual amplitude effects often represent a significant error when compared to the amplitude variation with offset (AVO) response that the authors are attempting to quantify. They propose a model-based, offset-dependent amplitude balancing method that attempts to correct for these residuals and other errors due to sub-optimal processing. Seismic offset balancing attempts to quantify the relationship between the offset response of back-ground seismic reflections and corresponding theoretical predictions for average lithologic interfaces thought to cause these background reflections. It is assumed that any deviation from the theoretical response is a result of residual processing phenomenon and/or suboptimal processing, and a simple offset-dependent scaling function is designed to correct for these differences. This function can then be applied to seismic data over both prospective and nonprospective zones within an area where the theoretical values are appropriate and the seismic characteristics are consistent. A conservative application of the above procedure results in an AVO response over both gas sands and wet sands that is much closer to theoretically expected values. A case history from the Gulf of Mexico Flexure Trend is presented as an example to demonstrate the offset balancing technique.

  1. Gait and balance disorders.

    PubMed

    Masdeu, Joseph C

    2016-01-01

    This chapter focuses on one of the most common types of neurologic disorders: altered walking. Walking impairment often reflects disease of the neurologic structures mediating gait, balance or, most often, both. These structures are distributed along the neuraxis. For this reason, this chapter is introduced by a brief description of the neurobiologic underpinning of walking, stressing information that is critical for imaging, namely, the anatomic representation of gait and balance mechanisms. This background is essential not only in order to direct the relevant imaging tools to the regions more likely to be affected but also to interpret correctly imaging findings that may not be related to the walking deficit object of clinical study. The chapter closes with a discussion on how to image some of the most frequent etiologies causing gait or balance impairment. However, it focuses on syndromes not already discussed in other chapters of this volume, such as Parkinson's disease and other movement disorders, already discussed in Chapter 48, or cerebellar ataxia, in Chapter 23, in the previous volume. As regards vascular disease, the spastic hemiplegia most characteristic of brain disease needs little discussion, while the less well-understood effects of microvascular disease are extensively reviewed here, together with the imaging approach. PMID:27430451

  2. Connecting grain-scale physics to macroscopic granular flow behavior using discrete contact-dynamics simulations, centrifuge experiments, and continuum modeling

    NASA Astrophysics Data System (ADS)

    Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe

    2014-05-01

    A complete theoretical understanding of geophysical granular flow is essential to the reliable assessment of landslide and debris flow hazard and for the design of mitigation strategies, but several key challenges remain. Perhaps the most basic is a general treatment of the processes of internal energy dissipation, which dictate the runout velocity and the shape and scale of the affected area. Currently, dissipation is best described by macroscopic, empirical friction coefficients only indirectly related to the grain-scale physics. Another challenge is describing the forces exerted at the boundaries of the flow, which dictate the entrainment of further debris and the erosion of cohesive surfaces. While the granular effects on these boundary forces have been shown to be large compared to predictions from continuum approximations, the link between granular effects and erosion or entrainment rates has not been settled. Here we present preliminary results of a multi-disciplinary study aimed at improving our understanding of granular flow energy dissipation and boundary forces, through an effort to connect grain-scale physics to macroscopic behaviors. Insights into grain-scale force distributions and energy dissipation mechanisms are derived from discrete contact-dynamics simulations. Macroscopic erosion and flow behaviors are documented from a series of granular flow experiments, in which a rotating drum half-filled with grains is placed within a centrifuge payload, in order to drive effective gravity levels up to ~100g and approach the forces present in natural systems. A continuum equation is used to characterize the flowing layer depth and velocity resulting from the force balance between the down-slope pull of gravity and the friction at the walls. In this presentation we will focus on the effect of granular-specific physics such as force chain networks and grain-grain collisions, derived from the contact dynamics simulations. We will describe our efforts to

  3. Selection of hydronic balancing valves

    SciTech Connect

    Ahlgren, R.C.E.

