DEPRESSION AND INTERNALLY DIRECTED AGGRESSION: GENETIC AND ENVIRONMENTAL CONTRIBUTIONS
Haddad, Suzanne K.; Neiderhiser, Jenae M.; Spotts, Erica L.; Ganiban, Jody; Lichtenstein, Paul; Reiss, David
2013-01-01
This study uses behavior genetic (BG) methodology to investigate Freud’s theory of depression as aggression directed toward the self (1930) and the extent to which genetically and environmentally influenced aggressive tendencies contribute to depressive symptoms. Data from the Twin and Offspring Study in Sweden (TOSS) is used to demonstrate how, in estimating shared and unique environmental influences, BG methods can inform psychoanalytic theory and practice, particularly because of their shared emphasis on the importance of individual experience in development. The TOSS sample consists of 909 pairs of adult twins, their partners, and one adolescent child per couple. The Center for Epidemiologic Studies Depression Scale (Radloff 1977) was used to measure depressive symptoms and the Karolinska Scales of Personality (Schalling and Edman 1993) to measure internally directed aggression. Genetic analyses indicated that for both men and women, their unique experiences as well as genetic factors contributed equally to the association between internally directed aggression and depressive symptoms. These findings support Freud’s theory that constitutionally based differences in aggression, along with individual experiences, contribute to a person’s depressive symptoms. Establishing that an individual’s unique, not shared, experiences and perceptions contribute to depressive symptoms and internally directed aggression reinforces the use of patient-specific treatment approaches implemented in psychoanalytic psychotherapy or psychoanalysis. PMID:18515705
ERIC Educational Resources Information Center
Poyrazli, Senel; Arbona, Consuelo; Nora, Amaury; McPherson, Robert; Pisecco, Stewart
2002-01-01
Rathus Assertiveness Schedule, Academic Self-Efficacy Scale, The Inventory for Student Adjustment Strain, and UCLA Loneliness Scale were used to examine a total of 122 graduate international students. Findings indicate that English proficiency, assertiveness, and academic self-efficacy contributed uniquely to the variance in students' general…
Thackeray, Rosemary; Keller, Heidi; Heilbronner, Jennifer Messenger; Dellinger, Laura K Lee
2011-03-01
Since its inception in 2005, articles in Health Promotion Practice's social marketing department have focused on describing social marketing's unique contributions and the application of each to the practice of health promotion. This article provides a brief review of six unique features (marketing mix, consumer orientation, segmentation, exchange, competition, and continuous monitoring) and then presents two case studies-one on reducing stigma related to mental health and the other a large-scale campaign focused on increasing HIV testing among African American youth. The two successful case studies show that social marketing principles can be applied to a wide variety of topics among various population groups.
The Classroom Environment Questionnaire (CEQ): Development and preliminary structural validity.
Lyons, Carissa; Brown, Ted; Bourke-Taylor, Helen
2018-04-16
Occupational therapists offer a unique perspective regarding the contribution of the environment to occupational performance. Therefore, a scale that measures the unique characteristics of the primary school classroom environment where children complete their daily schoolwork occupations is needed. The aim of this study was to develop and psychometrically evaluate a new teacher-report questionnaire that measures a number of environmental characteristics of primary school classrooms. Participants (N = 117) completed the Classroom Environment Questionnaire (CEQ), which utilises a 4-point Likert scale where teachers rate 51 environmental characteristics of their classroom. Teachers also rate the extent to which they believe the physical, social, temporal, institutional and cultural classroom environmental domains contribute to students' schoolwork performance using a 10-point scale. The structural validity of the CEQ was examined using principal component analysis (PCA). Inter-item correlations were examined using Pearson r correlations, while the internal consistency of the CEQ was assessed using Cronbach's alpha. PCA revealed the CEQ to be multidimensional, with 31 items loading onto nine viable factors, representing the unique nature of classroom environments. Based on the PCA results, 20 items were removed from the CEQ. Cronbach's alpha and correlation analysis indicated that most CEQ subsections had acceptable internal consistency (alpha range 0.70-0.82), with four subsections demonstrating a lower level of internal consistency (alpha range 0.55-0.69). Preliminary structural validity and internal consistency analysis findings confirm that the CEQ has potential to be a useful scale for professionals wishing to examine the unique characteristics of primary school classrooms that influence the occupational performance of students. Ongoing analyses will be undertaken to further explore the CEQ's validity and reliability. © 2018 Occupational Therapy Australia.
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Garcia, Jerry L.
2000-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.
Depression, anxiety and somatization in primary care: syndrome overlap and functional impairment.
Löwe, Bernd; Spitzer, Robert L; Williams, Janet B W; Mussell, Monika; Schellberg, Dieter; Kroenke, Kurt
2008-01-01
To determine diagnostic overlap of depression, anxiety and somatization as well as their unique and overlapping contribution to functional impairment. Two thousand ninety-one consecutive primary care clinic patients participated in a multicenter cross-sectional survey in 15 primary care clinics in the United States (participation rate, 92%). Depression, anxiety, somatization and functional impairment were assessed using validated scales from the Patient Health Questionnaire (PHQ) (PHQ-8, eight-item depression module; GAD-7, seven-item Generalized Anxiety Disorder Scale; and PHQ-15, 15-item somatic symptom scale) and the Short-Form General Health Survey (SF-20). Multiple linear regression analyses were used to investigate unique and overlapping associations of depression, anxiety and somatization with functional impairment. In over 50% of cases, comorbidities existed between depression, anxiety and somatization. The contribution of the commonalities of depression, anxiety and somatization to functional impairment substantially exceeded the contribution of their independent parts. Nevertheless, depression, anxiety and somatization did have important and individual effects (i.e., separate from their overlap effect) on certain areas of functional impairment. Given the large syndrome overlap, a potential consideration for future diagnostic classification would be to describe basic diagnostic criteria for a single overarching disorder and to optionally code additional diagnostic features that allow a more detailed classification into specific depressive, anxiety and somatoform subtypes.
Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance
NASA Technical Reports Server (NTRS)
Rivera, Jose A.; Florance, James R.
2000-01-01
The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aimone, James Bradley; Bernard, Michael Lewis; Vineyard, Craig Michael
2014-10-01
Adult neurogenesis in the hippocampus region of the brain is a neurobiological process that is believed to contribute to the brain's advanced abilities in complex pattern recognition and cognition. Here, we describe how realistic scale simulations of the neurogenesis process can offer both a unique perspective on the biological relevance of this process and confer computational insights that are suggestive of novel machine learning techniques. First, supercomputer based scaling studies of the neurogenesis process demonstrate how a small fraction of adult-born neurons have a uniquely larger impact in biologically realistic scaled networks. Second, we describe a novel technical approach bymore » which the information content of ensembles of neurons can be estimated. Finally, we illustrate several examples of broader algorithmic impact of neurogenesis, including both extending existing machine learning approaches and novel approaches for intelligent sensing.« less
Contribution of large-scale forest inventories to biodiversity assessment and monitoring
Piermaria Corona; Gherardo Chirici; Ronald E. McRoberts; Susanne Winter; Anna Barbati
2011-01-01
Statistically-designed inventories and biodiversity monitoring programs are gaining relevance for biological conservation and natural resources management. Mandated periodic surveys provide unique opportunities to identify and satisfy natural resources management information needs. However, this is not an end in itself but rather is the beginning of a process that...
Participation and Well-Being Among Older Adults Living with Chronic Conditions
Anaby, D.; Miller, W. C.; Jarus, T.; Eng, J. J.; Noreau, L.
2015-01-01
This study explored the unique contribution of participation (daily activities and social roles) in explaining well-being of older adults living with chronic conditions and examined which aspect of participation (accomplishment of participation or satisfaction with participation) was more important in describing their well-being. Two hundred older adults with chronic conditions completed the following assessments: Satisfaction with Life Scale to measure well-being; Assessment of Life Habits to evaluate two aspects of participation: (a) accomplishment of daily activities and social roles and (b) level of satisfaction with participation; Interpersonal Support Evaluation List to assess level of social support and Affect Balance scale to measure level of balance confidence. In addition, participants’ level of mobility was assessed using the Timed Up and Go test. Regression analysis was performed. Results indicated that number of chronic conditions, social support and satisfaction with participation had a significant contribution to well-being and altogether explained 31% of its variance whereas accomplishment of participation did not play as significant role in the model. In conclusion, participation has a unique contribution to older adults’ well-being where satisfaction with participation rather than the accomplishment of activities is of importance. Additional aspects of participation and level of disability are key factors identified for further inquiry. PMID:26120239
NASA Technical Reports Server (NTRS)
Picasso, G. O.; Basili, V. R.
1982-01-01
It is noted that previous investigations into the applicability of Rayleigh curve model to medium scale software development efforts have met with mixed results. The results of these investigations are confirmed by analyses of runs and smoothing. The reasons for the models' failure are found in the subcycle effort data. There are four contributing factors: uniqueness of the environment studied, the influence of holidays, varying management techniques and differences in the data studied.
An evaluation of the Psychache Scale on an offender population.
Mills, Jeremy F; Green, Kate; Reddon, John R
2005-10-01
This study examined the generalizability of a self-report measure of psychache to an offender population. The factor structure, construct validity, and criterion validity of the Psychache Scale was assessed on 136 male prison inmates. The results showed the Psychache Scale has a single underlying factor structure and to be strongly associated with measures of depression and hopelessness and moderately associated with psychiatric symptoms and the criterion variable of a history of prior suicide attempts. The variables of depression, hopelessness, and psychiatric symptoms all contributed unique variance to psychache. Discussion centers on psychache's theoretical application to the prediction of suicide.
Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow
Armstrong, Ryan T.; McClure, James E.; Berrill, Mark A.; ...
2016-10-27
Relative permeability quantifies the ease at which immiscible phases flow through porous rock and is one of the most well known constitutive relationships for petroleum engineers. It however exhibits troubling dependencies on experimental conditions and is not a unique function of phase saturation as commonly accepted in industry practices. The problem lies in the multi-scale nature of the problem where underlying disequilibrium processes create anomalous macroscopic behavior. Here we show that relative permeability rate dependencies are explained by ganglion dynamic flow. We utilize fast X-ray micro-tomography and pore-scale simulations to identify unique flow regimes during the fractional flow of immisciblemore » phases and quantify the contribution of ganglion flux to the overall flux of non-wetting phase. We anticipate our approach to be the starting point for the development of sophisticated multi-scale flow models that directly link pore-scale parameters to macro-scale behavior. Such models will have a major impact on how we recover hydrocarbons from the subsurface, store sequestered CO 2 in geological formations, and remove non-aqueous environmental hazards from the vadose zone.« less
Current Challenges and Prospective Research for Upscaling Hybrid Perovskite Photovoltaics
Williams, Spencer T.; Rajagopal, Adharsh; Chueh, Chu-Chen; ...
2016-02-11
Organic-inorganic hybrid perovskite photovoltaics (PSCs) are poised to push toward technology translation, but significant challenges complicating commercialization remain. Though J-V hysteresis and ecotoxicity are uniquely imposing issues at scale, CH 3NH 3PbI 3 degradation is by far the sharpest limitation to the technology’s potential market contribution. Herein, we offer a perspective on the practical market potential of PSCs, the nature of fundamental PSC challenges at scale, and an outline of prospective solutions for achieving module scale PSC production tailored to intrinsic advantages of CH 3NH 3PbI 3. Although integrating PSCs into the energy grid is complicated by CH 3NH 3PbImore » 3 degradation, the ability of PSCs to contribute to consumer electronics and other niche markets like those organic photovoltaics have sought footing in rests primarily upon the technology’s price point. Thus, slot die, roll-to-roll processing has the greatest potential to enable PSC scale-up, and herein, we present a perspective on the research necessary to realize fully printable PSCs at scale.« less
Landscape context for density management: implications of land ownership and ecological gradients
Janet L. Ohmann
2013-01-01
Density management is implemented at a local (stand) scale, but is based on conservation goals that address a broader landscape. Although regional conservation eff orts such as the Northwest Forest Plan (NWFP) focus primarily on public lands, all land ownerships and allocations contribute unique benefi ts over the regional landscape that need to be considered as...
Bayesian inversion of the global present-day GIA signal uncertainty from RSL data
NASA Astrophysics Data System (ADS)
Caron, Lambert; Ivins, Erik R.; Adhikari, Surendra; Larour, Eric
2017-04-01
Various geophysical signals measured in the process of studying the present-day climate change (such as changes in the Earth gravitational potential, ocean altimery or GPS data) include a secular Glacial Isostatic Adjustment contribution that has to be corrected for. Yet, one of the current major challenges that Glacial Isostatic Adjustment modelling is currently struggling with is to accurately determine the uncertainty of the predicted present-day GIA signal. This is especially true at the global scale, where coupling between ice history and mantle rheology greatly contributes to the non-uniqueness of the solutions. Here we propose to use more than 11000 paleo sea level records to constrain a set of GIA Bayesian inversions and thoroughly explore its parameters space. We include two linearly relaxing models to represent the mantle rheology and couple them with a scalable ice history model in order to better assess the non-uniqueness of the solutions. From the resulting estimates of the Probability Density Function, we then extract maps of uncertainty affecting the present-day vertical land motion and geoid due to GIA at the global scale, and their associated expectation of the signal.
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.
2003-01-01
The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.
Martin, Christopher H; Erickson, Priscilla A; Miller, Craig T
2017-01-01
The genetic architecture of adaptation is fundamental to understanding the mechanisms and constraints governing diversification. However, most case studies focus on loss of complex traits or parallel speciation in similar environments. It is still unclear how the genetic architecture of these local adaptive processes compares to the architecture of evolutionary transitions contributing to morphological and ecological novelty. Here, we identify quantitative trait loci (QTL) between two trophic specialists in an excellent case study for examining the origins of ecological novelty: a sympatric radiation of pupfishes endemic to San Salvador Island, Bahamas, containing a large-jawed scale-eater and a short-jawed molluscivore with a skeletal nasal protrusion. These specialized niches and trophic traits are unique among over 2000 related species. Measurements of the fitness landscape on San Salvador demonstrate multiple fitness peaks and a larger fitness valley isolating the scale-eater from the putative ancestral intermediate phenotype of the generalist, suggesting that more large-effect QTL should contribute to its unique phenotype. We evaluated this prediction using an F2 intercross between these specialists. We present the first linkage map for pupfishes and detect significant QTL for sex and eight skeletal traits. Large-effect QTL contributed more to enlarged scale-eater jaws than the molluscivore nasal protrusion, consistent with predictions from the adaptive landscape. The microevolutionary genetic architecture of large-effect QTL for oral jaws parallels the exceptional diversification rates of oral jaws within the San Salvador radiation observed over macroevolutionary timescales and may have facilitated exceptional trophic novelty in this system. © 2016 John Wiley & Sons Ltd.
Maltby, John; Day, Liz; Hall, Sophie S; Chivers, Sally
2017-10-01
Research suggests that trait resilience may be best understood within an ecological resilient systems theory, comprising engineering, ecological, and adaptive capacity resilience. However, there is no evidence as to how this theory translates to specific life domains. Data from two samples (the United States, n = 1,278; the United Kingdom, n = 211) facilitated five studies that introduce the Domain-Specific Resilient Systems Scales for assessing ecological resilient systems theory within work, health, marriage, friendships, and education. The Domain-Specific Resilient Systems Scales are found to predict unique variance in job satisfaction, lower job burnout, quality-of-life following illness, marriage commitment, and educational engagement, while controlling for factors including sex, age, personality, cognitive ability, and trait resilience. The findings also suggest a distinction between the three resilience dimensions in terms of the types of systems to which they contribute. Engineering resilience may contribute most to life domains where an established system needs to be maintained, for example, one's health. Ecological resilience may contribute most to life domains where the system needs sustainability in terms of present and future goal orientation, for example, one's work. Adaptive Capacity may contribute most to life domains where the system needs to be retained, preventing it from reaching a crisis state, for example, work burnout.
ITRF2014 Evaluation with ILRS Data and Products
NASA Astrophysics Data System (ADS)
Pavlis, E. C.; Luceri, V.; Kuzmicz-Cieslak, M.; König, D.; Bianco, G.
2015-12-01
The development and release of the new realization of the International Terrestrial Reference Frame—ITRF2014 requires elaborate testing to ensure the quality of the final product. The evaluation effort ensures that the ITRF is of the indicated quality by its error estimates and the combination has not compromised the contributing techniques' input. The International Laser Ranging Service (ILRS) contributes unique information that only Satellite Laser Ranging—SLR is sensitive to: the definition of the origin, and in equal parts with VLBI, the scale of the model. The ILRS analysts adopted a revision of the internal standards and procedures in developing our contribution to ITRF2014 from our eight Analysis Centers. Anticipating the release of ITRF2014 we worked on designing and executing tests using data and products unique to ILRS. In addition to the data contributed to ITRF2014, ILRS has several other targets, in lower and higher orbits, the SLR tracking data of which are used as independent data for the evaluation process. Since SLR data are primarily sensitive to the origin and scale definition of the TRF model, these model attributes are the best to be validated using SLR data. LAGEOS and ETALON data collected outside the span of data used in ITRF2014 can also evaluate the quality of the estimated velocity vectors. The use of independent SLR data evaluates the model throughout the period that such data are available. SLR data from low altitude missions can validate the performance of the model from the late '70s all the way to present (using e.g. STARLETTE and LARES data). This presentation will give an overview of the new model's evaluation using exclusively ILRS tracking data and other ILRS products.
Hodgkiss, Alex; Gilligan, Katie A; Tolmie, Andrew K; Thomas, Michael S C; Farran, Emily K
2018-01-22
Prior longitudinal and correlational research with adults and adolescents indicates that spatial ability is a predictor of science learning and achievement. However, there is little research to date with primary-school aged children that addresses this relationship. Understanding this association has the potential to inform curriculum design and support the development of early interventions. This study examined the relationship between primary-school children's spatial skills and their science achievement. Children aged 7-11 years (N = 123) completed a battery of five spatial tasks, based on a model of spatial ability in which skills fall along two dimensions: intrinsic-extrinsic; static-dynamic. Participants also completed a curriculum-based science assessment. Controlling for verbal ability and age, mental folding (intrinsic-dynamic spatial ability), and spatial scaling (extrinsic-static spatial ability) each emerged as unique predictors of overall science scores, with mental folding a stronger predictor than spatial scaling. These spatial skills combined accounted for 8% of the variance in science scores. When considered by scientific discipline, mental folding uniquely predicted both physics and biology scores, and spatial scaling accounted for additional variance in biology and variance in chemistry scores. The children's embedded figures task (intrinsic-static spatial ability) only accounted for variance in chemistry scores. The patterns of association were consistent across the age range. Spatial skills, particularly mental folding, spatial scaling, and disembedding, are predictive of 7- to 11-year-olds' science achievement. These skills make a similar contribution to performance for each age group. © 2018 The Authors. British Journal of Education Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Langenbucher, J; Sulesund, D; Chung, T; Morgenstern, J
1996-01-01
Illness severity and self-efficacy are two constructs of growing interest as predictors of clinical response in alcoholism. Using alternative measures of illness severity (DSM-IV symptom count, Alcohol Dependence Scale, and Addiction Severity Index) and self-efficacy (brief version of the Situational Confidence Questionnaire) rigorously controlled for theoretically important background variables, we studied their unique contribution to multiple indices of relapse, relapse latency, and use of alternative coping behaviors in a large, heterogeneous clinical sample. The Alcohol Dependence Scale contributed to the prediction of 4 of 5 relapse indicators. The SCQ failed to predict relapse behavior or its precursor, coping response. The findings emphasize the predictive validity of severity of dependence as a course specifier and underline the need for more sensitive and externally valid measures of cognitive processes such as self-efficacy for application in future studies of posttreatment behavior.
von Thiele Schwarz, Ulrica; Sjöberg, Anders; Hasson, Henna; Tafvelin, Susanne
2014-12-01
To test the factor structure and variance components of the productivity subscales of the Health and Work Questionnaire (HWQ). A total of 272 individuals from one company answered the HWQ scale, including three dimensions (efficiency, quality, and quantity) that the respondent rated from three perspectives: their own, their supervisor's, and their coworkers'. A confirmatory factor analysis was performed, and common and unique variance components evaluated. A common factor explained 81% of the variance (reliability 0.95). All dimensions and rater perspectives contributed with unique variance. The final model provided a perfect fit to the data. Efficiency, quality, and quantity and three rater perspectives are valid parts of the self-rated productivity measurement model, but with a large common factor. Thus, the HWQ can be analyzed either as one factor or by extracting the unique variance for each subdimension.
Zhang, Yimei; Li, Shuai; Wang, Fei; Chen, Zhuang; Chen, Jie; Wang, Liqun
2018-09-01
Toxicity of heavy metals from industrialization poses critical concern, and analysis of sources associated with potential human health risks is of unique significance. Assessing human health risk of pollution sources (factored health risk) concurrently in the whole and the sub region can provide more instructive information to protect specific potential victims. In this research, we establish a new expression model of human health risk based on quantitative analysis of sources contribution in different spatial scales. The larger scale grids and their spatial codes are used to initially identify the level of pollution risk, the type of pollution source and the sensitive population at high risk. The smaller scale grids and their spatial codes are used to identify the contribution of various sources of pollution to each sub region (larger grid) and to assess the health risks posed by each source for each sub region. The results of case study show that, for children (sensitive populations, taking school and residential area as major region of activity), the major pollution source is from the abandoned lead-acid battery plant (ALP), traffic emission and agricultural activity. The new models and results of this research present effective spatial information and useful model for quantifying the hazards of source categories and human health a t complex industrial system in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Human dynamics in repurchase behavior based on comments mining
NASA Astrophysics Data System (ADS)
Yang, Tian; Feng, Xin; Wu, Ye; Wang, Shengfeng; Xiao, Jinghua
2018-07-01
Hundreds of thousands of individual deals and comments are analyzed to ask: what kinds of patterns appear in their repurchase process? Our results suggest that, in the empirical description, the intervals between two consecutive purchases obey a power-law distribution. Notwithstanding a wide range of individual preferences, shoppers' repurchase behaviors show some similar patterns, called long-scale quiet and short-scale emergence, and the alternating appearance of them form an endless chain in repurchase. In agreement with the empirical results, these short-scale and long-scale patterns suggest an adaptive model with alterable exponents complying with a power-law distribution. And it also implies that each user behaves his own intrinsic pattern such as unique repurchase intensity and silence-emergence cycle, which contributes to customer life-time value from the new view of dynamics and repurchase cycles.
Where the Wild Things Are: Observational Constraints on Black Holes' Growth
NASA Astrophysics Data System (ADS)
Merloni, Andrea
2009-12-01
The physical and evolutionary relation between growing supermassive black holes (AGN) and host galaxies is currently the subject of intense research activity. Nevertheless, a deep theoretical understanding of such a relation is hampered by the unique multi-scale nature of the combined AGN-galaxy system, which defies any purely numerical, or semi-analytic approach. Various physical process active on different physical scales have signatures in different parts of the electromagnetic spectrum; thus, observations at different wavelengths and theoretical ideas all can contribute towards a ``large dynamic range'' view of the AGN phenomenon, capable of conceptually ``resolving'' the many scales involved. As an example, I will focus in this review on two major recent observational results on the cosmic evolution of supermassive black holes, focusing on the novel contribution given to the field by the COSMOS survey. First of all, I will discuss the evidence for the so-called ``downsizing'' in the AGN population as derived from large X-ray surveys. I will then present new constraints on the evolution of the black hole-galaxy scaling relation at 1
Simulation of summer ozone episodes in Southeast Louisiana during 2006-2015
NASA Astrophysics Data System (ADS)
Guo, H.; Zhang, H.
2017-12-01
Southeast Louisiana experiences high ozone (O3) events due to immense emissions from industrial and urban sources and unique meteorology conditions of high temperatures, intensive solar radiation and land-sea breeze circulation. The Community Multi-scale Air Quality (CMAQ) model with modified photochemical mechanism is used to investigate the contributions of regional transport to ozone (O3) and its precursors to Southeast Louisiana in summer months from 2006 to 2015. The meteorological and CMAQ model performance are validated. Spatial and temporal variations of O3 are investigated during summer episodes in 10 years. Contributions of different source types and regions to 1 hour O3 are also quantified. Changes in the contributions of different source types and regions are also obtained to help design intelligent control measures.
Specificity of meta-emotion effects on moral decision-making.
Koven, Nancy S
2011-10-01
A recently proposed dual process theory of moral decision-making posits that utilitarian reasoning (approving of harmful actions that maximize good consequences) is the result of cognitive control of emotion. This suggests that deficits in emotional awareness will contribute to increased utilitarianism. The present study explored the relative contributions of the different facets of alexithymia and the closely related constructs of emotional intelligence and mood awareness to utilitarian decision making. Participants (N = 86) completed the Toronto Alexithymia Scale, Trait Meta Mood Scale, the Mood Awareness Scale, and a series of high-conflict, personal moral dilemmas validated by Greene et al. (2008). A brief neuropsychological battery was also administered to assess the possible confounds of verbal reasoning and abstract thinking ability. Principal components analysis revealed two latent factors-clarity of emotion and attention to emotion-which cut across all three meta-emotion instruments. Of these, low clarity of emotion-reflecting difficulty in reasoning thoughtfully about one's emotions-predicted utilitarian outcomes and provided unique variance beyond that of verbal and abstract reasoning abilities. Results are discussed in the context of individual differences in emotion regulation.
Executive Functions Contribute Uniquely to Reading Competence in Minority Youth.
Jacobson, Lisa A; Koriakin, Taylor; Lipkin, Paul; Boada, Richard; Frijters, Jan C; Lovett, Maureen W; Hill, Dina; Willcutt, Erik; Gottwald, Stephanie; Wolf, Maryanne; Bosson-Heenan, Joan; Gruen, Jeffrey R; Mahone, E Mark
Competent reading requires various skills beyond those for basic word reading (i.e., core language skills, rapid naming, phonological processing). Contributing "higher-level" or domain-general processes include information processing speed and executive functions (working memory, strategic problem solving, attentional switching). Research in this area has relied on largely Caucasian samples, with limited representation of children from racial or ethnic minority groups. This study examined contributions of executive skills to reading competence in 761 children of minority backgrounds. Hierarchical linear regressions examined unique contributions of executive functions (EF) to word reading, fluency, and comprehension. EF contributed uniquely to reading performance, over and above reading-related language skills; working memory contributed uniquely to all components of reading; while attentional switching, but not problem solving, contributed to isolated and contextual word reading and reading fluency. Problem solving uniquely predicted comprehension, suggesting that this skill may be especially important for reading comprehension in minority youth. Attentional switching may play a unique role in development of reading fluency in minority youth, perhaps as a result of the increased demand for switching between spoken versus written dialects. Findings have implications for educational and clinical practice with regard to reading instruction, remedial reading intervention, and assessment of individuals with reading difficulty.
The firefighter coping self-efficacy scale: measure development and validation.
Lambert, Jessica E; Benight, Charles C; Harrison, Erica; Cieslak, Roman
2012-01-01
The authors evaluated the psychometric properties of the Firefighter Coping Self-Efficacy (FFCSE) Scale, a new measure developed to assess firefighters' perceived competence in managing stressful and traumatic experiences encountered on the job. Two samples of firefighters completed the FFCSE Scale at two different time points. Exploratory factor analysis yielded a unidimensional structure, which was further supported with confirmatory factor analysis using a second sample. Internal consistency of the measure was excellent. Analysis of cross-sectional data indicated FFCSE was positively associated with measures of psychological well-being and social support, and negatively associated with work-related stress and psychological distress. FFCSE also uniquely contributed to the variance in psychological distress, over and above variables previously shown to be associated with distress among this population. Implications and suggestions for future research are discussed.
2014-01-01
Background THz experiments have been used to characterize the picosecond time scale fluctuations taking place in the model, globular protein crambin. Results Using both hydration and temperature as an experimental parameter, we have identified collective fluctuations (<= 200 cm−1) in the protein. Observation of the protein dynamics in the THz spectrum from both below and above the glass transition temperature (Tg) has provided unique insight into the microscopic interactions and modes that permit the solvent to effectively couple to the protein thermal fluctuations. Conclusions Our findings suggest that the solvent dynamics on the picosecond time scale not only contribute to protein flexibility but may also delineate the types of fluctuations that are able to form within the protein structure. PMID:25184036
NASA Astrophysics Data System (ADS)
Fujitani, Y.; Sumino, Y.
2018-04-01
A classically scale invariant extension of the standard model predicts large anomalous Higgs self-interactions. We compute missing contributions in previous studies for probing the Higgs triple coupling of a minimal model using the process e+e- → Zhh. Employing a proper order counting, we compute the total and differential cross sections at the leading order, which incorporate the one-loop corrections between zero external momenta and their physical values. Discovery/exclusion potential of a future e+e- collider for this model is estimated. We also find a unique feature in the momentum dependence of the Higgs triple vertex for this class of models.
Simone, Ashley N; Marks, David J; Bédard, Anne-Claude; Halperin, Jeffrey M
2018-02-01
This study examined whether working memory (WM), inattentive symptoms, and/or hyperactive/impulsive symptoms significantly contributed to academic, behavioral, and global functioning in 8-year-old children. One-hundred-sixty 8-year-old children (75.6% male), who were originally recruited as preschoolers, completed subtests from the Wechsler Intelligence Scale for Children-Fourth Edition, Integrated and Wechsler Individual Achievement Test-Second Edition to assess WM and academic achievement, respectively. Teachers rated children's academic and behavioral functioning using the Vanderbilt Rating Scale. Global functioning, as rated by clinicians, was assessed by the Children's Global Assessment Scale. Multiple linear regressions were completed to determine the extent to which WM (auditory-verbal and visual-spatial) and/or inattentive and hyperactive/impulsive symptom severity significantly contributed to academic, behavioral, and/or global functioning. Both auditory-verbal and visual-spatial WM but not ADHD symptom severity, significantly and independently contributed to measures of academic achievement (all p < 0.01). In contrast, both WM and inattention symptoms (p < 0.01), but not hyperactivity-impulsivity (p > 0.05) significantly contributed to teacher-ratings of academic functioning. Further, inattention and hyperactivity/impulsivity (p < 0.04), but not WM (p > 0.10) were significantly associated with teacher-ratings of behavioral functioning and clinician-ratings of global functioning. Taken together, it appears that WM in children may be uniquely related to academic skills, but not necessarily to overall behavioral functioning.
Coherent backscattering of singular beams
NASA Astrophysics Data System (ADS)
Schwartz, Chaim; Dogariu, Aristide
2006-02-01
The phenomenon of coherent backscattering depends on both the statistical characteristics of a random scattering medium and the correlation features of the incident field. Imposing a wavefront singularity on the incident field offers a unique and very attractive way to modify the field correlations in a deterministic manner. The field correlations are found to act as a path-length filter which modifies the distribution of different contributions to the enhancement cone. This effect is thoroughly discussed and demonstrated experimentally for the case of single scale scattering systems.
Executive Functions Contribute Uniquely to Reading Competence in Minority Youth
Jacobson, Lisa A.; Koriakin, Taylor; Lipkin, Paul; Boada, Richard; Frijters, Jan; Lovett, Maureen; Hill, Dina; Willcutt, Erik; Gottwald, Stephanie; Wolf, Maryanne; Bosson-Heenan, Joan; Gruen, Jeffrey R.; Mahone, E. Mark
2018-01-01
Competent reading requires various skills beyond those for basic word reading (i.e., core language skills, rapid naming, phonological processing). Contributing “higher-level” or domain-general processes include information processing speed and executive functions (working memory, strategic problem solving, attentional switching). Research in this area has relied on largely Caucasian samples, with limited representation of children from racial or ethnic minority groups. This study examined contributions of executive skills to reading competence in 761 children of minority backgrounds. Hierarchical linear regressions examined unique contributions of executive functions (EF) to word reading, fluency, and comprehension. EF contributed uniquely to reading performance, over and above reading-related language skills; working memory contributed uniquely to all components of reading; while attentional switching, but not problem solving, contributed to isolated and contextual word reading and reading fluency. Problem solving uniquely predicted comprehension, suggesting that this skill may be especially important for reading comprehension in minority youth. Attentional switching may play a unique role in development of reading fluency in minority youth, perhaps as a result of the increased demand for switching between spoken versus written dialects. Findings have implications for educational and clinical practice with regard to reading instruction, remedial reading intervention, and assessment of individuals with reading difficulty. PMID:26755569
Friend, Ronald; Bennett, Robert M
2015-12-01
To compare the relative effectiveness of the Polysymptomatic Distress Scale (PSD) with the Symptom Impact Questionnaire (SIQR), the disease-neutral revision of the updated Fibromyalgia Impact Questionnaire (FIQR), in their ability to assess disease activity in patients with rheumatic disorders both with and without fibromyalgia (FM). The study included 321 patients from 8 clinical practices with some 16 different chronic pain disorders. Disease severity was assessed by the Medical Outcomes Study Short Form-36 (SF-36). Univariate analyses were used to assess the magnitude of PSD and SIQR correlations with SF-36 subscales. Hierarchical stepwise regression was used to evaluate the unique contribution of the PSD and SIQR to the SF-36. Random forest regression probed the relative importance of the SIQR and PSD components as predictors of SF-36. The correlations with the SF-36 subscales were significantly higher for the SIQR (0.48 to 0.78) than the PSD (0.29 to 0.56; p < 0.001). Stepwise regression revealed that the SIQR was contributing additional unique variance on SF-36 subscales, which was not the case for the PSD. Random forest regression showed SIQR Function, Symptoms, and Global Impact subscales were more important predictors of SF-36 than the PSD. The single SIQR pain item contributed 55% of SF-36 pain variance compared to 23% with the 19-point WPI (the Widespread Pain Index component of PSD). The SIQR, the disease-neutral revision of the updated FIQ, has several important advantages over the PSD in the evaluation of disease severity in chronic pain disorders.
Staneva, Aleksandra; Morawska, Alina; Bogossian, Fiona; Wittkowski, Anja
2016-10-01
Maternal mental health during pregnancy has been identified as a key factor in the future physiological, emotional and social development of both the mother and her baby. Yet little is known about the factors that contribute to increased levels of pregnancy-specific distress. The present study investigated the role of two psychosocial and personality-based constructs, namely women's sense of coherence (SoC) and their mothering orientations, on their pregnancy-specific distress. During their second trimester of pregnancy, 293 Australian and New Zealand women participated in an online study. Hierarchical multiple regression analysis was used to determine the unique contribution of women's SoC (Sense of Coherence Scale, SoC 13) and their antenatal mothering orientation (Antenatal Mothering Orientation Measure-Revised, AMOM-R) to pregnancy-specific distress (Revised Prenatal Distress Questionnaire, NuPDQ). Low SoC was the best determinant of women's pregnancy-specific distress, accounting for over 45% of the variance (β = -0.33, p < 0.001, 95% CI [-0.43, -0.23]). A Regulator mothering orientation was correlated with distress but did not have a unique contribution in the final model. This study further highlights the importance of better understanding women's perceptions of emotional health and their mothering role while taking into consideration their wider social context.
NASA Technical Reports Server (NTRS)
Yeager, William T., Jr.; Kvaternik, Raymond G.
2001-01-01
A historical account of the contributions of the Aeroelasticity Branch (AB) and the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development since the tunnel's inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroelastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and a review of the basic scaling relationships important for designing and building dynamic aeroelastic models of rotorcraft vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in AB/TDT are then described in separate sections. Both experimental and analytical studies are reported and include a description of the various physical and mathematical models employed, the specific objectives of the investigations, and illustrative experimental and analytical results.
Thompson, Patricia A.; Welsh, Stuart A.; Strager, Michael P.; Rizzo, Austin A.
2018-01-01
The western sand darter Ammocrypta clara, and eastern sand darter Ammocrypta pellucida, are sand-dwelling fishes of conservation concern. Past research has emphasized the importance of studying individual populations of conservation concern, while recent research has revealed the importance of incorporating landscape scale processes that structure habitat mosaics and local populations. We examined habitat use and distributions of western and eastern sand darters in the lower Elk River of West Virginia. At the sandbar habitat use scale, western sand darters were detected in sandbars with greater area, higher proportions of coarse grain sand and faster bottom current velocity, while the eastern sand darter used a wider range of sandbar habitats. The landscape scale analysis revealed that contributing drainage area was an important predictor for both species, while sinuosity, which presumably represents valley type, also contributed to the western sand darter’s habitat suitability. Sandbar quality (area, grain size, and velocity) and fluvial geomorphic variables (drainage area and valley type) are likely key driving factors structuring sand darter distributions in the Elk River. This multiscale study of within-river species distribution and habitat use is unique, given that only a few sympatric populations are known of western and eastern sand darters.
ERIC Educational Resources Information Center
Neuenschwander, Regula; Cimeli, Patrizia; Rothlisberger, Marianne; Roebers, Claudia M.
2013-01-01
Unique contributions of Big Five personality factors to academic performance in young elementary school children were explored. Extraversion and Openness (labeled "Culture" in our study) uniquely contributed to academic performance, over and above the contribution of executive functions in first and second grade children (N = 446). Well…
Psychotraumatology in the Netherlands
Vermetten, Eric; Olff, Miranda
2013-01-01
The contribution to psychotrauma literature from Dutch authors has a long tradition. The relatively high lifetime prevalence of trauma and posttraumatic stress disorder (PTSD) is not unique for the Netherlands and does not fully explain the interest in trauma and its consequences. In this overview of psychotraumatology in the Netherlands, we will discuss some of the key events and processes that contribute to the current interest. We outlined the historical basis and development of the field in the Netherlands, including the impact of World War II, the effects of major man-made or natural disasters, engagement in military conflicts, as well as smaller scale traumatic events like sexual abuse and traffic accidents. The liberal and open culture may have reduced stigma to trauma, while other sociocultural aspects may have contributed to increased prevalence. Finally, we describe Dutch psychotraumatology today and how history and culture have shaped the current scientific basis. PMID:23671764
2012-10-23
Quantum Intelligence, Inc. She was principal investigator (PI) for six contracts awarded by the DoD Small Business Innovation Research (SBIR) Program. She...with at OSD? I hope you don’t mind if I indulge in a little ‘stream of consciousness ’ musing about where LLA could really add value. One of the...implemented by Quantum Intelligence, Inc. (QI, 2001–2012). The unique contribution of this architecture is to leverage a peer-to-peer agent network
Impact of Non-Suicidal Self-Injury Scale: Initial Psychometric Validation
Burke, Taylor A.; Ammerman, Brooke A.; Hamilton, Jessica L.; Alloy, Lauren B.
2017-01-01
The current study examined the psychometric properties of the Impact of Non-Suicidal Self-Injury Scale (INS), a scale developed to assess the social, behavioral, and emotional consequences of engaging in non-suicidal self-injury (NSSI). University students (N=128) who endorsed a history of NSSI were administered the INS, as well as measures of hypothesized convergent and divergent validity. Results suggested that the INS is best conceptualized as a one-factor scale, and internal consistency analyses indicated excellent reliability. The INS was significantly correlated with well-known measures of NSSI severity (i.e., NSSI frequency, NSSI recency), and measures of suicide attempt history and emotional reactivity. Logistic regression analyses indicated that the INS contributed unique variance to the prediction of physical disfigurement (i.e., NSSI scarring) and clinically significant social anxiety, even after taking into account NSSI frequency. Furthermore, the INS demonstrated divergent validity. Implications for research on NSSI disorder and clinical practice are discussed. PMID:28824214
Holistic Leadership-Nursing's Unique Contribution to Healthcare.
Clarke, Pamela N; Bleich, Michael R
2018-04-01
This dialogue is focused on holistic leadership from the perspective of a well-known leader in nursing. He frames the changing healthcare environment and nursing's unique contribution on the interprofessional team.
Kojetin, Douglas J.; McLaughlin, Patrick D.; Thompson, Richele J.; Dubnau, David; Prepiak, Peter; Rance, Mark; Cavanagh, John
2009-01-01
Summary The AAA+ superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility, as well as conformational exchange on the μs-ms time-scale. The electrostatic surface of N-ClpCR differs substantially compared to the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC. PMID:19361434
Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data.
Reisetter, Anna C; Muehlbauer, Michael J; Bain, James R; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L; Scholtens, Denise M
2017-02-02
Metabolomics offers a unique integrative perspective for health research, reflecting genetic and environmental contributions to disease-related phenotypes. Identifying robust associations in population-based or large-scale clinical studies demands large numbers of subjects and therefore sample batching for gas-chromatography/mass spectrometry (GC/MS) non-targeted assays. When run over weeks or months, technical noise due to batch and run-order threatens data interpretability. Application of existing normalization methods to metabolomics is challenged by unsatisfied modeling assumptions and, notably, failure to address batch-specific truncation of low abundance compounds. To curtail technical noise and make GC/MS metabolomics data amenable to analyses describing biologically relevant variability, we propose mixture model normalization (mixnorm) that accommodates truncated data and estimates per-metabolite batch and run-order effects using quality control samples. Mixnorm outperforms other approaches across many metrics, including improved correlation of non-targeted and targeted measurements and superior performance when metabolite detectability varies according to batch. For some metrics, particularly when truncation is less frequent for a metabolite, mean centering and median scaling demonstrate comparable performance to mixnorm. When quality control samples are systematically included in batches, mixnorm is uniquely suited to normalizing non-targeted GC/MS metabolomics data due to explicit accommodation of batch effects, run order and varying thresholds of detectability. Especially in large-scale studies, normalization is crucial for drawing accurate conclusions from non-targeted GC/MS metabolomics data.
The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Rivera, Jose A., Jr.
1997-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.
Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Thomas G.
2007-12-14
Grinstein, O'Connell and Wise have recently presented an extension of the Standard Model (SM), based on the ideas of Lee and Wick (LW), which demonstrates an interesting way to remove the quadratically divergent contributions to the Higgs mass induced by radiative corrections. This model predicts the existence of negative-norm copies of the usual SM fields at the TeV scale with ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. In earlier work, it was demonstrated that the LW states in the gauge boson sector of these models, though easy to observe, cannot be uniquely identified as such atmore » the LHC. In this paper, we address the issue of whether or not this problem can be resolved at an e{sup +}e{sup -} collider with a suitable center of mass energy range. We find that measurements of the cross section and the left-right polarization asymmetry associated with Bhabha scattering can lead to a unique identification of the neutral electroweak gauge bosons of the Lee-Wick type.« less
Elhai, Jon D; Lindsay, Brenda M; Gray, Matt J; Grubaugh, Anouk L; North, Terry C; Frueh, B Christopher
2006-12-01
Data from two studies are presented, investigating the relative effectiveness of posttraumatic stress disorder (PTSD) symptom frequency and intensity rating dimensions, in assessing overall PTSD severity and diagnosis. We assessed frequency and intensity ratings using 1) the Modified PTSD Symptom Scale with 298 trauma-exposed college students, and 2) the Clinician-Administered PTSD Scale with 130 combat-exposed military veterans. Results demonstrated little empirical justification for separating frequency and intensity ratings when measuring PTSD. Large overlaps in variance were evidenced between the dimensions (suggesting construct redundancy), with little meaningful contribution to diagnosing PTSD using one dimension over the other. Implications for future PTSD clinical and research assessment are discussed, including the potential to decrease administration time for these commonly used PTSD measures, given their time-consuming nature.
DIALOG: An executive computer program for linking independent programs
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Watson, D. A.
1973-01-01
A very large scale computer programming procedure called the DIALOG Executive System has been developed for the Univac 1100 series computers. The executive computer program, DIALOG, controls the sequence of execution and data management function for a library of independent computer programs. Communication of common information is accomplished by DIALOG through a dynamically constructed and maintained data base of common information. The unique feature of the DIALOG Executive System is the manner in which computer programs are linked. Each program maintains its individual identity and as such is unaware of its contribution to the large scale program. This feature makes any computer program a candidate for use with the DIALOG Executive System. The installation and use of the DIALOG Executive System are described at Johnson Space Center.
Current insights into phage biodiversity and biogeography.
Thurber, Rebecca Vega
2009-10-01
Phages exert tremendous ecological and evolutionary forces directly on their bacterial hosts. Phage induced cell lysis also indirectly contributes to organic and inorganic nutrient recycling. Phage abundance, diversity, and distribution are therefore important parameters in ecosystem function. The assumption that phage consortia are ubiquitous and homogenous across habitats (everything is everywhere) is currently being re-evaluated. New studies on phage biogeography have found that some phages are globally distributed while others are unique and perhaps endemic to specific environments. Furthermore, advances in technology have allowed scientists to conduct experiments aimed at analyzing phage consortia over temporal scales, and surprisingly have found reoccurring patterns. This review discusses currents in the field of phage ecology with particular focus on efforts to characterize phage diversity and biogeography across various spatial and temporal scales.
Pacini, R; Epstein, S
1999-06-01
A new version of the Rational-Experiential Inventory (REI), which measures rational and experiential thinking styles and includes subscales of self-reported ability and engagement, was examined in two studies. In Study 1, the two main scales were independent, and they and their subscales exhibited discriminant validity and contributed to the prediction of a variety of measures beyond the contribution of the Big Five scales. A rational thinking style was most strongly and directly related to Ego Strength, Openness, Conscientiousness, and favorable basic beliefs about the self and the world, and it was most strongly inversely related to Neuroticism and Conservatism. An experiential thinking style was most strongly directly related to Extraversion, Agreeableness, Favorable Relationships Beliefs, and Emotional Expressivity, and it was most strongly inversely related to Categorical Thinking, Distrust of Others, and Intolerance. In Study 2, a rational thinking style was inversely related and an experiential thinking style was unrelated to nonoptimal responses in a game of chance. It was concluded that the new REI is a significant improvement over the previous version and measures unique aspects of personality.
Byrne, Derek V; Waehrens, Sandra S; O'Sullivan, Maurice G
2013-11-01
Unique food products constitute a very important element of European food business, culture, identity and heritage. Understanding the uniqueness of food in Europe from a research-based interdisciplinary perspective will be a critical factor in promoting the competitiveness of artisanal food industries going forward both locally and internationally. Success will support the competitiveness of the European food industry, in particular, small and medium enterprises, by enabling substantial product differentiation potential for producers and providing ample variety in food choice for the consumer. In addition, it will contribute to promotion of sustainable agriculture and development of rural areas, protecting them from depopulation. In order to meet the demands of a developing fundamental shift in European Union agricultural focus to greener, sustainable farming practices and wider rural development and to ensure success for local small-scale producers, this paper discusses the future direction of research in the field of unique European foods. The paper presents a perspective which promotes optimisation and innovation in unique food products in Europe through the integration of advanced knowledge and technologies. A framework is presented covering location, identity, perception and well-being as research areas needing synergy to bridge the research knowledge deficit in determination and specification of food identity in the European Union. The ultimate aim being promotion of sustainable agriculture and rural development, particularly in territories across the European Union where unique food is strategically and scientifically under-defined. © 2013 Society of Chemical Industry.
Revelation of `Hidden' Balinese Geospatial Heritage on A Map
NASA Astrophysics Data System (ADS)
Soeria Atmadja, Dicky A. S.; Wikantika, Ketut; Budi Harto, Agung; Putra, Daffa Gifary M.
2018-05-01
Bali is not just about beautiful nature. It also has a unique and interesting cultural heritage, including `hidden' geospatial heritage. Tri Hita Karana is a Hinduism concept of life consisting of human relation to God, to other humans and to the nature (Parahiyangan, Pawongan and Palemahan), Based on it, - in term of geospatial aspect - the Balinese derived its spatial orientation, spatial planning & lay out, measurement as well as color and typography. Introducing these particular heritage would be a very interesting contribution to Bali tourism. As a respond to these issues, a question arise on how to reveal these unique and highly valuable geospatial heritage on a map which can be used to introduce and disseminate them to the tourists. Symbols (patterns & colors), orientation, distance, scale, layout and toponimy have been well known as elements of a map. There is an chance to apply Balinese geospatial heritage in representing these map elements.
Marshall, Andrew J; Evanovich, Emma K; David, Sarah Jo; Mumma, Gregory H
2018-01-17
High comorbidity rates among emotional disorders have led researchers to examine transdiagnostic factors that may contribute to shared psychopathology. Bifactor models provide a unique method for examining transdiagnostic variables by modelling the common and unique factors within measures. Previous findings suggest that the bifactor model of the Depression Anxiety and Stress Scale (DASS) may provide a method for examining transdiagnostic factors within emotional disorders. This study aimed to replicate the bifactor model of the DASS, a multidimensional measure of psychological distress, within a US adult sample and provide initial estimates of the reliability of the general and domain-specific factors. Furthermore, this study hypothesized that Worry, a theorized transdiagnostic variable, would show stronger relations to general emotional distress than domain-specific subscales. Confirmatory factor analysis was used to evaluate the bifactor model structure of the DASS in 456 US adult participants (279 females and 177 males, mean age 35.9 years) recruited online. The DASS bifactor model fitted well (CFI = 0.98; RMSEA = 0.05). The General Emotional Distress factor accounted for most of the reliable variance in item scores. Domain-specific subscales accounted for modest portions of reliable variance in items after accounting for the general scale. Finally, structural equation modelling indicated that Worry was strongly predicted by the General Emotional Distress factor. The DASS bifactor model is generalizable to a US community sample and General Emotional Distress, but not domain-specific factors, strongly predict the transdiagnostic variable Worry.
NASA Astrophysics Data System (ADS)
Peron-Pinvidic, Gwenn; Terje Osmundsen, Per
2016-04-01
In terms of rifted margin studies, the characteristics of the distal and outer domains are among the today's most debated questions. The architecture and composition of deep margins are rarely well constrained and hence little understood. Except from in a handful number of cases (eg. Iberia-Newfoundland, Southern Australia, Red Sea), basement samples are not available to decipher between the various interpretations allowed by geophysical models. No consensus has been reached on the basement composition, tectonic structures, sedimentary geometries or magmatic content. The result is that non-unique end-member interpretations and models are still proposed in the literature. So, although these domains mark the connection between continents and oceans, and thus correspond to unique stages in the Earth's lithospheric life cycle, their spatial and temporal evolution are still unresolved. The Norwegian-Greenland Sea rift system represents an exceptional laboratory to work on questions related to rifting, rifted margin formation and sedimentary basin evolution. It has been extensively studied for decades by both the academic and the industry communities. The proven and expected oil and gas potentials led to the methodical acquisition of world-class geophysical datasets, which permit the detailed research and thorough testing of concepts at local and regional scales. This contribution is issued from a three years project funded by ExxonMobil aiming at better understanding the crustal-scale nature and evolution of the Norwegian-Greenland Sea. The idea was to take advantage of the data availability on this specific rift system to investigate further the full crustal conjugate scale history of rifting, confronting the various available datasets. In this contribution, we will review the possible structural and sedimentary geometries of the distal margin, and their connection to the oceanic domain. We will discuss the definition of 'breakup' and introduce a first order conceptual model that proposes a combined influence of tectonic and magmatic processes on the outbuilding of the distal, outer and oceanic domains.
Effects of polar solvents on the mechanical behavior of fish scales.
Murcia, Sandra; Li, Guihua; Yahyazadehfar, Mobin; Sasser, Mikaela; Ossa, Alex; Arola, D
2016-04-01
Fish scales are unique structural materials that serve as a form of natural armor. In this investigation the mechanical behavior of scales from the Cyprinus carpio was evaluated after exposure to a polar solvent. Uniaxial tensile and tear tests were conducted on specimens prepared from the scales of multiple fish extracted from near the head, middle and tail regions, and after exposure to ethanol for periods from 0 to 24h. Submersion in ethanol caused instantaneous changes in the tensile properties regardless of anatomical site, with increases in the elastic modulus, strength and modulus of toughness exceeding 100%. The largest increase in properties overall occurred in the elastic modulus of scales from the tail region and exceeded 200%. Although ethanol treatment had significant effect on the tensile properties, it had limited influence on the tear resistance. The contribution of ethanol to the mechanical behavior appears to be derived from an increase in the degree of interpeptide hydrogen-bonding of the collagen molecules. Spatial variations in the effects of ethanol exposure on the mechanical behavior arise from the differences in degree of mineralization and lower mineral content in scales of the tail region. Copyright © 2015 Elsevier B.V. All rights reserved.
The Contribution of Verbal Working Memory to Deaf Children’s Oral and Written Production
Arfé, Barbara; Rossi, Cristina; Sicoli, Silvia
2015-01-01
This study investigated the contribution of verbal working memory to the oral and written story production of deaf children. Participants were 29 severely to profoundly deaf children aged 8–13 years and 29 hearing controls, matched for grade level. The children narrated a picture story orally and in writing and performed a reading comprehension test, the Wechsler Intelligence Scale for Children-Fourth Edition forward digit span task, and a reading span task. Oral and written stories were analyzed at the microstructural (i.e., clause) and macrostructural (discourse) levels. Hearing children’s stories scored higher than deaf children’s at both levels. Verbal working memory skills contributed to deaf children’s oral and written production over and above age and reading comprehension skills. Verbal rehearsal skills (forward digit span) contributed significantly to deaf children’s ability to organize oral and written stories at the microstructural level; they also accounted for unique variance at the macrostructural level in writing. Written story production appeared to involve greater verbal working memory resources than oral story production. PMID:25802319
Elliott, Luther; Ream, Geoffrey; McGinsky, Elizabeth; Dunlap, Eloise
2012-12-01
AIMS: To assess the contribution of patterns of video game play, including game genre, involvement, and time spent gaming, to problem use symptomatology. DESIGN: Nationally representative survey. SETTING: Online. PARTICIPANTS: Large sample (n=3,380) of adult video gamers in the US. MEASUREMENTS: Problem video game play (PVGP) scale, video game genre typology, use patterns (gaming days in the past month and hours on days used), enjoyment, consumer involvement, and background variables. FINDINGS: Study confirms game genre's contribution to problem use as well as demographic variation in play patterns that underlie problem video game play vulnerability. CONCLUSIONS: Identification of a small group of game types positively correlated with problem use suggests new directions for research into the specific design elements and reward mechanics of "addictive" video games. Unique vulnerabilities to problem use among certain groups demonstrate the need for ongoing investigation of health disparities related to contextual dimensions of video game play.
Ream, Geoffrey; McGinsky, Elizabeth; Dunlap, Eloise
2012-01-01
Aims To assess the contribution of patterns of video game play, including game genre, involvement, and time spent gaming, to problem use symptomatology. Design Nationally representative survey. Setting Online. Participants Large sample (n=3,380) of adult video gamers in the US. Measurements Problem video game play (PVGP) scale, video game genre typology, use patterns (gaming days in the past month and hours on days used), enjoyment, consumer involvement, and background variables. Findings Study confirms game genre's contribution to problem use as well as demographic variation in play patterns that underlie problem video game play vulnerability. Conclusions Identification of a small group of game types positively correlated with problem use suggests new directions for research into the specific design elements and reward mechanics of “addictive” video games. Unique vulnerabilities to problem use among certain groups demonstrate the need for ongoing investigation of health disparities related to contextual dimensions of video game play. PMID:23284310
The developmental origins of metacognitive deficits in schizophrenia.
Aydin, Orkun; Balikci, Kuzeymen; Tas, Cumhur; Aydin, Pınar Unal; Danaci, Aysen Esen; Brüne, Martin; Lysaker, Paul H
2016-11-30
The deficits in metacognition have been observed in schizophrenia but developmental roots of impaired metacognition are not well understood. Accordingly, this study compared metacognitive abilities of patients with schizophrenia and healthy group and examined the relationship between childhood trauma, attachment style and caregiver attitudes with metacognitive capacity which might contribute to metacognitive deficits in patient group. 35 patients with schizophrenia and 35 healthy people were included in the study. Metacognitive capacity was measured using the Metacognition Assessment Scale Abbreviated (MAS-A). This scale comprises four domains: self-reflectivity, understanding other's mind, decentration and mastery. Group comparisons revealed that schizophrenia patients had greater deficits in metacognitive ability. We found that the report of childhood emotional abuse, a pattern of anxious attachment and over protection by caregivers were uniquely related to metacognitive capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Coarsening of stripe patterns: variations with quench depth and scaling.
Tripathi, Ashwani K; Kumar, Deepak
2015-02-01
The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.
Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy.
Wang, Zechao; Tavabi, Amir H; Jin, Lei; Rusz, Ján; Tyutyunnikov, Dmitry; Jiang, Hanbo; Moritomo, Yutaka; Mayer, Joachim; Dunin-Borkowski, Rafal E; Yu, Rong; Zhu, Jing; Zhong, Xiaoyan
2018-03-01
In order to obtain a fundamental understanding of the interplay between charge, spin, orbital and lattice degrees of freedom in magnetic materials and to predict and control their physical properties 1-3 , experimental techniques are required that are capable of accessing local magnetic information with atomic-scale spatial resolution. Here, we show that a combination of electron energy-loss magnetic chiral dichroism 4 and chromatic-aberration-corrected transmission electron microscopy, which reduces the focal spread of inelastically scattered electrons by orders of magnitude when compared with the use of spherical aberration correction alone, can achieve atomic-scale imaging of magnetic circular dichroism and provide element-selective orbital and spin magnetic moments atomic plane by atomic plane. This unique capability, which we demonstrate for Sr 2 FeMoO 6 , opens the door to local atomic-level studies of spin configurations in a multitude of materials that exhibit different types of magnetic coupling, thereby contributing to a detailed understanding of the physical origins of magnetic properties of materials at the highest spatial resolution.
Citterio, Michele; Sejr, Mikael K; Langen, Peter L; Mottram, Ruth H; Abermann, Jakob; Hillerup Larsen, Signe; Skov, Kirstine; Lund, Magnus
2017-02-01
Terrestrial freshwater runoff strongly influences physical and biogeochemical processes at the fjord scale and can have global impacts when considered at the Greenland scale. We investigate the performance of the HIRHAM5 regional climate model over the catchments delivering freshwater to Tyrolerfjord and Young Sound by comparing to the unique Greenland Ecological Monitoring database of in situ observations from this region. Based on these findings, we estimate and discuss the fraction of runoff originating from glacierized and non-glacierized land delivered at the daily scale between 1996 and 2008. We find that glaciers contributed on average 50-80% of annual terrestrial runoff when considering different sections of Tyrolerfjord-Young Sound, but snowpack depletion on land and consequently runoff happens about one month earlier in the model than observed in the field. The temporal shift in the model is a likely explanation why summer surface salinity in the inner fjord did not correlate to modelled runoff.
Growing old with fibromyalgia: factors that predict physical function.
Torma, Linda M; Houck, Gail M; Wagnild, Gail M; Messecar, Deborah; Jones, Kim Dupree
2013-01-01
Fibromyalgia, a persistent, widespread pain condition, significantly limits physical function, threatening an older adult's health and ability to live independently. The aim of the study was to identify predictors of physical function in older adults living with fibromyalgia and to examine the influence of resilience on the relationship between fibromyalgia pain and physical function. This was a descriptive correlational, cross-sectional design using mailed questionnaires to analyze relationships between health-related variables and physical function in a convenience sample of community-dwelling older adults diagnosed with fibromyalgia (n = 224; age M = 62.1 years, SD = 6.75 years). Multiple regression was used to identify a priori predictors of physical function; hierarchical multiple regression was used to examine resilience as a moderator of pain and physical function. The sample was predominantly women, Caucasian, married, well educated, had moderate levels of income and tangible social support, and had low levels of physical function. Three-fourths were overweight or obese. Despite impaired physical function (Late Life Function and Disability Index, M = 51.5/100, SD = 9) and moderate levels of pain (Numeric Rating Scale, M = 5.47/10, SD = 2.6), resilience was moderately high (Resilience Scale, M = 137/175, SD = 20). An eight-variable disablement-based model accounted for 48% of variance in physical function: age, income, education, depressive symptoms, body mass index, and physical activity accounted for 31%; pain added 14%; and resilience contributed an additional 3%. Resilience was not a moderator of fibromyalgia pain and physical function; resilience did contribute uniquely to physical function variance. Resilience, a novel variable in fibromyalgia research, was a unique predictor of physical function. Further research is needed to learn more about the relationships between resilience, fibromyalgia impact, and the aging process.
Beaton, Derek; Abdi, Hervé; Filbey, Francesca M
2014-11-01
Abstract Background: Impulsivity is a complex trait often studied in substance abuse and overeating disorders, but the exact nature of impulsivity traits and their contribution to these disorders are still debated. Thus, understanding how to measure impulsivity is essential for comprehending addictive behaviors. Identify unique impulsivity traits specific to substance use and overeating. Impulsive Sensation Seeking (ImpSS) and Barratt's Impulsivity scales (BIS) Scales were analyzed with a non-parametric factor analytic technique (discriminant correspondence analysis) to identify group-specific traits on 297 individuals from five groups: Marijuana (n = 88), Nicotine (n = 82), Overeaters (n = 27), Marijuauna + Nicotine (n = 63), and CONTROLs (n = 37). A significant overall factor structure revealed three components of impulsivity that explained respectively 50.19% (pperm < 0.0005), 24.18% (pperm < 0.0005), and 15.98% (pperm < 0.0005) of the variance. All groups were significantly different from one another. When analyzed together, the BIS and ImpSS produce a multi-factorial structure that identified the impulsivity traits specific to these groups. The group specific traits are (1) CONTROL: low impulse, avoids thrill-seeking behaviors; (2) Marijuana: seeks mild sensation, is focused and attentive; (3) Marijuana + Nicotine: pursues thrill-seeking, lacks focus and attention; (4) Nicotine: lacks focus and planning; (5) Overeating: lacks focus, but plans (short and long term). Our results reveal impulsivity traits specific to each group. This may provide better criteria to define spectrums and trajectories - instead of categories - of symptoms for substance use and eating disorders. Defining symptomatic spectrums could be an important step forward in diagnostic strategies.
Beaton, Derek; Abdi, Hervé; Filbey, Francesca M.
2015-01-01
Background Impulsivity is a complex trait often studied in substance abuse and overeating disorders, but the exact nature of impulsivity traits and their contribution to these disorders are still debated. Thus, understanding how to measure impulsivity is essential for comprehending addictive behaviors. Objectives Identify unique impulsivity traits specific to substance use and overeating. Methods Impulsive Sensation Seeking (ImpSS) and Barratt’s Impulsivity scales (BIS) Scales were analyzed with a non-parametric factor analytic technique (discriminant correspondence analysis) to identify group-specific traits on 297 individuals from five groups: Marijuana (n = 88), Nicotine (n = 82), Overeaters (n = 27), Marijuauna + Nicotine (n = 63), and Controls (n = 37). Results A significant overall factor structure revealed three components of impulsivity that explained respectively 50.19% (pperm<0.0005), 24.18% (pperm<0.0005), and 15.98% (pperm<0.0005) of the variance. All groups were significantly different from one another. When analyzed together, the BIS and ImpSS produce a multi-factorial structure that identified the impulsivity traits specific to these groups. The group specific traits are (1) Control: low impulse, avoids thrill-seeking behaviors; (2) Marijuana: seeks mild sensation, is focused and attentive; (3) Marijuana + Nicotine: pursues thrill-seeking, lacks focus and attention; (4) Nicotine: lacks focus and planning; (5) Overeating: lacks focus, but plans (short and long term). Conclusions Our results reveal impulsivity traits specific to each group. This may provide better criteria to define spectrums and trajectories – instead of categories – of symptoms for substance use and eating disorders. Defining symptomatic spectrums could be an important step forward in diagnostic strategies. PMID:25115831
Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect
NASA Astrophysics Data System (ADS)
Zhang, Pengjie; Johnson, Matthew C.
2015-06-01
Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in the diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.
Mungkhetklang, Chantanee; Bavin, Edith L.; Crewther, Sheila G.; Goharpey, Nahal; Parsons, Carl
2016-01-01
It is usually assumed that performance on non-verbal intelligence tests reflects visual cognitive processing and that aspects of working memory (WM) will be involved. However, the unique contribution of memory to non-verbal scores is not clear, nor is the unique contribution of vocabulary. Thus, we aimed to investigate these contributions. Non-verbal test scores for 17 individuals with intellectual disability (ID) and 39 children with typical development (TD) of similar mental age were compared to determine the unique contribution of visual and verbal short-term memory (STM) and WM and the additional variance contributed by vocabulary scores. No significant group differences were found in the non-verbal test scores or receptive vocabulary scores, but there was a significant difference in expressive vocabulary. Regression analyses indicate that for the TD group STM and WM (both visual and verbal) contributed similar variance to the non-verbal scores. For the ID group, visual STM and verbal WM contributed most of the variance to the non-verbal test scores. The addition of vocabulary scores to the model contributed greater variance for both groups. More unique variance was contributed by vocabulary than memory for the TD group, whereas for the ID group memory contributed more than vocabulary. Visual and auditory memory and vocabulary contributed significantly to solving visual non-verbal problems for both the TD group and the ID group. However, for each group, there were different weightings of these variables. Our findings indicate that for individuals with TD, vocabulary is the major factor in solving non-verbal problems, not memory, whereas for adolescents with ID, visual STM, and verbal WM are more influential than vocabulary, suggesting different pathways to achieve solutions to non-verbal problems. PMID:28082922
Behavioral and experiential avoidance in patients with hoarding disorder.
Ayers, Catherine R; Castriotta, Natalie; Dozier, Mary E; Espejo, Emmanuel P; Porter, Ben
2014-09-01
This study examined the relationship between experiential and behavioral avoidance and hoarding symptom severity, controlling for anxiety and depression symptoms, in 66 adult individuals (M age = 61.41; SD = 9.03) with HD. Hierarchical regression was used to test the associations between hoarding severity, as defined by the Savings Inventory-Revised (SI-R) total and its three subscales, and avoidance, as defined by the Acceptance and Action Questionnaire II (AAQ-II) and two scales from the Brief COPE (Self-Distraction and Behavioral Disengagement) when controlling for anxiety and depression symptoms. Experiential avoidance (AAQ-II) and behavioral avoidance (Brief COPE subscales Self-Distraction and Behavioral Disengagement) uniquely accounted for aspects of hoarding severity (SI-R) in regression models. Behavioral avoidance contributed significant additional variance to the SI-R Clutter subscale, whereas experiential avoidance was uniquely predictive of additional variance in the SI-R Difficulty Discarding and the SI-R Acquisition subscales. Future research should examine the effect of experiential avoidance on hoarding behaviors experimentally. Given that the AAQ-II and Self-Distraction and Behavioral Disengagement subscales were not correlated, these findings suggest that experiential and behavioral avoidance are two distinct processes contributing to the severity of specific HD. Results support the utility of avoidance in the cognitive-behavioral model for HD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thompson, J Kevin; Schaefer, Lauren M; Dedrick, Robert F
2018-04-01
Although the Sociocultural Attitudes Towards Appearance Questionnaire (SATAQ) and Ideal Body Stereotype Scale (IBSS) are used interchangeably to assess thin ideal internalization, limited work has examined the assumption that the two measures index the same construct. The current study utilized confirmatory factor analysis to examine whether these measures capture a single construct (one-factor), two constructs (two-factor), or both shared and unique constructs (bifactor). The SATAQ-4R-Internalization: Thin/Low Body Fat subscale and IBSS-Revised were administered to 1,114 college females. A bifactor model provided the best fit to the data. Further, the SATAQ-4R was more strongly related to disordered eating and body satisfaction than the IBSS-R. Results indicate that the two most commonly used measures of internalization capture both shared and unique constructs. While both measures appear to contribute to the assessment of a global internalization factor, the SATAQ-4R may be better suited to assess personal acceptance of and desire to achieve a thin body, while the IBSS-R may be better suited to assess an awareness or acknowledgement of broader sociocultural ideals (e.g., toned, shapely bodies). Continued psychometric investigation of the scales is recommended in order to ensure targeted assessment of the intended constructs. © 2018 Wiley Periodicals, Inc.
Liu, Tianyin; Wong, Gloria Hy; Luo, Hao; Tang, Jennifer Ym; Xu, Jiaqi; Choy, Jacky Cp; Lum, Terry Ys
2017-05-02
Intact cognition is a key determinant of quality of life. Here, we investigated the relative contribution of age and physical frailty to global and everyday cognition in older adults. Data came from 1396 community-dwelling, healthy Chinese older adults aged 65 or above. We measured their global cognition using the Cantonese Chinese Montreal Cognitive Assessment, everyday cognition with the short Chinese Lawton Instrumental Activities Daily Living scale, and physical frailty using the Fatigue, Resistance, Ambulation, Illness, and Loss of Weight Scale and grip strength. Multiple regression analysis was used to evaluate the comparative roles of age and physical frailty. In the global cognition model, age explained 12% and physical frailty explained 8% of the unique variance. This pattern was only evident in women, while the reverse (physical frailty explains a greater extent of variance) was evident in men. In the everyday cognition model, physical frailty explained 18% and chronological age explained 9% of the unique variance, with similar results across both genders. Physical frailty is a stronger indicator than age for everyday cognition in both genders and for global cognition in men. Our findings suggest that there are alternative indexes of cognitive aging than chronological age.
Inertial effects on the stress generation of active fluids
NASA Astrophysics Data System (ADS)
Takatori, S. C.; Brady, J. F.
2017-09-01
Suspensions of self-propelled bodies generate a unique mechanical stress owing to their motility that impacts their large-scale collective behavior. For microswimmers suspended in a fluid with negligible particle inertia, we have shown that the virial swim stress is a useful quantity to understand the rheology and nonequilibrium behaviors of active soft matter systems. For larger self-propelled organisms such as fish, it is unclear how particle inertia impacts their stress generation and collective movement. Here we analyze the effects of finite particle inertia on the mechanical pressure (or stress) generated by a suspension of self-propelled bodies. We find that swimmers of all scales generate a unique swim stress and Reynolds stress that impact their collective motion. We discover that particle inertia plays a similar role as confinement in overdamped active Brownian systems, where the reduced run length of the swimmers decreases the swim stress and affects the phase behavior. Although the swim and Reynolds stresses vary individually with the magnitude of particle inertia, the sum of the two contributions is independent of particle inertia. This points to an important concept when computing stresses in computer simulations of nonequilibrium systems: The Reynolds and the virial stresses must both be calculated to obtain the overall stress generated by a system.
Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I
2018-01-01
Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information. PMID:29513219
Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I
2018-03-07
Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.
Humle, Tatyana
2016-07-01
The Japanese approach to science has permitted theoretical leaps in our understanding of culture in non-human animals and challenged human uniqueness, as it is not embedded in the Western traditional dualisms of human/animal and nature/culture. This paper highlights the value of an interdisciplinary approach and combining methodological approaches in exploring putative cultural variation among chimpanzees. I focus particularly on driver ants (Dorylus sp.) and oil palm (Elaeis guineensis) consumption among the Bossou and Nimba chimpanzees, in south-eastern Guinea at the border with Côte d'Ivoire and Liberia, and hand use across different tool use tasks commonly witnessed at Bossou, i.e. ant-dipping, nut-cracking, pestle-pounding, and algae-scooping. Observed variation in resource use was addressed across differing scales exploring both within- and between-community differences. Our findings have highlighted a tight interplay between ecology, social dynamics and culture, and between social and individual learning and maternal contribution to tool-use acquisition. Exploration of hand use by chimpanzees revealed no evidence for individual-level hand or community-level task specialisation. However, more complex types of tool use such as nut-cracking showed distinct lateralization, while the equivalent of a haptic manual action revealed a strong right hand bias. The data also suggest an overall population tendency for a right hand preference. As well as describing these sites' key contributions to our understanding of chimpanzees and to challenging our perceptions of human uniqueness, this paper also highlights the critical condition and high levels of threats facing this emblematic chimpanzee population, and several questions that remain to be addressed. In the spirit of the Japanese approach to science, I recommend that an interdisciplinary and collaborative research approach can best help us to challenge perceptions of human uniqueness and to further our understanding of chimpanzee behavioural and social flexibility in the face of local social, ecological and anthropogenic changes and threats to their survival.
Fluctuation scaling, Taylor's law, and crime.
Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May
2014-01-01
Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.
Fluctuation Scaling, Taylor’s Law, and Crime
Hanley, Quentin S.; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May
2014-01-01
Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor’s law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor’s law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057±0.026) while burglary exhibited a greater exponent (α = 1.292±0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor’s law exponents from 1.43±0.12 (Drugs) to 2.094±0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation. PMID:25271781
Contribution of health motive to cannabis use among high-school students.
Chabrol, Henri; Beck, Charline; Laconi, Stéphanie
2017-01-01
The Marijuana Motives Measure (MMM), which is derived from a scale measuring alcohol use motives, has been the main instrument used to explore the role of motives in cannabis use and related problems. Two studies attempted to developed specific cannabis use motives but none of them showed a unique association to cannabis use and problems when controlling for MMM motives. The aim of our study was to examine if additional motives contributed to problematic use beyond MMM motives and psychopathological symptoms. Participants were 249 high-school students who completed the Cannabis Use Disorder Identification Test-Revised (CUDIT-R) assessing cannabis use and problematic use, the MMM and a new scale measuring motives derived from clinical experience with adolescents using cannabis (CED motives), and scales measuring anxiety and depressive symptoms and borderline personality traits. Among the 107 participants using cannabis, 39 reached the cut-off score for problematic cannabis use. Hierarchical multiple regression analyses controlling for psychopathological variables showed that only one CED motives, Health (sleep, form, energy, appetite, health), was a significant predictor of both frequency of use and problematic use symptoms. The importance of Health motive may be linked to the role of depressive symptoms and may have implication for treatment. We suggest to add the Health subscale to the MMM and to further study the role of health motive in both use and dependence. Copyright © 2016. Published by Elsevier Ltd.
Farley, Cory W; Pantoya, Michelle L; Losada, Martin; Chaudhuri, Santanu
2013-08-21
Coupling molecular scale reaction kinetics with macroscopic combustion behavior is critical to understanding the influences of intermediate chemistry on energy propagation, yet bridging this multi-scale gap is challenging. This study integrates ab initio quantum chemical calculations and condensed phase density functional theory to elucidate factors contributing to experimentally measured high flame speeds (i.e., >900 m∕s) associated with halogen based energetic composites, such as aluminum (Al) and iodine pentoxide (I2O5). Experiments show a direct correlation between apparent activation energy and flame speed suggesting that flame speed is directly influenced by chemical kinetics. Toward this end, the first principle simulations resolve key exothermic surface and intermediate chemistries contributing toward the kinetics that promote high flame speeds. Linking molecular level exothermicity to macroscopic experimental investigations provides insight into the unique role of the alumina oxide shell passivating aluminum particles. In the case of Al reacting with I2O5, the alumina shell promotes exothermic surface chemistries that reduce activation energy and increase flame speed. This finding is in contrast to Al reaction with metal oxides that show the alumina shell does not participate exothermically in the reaction.
Building on Our Teaching Assets: The Unique Pedagogical Contributions of Bilingual Educators
ERIC Educational Resources Information Center
Hopkins, Megan
2013-01-01
This article examines the unique contributions that bilingual and bilingually credentialed teachers make to the instruction of emergent bilinguals in the United States. This mixed methodological study involved 474 teachers in Arizona, California, and Texas, which represent distinct language policy contexts. Results revealed that, irrespective of…
Continuous-Time Public Good Contribution Under Uncertainty: A Stochastic Control Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, Giorgio, E-mail: giorgio.ferrari@uni-bielefeld.de; Riedel, Frank, E-mail: frank.riedel@uni-bielefeld.de; Steg, Jan-Henrik, E-mail: jsteg@uni-bielefeld.de
In this paper we study continuous-time stochastic control problems with both monotone and classical controls motivated by the so-called public good contribution problem. That is the problem of n economic agents aiming to maximize their expected utility allocating initial wealth over a given time period between private consumption and irreversible contributions to increase the level of some public good. We investigate the corresponding social planner problem and the case of strategic interaction between the agents, i.e. the public good contribution game. We show existence and uniqueness of the social planner’s optimal policy, we characterize it by necessary and sufficient stochasticmore » Kuhn–Tucker conditions and we provide its expression in terms of the unique optional solution of a stochastic backward equation. Similar stochastic first order conditions prove to be very useful for studying any Nash equilibria of the public good contribution game. In the symmetric case they allow us to prove (qualitative) uniqueness of the Nash equilibrium, which we again construct as the unique optional solution of a stochastic backward equation. We finally also provide a detailed analysis of the so-called free rider effect.« less
Adolescent health and adult labor market outcomes.
Lundborg, Petter; Nilsson, Anton; Rooth, Dan-Olof
2014-09-01
Whereas a large literature has shown the importance of early life health for adult socioeconomic outcomes, there is little evidence on the importance of adolescent health. We contribute to the literature by studying the impact of adolescent health status on adult labor market outcomes using a unique and large-scale dataset covering almost the entire population of Swedish males. We show that most types of major conditions have long-run effects on future outcomes, and that the strongest effects result from mental conditions. Including sibling fixed effects or twin pair fixed effects reduces the magnitudes of the estimates, but they remain substantial. Copyright © 2014 Elsevier B.V. All rights reserved.
Mathews, Allison; Farley, Samantha; Blumberg, Meredith; Knight, Kimberley; Hightow-Weidman, Lisa; Muessig, Kate; Rennie, Stuart; Tucker, Joseph
2017-10-01
The purpose of this study was to evaluate the feasibility of using a crowdsourcing contest to promote HIV cure research community engagement. Crowdsourcing contests are open calls for community participation to achieve a task, in this case to engage local communities about HIV cure research. Our contest solicited images and videos of what HIV cure meant to people. Contestants submitted entries to IdeaScale, an encrypted online contest platform. We used a mixed-methods study design to evaluate the contest. Engagement was assessed through attendance at promotional events and social media user analytics. Google Analytics measured contest website user-engagement statistics. Text from contest video entries was transcribed, coded and analysed using MAXQDA. There were 144 attendees at three promotional events and 32 entries from 39 contestants. Most individuals who submitted entries were black ( n =31), had some college education ( n =18) and were aged 18-23 years ( n =23). Social media analytics showed 684 unique page followers, 2233 unique page visits, 585 unique video views and an overall reach of 80,624 unique users. Contest submissions covered themes related to the community's role in shaping the future of HIV cure through education, social justice, creativity and stigma reduction. Crowdsourcing contests are feasible for engaging community members in HIV cure research. Community contributions to crowdsourcing contests provide useful content for culturally relevant and locally responsive research engagement.
Bai, Mei; Dixon, Jane K
2014-01-01
The purpose of this study was to reexamine the factor pattern of the 12-item Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being Scale (FACIT-Sp-12) using exploratory factor analysis in people newly diagnosed with advanced cancer. Principal components analysis (PCA) and 3 common factor analysis methods were used to explore the factor pattern of the FACIT-Sp-12. Factorial validity was assessed in association with quality of life (QOL). Principal factor analysis (PFA), iterative PFA, and maximum likelihood suggested retrieving 3 factors: Peace, Meaning, and Faith. Both Peace and Meaning positively related to QOL, whereas only Peace uniquely contributed to QOL. This study supported the 3-factor model of the FACIT-Sp-12. Suggestions for revision of items and further validation of the identified factor pattern were provided.
A Measure of Team Resilience: Developing the Resilience at Work Team Scale.
McEwen, Kathryn; Boyd, Carolyn M
2018-03-01
This study develops, and initial evaluates, a new measure of team-based resilience for use in research and practice. We conducted preliminary analyses, based on a cross-sectional sample of 344 employees nested within 31 teams. Seven dimensions were identified through exploratory and confirmatory factor analyses. The measure had high reliability and significant discrimination to indicate the presence of a unique team-based aspect of resilience that contributed to higher work engagement and higher self-rated team performance, over and above the effects of individual resilience. Multilevel analyses showed that team, but not individual, resilience predicted self-rated team performance. Practice implications include a need to focus on collective as well as individual behaviors in resilience-building. The measure provides a diagnostic instrument for teams and a scale to evaluate organizational interventions and research the relationship of resilience to other constructs.
Fracasso, Lucille E.; Bangs, Kathryn; Binder, Katherine S.
2014-01-01
The Adult Basic Education (ABE) population consists of a wide range of abilities with needs that may be unique to this set of learners. The purpose of this study was to better understand the relative contributions of phonological decoding and morphological awareness to spelling, vocabulary, and comprehension across a sample of ABE students. In this study, phonological decoding was a unique predictor of spelling ability, listening comprehension and reading comprehension. We also found that morphological awareness was a unique predictor of spelling ability, vocabulary, and listening comprehension. Morphological awareness indirectly contributed to reading comprehension through vocabulary. These findings suggest the need for morphological interventions for this group of learners. PMID:24935886
Forbidden unique beta-decays and neutrino mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvornický, Rastislav; Šimkovic, Fedor
2013-12-30
The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that themore » p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.« less
Advances in reproductive science for wild carnivore conservation.
Comizzoli, P; Crosier, A E; Songsasen, N; Gunther, M Szykman; Howard, J G; Wildt, D E
2009-07-01
Knowledge about reproduction is critical for predicting the viability of wildlife populations in nature and for managing breeding programmes in captivity. Intensive species-based studies are the priority, because reproductive mechanisms are extraordinarily diverse, even within the same taxonomic family. Carnivores deserve more attention as such species are highly vulnerable to environmental change and human persecution. The present review provides contemporary illustrations of how reproductive science is contributing to understand unique reproductive mechanisms that are both of fundamental and applied interest. In the case of the endangered African wild dog (Lycaon pictus) free-living in South Africa, non-invasive faecal corticosteroid assessments have yielded new insights about the impact of animal relocation and reintroduction on adaptive responses, reproductive fitness and survival. For the maned wolf (Chrysocyon brachyurus), advances have been made in characterizing and comparing reproductive traits in free-ranging vs captive individuals. For the cheetah (Acinonyx jubatus), recent studies have focused on the cryosensitivity of sperm and the ability to develop a field-friendly sperm cryo-method. The by-product has been a large-scale frozen repository of sperm from wild-caught cheetahs useful for infusing new genes into ex situ populations. Finally, rigorous, multi-disciplinary and cross-institutional reproductive studies of the black-footed ferret (Mustela nigripes), including the use of artificial insemination, have contributed to the remarkable recovery and restoration of this species, once on the brink of extinction. In summary, advances in reproductive science are not necessarily related to 'assisted breeding'. However, understanding the unique ways of carnivore reproduction greatly contributes to species management and conservation.
Hydrophilic Solvation Dominates the Terahertz Fingerprint of Amino Acids in Water.
Esser, Alexander; Forbert, Harald; Sebastiani, Federico; Schwaab, Gerhard; Havenith, Martina; Marx, Dominik
2018-02-01
Spectroscopy in the terahertz frequency regime is a sensitive tool to probe solvation-induced effects in aqueous solutions. Yet, a systematic understanding of spectral lineshapes as a result of distinct solvation contributions remains terra incognita. We demonstrate that modularization of amino acids in terms of functional groups allows us to compute their distinct contributions to the total terahertz response. Introducing the molecular cross-correlation analysis method provides unique access to these site-specific contributions. Equivalent groups in different amino acids lead to look-alike spectral contributions, whereas side chains cause characteristic but additive complexities. Specifically, hydrophilic solvation of the zwitterionic groups in valine and glycine leads to similar terahertz responses which are fully decoupled from the side chain. The terahertz response due to H-bonding within the large hydrophobic solvation shell of valine turns out to be nearly indistinguishable from that in bulk water in direct comparison to the changes imposed by the charged functional groups that form strong H-bonds with their hydration shells. Thus, the hydrophilic groups and their solvation shells dominate the terahertz absorption difference, while on the same intensity scale, the influence of hydrophobic water can be neglected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friar, James Lewis; Goldman, Terrance J.; Pérez-Mercader, J.
In this paper, we apply the Law of Total Probability to the construction of scale-invariant probability distribution functions (pdf's), and require that probability measures be dimensionless and unitless under a continuous change of scales. If the scale-change distribution function is scale invariant then the constructed distribution will also be scale invariant. Repeated application of this construction on an arbitrary set of (normalizable) pdf's results again in scale-invariant distributions. The invariant function of this procedure is given uniquely by the reciprocal distribution, suggesting a kind of universality. Finally, we separately demonstrate that the reciprocal distribution results uniquely from requiring maximum entropymore » for size-class distributions with uniform bin sizes.« less
NASA Astrophysics Data System (ADS)
Dutta, Sajal Kanti; Chakraborty, Saikat
2016-12-01
Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale-the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80-90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5-6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation.
NASA Astrophysics Data System (ADS)
Wesenberg, Devin
Understanding of fundamental physics of transport properties in thin film nanostructures is crucial for application in spintronic, spin caloritronics and thermoelectric applications. Much of the difficulty in the understanding stems from the measurement itself. In this dissertation I present our thermal isolation platform that is primarily used for detection of thermally induced effects in a wide variety of materials. We can accurately and precisely produce in-plane thermal gradients in these membranes, allowing for thin film measurements on 2-D structures. First, we look at thermoelectric enhancements of doped semiconducting single-walled carbon nanotube thin films. We use the Wiedemann-Franz law to calculate contributions to thermal conductivity and find interesting underlying physics as we dope the films, thus changing the Fermi level. Adapting the tube diameter leads to structural differences, which greatly affects both phonon and electron contributions to thermal conductivity. These unique films can be designed as thermoelectric materials that are easy to manufacture and can be utilized in a variety of situations. Second, we look at work measuring enhanced contributions to thermopower and thermal conductivity of unique ferromagnetic metals. We observe improved thermopower due to the ultra-low damping of the magnon system. For spintronic and spin caloritronic applications, having a low damping is important for device engineering and allows for long spin lifetimes. Third, we present on spin transport through disordered magnetic insulators. We observe spin Hall effect driven magnon transport through materials with no long-range order but with local antiferromagnetic exchange interactions. We are the first to observe this type of transport, which may lead spintronic investigations in a new and profound direction. Finally, we look at transverse effects in a thin ferromagnetic metal. Our observation of the planer Nernst effect and planar Hall effect across long length scales shows that effects in this range are dominated by traditional magneto-thermoelectric effects without any evidence of spin transport. A careful understanding of thermal and electric gradients is needed to aid in understanding of transport properties of thin films.
Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Pengjie; Johnson, Matthew C., E-mail: zhangpj@sjtu.edu.cn, E-mail: mjohnson@perimeterinstitute.ca
2015-06-01
Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in themore » diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.« less
Mirkin, B M; Naumova, L G
2015-01-01
L.G. Ramensky (1884-1953) was an outstanding Soviet geobotanist of the first part of XX century. Considered is his theoretical legacy and its contribution to modern vegetation science. L.G. Ramensky formulated the principle of vegetation continuum based on which the modern paradigm of vegetation science has been put into shape. The scientist made a contribution to the development of such important theoretical conceptions as types of plant strategy, coenosis and coenobiosis (coexistence of species), patterns of interannual variability in plant communities, ecological successions. The unique ecological scales were established by L.G. Ramensky that characterize the distribution of 1400 species over the gradients of soil moistening, richness, and salinization as well as moistening variability, pastoral digression, and alluvial intensity. He came out against mechanistic notions by V.N. Sukachev on a biogeocoenosis structure. The scientist did not offer his own method of plant communities classification but his well-reasoned criticism of dominant classification played a great role in adoption of floristical classification principles (Braun-Blanquet approach) by phytocenology in our country.
[Reactance proneness, collectivism, uniqueness, and resistance to persuasion].
Imajo, Shuzo
2002-10-01
This study examined the reliability and validity of Japanese psychological reactance scales. A total of 167 undergraduates completed a questionnaire of Therapeutic Reactance Scale (TRS), the Hong Reactance Scale (HRS), the Uniqueness Scale, and the Collectivism Scale. They also received messages involving three persuasion situations that were either high or low in terms of threat, and were asked to describe their reactions to them. The author categorized the reactions into three: acceptance, indirect resistance, and direct resistance. Reliabilities of the reactance scales were satisfactory. Their scores positively correlated with uniqueness scores, and negatively with collectivism scores. Those high on reactance proneness were less persuaded in two of the three situations. But in the third, an HRS by threat interaction was observed, indicating that only those who were high on reactance proneness under the high-threat condition showed resistance to persuasion. These results suggest that the Japanese versions of reactance scale were reliable and valid. However, the assertiveness aspect of TRS may not be appropriate for the definition of reactance. The influence of culture on psychological reactance was also discussed.
Fracasso, Lucille E; Bangs, Kathryn; Binder, Katherine S
2016-01-01
The Adult Basic Education (ABE) population consists of a wide range of abilities with needs that may be unique to this set of learners. The purpose of this study was to better understand the relative contributions of phonological decoding and morphological awareness to spelling, vocabulary, and comprehension across a sample of ABE students. In this study, phonological decoding was a unique predictor of spelling ability, listening comprehension, and reading comprehension. We also found that morphological awareness was a unique predictor of spelling ability, vocabulary, and listening comprehension. Morphological awareness indirectly contributed to reading comprehension through vocabulary. These findings suggest the need for morphological interventions for this group of learners. © Hammill Institute on Disabilities 2014.
Sample Identification at Scale - Implementing IGSN in a Research Agency
NASA Astrophysics Data System (ADS)
Klump, J. F.; Golodoniuc, P.; Wyborn, L. A.; Devaraju, A.; Fraser, R.