    1998-10-01

    This paper describes the selection and setting of balance valves, which, when properly applied in the design of a hydronic system, will result in a balanced system, thus preventing over pumping without excessive energy costs.

  4. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    PubMed

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow. PMID:25011981

  5. Microscopic and Macroscopic Studies of the Development of Puccinia hemerocallidis in Resistant and Susceptible Daylily Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection and colonization of eight daylily cultivars, which varied in resistance to daylily rust, by Puccinia hemerocallidis was studied macroscopically and microscopically. After germination of urediniospores, appressoria formed at the tip of germ tubes and the fungus penetrated the host through s...

  6. SORPTION OF ARSENATE AND ARSENITE ON RUO2.XH2O: A SPECTROSCOPIC AND MACROSCOPIC STUDY

    EPA Science Inventory

    The sorption of arsenate (As(V)) and arsenite (As(III)) on RuO2 xH2O was examined using macroscopic and microscopic techniques. Constant solid:solution ratio isotherms were constructed from batch sorption experiments to study the sorption of the inorganic arsenic species on RuO2...

  7. SORPTION OF ARSENITE AND ARSENATE ON A HIGH AFFINITY OXIDE: MACROSCOPIC AND MICROSCOPIC STUDIES

    EPA Science Inventory

    Sorption of arsenate and arsenite was examined on a Ru compound using macroscopic and microscopic techniques. Isotherms were constructed from batch studies at pH 4 through 8. Solution As was measured by ICAP. Samples of the Ru compound were equilibrated with arsenite and arsenate...

  8. The Influence of Prior Knowledge on Viewing and Interpreting Graphics with Macroscopic and Molecular Representations

    ERIC Educational Resources Information Center

    Cook, Michelle; Wiebe, Eric N.; Carter, Glenda

    2008-01-01

    Previous research has indicated that the use of multiple representations with macroscopic and molecular features can improve conceptual understanding; however, the influence of prior knowledge of the domain cannot be overlooked. Using eye-tracking technology and sequential analysis, this study investigated how high school students (n = 54) with…

  9. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    PubMed

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-09-19

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  10. Collective molecular dissipation on Navier-Stokes macroscopic scales: Accretion disc viscous modeling in SPH

    NASA Astrophysics Data System (ADS)

    Lanzafame, Giuseppe

    2015-02-01

    In the nonlinear Navier-Stokes viscous flow dynamics, physical damping is mathematically accomplished by a braking term in the momentum equation, corresponding to a heating term in the energy equation, both responsible of the conversion of mechanical energy into heat. In such two terms, it is essential the role of the viscous stress tensor, relative to contiguous macroscopic moving flow components, depending on the macroscopic viscosity coefficient ν. A working formulation for ν can always be found analytically, tuning some arbitrary parameters in the current known formulations, according to the geometry, morphology and physics of the flow. Instead, in this paper, we write an alternative hybrid formulation for ν, where molecular parameters are also included. Our expression for ν has a more physical interpretation of the internal damping in dilute gases because the macroscopic viscosity is related to the small scale molecular dissipation, not strictly dependent on the flow morphology, as well as it is free of any arbitrary parameter. Results for some basic 2D tests are shown in the smoothed particle hydrodynamics (SPH) framework. An application to the 3D accretion disc modeling for low mass cataclysmic variables is also discussed. Consequences of the macroscopic viscosity coefficient reformulation in a more strictly physical terms on the thermal conductivity coefficient for dilute gases are also discussed.