2015-12-01
Earth sciences are largely observational and rely on natural samples, types of which vary significantly between science disciplines. Sharing and referencing of samples in scientific literature and across the Web requires the use of globally unique identifiers essential for disambiguation. This practice is very common in other fields, e.g. ISBN in publishing, doi in scientific literature, etc. In Earth sciences however, this is still often done in an ad-hoc manner without the use of unique identifiers. The International Geo Sample Number (IGSN) system provides a persistent, globally unique label for identifying environmental samples. As an IGSN allocating agency, CSIRO implements the IGSN registration service at the organisational scale with contributions from multiple research groups. Capricorn Distal Footprints project is one of the first pioneers and early adopters of the technology in Australia. For this project, IGSN provides a mechanism for identification of new and legacy samples, as well as derived sub-samples. It will ensure transparency and reproducibility in various geochemical sampling campaigns that will involve a diversity of sampling methods. Hence, diverse geochemical and isotopic results can be linked back to the parent sample, particularly where multiple children of that sample have also been analysed. The IGSN integration for this project is still in early stages and requires further consultations on the governance mechanisms that we need to put in place to allow efficient collaboration within CSIRO and collaborating partners on the project including naming conventions, service interfaces, etc. In this work, we present the results of the initial implementation of IGSN in the context of the Capricorn Distal Footprints project. This study has so far demonstrated the effectiveness of the proposed approach, while maintaining the flexibility to adapt to various media types, which is critical in the context of a multi-disciplinary project.
Visser, Cora L F; Wilschut, Janneke A; Isik, Ulviye; van der Burgt, Stéphanie M E; Croiset, Gerda; Kusurkar, Rashmi A
2018-06-07
The Readiness for Interprofessional Learning Scale is among the first scales developed for measurement of attitude towards interprofessional learning (IPL). However, the conceptual framework of the RIPLS still lacks clarity. We investigated the association of the RIPLS with professional identity, empathy and motivation, with the intention of relating RIPLS to other well-known concepts in healthcare education, in an attempt to clarify the concept of readiness. Readiness for interprofessional learning, professional identity development, empathy and motivation of students for medical school, were measured in all 6 years of the medical curriculum. The association of professional identity development, empathy and motivation with readiness was analyzed using linear regression. Empathy and motivation significantly explained the variance in RIPLS subscale Teamwork & Collaboration. Gender and belonging to the first study year had a unique positive contribution in explaining the variance of the RIPLS subscales Positive and Negative Professional Identity, whereas motivation had no contribution. More compassionate care, as an affective component of empathy, seemed to diminish readiness for IPL. Professional Identity, measured as affirmation or denial of the identification with a professional group, had no contribution in the explanation of the variance in readiness. The RIPLS is a suboptimal instrument, which does not clarify the 'what' and 'how' of IPL in a curriculum. This study suggests that students' readiness for IPE may benefit from a combination with the cognitive component of empathy ('Perspective taking') and elements in the curriculum that promote autonomous motivation.
Remanent and induced contributions of the Earth's magnetization
NASA Astrophysics Data System (ADS)
Vervelidou, Foteini; Lesur, Vincent; Thébault, Erwan; Dyment, Jérôme; Holschneider, Matthias
2016-04-01
Inverting the magnetic field of crustal origin for the magnetization distribution that generates it suffers from non-uniqueness. The reason for this is the so-called annihilators, i.e. structures that produce no visible magnetic field outside the sources. Gubbins et al., 2011 uses the complex vector Spherical Harmonics notation in order to separate the Vertical Integrated Magnetization (VIM) distribution into the parts that do and do not contribute to the magnetic field measured in source free regions. We use their formalism and convert a crustal SH model based on the WDMAM into a model for the equivalent magnetization. However, we extend their formalism and assume that the magnetization is confined within a layer of finite thickness. A different thickness is considered for the oceanic crust than for the continental one. It is well known that the large scales of the crustal field are entirely masked by the Earth's main field. Therefore, we complement the WDMAM based magnetization map (SH degrees 16 to 800) with the magnetization map for the large wavelengths (SH degrees 1-15) that was recently derived by Vervelidou and Thébault (2015) from a series of regional statistical analyses of the World Digital Magnetic Anomaly Map. Finally we propose a tentative separation of this magnetization map into induced and remanent contributions on a regional scale. We do so based on the direction of the core magnetic field. We discuss the implications of these results in terms of the tectonic history of the Earth.
Craigie, Mark; Osseiran-Moisson, Rebecca; Hemsworth, David; Aoun, Samar; Francis, Karen; Brown, Janie; Hegney, Desley; Rees, Clare
2016-01-01
For this study, we examined the nature of the unique relationships trait-negative affect and compassion satisfaction had with compassion fatigue and its components of secondary traumatic stress and burnout in 273 nurses from 1 metropolitan tertiary acute hospital in Western Australia. Participants completed the Professional Quality of Life Scale (Stamm, 2010), Depression Anxiety Stress Scale (Lovibond & Lovibond, 2004), and the State-Trait Anxiety Inventory (Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983). Bivariate correlation and hierarchical regression analyses were performed to examine and investigate 4 hypotheses. The results demonstrate a clear differential pattern of relationships with secondary traumatic stress and burnout for both trait-negative affect and compassion satisfaction. Trait-negative affect was clearly the more important factor in terms of its contribution to overall compassion fatigue and secondary traumatic stress. In contrast, compassion satisfaction's unique protective relationship only related to burnout, and not secondary traumatic stress. The results are therefore consistent with the view that compassion satisfaction may be an important internal resource that protects against burnout, but is not directly influential in protecting against secondary traumatic stress for nurses working in an acute-care hospital environment. With the projected nursing workforce shortages in Australia, it is apparent that a further understanding is warranted of how such personal variables may work as protective and risk factors. (c) 2016 APA, all rights reserved).
Scale and scaling in agronomy and environmental sciences
USDA-ARS?s Scientific Manuscript database
Scale is of paramount importance in environmental studies, engineering, and design. The unique course covers the following topics: scale and scaling, methods and theories, scaling in soils and other porous media, scaling in plants and crops; scaling in landscapes and watersheds, and scaling in agro...
Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei
2015-01-01
Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ubiquity of Benford's law and emergence of the reciprocal distribution
Friar, James Lewis; Goldman, Terrance J.; Pérez-Mercader, J.
2016-04-07
In this paper, we apply the Law of Total Probability to the construction of scale-invariant probability distribution functions (pdf's), and require that probability measures be dimensionless and unitless under a continuous change of scales. If the scale-change distribution function is scale invariant then the constructed distribution will also be scale invariant. Repeated application of this construction on an arbitrary set of (normalizable) pdf's results again in scale-invariant distributions. The invariant function of this procedure is given uniquely by the reciprocal distribution, suggesting a kind of universality. Finally, we separately demonstrate that the reciprocal distribution results uniquely from requiring maximum entropymore » for size-class distributions with uniform bin sizes.« less
ERIC Educational Resources Information Center
Wekerle, Christine; Leung, Eman; Wall, Anne-Marie; MacMillan, Harriet; Boyle, Michael; Trocme, Nico; Waechter, Randall
2009-01-01
Objective: For child protective services (CPS) youth who may have experienced more than one form of maltreatment, the unique contribution of emotional abuse may be over-looked when other forms are more salient and more clearly outside of accepted social norms for parenting. This study considers the unique predictive value of childhood emotional…
NASA Astrophysics Data System (ADS)
Samios, Nicholas
2014-09-01
Since its inception in 1997, the RIKEN BNL Research Center (RBRC) has been a major force in the realms of Spin Physics, Relativistic Heavy Ion Physics, large scale Computing Physics and the training of a new generation of extremely talented physicists. This has been accomplished through the recruitment of an outstanding non-permanent staff of Fellows and Research associates in theory and experiment. RBRC is now a mature organization that has reached a steady level in the size of scientific and support staff while at the same time retaining its vibrant youth. A brief history of the scientific accomplishments and contributions of the RBRC physicists will be presented as well as a discussion of the unique RBRC management structure.
X-Ray Spectroscopy of Photoionized Plasmas
NASA Technical Reports Server (NTRS)
Kallman, Tim
2008-01-01
Spectroscopy allows study of sources on small spatial scales, and can provide detailed diagnostic information about elemental abundances, temperature, density and gas dynamics. For compact sources such as accreting black holes in active galactic nuclei (AGN) and X-ray binaries X-ray spectra provide truly unique insight. Observations using Chandra and XMM have revealed components of gas in these systems which were previously unknown or poorly studied. Interpretation of these data presents modeling and analysis challenges, and requires an understanding of atomic physics, ionization and spectrum formation in a radiation-dominated environment. In this talk I will discuss examples, and how they have contributed to our understanding of accreting sources and the nearby gas.
Development of magnetoelectric nanocomposite for soft technology
NASA Astrophysics Data System (ADS)
Bitla, Yugandhar; Chu, Ying-Hao
2018-06-01
The proliferation of flexible and stretchable electronics has led to substantial advancements in principles, material combinations and technologies. The integration of magnetoelectric systems in soft electronics is inevitable by virtue of their extensive applications. Recently, 2D layered materials have emerged as potential candidates due to their excellent flexibility and atomic-scale thickness scalability in addition to their interesting physics. This paper presents a new perspective on the development of magnetoelectric nanocomposites through materials engineering on a pliant mica with excellent mechanical, thermal and chemical stabilities. The unique features of 2D muscovite mica and the power of van der Waals epitaxy are expected to contribute significantly to the emerging transparent soft-technology research applications.
Dutta, Sajal Kanti; Chakraborty, Saikat
2016-01-01
Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale–the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80–90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5–6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation. PMID:27905534
Lindert, Jutta; Bain, Paul A; Kubzansky, Laura D; Stein, Claudia
2015-08-01
Subjective well-being (SWB) contributes to health and mental health. It is a major objective of the new World Health Organization health policy framework, 'Health 2020'. Various approaches to defining and measuring well-being exist. We aimed to identify, map and analyse the contents of self-reported well-being measurement scales for use with individuals more than 15 years of age to help researchers and politicians choose appropriate measurement tools. We conducted a systematic literature search in PubMed for studies published between 2007 and 2012, with additional hand-searching, to identify empirical studies that investigated well-being using a measurement scale. For each eligible study, we identified the measurement tool and reviewed its components, number of items, administration time, validity, reliability, responsiveness and sensitivity. The literature review identified 60 unique measurement scales. Measurement scales were either multidimensional (n = 33) or unidimensional (n = 14) and assessed multiple domains. The most frequently encountered domains were affects (39 scales), social relations (17 scales), life satisfaction (13 scales), physical health (13 scales), meaning/achievement (9 scales) and spirituality (6 scales). The scales included between 1 and 100 items; the administration time varied from 1 to 15 min. Well-being is a higher order construct. Measures seldom reported testing for gender or cultural sensitivity. The content and format of scales varied considerably. Effective monitoring and comparison of SWB over time and across geographic regions will require further work to refine definitions of SWB. We recommend concurrent evaluation of at least three self-reported SWB measurement scales, including evaluation for gender or cultural sensitivity. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Ant diversity in Brazilian tropical dry forests across multiple vegetation domains
NASA Astrophysics Data System (ADS)
Figueiredo Silva, Luciana; Mello Souza, Rayana; Solar, Ricardo R. C.; de Siqueira Neves, Frederico
2017-03-01
Understanding the environmental drivers of biodiversity persistence and community organization in natural ecosystems is of great importance for planning the conservation of those ecosystems. This comprehension is even more important in severely threatened ecosystems. In this context, we analyzed ant communities in tropical dry forests (TDFs) in Brazil. These forests are embedded within other biomes, such as Cerrado and Caatinga. In this study, we asked whether (i) ant species richness and composition changes between TDFs within different vegetation domains; (ii) whether ant species richness and β-diversity increase north-to-south, possibly related to changes in tree richness and tree density; and (iii) species replacement contributes relatively more to β-diversity than does nestedness. We found that species composition is unique to each TDF within different biomes, and that species richness and β-diversity differ among the vegetation domains, being smaller in the Caatinga. We also found that replacement contributes most to β-diversity, although this contribution is lower in Caatinga than in Cerrado. We show that regional context is the main driver of species diversity, which is likely to be driven by both historical and ecological mechanisms. By analyzing large spatial scale variation in TDF environmental characteristics, we were able to evaluate how ant diversity changes along an environmental gradient. The high levels of species replacement and unique species composition of each region indicates that, to fully conserve TDFs, we need to have various conservation areas distributed across the entire range of vegetation domains in which these forests can be found. Thus, we demonstrate that a landscape-wise planning is urgent and necessary in order to preserve tropical dry forests.
Berninger, Virginia W; Abbott, Robert D; Swanson, H Lee; Lovitt, Dan; Trivedi, Pam; Lin, Shin-Ju Cindy; Gould, Laura; Youngstrom, Marci; Shimada, Shirley; Amtmann, Dagmar
2010-04-01
The purpose of this study was to evaluate the contribution of working memory at the word and sentence levels of language to reading and writing outcomes. Measures of working memory at the word and sentence levels, reading and writing, were administered to 2nd (N = 122), 4th (N = 222), and 6th (N = 105) graders. Structural equation modeling was used to evaluate whether the 2 predictor working memory factors contributed unique variance beyond their shared covariance to each of 5 outcome factors: handwriting, spelling, composing, word reading, and reading comprehension. At each grade level, except for handwriting and composing in 6th grade, the word-level working memory factor contributed unique variance to each reading and writing outcome. The text-level working memory factor contributed unique variance to reading comprehension in 4th and 6th grade. The clinical significance of these findings for assessment and intervention is discussed.
Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains, USA.
Reilly, Matthew J; Elia, Mario; Spies, Thomas A; Gregory, Matthew J; Sanesi, Giovanni; Lafortezza, Raffaele
2018-03-01
Wildfires pose a unique challenge to conservation in fire-prone regions, yet few studies quantify the cumulative effects of wildfires on forest dynamics (i.e., changes in structural conditions) across landscape and regional scales. We assessed the contribution of wildfire to forest dynamics in the eastern Cascade Mountains, USA from 1985 to 2010 using imputed maps of forest structure (i.e., tree size and canopy cover) and remotely sensed burn severity maps. We addressed three questions: (1) How do dynamics differ between the region as a whole and the unburned portion of the region? (2) How do dynamics vary among vegetation zones differing in biophysical setting and historical fire frequency? (3) How have forest structural conditions changed in a network of late successional reserves (LSRs)? Wildfires affected 10% of forests in the region, but the cumulative effects at this scale were primarily slight losses of closed-canopy conditions and slight gains in open-canopy conditions. In the unburned portion of the region (the remaining 90%), closed-canopy conditions primarily increased despite other concurrent disturbances (e.g., harvest, insects). Although the effects of fire were largely dampened at the regional scale, landscape scale dynamics were far more variable. The warm ponderosa pine and cool mixed conifer zones experienced less fire than the region as a whole despite experiencing the most frequent fire historically. Open-canopy conditions increased slightly in the mixed conifer zone, but declined across the ponderosa pine zone even with wildfires. Wildfires burned 30% of the cold subalpine zone, which experienced the greatest increase in open-canopy conditions and losses of closed-canopy conditions. LSRs were more prone to wildfire than the region as a whole, and experienced slight declines in late seral conditions. Despite losses of late seral conditions, wildfires contributed to some conservation objectives by creating open habitats (e.g., sparse early seral and woodland conditions) that otherwise generally decreased in unburned landscapes despite management efforts to increase landscape diversity. This study demonstrates the potential for wildfires to contribute to regional scale conservation objectives, but implications for management and biodiversity at landscape scales vary geographically among biophysical settings, and are contingent upon historical dynamics and individual species habitat preferences. © 2017 by the Ecological Society of America.
Lourenco, Stella F.; Bonny, Justin W.; Fernandez, Edmund P.; Rao, Sonia
2012-01-01
Humans and nonhuman animals share the capacity to estimate, without counting, the number of objects in a set by relying on an approximate number system (ANS). Only humans, however, learn the concepts and operations of symbolic mathematics. Despite vast differences between these two systems of quantification, neural and behavioral findings suggest functional connections. Another line of research suggests that the ANS is part of a larger, more general system of magnitude representation. Reports of cognitive interactions and common neural coding for number and other magnitudes such as spatial extent led us to ask whether, and how, nonnumerical magnitude interfaces with mathematical competence. On two magnitude comparison tasks, college students estimated (without counting or explicit calculation) which of two arrays was greater in number or cumulative area. They also completed a battery of standardized math tests. Individual differences in both number and cumulative area precision (measured by accuracy on the magnitude comparison tasks) correlated with interindividual variability in math competence, particularly advanced arithmetic and geometry, even after accounting for general aspects of intelligence. Moreover, analyses revealed that whereas number precision contributed unique variance to advanced arithmetic, cumulative area precision contributed unique variance to geometry. Taken together, these results provide evidence for shared and unique contributions of nonsymbolic number and cumulative area representations to formally taught mathematics. More broadly, they suggest that uniquely human branches of mathematics interface with an evolutionarily primitive general magnitude system, which includes partially overlapping representations of numerical and nonnumerical magnitude. PMID:23091023
Fanti, Kostas A; Kyranides, Melina N; Georgiou, Giorgos; Petridou, Maria; Colins, Olivier F; Tuvblad, Catherine; Andershed, Henrik
2017-05-01
The present study aimed to examine whether callous-unemotional, grandiose-manipulative, and impulsive-irresponsible dimensions of psychopathy are differentially related to various affective and physiological measures, assessed at baseline and in response to violent and erotic movie scenes. Data were collected from young adults (N = 101) at differential risk for psychopathic traits. Findings from regression analyses revealed a unique predictive contribution of grandiose-manipulative traits in particular to higher ratings of positive valence for violent scenes. Callous-unemotional traits were uniquely associated with lower levels of sympathy toward victims and lower ratings of fear and sadness during violent scenes. All three psychopathy dimensions and the total psychopathy scale showed negative zero-order correlations with heart rate at baseline, but regression analyses revealed that only grandiose manipulation was uniquely predictive of lower baseline heart rate. Grandiose manipulation was also significantly associated with lower baseline skin conductance. Regarding autonomic activity, findings resulted in a unique negative association between grandiose manipulation and heart rate activity in response to violent scenes. In contrast, the impulsive-irresponsible dimension was positively related with heart rate activity to violent scenes. Finally, findings revealed that only callous-unemotional traits were negatively associated with startle potentiation in response to violent scenes. No associations during erotic scenes were identified. These findings point to unique associations between the three assessed dimensions of psychopathy with physiological measures, indicating that grandiose manipulation is associated with hypoarousal, impulsive irresponsibility with hyperarousal, and callous-unemotional traits with low emotional and fear responses to violent scenes. © 2017 Society for Psychophysiological Research.
Brody, Gene H; Dorsey, Shannon; Forehand, Rex; Armistead, Lisa
2002-01-01
The unique contributions that parenting processes (high levels of monitoring with a supportive, involved mother-child relationship) and classroom processes (high levels of organization, rule clarity, and student involvement) make to children's self-regulation and adjustment were examined with a sample of 277 single-parent African American families. A multi-informant design involving mothers, teachers, and 7- to 15-year-old children was used. Structural equation modeling indicated that parenting and classroom processes contributed uniquely to children's adjustment through the children's development of self-regulation. Additional analyses suggested that classroom processes can serve a protective-stabilizing function when parenting processes are compromised, and vice versa. Further research is needed to examine processes in both family and school contexts that promote child competence and resilience.
The Validity of the Teacher Burnout Scale for Use with Special Education Teachers
ERIC Educational Resources Information Center
Cook, Bradley Caro
2012-01-01
Unique stressors can cause special education teachers to experience burnout at twice the rate of their peers in general education. The purpose of this study was to determine if the Teacher Burnout Scale (TBS) is able to accurately predict burnout in special education teachers even though it does not include items that reflect the unique factors…
The impact of clinical librarian services on patients and health care organisations.
Brettle, Alison; Maden, Michelle; Payne, Clare
2016-06-01
Systematic reviews have found limited evidence of effectiveness and impact of clinical librarians (CLs) due to the poor quality of reporting, scale and design of previous studies. To measure specific CL impact on organisational and patient outcomes using a robust approach that helps CLs develop research skills. Questionnaire and interviews. Clinical librarians contribute to a wide range of outcomes in the short and longer term reflecting organisational priorities and objectives. These include direct contributions to choice of intervention (36%) diagnosis (26%) quality of life (25%), increased patient involvement in decision making (26%) and cost savings and risk management including avoiding tests, referrals, readmissions and reducing length of stay (28%). Interventions provided by CL's are complex and each contributes to multiple outcomes of importance to health care organisations. This study is unique in taking a wide view of potential and specific impacts to which CLs contribute across health care organisations. It is the largest UK evaluation of CL services to date and demonstrates CLs affect direct patient care, improve quality and save money. Future researchers are urged to use the tools presented to collect data on the same outcomes to build a significant and comprehensive international evidence base about the effectiveness and impact of clinical librarian services. © 2016 Health Libraries Group.
Xu, Rong; Li, Li; Wang, QuanQiu
2013-01-01
Motivation: Systems approaches to studying phenotypic relationships among diseases are emerging as an active area of research for both novel disease gene discovery and drug repurposing. Currently, systematic study of disease phenotypic relationships on a phenome-wide scale is limited because large-scale machine-understandable disease–phenotype relationship knowledge bases are often unavailable. Here, we present an automatic approach to extract disease–manifestation (D-M) pairs (one specific type of disease–phenotype relationship) from the wide body of published biomedical literature. Data and Methods: Our method leverages external knowledge and limits the amount of human effort required. For the text corpus, we used 119 085 682 MEDLINE sentences (21 354 075 citations). First, we used D-M pairs from existing biomedical ontologies as prior knowledge to automatically discover D-M–specific syntactic patterns. We then extracted additional pairs from MEDLINE using the learned patterns. Finally, we analysed correlations between disease manifestations and disease-associated genes and drugs to demonstrate the potential of this newly created knowledge base in disease gene discovery and drug repurposing. Results: In total, we extracted 121 359 unique D-M pairs with a high precision of 0.924. Among the extracted pairs, 120 419 (99.2%) have not been captured in existing structured knowledge sources. We have shown that disease manifestations correlate positively with both disease-associated genes and drug treatments. Conclusions: The main contribution of our study is the creation of a large-scale and accurate D-M phenotype relationship knowledge base. This unique knowledge base, when combined with existing phenotypic, genetic and proteomic datasets, can have profound implications in our deeper understanding of disease etiology and in rapid drug repurposing. Availability: http://nlp.case.edu/public/data/DMPatternUMLS/ Contact: rxx@case.edu PMID:23828786
Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements
NASA Astrophysics Data System (ADS)
Kim, Sang-Koog
2010-07-01
Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.
Urban cross-sector actions for carbon mitigation with local health co-benefits in China
NASA Astrophysics Data System (ADS)
Ramaswami, Anu; Tong, Kangkang; Fang, Andrew; Lal, Raj M.; Nagpure, Ajay Singh; Li, Yang; Yu, Huajun; Jiang, Daqian; Russell, Armistead G.; Shi, Lei; Chertow, Marian; Wang, Yangjun; Wang, Shuxiao
2017-10-01
Cities offer unique strategies to reduce fossil fuel use through the exchange of energy and materials across homes, businesses, infrastructure and industries co-located in urban areas. However, the large-scale impact of such strategies has not been quantified. Using new models and data sets representing 637 Chinese cities, we find that such cross-sectoral strategies--enabled by compact urban design and circular economy policies--contribute an additional 15%-36% to national CO2 mitigation, compared to conventional single-sector strategies. As a co-benefit, ~25,500 to ~57,500 deaths annually are avoided from air pollution reduction. The benefits are highly variable across cities, ranging from <1%-37% for CO2 emission reduction and <1%-47% for avoided premature deaths. These results, using multi-scale, multi-sector physical systems modelling, identify cities with high carbon and health co-benefit potential and show that urban-industrial symbiosis is a significant carbon mitigation strategy, achievable with a combination of existing and advanced technologies in diverse city types.
NASA Astrophysics Data System (ADS)
Chaplain, Mark A. J.; Powathil, Gibin G.
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.
NASA Astrophysics Data System (ADS)
Chaplain, Mark A. J.; Powathil, Gibin G.
2015-04-01
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.
Farrell, Ann H; Brook, Christina; Dane, Andrew V; Marini, Zopito A; Volk, Anthony A
2015-01-01
Conventionally, individual differences have been assessed using temperament measures for infants and children, and personality measures for adults. We chose to explore both temperament and personality to see whether a convergence exists specifically during adolescence. A sample of 225 adolescents completed Rothbart's Early Adolescent Temperament Questionnaire-Revised (EATQ-R), a 4-factor temperament scale, and the HEXACO Personality Inventory-Revised (HEXACO PI-R), a 6-factor personality scale. As hypothesized, we found significant relations between the 2 measures. However, there were some important differences between the 2 measures regarding Honesty-Humility, Openness, and Frustration that highlight the unique contributions of both instruments to understanding and measuring adolescent individual differences. As there is a relatively scant history of measuring temperament or personality in adolescence, it is sometimes difficult for researchers to decide which instrument is most appropriate. The results reported here suggest that either the EATQ-R or the HEXACO PI-R could be appropriate, depending on the specific research questions being asked.
NASA Astrophysics Data System (ADS)
Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.
2017-03-01
Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.
Determination of Protein Surface Hydration by Systematic Charge Mutations
NASA Astrophysics Data System (ADS)
Yang, Jin; Jia, Menghui; Qin, Yangzhong; Wang, Dihao; Pan, Haifeng; Wang, Lijuan; Xu, Jianhua; Zhong, Dongping; Dongping Zhong Collaboration; Jianhua Xu Collaboration
Protein surface hydration is critical to its structural stability, flexibility, dynamics and function. Recent observations of surface solvation on picosecond time scales have evoked debate on the origin of such relatively slow motions, from hydration water or protein charged sidechains, especially with molecular dynamics simulations. Here, we used a unique nuclease with a single tryptophan as a local probe and systematically mutated neighboring three charged residues to differentiate the contributions from hydration water and charged sidechains. By mutations of alternative one and two and all three charged residues, we observed slight increases in the total tryptophan Stokes shifts with less neighboring charged residue(s) and found insensitivity of charged sidechains to the relaxation patterns. The dynamics is correlated with hydration water relaxation with the slowest time in a dense charged environment and the fastest time at a hydrophobic site. On such picosecond time scales, the protein surface motion is restricted. The total Stokes shifts are dominantly from hydration water relaxation and the slow dynamics is from water-driven relaxation, coupled with local protein fluctuations.
NASA Astrophysics Data System (ADS)
Pilorget, C.; Bibring, J. P.; Berthe, M.
2011-10-01
The coupling between imaging and spectrometry has proved to be one of the most promising way to study remotely planetary objects [1][2]. The next step is to use this concept for in situ analyses. MicrOmega IR has been developed within this scope in the framework of the Exomars mission (Pasteur paylaod). It is an ultra miniaturized nearinfrared hyperspectral microscope dedicated to in situ analyses, with the goal to characterize the composition of Mars soil at almost its grain size scale, in a non destructive way. It will provide unique clues to trace back the history of Mars, and will contribute to assess Mars past and present astrobiological potential by detecting possible organic compounds within the samples. Results obtained on ground both on a representative breadboard of the instrument and with a demonstrator developed in the scope of the Phobos Grunt mission will be presented during the conference to demonstrate the instrument capabilities.
NASA Astrophysics Data System (ADS)
Angelopoulos, V.; Hietala, H.; Liu, Z.; Mende, S. B.; Phan, T.; Nishimura, T.; Strangeway, R. J.; Burch, J. L.; Moore, T. E.; Giles, B. L.
2015-12-01
The recent launch of MMS, the impending launch of ERG, the continued availability of space (NASA, NOAA, International) and ground based assets (THEMIS GBOs, TREx, SuperDARN) enable a comprehensive study of global drivers of (and responses to) kinetic processes at the magnetopause, the magnetotail, the inner magnetosphere and the ionosphere. Previously unresolved questions related to the nature of the modes of magnetospheric convection (pseudobreakups, substorms, SMCs and storms) can now be addressed simultaneously at a kinetic level (with multi-spacecraft missions) and at a global level (with the emerging, powerful H/GSO). THEMIS has been tasked to perform orbital changes that will optimize the observatory, and simultaneously place its probes, along with MMS's, at the heart of where critical kinetic processes occur, near sites of magnetic reconnection and magnetic energy conversion, and in optimal view of ground based assets. I will discuss these unique alignments of the H/GSO fleet that can reveal how cross-scale coupling is manifest, allowing us to view old paradigms in a new light.
Butterworth, Peter; Leach, Liana S; Kiely, Kim M
2016-11-01
There is limited Australian information on the prevalence and mental health consequences of bullying and ill-treatment at work. The aims of this study were to use data from an ongoing Australian longitudinal cohort study to (1) compare different measures of workplace bullying, (2) estimate the prevalence of bullying and ill-treatment at work, (3) evaluate whether workplace bullying is distinct from other adverse work characteristics and (4) examine the unique contribution of workplace bullying to common mental disorders in mid-life. The sample comprised 1466 participants (52% women) aged 52-58 from wave four of the Personality and Total Health (PATH) through Life study. Workplace bullying was assessed by a single item of self-labelling measure of bullying and a 15-item scale of bullying-related behaviours experienced in the past 6 months. Factor analysis the identified underlying factor structure of the behavioural bullying scale. Current bullying was reported by 7.0% of respondents, while 46.4% of respondents reported that they had been bullied at some point in their working life. Person-related and work-related bullying behaviours were more common than violence and intimidation. The multi-dimensional scale of bullying behaviours had greater concordance with a single item of self-labelled bullying (Area Under the Curve = 0.88) than other adverse work characteristics (all Area Under the Curves < 0.67). Self-labelled bullying and scales reflecting person-related and work-related bullying were independent predictors of depression and/or anxiety. This study provides unique information on the prevalence and mental health impacts of workplace bullying and ill-treatment in Australia. Workplace bullying is a relatively common experience, and is associated with increased risk of depression and anxiety. Greater attention to identifying and preventing bullying and ill-treatment in the workplace is warranted. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Shared Genetic Contributions to Anxiety Disorders and Pathological Gambling in a Male Population
Giddens, Justine L.; Xian, Hong; Scherrer, Jeffrey F.; Eisen, Seth A.; Potenza, Marc N.
2013-01-01
Background Pathological gambling (PG) frequently co-occurs with anxiety disorders. However, the extent to which the co-occurrence is related to genetic or environmental factors across PG and anxiety disorders is not known. Method Data from the Vietnam Twin Registry (n=7869, male twins) were examined in bivariate models to estimate genetic and shared and unique environmental contributions to PG and generalized anxiety disorder (GAD) and PG and panic disorder (PD). Results While both genetic and unique environmental factors contributed individually to PG, GAD, and PD, the best fitting model indicated that the relationship between PG and GAD was attributable predominantly to shared genetic contributions (ra =0.53). In contrast, substantial correlations were observed between both the genetic (ra=0.34) and unique environmental (re =0.31) contributions to PG and PD. Limitations Results may be limited to middle aged males. Conclusions The existence of shared genetic contributions between PG and both GAD and PD suggest that specific genes, perhaps those involved in affect regulation or stress responsiveness, contribute to PG and anxiety disorders. Overlapping environmental contributions to the co-occurrence of PG and PD suggest that common life experiences (e.g., early life trauma) contribute to both PG and PD. Conversely, the data suggest that distinct environmental factors contribute to PG and GAD (e.g., early onset of gambling in PG). Future studies should examine the relationship between PG and anxiety disorders amongst other populations (women, adolescents) to identify specific genetic and environmental influences that account for the manifestation of these disorders and their co-occurrences. PMID:21481943
Shared genetic contributions to anxiety disorders and pathological gambling in a male population.
Giddens, Justine L; Xian, Hong; Scherrer, Jeffrey F; Eisen, Seth A; Potenza, Marc N
2011-08-01
Pathological gambling (PG) frequently co-occurs with anxiety disorders. However, the extent to which the co-occurrence is related to genetic or environmental factors across PG and anxiety disorders is not known. Data from the Vietnam Era Twin Registry (n=7869, male twins) were examined in bivariate models to estimate genetic and shared and unique environmental contributions to PG and generalized anxiety disorder (GAD) and PG and panic disorder (PD). While both genetic and unique environmental factors contributed individually to PG, GAD, and PD, the best fitting model indicated that the relationship between PG and GAD was attributable predominantly to shared genetic contributions (r(A)=0.53). In contrast, substantial correlations were observed between both the genetic (r(A)=0.34) and unique environmental (r(E)=0.31) contributions to PG and PD. Results may be limited to middle aged males. The existence of shared genetic contributions between PG and both GAD and PD suggests that specific genes, perhaps those involved in affect regulation or stress responsiveness, contribute to PG and anxiety disorders. Overlapping environmental contributions to the co-occurrence of PG and PD suggest that common life experiences (e.g., early life trauma) contribute to both PG and PD. Conversely, the data suggest that distinct environmental factors contribute to PG and GAD (e.g., early onset of gambling in PG). Future studies should examine the relationship between PG and anxiety disorders amongst other populations (women and adolescents) to identify specific genetic and environmental influences that account for the manifestation of these disorders and their co-occurrences. Copyright © 2011. Published by Elsevier B.V.
Rojahn, Johannes; Schroeder, Stephen R; Mayo-Ortega, Liliana; Oyama-Ganiko, Rosao; LeBlanc, Judith; Marquis, Janet; Berke, Elizabeth
2013-05-01
Reliable and valid assessment of aberrant behaviors is essential in empirically verifying prevention and intervention for individuals with intellectual or developmental disabilities (IDD). Few instruments exist which assess behavior problems in infants. The current longitudinal study examined the performance of three behavior-rating scales for individuals with IDD that have been proven psychometrically sound in older populations: the Aberrant Behavior Checklist (ABC), the Behavior Problems Inventory (BPI-01), and the Repetitive Behavior Scale - Revised (RBS-R). Data were analyzed for 180 between six and 36 months old children at risk for IDD. Internal consistency (Cronbach's α) across the subscales of the three instruments was variable. Test-retest reliability of the three BPI-01 subscales ranged from .68 to .77 for frequency ratings and from .65 to .80 for severity ratings (intraclass correlation coefficients). Using a multitrait-multimethod matrix approach high levels of convergent and discriminant validity across the three instruments was found. As anticipated, there was considerable overlap in the information produced by the three instruments; however, each behavior-rating instrument also contributed unique information. Our findings support using all three scales in conjunction if possible. Copyright © 2013 Elsevier Ltd. All rights reserved.
The relative contributions of parents and siblings to child and adolescent development.
Tucker, Corinna Jenkins; Updegraff, Kimberly
2009-01-01
Guided by an ecological framework, we explore how siblings' and parents' roles, relationships, and activities are intertwined in everyday life, providing unique and combined contributions to development. In a departure from past research that emphasized the separate contributions of siblings and parents to individual development, we find that examining the conjoint or interactive effects of sibling and parent influences promises to extend our understanding of the role of family in children's and adolescents' social, emotional, and cognitive development. Understood within the context of family and sociocultural characteristics, siblings' unique roles as agents of socialization are illuminated.
Powell, Douglas W; Queen, Robin M; Williams, D S Blaise
2016-10-01
To examine lower extremity joint contributions to a landing task in high-(HA) and low-arched (LA) female athletes by quantifying vertical stiffness, joint work and relative joint contributions to landing. Twenty healthy female recreational athletes (10 HA and 10 LA) performed five barefoot drop landings from a height of 30cm. Three-dimensional kinematics (240Hz) and ground reaction forces (960Hz) were recorded simultaneously. Vertical stiffness, joint work values and relative joint work values were calculated using Visual 3D and MatLab. HA athletes had significantly greater vertical stiffness compared to LA athletes (p=0.013). Though no differences in ankle joint work were observed (p=0.252), HA athletes had smaller magnitudes of knee (p=0.046), hip (p=0.019) and total lower extremity joint work values (p=0.016) compared to LA athletes. HA athletes had greater relative contributions of the ankle (p=0.032) and smaller relative contributions of the hip (p=0.049) compared to LA athletes. No differences in relative contributions of the knee were observed (p=0.255). These findings demonstrate that aberrant foot structure is associated with unique contributions of lower extremity joints to load attenuation during landing. These data may provide insight into the unique injury mechanisms associated with arch height in female athletes. Copyright © 2016 Elsevier B.V. All rights reserved.
Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.
2017-01-01
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465
Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N
2017-01-25
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.
Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison
NASA Astrophysics Data System (ADS)
Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.
2016-02-01
Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.
Dahlgren, Camilla Lindvall; Stedal, Kristin; Rø, Øyvind
2017-05-01
The aim of the current study was to collect clinical normative data for the Clinical Impairment Assessment questionnaire (CIA) and the Eating Disorder Examination Questionnaire (EDE-Q) from adult patients with eating disorders (EDs). This study also examined unique contributions of eating disorder (ED) symptoms on levels of ED-related impairment. A sample of 667 patients, 620 females and 47 males, was recruited from six specialist centres across Norway. The majority of the sample (40.3%) was diagnosed with eating disorder not otherwise specified (EDNOS), 34.5% had bulimia nervosa (BN), and 25.2% were diagnosed with anorexia nervosa (AN). There were significant differences for global EDE-Q and CIA scores between females and males. In the female sample, significant differences were found on several EDE-Q sub-scales between the AN and BN group, and between the AN and EDNOS group. No significant differences were found between the diagnostic groups on the CIA. In the male sample, no significant differences were found between diagnostic groups on the EDE-Q or CIA. A multiple regression analysis revealed that 46.8% of the variance in impairment as measured by the CIA was accounted for by ED symptoms. Body mass index, Eating Concern, Shape/Weight Concern, and binge eating served as significant, unique predictors of impairment. The results from the present study contribute to the interpretation of EDE-Q and CIA scores in ED samples.
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.
2013-01-01
NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.
Roberts, M A; Milich, R; Loney, J; Caputo, J
1981-09-01
The convergent and discriminant validities of three teacher rating scale measures of the traits of hyperactivity, aggression, and inattention were explored, using the multitrait-multimethod matrix approach of Campbell and Fiske (1959), as well as an analysis of variance procedure (Stanley, 1961). In the present study teachers rated children from their elementary school classrooms on the above traits. The results provided strong evidence for convergent validity. Data also indicated that these traits can be reliable differentiated by teachers, suggesting that research aimed at better understanding the unique contributions of hyperactivity, aggression, and inattention is warranted. The respective benefits of analyzing multitrait-multimethod matrices by employing the ANOVA procedure or by using the Campbell and Fiske (1959) criteria were discussed.
NASA Astrophysics Data System (ADS)
Sirianni, M.; Comas, X.; Shoemaker, B.
2017-12-01
Wetland methane emissions are highly variable both in space and time, and are controlled by changes in certain biogeochemical controls (i.e. organic matter availability; redox potential) and/or other environmental factors (i.e. soil temperature; water level). Consequently, hot spots (areas with disproportionally high emissions) may develop where biogeochemical and environmental conditions are especially conducive for enhancing certain microbial processes such as methanogenesis. The Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. In addition to rainfall, hydroperiod, fire regime, elevation above mean sea level, dominant vegetation type and underlying geological controls contribute to the development and evolution of organic and calcitic soils found throughout the Preserve. Currently, the U.S. Geological Survey employs eddy covariance methods within the Preserve to quantify carbon and methane exchanges over several spatially extensive vegetation communities. While eddy covariance towers are a convenient tool for measuring gas exchanges at the ecosystem scale, their spatially extensive footprint (hundreds of meters) may mask smaller scale spatial variabilities that may be conducive to the development of hot spots. Similarly, temporal resolution (i.e. sampling effort) at scales smaller that the eddy covariance measurement footprint is important since low resolution data may overlook rapid emission events and the temporal variability of discrete hot spots. In this work, we intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a unique combination of ground penetrating radar (GPR), capacitance probes, gas traps, and time-lapse photography. By using an array of methods that vary in spatio-temporal resolution, we hope to better understand the uncertainties associated with measuring wetland methane fluxes across different spatial and temporal scales. Our results have implications for characterizing and refining methane flux estimates in subtropical peat soils that could be used for climate models.
Half-precessional climate forcing of Indian Ocean monsoon dynamics on the East African equator
NASA Astrophysics Data System (ADS)
Verschuren, D.; Sinninghe Damste, J. S.; Moernaut, J.; Kristen, I.; Fagot, M.; Blaauw, M.; Haug, G. H.; Project Members, C.
2008-12-01
The EuroCLIMATE project CHALLACEA produced a detailed multi-proxy reconstruction of the climate history of equatorial East Africa, based on the sediment record of Lake Challa, a 4.2 km2, 92-m deep crater lake on the lower East slope of Mt. Kilimanjaro (Kenya/Tanzania). Relatively stable sedimentation dynamics over the past 25,000 years resulted in a unique combination of high temporal resolution, excellent radiometric (210Pb, 14C) age control, and confidence that recording parameters of the climatic proxy signals extracted from the sediment have remained constant through time. The equatorial (3 deg. S) location of our study site in East Africa, where seasonal migration of convective activity spans the widest latitude range worldwide, produced unique information on how varying rainfall contributions from the northeasterly and southeasterly Indian Ocean monsoons shaped regional climate history. The Challa proxy records for temperature (TEX86) and moisture balance (reflection-seismic stratigraphy and the BIT index of soil bacterial input) uniquely weave together tropical climate variability at orbital and shorter time scales. The temporal pattern of reconstructed moisture balance bears the clear signature of half- precessional insolation forcing of Indian Ocean monsoon dynamics, modified by northern-latitude influence on moisture-balance variation at millennial and century time scales. During peak glacial time (but not immediately before) and the Younger Dryas, NH ice sheet influences overrode local insolation influence on monsoon intensity. After the NH ice sheets had melted and a relatively stable interglacial temperature regime developed, precession-driven summer insolation became the dominant determinant of regional moisture balance, with anti-phased patterns of Holocene hydrological change in the northern and southern (sub)tropics, and a uniquely hybrid pattern on the East African equator. In the last 2-3000 years a series of multi-century droughts with links to high latitude climate variability exerted widespread influence across the African continent. In northern and western tropical Africa these drought episodes accentuated the late- Holocene drying trend; in southern tropical Africa they mitigated or aborted the trend to increasing monsoon rainfall prescribed by SH insolation forcing.
Dissociative absorption: An empirically unique, clinically relevant, dissociative factor.
Soffer-Dudek, Nirit; Lassri, Dana; Soffer-Dudek, Nir; Shahar, Golan
2015-11-01
Research of dissociative absorption has raised two questions: (a) Is absorption a unique dissociative factor within a three-factor structure, or a part of one general dissociative factor? Even when three factors are found, the specificity of the absorption factor is questionable. (b) Is absorption implicated in psychopathology? Although commonly viewed as "non-clinical" dissociation, absorption was recently hypothesized to be specifically associated with obsessive-compulsive symptoms. To address these questions, we conducted exploratory and confirmatory factor analyses on 679 undergraduates. Analyses supported the three-factor model, and a "purified" absorption scale was extracted from the original inclusive absorption factor. The purified scale predicted several psychopathology scales. As hypothesized, absorption was a stronger predictor of obsessive-compulsive symptoms than of general psychopathology. In addition, absorption was the only dissociative scale that longitudinally predicted obsessive-compulsive symptoms. We conclude that absorption is a unique and clinically relevant dissociative tendency that is particularly meaningful to obsessive-compulsive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.
Crocker, Jennifer; Luhtanen, Riia K
2003-06-01
The unique effects of level of self-esteem and contingencies of self-worth assessed prior to college on academic, social, and financial problems experienced during the freshman year were examined in a longitudinal study of 642 college students. Low self-esteem predicted social problems, even controlling for demographic and personality variables (neuroticism, agreeableness, and social desirability), but did not predict academic or financial problems with other variables controlled. Academic competence contingency predicted academic and financial problems and appearance contingency predicted financial problems, even after controlling for relevant personality variables. We conclude that contingencies of self-worth uniquely contribute to academic and financial difficulties experienced by college freshmen beyond level of self-esteem and other personality variables. Low self-esteem, on the other hand, appears to uniquely contribute to later social difficulties.
NASA Astrophysics Data System (ADS)
Goodwell, Allison E.; Kumar, Praveen
2017-07-01
In an ecohydrologic system, components of atmospheric, vegetation, and root-soil subsystems participate in forcing and feedback interactions at varying time scales and intensities. The structure of this network of complex interactions varies in terms of connectivity, strength, and time scale due to perturbations or changing conditions such as rainfall, drought, or land use. However, characterization of these interactions is difficult due to multivariate and weak dependencies in the presence of noise, nonlinearities, and limited data. We introduce a framework for Temporal Information Partitioning Networks (TIPNets), in which time-series variables are viewed as nodes, and lagged multivariate mutual information measures are links. These links are partitioned into synergistic, unique, and redundant information components, where synergy is information provided only jointly, unique information is only provided by a single source, and redundancy is overlapping information. We construct TIPNets from 1 min weather station data over several hour time windows. From a comparison of dry, wet, and rainy conditions, we find that information strengths increase when solar radiation and surface moisture are present, and surface moisture and wind variability are redundant and synergistic influences, respectively. Over a growing season, network trends reveal patterns that vary with vegetation and rainfall patterns. The framework presented here enables us to interpret process connectivity in a multivariate context, which can lead to better inference of behavioral shifts due to perturbations in ecohydrologic systems. This work contributes to more holistic characterizations of system behavior, and can benefit a wide variety of studies of complex systems.