  11. Two Simple Classroom Demonstrations for Scanning Probe Microscopy Based on a Macroscopic Analogy

    ERIC Educational Resources Information Center

    Hajkova, Zdenka; Fejfar, Antonin; Smejkal, Petr

    2013-01-01

    This article describes two simple classroom demonstrations that illustrate the principles of scanning probe microscopy (SPM) based on a macroscopic analogy. The analogy features the bumps in an egg carton to represent the atoms on a chemical surface and a probe that can be represented by a dwarf statue (illustrating an origin of the prefix…

  12. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles

    PubMed Central

    Liao, Wen-Te; Keitel, Christoph H.; Pálffy, Adriana

    2016-01-01

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits. PMID:27640348

  13. SORPTION OF LEAD ON A HIGH AFFINITY OXIDE: MACROSCOPIC AND MICROSCOPIC STUDIES

    EPA Science Inventory

    Sorption of lead (Pb) was investigated on an innovative metal oxide compound using macroscopic and microscopic techniques. The objective of this study was to elucidate the sorption mechanism of Pb on the high-affinity engineered oxide with time at pH 6 employing batch methods an...

  14. SORPTION OF LEAD ON A HIGH AFFINITY OXIDE: MACROSCOPIC AND MICROSCOPIC STUDIES (ABSTRACT)

    EPA Science Inventory

    Sorption of lead (Pb) was investigated on an innovative metal oxide compound using macroscopic and microscopic techniques. The objective of this study was to elucidate the sorption mechanism of Pb on the high-affinity engineered oxide with time at pH 6 employing batch methods an...

  15. Macroscopic fluxes and local reciprocal relation in second-order stochastic processes far from equilibrium

    NASA Astrophysics Data System (ADS)

    Ge, Hao

    2015-01-01

    A stochastic process is an essential tool for the investigation of the physical and life sciences at nanoscale. In the first-order stochastic processes widely used in chemistry and biology, only the flux of mass rather than that of heat can be well defined. Here we investigate the two macroscopic fluxes in second-order stochastic processes driven by position-dependent forces and temperature gradient. We prove that the thermodynamic equilibrium defined through the vanishing of macroscopic fluxes is equivalent to that defined via time reversibility at mesoscopic scale. In the small noise limit, we find that the entropy production rate, which has previously been defined by the mesoscopic irreversible fluxes on the phase space, matches the classic macroscopic expression as the sum of the products of macroscopic fluxes and their associated thermodynamic forces. Further we show that the two pairs of forces and fluxes in such a limit follow a linear phenomenonical relation and the associated scalar coefficients always satisfy the reciprocal relation for both transient and steady states. The scalar coefficient is proportional to the square of local temperature divided by the local frictional coefficient and originated from the second moment of velocity distribution along each dimension. This result suggests the very close connection between the Soret effect (thermal diffusion) and Dufour effect at nanoscale even far from equilibrium.

  16. Experimental determination of neutron lifetimes through macroscopic neutron noise in the IPEN/MB-01 reactor

    SciTech Connect

    Gonnelli, Eduardo; Diniz, Ricardo

    2013-05-06

    The neutron lifetimes of the core, reflector, and global were experimentally obtained through macroscopic neutron noise in the IPEN/MB-01 reactor for five levels of subcriticality. The theoretical Auto Power Spectral Densities were derived by point kinetic equations taking the reflector effect into account, and one of the approaches consider an additional group of delayed neutrons.

  17. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Te; Keitel, Christoph H.; Pálffy, Adriana

    2016-09-01

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  18. Students' Mind Wandering in Macroscopic and Submicroscopic Textual Narrations and Its Relationship with Their Reading Comprehension

    ERIC Educational Resources Information Center

    Al-Balushi, Sulaiman M.; Al-Harthy, Ibrahim S.

    2015-01-01

    The aim of the current study was to investigate students' mind wandering while reading different types of textual narrations (macroscopic and submicroscopic) in chemistry. Another goal was to determine the relationship between mind wandering and students' reading comprehension. The participants were 65 female ninth grade students in Oman. Using a…

  19. Surface-enhanced Raman spectroscopy for the analysis of smokeless gunpowders and macroscopic gunshot residues.

    PubMed

    López-López, María; Merk, Virginia; García-Ruiz, Carmen; Kneipp, Janina

    2016-07-01

    Gunshot residues (GSR) result from the discharge of a firearm being a potential piece of evidence in criminal investigations. The macroscopic GSR particles are basically formed by burned and non-burned gunpowder. Motivated by the demand of trace analysis of these samples, in this paper, the use of surface-enhanced Raman scattering (SERS) was evaluated for the analysis of gunpowders and macroscopic GSR particles. Twenty-one different smokeless gunpowders were extracted with ethanol. SERS spectra were obtained from the diluted extracts using gold nanoaggregates and an excitation wavelength of 633 nm. They show mainly bands that could be assigned to the stabilizers diphenylamine and ethylcentralite present in the gunpowders. Then, macroscopic GSR particles obtained after firing two different ammunition cartridges on clothing were also measured using the same procedure. SERS allowed the detection of the particles collected with an aluminum stub from cloth targets without interferences from the adhesive carbon. The results demonstrate the great potential of SERS for the analysis of macroscopic GSR particles. Furthermore, they indicate that the grain-to-grain inhomogeneity of the gunpowders needs to be considered. Graphical Abstract SERS allows the detection of GSR particles collected with adhesive stubs from cloth targets using gold nanoaggregates and an excitation wavelength of 633 nm. PMID:27137517

  20. Analog modeling of Worm-Like Chain molecules using macroscopic beads-on-a-string.

    PubMed

    Tricard, Simon; Feinstein, Efraim; Shepherd, Robert F; Reches, Meital; Snyder, Phillip W; Bandarage, Dileni C; Prentiss, Mara; Whitesides, George M

    2012-07-01

    This paper describes an empirical model of polymer dynamics, based on the agitation of millimeter-sized polymeric beads. Although the interactions between the particles in the macroscopic model and those between the monomers of molecular-scale polymers are fundamentally different, both systems follow the Worm-Like Chain theory.

  1. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  2. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  3. Experimental determination of neutron lifetimes through macroscopic neutron noise in the IPEN/MB-01 reactor

    NASA Astrophysics Data System (ADS)

    Gonnelli, Eduardo; Diniz, Ricardo

    2013-05-01

    The neutron lifetimes of the core, reflector, and global were experimentally obtained through macroscopic neutron noise in the IPEN/MB-01 reactor for five levels of subcriticality. The theoretical Auto Power Spectral Densities were derived by point kinetic equations taking the reflector effect into account, and one of the approaches consider an additional group of delayed neutrons.

  4. Toward Understanding Whether Interactive Surface Area Could Direct Ordered Macroscopic Supramolecular Self-Assembly.

    PubMed

    Akram, Raheel; Cheng, Mengjiao; Guo, Fengli; Iqbal, Saleem; Shi, Feng

    2016-04-19

    The mismatching phenomena are ubiquitous in complex and advanced self-assembly, such as hierarchical assembly, macroscopic supramolecular assembly, and so on. Recently, for macroscopic supramolecular assembly, the strategy of maximizing the interactive surface area was used and supposed to handle this problem; however, now there is little understanding of whether interactive surface area is the dominant factor to guide the assembly patterns. Herein by taking millimeter cylinder building blocks with different diameter/height (d/h) ratios as model systems, we have investigated the interactive-surface-area-dependent assembling behaviors in macroscopic supramolecular assembly. The results showed that the increasing d/h ratio of cylinders contributed to selectivity of face-to-face assembled pattern over face-to-side or side-to-side geometries, thus having improved the ordering degree of the assembled structures; however, the mismatching phenomena could not be totally avoided due to high colliding chances in kinetics and the thermally favorable stability of these structures. We further confirmed the above hypothesis by in situ measurements of interactive forces of building blocks with different assembled patterns. This work of macroscopic supramolecular assembly provides an in situ visible platform, which is significant to clarify the influences of interactive surface area on the assembly behaviors.

  5. Chaotic advection at the pore scale: Mechanisms, upscaling and implications for macroscopic transport

    NASA Astrophysics Data System (ADS)

    Lester, D. R.; Trefry, M. G.; Metcalfe, G.