NASA Astrophysics Data System (ADS)
Jedlikowski, Jan; Chibowski, Piotr; Karasek, Tomasz; Brambilla, Mattia
2016-05-01
Habitat selection often involves choices made at different spatial scales, but the underlying mechanisms are still poorly understood, and studies that investigate the relative importance of individual scales are rare. We investigated the effect of three spatial scales (landscape, territory, nest-site) on the occurrence pattern of little crake Zapornia parva and water rail Rallus aquaticus at 74 ponds in the Masurian Lakeland, Poland. Habitat structure, food abundance and water chemical parameters were measured at nests and random points within landscape plots (from 300-m to 50-m radius), territory (14-m) and nest-site plots (3-m). Regression analyses suggested that the most relevant scale was territory level, followed by landscape, and finally by nest-site for both species. Variation partitioning confirmed this pattern for water rail, but also highlighted the importance of nest-site (the level explaining the highest share of unique variation) for little crake. The most important variables determining the occurrence of both species were water body fragmentation (landscape), vegetation density (territory) and water depth (at territory level for little crake, and at nest-site level for water rail). Finally, for both species multi-scale models including factors from different levels were more parsimonious than single-scale ones, i.e. habitat selection was likely a multi-scale process. The importance of particular spatial scales seemed more related to life-history traits than to the extent of the scales considered. In the case of our study species, the territory level was highly important likely because both rallids have to obtain all the resources they need (nest site, food and mates) in relatively small areas, the multi-purpose territories they defend.
Vongsangnak, Wanwipa; Klanchui, Amornpan; Tawornsamretkit, Iyarest; Tatiyaborwornchai, Witthawin; Laoteng, Kobkul; Meechai, Asawin
2016-06-01
We present a novel genome-scale metabolic model iWV1213 of Mucor circinelloides, which is an oleaginous fungus for industrial applications. The model contains 1213 genes, 1413 metabolites and 1326 metabolic reactions across different compartments. We demonstrate that iWV1213 is able to accurately predict the growth rates of M. circinelloides on various nutrient sources and culture conditions using Flux Balance Analysis and Phenotypic Phase Plane analysis. Comparative analysis of three oleaginous genome-scale models, including M. circinelloides (iWV1213), Mortierella alpina (iCY1106) and Yarrowia lipolytica (iYL619_PCP) revealed that iWV1213 possesses a higher number of genes involved in carbohydrate, amino acid, and lipid metabolisms that might contribute to its versatility in nutrient utilization. Moreover, the identification of unique and common active reactions among the Zygomycetes oleaginous models using Flux Variability Analysis unveiled a set of gene/enzyme candidates as metabolic engineering targets for cellular improvement. Thus, iWV1213 offers a powerful metabolic engineering tool for multi-level omics analysis, enabling strain optimization as a cell factory platform of lipid-based production. Copyright © 2016 Elsevier B.V. All rights reserved.
Multiscale model within-host and between-host for viral infectious diseases.
Almocera, Alexis Erich S; Nguyen, Van Kinh; Hernandez-Vargas, Esteban A
2018-05-08
Multiscale models possess the potential to uncover new insights into infectious diseases. Here, a rigorous stability analysis of a multiscale model within-host and between-host is presented. The within-host model describes viral replication and the respective immune response while disease transmission is represented by a susceptible-infected model. The bridging of scales from within- to between-host considered transmission as a function of the viral load. Consequently, stability and bifurcation analyses were developed coupling the two basic reproduction numbers [Formula: see text] and [Formula: see text] for the within- and the between-host subsystems, respectively. Local stability results for each subsystem, including a unique stable equilibrium point, recapitulate classical approaches to infection and epidemic control. Using a Lyapunov function, global stability of the between-host system was obtained. Our main result was the derivation of the [Formula: see text] as an increasing function of [Formula: see text]. Numerical analyses reveal that a Michaelis-Menten form based on the virus is more likely to recapitulate the behavior between the scales than a form directly proportional to the virus. Our work contributes basic understandings of the two models and casts light on the potential effects of the coupling function on linking the two scales.
NASA Astrophysics Data System (ADS)
Lievana, A.; Ladah, L. B.; Lavin, M. F.; Filonov, A. E.; Tapia, F. J.; Leichter, J.; Valencia Gasti, J. A.
2016-02-01
Physical transport processes, such as nonlinear internal waves, operating within the coastal ocean of Baja California, Mexico, are diverse, variable and operate on a variety of temporal and spatial scales. Understanding the influence of nonlinear internal waves, in part responsible for the exchange of water properties between coastal and offshore environments, on the structure of intertidal communities is important for the generation of working ecological models. The relationship between the supply of ecological subsidies associated with physical transport processes that operate on relatively short spatial and temporal scales, such as the internal tide, and intertidal community structure must be understood as processes that operate on distinct spatial and temporal scales may be prone to react uniquely as the climate changes. We designed an experiment to quantify recruitment and adult survivorship of Chthamalus sp. whose settlement was associated with internal wave activity in the nearby ocean and found that the number of settlers was a robust predictor of the number of adults observed, indicating that post-settlement processes such as competition and predation are not likely to significantly affect the structure of the intertidal barnacle community resulting from internal-wave forced settlement.
A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, K. E.; Fasanella, E. L.
2003-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.
What water isotopes tell us about water cycle responses to climate change
NASA Astrophysics Data System (ADS)
Raudzens Bailey, A.; Singh, H. A.; Nusbaumer, J. M.; Dee, S.; Blossey, P. N.; Posmentier, E. S.
2017-12-01
The water cycle is expected to respond strongly to rising global temperatures. Models predict regional imbalances in evaporation and precipitation will intensify, resulting in a slowing of the large-scale circulation. This slowing will extend the moisture length scale by increasing the amount of time water resides in the atmosphere. However, verifying these changes observationally is challenging. Isotope ratios in water vapor and precipitation represent an integrated record of moisture's journey from evaporative source to precipitation sink. Consequently, they provide a unique opportunity to identify changes in moisture length scale associated with shifts in regional hydrologic balance. Leveraging satellite retrievals, box models, climate simulations, and in situ data, this presentation demonstrates how water isotope ratios can be used to estimate water cycle changes over the historical period and into the future. These changes are closely linked to variations in the divergence of atmospheric moisture fluxes, which result from variations in specific humidity, wind direction, and wind speed. This presentation highlights the extent to which isotopic measurements allow us to track changes in the dynamic, or wind-driven, component of moisture transport and to investigate whether remote moisture contributions are becoming increasingly important in augmenting local precipitation.
Scharf, Miri; Mayseless, Ofra; Kivenson-Baron, Inbal
2012-01-01
The study examined: (1) the intergenerational concordance between parents and their adolescent sons using the Adult Attachment Interview (AAI) categories and state-of-mind scales; and (2) the contribution of parents' state of mind with respect to attachment to their sons' adjustment during a stressful separation, as well as the possibility that sons' AAI mediates the associations between parents' AAI and sons' adjustment. Eighty-eight adolescents and their parents were interviewed using the AAI during the son's senior year in high school. Approximately a year later, during the first phase of compulsory military service, the adolescents and their peers reported on the sons' adjustment. Results demonstrated AAI correspondence between mothers' (but not fathers) and sons' categories (autonomous versus non-autonomous) and associations between mothers', fathers' and sons' AAI state-of-mind scales. The adjustment of sons of non-autonomous mothers (in particular, preoccupied mothers) was inferior to the adjustment of others. Mothers' and fathers' state of mind scales were associated with sons' adjustment, but sons' AAI did not mediate this association. The uniqueness of adolescence, the importance of parents' state of mind and the differences between mothers and fathers are discussed.
Barbour, M M; Hunt, J E; Walcroft, A S; Rogers, G N D; McSeveny, T M; Whitehead, D
2005-02-01
Here we develop and test a method to scale sap velocity measurements from individual trees to canopy transpiration (E(c)) in a low-productivity, old-growth rainforest dominated by the conifer Dacrydium cupressinum. Further, E(c) as a component of the ecosystem water balance is quantified in relation to forest floor evaporation rates and measurements of ecosystem evaporation using eddy covariance (E(eco)) in conditions when the canopy was dry and partly wet. Thermal dissipation probes were used to measure sap velocity of individual trees, and scaled to transpiration at the canopy level by dividing trees into classes based on sapwood density and canopy position (sheltered or exposed). When compared with ecosystem eddy covariance measurements, E(c) accounted for 51% of E(eco) on dry days, and 22% of E(eco) on wet days. Low transpiration rates, and significant contributions to E(eco) from wet canopy evaporation and understorey transpiration (35%) and forest floor evaporation (25%), were attributable to the unique characteristics of the forest: in particular, high rainfall, low leaf area index, low stomatal conductance and low productivity associated with severe nutrient limitation.
Parks, T. P.; Quist, Michael C.; Pierce, C.L.
2016-01-01
Nonwadeable rivers are unique ecosystems that support high levels of aquatic biodiversity, yet they have been greatly altered by human activities. Although riverine fish assemblages have been studied in the past, we still have an incomplete understanding of how fish assemblages respond to both natural and anthropogenic influences in large rivers. The purpose of this study was to evaluate associations between fish assemblage structure and reach-scale habitat, dam, and watershed land use characteristics. In the summers of 2011 and 2012, comprehensive fish and environmental data were collected from 33 reaches in the Iowa and Cedar rivers of eastern-central Iowa. Canonical correspondence analysis (CCA) was used to evaluate environmental relationships with species relative abundance, functional trait abundance (e.g. catch rate of tolerant species), and functional trait composition (e.g. percentage of tolerant species). On the basis of partial CCAs, reach-scale habitat, dam characteristics, and watershed land use features explained 25.0–81.1%, 6.2–25.1%, and 5.8–47.2% of fish assemblage variation, respectively. Although reach-scale, dam, and land use factors contributed to overall assemblage structure, the majority of fish assemblage variation was constrained by reach-scale habitat factors. Specifically, mean annual discharge was consistently selected in nine of the 11 CCA models and accounted for the majority of explained fish assemblage variance by reach-scale habitat. This study provides important insight on the influence of anthropogenic disturbances across multiple spatial scales on fish assemblages in large river systems.
A new approach to the analysis of Type 1 non-uniqueness of the ITS-90 above 0 °C
NASA Astrophysics Data System (ADS)
Gaita, Sonia; Bonnier, Georges
2018-04-01
The Type 1 non-uniqueness (NU-1) is the difference between interpolated values at the same temperature in the resistance thermometer subranges of the International Temperature Scale of 1990 (ITS-90) that overlap. The paper argues for a method of evaluating the NU-1 at a given temperature which considers all subranges of the Scale that contain the respective temperature, not only combinations of two, and it proposes mathematical models to determine the values of NU-1 for temperatures above 0 °C. The paper demonstrates that NU-1 is not the right contributor to the uncertainty associated with the realisation of the ITS-90. Therefore, a new concept of Correction for the Type 1 non-uniqueness of the Scale, CNU-1, is introduced and its mathematical model is established. Also, the estimate of CNU-1 and its standard uncertainty are defined and they are assessed through statistical analysis. The values of standard uncertainty determined by the novel methodology do not exceed 0.26 mK and they are smaller than the values given in the specific Guides developed by the Consultative Committee for Thermometry. The proposed models allow authors to single out and analyse the factors that generate Type 1 non-uniqueness of the Scale and influence its value.
An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca.
Nicolau, Carolina A; Carvalho, Paulo C; Junqueira-de-Azevedo, Inácio L M; Teixeira-Ferreira, André; Junqueira, Magno; Perales, Jonas; Neves-Ferreira, Ana Gisele C; Valente, Richard H
2017-01-16
A large-scale proteomic approach was devised to advance the understanding of venom composition. Bothrops jararaca venom was fractionated by OFFGEL followed by chromatography, generating peptidic and proteic fractions. The latter was submitted to trypsin digestion. Both fractions were separately analyzed by reversed-phase nanochromatography coupled to high resolution mass spectrometry. This strategy allowed deeper and joint characterizations of the peptidome and proteome (proteopeptidome) of this venom. Our results lead to the identification of 46 protein classes (with several uniquely assigned proteins per class) comprising eight high-abundance bona fide venom components, and 38 additional classes in smaller quantities. This last category included previously described B. jararaca venom proteins, common Elapidae venom constituents (cobra venom factor and three-finger toxin), and proteins typically encountered in lysosomes, cellular membranes and blood plasma. Furthermore, this report is the most complete snake venom peptidome described so far, both in number of peptides and in variety of unique proteins that could have originated them. It is hypothesized that such diversity could enclose cryptides, whose bioactivities would contribute to envenomation in yet undetermined ways. Finally, we propose that the broad range screening of B. jararaca peptidome will facilitate the discovery of bioactive molecules, eventually leading to valuable therapeutical agents. Our proteopeptidomic strategy yielded unprecedented insights into the remarkable diversity of B. jararaca venom composition, both at the peptide and protein levels. These results bring a substantial contribution to the actual pursuit of large-scale protein-level assignment in snake venomics. The detection of typical elapidic venom components, in a Viperidae venom, reinforces our view that the use of this approach (hand-in-hand with transcriptomic and genomic data) for venom proteomic analysis, at the specimen-level, can greatly contribute for venom toxin evolution studies. Furthermore, data were generated in support of a previous hypothesis that venom gland secretory vesicles are specialized forms of lysosomes. Two testable hypotheses also emerge from the results of this work. The first is that a nucleobindin-2-derived protein could lead to prey disorientation during envenomation, aiding in its capture by the snake. The other being that the venom's peptidome might contain a population of cryptides, whose biological activities could lead to the development of new therapeutical agents. Copyright © 2016 Elsevier B.V. All rights reserved.
Coupled Modeling of Rhizosphere and Reactive Transport Processes
NASA Astrophysics Data System (ADS)
Roque-Malo, S.; Kumar, P.
2017-12-01
The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.
Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids
NASA Astrophysics Data System (ADS)
Seeger, Zoe L.; Kobayashi, Rika; Izgorodina, Ekaterina I.
2018-05-01
The prediction of physicochemical properties of ionic liquids such as conductivity and melting point would substantially aid the targeted design of ionic liquids for specific applications ranging from solvents for extraction of valuable chemicals to biowaste to electrolytes in alternative energy devices. The previously published study connecting the interaction energies of single ion pairs (1 IP) of ionic liquids to their thermodynamic and transport properties has been extended to larger systems consisting of two ion pairs (2 IPs), in which many-body and same-ion interactions are included. Routinely used cations, of the imidazolium and pyrrolidinium families, were selected in the study coupled with chloride, tetrafluoroborate, and dicyanamide. Their two ion pair clusters were subjected to extensive configuration screening to establish most stable structures. Interaction energies of these clusters were calculated at the spin-ratio scaled MP2 (SRS-MP2) level for the correlation interaction energy, and a newly developed scaled Hartree-Fock method for the rest of energetic contributions to interaction energy. A full geometry screening for each cation-anion combination resulted in 192 unique structures, whose stability was assessed using two criteria—widely used interaction energy and total electronic energy. Furthermore, the ratio of interaction energy to its dispersion component was correlated with experimentally observed melting points in 64 energetically favourable structures. These systems were also used to test the correlation of the dispersion contribution to interaction energy with measured conductivity.
Bardack, Sarah; Herbers, Janette E; Obradović, Jelena
2017-09-01
This study investigates the unique contribution of microsocial and global measures of parent-child positive coregulation (PCR) in predicting children's behavioral and social adjustment in school. Using a community sample of 102 children, ages 4-6, and their parents, we conducted nested path analytic models to identify the unique effects of 2 measures of PCR on school outcomes. Microsocial PCR independently predicted fewer externalizing and inattention/impulsive behaviors in school. Global PCR did not uniquely relate to children's behavioral and social adjustment outcomes. Household socioeconomic status was related to both microsocial and global measures of PCR, but not directly associated with school outcomes. Findings illustrate the importance of using dynamic measures of PCR based on microsocial coding to further understand how the quality of parent-child interaction is related to children's self-regulatory and social development during school transition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The Contribution of Soil Moisture Information to Forecast Skill: Two Studies
NASA Technical Reports Server (NTRS)
Koster, Randal
2010-01-01
This talk briefly describes two recent studies on the impact of soil moisture information on hydrological and meteorological prediction. While the studies utilize soil moisture derived from the integration of large-scale land surface models with observations-based meteorological data, the results directly illustrate the potential usefulness of satellite-derived soil moisture information (e.g., from SMOS and SMAP) for applications in prediction. The first study, the GEWEX- and ClIVAR-sponsored GLACE-2 project, quantifies the contribution of realistic soil moisture initialization to skill in subseasonal forecasts of precipitation and air temperature (out to two months). The multi-model study shows that soil moisture information does indeed contribute skill to the forecasts, particularly for air temperature, and particularly when the initial local soil moisture anomaly is large. Furthermore, the skill contributions tend to be larger where the soil moisture initialization is more accurate, as measured by the density of the observational network contributing to the initialization. The second study focuses on streamflow prediction. The relative contributions of snow and soil moisture initialization to skill in streamflow prediction at seasonal lead, in the absence of knowledge of meteorological anomalies during the forecast period, were quantified with several land surface models using uniquely designed numerical experiments and naturalized streamflow data covering mUltiple decades over the western United States. In several basins, accurate soil moisture initialization is found to contribute significant levels of predictive skill. Depending on the date of forecast issue, the contributions can be significant out to leads of six months. Both studies suggest that improvements in soil moisture initialization would lead to increases in predictive skill. The relevance of SMOS and SMAP satellite-based soil moisture information to prediction are discussed in the context of these studies.
Mindful Emotion Regulation: Exploring the Neurocognitive Mechanisms behind Mindfulness
Grecucci, Alessandro; Job, Remo
2015-01-01
The purpose of this paper is to review some of the psychological and neural mechanisms behind mindfulness practice in order to explore the unique factors that account for its positive impact on emotional regulation and health. After reviewing the mechanisms of mindfulness and its effects on clinical populations we will consider how the practice of mindfulness contributes to the regulation of emotions. We argue that mindfulness has achieved effective outcomes in the treatment of anxiety, depression, and other psychopathologies through the contribution of mindfulness to emotional regulation. We consider the unique factors that mindfulness meditation brings to the process of emotion regulation that may account for its effectiveness. We review experimental evidence that points towards the unique effects of mindfulness specifically operating over and above the regulatory effects of cognitive reappraisal mechanisms. A neuroanatomical circuit that leads to mindful emotion regulation is also suggested. This paper thereby aims to contribute to proposed models of mindfulness for research and theory building by proposing a specific model for the unique psychological and neural processes involved in mindful detachment that account for the effects of mindfulness over and above the effects accounted for by other well-established emotional regulation processes such as cognitive reappraisal. PMID:26137490
Sargent, Kelli S; Krauss, Alison; Jouriles, Ernest N; McDonald, Renee
2016-09-01
Both cyber victimization and psychological intimate partner violence (IPV) have been associated with negative mental health outcomes among adolescents and young adults. The present study examined relations among cyber victimization, psychological IPV, and mental health outcomes (depressive symptoms, antisocial behavior) among first-year college students. Consistent with polyvictimization theory, we hypothesized that cyber victimization and psychological IPV would be related to each other. We also hypothesized that each would uniquely contribute to depressive symptoms and antisocial behavior, after accounting for the other. Participants (N = 342, M age = 18.33 years; 50% male) completed questionnaires during a single lab visit. Results indicated that cyber victimization and psychological IPV were related to each other, and both contributed uniquely to depressive symptoms, but only cyber victimization contributed uniquely to antisocial behavior. Exploratory analyses indicated that experiencing both cyber victimization and psychological IPV was necessary for increased depressive symptoms and antisocial behavior. This study is the first to establish a unique relation between cyber victimization and mental health problems, after accounting for psychological IPV. The findings also suggest a need to consider multiple forms of victimization when considering relations between specific types of victimization and mental health problems.
Sims, Darcey M.; Lonigan, Christopher J.
2012-01-01
Objective Although extant studies indicate that there is a strong association between Attention Deficit/Hyperactivity Disorder (ADHD) and reading ability in elementary school children, knowledge regarding the relation between inattentive and hyperactive/impulsive behaviors and emergent literacy in preschool children is less established. This study examined the unique and overlapping relations between measures that assess inattention and hyperactivity/impulsivity and emergent literacy skills in preschool children. Method Participants included 204 preschool children (Mean age = 56 months; 50.9% female; 79.8% European American). Behavioral rating scales were completed by teachers and the Continuous Performance Test (CPT) and the Test of Preschool Early Literacy were completed by the preschoolers. Results Across measures, inattention was a unique correlate of emergent literacy skills whereas hyperactivity/impulsivity was not. Both rating scales and the CPT indices of inattention were uniquely associated with emergent literacy skills. Conclusions These results suggest that these measures are assessing different manifestations of inattention that are both unique correlates of early reading skills. PMID:23186142
Kerr, Peg; Shever, Leah; Titler, Marita G; Qin, Rui; Kim, Taikyoung; Picone, Debra M
2010-02-01
The purpose of this study was to examine the unique contribution of the nursing intervention pain management on length of stay (LOS) for 568 older patients hospitalized for hip procedures. Propensity-score-adjusted analysis was used to determine the effect of pain management on LOS. The LOS for hospitalizations that received pain management was 0.78 day longer than that for hospitalizations that did not receive pain management. Other variables that were predictors of LOS included several context-of-care variables (e.g., time spent in the intensive care unit, registered nurse skill mix, etc.), number of medical procedures and unique medications, and several other nursing interventions. Copyright 2010 Elsevier Inc. All rights reserved.
Wong, Terry Tin-Yau
2017-12-01
The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Raby, K Lee; Cicchetti, Dante; Carlson, Elizabeth A; Cutuli, J J; Englund, Michelle M; Egeland, Byron
2012-09-01
In the longitudinal study reported here, we examined genetic and caregiving-based contributions to individual differences in infant attachment classifications. For 154 mother-infant pairs, we rated mothers' responsiveness to their 6-month-old infants during naturalistic interactions and classified infants' attachment organization at 12 and 18 months using the Strange Situation procedure. These infants were later genotyped with respect to the serotonin-transporter-linked polymorphic region (5-HTTLPR). Maternal responsiveness uniquely predicted infants' attachment security. Infants' 5-HTTLPR variation uniquely predicted their subtype of attachment security at 12 months and their subtype of attachment insecurity at 12 and 18 months. The short allele for 5-HTTLPR was associated with attachment classifications characterized by higher emotional distress. These findings suggest that 5-HTTLPR variation contributes to infants' emotional reactivity and that the degree to which caregivers are responsive influences how effectively infants use their caregivers for emotion regulation. Theoretical implications for the study of genetic and caregiving influences are discussed.
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter
2016-04-01
The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.
Neumann, Dawn; Malec, James F; Hammond, Flora M
To compare self-reported aggression in people with and without traumatic brain injury (TBI) and examine the relations of aggression to alexithymia (poor emotional insight), depression, and anxiety. Rehabilitation hospital. Forty-six adults with moderate to severe TBI who were at least 3 months postinjury; 49 healthy controls (HCs); groups were frequency matched for age and gender. Cross-sectional study using a quasi-experimental design. Aggression (Buss-Perry Aggression Questionnaire); alexithymia (Toronto Alexithymia Scale-20); depression (Patient Health Questionnaire-9); and trait anxiety (State-Trait Anxiety Inventory). Participants with TBI had significantly higher aggression scores than HCs. For participants with TBI, 34.2% of the adjusted variance of aggression was significantly explained by alexithymia, depression, and anxiety; alexithymia accounted for the largest unique portion of the variance in this model (16.2%). Alexithymia, depression, and anxiety explained 46% of the adjusted variance of aggression in HCs; in contrast to participants with TBI, depression was the largest unique contributor to aggression (15.9%). This was the first empirical study showing that poor emotional insight (alexithymia) significantly contributes to aggression after TBI. This relation, and the potential clinical implications it may have for the treatment of aggression, warrants further investigation.
The unique contribution of elements of smile aesthetics to psychosocial well-being.
Lukez, A; Pavlic, A; Trinajstic Zrinski, M; Spalj, S
2015-04-01
Pleasant smile aesthetics is an important contributory factor to psychosocial well-being. The aim of this study was to determine the psychosocial influence of smile aesthetics. The study was cross-sectional on a convenient sample that included patients, pupils, students and faculty staff. A total of 155 subjects (36% male) aged 12-39 (mean age 21, interquartile range 19-23) were included. Occlusal characteristics were recorded by the Index of Complexity, Outcome and Need, and smiling frontal view photographs were obtained. Fourteen variables were measured using photogrammetric analysis: smile width, visibility of buccal corridors, maximum teeth exposure, total gingival display, lip thickness, degree of occlusal cant and deviation from golden proportion of the teeth in maxillary intercanine sector. Psychometric instruments included the Psychosocial Impact of Dental Aesthetics Questionnaire and the Rosenberg Self-Esteem Scale. Statistical analysis comprised multiple linear regressions. Malocclusion severity is the most important predictor of psychosocial influence of smile aesthetics and self-esteem, the unique contribution of which accounts for a total of 4-27% of variability. Female gender is associated with higher psychological influence of dental aesthetics while male gender and older age with self-esteem. Malocclusions have higher psychosocial impact than parameters of mini- and micro-aesthetics of smile related to visibility of buccal corridors, amount of teeth exposure, gingival display, lip thickness, presence of occlusal cant and deviation from golden proportion of the teeth. It appears that people are not as focused on details of their smile as they are on distinctive malposition of teeth. © 2014 John Wiley & Sons Ltd.
A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.
The nitrate response of a lowland catchment and groundwater travel times
NASA Astrophysics Data System (ADS)
van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans
2010-05-01
Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface water network.
The quest for infall in star-forming regions
NASA Astrophysics Data System (ADS)
Wyrowski, Friedrich
2018-06-01
Observation of infall is key to our understanding of the accretion process in star formation. High-resolution spectroscopy allows us to resolve molecular lines originating from the dense molecular envelopes of the forming (proto-) stars to deduce the kinematics of the gas. In this contribution, I'll describe how SOFIA can significantly contribute to the quest for and characterisation of infall by providing unique access to molecular lines at THz frequencies that allow red-shifted absorption studies as direct probe of infall and that provide access to fine structure and high excitation lines that probe outflowing gas as indirect evidence for accretion. In particular, I will report on a recent study using the GREAT high-spectral resolution instrument on-board of SOFIA to observe ammonia at 1.8 THz. Eight out of eleven observed massive clumps have been found with red-shifted absorption that is indicative of infall motions. This fraction of 72% is substantially higher than that found in past searches for the blue-skewed profile signature. The observations show that infall on clump scales is ubiquitous through a wide range of evolutionary stages.
Anxiety and feedback processing in a gambling task: Contributions of time-frequency theta and delta.
Ellis, Jessica S; Watts, Adreanna T M; Schmidt, Norman; Bernat, Edward M
2018-05-02
The feedback negativity (FN) event-related potential (ERP) is widely studied during gambling feedback tasks. However, research on FN and anxiety is minimal and the findings are mixed. To clarify these discrepancies, the current study (N = 238) used time-frequency analysis to disentangle overlapping contributions of delta (0-3 Hz) and theta (3-7 Hz) to feedback processing in a clinically anxious sample, with severity assessed through general worry and physiological arousal scales. Greater general worry showed enhanced delta- and theta-FN broadly across both gain and loss conditions, with theta-FN stronger for losses. Regressions indicated delta-FN maintained unique effects, accounted for theta, and explained the blunted time domain FN for general worry. Increased delta was also associated with physiological arousal, but the effects were accounted for by general worry. Broadly, anxiety-related alterations in feedback processing can be explained by an overall heightened sensitivity to feedback as represented by enhanced delta-FN in relation to the general worry facet of anxiety. Copyright © 2018 Elsevier B.V. All rights reserved.
McEvoy, Peter M; Hyett, Matthew P; Ehring, Thomas; Johnson, Sheri L; Samtani, Suraj; Anderson, Rebecca; Moulds, Michelle L
2018-05-01
Repetitive negative thinking (RNT) is a cognitive process that is repetitive, passive, relatively uncontrollable, and focused on negative content, and is elevated in emotional disorders including depression and anxiety disorders. Repetitive positive thinking is associated with bipolar disorder symptoms. The unique contributions of positive versus negative repetitive thinking to emotional symptoms are unknown. The first aim of this study was to use confirmatory factor analyses to evaluate the psychometrics of two transdiagnostic measures of RNT, the Repetitive Thinking Questionnaire (RTQ-10) and Perseverative Thinking Questionnaire (PTQ), and a measure of repetitive positive thinking, the Responses to Positive Affect (RPA) Questionnaire. The second aim was to determine incremental predictive utility of these measures. All measures were administered to a sample of 2088 undergraduate students from the Netherlands (n = 992), Australia (n = 698), and America (n = 398). Unidimensional, bifactor, and three-factor models were supported for the RTQ-10, PTQ, and RPA, respectively. A common factor measured by all PTQ items explained most variance in PTQ scores suggesting that this measure is essentially unidimensional. The RNT factor of the RTQ-10 demonstrated the strongest predictive utility, although the PTQ was also uniquely although weakly associated with anxiety, depression, and mania symptoms. The RPA dampening factor uniquely predicted anxiety and depression symptoms, suggesting that this scale is a separable process to RNT as measured by the RTQ-10 and PTQ. Findings were cross-sectional and need to be replicated in clinical samples. Transdiagnostic measures of RNT are essentially unidimensional, whereas RPA is multidimensional. RNT and RPA have unique predictive utility. Copyright © 2018 Elsevier B.V. All rights reserved.
Gross, C L; Nelson, Penelope A; Haddadchi, Azadeh; Fatemi, Mohammad
2012-02-01
Grevillea rhizomatosa is a spreading shrub which exhibits multiple breeding strategies within a narrow area in the fire-prone heathlands of eastern Australia. Reproductive strategies include self-compatibility, self-incompatibility and clonality (with and without sterility). The close proximity of contrasting breeding systems provides an opportunity to explore the evolution of sterility and to compare and contrast the origins of genotypic diversity (recombinant or somatic) against degrees of sexual expression. ISSR markers for 120 band positions (putative loci) were used to compare genetic diversity among five populations at a macro-scale of 5 m between samples (n = 244 shrubs), and at a micro-scale of nearest neighbours for all plants in five 25-m(2) quadrats with contrasting fertilities (n = 162 shrubs). Nearest-neighbour sampling included several clusters of connected ramets. Matrix incompatibility (MIC) analyses were used to evaluate the relative contribution of recombination and somatic mutation to genotype diversity. High levels of genotypic diversity were found in all populations regardless of fertilities (fertile populations, G/N ≥ 0·94; sterile populations, G/N ≥ 0·97) and most sterile populations had a unique genetic profile. Somatic mutations were detected along connected ramets in ten out of 42 ramet clusters. MIC analyses showed that somatic mutations have contributed to diversity in all populations and particularly so in sterile populations. Somatic mutations contribute significantly to gene diversity in sterile populations of Grevillea rhizomatosa, the accumulation of which is the likely cause of male and female sterility. High levels of genetic diversity therefore may not always be synonymous with sexual fitness and genetic health. We hypothesize that frequent fires drive selection for clonal reproduction, at the cost of flowering such that sexual functions are not maintained through selection, and the build-up of somatic mutations in meristems results in high genotype diversity at the cost of pollen and ovule fertilities.
Transport and outflow to the North Atlantic in the lower marine troposphere during ICARTT 2004
NASA Astrophysics Data System (ADS)
Davis, S. R.; Talbot, R.; Mao, H.
2012-01-01
An analysis of pollution plumes emitted from sources in the Northeastern US was based on observations from the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 field campaign. Particular attention was given to the relation of these plumes to coastal transport patterns in lower tropospheric layers throughout the Gulf of Maine (GOM) and their contribution to large-scale pollution outflow from the North American continent. Using measurements obtained during a series of flights of the NOAA WP-3D and the NASA DC-8, a unique quasi-lagrangian case study was conducted for a freshly emitted plume emanating from the New York City source region in late July 2004. The initial development of this plume stemmed from the accumulation of boundary layer pollutants within a coastal residual layer where weak synoptic forcing triggered its advection by mean southwesterly flow. As the plume tracked into the GOM, analysis showed that the plume layer vertical structure evolved into an internal boundary layer form, with signatures of steep vertical gradients in temperature, moisture and wind speed often resulting in periodic turbulence. This structure remained well-defined during the plume study, allowing for the detachment of the plume layer from the surface and thus minimal deposition and plume-sea surface exchange. In contrast, lateral mixing with other low-level plumes was significant during its transit and facilitated in part by persistent shear driven turbulence which further contributed to the high spatial variability in trace gas mixing ratios. The impact of the plume inland was assessed using observations from the AIRMAP air quality network. This impact was noticeably detected as a contribution to poor surface ozone conditions and significant elevations of other major pollutants to levels equaling the highest observed that summer. Further contributions to larger-scale outflow across the North Atlantic was also observed and analyzed.
Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).
Video game addiction test: validity and psychometric characteristics.
van Rooij, Antonius J; Schoenmakers, Tim M; van den Eijnden, Regina J J M; Vermulst, Ad A; van de Mheen, Dike
2012-09-01
The study explores the reliability, validity, and measurement invariance of the Video game Addiction Test (VAT). Game-addiction problems are often linked to Internet enabled online games; the VAT has the unique benefit that it is theoretically and empirically linked to Internet addiction. The study used data (n=2,894) from a large-sample paper-and-pencil questionnaire study, conducted in 2009 on secondary schools in Netherlands. Thus, the main source of data was a large sample of schoolchildren (aged 13-16 years). Measurements included the proposed VAT, the Compulsive Internet Use Scale, weekly hours spent on various game types, and several psychosocial variables. The VAT demonstrated excellent reliability, excellent construct validity, a one-factor model fit, and a high degree of measurement invariance across gender, ethnicity, and learning year, indicating that the scale outcomes can be compared across different subgroups with little bias. In summary, the VAT can be helpful in the further study of video game addiction, and it contributes to the debate on possible inclusion of behavioral addictions in the upcoming DSM-V.
Kinsman, Leigh; Rotter, Thomas; Stevenson, Katherine; Bath, Brenna; Goodridge, Donna; Harrison, Liz; Dobson, Roy; Sari, Nazmi; Jeffery, Cathy; Bourassa, Carrie; Westhorp, Gill
2014-01-01
The Saskatchewan Ministry of Health has committed to a multi-million dollar investment toward the implementation of Lean methodology across the province's healthcare system. Originating as a production line discipline (the Toyota Production System), Lean has evolved to encompass process improvements including inventory management, waste reduction and quality improvement techniques. With an initial focus on leadership, strategic alignment, training and the creation of a supportive infrastructure (Lean promotion offices), the goal in Saskatchewan is a whole health system transformation that produces "better health, better value, better care, and better teams." Given the scope and scale of the initiative and the commitment of resources, it is vital that a comprehensive, longitudinal evaluation plan be implemented to support ongoing decision-making and program design. The nature of the initiative also offers a unique opportunity to contribute to health quality improvement science by advancing our understanding of the implementation and evaluation of complex, large-scale healthcare interventions. The purpose of this article is to summarize the background to Lean in Saskatchewan and the proposed evaluation methods. Copyright © 2014 Longwoods Publishing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor
The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scalemore » genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.« less
Time-scale dependent sediment flux in the Tajik Pamir Mountains
NASA Astrophysics Data System (ADS)
Pohl, Eric; Gloaguen, Richard; Andermann, Christoff; Fuchs, Margret C.
2014-05-01
The Pamir Mountains (Pamirs) offer the unique possibility to observe landscape shaping processes in a complex climatic environment. While the Westerlies provide most of the moisture as snow in winter, the Indian summer monsoon can also contribute quite significantly to the water budget in summer. Water from snow and ice melt induced by temperature and rainfall mobilizes sediments from hillslopes, debris fans, and moraine remnants. These sediments are transported, re-deposited, and eventually carried out of the orogene. Different approaches are available to assess and quantify the erosion processes at different time-scales. Recent studies applying cosmogenic nuclide (CN) dating suggest erosion rates of approximately 0.65mm/yr for the last 1000 years. In this contribution we want to present modern erosion rates derived from historical archive suspended sediment yield (SSY) data and very recent in situ sampling data, including high-resolution turbidimeter measurements. 10-day averaged SSY data recorded in the past show less erosion by a factor of 2 to 10 compared to CN-derived erosion rates for different catchments. The 10-day SSY data are based on measurements that have been conducted in the morning and evening, thus not accounting for the entire diurnal variation. We installed a turbidimeter with a measuring interval of 10 minutes to better resolve these diurnal variations. We calibrate turbidity with in situ measurements carried out on a daily basis for 9 months to see whether the differences between CN and SSY measurements are really owed to diurnal variations or if rare high magnitude events. e.g. mudflows, landslides, or avalanches disclose this discrepancy. We present single high magnitude SSY events, uncover periodic diurnal sediment variations that systematically lag diurnal temperature variations and relate the sediment amount of such high magnitude events to the smoothed annual cycle. We use the obtained results to discuss whether past changes in climate could explain the observed difference between millennial scale CN vs decadal scale SSY measurements or if single high magnitude events must play the dominant role.
Landscapes, tourism, and conservation
Burger
2000-04-17
One key aspect of global change is a decrease in ecological integrity as more and more landscapes are developed, leaving a mosaic of intact refuges and degraded patches that may not be sufficient for conserving biodiversity. While increases in human population and shifts in the distribution of people affect land use, the temporary movement of people can have major implications for conservation and biodiversity. Three examples are presented where recreation/tourism can enhance the conservation of land on a landscape scale, leading to habitat protection and biodiversity preservation: (1) Shorebirds often require a matrix of different habitat types during migratory stopovers, and ecotourism can serve as a catalyst for landscape scale protection of habitat. (2) Riparian habitats can serve as corridors to link diverse habitat patches, as well as serving as biodiversity hotspots. (3) Remediation and rehabilitation of contaminated lands, such as those of the US Department of Energy, aimed at developing recreational activities on the uncontaminated portions, can be the most economical form of re-development with no increase in human or ecological risk. Since large areas on many DOE sites have been undisturbed since the Second World War, when they were acquired, they contain unique or valuable ecosystems that serve an important role within their regional landscapes. In all three cases the judicious development of recreational/tourist interests can encourage both the conservation of habitats and the wise management of habitats on a landscape scale. While some species or habitats are too fragile for sustained tourism, many can be managed so that species, ecosystems and ecotourists flourish. By contributing to the economic base of regions, ecotourists/recreationists can influence the protection of land and biodiversity on a landscape scale, contributing to ecosystem management. The human dimensions of land preservation and biodiversity protection are key to long-term sustainability, and ecotourists/recreationists can be one management option.
ASSESSING THE EFFECTS OF PULMONARY EXPOSURE TO NANOMATERIALS
Nanotechnology is a dynamic and enabling technology capable of producing a wide diversity of nano-scale (<100 nm) materials displaying unique physicochemical properties for a variety of applications. Nanomaterials may also display unique toxicological properties and routes of exp...
RISK ASSESSMENT OF MANUFACTURED NANOMATERIAL: MORE THAN JUST SIZE
Nanotechnology is a dynamic and enabling technology capable of producing nano-scale materials with unique electrical, catalytic, thermal, mechanical, or imaging properties for a variety of applications. Nanomaterials may display unique toxicological properties and routes of expos...
Washington, Donna L; Sun, Su; Canning, Mark
2010-01-01
Most veteran research is conducted in Department of Veterans Affairs (VA) healthcare settings, although most veterans obtain healthcare outside the VA. Our objective was to determine the adequacy and relative contributions of Veterans Health Administration (VHA), Veterans Benefits Administration (VBA), and Department of Defense (DOD) administrative databases for representing the U.S. veteran population, using as an example the creation of a sampling frame for the National Survey of Women Veterans. In 2008, we merged the VHA, VBA, and DOD databases. We identified the number of unique records both overall and from each database. The combined databases yielded 925,946 unique records, representing 51% of the 1,802,000 U.S. women veteran population. The DOD database included 30% of the population (with 8% overlap with other databases). The VHA enrollment database contributed an additional 20% unique women veterans (with 6% overlap with VBA databases). VBA databases contributed an additional 2% unique women veterans (beyond 10% overlap with other databases). Use of VBA and DOD databases substantially expands access to the population of veterans beyond those in VHA databases, regardless of VA use. Adoption of these additional databases would enhance the value and generalizability of a wide range of studies of both male and female veterans.
Psycho-Physiological Contributions of Physical Activity and Sports for Girls.
ERIC Educational Resources Information Center
Bunker, Linda K
1998-01-01
Sport and physical activity contribute to the physical movement capabilities of girls, the health status of their bodies, the values and ethical behaviors they develop, and their personal development of a unique identity. This paper offers an overview of contributions and potential challenges related to physiological dimensions and psychosocial…
Márquez, Samuel; Pagano, Anthony S; Schwartz, Jeffrey H; Curtis, Abigail; Delman, Bradley N; Lawson, William; Laitman, Jeffrey T
2017-01-01
The zygoma, or jugum, is a cranial element that was present in Mesozoic tetrapods, well before the appearance of mammals. Although as an entity the zygoma is a primitive retention among mammals, it has assumed myriad configurations as this group diversified. As the zygoma is located at the intersection of the visual, respiratory, and masticatory apparatuses, it is potentially of great importance in systematic, phylogenetic, and functional studies focused on this region. For example, the facial component of the zygoma and its contribution to a postorbital bar (POB) appear to be relevant to the systematics of a number of mammalian subclades, and the formation of a bony postorbital septum (POS) that separates the orbit from the infratemporal fossa is unique to, and thus potentially phylogenetically significant for uniting anthropoid primates, while the zygoma itself appears to serve to resist tension and bending forces during mastication. In order to better understand the zygoma in the context of its contributions to the circumorbital region, we documented its morphological expression in specimens representing 10 orders of mammals. Since the presence of a POB and of a POS has long been used to justify uniting extant primates and anthropoid primates as respective clades, and because postorbital closure (POC) is morphologically more complex than a POB, we provide detail necessary to address these claims. Our taxically broad overview also allowed us to provide for the first time definitions of configurations that can be applied to future studies. Using a different, but also taxically broad sample of mammals, and of primates in particular, we performed two geometric morphometric analyses that were geared toward testing long-held interpretations of the functional role of the zygoma, especially with regard to mastication and in the context of orbital frontation (to which the zygoma contributes). Further, overall, zygomatic morphology tends not to scale with allometry, sexual dimorphism, or angle of orbital convergence, but it does contribute to unique patterns of intraspecies variation. Anat Rec, 300:76-151, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Unique competitive effects of lianas and trees in a tropical forest understory.
Wright, Alexandra; Tobin, Mike; Mangan, Scott; Schnitzer, Stefan A
2015-02-01
Lianas are an important component of tropical forests, contributing up to 25% of the woody stems and 35% of woody species diversity. Lianas invest less in structural support but more in leaves compared to trees of similar biomass. These physiological and morphological differences suggest that lianas may interact with neighboring plants in ways that are different from similarly sized trees. However, the vast majority of past liana competition studies have failed to identify the unique competitive effects of lianas by controlling for the amount of biomass removed. We assessed liana competition in the forest understory over the course of 3 years by removing liana biomass and an equal amount of tree biomass in 40 plots at 10 sites in a secondary tropical moist forest in central Panama. We found that growth of understory trees and lianas, as well as planted seedlings, was limited due to competitive effects from both lianas and trees, though the competitive impacts varied by species, season, and size of neighbors. The removal of trees resulted in greater survival of planted seedlings compared to the removal of lianas, apparently related to a greater release from competition for light. In contrast, lianas had a species-specific negative effect on drought-tolerant Dipteryx oleifera seedlings during the dry season, potentially due to competition for water. We conclude that, at local scales, lianas and trees have unique and differential effects on understory dynamics, with lianas potentially competing more strongly during the dry season, and trees competing more strongly for light.
Tissue-like Neural Probes for Understanding and Modulating the Brain.
Hong, Guosong; Viveros, Robert D; Zwang, Theodore J; Yang, Xiao; Lieber, Charles M
2018-03-19
Electrophysiology tools have contributed substantially to understanding brain function, yet the capabilities of conventional electrophysiology probes have remained limited in key ways because of large structural and mechanical mismatches with respect to neural tissue. In this Perspective, we discuss how the general goal of probe design in biochemistry, that the probe or label have a minimal impact on the properties and function of the system being studied, can be realized by minimizing structural, mechanical, and topological differences between neural probes and brain tissue, thus leading to a new paradigm of tissue-like mesh electronics. The unique properties and capabilities of the tissue-like mesh electronics as well as future opportunities are summarized. First, we discuss the design of an ultraflexible and open mesh structure of electronics that is tissue-like and can be delivered in the brain via minimally invasive syringe injection like molecular and macromolecular pharmaceuticals. Second, we describe the unprecedented tissue healing without chronic immune response that leads to seamless three-dimensional integration with a natural distribution of neurons and other key cells through these tissue-like probes. These unique characteristics lead to unmatched stable long-term, multiplexed mapping and modulation of neural circuits at the single-neuron level on a year time scale. Last, we offer insights on several exciting future directions for the tissue-like electronics paradigm that capitalize on their unique properties to explore biochemical interactions and signaling in a "natural" brain environment.