    2016-11-01

    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.

  6. Surface-enhanced Raman spectroscopy for the analysis of smokeless gunpowders and macroscopic gunshot residues.

    PubMed

    López-López, María; Merk, Virginia; García-Ruiz, Carmen; Kneipp, Janina

    2016-07-01

    Gunshot residues (GSR) result from the discharge of a firearm being a potential piece of evidence in criminal investigations. The macroscopic GSR particles are basically formed by burned and non-burned gunpowder. Motivated by the demand of trace analysis of these samples, in this paper, the use of surface-enhanced Raman scattering (SERS) was evaluated for the analysis of gunpowders and macroscopic GSR particles. Twenty-one different smokeless gunpowders were extracted with ethanol. SERS spectra were obtained from the diluted extracts using gold nanoaggregates and an excitation wavelength of 633 nm. They show mainly bands that could be assigned to the stabilizers diphenylamine and ethylcentralite present in the gunpowders. Then, macroscopic GSR particles obtained after firing two different ammunition cartridges on clothing were also measured using the same procedure. SERS allowed the detection of the particles collected with an aluminum stub from cloth targets without interferences from the adhesive carbon. The results demonstrate the great potential of SERS for the analysis of macroscopic GSR particles. Furthermore, they indicate that the grain-to-grain inhomogeneity of the gunpowders needs to be considered. Graphical Abstract SERS allows the detection of GSR particles collected with adhesive stubs from cloth targets using gold nanoaggregates and an excitation wavelength of 633 nm.

  7. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    PubMed

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  8. SORPTION OF ARSENATE AND ARSENITE ON A RUTHENIUM COMPOUND: A MACROSCOPIC AND MICROSCOPIC STUDY

    EPA Science Inventory

    Sorption of arsenate and arsenite was examined on a ruthenium compound using macroscopic and microscopic techniques. Batch sorption experiments at pH 4,5,6, 7 and 8 were employed to construct constant solid solution ratio isotherms (CSI). After equilibration at the appropriate pH...

  9. Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Müller-Ebhardt, Helge; Rehbein, Henning; Li, Chao; Mino, Yasushi; Somiya, Kentaro; Schnabel, Roman; Danzmann, Karsten; Chen, Yanbei

    2009-10-01

    Long-baseline laser-interferometer gravitational-wave (GW) detectors are operating at a factor of ˜10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band (in the sense that Δf˜f ). Such a low-noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of ˜200 . This result, along with the prospect for further improvements, heralds the possibility of experimentally probing macroscopic quantum mechanics (MQM)—quantum mechanical behavior of objects in the realm of everyday experience—using GW detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer’s classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum-state preparation and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses and the performance of the planned Advanced LIGO interferometers in quantum-state preparation.

  10. Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors

    SciTech Connect

    Mueller-Ebhardt, Helge; Rehbein, Henning; Schnabel, Roman; Danzmann, Karsten; Li Chao; Mino, Yasushi; Chen Yanbei

    2009-10-15

    Long-baseline laser-interferometer gravitational-wave (GW) detectors are operating at a factor of {approx}10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band (in the sense that {delta}f{approx}f). Such a low-noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of {approx}200. This result, along with the prospect for further improvements, heralds the possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using GW detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum-state preparation and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses and the performance of the planned Advanced LIGO interferometers in quantum-state preparation.

  11. Testing quantum mechanics against macroscopic realism using the output of {chi}{sup (2)} nonlinearity

    SciTech Connect

    Podoshvedov, Sergey A.; Kim, Jaewan

    2006-09-15

    We suggest an all-optical scheme to generate entangled superposition of a single photon with macroscopic entangled states for testing macroscopic realism. The scheme consists of source of single photons, a Mach-Zehnder interferometer in routes of which a system of coupled-down converters with type-I phase matching is inserted, and a beam splitter for the other auxiliary modes of the scheme. We use quantization of the pumping modes, depletion of the coherent states passing through the system, and interference effect in the pumping modes in the process of erasing which-path information of the single-photon on exit from the Mach-Zehnder interferometer. We show the macroscopic fields of the output superposition are distinguishable states. This scheme generates macroscopic entangled state that violates Bell's inequality. Moreover, the detailed analysis concerning change of amplitudes of entangled superposition by means of repeating this process many times is accomplished. We show our scheme works without photon number resolving detection and it is robust to detector inefficiency.