Strategies for Increasing Academic Achievement in Higher Education
ERIC Educational Resources Information Center
Ensign, Julene; Woods, Amelia Mays
2014-01-01
Higher education today faces unique challenges. Decreasing student engagement, increasing diversity, and limited resources all contribute to the issues being faced by students, educators, and administrators alike. The unique characteristics and expectations that students bring to their professional programs require new methods of addressing…
The Bretherton Problem for a Vesicle
NASA Astrophysics Data System (ADS)
Barakat, Joseph; Spann, Andrew; Shaqfeh, Eric
2016-11-01
The motion of a lipid bilayer vesicle through a circular tube is investigated by singular perturbation theory in the limit of vanishing clearance. The vesicle is treated as a sac of fluid enclosed by a thin, elastic sheet that admits a bending stiffness. It is assumed that the vesicle is axisymmetric and swollen to a near-critical volume such that the clearance "e" between the membrane and the tube wall is very small. In this limit, bending resistance is of negligible importance compared to the isotropic tension, allowing the vesicle to be treated as a "no-slip bubble." The effective membrane tension is found to scale inversely with "e" raised to the 3/2 power with a comparatively weak Marangoni gradient. The extra pressure drop is found to have a leading contribution due to the cylindrical midsection, which scales inversely with "e," as well as a correction due to the end caps, which scales inversely with the square root of "e." The apparent viscosity is predicted as a unique function of the geometry. The theory exhibits excellent agreement with a simplified, "quasi-parallel" theory and with direct numerical simulations using the boundary element method. The results of this work are compared to those for bubbles, rigid particles, and red blood cells in confined flows.
Lester, Nigel; Garcia, Danilo; Lundström, Sebastian; Brändström, Sven; Råstam, Maria; Kerekes, Nóra; Nilsson, Thomas; Cloninger, C Robert; Anckarsäter, Henrik
2016-01-01
The character higher order scales (self-directedness, cooperativeness, and self-transcendence) in the temperament and character inventory are important general measures of health and well-being [Mens Sana Monograph 11:16-24 (2013)]. Recent research has found suggestive evidence of common environmental influence on the development of these character traits during adolescence. The present article expands earlier research by focusing on the internal consistency and the etiology of traits measured by the lower order sub-scales of the character traits in adolescence. The twin modeling analysis of 423 monozygotic pairs and 408 same sex dizygotic pairs estimated additive genetics (A), common environmental (C), and non-shared environmental (E) influences on twin resemblance. All twins were part of the on-going longitudinal Child and Adolescent Twin Study in Sweden (CATSS). The twin modeling analysis suggested a common environmental contribution for two out of five self-directedness sub-scales (0.14 and 0.23), for three out of five cooperativeness sub-scales (0.07-0.17), and for all three self-transcendence sub-scales (0.10-0.12). The genetic structure at the level of the character lower order sub-scales in adolescents shows that the proportion of the shared environmental component varies in the trait of self-directedness and in the trait of cooperativeness, while it is relatively stable across the components of self-transcendence. The presence of this unique shared environmental effect in adolescence has implications for understanding the relative importance of interventions and treatment strategies aimed at promoting overall maturation of character, mental health, and well-being during this period of the life span.
Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija
2017-05-01
Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.
Evaluation of the reliability and validity for X16 balance testing scale for the elderly.
Ju, Jingjuan; Jiang, Yu; Zhou, Peng; Li, Lin; Ye, Xiaolei; Wu, Hongmei; Shen, Bin; Zhang, Jialei; He, Xiaoding; Niu, Chunjin; Xia, Qinghua
2018-05-10
Balance performance is considered as an indicator of functional status in the elderly, a large scale population screening and evaluation in the community context followed by proper interventions would be of great significance at public health level. However, there has been no suitable balance testing scale available for large scale studies in the unique community context of urban China. A balance scale named X16 balance testing scale was developed, which was composed of 3 domains and 16 items. A total of 1985 functionally independent and active community-dwelling elderly adults' balance abilities were tested using the X16 scale. The internal consistency, split-half reliability, content validity, construct validity, discriminant validity of X16 balance testing scale were evaluated. Factor analysis was performed to identify alternative factor structure. The Eigenvalues of factors 1, 2, and 3 were 8.53, 1.79, and 1.21, respectively, and their cumulative contribution to the total variance reached 72.0%. These 3 factors mainly represented domains static balance, postural stability, and dynamic balance. The Cronbach alpha coefficient for the scale was 0.933. The Spearman correlation coefficients between items and its corresponding domains were ranged from 0.538 to 0.964. The correlation coefficients between each item and its corresponding domain were higher than the coefficients between this item and other domains. With the increase of age, the scores of balance performance, domains static balance, postural stability, and dynamic balance in the elderly declined gradually (P < 0.001). With the increase of age, the proportion of the elderly with intact balance performance decreased gradually (P < 0.001). The reliability and validity of the X16 balance testing scale is both adequate and acceptable. Due to its simple and quick use features, it is practical to be used repeatedly and routinely especially in community setting and on large scale screening.
Herbst, Kobus; Law, Matthew; Geldsetzer, Pascal; Tanser, Frank; Harling, Guy; Bärnighausen, Till
2015-11-01
Health and demographic surveillance systems (HDSS), in conjunction with HIV treatment cohorts, have made important contributions to our understanding of the impact of HIV treatment and treatment-related interventions in sub-Saharan Africa. The purpose of this review is to describe and discuss innovations in data collection and data linkage that will create new opportunities to establish the impacts of HIV treatment, as well as policies affecting the treatment cascade, on population health and economic and social outcomes. Novel approaches to routine collection of biomarkers, behavioural data, spatial data, social network information, migration events and mobile phone records can significantly strengthen the potential of HDSS to generate exposure and outcome data for causal analysis of HIV treatment impact and policies affecting the HIV treatment cascade. Additionally, by linking HDSS data to health service administration, education and welfare service records, researchers can substantially broaden opportunities to establish how HIV treatment affects health and economic outcomes when delivered through public sector health systems and at scale. As the HIV treatment scaleup in sub-Saharan Africa enters its second decade, it is becoming increasingly important to understand the long-term causal impacts of large-scale HIV treatment and related policies on broader population health outcomes, such as noncommunicable diseases, as well as on economic and social outcomes, such as family welfare and children's educational attainment. By collecting novel data and linking existing data to public sector records, HDSS can create near-unique opportunities to contribute to this research agenda.
Multiscale radar mapping of surface melt over mountain glaciers in High Mountain Asia
NASA Astrophysics Data System (ADS)
Steiner, N.; McDonald, K. C.
2017-12-01
Glacier melt dominates input for many hydrologic systems in the Himalayan Hindukush region that feed rivers that are critical for downstream ecosystems and hydropower generation in this highly populated area. Deviation in seasonal surface melt timing and duration with a changing climate has the potential to affect up to a billion people on the Indian Subcontinent. Satellite-borne microwave remote sensing has unique capabilities that allow monitoring of numerous landscape processes associated with snowmelt and freeze/thaw state, without many of the limitations in optical-infrared sensors such as solar illumination or atmospheric conditions. The onset of regional freeze/thaw and surface melting transitions determine important surface hydrologic variables like river discharge. Theses regional events are abrupt therefore difficult to observe with low-frequency observation sensors. Recently launched synthetic aperture radar (SAR) onboard the Sentinel-1 A and B satellites from the European Space Agency (ESA) provide wide-swath and high spatial resolution (50-100 m) C-Band SAR observations with observations frequencies not previously available, on the order of 8 to 16 days. The Sentinel SARs provide unique opportunity to study freeze/thaw and mountain glacier melt dynamics at process level scales, spatial and temporal. The melt process of individual glaciers, being fully resolved by imaging radar, will inform on the radiometric scattering physics associated with surface hydrology during the transition from melted to thawed state and during refreeze. Backscatter observations, along with structural information about the surface will be compared with complimentary coarse spatial resolution C-Band radar scatterometers, Advanced Scatterometer (ASCAT Met Op A+B), to understand the sub-pixel contribution of surface melting and freeze/thaw signals. This information will inform on longer-scale records of backscatter from ASCAT, 2006-2017. We present a comparison of polarimetric C-Band melt signals contained in the multi-scale backscatter and present a coincident freeze/thaw and snowmelt records from ASCAT and Sentinel-1 for the Gandaki basin, Nepal.
Executive Functions and Motor Ability Contribute to Children's Participation in Daily Activities
ERIC Educational Resources Information Center
Rosenberg, Limor; Jacobi, Shani; Bart, Orit
2017-01-01
Executive functions are crucial for efficient daily functioning. However, the contribution of executive functions to the participation in daily life activities of children, have been inadequately studied. The study aimed to examine the unique contribution of executive functions, beyond motor ability, to the diversity and independence of children's…
The Relative Contributions of Parents and Siblings to Child and Adolescent Development
ERIC Educational Resources Information Center
Tucker, Corinna Jenkins; Updegraff, Kimberly
2009-01-01
Guided by an ecological framework, we explore how siblings' and parents' roles, relationships, and activities are intertwined in everyday life, providing unique and combined contributions to development. In a departure from past research that emphasized the separate contributions of siblings and parents to individual development, we find that…
NASA Astrophysics Data System (ADS)
Schrön, M.; Köhli, M.; Rosolem, R.; Baroni, G.; Bogena, H. R.; Brenner, J.; Zink, M.; Rebmann, C.; Oswald, S. E.; Dietrich, P.; Samaniego, L. E.; Zacharias, S.
2017-12-01
Cosmic-Ray Neutron Sensing (CRNS) has become a promising and unique method to monitor water content at an effective scale of tens of hectares in area and tens of centimeters in depth. The large footprint is particularly beneficial for hydrological models that operate at these scales.However, reliable estimates of average soil moisture require a detailed knowledge about the sensitivity of the signal to spatial inhomogeneity within the footprint. From this perspective, the large integrating volume challenges data interpretation, validation, and calibration of the sensor. Can we still generate reliable data for hydrological applications? One of the top challenges in the last years was to find out where the signal comes from, and how sensitive it is to spatial variabilities of moisture. Neutron physics simulations have shown that the neutron signal represents a non-linearly weighted average of soil water in the footprint. With the help of the so-called spatial sensitivity functions it is now possible to quantify the contribution of certain regions to the neutron signal. We present examples of how this knowledge can help (1) to understand the contribution of irrigated and sealed areas in the footprint, (2) to improve calibration and validation of the method, and (3) to even reveal excess water storages, e.g. from ponding or rain interception.The spatial sensitivity concept can also explain the influence of dry roads on the neutron signal. Mobile surveys with the CRNS rover have been a common practice to measure soil moisture patterns at the kilometer scale. However, dedicated experiments across agricultural fields in Germany and England have revealed that field soil moisture is significantly underestimated when moving the sensor on roads. We show that knowledge about the spatial sensitivity helps to correct survey data for these effects, depending on road material, width, and distance from the road. The recent methodological advances allow for improved signal interpretability and for more accurate derivation of hydrologically relevant features from the CRNS data. By this, the presented methods are an essential contribution to generate reliable CRNS products and an example how combined efforts from the CRNS community contribute to turn the instrument to a highly capable tool for hydrological applications.
Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities
NASA Astrophysics Data System (ADS)
Doster, F.; Celia, M. A.; Nordbotten, J. M.
2012-12-01
Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.
Neutrino masses, scale-dependent growth, and redshift-space distortions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández, Oscar F., E-mail: oscarh@physics.mcgill.ca
2017-06-01
Massive neutrinos leave a unique signature in the large scale clustering of matter. We investigate the wavenumber dependence of the growth factor arising from neutrino masses and use a Fisher analysis to determine the aspects of a galaxy survey needed to measure this scale dependence.
Fungo, Robert; Muyonga, John; Kabahenda, Margaret; Kaaya, Archileo; Okia, Clement A; Donn, Pauline; Mathurin, Tchatat; Tchingsabe, Obadia; Tiegehungo, Julius C; Loo, Judy; Snook, Laura
2016-12-01
To determine the contribution of forest foods to dietary intake and estimate their association with household food insecurity. Cross-sectional survey conducted among 279 households. Using a 7 d recall questionnaire, information on household food consumption was collected from women and used to determine the household dietary diversity score, food variety score and forest food consumption score (FFCS). Household Food Insecurity Access Scale (HFIAS) score was determined and Spearman rank correlation was used to establish the relationship between consumption of forest foods and HFIAS score. Women's dietary intake was estimated from two 24 h recalls. The contribution of forest foods to women's nutrient intakes was calculated and women's nutrient intakes were compared with estimated average nutrient requirements. Rural forest-dependent households in twelve villages in eastern and southern Cameroon. Household heads and their non-pregnant, non-lactating spouses. Forty-seven unique forest foods were identified; of these, seventeen were consumed by 98 % of respondents over the course of one week and by 17 % of women during the two 24 h recall periods. Although forest foods contributed approximately half of women's total daily energy intake, considerably greater contributions were made to vitamin A (93 %), Na (100 %), Fe (85 %), Zn (88 %) and Ca (89 %) intakes. Despite a highly biodiverse pool of foods, most households (83 %) suffered from high food insecurity based on the HFIAS. A significant inverse correlation was observed between the HFIAS score and the FFCS (r 2=-0·169, P=0·0006), demonstrating that forest foods play an important role in ensuring food security in these forest-dependent communities. Forest foods are widely consumed by forest-dependent communities. Given their rich nutrient content, they have potential to contribute to food and nutrition security.
Cultural and Personality Predictors of Facebook Intrusion: A Cross-Cultural Study.
Błachnio, Agata; Przepiorka, Aneta; Benvenuti, Martina; Cannata, Davide; Ciobanu, Adela M; Senol-Durak, Emre; Durak, Mithat; Giannakos, Michail N; Mazzoni, Elvis; Pappas, Ilias O; Popa, Camelia; Seidman, Gwendolyn; Yu, Shu; Wu, Anise M S; Ben-Ezra, Menachem
2016-01-01
The increase in the number of users of social networking sites (SNS) has inspired intense efforts to determine intercultural differences between them. The main aim of the study was to investigate the cultural and personal predictors of Facebook intrusion. A total of 2628 Facebook users from eight countries took part in the study. The Facebook Intrusion Questionnaire, the Ten-Item Personality Inventory, and the Singelis Scale were used. We found that two variables related to Country were significantly related to Facebook intrusion: uniqueness (negatively) and low context (positively); of the personality variables, conscientiousness, and emotional stability were negatively related to the dependent variable of Facebook intrusion across different countries, which may indicate the universal pattern of Facebook intrusion. The results of the study will contribute to the international debate on the phenomenon of SNS.
Durán, Auxiliadora; Extremera, Natalio; Rey, Lourdes; Fernández-Berrocal, Pablo; Montalbán, F Manuel
2006-01-01
This study examines the role of Perceived Emotional Intelligence (PEI) (measured by the Spanish version of the Trait Meta-Mood Scale) and general self-efficacy as predictors of burnout and engagement dimensions. The unique contribution of PEI dimensions on the burnout and engagement scores is explored, controlling the influence of demographics characteristics, perceived stress and self-efficacy. Data were collected from a sample of 373 Spanish undergraduate students (mean age= 21.87 yr; SD= 5.82 yr) and analyzed using hierarchical regressions. Results indicate the relevance of PEI as an individual resource and support the hypothesis that this construct accounted for non-overlapping variance on academic burnout and engagement above and beyond classic constructs predicting these criterion measures such as perceived stress and general self-efficacy.
Working the kinks out of nucleosomal DNA
Olson, Wilma K.; Zhurkin, Victor B.
2011-01-01
Condensation of DNA in the nucleosome takes advantage of its double-helical architecture. The DNA deforms at sites where the base pairs face the histone octamer. The largest so-called kink-and-slide deformations occur in the vicinity of arginines that penetrate the minor groove. Nucleosome structures formed from the 601 positioning sequence differ subtly from those incorporating an AT-rich human α-satellite DNA. Restraints imposed by the histone arginines on the displacement of base pairs can modulate the sequence-dependent deformability of DNA and potentially contribute to the unique features of the different nucleosomes. Steric barriers mimicking constraints found in the nucleosome induce the simulated large-scale rearrangement of canonical B-DNA to kink-and-slide states. The pathway to these states shows non-harmonic behavior consistent with bending profiles inferred from AFM measurements. PMID:21482100
Cultural and Personality Predictors of Facebook Intrusion: A Cross-Cultural Study
Błachnio, Agata; Przepiorka, Aneta; Benvenuti, Martina; Cannata, Davide; Ciobanu, Adela M.; Senol-Durak, Emre; Durak, Mithat; Giannakos, Michail N.; Mazzoni, Elvis; Pappas, Ilias O.; Popa, Camelia; Seidman, Gwendolyn; Yu, Shu; Wu, Anise M. S.; Ben-Ezra, Menachem
2016-01-01
The increase in the number of users of social networking sites (SNS) has inspired intense efforts to determine intercultural differences between them. The main aim of the study was to investigate the cultural and personal predictors of Facebook intrusion. A total of 2628 Facebook users from eight countries took part in the study. The Facebook Intrusion Questionnaire, the Ten-Item Personality Inventory, and the Singelis Scale were used. We found that two variables related to Country were significantly related to Facebook intrusion: uniqueness (negatively) and low context (positively); of the personality variables, conscientiousness, and emotional stability were negatively related to the dependent variable of Facebook intrusion across different countries, which may indicate the universal pattern of Facebook intrusion. The results of the study will contribute to the international debate on the phenomenon of SNS. PMID:27994566
Evolution of language: An empirical study at eBay Big Data Lab
Bodoff, David; Dai, Julie
2017-01-01
The evolutionary theory of language predicts that a language will tend towards fewer synonyms for a given object. We subject this and related predictions to empirical tests, using data from the eBay Big Data Lab which let us access all records of the words used by eBay vendors in their item titles, and by consumers in their searches. We find support for the predictions of the evolutionary theory of language. In particular, the mapping from object to words sharpens over time on both sides of the market, i.e. among consumers and among vendors. In addition, the word mappings used on the two sides of the market become more similar over time. Our research contributes to the literature on language evolution by reporting results of a truly unique large-scale empirical study. PMID:29261686
NASA Astrophysics Data System (ADS)
Collins, Patrick; Autino, Adriano
2010-06-01
The authors argue that the creation of a popular new industry of passenger space travel could be economically and socially very beneficial in creating new employment in aerospace and related fields in order to supply these services. In doing so, the application of nearly a half-century of technological development that has yet to be used commercially could create many new aerospace engineering business opportunities. In addition, by growing to large scale, space tourism has unique potential to reduce the cost of space travel sharply, thereby making many other activities in space feasible and profitable. The paper discusses the scope for new employment, stimulating economic growth, reducing environmental damage, sustaining education particularly in the sciences, stimulating cultural growth, and preserving peace by eliminating any need for "resource wars".
Evolution of language: An empirical study at eBay Big Data Lab.
Bodoff, David; Bekkerman, Ron; Dai, Julie
2017-01-01
The evolutionary theory of language predicts that a language will tend towards fewer synonyms for a given object. We subject this and related predictions to empirical tests, using data from the eBay Big Data Lab which let us access all records of the words used by eBay vendors in their item titles, and by consumers in their searches. We find support for the predictions of the evolutionary theory of language. In particular, the mapping from object to words sharpens over time on both sides of the market, i.e. among consumers and among vendors. In addition, the word mappings used on the two sides of the market become more similar over time. Our research contributes to the literature on language evolution by reporting results of a truly unique large-scale empirical study.
Product Differentiation in Local TV News.
ERIC Educational Resources Information Center
Atwater, Tony
1984-01-01
Investigates whether size of broadcast market is associated with the variety of information broadcast by television stations in a community and describes what each station within a market contributes to a community's information with respect to unique news stories. Concludes that the larger the market, the more unique stories broadcast. (FL)
Characterisation of phenolics in Flor-Essence--a compound herbal product and its contributing herbs.
Saleem, Ammar; Walshe-Roussel, Brendan; Harris, Cory; Asim, Muhammad; Tamayo, Carmen; Sit, Summer; Arnason, John Thor
2009-01-01
Commercially available herbal mixture FE, a proprietary natural health product manufactured by Flora Manufacturing and Distributing Ltd (Flora), is a unique North American traditional herbal product. FE is a chemically complex mixture of eight herbs and has not been subjected to phytochemical analysis. To develop analytical methods to undertake detailed phytochemical analyses of FE, and its eight contributing herbs, including burdock (Arctium lappa L.), sheep sorrel (Rumex acetosella L.), Turkish rhubarb (Rheum palmatum L.), slippery elm Muhl. (Ulmus rubra), watercress (Nasturtium officinale R. Br.), red clover (Trifolium pratense L.), blessed thistle (Cnicus benedictus L.) and kelp (Laminaria digitata Lmx.). The identification was undertaken by a combination of reversed phase high performance liquid chromatography-diode array detection-atmospheric pressure chemical ionisation-mass selective detection (RP-HPLC-DAD-APCI-MSD) analysis and phenolics metabolomic library matching. New separation methods facilitated the identification of 43 markers in the individual herbs which constitute FE. Sixteen markers could be identified in FE originating from four contributing herbs including four caffeoyl quinic acids, three dicaffeoyl quinic acids and two caffeic acid derivatives from A. lappa, luteolin-7-O-glucoside, luteolin, five apigenin glycosides and apigenin from R. acetocella and N. officinale and sissostrin from T. pretense. A validated method for quantitative determination of three markers is reported with good intraday, interday and interoperator repeatability using a reliable alcohol based extraction technique. FE and its contributing herbs predominantly contain phenolics. This methodology can be applied to further develop full-scale validation of this product.
Divergence in sink contributions to population persistence
Population sinks present unique conservation challenges. The loss of animals in sinks can compromise persistence. Conversely, sinks can bolster population sizes, improving viability. To assess the contribution of sinks to regional persistence, we simulated the removal of sink hab...
Divergence in sink contributions to population persistence (journal article)
Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks t...
No difference in variability of unique hue selections and binary hue selections.
Bosten, J M; Lawrance-Owen, A J
2014-04-01
If unique hues have special status in phenomenological experience as perceptually pure, it seems reasonable to assume that they are represented more precisely by the visual system than are other colors. Following the method of Malkoc et al. (J. Opt. Soc. Am. A22, 2154 [2005]), we gathered unique and binary hue selections from 50 subjects. For these subjects we repeated the measurements in two separate sessions, allowing us to measure test-retest reliabilities (0.52≤ρ≤0.78; p≪0.01). We quantified the within-individual variability for selections of each hue. Adjusting for the differences in variability intrinsic to different regions of chromaticity space, we compared the within-individual variability for unique hues to that for binary hues. Surprisingly, we found that selections of unique hues did not show consistently lower variability than selections of binary hues. We repeated hue measurements in a single session for an independent sample of 58 subjects, using a different relative scaling of the cardinal axes of MacLeod-Boynton chromaticity space. Again, we found no consistent difference in adjusted within-individual variability for selections of unique and binary hues. Our finding does not depend on the particular scaling chosen for the Y axis of MacLeod-Boynton chromaticity space.
The Kardar-Parisi-Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions
NASA Astrophysics Data System (ADS)
Diehl, Joscha; Gubinelli, Massimiliano; Perkowski, Nicolas
2017-09-01
We consider a system of infinitely many interacting Brownian motions that models the height of a one-dimensional interface between two bulk phases. We prove that the large scale fluctuations of the system are well approximated by the solution to the KPZ equation provided the microscopic interaction is weakly asymmetric. The proof is based on the martingale solutions of Gonçalves and Jara (Arch Ration Mech Anal 212(2):597-644, 2014) and the corresponding uniqueness result of Gubinelli and Perkowski (Energy solutions of KPZ are unique, 2015).
USDA-ARS?s Scientific Manuscript database
Interactions among ecological patterns and processes at multiple scales play a significant role in threshold behaviors in arid systems. Black grama grasslands and mesquite shrublands are hypothesized to operate under unique sets of feedbacks: grasslands are maintained by fine-scale biotic feedbacks ...
ERIC Educational Resources Information Center
Richardson, Bill K.; And Others
There currently exists a clear need for counseling process research scales developed to reflect the specific behaviors unique to vocational rehabilitation counseling interviews. In research at the Menninger Foundation, Taylor developed methods for constructing example-anchored (EA) scales which increase rater reliability and decrease response…
NASA Astrophysics Data System (ADS)
Forte, A. M.; Glisovic, P.; Grand, S. P.; Lu, C.; Simmons, N. A.; Rowley, D. B.
2015-12-01
Convection-related data constrain lower-mantle density anomalies that contribute to mantle convective flow. These include global gravity and topography anomalies, plate motions and excess ellipticity of the core-mantle boundary (CMB). Each datum possesses differing wavelength and depth dependent resolution of heterogeneity and thus the strongest constraints on density anomalies are obtained by jointly inverting all data in combination. The joint-inversions employ viscous response functions (i.e. geodynamic kernels) for a flowing mantle. Non-uniqueness is greatly reduced by including seismic and mineral physics data into the joint inversions. We present the results of inversions where seismic and geodynamic data are singly and jointly inverted to map density anomalies. Employing mineral physical data we estimate thermal and compositional contributions to density anomalies. We evaluate the extent to which "Large Low Shear Velocity Provinces" (LLSVP) are anomalous and we determine their impact on the global pattern of convective flow. The inversions yield consistent maps of lower-mantle flow (see figure) that are dominated by two large upwellings, under the Western Pacific (next to the Caroline microplate) and Eastern Pacific (under the East Pacific Rise). These hot upwellings effectively delimit the margins of the Pacific LLSVP, suggesting intrinsic negative buoyancy within this structure impedes large-scale upwellings in the mantle above. These two upwellings do not resemble classical mantle "plumes" found in simple isoviscous and isochemical convection models but their contribution to mass and heat transport across the lower mantle is significant and thus behave similarly to plumes. The large scale of these upwellings may be understood in terms of the high viscosity in the lower mantle, inferred from geodynamic constraints on mantle rheology. Very-long time convection simulations initiated with present-day structure inferred from these inversions show the two Pacific upwellings possess remarkable geographic fixity and longevity extending over several hundred million years, again a consequence of the high viscosity in the lower mantle. These upwellings are fed by large heat flux across the CMB (from 12 to 20 TW) and should play a major role in the thermal evolution of the mantle.
Do, Elizabeth K.; Prom-Wormley, Elizabeth C.; Eaves, Lindon J.; Silberg, Judy L.; Miles, Donna R.; Maes, Hermine H.
2016-01-01
Little is known regarding the underlying relationship between smoking initiation and current quantity smoked during adolescence into young adulthood. It is possible that the influences of genetic and environmental factors on this relationship vary across sex and age. To investigate this further, the current study applied a common causal contingency model to data from a Virginia-based twin study to determine: (1) if the same genetic and environmental factors are contributing to smoking initiation and current quantity smoked; (2) whether the magnitude of genetic and environmental factor contributions are the same across adolescence and young adulthood; and (3) if qualitative and quantitative differences in the sources of variance between males and females exist. Study results found no qualitative or quantitative sex differences in the relationship between smoking initiation and current quantity smoked, though relative contributions of genetic and environmental factors changed across adolescence and young adulthood. More specifically, smoking initiation and current quantity smoked remain separate constructs until young adulthood, when liabilities are correlated. Smoking initiation is explained by genetic, shared, and unique environmental factors in early adolescence and by genetic and unique environmental factors in young adulthood; while current quantity smoked is explained by shared environmental and unique environmental factors until young adulthood, when genetic and unique environmental factors play a larger role. PMID:25662421
Do, Elizabeth K; Prom-Wormley, Elizabeth C; Eaves, Lindon J; Silberg, Judy L; Miles, Donna R; Maes, Hermine H
2015-02-01
Little is known regarding the underlying relationship between smoking initiation and current quantity smoked during adolescence into young adulthood. It is possible that the influences of genetic and environmental factors on this relationship vary across sex and age. To investigate this further, the current study applied a common causal contingency model to data from a Virginia-based twin study to determine: (1) if the same genetic and environmental factors are contributing to smoking initiation and current quantity smoked; (2) whether the magnitude of genetic and environmental factor contributions are the same across adolescence and young adulthood; and (3) if qualitative and quantitative differences in the sources of variance between males and females exist. Study results found no qualitative or quantitative sex differences in the relationship between smoking initiation and current quantity smoked, though relative contributions of genetic and environmental factors changed across adolescence and young adulthood. More specifically, smoking initiation and current quantity smoked remain separate constructs until young adulthood, when liabilities are correlated. Smoking initiation is explained by genetic, shared, and unique environmental factors in early adolescence and by genetic and unique environmental factors in young adulthood; while current quantity smoked is explained by shared environmental and unique environmental factors until young adulthood, when genetic and unique environmental factors play a larger role.
The Development and Validation of the Game User Experience Satisfaction Scale (GUESS).
Phan, Mikki H; Keebler, Joseph R; Chaparro, Barbara S
2016-12-01
The aim of this study was to develop and psychometrically validate a new instrument that comprehensively measures video game satisfaction based on key factors. Playtesting is often conducted in the video game industry to help game developers build better games by providing insight into the players' attitudes and preferences. However, quality feedback is difficult to obtain from playtesting sessions without a quality gaming assessment tool. There is a need for a psychometrically validated and comprehensive gaming scale that is appropriate for playtesting and game evaluation purposes. The process of developing and validating this new scale followed current best practices of scale development and validation. As a result, a mixed-method design that consisted of item pool generation, expert review, questionnaire pilot study, exploratory factor analysis (N = 629), and confirmatory factor analysis (N = 729) was implemented. A new instrument measuring video game satisfaction, called the Game User Experience Satisfaction Scale (GUESS), with nine subscales emerged. The GUESS was demonstrated to have content validity, internal consistency, and convergent and discriminant validity. The GUESS was developed and validated based on the assessments of over 450 unique video game titles across many popular genres. Thus, it can be applied across many types of video games in the industry both as a way to assess what aspects of a game contribute to user satisfaction and as a tool to aid in debriefing users on their gaming experience. The GUESS can be administered to evaluate user satisfaction of different types of video games by a variety of users. © 2016, Human Factors and Ergonomics Society.
Spatially explicit modeling in ecology: A review
DeAngelis, Donald L.; Yurek, Simeon
2017-01-01
The use of spatially explicit models (SEMs) in ecology has grown enormously in the past two decades. One major advancement has been that fine-scale details of landscapes, and of spatially dependent biological processes, such as dispersal and invasion, can now be simulated with great precision, due to improvements in computer technology. Many areas of modeling have shifted toward a focus on capturing these fine-scale details, to improve mechanistic understanding of ecosystems. However, spatially implicit models (SIMs) have played a dominant role in ecology, and arguments have been made that SIMs, which account for the effects of space without specifying spatial positions, have an advantage of being simpler and more broadly applicable, perhaps contributing more to understanding. We address this debate by comparing SEMs and SIMs in examples from the past few decades of modeling research. We argue that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions, such as spatial heterogeneities, organism behaviors, and other contingencies, produce dynamics and patterns that usually cannot be incorporated into simpler SIMs. SEMs are also able to describe mechanisms at the local scale that can create amplifying positive feedbacks at that scale, creating emergent patterns at larger scales, and therefore are important to basic ecological theory. We review the use of SEMs at the level of populations, interacting populations, food webs, and ecosystems and argue that SEMs are not only essential in pragmatic issues, but must play a role in the understanding of causal relationships on landscapes.
NASA Technical Reports Server (NTRS)
Beckingham, Kathleen M.; Armstrong, J. Douglas; Texada, Michael J.; Munjaal, Ravi; Baker, Dean A.
2005-01-01
Drosophila melanogaster has been intensely studied for almost 100 years. The sophisticated array of genetic and molecular tools that have evolved for analysis of gene function in this organism are unique. Further, Drosophila is a complex multi-cellular organism in which many aspects of development and behavior parallel those in human beings. These combined advantages have permitted research in Drosophila to make seminal contributions to the understanding of fundamental biological processes and ensure that Drosophila will continue to provide unique insights in the genomic era. An overview of the genetic methodologies available in Drosophila is given here, together with examples of outstanding recent contributions of Drosophila to our understanding of cell and organismal biology. The growing contribution of Drosophila to our knowledge of gravity-related responses is addressed.
Wu, Xiaolin
2016-01-01
The onion (Allium cepa L.) is widely planted worldwide as a valuable vegetable crop. The scales of an onion bulb are a modified type of leaf. The one-layer-cell epidermis of onion scales is commonly used as a model experimental material in botany and molecular biology. The lower epidermis (LE) and upper epidermis (UE) of onion scales display obvious differences in microscopic structure, cell differentiation and pigment synthesis; however, associated proteomic differences are unclear. LE and UE can be easily sampled as single-layer-cell tissues for comparative proteomic analysis. In this study, a proteomic approach based on 2-DE and mass spectrometry (MS) was applied to compare LE and UE of fleshy scales from yellow and red onions. We identified 47 differential abundant protein spots (representing 31 unique proteins) between LE and UE in red and yellow onions. These proteins are mainly involved in pigment synthesis, stress response, and cell division. Particularly, the differentially accumulated chalcone-flavanone isomerase and flavone O-methyltransferase 1-like in LE may result in the differences in the onion scale color between red and yellow onions. Moreover, stress-related proteins abundantly accumulated in both LE and UE. In addition, the differential accumulation of UDP-arabinopyranose mutase 1-like protein and β-1,3-glucanase in the LE may be related to the different cell sizes between LE and UE of the two types of onion. The data derived from this study provides new insight into the differences in differentiation and developmental processes between onion epidermises. This study may also make a contribution to onion breeding, such as improving resistances and changing colors. PMID:28036352
Wu, Si; Ning, Fen; Wu, Xiaolin; Wang, Wei
2016-01-01
The onion (Allium cepa L.) is widely planted worldwide as a valuable vegetable crop. The scales of an onion bulb are a modified type of leaf. The one-layer-cell epidermis of onion scales is commonly used as a model experimental material in botany and molecular biology. The lower epidermis (LE) and upper epidermis (UE) of onion scales display obvious differences in microscopic structure, cell differentiation and pigment synthesis; however, associated proteomic differences are unclear. LE and UE can be easily sampled as single-layer-cell tissues for comparative proteomic analysis. In this study, a proteomic approach based on 2-DE and mass spectrometry (MS) was applied to compare LE and UE of fleshy scales from yellow and red onions. We identified 47 differential abundant protein spots (representing 31 unique proteins) between LE and UE in red and yellow onions. These proteins are mainly involved in pigment synthesis, stress response, and cell division. Particularly, the differentially accumulated chalcone-flavanone isomerase and flavone O-methyltransferase 1-like in LE may result in the differences in the onion scale color between red and yellow onions. Moreover, stress-related proteins abundantly accumulated in both LE and UE. In addition, the differential accumulation of UDP-arabinopyranose mutase 1-like protein and β-1,3-glucanase in the LE may be related to the different cell sizes between LE and UE of the two types of onion. The data derived from this study provides new insight into the differences in differentiation and developmental processes between onion epidermises. This study may also make a contribution to onion breeding, such as improving resistances and changing colors.
Lu, Frank J. H; Hsu, Yawen
2013-01-01
Context Injuries are a significant problem in the world of sports. Hope and social support are very important features in providing psychological help as people face life challenges such as sport injuries. Objective To examine how hope and social support uniquely and jointly predict postinjury rehabilitation beliefs, rehabilitation behavior, and subjective well-being. Design Cross-sectional study. Setting Four sports-injury rehabilitation centers of local universities in Taiwan. Participants A total of 224 injured Taiwanese collegiate student-athletes. Main Outcomes Measure(s) The Trait Hope Scale, the Sports Injury Rehabilitation Beliefs Survey, the Satisfaction with Life Scale, the Positive Affective and Negative Affective Scale, and the Multidimensional Scale of Perceived Social Support were completed by participants after they received their regular rehabilitation treatment. Results We conducted hierarchical regressions and found that social support and 2 types of hope in injured athletes predicted their rehabilitation beliefs and subjective well-being. However, only hope agency predicted their rehabilitation behavior. Also, hope and social support had an interactive effect on the prediction of subjective well-being; for participants with low hope pathways, the perception of more social support was associated with higher levels of subjective well-being, whereas social support had only a relatively low association with subjective well-being among participants with high hope pathways. Conclusions Enhancing hope perceptions and strengthening injured athletes' social support during rehabilitation are beneficial to rehabilitation behavior and subjective well-being. PMID:23672330
Nelson, Kerrie P; Mitani, Aya A; Edwards, Don
2017-09-10
Widespread inconsistencies are commonly observed between physicians' ordinal classifications in screening tests results such as mammography. These discrepancies have motivated large-scale agreement studies where many raters contribute ratings. The primary goal of these studies is to identify factors related to physicians and patients' test results, which may lead to stronger consistency between raters' classifications. While ordered categorical scales are frequently used to classify screening test results, very few statistical approaches exist to model agreement between multiple raters. Here we develop a flexible and comprehensive approach to assess the influence of rater and subject characteristics on agreement between multiple raters' ordinal classifications in large-scale agreement studies. Our approach is based upon the class of generalized linear mixed models. Novel summary model-based measures are proposed to assess agreement between all, or a subgroup of raters, such as experienced physicians. Hypothesis tests are described to formally identify factors such as physicians' level of experience that play an important role in improving consistency of ratings between raters. We demonstrate how unique characteristics of individual raters can be assessed via conditional modes generated during the modeling process. Simulation studies are presented to demonstrate the performance of the proposed methods and summary measure of agreement. The methods are applied to a large-scale mammography agreement study to investigate the effects of rater and patient characteristics on the strength of agreement between radiologists. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Unravelling connections between river flow and large-scale climate: experiences from Europe
NASA Astrophysics Data System (ADS)
Hannah, D. M.; Kingston, D. G.; Lavers, D.; Stagge, J. H.; Tallaksen, L. M.
2016-12-01
The United Nations has identified better knowledge of large-scale water cycle processes as essential for socio-economic development and global water-food-energy security. In this context, and given the ever-growing concerns about climate change/ variability and human impacts on hydrology, there is an urgent research need: (a) to quantify space-time variability in regional river flow, and (b) to improve hydroclimatological understanding of climate-flow connections as a basis for identifying current and future water-related issues. In this paper, we draw together studies undertaken at the pan-European scale: (1) to evaluate current methods for assessing space-time dynamics for different streamflow metrics (annual regimes, low flows and high flows) and for linking flow variability to atmospheric drivers (circulation indices, air-masses, gridded climate fields and vapour flux); and (2) to propose a plan for future research connecting streamflow and the atmospheric conditions in Europe and elsewhere. We believe this research makes a useful, unique contribution to the literature through a systematic inter-comparison of different streamflow metrics and atmospheric descriptors. In our findings, we highlight the need to consider appropriate atmospheric descriptors (dependent on the target flow metric and region of interest) and to develop analytical techniques that best characterise connections in the ocean-atmosphere-land surface process chain. We call for the need to consider not only atmospheric interactions, but also the role of the river basin-scale terrestrial hydrological processes in modifying the climate signal response of river flows.
Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.
Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø
2003-10-07
The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell metabolism under various physiological, non-optimal conditions.
Optimizing rice yields while minimizing yield-scaled global warming potential.
Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A
2014-05-01
To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.
Dimitrova, N; Nagaraj, A B; Razi, A; Singh, S; Kamalakaran, S; Banerjee, N; Joseph, P; Mankovich, A; Mittal, P; DiFeo, A; Varadan, V
2017-04-27
Characterizing the complex interplay of cellular processes in cancer would enable the discovery of key mechanisms underlying its development and progression. Published approaches to decipher driver mechanisms do not explicitly model tissue-specific changes in pathway networks and the regulatory disruptions related to genomic aberrations in cancers. We therefore developed InFlo, a novel systems biology approach for characterizing complex biological processes using a unique multidimensional framework integrating transcriptomic, genomic and/or epigenomic profiles for any given cancer sample. We show that InFlo robustly characterizes tissue-specific differences in activities of signalling networks on a genome scale using unique probabilistic models of molecular interactions on a per-sample basis. Using large-scale multi-omics cancer datasets, we show that InFlo exhibits higher sensitivity and specificity in detecting pathway networks associated with specific disease states when compared to published pathway network modelling approaches. Furthermore, InFlo's ability to infer the activity of unmeasured signalling network components was also validated using orthogonal gene expression signatures. We then evaluated multi-omics profiles of primary high-grade serous ovarian cancer tumours (N=357) to delineate mechanisms underlying resistance to frontline platinum-based chemotherapy. InFlo was the only algorithm to identify hyperactivation of the cAMP-CREB1 axis as a key mechanism associated with resistance to platinum-based therapy, a finding that we subsequently experimentally validated. We confirmed that inhibition of CREB1 phosphorylation potently sensitized resistant cells to platinum therapy and was effective in killing ovarian cancer stem cells that contribute to both platinum-resistance and tumour recurrence. Thus, we propose InFlo to be a scalable and widely applicable and robust integrative network modelling framework for the discovery of evidence-based biomarkers and therapeutic targets.
Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)
NASA Astrophysics Data System (ADS)
Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.
2009-12-01
Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.
Partitioning the Water Budget in a Glacierized Basin
NASA Astrophysics Data System (ADS)
O'Neel, S.; Sass, L.; McGrath, D.; McNeil, C.; Myers, K. F.; Bergstrom, A.; Koch, J. C.; Ostman, J. S.; Arendt, A. A.; LeWinter, A.; Larsen, C. F.; Marshall, H. P.
2017-12-01
Glaciers couple to the ecosystems in which they reside through their mass balance and subsequent runoff. The unique timing and composition of glacier runoff notably impacts ecological and socio-economically important processes, including thermal modulation of streams, nearshore primary production, and groundwater exchange. Predicting how these linkages will evolve as glaciers continue to retreat requires a better understanding of basin- to region-scale water budgets. Here we develop a partitioned water balance for Alaska's Wolverine Glacier basin for 2016. Our presentation will highlight mass-balance forcing and sensitivity, as well as analyses of hydrometric and geochemical partitioning. These observations provide constraints for hypsometry-based regional projections of glacier change, which form the basis of future biogeochemical scenarios. Local climate records show relatively minor warming and drying over the 1967 -2016 interval, yet the impact on the glacier was substantial; the average annual balance rate over the study interval is -0.5 m/yr. We performed a sensitivity experiment that suggests that elevation-independent processes drive first-order variability in glacier-wide mass balance solutions Analysis of runoff and precipitation data suggest that previously ignored components of the hydrologic cycle (groundwater, evapotranspiration, off-glacier snowpack storage, and snow redistribution) may substantially contribute to the basin wide water budget. Initial geochemical assessments (carbon, water isotopes, major ions) highlight unique source signatures (glacier-derived, snow-melt, groundwater), which will be further explored using a mixing model approach. Applying a range of climate forcings over centennial time-scales suggests the regional equilibrium line altitude is likely to increase by more than 100 m, which will result in extensive glacier area losses. Such changes will likely modify the runoff from this basin by increasing inter-annual streamflow variability and increasing the fraction of runoff delivered early in the melt season.
Deniz, M Engin; Işik, Erkan
2010-10-01
The purpose was to investigate positive and negative affect, life satisfaction, and coping with stress in relation to attachment styles. Undergraduate students (N=421) completed the Relationship Scales Questionnaire, the Positive and Negative Affect Scale, the Satisfaction With Life Scale, and the Coping with Stress Scale. Results indicated that secure attachment style was the unique predictor of positive affect while fearful and preoccupied attachment styles significantly predicted negative affect. Regarding life satisfaction, a positive correlation with secure attachment style and a negative correlation with fearful and preoccupied styles were seen. However, the unique predictor of life satisfaction was preoccupied attachment style. In terms of coping with stress, there was no significant association between attachment variables and avoidance coping style, but significant links were observed between problem-focused coping and dismissing, and fearful and preoccupied attachment styles.
Foundational perspectives on causality in large-scale brain networks
NASA Astrophysics Data System (ADS)
Mannino, Michael; Bressler, Steven L.
2015-12-01
A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain.
Foundational perspectives on causality in large-scale brain networks.
Mannino, Michael; Bressler, Steven L
2015-12-01
A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
CHORUS code for solar and planetary convection
NASA Astrophysics Data System (ADS)
Wang, Junfeng
Turbulent, density stratified convection is ubiquitous in stars and planets. Numerical simulation has become an indispensable tool for understanding it. A primary contribution of this dissertation work is the creation of the Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating the convection and related fluid dynamics in the interiors of stars and planets. In this work, the CHORUS code is verified by using two newly defined benchmark cases and demonstrates excellent parallel performance. It has unique potential to simulate challenging physical phenomena such as multi-scale solar convection, core convection, and convection in oblate, rapidly-rotating stars. In order to exploit its unique capabilities, the CHORUS code has been extended to perform the first 3D simulations of convection in oblate, rapidly rotating solar-type stars. New insights are obtained with respect to the influence of oblateness on the convective structure and heat flux transport. With the presence of oblateness resulting from the centrifugal force effect, the convective structure in the polar regions decouples from the main convective modes in the equatorial regions. Our convection simulations predict that heat flux peaks in both the polar and equatorial regions, contrary to previous theoretical results that predict darker equators. High latitudinal zonal jets are also observed in the simulations.
Mansfield, Avril; Mochizuki, George; Inness, Elizabeth L; McIlroy, William E
2012-01-01
Stroke-related sensorimotor impairment potentially contributes to impaired balance. Balance measures that reveal underlying limb-specific control problems, such as a measure of the synchronization of both lower limbs to maintain standing balance, may be uniquely informative about poststroke balance control. This study aimed to determine the relationships between clinical measures of sensorimotor control, functional balance, and fall risk and between-limb synchronization of balance control. The authors conducted a retrospective chart review of 100 individuals with stroke admitted to inpatient rehabilitation. Force plate-based measures were obtained while standing on 2 force plates, including postural sway (root mean square of anteroposterior and mediolateral center of pressure [COP]), stance load asymmetry (percentage of body weight borne on the less-loaded limb), and between-limb synchronization (cross-correlation of the COP recordings under each foot). Clinical measures obtained were motor impairment (Chedoke-McMaster Stroke Assessment), plantar cutaneous sensation, functional balance (Berg Balance Scale), and falls experienced in rehabilitation. Synchronization was significantly related to motor impairment and prospective falls, even when controlling for other force plate-based measures of standing balance control (ie, postural sway and stance load symmetry). Between-limb COP synchronization for standing balance appears to be a uniquely important index of balance control, independent of postural sway and load symmetry during stance.
College Students' Attitudes toward Elderly Sexuality: A Two Factor Solution.
ERIC Educational Resources Information Center
Hillman, Jennifer L.; Stricker, George
1996-01-01
Factor analysis of scores of 458 college students on the Aging Sexuality Knowledge and Attitude Scale revealed a two-factor structure. Religious affiliation and ethnicity uniquely predicted permissive/restrictive attitudes. Death anxiety and salience of elderly sexuality uniquely predicted empathic/indifferent attitudes. Students of different ages…
Presynaptic neurones may contribute a unique glycoprotein to the extracellular matrix at the synapse
NASA Astrophysics Data System (ADS)
Caroni, Pico; Carlson, Steven S.; Schweitzer, Erik; Kelly, Regis B.
1985-04-01
As the extracellular matrix at the original site of a neuromuscular junction seems to play a major part in the specificity of synaptic regeneration1-5, considerable attention has been paid to unique molecules localized to this region6-11. Here we describe an extracellular matrix glycoprotein of the elasmobranch electric organ that is localized near the nerve endings. By immunological criteria, it is synthesized in the cell bodies, transported down the axons and is related to a glycoprotein in the synaptic vesicles of the neurones that innervate the electric organ. It is apparently specific for these neurones, as it cannot be detected elsewhere in the nervous system of the fish. Therefore, neurones seem to contribute unique extracellular matrix glycoproteins to the synaptic region. Synaptic vesicles could be involved in transporting these glycoproteins to or from the nerve terminal surface.
How could haloalkaliphilic microorganisms contribute to biotechnology?
Zhao, Baisuo; Yan, Yanchun; Chen, Shulin
2014-11-01
Haloalkaliphiles are microorganisms requiring Na(+) concentrations of at least 0.5 mol·L(-1) and an alkaline pH of 9 for optimal growth. Their unique features enable them to make significant contributions to a wide array of biotechnological applications. Organic compatible solutes produced by haloalkaliphiles, such as ectoine and glycine betaine, are correlated with osmoadaptation and may serve as stabilizers of intracellular proteins, salt antagonists, osmoprotectants, and dermatological moisturizers. Haloalkaliphiles are an important source of secondary metabolites like rhodopsin, polyhydroxyalkanoates, and exopolysaccharides that play essential roles in biogeocycling organic compounds. These microorganisms also can secrete unique exoenzymes, including proteases, amylases, and cellulases, that are highly active and stable in extreme haloalkaline conditions and can be used for the production of laundry detergent. Furthermore, the unique metabolic pathways of haloalkaliphiles can be applied in the biodegradation and (or) biotransformation of a broad range of toxic industrial pollutants and heavy metals, in wastewater treatment, and in the biofuel industry.
Mental Health Consequences of Intimate Partner Abuse
Mechanic, Mindy B.; Weaver, Terri L.; Resick, Patricia A.
2010-01-01
Battered women are exposed to multiple forms of intimate partner abuse. This article explores the independent contributions of physical violence, sexual coercion, psychological abuse, and stalking on symptoms of posttraumatic stress disorder (PTSD) and depression among a sample of 413 severely battered, help-seeking women. The authors test the unique effects of psychological abuse and stalking on mental health outcomes, after controlling for physical violence, injuries, and sexual coercion. Mean scores for the sample fall into the moderate to severe range for PTSD and within the moderate category for depression scores. Hierarchical regressions test the unique effects of stalking and psychological abuse, after controlling for physical violence, injuries, and sexual coercion. Psychological abuse and stalking contribute uniquely to the prediction of PTSD and depression symptoms, even after controlling for the effects of physical violence, injuries, and sexual coercion. Results highlight the importance of examining multiple dimensions of intimate partner abuse. PMID:18535306
Large scale geologic sequestration (GS) of carbon dioxide poses a novel set of challenges for regulators. This paper focuses on the unique needs of large scale GS projects in light of the existing regulatory regimes in the United States and Canada and identifies several differen...
Taking Successful Programs to Scale and Creating Lasting Results
ERIC Educational Resources Information Center
National Math and Science Initiative, 2008
2008-01-01
Scaling Effective Programs is a category of giving that is quite unique. Philanthropists have many different interests that guide their giving, but Scaling Effective Programs offers an approach that can produce lasting transformation. This guide speaks to funders who: (1) view their giving as venture capital that stimulates other giving; (2) want…
Tremblay, Marie-Pier; Armero, Victoria E S; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Bisaillon, Martin
2016-08-26
Dysregulations in alternative splicing (AS) patterns have been associated with many human diseases including cancer. In the present study, alterations to the global RNA splicing landscape of cellular genes were investigated in a large-scale screen from 377 liver tissue samples using high-throughput RNA sequencing data. Our study identifies modifications in the AS patterns of transcripts encoded by more than 2500 genes such as tumor suppressor genes, transcription factors, and kinases. These findings provide insights into the molecular differences between various types of hepatocellular carcinoma (HCC). Our analysis allowed the identification of 761 unique transcripts for which AS is misregulated in HBV-associated HCC, while 68 are unique to HCV-associated HCC, 54 to HBV&HCV-associated HCC, and 299 to virus-free HCC. Moreover, we demonstrate that the expression pattern of the RNA splicing factor hnRNPC in HCC tissues significantly correlates with patient survival. We also show that the expression of the HBx protein from HBV leads to modifications in the AS profiles of cellular genes. Finally, using RNA interference and a reverse transcription-PCR screening platform, we examined the implications of cellular proteins involved in the splicing of transcripts involved in apoptosis and demonstrate the potential contribution of these proteins in AS control. This study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in hepatocellular carcinoma. Moreover, these data allowed us to identify unique signatures of genes for which AS is misregulated in the different types of HCC.
What does the Managing Emotions branch of the MSCEIT add to the MATRICS consensus cognitive battery?
DeTore, Nicole R; Mueser, Kim T; McGurk, Susan R
2018-02-24
The Managing Emotions branch of the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT-ME) was included within the MATRICS Consensus Cognitive Battery (MCCB) as the measure of social cognition, although limited research has examined its associations with psychosocial functioning in people with schizophrenia or other severe mental illnesses. This secondary analysis with 107 participants examined what the MSCEIT-ME contributes to our understanding of functioning in this population, and whether it uniquely predicts psychosocial functioning after controlling for performance on the other MCCB tests and negative symptoms. Performance on the MSCEIT-ME was significantly correlated with all three MCCP factors (processing speed, attention/working memory, learning) within schizophrenia-schizoaffective disorder, bipolar disorder, and other mixed diagnoses groups. Better performance on MSCEIT-ME was associated with better psychosocial functioning on the Quality of Life Scale (QLS) in the schizophrenia-schizoaffective disorder group, but not in the bipolar or other mixed diagnoses groups. In addition, in the schizophrenia-schizoaffective disorder group, after controlling for demographic characteristics in stepwise multiple regression analyses, MSCEIT-ME was the only significant predictor of the QLS total score and the QLS interpersonal relations and intrapsychic foundations subscales, with none of the MCCB factors entering any of the regression models. The MSCEIT-ME may reflect a unique aspect of social cognition that is related to impaired psychosocial functioning in schizophrenia and is not tapped by the other cognitive tests on the MCCB. Further research on the MSCEIT-ME could provide unique insights into the social functioning problems in schizophrenia. Copyright © 2018. Published by Elsevier B.V.
Lavi, T; Green, O; Dekel, R
2013-02-01
The study examined the unique contribution of both personal characteristics and several types of exposure variables to the adjustment of Israeli adolescents following the Second Lebanon War. Two thousand three hundred and fourteen adolescents, who lived in areas that were the target of multiple missile attacks, completed self-report questionnaires assessing personal characteristics of gender and early traumatic events, subjective exposure (i.e., measures of fear and shortage of basic necessities during the war), objective exposure (i.e., exposure to missile attacks, knowing someone who was wounded or killed) and media exposure. Fifteen percent of the adolescents reported moderate or severe post-traumatic symptoms. Girls and adolescents who experienced earlier traumatic events were at higher risk for distress. While the level of direct exposure contributed to greater distress, the contribution of subjective exposure was significantly stronger. The discussion deals with the unique contribution of both subjective and objective characteristics to post-war adjustment. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Multi-Phase US Spread and Habitat Switching of a Post-Columbian Invasive, Sorghum halepense
Barney, Jacob N.; Atwater, Daniel Z.; Pederson, Gary A.; Pederson, Jeffrey F.; Chandler, J. Mike; Cox, T. Stan; Cox, Sheila; Dotray, Peter; Kopec, David; Smith, Steven E.; Schroeder, Jill; Wright, Steven D.; Jiao, Yuannian; Kong, Wenqian; Goff, Valorie; Auckland, Susan; Rainville, Lisa K.; Pierce, Gary J.; Lemke, Cornelia; Compton, Rosana; Phillips, Christine; Kerr, Alexandra; Mettler, Matthew; Paterson, Andrew H.
2016-01-01
Johnsongrass (Sorghum halepense) is a striking example of a post-Columbian founder event. This natural experiment within ecological time-scales provides a unique opportunity for understanding patterns of continent-wide genetic diversity following range expansion. Microsatellite markers were used for population genetic analyses including leaf-optimized Neighbor-Joining tree, pairwise FST, mismatch analysis, principle coordinate analysis, Tajima’s D, Fu’s F and Bayesian clusterings of population structure. Evidence indicates two geographically distant introductions of divergent genotypes, which spread across much of the US in <200 years. Based on geophylogeny, gene flow patterns can be inferred to have involved five phases. Centers of genetic diversity have shifted from two introduction sites separated by ~2000 miles toward the middle of the range, consistent with admixture between genotypes from the respective introductions. Genotyping provides evidence for a ‘habitat switch’ from agricultural to non-agricultural systems and may contribute to both Johnsongrass ubiquity and aggressiveness. Despite lower and more structured diversity at the invasion front, Johnsongrass continues to advance northward into cooler and drier habitats. Association genetic approaches may permit identification of alleles contributing to the habitat switch or other traits important to weed/invasive management and/or crop improvement. PMID:27755565
Applications of LANCE Data at SPoRT
NASA Technical Reports Server (NTRS)
Molthan, Andrew
2014-01-01
Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society
Specificity of the Relationships Between Dysphoria and Related Constructs in an Outpatient Sample.
Starcevic, Vladan; Berle, David; Viswasam, Kirupamani; Hannan, Anthony; Milicevic, Denise; Brakoulias, Vlasios; Dale, Erin
2015-12-01
Dysphoria has recently been conceptualized as a complex emotional state that consists of discontent and/or unhappiness and a predominantly externalizing mode of coping with these feelings. The Nepean Dysphoria Scale (NDS) was developed on the basis of this model of dysphoria and used in this clinical study to ascertain the specificity of the relationships between dysphoria and relevant domains of psychopathology. Ninety-six outpatients completed the NDS, Symptom Checklist 90-Revised (SCL-90R) and Depression, Anxiety, Stress Scales, 21-item version (DASS-21). The scores on the NDS subscales (Discontent, Surrender, Irritability and Interpersonal Resentment) and total NDS scores correlated significantly with scores on the DASS-21 scales and relevant SCL-90R subscales. Multiple regression analyses demonstrated the following: DASS-21 Depression and Stress each had unique relationships with NDS Discontent and Surrender; DASS-21 Anxiety had a unique relationship with NDS Discontent; SCL-90R Hostility and Paranoid Ideation and DASS-21 Stress each had unique relationships with NDS Irritability; and SCL-90R Paranoid Ideation and DASS-21 Stress, Depression and Anxiety each had unique relationships with NDS Interpersonal Resentment. These findings support the notion that dysphoria is a complex emotional state, with both non-specific and specific relationships with irritability, tension, depression, paranoid tendencies, anxiety, hostility and interpersonal sensitivity. Conceptual rigor when referring to dysphoria should be promoted in both clinical practice and further research.
Executive Functions Contribute Uniquely to Reading Competence in Minority Youth
ERIC Educational Resources Information Center
Jacobson, Lisa A.; Koriakin, Taylor; Lipkin, Paul; Boada, Richard; Frijters, Jan C.; Lovett, Maureen W.; Hill, Dina; Willcutt, Erik; Gottwald, Stephanie; Wolf, Maryanne; Bosson-Heenan, Joan; Gruen, Jeffrey R.; Mahone, E. Mark
2017-01-01
Competent reading requires various skills beyond those for basic word reading (i.e., core language skills, rapid naming, phonological processing). Contributing "higher-level" or domain-general processes include information processing speed and executive functions (working memory, strategic problem solving, attentional switching).…
Whitehill, Justin G A; Opiyo, Stephen O; Koch, Jennifer L; Herms, Daniel A; Cipollini, Donald F; Bonello, Pierluigi
2012-05-01
The emerald ash borer (Agrilus planipennis, EAB) is an invasive wood-borer indigenous to Asia and is responsible for widespread ash (Fraxinus spp.) mortality in the U.S. and Canada. Resistance and susceptibility to EAB varies among Fraxinus spp., which is a result of their co-evolutionary history with the pest. We characterized constitutive phenolic profiles and lignin levels in the phloem of green, white, black, blue, European, and Manchurian ash. Phloem was sampled twice during the growing season, coinciding with phenology of early and late instar EAB. We identified 66 metabolites that displayed a pattern of variation, which corresponded strongly with phylogeny. Previously identified lignans and lignan derivatives were confirmed to be unique to Manchurian ash, and may contribute to its high level of resistance to EAB. Other compounds that had been considered unique to Manchurian ash, including hydroxycoumarins and the phenylethanoids calceolarioside A and B, were detected in closely related, but susceptible species, and thus are unlikely to contribute to EAB resistance of Manchurian ash. The distinct phenolic profile of blue ash may contribute to its relatively high resistance to EAB.
Spatially Different Tissue-Scale Diffusivity Shapes ANGUSTIFOLIA3 Gradient in Growing Leaves.
Kawade, Kensuke; Tanimoto, Hirokazu; Horiguchi, Gorou; Tsukaya, Hirokazu
2017-09-05
The spatial gradient of signaling molecules is pivotal for establishing developmental patterns of multicellular organisms. It has long been proposed that these gradients could arise from the pure diffusion process of signaling molecules between cells, but whether this simplest mechanism establishes the formation of the tissue-scale gradient remains unclear. Plasmodesmata are unique channel structures in plants that connect neighboring cells for molecular transport. In this study, we measured cellular- and tissue-scale kinetics of molecular transport through plasmodesmata in Arabidopsis thaliana developing leaf primordia by fluorescence recovery assays. These trans-scale measurements revealed biophysical properties of diffusive molecular transport through plasmodesmata and revealed that the tissue-scale diffusivity, but not the cellular-scale diffusivity, is spatially different along the leaf proximal-to-distal axis. We found that the gradient in cell size along the developmental axis underlies this spatially different tissue-scale diffusivity. We then asked how this diffusion-based framework functions in establishing a signaling gradient of endogenous molecules. ANGUSTIFOLIA3 (AN3) is a transcriptional co-activator, and as we have shown here, it forms a long-range signaling gradient along the leaf proximal-to-distal axis to determine a cell-proliferation domain. By genetically engineering AN3 mobility, we assessed each contribution of cell-to-cell movement and tissue growth to the distribution of the AN3 gradient. We constructed a diffusion-based theoretical model using these quantitative data to analyze the AN3 gradient formation and demonstrated that it could be achieved solely by the diffusive molecular transport in a growing tissue. Our results indicate that the spatially different tissue-scale diffusivity is a core mechanism for AN3 gradient formation. This provides evidence that the pure diffusion process establishes the formation of the long-range signaling gradient in leaf development. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Autism Spectrum Disorder in Sub-Saharan Africa: A Comprehensive Scoping Review
Franz, Lauren; Chambers, Nola; von Isenburg, Megan; de Vries, Petrus J.
2017-01-01
Autism spectrum disorder (ASD) is recognized as a global public health concern, yet almost everything we know about ASD comes from high-income countries. Here we performed a scoping review of all research on ASD ever published in sub-Saharan Africa (SSA) in order to identify ASD knowledge gaps in this part of the world. Fifty-three publications met inclusion criteria. Themes included the phenotype, genetics and risk factors for ASD in SSA, screening and diagnosis, professional knowledge, interventions for ASD, parental perceptions, and social-cognitive neuroscience. No epidemiological, early intervention, school-based or adult studies were identified. For each identified theme, we aimed to summarize results and make recommendations to fill the knowledge gaps. The quality of study methodologies was generally not high. Few studies used standardized diagnostic instruments, and intervention studies were typically small-scale. Overall, findings suggest a substantial need for large-scale clinical, training, and research programmes to improve the lives of people who live with ASD in SSA. However, SSA also has the potential to make unique and globally-significant contributions to the etiology and treatments of ASD through implementation, interventional, and comparative genomic science. PMID:28266791
Bradley, Rebekah; Schwartz, Ann C; Kaslow, Nadine J
2005-12-01
There is a dearth of research on risk/protective factors for posttraumatic stress disorder (PTSD) among low-income African American women with a history of intimate partner violence (IPV), presenting for suicidal behavior or routine medical care in a large, urban hospital. We examined self-esteem, social support, and religious coping as mediators between experiences of child maltreatment (CM) and IPV and symptoms of PTSD in a sample (N = 134) of low-income African American women. Instruments used included the Index of Spouse Abuse, the Childhood Trauma Questionnaire, the Taylor Self-Esteem Inventory, the Multidimensional Profile of Social Support, the Brief Religious Coping Activities Scale, and the Davidson Trauma Scale. Both CM and IPV related positively to PTSD symptoms. Risk and resilience individual difference factors accounted for 18% of the variance in PTSD symptoms over and above IPV and CM, with self-esteem and negative religious coping making unique contributions. Both variables mediated the abuse-PTSD symptom link. In addition, we tested an alternate model in which PTSD symptoms mediated the relationship between abuse and both self-esteem and negative religious coping.
Accessing the diffracted wavefield by coherent subtraction
NASA Astrophysics Data System (ADS)
Schwarz, Benjamin; Gajewski, Dirk
2017-10-01
Diffractions have unique properties which are still rarely exploited in common practice. Aside from containing subwavelength information on the scattering geometry or indicating small-scale structural complexity, they provide superior illumination compared to reflections. While diffraction occurs arguably on all scales and in most realistic media, the respective signatures typically have low amplitudes and are likely to be masked by more prominent wavefield components. It has been widely observed that automated stacking acts as a directional filter favouring the most coherent arrivals. In contrast to other works, which commonly aim at steering the summation operator towards fainter contributions, we utilize this directional selection to coherently approximate the most dominant arrivals and subtract them from the data. Supported by additional filter functions which can be derived from wave front attributes gained during the stacking procedure, this strategy allows for a fully data-driven recovery of faint diffractions and makes them accessible for further processing. A complex single-channel field data example recorded in the Aegean sea near Santorini illustrates that the diffracted background wavefield is surprisingly rich and despite the absence of a high channel count can still be detected and characterized, suggesting a variety of applications in industry and academia.
Microlensing makes lensed quasar time delays significantly time variable
NASA Astrophysics Data System (ADS)
Tie, S. S.; Kochanek, C. S.
2018-01-01
The time delays of gravitationally lensed quasars are generally believed to be unique numbers whose measurement is limited only by the quality of the light curves and the models for the contaminating contribution of gravitational microlensing to the light curves. This belief is incorrect - gravitational microlensing also produces changes in the actual time delays on the ∼day(s) light-crossing time-scale of the emission region. This is due to a combination of the inclination of the disc relative to the line of sight and the differential magnification of the temperature fluctuations producing the variability. We demonstrate this both mathematically and with direct calculations using microlensing magnification patterns. Measuring these delay fluctuations can provide a physical scale for microlensing observations, removing the need for priors on either the microlens masses or the component velocities. That time delays in lensed quasars are themselves time variable likely explains why repeated delay measurements of individual lensed quasars appear to vary by more than their estimated uncertainties. This effect is also a new important systematic problem for attempts to use time delays in lensed quasars for cosmology or to detect substructures (satellites) in lens galaxies.
Quee, P J; van der Meer, L; Krabbendam, L; de Haan, L; Cahn, W; Wiersma, D; van Beveren, N; Pijnenborg, G H M; Mulder, C L; Bruggeman, R; Aleman, A
2014-02-01
Impaired insight is an important and prevalent symptom of psychosis. It remains unclear whether cognitive disturbances hamper improvements in insight. We investigated the neurocognitive, social cognitive, and clinical correlates of changes in insight. One hundred and fifty-four patients with a psychotic disorder were assessed at baseline (T0 ) and after three years (T3 ) with the Birchwood Insight Scale, the Positive And Negative Syndrome Scale, measures of neurocognition and social cognition. Linear regression analyses were conducted to examine to what extend neurocognition, social cognition, clinical symptoms and phase of illness could uniquely predict insight change. Subsequently, changes in these factors were related to insight change. Better neurocognitive performance and fewer clinical symptoms at baseline explained insight improvements. The additional effect of clinical symptoms over and above the contribution of neurocognition was significant. Together, these factors explained 10% of the variance. Social cognition and phase of illness could not predict insight change. Changes in clinical symptoms, but not changes in neurocognitive performance were associated with insight change. Neurocognitive abilities may predict, in part, the development of insight in psychosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
mySyntenyPortal: an application package to construct websites for synteny block analysis.
Lee, Jongin; Lee, Daehwan; Sim, Mikang; Kwon, Daehong; Kim, Juyeon; Ko, Younhee; Kim, Jaebum
2018-06-05
Advances in sequencing technologies have facilitated large-scale comparative genomics based on whole genome sequencing. Constructing and investigating conserved genomic regions among multiple species (called synteny blocks) are essential in the comparative genomics. However, they require significant amounts of computational resources and time in addition to bioinformatics skills. Many web interfaces have been developed to make such tasks easier. However, these web interfaces cannot be customized for users who want to use their own set of genome sequences or definition of synteny blocks. To resolve this limitation, we present mySyntenyPortal, a stand-alone application package to construct websites for synteny block analyses by using users' own genome data. mySyntenyPortal provides both command line and web-based interfaces to build and manage websites for large-scale comparative genomic analyses. The websites can be also easily published and accessed by other users. To demonstrate the usability of mySyntenyPortal, we present an example study for building websites to compare genomes of three mammalian species (human, mouse, and cow) and show how they can be easily utilized to identify potential genes affected by genome rearrangements. mySyntenyPortal will contribute for extended comparative genomic analyses based on large-scale whole genome sequences by providing unique functionality to support the easy creation of interactive websites for synteny block analyses from user's own genome data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forte, A M; Quere, S; Moucha, R
Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomographymore » model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.« less
Rosenblum, Sara; Waissman, Pola; Diamond, Gary W
2017-06-01
Motor coordination deficits that characterize children with Developmental Coordination Disorder (DCD) affect their quality of participation. The aim of the current study was to identify play characteristics of young children with DCD, compared to those of children with typical development in three dimensions: activity and participation, environmental factors and children's impairments. Sixty-four children, aged four to six years, participated. Thirty were diagnosed as having DCD; the remaining 34 children were age, gender and socioeconomic level matched controls with typical development. The children were evaluated by the M-ABC. In addition, their parents completed a demographic questionnaire, the Children's Activity Scale for Parents (CHAS-P), the Children's Leisure Assessment Scale for preschoolers (CLASS-Pre), and My Child's Play Questionnaire (MCP). Children with DCD performed significantly poorer in each of the four play activity and participation domains: variety, frequency, sociability, and preference (CLASS-Pre). Furthermore, their environmental characteristics were significantly different (MCP). They displayed significantly inferior performance (impairments) in interpersonal interaction and executive functioning during play, in comparison to controls (MCP). Moreover, the children's motor and executive control as reflected in their daily function as well as their activities of daily living (ADL) performance level, contributed to the prediction of their global play participation. The results indicate that the use of both the CLASS-Pre and the MCP questionnaires enables the identification of unique play characteristics of pre-school children with DCD via parents' reports. A better insight into these characteristics may contribute to theoretical knowledge and clinical practice to improve the children's daily participation. Copyright © 2016 Elsevier B.V. All rights reserved.
Farber, Ruth S; Kern, Margaret L; Brusilovsky, Eugene
2015-05-01
Being a mother has become a realizable life role for women with disabilities and chronic illnesses, including multiple sclerosis (MS). Identifying psychosocial factors that facilitate participation in important life roles-including motherhood-is essential to help women have fuller lives despite the challenge of their illness. By integrating the International Classification of Functioning, Disability, and Health (ICF) and a positive psychology perspective, this study examined how environmental social factors and positive personal factors contribute to daily role participation and satisfaction with parental participation. One hundred and 11 community-dwelling mothers with MS completed Ryff's Psychological Well-Being Scales, the Medical Outcome Study Social Support Survey, the Short Form-36, and the Parental Participation Scale. Hierarchical regression analyses examined associations between social support and positive personal factors (environmental mastery, self-acceptance, purpose in life) with daily role participation (physical and emotional) and satisfaction with parental participation. One-way ANOVAs tested synergistic combinations of social support and positive personal factors. Social support predicted daily role participation (fewer limitations) and greater satisfaction with parental participation. Positive personal factors contributed additional unique variance. Positive personal factors and social support synergistically predicted better function and greater satisfaction than either alone. Integrating components of the ICF and positive psychology provides a useful model for understanding how mothers with MS can thrive despite challenge or impairment. Both positive personal factors and environmental social factors were important contributors to positive role functioning. Incorporating these paradigms into treatment may help mothers with MS participate more fully in meaningful life roles. (c) 2015 APA, all rights reserved).
Risser, Scott; Eckert, Katy
2016-01-01
The present study investigated the relations between morally disengaged attitudes, psychopathic affective traits, and a variety of antisocial and risky behaviors in a sample of adults (N = 181). A second aim of the study was to examine the unique contributions of moral disengagement and psychopathic traits in predicting problematic behavior while the other construct is statistically controlled. Results indicated that whereas psychopathic traits and moral disengagement were both uniquely predictive of non-violent antisocial behaviors, only remorselessness was uniquely predictive of violence and only morally disengaged attitudes were uniquely predictive of academic cheating. Differing relationships also emerged by gender. PMID:26906015
Fathers' Role in Play: Enhancing Early Language and Literacy of Children with Developmental Delays
ERIC Educational Resources Information Center
Stockall, Nancy; Dennis, Lindsay
2013-01-01
Fathers and paternal role models make a unique contribution to children's development. There is some research to suggest that the types of play males engage in with children is typically more active and thus offers unique possibilities for embedding activities for language and literacy development. In this article, we offer suggestions for how…
NASA Astrophysics Data System (ADS)
Korenaga, Jun
2011-05-01
The seismic structure of large igneous provinces provides unique constraints on the nature of their parental mantle, allowing us to investigate past mantle dynamics from present crustal structure. To exploit this crust-mantle connection, however, it is prerequisite to quantify the uncertainty of a crustal velocity model, as it could suffer from considerable velocity-depth ambiguity. In this contribution, a practical strategy is suggested to estimate the model uncertainty by explicitly exploring the degree of velocity-depth ambiguity in the model space. In addition, wide-angle seismic data collected over the Ontong Java Plateau are revisited to provide a worked example of the new approach. My analysis indicates that the crustal structure of this gigantic plateau is difficult to reconcile with the melting of a pyrolitic mantle, pointing to the possibility of large-scale compositional heterogeneity in the convecting mantle.
Cold Flow Propulsion Test Complex Pulse Testing
NASA Technical Reports Server (NTRS)
McDougal, Kris
2016-01-01
When the propellants in a liquid rocket engine burn, the rocket not only launches and moves in space, it causes forces that interact with the vehicle itself. When these interactions occur under specific conditions, the vehicle's structures and components can become unstable. One instability of primary concern is termed pogo (named after the movement of a pogo stick), in which the oscillations (cycling movements) cause large loads, or pressure, against the vehicle, tanks, feedlines, and engine. Marshall Space Flight Center (MSFC) has developed a unique test technology to understand and quantify the complex fluid movements and forces in a liquid rocket engine that contribute strongly to both engine and integrated vehicle performance and stability. This new test technology was established in the MSFC Cold Flow Propulsion Test Complex to allow injection and measurement of scaled propellant flows and measurement of the resulting forces at multiple locations throughout the engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Arendt, Dustin L.; Franklin, Lyndsey R.
Real-world systems change continuously and across domains like traffic monitoring, cyber security, etc., such changes occur within short time scales. This leads to a streaming data problem and produces unique challenges for the human in the loop, as analysts have to ingest and make sense of dynamic patterns in real time. In this paper, our goal is to study how the state-of-the-art in streaming data visualization handles these challenges and reflect on the gaps and opportunities. To this end, we have three contributions: i) problem characterization for identifying domain-specific goals and challenges for handling streaming data, ii) a survey andmore » analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space, and iii) reflections on the perceptually motivated design challenges and potential research directions for addressing them.« less
Santos, Rafael Silva; Loureiro, Kahynna; Rezende, Polyana; Nalone, Luciana; Barbosa, Raquel de Melo; Santini, Antonello; Santos, Ana Cláudia; da Silva, Classius F; Souto, Eliana Barbosa; de Souza, Damião Pergentino; Amaral, Ricardo Guimarães; Severino, Patrícia
2018-06-01
Nanomedicine manipulates materials at atomic, molecular, and supramolecular scale, with at least one dimension within the nanometer range, for biomedical applications. The resulting nanoparticles have been consistently shown beneficial effects for antifungal drugs delivery, overcoming the problems of low bioavailability and high toxicity of these drugs. Due to their unique features, namely the small mean particle size, nanoparticles contribute to the enhanced drug absorption and uptake by the target cells, potentiating the therapeutic drug effect. The topical route is desirable due to the adverse effects arising from oral administration. This review provides a comprehensive analysis of the use of nano compounds for the current treatment of topical fungal infections. A special emphasis is given to the employment of lipid nanoparticles, due to their recognized efficacy, versatility and biocompatibility, attracting the major attention as novel topical nanocompounds used for the administration of antifungal drugs.
Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly
de Juan Romero, Camino; Bruder, Carl; Tomasello, Ugo; Sanz-Anquela, José Miguel; Borrell, Víctor
2015-01-01
Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ∼80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. PMID:25916825
Maternal personal resources and children's socioemotional and behavioral adjustment.
Al-Yagon, Michal
2008-09-01
The study examined the role of three maternal personal resources [sense of coherence (SOC), attachment style, and social/emotional feelings of loneliness] in explaining children's socioemotional adjustment (self-rated loneliness and SOC, and mother-rated child behavior) and children's (self-rated) secure attachment. The sample included 58 mother-child dyads (27 boys and 31 girls) aged 8-11 years. Preliminary analyses indicated significant group differences between mothers with high or low scores on the two subscales of the attachment scale (i.e., avoidance and anxiety), on their SOC, and their social/emotional loneliness. Findings revealed that maternal SOC significantly contributed to all child socioemotional adjustment measures and attachment scores. In addition, the current findings demonstrated the role of maternal anxious attachment in explaining children's externalizing behaviors. Discussion focused on the unique value of maternal characteristics for understanding social and emotional adjustment among school-age children.
Semantically enabled image similarity search
NASA Astrophysics Data System (ADS)
Casterline, May V.; Emerick, Timothy; Sadeghi, Kolia; Gosse, C. A.; Bartlett, Brent; Casey, Jason
2015-05-01
Georeferenced data of various modalities are increasingly available for intelligence and commercial use, however effectively exploiting these sources demands a unified data space capable of capturing the unique contribution of each input. This work presents a suite of software tools for representing geospatial vector data and overhead imagery in a shared high-dimension vector or embedding" space that supports fused learning and similarity search across dissimilar modalities. While the approach is suitable for fusing arbitrary input types, including free text, the present work exploits the obvious but computationally difficult relationship between GIS and overhead imagery. GIS is comprised of temporally-smoothed but information-limited content of a GIS, while overhead imagery provides an information-rich but temporally-limited perspective. This processing framework includes some important extensions of concepts in literature but, more critically, presents a means to accomplish them as a unified framework at scale on commodity cloud architectures.
Hypochondriasis and somatization related to personality and attitudes toward self.
Hollifield, M; Tuttle, L; Paine, S; Kellner, R
1999-01-01
Better definition of the boundary between hypochondriasis and somatization was determined by measuring attitudes to self and personality dimensions associated with these syndromes. In this study, the primary care patients with hypochondriacal responses (HR) on the Illness Attitudes Scales or high somatic concern (HSC) on the Symptom Questionnaire had more negative attitudes to self and more psychological distress than the matched group of primary care control subjects. The HR subjects were different from the non-HR subjects on two of five personality domains on the NEO Personality Inventory (NEO)-Five-Factor Inventory, and the HSC subjects were different from the non-HSC subjects on four of five NEO domains. Analysis of variance demonstrated that somatization explained most of the variance in attitudes, personality, and psychological distress, but hypochondriasis uniquely contributed only to thanatophobia. The authors discuss the boundary between hypochondriasis and somatization and offer a descriptive model of this relationship.
Lavigne, John V.; Gouze, Karen R.; Bryant, Fred B.; Hopkins, Joyce
2014-01-01
There are distinct dimensions of Oppositional Defiant Disorder (ODD) that have been associated with symptoms of other disorders (heterotypic continuity). The present study compared the heterotypic continuity of a two-factor (Pitt-2) model and the three-factor model incorporated into DSM-5 with symptoms of anxiety and depression. Participants were a diverse community sample of 796 children (38.8% minority, 49.1% boys) assessed at ages 4, 5 and 6 years. Symptoms were assessed with the dimensional scales of the Diagnostic Interview Schedule for Children-Young Child version and the Child Symptom Inventory. Dimensions of both the two- and three-factor DSM-5 models were associated with later symptoms of anxiety and depression. The association, however, was weak when accounting for initial levels of internalizing symptoms: thus there was little evidence for the unique contributions of ODD dimensions to symptoms of subsequent internalizing disorders for either model. PMID:24497230
Does the Magnetosphere go to Sleep?
NASA Astrophysics Data System (ADS)
Hesse, M.; Moretto, T.; Friis-Christensen, E. A.; Kuznetsova, M.; Østgaard, N.; Tenfjord, P.; Opgenoorth, H. J.
2017-12-01
An interesting question in magnetospheric research is related to the transition between magnetospheric configurations under substantial solar wind driving, and a putative relaxed state after the driving ceases. While it is conceivable that the latter state may be unique and only dependent on residual solar wind driving, a more likely scenario has magnetospheric memory playing a key role. Memory processes may be manifold: constraints from conservation of flux tube entropy to neutral wind inertia in the upper atmosphere may all contribute. In this presentation, we use high-resolution, global, MHD simulations to begin to shed light on this transition, as well as on the concept of a quiet state of the magnetosphere. We will discuss key elements of magnetospheric memory, and demonstrate their influence, as well as the actual memory time scale, through simulations and analytical estimates. Finally, we will point out processes with the potential to effect magnetospheric memory loss.
Display characterization by eye: contrast ratio and discrimination throughout the grayscale
NASA Astrophysics Data System (ADS)
Gille, Jennifer; Arend, Larry; Larimer, James O.
2004-06-01
We have measured the ability of observers to estimate the contrast ratio (maximum white luminance / minimum black or gray) of various displays and to assess luminous discrimination over the tonescale of the display. This was done using only the computer itself and easily-distributed devices such as neutral density filters. The ultimate goal of this work is to see how much of the characterization of a display can be performed by the ordinary user in situ, in a manner that takes advantage of the unique abilities of the human visual system and measures visually important aspects of the display. We discuss the relationship among contrast ratio, tone scale, display transfer function and room lighting. These results may contribute to the development of applications that allow optimization of displays for the situated viewer / display system without instrumentation and without indirect inferences from laboratory to workplace.
Gaia: 3-dimensional census of the Milky Way Galaxy
NASA Astrophysics Data System (ADS)
Gilmore, Gerard
2018-04-01
Astrometry from space has unique advantages over ground-based observations: the all-sky coverage, relatively stable, and temperature and gravity invariant, operating environment delivers precision, accuracy and sample volume several orders of magnitude greater than ground-based results. Even more importantly, absolute astrometry is possible. The European Space Agency Cornerstone mission Gaia is delivering that promise. Gaia provides 5-D phase space measurements, 3 spatial coordinates and 2 space motions in the plane of the sky, for a representative sample of the Milky Way's stellar populations (over 2 billion stars, being 1% of the stars over 50% of the radius). Full 6-D phase space data are delivered from line-of-sight (radial) velocities for the 300 million brightest stars. These data make substantial contributions to astrophysics and fundamental physics on scales from the Solar System to cosmology. A knowledge revolution is underway.
Fang, Ke; Friedlander, Myrna; Pieterse, Alex L
2016-01-01
Based on the diathesis-stress model of anxiety, this study examined the contributions of cultural processes, perceived racial discrimination, and personality traits to social anxiety among Chinese immigrants. Further guided by the theory of intergroup anxiety, this study also adopted a context-specific approach to distinguish between participants' experience of social anxiety when interacting with European Americans versus with other Chinese in the United States. This quantitative and ex post facto study used a convenience sample of 140 first-generation Chinese immigrants. Participants were recruited through e-mails from different university and community groups across the United States. The sample includes 55 men and 82 women (3 did not specify) with an average age of 36 years old. Results showed that more social anxiety was reported in the European American context than in the Chinese ethnic context. The full models accounted for almost half the variance in anxiety in each context. Although personality accounted for the most variance, the cultural variables and discrimination contributed 14% of the unique variance in the European American context. Notably, low acculturation, high neuroticism, and low extraversion were unique contributors to social anxiety with European Americans, whereas in the Chinese ethnic context only low extraversion was a unique contributor; more discrimination was uniquely significant in both contexts. The findings suggest a need to contextualize the research and clinical assessment of social anxiety, and have implications for culturally sensitive counseling with immigrants. (c) 2016 APA, all rights reserved).
Landscape pattern metrics and regional assessment
Robert V. O' Neill; Kurt H. Riitters; J.D. Wickham; Bruce K. Jones
1999-01-01
The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop interpret quantitative measures of spatial patter-the landscape indices. This article reviews what is known about...
Scaling properties and symmetrical patterns in the epidemiology of rotavirus infection.
José, Marco V; Bishop, Ruth F
2003-01-01
The rich epidemiological database of the incidence of rotavirus, as a cause of severe diarrhoea in young children, coupled with knowledge of the natural history of the infection, can make this virus a paradigm for studies of epidemic dynamics. The cyclic recurrence of childhood rotavirus epidemics in unvaccinated populations provides one of the best documented phenomena in population dynamics. This paper makes use of epidemiological data on rotavirus infection in young children admitted to hospital in Melbourne, Australia from 1977 to 2000. Several mathematical methods were used to characterize the overall dynamics of rotavirus infections as a whole and individually as serotypes G1, G2, G3, G4 and G9. These mathematical methods are as follows: seasonal autoregressive integrated moving-average (SARIMA) models, power spectral density (PSD), higher-order spectral analysis (HOSA) (bispectrum estimation and quadratic phase coupling (QPC)), detrended fluctuation analysis (DFA), wavelet analysis (WA) and a surrogate data analysis technique. Each of these techniques revealed different dynamic aspects of rotavirus epidemiology. In particular, we confirm the existence of an annual, biannual and a quinquennial period but additionally we found other embedded cycles (e.g. ca. 3 years). There seems to be an overall unique geometric and dynamic structure of the data despite the apparent changes in the dynamics of the last years. The inherent dynamics seems to be conserved regardless of the emergence of new serotypes, the re-emergence of old serotypes or the transient disappearance of a particular serotype. More importantly, the dynamics of all serotypes is multiple synchronized so that they behave as a single entity at the epidemic level. Overall, the whole dynamics follow a scale-free power-law fractal scaling behaviour. We found that there are three different scaling regions in the time-series, suggesting that processes influencing the epidemic dynamics of rotavirus over less than 12 months differ from those that operate between 1 and ca. 3 years, as well as those between 3 and ca. 5 years. To discard the possibility that the observed patterns could be due to artefacts, we applied a surrogate data analysis technique which enabled us to discern if only random components or linear features of the incidence of rotavirus contribute to its dynamics. The global dynamics of the epidemic is portrayed by wavelet-based incidence analysis. The resulting wavelet transform of the incidence of rotavirus crisply reveals a repeating pattern over time that looks similar on many scales (a property called self-similarity). Both the self-similar behaviour and the absence of a single characteristic scale of the power-law fractal-like scaling of the incidence of rotavirus infection imply that there is not a universal inherently more virulent serotype to which severe gastroenteritis can uniquely be ascribed. PMID:14561323
Optical identification using imperfections in 2D materials
NASA Astrophysics Data System (ADS)
Cao, Yameng; Robson, Alexander J.; Alharbi, Abdullah; Roberts, Jonathan; Woodhead, Christopher S.; Noori, Yasir J.; Bernardo-Gavito, Ramón; Shahrjerdi, Davood; Roedig, Utz; Fal'ko, Vladimir I.; Young, Robert J.
2017-12-01
The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.
Keeper-Animal Interactions: Differences between the Behaviour of Zoo Animals Affect Stockmanship
Ward, Samantha J.; Melfi, Vicky
2015-01-01
Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowledge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman’s zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n = 93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals’ latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: “attitude towards the animals” and “knowledge and experience of the animals”. In this novel study, data demonstrated unique dyads were formed between keepers and zoo animals, which influenced animal behaviour. PMID:26509670
Keeper-Animal Interactions: Differences between the Behaviour of Zoo Animals Affect Stockmanship.
Ward, Samantha J; Melfi, Vicky
2015-01-01
Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowledge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman's zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n = 93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals' latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: "attitude towards the animals" and "knowledge and experience of the animals". In this novel study, data demonstrated unique dyads were formed between keepers and zoo animals, which influenced animal behaviour.