  12. Macroscopic squeezing from a regular array of three-level atoms

    SciTech Connect

    D'Souza, R.; Jayarao, A.S.; Lawande, S.V. )

    1992-02-28

    In this paper it is shown that the resonance fluorescence from N regularly arrayed three-level atoms in V-configuration could be a source of macroscopic squeezing. The V-configuration exhibits squeezing in both the transitions, whereas the cascade and the Raman configurations shown squeezing only in the lower and Rayleigh transitions respectively.

  13. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    PubMed

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-01-01

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits. PMID:27640348

  14. Challenge to macroscopic probes of quantum spacetime based on noncommutative geometry.

    PubMed

    Amelino-Camelia, Giovanni

    2013-09-01

    Over the last decade, a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However, I here observe that the arguments that originally led to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And, I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles, then for the center of mass of a composite macroscopic body the quantization of spacetime is much weaker than Planckian. These results suggest that the center-of-mass observables of macroscopic bodies should not provide good opportunities for uncovering quantum properties of spacetime. And, they also raise some conceptual challenges for theories of mechanics in quantum spacetime, in which, for example, free protons and free atoms should feel the effects of spacetime quantization differently.

  15. Growth and characterization of macroscopic reduced graphene oxide paper for device application

    NASA Astrophysics Data System (ADS)

    Singh, Rajinder; Kumar, Sanjeev; Mahajan, Aman; Bedi, R. K.

    2016-05-01

    A simple and economical method has been used to grow macroscopically reduced graphene oxide (rGO) paper for device application. Synthesized paper has been characterized by different experimental techniques namely SEM, TEM, Raman and UV-Vis spectroscopy respectively. Besides these, temperature dependent electrical studies of rGO paper have also been carried out.

  16. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    SciTech Connect

    Liu, Yen Vinokur, Marcel; Panesi, Marco; Sahai, Amal

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  17. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    PubMed

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  18. On the Inherent Self-Excited Macroscopic Randomness of Chaotic Three-Body Systems

    NASA Astrophysics Data System (ADS)

    Liao, Shijun; Li, Xiaoming

    What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human beings. In this paper, 10 000 samples of reliable (convergent), multiple-scale (from 10-60 to 102) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 10-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopic randomness (at the level O(1)) until t = T*, the so-called physical limit time of prediction, but propagates algebraically thereafter when accurate prediction of orbit is impossible. Note that these 10 000 samples use micro-level, inherent physical fluctuations of initial position, which have nothing to do with human beings. Especially, the differences of these 10 000 fluctuations are mathematically so small (in the level of 10-60) that they are physically the same since a distance shorter than a Planck length does not make physical sense according to the string theory. This indicates that the macroscopic randomness of the chaotic three-body system is self-excited, say, without any external force or disturbances, from the inherent micro-level uncertainty. It provides us the new concept "self-excited macroscopic randomness (uncertainty)". The macroscopic randomness is found to be dependent upon microscopic uncertainty, from the statistical viewpoint. In addition, it is found that, without any external disturbance, the chaotic three-body system might randomly disrupt with symmetry-breaking at t = 1000 in about 25% probability, which provides us new concepts "self-excited random disruption", "self-excited random escape" and "self-excited symmetry breaking" of the chaotic three-body system. Hence, it suggests that a chaotic three-body system might randomly evolve by itself, without any external forces or disturbance. Thus, the world is essentially uncertain, since such kind of self

  19. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    PubMed

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  20. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers. PMID:20698188