NASA Astrophysics Data System (ADS)
Barthel, Roland; Haaf, Ezra
2016-04-01
Regional hydrogeology is becoming increasingly important, but at the same time, scientifically sound, universal solutions for typical groundwater problems encountered on the regional scale are hard to find. While managers, decision-makers and state agencies operating on regional and national levels have always shown a strong interest in regional scale hydrogeology, researchers from academia tend to avoid the subject, focusing instead on local scales. Additionally, hydrogeology has always had a tendency to regard every problem as unique to its own site- and problem-specific context. Regional scale hydrogeology is therefore pragmatic rather than aiming at developing generic methodology (Barthel, 2014; Barthel and Banzhaf, 2016). One of the main challenges encountered on the regional scale in hydrogeology is the extreme heterogeneity that generally increases with the size of the studied area - paired with relative data scarcity. Even in well-monitored regions of the world, groundwater observations are usually clustered, leaving large areas without any direct data. However, there are many good reasons for assessing the status and predicting the behavior of groundwater systems under conditions of global change even for those areas and aquifers without observations. This is typically done by using rather coarsely discretized and / or poorly parameterized numerical models, or by using very simplistic conceptual hydrological models that do not take into account the complex three-dimensional geological setup. Numerical models heavily rely on local data and are resource-demanding. Conceptual hydrological models only deliver reliable information on groundwater if the geology is extremely simple. In this contribution, we present an approach to derive statistically relevant information for un-monitored areas, making use of existing information from similar localities that are or have been monitored. The approach combines site-specific knowledge with conceptual assumptions on the behavior of groundwater systems. It is based on the hypothesis that similar groundwater systems respond similarly to similar impacts. At its core is the classification of (i) static hydrogeological characteristics (such as aquifer geometry and hydraulic properties), (ii) dynamic changes of the boundary conditions (such as recharge, water levels in surface waters), and (iii) dynamic groundwater system responses (groundwater head and chemical parameters). The dependencies of system responses on explanatory variables are used to map knowledge from observed locations to areas without measurements. Classification of static and dynamic system features combined with information about known system properties and their dependencies provide insight into system behavior that cannot be directly derived through the analysis of raw data. Classification and dependency analysis could finally lead to a new framework for groundwater system assessment on the regional scale as a replacement or supplement to numerical groundwater models and catchment scale hydrological models. This contribution focusses on the main hydrogeological concepts underlying the approach while another EGU contribution (Haaf and Barthel, 2016) explains the methodologies used to classify groundwater systems. References: Barthel, R., 2014. A call for more fundamental science in regional hydrogeology. Hydrogeol J, 22(3): 507-510. Barthel, R., Banzhaf, S., 2016. Groundwater and Surface Water Interaction at the Regional-scale - A Review with Focus on Regional Integrated Models. Water Resour Manag, 30(1): 1-32. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs. Abstract submitted to EGU General Assembly 2016, Vienna, Austria.
NASA Astrophysics Data System (ADS)
Saif, S.; Brownlee, S. J.
2017-12-01
Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.
Predictor variable resolution governs modeled soil types
USDA-ARS?s Scientific Manuscript database
Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...
Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)
NASA Technical Reports Server (NTRS)
Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; Mccaul, E. W., Jr.
1993-01-01
This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall program of instrument development and scientific measurement. The focus of current research and plans for next year are presented.
The ecology and evolution of gall-forming insects.
Peter W. Price; William J. Mattson; Yuri N. Baranchikov
1994-01-01
This international proceedings focuses on the biology, ecology, and evolution of gall-forming insects and their uniquely specialized relationships with their host plants. The individual contributions range in scope from detailed descriptive to profoundly theoretical, synthetic studies. One underlying theme of the proceedings is the important contribution of knowledge...
One Hundred Years of Research: Prudent Aspirations
ERIC Educational Resources Information Center
Glass, Gene V.
2016-01-01
The statistical method "meta-analysis" is perhaps unique as a contribution to empirical inquiry of many types because it arose entirely within the practice of education research. In spite of its origins, meta-analysis has found its widest application and most important contributions in the field of medicine. Contrasting the success of…
ERIC Educational Resources Information Center
Daumas, Stephanie; Halley, Helene; Frances, Bernard; Lassalle, Jean-Michel
2005-01-01
Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting…
Medical Operations Centers: Duplication or a Needed Innovation?
2009-12-01
II. THE CURRENT MEDICAL SYSTEM A. MEDICAL SYSTEM COMPONENTS The definition or identification of which agencies, organizations, and businesses ... businesses —each with its unique contribution to medical care and each with its unique role in preparedness and emergency response. Perhaps the Oklahoma City...look at some hospital statistics will illuminate the financial woes experienced by all medical providers attempting to collect
Papp, Lauren M.; Witt, Nicole L.
2011-01-01
Individual coping strategies and dyadic coping independently predict partner well-being and relationship functioning; however, it is unclear whether the coping processes are inter-related and whether they uniquely contribute to romantic relationship functioning. One hundred heterosexual dating couples rated the individual coping strategy of negative mood regulation as well as positive and negative dyadic coping. Relationship functioning was assessed via partners’ reports of relationship satisfaction and observers’ ratings of negative interaction in conflict. Actor-Partner Interdependence Models (APIMs; Cook & Kenny, 2005; Kashy & Kenny, 2000) revealed associations between individual coping and dyadic coping in the predicted directions. APIMs also indicated the unique contributions of positive and negative dyadic coping to relationship functioning, above and beyond contributions of individual coping strategies. Implications of dyadic coping as a target of efforts to prevent or treat partner and/or relational distress are discussed. PMID:20954765
Amitsuka, Takahiko; Okamura, Maya; Mukuta, Kei; Shiibashi, Hiroko; Haraguchi, Kenji; Saito, Tsukasa; Inoue, Kazuo; Fushiki, Tohru
2017-08-01
Katsuodashi, a dried bonito broth, is very basic and indispensable in Japanese cuisine and contains taste-exhibiting components and unique aroma. We previously reported that its unique aroma contributes to the preference and reinforcement effect associated with dried bonito. This study aims to elucidate the contribution of aromatic components in Katsuobushi to preference formation and reinforcement effect. Volatile components obtained from dried bonito were fractionated and the fractions were subjected to two-bottle choice test. The fractionation test suggested that the component responsible for the preference is not one but comprises multiple components. In the GC-MS analysis/reconstruction test, solution with aromatic flavor narrowed down to 125 compounds had preference, and also had reinforcement effect. Moreover, GC-MS-olfactometry analysis narrowed down the candidate components to 28 out of 125. Mice showed preference for the test solution with aromatic flavor reconstructed with 28 components but did not show reinforcement behavior.
Refining the quantitative pathway of the Pathways to Mathematics model.
Sowinski, Carla; LeFevre, Jo-Anne; Skwarchuk, Sheri-Lynn; Kamawar, Deepthi; Bisanz, Jeffrey; Smith-Chant, Brenda
2015-03-01
In the current study, we adopted the Pathways to Mathematics model of LeFevre et al. (2010). In this model, there are three cognitive domains--labeled as the quantitative, linguistic, and working memory pathways--that make unique contributions to children's mathematical development. We attempted to refine the quantitative pathway by combining children's (N=141 in Grades 2 and 3) subitizing, counting, and symbolic magnitude comparison skills using principal components analysis. The quantitative pathway was examined in relation to dependent numerical measures (backward counting, arithmetic fluency, calculation, and number system knowledge) and a dependent reading measure, while simultaneously accounting for linguistic and working memory skills. Analyses controlled for processing speed, parental education, and gender. We hypothesized that the quantitative, linguistic, and working memory pathways would account for unique variance in the numerical outcomes; this was the case for backward counting and arithmetic fluency. However, only the quantitative and linguistic pathways (not working memory) accounted for unique variance in calculation and number system knowledge. Not surprisingly, only the linguistic pathway accounted for unique variance in the reading measure. These findings suggest that the relative contributions of quantitative, linguistic, and working memory skills vary depending on the specific cognitive task. Copyright © 2014 Elsevier Inc. All rights reserved.
Contributions of Dynamic and Thermodynamic Scaling in Subdaily Precipitation Extremes in India
NASA Astrophysics Data System (ADS)
Ali, Haider; Mishra, Vimal
2018-03-01
Despite the importance of subdaily precipitation extremes for urban areas, the role of dynamic and thermodynamic scaling in changes in precipitation extremes in India remains poorly constrained. Here we estimate contributions from thermodynamic and dynamic scaling on changes in subdaily precipitation extremes for 23 urban locations in India. Subdaily precipitation extremes have become more intense during the last few decades. Moreover, we find a twofold rise in the frequency of subdaily precipitation extremes during 1979-2015, which is faster than the increase in daily precipitation extremes. The contribution of dynamic scaling in this rise in the frequency and intensity of subdaily precipitation extremes is higher than the thermodynamic scaling. Moreover, half-hourly precipitation extremes show higher contributions from the both thermodynamic ( 10%/K) and dynamic ( 15%/K) scaling than daily (6%/K and 9%/K, respectively) extremes indicating the role of warming on the rise in the subdaily precipitation extremes in India. Our findings have implications for better understanding the dynamic response of precipitation extremes under the warming climate over India.
A quark model analysis of orbital angular momentum
NASA Astrophysics Data System (ADS)
Scopetta, Sergio; Vento, Vicente
1999-08-01
Orbital Angular Momentum (OAM) twist-two parton distributions are studied. At the low energy, hadronic, scale we calculate them for the relativistic MIT bag model and for non-relativistic potential quark models. We reach the scale of the data by leading order evolution using the OPE and perturbative QCD. We confirm that the contribution of quarks and gluons OAM to the nucleon spin grows with Q2, and it can be relevant at the experimental scale, even if it is negligible at the hadronic scale, irrespective of the model used. The sign and shape of the quark OAM distribution at high Q2 may depend strongly on the relative size of the OAM and spin distributions at the hadronic scale. Sizeable quark OAM distributions at the hadronic scale, as proposed by several authors, can produce the dominant contribution to the nucleon spin at high Q2. As expected by general arguments, we obtain, that the large gluon OAM contribution is almost cancelled by the gluon spin contribution.
ERIC Educational Resources Information Center
Begay, Kristin
2016-01-01
Rating scales are often used as part of the evaluation process to diagnose autism spectrum disorder (ASD). Rating scales that are modeled after the experiences and understanding of the Caucasian American race may not reflect the unique experiences of individuals from other races or ethnicities. If parent ratings do not uniformly identify the ASD…
A Brief Report on How Impossible Scores Affect Smoothing and Equating
ERIC Educational Resources Information Center
Puhan, Gautam; von Davier, Alina A.; Gupta, Shaloo
2010-01-01
Equating under the external anchor design is frequently conducted using scaled scores on the anchor test. However, scaled scores often lead to the unique problem of creating zero frequencies in the score distribution because there may not always be a one-to-one correspondence between raw and scaled scores. For example, raw scores of 17 and 18 may…
Measuring Sports Class Learning Climates: The Development of the Sports Class Environment Scale
ERIC Educational Resources Information Center
Dowdell, Trevor; Tomson, L. Mich; Davies, Michael
2011-01-01
The development and validation of a new and unique learning climate instrument, the Sports Class Environment Scale (SCES), was the focus of this study. We began with a consolidation of the dimensions and items of the Perceived Motivational Climate in Sport Questionnaire-2 and the Classroom Environment Scale. Field-testing of the SCES involved 204…
ERIC Educational Resources Information Center
Töytäri, Aija; Piirainen, Arja; Tynjälä, Päivi; Vanhanen-Nuutinen, Liisa; Mäki, Kimmo; Ilves, Vesa
2016-01-01
In this large-scale study, higher education teachers' descriptions of their own learning were examined with qualitative analysis involving application of principles of phenomenographic research. This study is unique: it is unusual to use large-scale data in qualitative studies. The data were collected through an e-mail survey sent to 5960 teachers…
The natural armors of fish: A comparison of the lamination pattern and structure of scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murcia, Sandra; Lavoie, Ellen; Linley, Tim
Fish scales exhibit a unique balance of flexibility, strength and toughness, which is essential to provide protection without encumbering locomotion. Although the mechanical behavior and structure of this natural armor are of recent interest, a comparison of these qualities from scales of different fish species has not been reported. In this investigation the armor of fish with different locomotion, size and protection needs were analyzed. Scales from the Arapaima gigas, the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio) were compared in terms of the stacking sequence of individual plies and their microstructure. The scales were also compared with respectmore » to anatomical position to distinguish site-specific functional differences. Results show that the lamination sequence of plies for the carp and tarpon exhibit a Bouligand structure with relative rotation of 75° between consecutive plies. The arapaima scales exhibit a cross-ply structure, with 90° rotation between adjacent plies. In addition, results indicate that the volume fraction of reinforcement, the number of plies and the variations in thickness with anatomical position are unique amongst the three fish. These characteristics should be considered in evaluations focused on the mechanical behavior.« less
Seeing the forest through the trees: Considering roost-site selection at multiple spatial scales
Jachowski, David S.; Rota, Christopher T.; Dobony, Christopher A.; Ford, W. Mark; Edwards, John W.
2016-01-01
Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components that are products of past and current land use interacting with environmental aspects such as landform also are important factors influencing roost-tree selection patterns.
The integumentary skeleton of tetrapods: origin, evolution, and development
Vickaryous, Matthew K; Sire, Jean-Yves
2009-01-01
Although often overlooked, the integument of many tetrapods is reinforced by a morphologically and structurally diverse assemblage of skeletal elements. These elements are widely understood to be derivatives of the once all-encompassing dermal skeleton of stem-gnathostomes but most details of their evolution and development remain confused and uncertain. Herein we re-evaluate the tetrapod integumentary skeleton by integrating comparative developmental and tissue structure data. Three types of tetrapod integumentary elements are recognized: (1) osteoderms, common to representatives of most major taxonomic lineages; (2) dermal scales, unique to gymnophionans; and (3) the lamina calcarea, an enigmatic tissue found only in some anurans. As presently understood, all are derivatives of the ancestral cosmoid scale and all originate from scleroblastic neural crest cells. Osteoderms are plesiomorphic for tetrapods but demonstrate considerable lineage-specific variability in size, shape, and tissue structure and composition. While metaplastic ossification often plays a role in osteoderm development, it is not the exclusive mode of skeletogenesis. All osteoderms share a common origin within the dermis (at or adjacent to the stratum superficiale) and are composed primarily (but not exclusively) of osseous tissue. These data support the notion that all osteoderms are derivatives of a neural crest-derived osteogenic cell population (with possible matrix contributions from the overlying epidermis) and share a deep homology associated with the skeletogenic competence of the dermis. Gymnophionan dermal scales are structurally similar to the elasmoid scales of most teleosts and are not comparable with osteoderms. Whereas details of development are lacking, it is hypothesized that dermal scales are derivatives of an odontogenic neural crest cell population and that skeletogenesis is comparable with the formation of elasmoid scales. Little is known about the lamina calcarea. It is proposed that this tissue layer is also odontogenic in origin, but clearly further study is necessary. Although not homologous as organs, all elements of the integumentary skeleton share a basic and essential relationship with the integument, connecting them with the ancestral rhombic scale. PMID:19422424
Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2010-01-01
The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.
Branson, Oscar; Bonnin, Elisa A; Perea, Daniel E; Spero, Howard J; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D; Fehrenbacher, Jennifer S; Gagnon, Alexander C
2016-11-15
Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory-based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with Ångström-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na and Mg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca 2+ , previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic templates.
Resonant soft X-ray scattering for polymer materials
Liu, Feng; Brady, Michael A.; Wang, Cheng
2016-04-16
Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less
Losing ground in mega-deltas: basin-scale response to existential threats to the Mekong Delta
NASA Astrophysics Data System (ADS)
Arias, M. E.; Kondolf, G. M.; Schmitt, R. J. P.; Carling, P. A.; Darby, S. E.; Bizzi, S.; Castelletti, A.; Cochrane, T. A.; Gibson, S.; Kummu, M.; Oeurng, C.; Rubin, Z.; Wild, T. B.
2017-12-01
The Mekong Delta is, in terms of the number of livelihoods it supports, its economic importance, and in its vulnerability to climate change and sinking lands, one of the world's critically threatened mega-deltas. Livelihoods depend on the mere existence of the delta, but also on ecosystem services provided by the delta's drainage basin spanning 795,000 km2 in six abutting countries. These ecosystem services include delivery of sand required to build delta land in the face of rising sea-levels and sediment bound nutrients, provision of spawning habitat for fish that are ultimately harvested in the delta, and hydrologic regulation driving the delta's unique flood-pulse regime. However, while the delta is mainly located in Vietnam, the basin of the Mekong River is shared among China, Myanmar, Laos, Thailand, Cambodia, and Vietnam. In the context of the region's dynamic growth, individual countries are pushing their own development agendas, which include extensive dam building, in-channel sand mining, construction of dykes and canals, and groundwater pumping, all of which contribute to subsidence and erosion of the Delta. Our synthesis of recent research indicates that most of the Mekong's delta land will likely fall below sea-level by 2100 as result of these drivers, exacerbating the impacts of global climatic changes. In this context, local infrastructural projects and changes in land- and water-management may temporarily mitigate some negative effects, but do not address the existential threat to the delta as a whole. To prevent, or at least substantially postpone, the drowning of the Mekong Delta requires identification of the key drivers and immediate concerted management actions on the basin-scale to change the trajectory of subsidence and sediment deficit. A specific challenge is to find the institutional arrangements in this transnational context that could support the needed management changes and equitably distribute costs and impacts. The Mekong Delta is sufficiently well-studied that we can make projections with some confidence (albeit with significant uncertainty), but its problems are not unique. Rather the Mekong Delta is an example for the need to manage critically vulnerable mega deltas on multiple scales with a focus on strategic management decisions on whole basin scales.
Price, Erika; Ottati, Victor; Wilson, Chase; Kim, Soyeon
2015-11-01
The present research conceptualizes open-minded cognition as a cognitive style that influences how individuals select and process information. An open-minded cognitive style is marked by willingness to consider a variety of intellectual perspectives, values, opinions, or beliefs-even those that contradict the individual's opinion. An individual's level of cognitive openness is expected to vary across domains (such as politics and religion). Four studies develop and validate a novel measure of open-minded cognition, as well as two domain-specific measures of religious and political open-minded cognition. Exploratory and confirmatory factor analysis (controlling for acquiescence bias) are used to develop the scales in Studies 1 to 3. Study 4 demonstrates that these scales possess convergent and discriminant validity. Study 5 demonstrates the scale's unique predictive validity using the outcome of Empathic Concern (Davis, 1980). Study 6 demonstrates the scale's unique predictive validity using the outcomes of warmth toward racial, religious, and sexual minorities. © 2015 by the Society for Personality and Social Psychology, Inc.
Banducci, Anne N.; Hoffman, Elana M.; Lejuez, C.W.; Koenen, Karestan
2014-01-01
Adults with substance use disorders (SUDs) report a high prevalence of childhood abuse. Research in the general population suggests specific types of abuse lead to particular negative outcomes; it is not known whether this pattern holds for adults with SUDs. We hypothesized that specific types of abuse would be associated with particular behavioral and emotional outcomes among substance users. That is, childhood sexual abuse would be associated with risky sex behaviors, childhood physical abuse with aggression, and childhood emotional abuse with emotion dysregulation. 280 inpatients (M age = 43.3; 69.7% male; 88.4% African American) in substance use treatment completed the Childhood Trauma Questionnaire (CTQ), HIV Risk-Taking Behavior Scale, Addiction Severity Index, Difficulties with Emotion Regulation Scale (DERS), Distress Tolerance Scale (DTS), and Affect Intensity and Dimensions of Affiliation Motivation (AIM). Consistent with our hypotheses, the CTQ Sexual Abuse subscale uniquely predicted exchanging sex for cocaine and heroin, number of arrests for prostitution, engaging in unprotected sex with a casual partner during the prior year, and experiencing low sexual arousal when sober. The Physical Abuse subscale uniquely predicted number of arrests for assault and weapons offenses. The Emotional Abuse subscale uniquely predicted the DERS total score, AIM score, and DTS score. Among substance users, different types of abuse are uniquely associated with specific negative effects. Assessment of specific abuse types among substances users may be informative in treatment planning and relapse prevention. PMID:24521524
Banducci, Anne N; Hoffman, Elana M; Lejuez, C W; Koenen, Karestan C
2014-05-01
Adults with substance use disorders (SUDs) report a high prevalence of childhood abuse. Research in the general population suggests specific types of abuse lead to particular negative outcomes; it is not known whether this pattern holds for adults with SUDs. We hypothesized that specific types of abuse would be associated with particular behavioral and emotional outcomes among substance users. That is, childhood sexual abuse would be associated with risky sex behaviors, childhood physical abuse with aggression, and childhood emotional abuse with emotion dysregulation. 280 inpatients (M age=43.3; 69.7% male; 88.4% African American) in substance use treatment completed the Childhood Trauma Questionnaire (CTQ), HIV Risk-Taking Behavior Scale, Addiction Severity Index, Difficulties with Emotion Regulation Scale (DERS), Distress Tolerance Scale (DTS), and Affect Intensity and Dimensions of Affiliation Motivation (AIM). Consistent with our hypotheses, the CTQ sexual abuse subscale uniquely predicted exchanging sex for cocaine and heroin, number of arrests for prostitution, engaging in unprotected sex with a casual partner during the prior year, and experiencing low sexual arousal when sober. The physical abuse subscale uniquely predicted number of arrests for assault and weapons offenses. The emotional abuse subscale uniquely predicted the DERS total score, AIM score, and DTS score. Among substance users, different types of abuse are uniquely associated with specific negative effects. Assessment of specific abuse types among substance users may be informative in treatment planning and relapse prevention. Copyright © 2014 Elsevier Ltd. All rights reserved.
A neural signature of the unique hues
Forder, Lewis; Bosten, Jenny; He, Xun; Franklin, Anna
2017-01-01
Since at least the 17th century there has been the idea that there are four simple and perceptually pure “unique” hues: red, yellow, green, and blue, and that all other hues are perceived as mixtures of these four hues. However, sustained scientific investigation has not yet provided solid evidence for a neural representation that separates the unique hues from other colors. We measured event-related potentials elicited from unique hues and the ‘intermediate’ hues in between them. We find a neural signature of the unique hues 230 ms after stimulus onset at a post-perceptual stage of visual processing. Specifically, the posterior P2 component over the parieto-occipital lobe peaked significantly earlier for the unique than for the intermediate hues (Z = −2.9, p = 0.004). Having identified a neural marker for unique hues, fundamental questions about the contribution of neural hardwiring, language and environment to the unique hues can now be addressed. PMID:28186142
Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory.
Xu, Wen-Sheng; Freed, Karl F
2013-06-21
Many glass-forming fluids exhibit a remarkable thermodynamic scaling in which dynamic properties, such as the viscosity, the relaxation time, and the diffusion constant, can be described under different thermodynamic conditions in terms of a unique scaling function of the ratio ρ(γ)∕T, where ρ is the density, T is the temperature, and γ is a material dependent constant. Interest in the scaling is also heightened because the exponent γ enters prominently into considerations of the relative contributions to the dynamics from pressure effects (e.g., activation barriers) vs. volume effects (e.g., free volume). Although this scaling is clearly of great practical use, a molecular understanding of the scaling remains elusive. Providing this molecular understanding would greatly enhance the utility of the empirically observed scaling in assisting the rational design of materials by describing how controllable molecular factors, such as monomer structures, interactions, flexibility, etc., influence the scaling exponent γ and, hence, the dynamics. Given the successes of the generalized entropy theory in elucidating the influence of molecular details on the universal properties of glass-forming polymers, this theory is extended here to investigate the thermodynamic scaling in polymer melts. The predictions of theory are in accord with the appearance of thermodynamic scaling for pressures not in excess of ~50 MPa. (The failure at higher pressures arises due to inherent limitations of a lattice model.) In line with arguments relating the magnitude of γ to the steepness of the repulsive part of the intermolecular potential, the abrupt, square-well nature of the lattice model interactions lead, as expected, to much larger values of the scaling exponent. Nevertheless, the theory is employed to study how individual molecular parameters affect the scaling exponent in order to extract a molecular understanding of the information content contained in the exponent. The chain rigidity, cohesive energy, chain length, and the side group length are all found to significantly affect the magnitude of the scaling exponent, and the computed trends agree well with available experiments. The variations of γ with these molecular parameters are explained by establishing a correlation between the computed molecular dependence of the scaling exponent and the fragility. Thus, the efficiency of packing the polymers is established as the universal physical mechanism determining both the fragility and the scaling exponent γ.
Hannon, Brenda
2014-01-01
To-date, studies have examined simultaneously the relative predictive powers of two or three factors on GPA. The present study examines the relative powers of five social/personality factors, five cognitive/learning factors, and SAT scores to predict freshmen and non-freshmen (sophomores, juniors, seniors) academic success (i.e., GPA). The results revealed many significant predictors of GPA for both freshmen and non-freshmen. However, subsequent regressions showed that only academic self-efficacy, epistemic belief of learning, and high-knowledge integration explained unique variance in GPA (19%-freshmen, 23.2%-non-freshmen). Further for freshmen, SAT scores explained an additional unique 10.6% variance after the influences attributed to these three predictors was removed whereas for non-freshmen, SAT scores failed to explain any additional variance. These results highlight the unique and important contributions of academic self-efficacy, epistemic belief of learning and high-knowledge integration to GPA beyond other previously-identified predictors. PMID:25568884
General in-situation safety behaviors are uniquely associated with post-event processing.
Mitchell, Melissa A; Schmidt, Norman B
2014-06-01
Research suggests that state anxiety and in-situation safety behaviors are associated with post-event processing (PEP) in social anxiety. Past research has obtained mixed results on whether one or both factors contribute to PEP. The current investigation evaluated state anxiety and in-situation safety behaviors (including subtypes of in-situation safety behaviors) simultaneously to determine their relative contributions to PEP. A prospective study assessed social anxiety, state anxiety, in-situation safety behaviors, PEP, and depression in the context of a speech stressor. Consistent with theory, in-situation safety behaviors were uniquely associated with greater PEP. State anxiety was not uniquely associated with PEP. Furthermore, restricting and active subtypes of in-situation safety behaviors showed specificity to PEP. Limitations of the present study include the use of a nonclinical analog sample and retrospective reporting of PEP. These findings highlight the importance of research on in-situation safety behaviors as a potential contributor to PEP. Published by Elsevier Ltd.
Unique disease heritage of the Dutch-German Mennonite population.
Orton, Noelle C; Innes, A Micheil; Chudley, Albert E; Bech-Hansen, N Torben
2008-04-15
The Dutch-German Mennonites are a religious isolate with foundational roots in the 16th century. A tradition of endogamy, large families, detailed genealogical records, and a unique disease history all contribute to making this a valuable population for genetic studies. Such studies in the Dutch-German Mennonite population have already contributed to the identification of the causative genes in several conditions such as the incomplete form of X-linked congenital stationary night blindness (CSNB2; previously iCSNB) and hypophosphatasia (HOPS), as well as the discovery of founder mutations within established disease genes (MYBPC1, CYP17alpha). The Dutch-German Mennonite population provides a strong resource for gene discovery and could lead to the identification of additional disease genes with relevance to the general population. In addition, further research developments should enhance delivery of clinical genetic services to this unique community. In the current review we discuss 31 genetic conditions, including 17 with identified gene mutations, within the Dutch-German Mennonite population. Copyright 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Ball, Nadine Butcher
2000-10-01
This qualitative study describes three middle-school science teachers' relationship-with-nature in personal and classroom contexts. Participating teachers had more than 7 years experience and were deemed exemplary practitioners by others. Interview data about personal context focused on photographs the teacher took representing her/his relationship-with-nature in daily life. Interview data for classroom context explored classroom events during three or more researcher observations. Transcripts were analyzed using a multiple-readings approach to data reduction (Gilligan, Brown & Rogers, 1990; Miles & Huberman, 1994, p. 14, 141). Readings generated categorical information focused on portrayals of: nature; self; and relationship-with-nature. Categorical data were synthesized into personal and teaching case portraits for each teacher, and cross case themes identified. Participants indicated the portraits accurately represented who they saw themselves to be. Additional readings identified sub-stories by plot and theme. Narrative data were clustered to highlight elements of practice with implications for the relationship-with-nature lived in the classroom. These individual-scale moments were compared with cultural-scale distinctions between anthropocentric and ecological world views. Cross case themes included dimensions of exemplary middle-school science teaching important to teacher education and development, including an expanded conception of knowing and skillful use of student experience. Categorical analysis revealed each teacher had a unique organizing theme influencing their interpretation of personal and classroom events, and that nature is experienced differently in personal as opposed to teaching contexts. Narrative analysis highlights teachers' stories of classroom pets, dissection, and student dissent, illustrating an interplay between conceptual distinctions and personal dimensions during moments of teacher decision making. Results suggest teachers' competing commitments are resolved by balancing values in unique ways for the context. More productive resolutions involve transformation of the teacher's tensions so that competing goals better coexist. Foci helpful for teacher education and development are identified. Also discussed are complex ways cultural-scale world view is reproduced, or occasionally challenged, in the classroom life of three scientifically literate, skilled, and environmentally concerned teachers. The study concludes education in schools is more likely to reproduce than challenge elements of world view contributing to ecological decline.
Mechanisms of self-organized criticality in social processes of knowledge creation
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Dankulov, Marija Mitrović; Melnik, Roderick
2017-09-01
In online social dynamics, a robust scale invariance appears as a key feature of collaborative efforts that lead to new social value. The underlying empirical data thus offers a unique opportunity to study the origin of self-organized criticality (SOC) in social systems. In contrast to physical systems in the laboratory, various human attributes of the actors play an essential role in the process along with the contents (cognitive, emotional) of the communicated artifacts. As a prototypical example, we consider the social endeavor of knowledge creation via Questions and Answers (Q&A). Using a large empirical data set from one of such Q&A sites and theoretical modeling, we reveal fundamental characteristics of SOC by investigating the temporal correlations at all scales and the role of cognitive contents to the avalanches of the knowledge-creation process. Our analysis shows that the universal social dynamics with power-law inhomogeneities of the actions and delay times provides the primary mechanism for self-tuning towards the critical state; it leads to the long-range correlations and the event clustering in response to the external driving by the arrival of new users. In addition, the involved cognitive contents (systematically annotated in the data and observed in the model) exert important constraints that identify unique classes of the knowledge-creation avalanches. Specifically, besides determining a fine structure of the developing knowledge networks, they affect the values of scaling exponents and the geometry of large avalanches and shape the multifractal spectrum. Furthermore, we find that the level of the activity of the communities that share the knowledge correlates with the fluctuations of the innovation rate, implying that the increase of innovation may serve as the active principle of self-organization. To identify relevant parameters and unravel the role of the network evolution underlying the process in the social system under consideration, we compare the social avalanches to the avalanche sequences occurring in the field-driven physical model of disordered solids, where the factors contributing to the collective dynamics are better understood.
Mechanisms of self-organized criticality in social processes of knowledge creation.
Tadić, Bosiljka; Dankulov, Marija Mitrović; Melnik, Roderick
2017-09-01
In online social dynamics, a robust scale invariance appears as a key feature of collaborative efforts that lead to new social value. The underlying empirical data thus offers a unique opportunity to study the origin of self-organized criticality (SOC) in social systems. In contrast to physical systems in the laboratory, various human attributes of the actors play an essential role in the process along with the contents (cognitive, emotional) of the communicated artifacts. As a prototypical example, we consider the social endeavor of knowledge creation via Questions and Answers (Q&A). Using a large empirical data set from one of such Q&A sites and theoretical modeling, we reveal fundamental characteristics of SOC by investigating the temporal correlations at all scales and the role of cognitive contents to the avalanches of the knowledge-creation process. Our analysis shows that the universal social dynamics with power-law inhomogeneities of the actions and delay times provides the primary mechanism for self-tuning towards the critical state; it leads to the long-range correlations and the event clustering in response to the external driving by the arrival of new users. In addition, the involved cognitive contents (systematically annotated in the data and observed in the model) exert important constraints that identify unique classes of the knowledge-creation avalanches. Specifically, besides determining a fine structure of the developing knowledge networks, they affect the values of scaling exponents and the geometry of large avalanches and shape the multifractal spectrum. Furthermore, we find that the level of the activity of the communities that share the knowledge correlates with the fluctuations of the innovation rate, implying that the increase of innovation may serve as the active principle of self-organization. To identify relevant parameters and unravel the role of the network evolution underlying the process in the social system under consideration, we compare the social avalanches to the avalanche sequences occurring in the field-driven physical model of disordered solids, where the factors contributing to the collective dynamics are better understood.
Methane Recovery from Hydrate-bearing Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Carlos Santamarina; Costas Tsouris
2011-04-30
Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations,more » and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.« less
Child, Amanda E; Cirino, Paul T; Fletcher, Jack M; Willcutt, Erik G; Fuchs, Lynn S
2018-05-01
Disorders of reading, math, and attention frequently co-occur in children. However, it is not yet clear which cognitive factors contribute to comorbidities among multiple disorders and which uniquely relate to one, especially because they have rarely been studied as a triad. Thus, the present study considers how reading, math, and attention relate to phonological awareness, numerosity, working memory, and processing speed, all implicated as either unique or shared correlates of these disorders. In response to findings that the attributes of all three disorders exist on a continuum rather than representing qualitatively different groups, this study employed a dimensional approach. Furthermore, we used both timed and untimed academic variables in addition to attention and activity level variables. The results supported the role of working memory and phonological awareness in the overlap among reading, math, and attention, with a limited role of processing speed. Numerosity was related to the comorbidity between math and attention. The results from timed variables and activity level were similar to those from untimed and attention variables, although activity level was less strongly related to cognitive and academic/attention variables. These findings have implications for understanding cognitive deficits that contribute to comorbid reading disability, math disability, and/or attention-deficit/hyperactivity disorder.
Zhao, Pengju; Yu, Ying; Feng, Wen; Du, Heng; Yu, Jian; Kang, Huimin; Zheng, Xianrui; Wang, Zhiquan; Liu, George E; Ernst, Catherine W; Ran, Xueqin; Wang, Jiafu; Liu, Jian-Feng
2018-05-01
Meishan is a pig breed indigenous to China and famous for its high fecundity. The traits of Meishan are strongly associated with its distinct evolutionary history and domestication. However, the genomic evidence linking the domestication of Meishan pigs with its unique features is still poorly understood. The goal of this study is to investigate the genomic signatures and evolutionary evidence related to the phenotypic traits of Meishan via large-scale sequencing. We found that the unique domestication of Meishan pigs occurred in the Taihu Basin area between the Majiabang and Liangzhu Cultures, during which 300 protein-coding genes have underwent positive selection. Notably, enrichment of the FoxO signaling pathway with significant enrichment signal and the harbored gene IGF1R were likely associated with the high fertility of Meishan pigs. Moreover, NFKB1 exhibited strong selective sweep signals and positively participated in hyaluronan biosynthesis as the key gene of NF-kB signaling, which may have resulted in the wrinkled skin and face of Meishan pigs. Particularly, three population-specific synonymous single-nucleotide variants occurred in PYROXD1, MC1R, and FAM83G genes; the T305C substitution in the MCIR gene explained the black coat of the Meishan pigs well. In addition, the shared haplotypes between Meishan and Duroc breeds confirmed the previous Asian-derived introgression and demonstrated the specific contribution of Meishan pigs. These findings will help us explain the unique genetic and phenotypic characteristics of Meishan pigs and offer a plausible method for their utilization of Meishan pigs as valuable genetic resources in pig breeding and as an animal model for human wrinkled skin disease research.
ERIC Educational Resources Information Center
Boone, Harry N., Jr.; Boone, Deborah A.
2012-01-01
This article provides information for Extension professionals on the correct analysis of Likert data. The analyses of Likert-type and Likert scale data require unique data analysis procedures, and as a result, misuses and/or mistakes often occur. This article discusses the differences between Likert-type and Likert scale data and provides…
ERIC Educational Resources Information Center
Owen, Margaret Tresch; Caughy, Margaret O'Brien; Hurst, Jamie R.; Amos, Melissa; Hasanizadeh, Nazly; Mata-Otero, Ana-Maria
2013-01-01
Self-regulation ability is an important component of school readiness and predictor of academic success, but few studies of self-regulation examine contributions of fathering to the emergence of self-regulation in low-income ethnic minority preschoolers. Associations were examined between parental child-oriented parenting support and preschoolers'…
ERIC Educational Resources Information Center
Muhlenhaupt, Mary; Pizur-Barnekow, Kris; Schefkind, Sandra; Chandler, Barbara; Harvison, Neil
2015-01-01
Occupational therapy provides a unique contribution in early intervention programs for families and their children from birth to 3 years old who are at risk for, or who have, identified disabilities. This article describes occupational therapy's distinct value and presents the profession's perspective on services to enhance families' caregiving…
26 CFR 1.6115-1 - Disclosure requirements for quid pro quo contributions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Disclosure requirements for quid pro quo contributions. 1.6115-1 Section 1.6115-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... unique qualities of the goods or services that are being valued. (3) Examples. The following examples...
Student Neighborhoods, Schools, and Test Score Growth: Evidence from Milwaukee, Wisconsin
ERIC Educational Resources Information Center
Carlson, Deven; Cowen, Joshua M.
2015-01-01
Schools and neighborhoods are thought to be two of the most important contextual influences on student academic outcomes. Drawing on a unique data set that permits simultaneous estimation of neighborhood and school contributions to student test score gains, we analyze the distributions of these contributions to consider the relative importance of…
ERIC Educational Resources Information Center
Cartwright, Kelly B.
2002-01-01
A reading-specific multiple classification task was designed that required children to classify printed words along phonological and semantic dimensions simultaneously. Reading-specific multiple classification skill made a unique contribution to children's reading comprehension over contributions made by age, domain-general multiple classification…
Romanticism and Romantic Science: Their Contribution to Science Education
ERIC Educational Resources Information Center
Hadzigeorgiou, Yannis; Schulz, Roland
2014-01-01
The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…
ERIC Educational Resources Information Center
Abenavoli, Rachel M.; Greenberg, Mark T.
2016-01-01
There is growing consensus among researchers and practitioners that children's socialemotional readiness makes unique contributions to their successful transition to and progress through school. However, many children still begin school ill-prepared for the behavioral demands they will encounter in the classroom. This study examines the joint…
Salvatore, J E; Prom-Wormley, E; Prescott, C A; Kendler, K S
2015-08-01
Alcohol consumption and problems are associated with interpersonal difficulties. We used a twin design to assess in men the degree to which genetic or environmental influences contributed to the covariance between alcohol consumption and problems, romantic quality and social support. The sample included adult male-male twin pairs (697 monozygotic and 487 dizygotic) for whom there were interview-based data on: alcohol consumption (average monthly alcohol consumption in the past year); alcohol problems (lifetime alcohol dependence symptoms); romantic conflict and warmth; friend problems and support; and relative problems and support. Key findings were that genetic and unique environmental factors contributed to the covariance between alcohol consumption and romantic conflict; genetic factors contributed to the covariance between alcohol problems and romantic conflict; and common and unique environmental factors contributed to the covariance between alcohol problems and friend problems. Recognizing and addressing the overlapping genetic and environmental influences that alcohol consumption and problems share with romantic quality and other indicators of social support may have implications for substance use prevention and intervention efforts.
David Coblentz
2005-01-01
While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky...
Ukidwe, Nandan U; Bakshi, Bhavik R
2004-09-15
Incorporation of ecological considerations in decision-making is essential for sustainable development, but is hindered by inadequate appreciation of the role of ecosystems, and lack of scientifically rigorous techniques for including their contribution. This paper develops a novel thermodynamic accounting framework for including the contribution of natural capital via thermodynamic input-output analysis. This framework is applied to the 1992 US economy comprising 91 industry sectors, resulting in delineation of the myriad ways in which sectors of the US economy rely on ecosystem products and services. The contribution of ecosystems is represented via the concept of ecological cumulative exergy consumption (ECEC), which is related to emergy analysis but avoids any of its controversial assumptions and claims. The use of thermodynamics permits representation of all kinds of inputs and outputs in consistent units, facilitating the definition of aggregate metrics. Total ECEC requirement indicates the extent to which each economic sector relies directly and indirectly on ecological inputs. The ECEC/money ratio indicates the relative monetary versus ecological throughputs in each sector, and indicates the relationship between the thermodynamic work needed to produce a product or service and the corresponding economic activity. This ratio is found to decrease along economic supply chains, indicating industries that are higher up in the economic food chain price ecosystem contribution more than the basic infrastructure industries such as mining and manufacturing. The ratio of CEC with and without inclusion of ecosystems indicates the extent to which conventional thermoeconomic analysis underestimates the contribution of ecosystems. Such ratios, made available for the first time, provide unique insight into the importance of natural capital, and are especially useful in hybrid thermodynamic life cycle analysis of industrial systems. The approach, data compiled in this work, and the resulting insight provide a more ecologically conscious tool for environmental decision-making, and has potential applications at micro as well as macro scales.
Comparing Models and Methods for the Delineation of Stream Baseflow Contribution Areas
NASA Astrophysics Data System (ADS)
Chow, R.; Frind, M.; Frind, E. O.; Jones, J. P.; Sousa, M.; Rudolph, D. L.; Nowak, W.
2016-12-01
This study addresses the delineation of areas that contribute baseflow to a stream reach, also known as stream capture zones. Such areas can be delineated using standard well capture zone delineation methods, with three important differences: (1) natural gradients are smaller compared to those produced by supply wells and are therefore subject to greater numerical errors, (2) stream discharge varies seasonally, and (3) stream discharge varies spatially. This study focuses on model-related uncertainties due to parameter non-uniqueness, discretization schemes, and particle tracking algorithms. The methodology is applied to the Alder Creek watershed in southwestern Ontario. Four different model codes are compared: HydroGeoSphere, WATFLOW, MODFLOW, and FEFLOW. In addition, two delineation methods are compared: reverse particle tracking and reverse transport, where the latter considers local-scale parameter uncertainty by using a macrodispersion term to produce a capture probability plume. The results from this study indicate that different models can calibrate acceptably well to the same data and produce very similar distributions of hydraulic head, but can produce different capture zones. The stream capture zone is found to be highly sensitive to the particle tracking algorithm. It was also found that particle tracking by itself, if applied to complex systems such as the Alder Creek watershed, would require considerable subjective judgement in the delineation of stream capture zones. Reverse transport is an alternate approach that provides probability intervals for the baseflow contribution areas. In situations where the two approaches agree, the confidence in the delineation is reinforced.
The unique radar scattering properties of silicic lava flows and domes
NASA Technical Reports Server (NTRS)
Plaut, Jeffrey J.; Stofan, Ellen R.; Anderson, Steven W.; Crown, David A.
1995-01-01
Silicic (silica-rich) lava flows, such as rhyolite, rhyodacite, and dacite, possess unique physical properties primarily because of the relatively high viscosity of the molten lava. Silicic flows tend to be thicker than basaltic flows, and the resulting large-scale morphology is typically a steep-sided dome or flow lobe, with aspect ratios (height/length) sometimes approaching unity. The upper surfaces of silicic domes and flows are normally emplaced as relatively cool, brittle slabs that fracture as they are extruded from the central vent areas, and are then rafted away toward the flow margin as a brittle carapace above a more ductile interior layer. This mode of emplacement results in a surface with unique roughness characteristics, which can be well-characterized by multiparameter synthetic aperture radar (SAR) observations. In this paper, we examine the scattering properties of several silicic domes in the Inyo volcanic chain in the Eastern Sierra of California, using AIRSAR and TOPSAR data. Field measurements of intermediate-scale (cm to tens of m) surface topography and block size are used to assess the mechanisms of the scattering process, and to quantify the unique roughness characteristics of the flow surfaces.
Sarkar, Mrinal K.; Liang, Yun; Xing, Xianying; Gudjonsson, Johann E.
2016-01-01
Transcriptome studies of psoriasis have identified robust changes in mRNA expression through large-scale analysis of patient cohorts. These studies, however, have analyzed all mRNA changes in aggregate, without distinguishing between disease-specific and non-specific differentially expressed genes (DEGs). In this study, RNA-seq meta-analysis was used to identify (1) psoriasis-specific DEGs altered in few diseases besides psoriasis and (2) non-specific DEGs similarly altered in many other skin conditions. We show that few cutaneous DEGs are psoriasis-specific and that the two DEG classes differ in their cell type and cytokine associations. Psoriasis-specific DEGs are expressed by keratinocytes and induced by IL-17A, whereas non-specific DEGs are expressed by inflammatory cells and induced by IFN-gamma and TNF. PBMC-derived DEGs were more psoriasis-specific than cutaneous DEGs. Nonetheless, PBMC DEGs associated with MHC class I and NK cells were commonly downregulated in psoriasis and other autoimmune diseases (e.g., multiple sclerosis, sarcoidosis and juvenile rheumatoid arthritis). These findings demonstrate “cross-disease” transcriptomics as an approach to gain insights into the cutaneous and non-cutaneous psoriasis transcriptomes. This highlighted unique contributions of IL-17A to the cytokine network and uncovered a blood-based gene signature that links psoriasis to other diseases of autoimmunity. PMID:27206706
NASA Astrophysics Data System (ADS)
Catlett, D.; Siegel, D. A.
2018-01-01
Understanding the roles of phytoplankton community composition in the functioning of marine ecosystems and ocean biogeochemical cycles is important for many ocean science problems of societal relevance. Remote sensing currently offers the only feasible method for continuously assessing phytoplankton community structure on regional to global scales. However, methods are presently hindered by the limited spectral resolution of most satellite sensors and by uncertainties associated with deriving quantitative indices of phytoplankton community structure from phytoplankton pigment concentrations. Here we analyze a data set of concurrent phytoplankton pigment concentrations and phytoplankton absorption coefficient spectra from the Santa Barbara Channel, California, to develop novel optical oceanographic models for retrieving metrics of phytoplankton community composition. Cluster and Empirical Orthogonal Function analyses of phytoplankton pigment concentrations are used to define up to five phytoplankton pigment communities as a representation of phytoplankton functional types. Unique statistical relationships are found between phytoplankton pigment communities and absorption features isolated using spectral derivative analysis and are the basis of predictive models. Model performance is substantially better for phytoplankton pigment community indices compared with determinations of the contributions of individual pigments or taxa to chlorophyll a. These results highlight the application of data-driven chemotaxonomic approaches for developing and validating bio-optical algorithms and illustrate the potential and limitations for retrieving phytoplankton community composition from hyperspectral satellite ocean color observations.
Theories of Simplification and Scaling of Spatially Distributed Processes. Chapter 12
NASA Technical Reports Server (NTRS)
Levin, Simon A.; Pacala, Stephen W.
1997-01-01
The problem of scaling is at the heart of ecological theory, the essence of understanding and of the development of a predictive capability. The description of any system depends on the spatial, temporal, and organizational perspective chosen; hence it is essential to understand not only how patterns and dynamics vary with scale, but also how patterns at one scale are manifestations of processes operating at other scales. Evolution has shaped the characteristics of species in ways that result in scale displacement: Each species experiences the environment at its own unique set of spatial and temporal scales and interfaces the biota through unique assemblages of phenotypes. In this way, coexistence becomes possible, and biodiversity is enhanced. By averaging over space, time, and biological interactions, a genotype filters variation at fine scales and selects the arena in which it will face the vicissitudes of nature. Variation at finer scales is then noise, of minor importance to the survival and dynamics of the species, and consequently of minor importance in any attempt at description. In attempting to model ecological interactions in space, contributors throughout this book have struggled with a trade-off between simplification and "realistic" complexity and detail. Although the challenge of simplification is widely recognized in ecology, less appreciated is the intertwining of scaling questions and scaling laws with the process of simplification. In the context of this chapter simplification will in general mean the use of spatial or ensemble means and low-order moments to capture more detailed interactions by integrating over given areas. In this way, one can derive descriptions of the system at different spatial scales, which provides the essentials for the extraction of scaling laws by examination of how system properties vary with scale.
DOT National Transportation Integrated Search
2008-12-01
PROBLEM: The full-scale accelerated pavement testing (APT) provides a unique tool for pavement : engineers to directly collect pavement performance and failure data under heavy : wheel loading. However, running a full-scale APT experiment is very exp...
Are soil carbon models transferable across distinct regions or scales in Florida?
USDA-ARS?s Scientific Manuscript database
Some Florida soils have great capacity to accumulate carbon due to unique geographical and topographical conditions (high net primary productivity, precipitation, high water table, and flat topography). Soil carbon models have been used to quantify the carbon pools usually at a specific scale or in ...
Development and Testing of a Scale to Assess Interprofessional Education (IPE) Facilitation Skills
ERIC Educational Resources Information Center
Sargeant, Joan; Hill, Tanya; Breau, Lynn
2010-01-01
Introduction: Interprofessional education (IPE) is interactive and constructivist in nature and requires specific facilitation skills to engage participants in a unique body of content, interpersonal interaction, and learning from each other. This article describes the development and testing of a scale, the Interprofessional Facilitation Scale…
Many nanomaterials posses physical, and potentially biological, activity that is unique relative to their macro-scaled or soluble forms. One such property is surface plasmon resonance; a phenomenon that can generate or facilitate photoreactivity. Optimization of these properties ...
Unique associations between peer relations and social anxiety in early adolescence.
Flanagan, Kelly S; Erath, Stephen A; Bierman, Karen L
2008-10-01
This study examined the unique associations between feelings of social anxiety and multiple dimensions of peer relations (positive peer nominations, peer- and self-reported peer victimization, and self-reported friendship quality) among 383 sixth- and seventh-grade students. Hierarchical regression analysis provided evidence for the unique contribution made by peer relations to social anxiety above that made by adolescents' individual vulnerabilities (i.e., teacher ratings of social behavior, self-reported social appraisals assessed by hypothetical vignettes). Two subgroups of socially anxious adolescents--those with and without peer problems--were distinguished by their social behavior but not their social appraisals.
Planck intermediate results: XLI. A map of lensing-induced B-modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Ashdown, M.
The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced in this paper an all-sky template map of the lensing-induced B-modes using a real-space algorithmmore » that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12σ, which agrees with the theoretical expectation derived from the Planck best-fit Λ cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 ≲ ℓ ≲ 1000) angular scales, is delivered as part of the Planck 2015 public data release. Finally, it will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.« less
NASA Astrophysics Data System (ADS)
Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.
2017-12-01
Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9-12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed 1.3% (mean, min-max: 0.46, 0.3-0.5 ppbv) and 0.2% (0.013, 0.004-0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5-0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01-0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed 70 times and 13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions.
NASA Astrophysics Data System (ADS)
Lazzara, M. A.; Tsukernik, M.; Gorodetskaya, I.
2016-12-01
Recent studies confirmed that atmospheric rivers (ARs) reach the continent of Antarctica and thus influence the Antarctic accumulation patterns and the ice sheet mass balance (Gorodetskaya et al. 2014, GRL). Similar to mid-latitude ARs, Antarctic ARs are associated with a blocking pattern downstream of a cyclone, which allows channeling of moisture toward the continent. However, due to the extremely cold atmosphere, Antarctic ARs possess some unique features. First, the existence of an AR in high latitudes is always associated with warm advection. Second, in order for an AR to penetrate the continent, it needs to overcome strong low-level outflow winds - katabatic winds - coming from the interior of the continent. Thirdly, sea ice surrounding the Antarctic ice sheet introduces an additional "cold barrier" decreasing the tropospheric moisture holding capacity and promoting precipitation before reaching the ice sheet. We believe these factors contribute to the scarcity of AR events influencing the ice sheet surface mass balance. Nevertheless, their presence is clearly seen in the long-term record. In particular, anomalous accumulation in 2009 and 2011 in Dronning Maud Land in East Antarctica has been linked to atmospheric rivers. We performed a detailed investigation of several AR storm events from 2009 and 2011 using the Weather Research and Forecasting (WRF) model simulations. These simulations depicted the synoptic scale development of storms that led to an anomalous precipitation pattern in the East Antarctic. We investigated the role of the upper level vs. lower level forcing in the formation of the contributing storms. The moisture and temperature anomalies of each case are evaluated in the context of synoptic and large-scale atmospheric forcing. We also performed sensitivity studies to determine the role of sea ice in the development of these systems.
Vennam, L. P.; Vizuete, W.; Talgo, K.; Omary, M.; Binkowski, F. S.; Xing, J.; Mathur, R.; Arunachalam, S.
2018-01-01
Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9–12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed ~1.3% (mean, min–max: 0.46, 0.3–0.5 ppbv) and 0.2% (0.013, 0.004–0.02 μg/m3) of total O3 and PM2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O3 0.69, 0.5–0.85 ppbv) and 0.5% (PM2.5 0.03, 0.01–0.05 μg/m3)) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km2) and fine (36 × 36 km2) grid resolutions in NA showed ~70 times and ~13 times higher aviation impacts for O3 and PM2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions. PMID:29707471
ILRS Activities in Monitoring Systematic Errors in SLR Data
NASA Astrophysics Data System (ADS)
Pavlis, E. C.; Luceri, V.; Kuzmicz-Cieslak, M.; Bianco, G.
2017-12-01
The International Laser Ranging Service (ILRS) contributes to ITRF development unique information that only Satellite Laser Ranging—SLR is sensitive to: the definition of the origin, and in equal parts with VLBI, the scale of the model. For the development of ITRF2014, the ILRS analysts adopted a revision of the internal standards and procedures in generating our contribution from the eight ILRS Analysis Centers. The improved results for the ILRS components were reflected in the resulting new time series of the ITRF origin and scale, showing insignificant trends and tighter scatter. This effort was further extended after the release of ITRF2014, with the execution of a Pilot Project (PP) in the 2016-2017 timeframe that demonstrated the robust estimation of persistent systematic errors at the millimeter level. ILRS ASC is now turning this into an operational tool to monitor station performance and to generate a history of systematics at each station, to be used with each re-analysis for future ITRF model developments. This is part of a broader ILRS effort to improve the quality control of the data collection process as well as that of our products. To this end, the ILRS has established a "Quality Control Board—QCB" that comprises of members from the analysis and engineering groups, the Central Bureau, and even user groups with special interests. The QCB meets by telecon monthly and oversees the various ongoing projects, develops ideas for new tools and future products. This presentation will focus on the main topic with an update on the results so far, the schedule for the near future and its operational implementation, along with a brief description of upcoming new ILRS products.
Planck intermediate results. XLI. A map of lensing-induced B-modes
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hornstrup, A.; Hovest, W.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-12-01
The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced B-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12σ, which agrees with the theoretical expectation derived from the Planck best-fit Λ cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 ≲ ℓ ≲ 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.
Vennam, L P; Vizuete, W; Talgo, K; Omary, M; Binkowski, F S; Xing, J; Mathur, R; Arunachalam, S
2017-01-01
Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9-12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality are not well understood. Our key objective is to use chemical transport models (with prescribed meteorology) to predict aircraft emissions impacts on the troposphere and surface air quality. We quantified the importance of including full-flight intercontinental emissions and increased horizontal grid resolution. The full-flight aviation emissions in the Northern Hemisphere contributed ~1.3% (mean, min-max: 0.46, 0.3-0.5 ppbv) and 0.2% (0.013, 0.004-0.02 μg/m 3 ) of total O 3 and PM 2.5 concentrations at the surface, with Europe showing slightly higher impacts (1.9% (O 3 0.69, 0.5-0.85 ppbv) and 0.5% (PM 2.5 0.03, 0.01-0.05 μg/m 3 )) than North America (NA) and East Asia. We computed seasonal aviation-attributable mass flux vertical profiles and aviation perturbations along isentropic surfaces to quantify the transport of cruise altitude emissions at the hemispheric scale. The comparison of coarse (108 × 108 km 2 ) and fine (36 × 36 km 2 ) grid resolutions in NA showed ~70 times and ~13 times higher aviation impacts for O 3 and PM 2.5 in coarser domain. These differences are mainly due to the inability of the coarse resolution simulation to capture nonlinearities in chemical processes near airport locations and other urban areas. Future global studies quantifying aircraft contributions should consider model resolution and perhaps use finer scales near major aviation source regions.
Everhart, S E; Scherm, H
2015-04-01
The purpose of this study was to determine the fine-scale genetic structure of populations of the brown rot pathogen Monilinia fructicola within individual peach tree canopies to better understand within-tree plant pathogen diversity and to complement previous work on spatiotemporal development of brown rot disease at the canopy level. Across 3 years in a total of six trees, we monitored disease development, collected isolates from every M. fructicola symptom during the course of the season, and created high-resolution three-dimensional maps of all symptom and isolate locations within individual canopies using an electromagnetic digitizer. Each canopy population (65 to 173 isolates per tree) was characterized using a set of 13 microsatellite markers and analyzed for evidence of spatial genetic autocorrelation among isolates during the epidemic phase of the disease. Results showed high genetic diversity (average uh=0.529) and high genotypic diversity (average D=0.928) within canopies. The percentage of unique multilocus genotypes within trees was greater for blossom blight isolates (78.2%) than for fruit rot isolates (51.3%), indicating a greater contribution of clonal reproduction during the preharvest epidemic. For fruit rot isolates, between 54.2 and 81.7% of isolates were contained in one to four dominant clonal genotypes per tree having at least 10 members. All six fruit rot populations showed positive and significant spatial genetic autocorrelation for distance classes between 0.37 and 1.48 m. Despite high levels of within-tree pathogen diversity, the contribution of locally available inoculum combined with short-distance dispersal is likely the main factor generating clonal population foci and associated spatial genetic clustering within trees.
Planck intermediate results: XLI. A map of lensing-induced B-modes
Ade, P. A. R.; Aghanim, N.; Ashdown, M.; ...
2016-12-12
The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced in this paper an all-sky template map of the lensing-induced B-modes using a real-space algorithmmore » that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12σ, which agrees with the theoretical expectation derived from the Planck best-fit Λ cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 ≲ ℓ ≲ 1000) angular scales, is delivered as part of the Planck 2015 public data release. Finally, it will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.« less
Modeling Effects of Lability on Microbial Uptake of DOM in River Reaches
NASA Astrophysics Data System (ADS)
Li, A.; Drummond, J. D.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Packman, A. I.
2017-12-01
Rivers are hotspots for biological degradation of dissolved organic matter (DOM), contributing to 1.8 petagrams of carbon emissions per year. DOM represents approximately 60% of the total mass of organic carbon transported within river networks, fueling stream ecosystem metabolism. Not all DOM is biodegradable, biodegradation rates vary based on lability, and lability decreases with reaction time. Fluorescent fractions of DOM (FDOM) are often used as proxies of DOM lability. Humic-like FDOM, previously considered recalcitrant and thought to contribute minimally to the biodegradable DOM pools, has recently been shown to contribute more than 50% to DOM uptake in bioreactor columns colonized by bacteria in stream water. Protein-like FDOM, a proxy for the biodegradable DOM pool, also contributes to the recalcitrant DOM pool in bioreactors. However, the contribution of different lability pools to DOM uptake at the reach scale remains elusive. Here we combine local-scale results from a bioreactor study and measures of stream geomorphology parameters to model reach-scale DOM uptake in White Clay Creek, a Pennsylvania piedmont stream with an intact, forested riparian zone and inputs from upland agriculture. Steady state modeling of a point-source, continuous injection of FDOM shows that humic-like FDOM contributes up to 80% of the total removal of FDOM at the reach scale, suggesting its importance to in-stream DOM uptake. Tryptophan-like FDOM, a protein-like FDOM, contributes to 80% of the remaining fraction of FDOM at the reach scale that incorporates longer timescales of transport and retention. This is consistent with recent local-scale findings that the lability of tryptophan-like FDOM decreases substantially with reaction time in bioreactors, such that it becomes much more recalcitrant as it travels downstream. Steady state modeling of a distributed source, continuous injection of FDOM shows that contributing sources distribute differently along the river reach for each FDOM component, due to their different uptake patterns. Thus, variations of DOM lability are important for estimating reach-scale microbial uptake and contributing sources of in-stream DOM.
On Schrödinger's bridge problem
NASA Astrophysics Data System (ADS)
Friedland, S.
2017-11-01
In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.
Quantum-gravity predictions for the fine-structure constant
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Held, Aaron; Wetterich, Christof
2018-07-01
Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.
Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-02-22
Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable tomore » larger-scale conventional turbines.« less
Scale-dependent erosional patterns in steady-state and transient-state landscapes.
Tejedor, Alejandro; Singh, Arvind; Zaliapin, Ilya; Densmore, Alexander L; Foufoula-Georgiou, Efi
2017-09-01
Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes-landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes.
Scale-dependent erosional patterns in steady-state and transient-state landscapes
Tejedor, Alejandro; Singh, Arvind; Zaliapin, Ilya; Densmore, Alexander L.; Foufoula-Georgiou, Efi
2017-01-01
Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes—landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes. PMID:28959728
Nakahara, Soichiro; Medland, Sarah; Turner, Jessica A; Calhoun, Vince D; Lim, Kelvin O; Mueller, Bryon A; Bustillo, Juan R; O'Leary, Daniel S; Vaidya, Jatin G; McEwen, Sarah; Voyvodic, James; Belger, Aysenil; Mathalon, Daniel H; Ford, Judith M; Guffanti, Guia; Macciardi, Fabio; Potkin, Steven G; van Erp, Theo G M
2018-06-12
This study assessed genetic contributions to six cognitive domains, identified by the MATRICS Cognitive Consensus Battery as relevant for schizophrenia, cognition-enhancing, clinical trials. Psychiatric Genomics Consortium Schizophrenia polygenic risk scores showed significant negative correlations with each cognitive domain. Genome-wide association analyses identified loci associated with attention/vigilance (rs830786 within HNF4G), verbal memory (rs67017972 near NDUFS4), and reasoning/problem solving (rs76872642 within HDAC9). Gene set analysis identified unique and shared genes across cognitive domains. These findings suggest involvement of common and unique mechanisms across cognitive domains and may contribute to the discovery of new therapeutic targets to treat cognitive deficits in schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.
Papworth, Sarah; Rao, Madhu; Oo, Myint Myint; Latt, Kyaw Thinn; Tizard, Robert; Pienkowski, Thomas; Carrasco, L Roman
2017-04-24
Myanmar offers unique opportunities for both biodiversity conservation and foreign direct investment due to projected economic growth linked to natural resource exploitation. Industrial-scale development introduces new land uses into the landscape, with unknown repercussions for local communities and biodiversity conservation. We use participatory mapping of 31 communities, focus groups in 28 communities, and analyses of forest cover change during 2000-2010 using MODIS vegetation continuous fields images, to understand the social and environmental impacts of gold mining and agricultural concessions in Myanmar's Hukaung Valley (~21,800 km 2 ). Local communities, particularly the poorest households, benefit from work and trade opportunities offered by gold mining and agricultural companies but continue to depend on forests for house construction materials, food, and income from the sale of forest resources. However, gold mining and agricultural concessions reduce tree cover, potentially reducing access to forest resources and further marginalizing these households. Our analyses do not provide evidence that long-term resident communities contributed to forest cover loss between 2000 and 2010. We argue that landscape management, which recognizes local community rights to customary community use areas, and appropriate zoning for commercial land uses and protected areas could contribute to both local livelihoods and protect biodiversity throughout Myanmar during economic growth.
Papworth, Sarah; Rao, Madhu; Oo, Myint Myint; Latt, Kyaw Thinn; Tizard, Robert; Pienkowski, Thomas; Carrasco, L. Roman
2017-01-01
Myanmar offers unique opportunities for both biodiversity conservation and foreign direct investment due to projected economic growth linked to natural resource exploitation. Industrial-scale development introduces new land uses into the landscape, with unknown repercussions for local communities and biodiversity conservation. We use participatory mapping of 31 communities, focus groups in 28 communities, and analyses of forest cover change during 2000–2010 using MODIS vegetation continuous fields images, to understand the social and environmental impacts of gold mining and agricultural concessions in Myanmar’s Hukaung Valley (~21,800 km2). Local communities, particularly the poorest households, benefit from work and trade opportunities offered by gold mining and agricultural companies but continue to depend on forests for house construction materials, food, and income from the sale of forest resources. However, gold mining and agricultural concessions reduce tree cover, potentially reducing access to forest resources and further marginalizing these households. Our analyses do not provide evidence that long-term resident communities contributed to forest cover loss between 2000 and 2010. We argue that landscape management, which recognizes local community rights to customary community use areas, and appropriate zoning for commercial land uses and protected areas could contribute to both local livelihoods and protect biodiversity throughout Myanmar during economic growth. PMID:28436455
Nikolas, Molly; Klump, Kelly L; Burt, S Alexandra
2012-05-01
Identification of gene x environment interactions (GxE) for attention-deficit hyperactivity disorder (ADHD) is a crucial component to understanding the mechanisms underpinning the disorder, as prior work indicates large genetic influences and numerous environmental risk factors. Building on prior research, children's appraisals of self-blame were examined as a psychosocial moderator of latent etiological influences on ADHD via biometric twin models, which provide an omnibus test of GxE while managing the potential confound of gene-environment correlation. Participants were 246 twin pairs (total n = 492) ages 6-16 years. ADHD behaviors were assessed via mother report on the Child Behavior Checklist. To assess level of self-blame, each twin completed the Children's Perception of Inter-parental Conflict scale. Two biometric GxE models were fit to the data. The first model revealed a significant decrease in genetic effects and a significant increase in unique environmental influences on ADHD with increasing levels of self-blame. These results generally persisted even after controlling for confounding effects due to gene-environment correlation in the second model. Results suggest that appraisals of self-blame in relation to inter-parental conflict may act as a key moderator of etiological contributions to ADHD.
NASA Astrophysics Data System (ADS)
Werle, D.
2016-04-01
This paper presents research into the military and civilian history, technological development, and practical outcomes of aerial photography in Canada immediately after the First World War. The collections of early aerial photography in Canada and elsewhere, as well as the institutional and practical circumstances and arrangements of their creation, represent an important part of remote sensing heritage. It is argued that the digital rendition of the air photos and their representation in mosaic form can make valuable contributions to Digital Earth historic inquiries and mapping exercises today. An episode of one of the first urban surveys, carried out over Halifax, Nova Scotia, in 1921, is highlighted and an air photo mosaic and interpretation key is presented. Using the almost one hundred year old air photos and a digitally re-assembled mosaic of a substantial portion of that collection as a guide, a variety of features unique to the post-war urban landscape of the Halifax peninsula are analysed, illustrated, and compared with records of past and current land use. The pan-chromatic air photo ensemble at a nominal scale of 1:5,000 is placed into the historical context with contemporary thematic maps, recent air photos, and modern satellite imagery. Further research opportunities and applications concerning early Canadian aerial photography are outlined.
NASA Astrophysics Data System (ADS)
Pouliot, D.; Latifovic, R.; Olthof, I.
2017-12-01
Land cover is needed for a large range of environmental applications regarding climate impacts and adaption, emergency response, wildlife habitat, air quality, water yield, etc. In Canada a 2008 user survey revealed that the most practical scale for provision of land cover data is 30 m, nationwide, with an update frequency of five years (Ball, 2008). In response to this need the Canada Centre for Remote Sensing has generated a 30 m land cover of Canada for the base year 2010 as part of a planned series of maps at the recommended five year update frequency. This land cover is the Canadian contribution to the North American Land Change Monitoring System initiative, which seeks to provide harmonized land cover across Canada, the United States, and Mexico. The methodology developed in this research utilized a combination of unsupervised and machine learning techniques to map land cover, blend results between mapping units, locally optimize results, and process some thematic attributes with specific features sets. Accuracy assessment with available field data shows it was on average 75% for the five study areas assessed. In this presentation an overview of the unique processing aspects, example results, and initial accuracy assessment will be discussed.
Transforming rural health care through information technology: an interventional study in China.
Liu, Gordon Guoen; Chen, Yiqun; Qin, Xuezheng
2014-12-01
This article estimates the impacts of health information technology (HIT) on health-care delivery in the Wenchuan County of China, where the devastation of the 2008 Great Wenchuan Earthquake and the subsequent large-scale HIT implementation (the Healthy Wenchuan Program) offers a 'natural experiment' opportunity, enabling us to conduct a difference-in-difference evaluation of the potential benefits of HIT on accessibility, affordability and appropriateness of health-care services in the underdeveloped rural area. Based on data collected from two field surveys in township hospitals, we find that for both the inpatient and outpatient samples, the HIT system promotes access to medical care by increasing doctor referrals and encouraging within-county medical utilization, reduces patient financial burden in certain expenditure categories, and contributes to higher patient satisfaction on medical care quality. On the other hand, we also find that HIT leads to increased patient waiting time for hospital registration, reflecting the unique challenges in implementing HIT in the underdeveloped areas. Our study contributes to the growing body of literature on evaluating the impacts of HIT application in the developing regions, and provides implications on the potential role of HIT in China's national health system reforms. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2013; all rights reserved.
Klump, Kelly L.; Burt, S. Alexandra
2012-01-01
Identification of gene × environment interactions (GxE) for attention-deficit hyperactivity disorder (ADHD) is a crucial component to understanding the mechanisms underpinning the disorder, as prior work indicates large genetic influences and numerous environmental risk factors. Building on prior research, children's appraisals of self-blame were examined as a psychosocial moderator of latent etiological influences on ADHD via biometric twin models, which provide an omnibus test of GxE while managing the potential confound of gene-environment correlation. Participants were 246 twin pairs (total n=492) ages 6–16 years. ADHD behaviors were assessed via mother report on the Child Behavior Checklist. To assess level of self-blame, each twin completed the Children's Perception of Inter-parental Conflict scale. Two biometric GxE models were fit to the data. The first model revealed a significant decrease in genetic effects and a significant increase in unique environmental influences on ADHD with increasing levels of self-blame. These results generally persisted even after controlling for confounding effects due to gene-environment correlation in the second model. Results suggest that appraisals of self-blame in relation to inter-parental conflict may act as a key moderator of etiological contributions to ADHD. PMID:22006350
Venables, Noah C; Sellbom, Martin; Sourander, Andre; Kendler, Kenneth S; Joiner, Thomas E; Drislane, Laura E; Sillanmäki, Lauri; Elonheimo, Henrik; Parkkola, Kai; Multimaki, Petteri; Patrick, Christopher J
2015-04-30
Biobehavioral dispositions can serve as valuable referents for biologically oriented research on core processes with relevance to many psychiatric conditions. The present study examined two such dispositional variables-weak response inhibition (or disinhibition; INH-) and threat sensitivity (or fearfulness; THT+)-as predictors of the serious transdiagnostic problem of suicide risk in two samples: male and female outpatients from a U.S. clinic (N=1078), and a population-based male military cohort from Finland (N=3855). INH- and THT+ were operationalized through scores on scale measures of disinhibition and fear/fearlessness, known to be related to DSM-defined clinical conditions and brain biomarkers. Suicide risk was assessed by clinician ratings (clinic sample) and questionnaires (both samples). Across samples and alternative suicide indices, INH- and THT+ each contributed uniquely to prediction of suicide risk-beyond internalizing and externalizing problems in the case of the clinic sample where diagnostic data were available. Further, in both samples, INH- and THT+ interactively predicted suicide risk, with individuals scoring concurrently high on both dispositions exhibiting markedly augmented risk. Findings demonstrate that dispositional constructs of INH- and THT+ are predictive of suicide risk, and hold potential as referents for biological research on suicidal behavior. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The contribution of headwater streams to biodiversity in river networks
Judy L. Meyer; David L. Strayer; J. Bruce Wallace; Sue L. Eggert; Gene S. Helfman; Norman E. Leonard
2007-01-01
The diversity of life in headwater streams (intermittent, first and second order) contributes to the biodiversity of a river system and its riparian network. Small streams differ widely in physical, chemical, and biotic attributes, thus providing habitats for a range of unique species. Headwater species include permanent residents as well as migrants that travel to...
Center for Collegiate Mental Health (CCMH) 2013 Annual Report. Publication No. STA 14-43
ERIC Educational Resources Information Center
Center for Collegiate Mental Health, 2013
2013-01-01
This report summarizes data contributed to Center for Collegiate Mental Health (CCMH) during the 2012-2013 academic year, closing on June 30, 2013. Data was contributed by 132 college and university counseling centers describing more than 95,00 unique college students seeking mental health treatment, 3,000 clinicians, and over 500,000…
ERIC Educational Resources Information Center
Bourke, Lorna; Davies, Simon J.; Sumner, Emma; Green, Carolyn
2014-01-01
Visually mediated processes including, exposure to print (e.g. reading) as well as orthographic transcription and coding skills, have been found to contribute to individual differences in literacy development. The current study examined the role of visuospatial working memory (WM) in underpinning this relationship and emergent writing. One hundred…
Teacher Knowledge, Curriculum Materials, and Quality of Instruction: Lessons Learned and Open Issues
ERIC Educational Resources Information Center
Hill, Heather C.; Charalambous, Charalambos Y.
2012-01-01
This paper draws on four case studies to perform a cross-case analysis investigating the unique and joint contribution of mathematical knowledge for teaching (MKT) and curriculum materials to instructional quality. As expected, it was found that both MKT and curriculum materials matter for instruction. The contribution of MKT was more prevalent in…
ERIC Educational Resources Information Center
Barkley, Russell A.; Fischer, Mariellen
2010-01-01
Objective: Emotional impulsiveness (EI) may be a central feature of attention-deficit/hyperactivity disorder (ADHD) contributing impairment beyond the two ADHD dimensions of inattention and hyperactivity-impulsivity. Method: We evaluated EI in hyperactive (N = 135) and control (N = 75) children followed to adulthood (mean age 27 years). The…
ERIC Educational Resources Information Center
Lavi, T.; Green, O.; Dekel, R.
2013-01-01
The study examined the unique contribution of both personal characteristics and several types of exposure variables to the adjustment of Israeli adolescents following the Second Lebanon War. Two thousand three hundred and fourteen adolescents, who lived in areas that were the target of multiple missile attacks, completed self-report questionnaires…
The Discordant MZ-Twin Method: One Step Closer to the Holy Grail of Causality
ERIC Educational Resources Information Center
Vitaro, Frank; Brendgen, Mara; Arseneault, Louise
2009-01-01
Twin studies are well known for their value in quantifying the contribution of genes to population variation in behaviors and personality traits. Twin studies also provide a unique opportunity to untangle the contribution of environmental experiences to emotional and behavioral development. This is particularly true when examining monozygotic (MZ)…
ERIC Educational Resources Information Center
Banks, Jaime
2013-01-01
Massively multiplayer online roleplaying games, or MMOs, present an increasingly popular digital media experience whereby identity emerges as players contribute materially to play but contributions are governed by affordances and constraints of the game. Unique to this medium is the player's ability to create and control a digital body--an…
ERIC Educational Resources Information Center
Silver, R.B.; Measelle, J.R.; Armstrong, J.M.; Essex, M.J.
2005-01-01
The unique and interactive contributions of past externalizing behavior, negative parenting, and teacher-child relationship quality to externalizing behavior trajectories after the transition to school were examined. In a sample of 283 children, random regression analyses indicated that conflict in the teacher-child relationship during the school…
The Contribution of the Human Body in Young Children's Explanations about Shadow Formation
ERIC Educational Resources Information Center
Herakleioti, Evagelia; Pantidos, Panagiotis
2016-01-01
This paper begins with the view that the generation of meaning is a multimodal process. Props, drawings, graphs, gestures, as well as speech and written text are all mediators through which students construct new knowledge. Each semiotic context makes a unique contribution to the conceptualization of scientific entities. The human body, in…
Women of NCI at Frederick | Poster
By Andrea Frydl, Contributing Writer Editor’s note: This article has been updated since it was originally posted on August 22, 2013 Each year, the Employee Diversity Team (EDT) acknowledges a group of women for their great achievements and contributions towards the mission of the National Cancer Institute at Frederick. Details of their achievements and unique personalities
ERIC Educational Resources Information Center
Chingos, Matthew M.; West, Martin R.
2015-01-01
Since 2002, public school teachers in Florida have been permitted to choose between a defined benefit (DB) and a defined contribution (DC) retirement plan. We exploit this unique policy environment to study new teachers' revealed preferences over pension plan structures. Roughly 30 percent of teachers hired between 2003 and 2008 selected the DC…
ERIC Educational Resources Information Center
Rutledge, Stacey; Cohen-Vogel, Lora; Osborne-Lampkin, La'Tara
2012-01-01
The National Center on Scaling up Effective Schools (NCSU) is a five-year project working to develop, implement, and test new processes to scale up effective practices in high schools that districts will be able to apply within the context of their own unique goals and circumstances. This report describes the activities and findings of the first…
ERIC Educational Resources Information Center
Puhan, Gautam; vonDavier, Alina; Gupta, Shaloo
2008-01-01
Equating under the external anchor design is frequently conducted using scaled scores on the anchor test. However, scaled scores often lead to the unique problem of creating zero frequencies in the score distribution because there may not always be a one-to-one correspondence between raw and scaled scores. For example, raw scores of 17 and 18 may…
Early social behaviors and the trajectory of peer victimization across the school years.
Sugimura, Niwako; Berry, Daniel; Troop-Gordon, Wendy; Rudolph, Karen D
2017-08-01
Research has established that long-term exposure to peer victimization is associated with higher levels of emotional and behavioral maladjustment. Yet, relatively little is known regarding predictors of stable versus declining victimization across extended periods of time. To fill this knowledge gap, the present study used latent growth curve modeling to examine the separate and unique contributions of 3 early social behaviors in 2nd grade (aggression, anxious solitude, and prosocial behavior) to victimization across 2nd to 8th grade. Five hundred and 76 youth (M = 7.96 years, SD = .34) reported their level of exposure to victimization once a year from 2nd to 8th grade, and their teachers rated each youth on the 3 social behaviors in 2nd grade. When examined separately, the analyses revealed that (a) all 3 social behaviors contributed to 2nd-grade victimization; (b) anxious solitude and prosocial behavior contributed to the trajectory of victimization differently for boys and girls; and (c) aggression and anxious solitude contributed to significantly different levels of 8th-grade victimization in girls. Of interest, some effects were stronger in boys during elementary school and others were stronger in girls after the transition to middle school. When examined simultaneously, aggression remained the only significant predictor of 2nd-grade victimization; both anxious solitude and prosocial behavior uniquely predicted the trajectory of victimization, and aggression and anxious solitude uniquely predicted 8th-grade victimization in girls. Results are discussed with regard to prevention of prolonged victimization, with attention to gender differences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hulsegge, B; Calus, M P L; Oldenbroek, J K; Windig, J J
2017-02-01
From a genetic point of view, the selection of breeds and animals within breeds for conservation in a national gene pool can be based on a maximum diversity strategy. This implies that priority is given to conservation of breeds and animals that diverge most and overlap of conserved diversity is minimized. This study investigated the genetic diversity in the Dutch Red and White Friesian (DFR) cattle breed and its contribution to the total genetic diversity in the pool of the Dutch dairy breeds. All Dutch cattle breeds are clearly distinct, except for Dutch Friesian breed (DF) and DFR and have their own specific genetic identity. DFR has a small but unique contribution to the total genetic diversity of Dutch cattle breeds and is closely related to the Dutch Friesian breed. Seven different lines are distinguished within the DFR breed and all contribute to the diversity of the DFR breed. Two lines show the largest contributions to the genetic diversity in DFR. One of these lines comprises unique diversity both within the breed and across all cattle breeds. The other line comprises unique diversity for the DFR but overlaps with the Holstein Friesian breed. There seems to be no necessity to conserve the other five lines separately, because their level of differentiation is very low. This study illustrates that, when taking conservation decisions for a breed, it is worthwhile to take into account the population structure of the breed itself and the relationships with other breeds. © 2016 Blackwell Verlag GmbH.
Cooper, Chris; Lovell, Rebecca; Husk, Kerryn; Booth, Andrew; Garside, Ruth
2018-06-01
We undertook a systematic review to evaluate the health benefits of environmental enhancement and conservation activities. We were concerned that a conventional process of study identification, focusing on exhaustive searches of bibliographic databases as the primary search method, would be ineffective, offering limited value. The focus of this study is comparing study identification methods. We compare (1) an approach led by searches of bibliographic databases with (2) an approach led by supplementary search methods. We retrospectively assessed the effectiveness and value of both approaches. Effectiveness was determined by comparing (1) the total number of studies identified and screened and (2) the number of includable studies uniquely identified by each approach. Value was determined by comparing included study quality and by using qualitative sensitivity analysis to explore the contribution of studies to the synthesis. The bibliographic databases approach identified 21 409 studies to screen and 2 included qualitative studies were uniquely identified. Study quality was moderate, and contribution to the synthesis was minimal. The supplementary search approach identified 453 studies to screen and 9 included studies were uniquely identified. Four quantitative studies were poor quality but made a substantive contribution to the synthesis; 5 studies were qualitative: 3 studies were good quality, one was moderate quality, and 1 study was excluded from the synthesis due to poor quality. All 4 included qualitative studies made significant contributions to the synthesis. This case study found value in aligning primary methods of study identification to maximise location of relevant evidence. Copyright © 2017 John Wiley & Sons, Ltd.
Ahmad, Riaz; Naz, Saeeda; Afzal, Muhammad Zeshan; Amin, Sayed Hassan; Breuel, Thomas
2015-01-01
The presence of a large number of unique shapes called ligatures in cursive languages, along with variations due to scaling, orientation and location provides one of the most challenging pattern recognition problems. Recognition of the large number of ligatures is often a complicated task in oriental languages such as Pashto, Urdu, Persian and Arabic. Research on cursive script recognition often ignores the fact that scaling, orientation, location and font variations are common in printed cursive text. Therefore, these variations are not included in image databases and in experimental evaluations. This research uncovers challenges faced by Arabic cursive script recognition in a holistic framework by considering Pashto as a test case, because Pashto language has larger alphabet set than Arabic, Persian and Urdu. A database containing 8000 images of 1000 unique ligatures having scaling, orientation and location variations is introduced. In this article, a feature space based on scale invariant feature transform (SIFT) along with a segmentation framework has been proposed for overcoming the above mentioned challenges. The experimental results show a significantly improved performance of proposed scheme over traditional feature extraction techniques such as principal component analysis (PCA). PMID:26368566
Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments
NASA Technical Reports Server (NTRS)
Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie
2004-01-01
This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.
Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.
Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu
2010-11-01
Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.
A general framework for predicting delayed responses of ecological communities to habitat loss.
Chen, Youhua; Shen, Tsung-Jen
2017-04-20
Although biodiversity crisis at different spatial scales has been well recognised, the phenomena of extinction debt and immigration credit at a crossing-scale context are, at best, unclear. Based on two community patterns, regional species abundance distribution (SAD) and spatial abundance distribution (SAAD), Kitzes and Harte (2015) presented a macroecological framework for predicting post-disturbance delayed extinction patterns in the entire ecological community. In this study, we further expand this basic framework to predict diverse time-lagged effects of habitat destruction on local communities. Specifically, our generalisation of KH's model could address the questions that could not be answered previously: (1) How many species are subjected to delayed extinction in a local community when habitat is destructed in other areas? (2) How do rare or endemic species contribute to extinction debt or immigration credit of the local community? (3) How will species differ between two local areas? From the demonstrations using two SAD models (single-parameter lognormal and logseries), the predicted patterns of the debt, credit, and change in the fraction of unique species can vary, but with consistencies and depending on several factors. The general framework deepens the understanding of the theoretical effects of habitat loss on community dynamic patterns in local samples.
Pratt, Rebekah; MacGregor, Andy; Reid, Susan; Given, Lisa
2013-01-01
The main aim of this research was to assess the relevance and impact of wellness recovery action planning (WRAP) as a tool for self-management and wellness planning by individuals with mental health problems from pre-existing and newly formed groups, where the possibilities for continued mutual support in the development of WRAPs could be explored. Interviews and focus groups were conducted and pre-post recovery outcome measures completed (Recovery Assessment Scale and Warwick Edinburgh Mental Well Being Scale). 21 WRAP group participants took part in the research. The WRAP approach, used in groups and delivered by trained facilitators who could also share their lived experience, was very relevant and appeared to have a positive impact on many of the participants. The impact on participants varied from learning more about recovery and developing improved self-awareness to integrating a WRAP approach into daily life. The apparent positive impact of WRAP delivered in the context of mutual support groups indicates that it should be given serious consideration as a unique and worthwhile option for improving mental health. WRAP groups could make a significant contribution to the range of self-management options that are available for improving mental health and well-being. PMID:23365542
NASA Astrophysics Data System (ADS)
Andisheh-Tadbir, Mehdi; Orfino, Francesco P.; Kjeang, Erik
2016-04-01
Modern hydrogen powered polymer electrolyte fuel cells (PEFCs) utilize a micro-porous layer (MPL) consisting of carbon nanoparticles and polytetrafluoroethylene (PTFE) to enhance the transport phenomena and performance while reducing cost. However, the underlying mechanisms are not yet completely understood due to a lack of information about the detailed MPL structure and properties. In the present work, the 3D phase segregated nanostructure of an MPL is revealed for the first time through the development of a customized, non-destructive procedure for monochromatic nano-scale X-ray computed tomography visualization. Utilizing this technique, it is discovered that PTFE is situated in conglomerated regions distributed randomly within connected domains of carbon particles; hence, it is concluded that PTFE acts as a binder for the carbon particles and provides structural support for the MPL. Exposed PTFE surfaces are also observed that will aid the desired hydrophobicity of the material. Additionally, the present approach uniquely enables phase segregated calculation of effective transport properties, as reported herein, which is particularly important for accurate estimation of electrical and thermal conductivity. Overall, the new imaging technique and associated findings may contribute to further performance improvements and cost reduction in support of fuel cell commercialization for clean energy applications.
NASA Astrophysics Data System (ADS)
Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.
2014-01-01
Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype.
Ambrose, Sophie E.; Eisenberg, Laurie S.
2009-01-01
The goal of this study was to longitudinally examine relationships between early factors (child and mother) that may influence children's phonological awareness and reading skills 3 years later in a group of young children with cochlear implants (N = 16). Mothers and children were videotaped during two storybook interactions, and children's oral language skills were assessed using the “Reynell Developmental Language Scales, third edition.” Three years later, phonological awareness, reading skills, and language skills were assessed using the “Phonological Awareness Test,” the “Woodcock–Johnson-III Diagnostic Reading Battery,” and the “Oral Written Language Scales.” Variables included in the data analyses were child (age, age at implant, and language skills) and mother factors (facilitative language techniques) and children's phonological awareness and reading standard scores. Results indicate that children's early expressive oral language skills and mothers’ use of a higher level facilitative language technique (open-ended question) during storybook reading, although related, each contributed uniquely to children's literacy skills. Individual analyses revealed that the children with expressive standard scores below 70 at Time 1 also performed below average (<85) on phonological awareness and total reading tasks 3 years later. Guidelines for professionals are provided to support literacy skills in young children with cochlear implants. PMID:18417463
APDA's Contribution to Current Research and Citizen Science
NASA Astrophysics Data System (ADS)
Barker, Thurburn; Castelaz, M. W.; Cline, J. D.; Hudec, R.
2010-01-01
The Astronomical Photographical Data Archive (APDA) is dedicated to the collection, restoration, preservation, and digitization of astronomical photographic data that eventually can be accessed via the Internet by the global community of scientists, researchers and students. Located on the Pisgah Astronomical Research Institute campus, APDA now includes collections from North America totaling more than 100,000 photographic plates and films. Two new large scale research projects, and one citizen science project have now been developed from the archived data. One unique photographic data collection covering the southern hemisphere contains the signatures of diffuse interstellar bands (DIBs) within the stellar spectra on objective prism plates. We plan to digitize the spectra, identify the DIBs, and map out the large scale spatial extent of DIBS. The goal is to understand the Galactic environment suitable to the DIB molecules. Another collection contains spectra with nearly the same dispersion as the GAIA Satellite low dispersion slitless spectrophotometers, BP and RP. The plates will be used to develop standards for GAIA spectra. To bring the data from APDA to the general public, we have developed the citizen science project called Stellar Classification Online - Public Exploration (SCOPE). SCOPE allows the citizen scientist to classify up to a half million stars on objective prism plates. We will present the status of each of these projects.
Racial segregation in postbellum Southern cities: The case of Washington, D.C.
Logan, John R.
2018-01-01
BACKGROUND Segregation in Southern cities has been described as a 20th-century development, layered onto an earlier pattern in which whites and blacks (both slaves and free black people) shared the same neighborhoods. Urban historians have pointed out ways in which the Southern postbellum pattern was less benign, but studies relying on census data aggregated by administrative areas – and segregation measures based on this data – have not confirmed their observations. METHODS This study is based mainly on 100% microdata from the 1880 census that has been mapped at the address level in Washington, D.C. This data makes it possible to examine in detail the unique spatial configuration of segregation that is found in this city, especially the pattern of housing in alleys. RESULTS While segregation appears to have been low, as reflected in data by wards and even by much smaller enumeration districts, analyses at a finer spatial scale reveal strongly patterned separation between blacks and whites at this early time. CONTRIBUTION This research provides much new information about segregation in a major Southern city at the end of the 19th century. It also demonstrates the importance of dealing explicitly with issues of both scale and spatial pattern in studies of segregation. PMID:29375269
Next Generation Active Buffet Suppression System
NASA Technical Reports Server (NTRS)
Galea, Stephen C.; Ryall, Thomas G.; Henderson, Douglas A.; Moses, Robert W.; White, Edward V.; Zimcik, David G.
2003-01-01
Buffeting is an aeroelastic phenomenon that is common to high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. This paper describes an international collaborative research activity among Australia, Canada and the United States involving the use of active structural control to alleviate the damaging structural response to these loads. The research program is being co-ordinated by the Air Force Research Laboratory (AFRL) and is being conducted under the auspices of The Technical Cooperative Program (TTCP). This truly unique collaborative program has been developed to enable each participating country to contribute resources toward a program that coalesces a broad range of technical knowledge and expertise into a single investigation. This collaborative program is directed toward a full-scale test of an F/A-18 empennage, which is an extension of an earlier initial test. The current program aims at applying advanced directional piezoactuators, the aircraft rudder, switch mode amplifiers and advanced control strategies on a full-scale structure to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration.
The Universe's Most Extreme Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Casey, Caitlin
2017-06-01
Dusty star-forming galaxies host the most intense stellar nurseries in the Universe. Their unusual characteristics (SFRs=200-2000Msun/yr, Mstar>1010 Msun) pose a unique challenge for cosmological simulations and galaxy formation theory, particularly at early times. Although rare today, they were factors of 1000 times more prevalent at z~2-5, contributing significantly to the buildup of the Universe's stellar mass and the formation of high-mass galaxies. At even earlier times (within 1Gyr post Big Bang) they could have played a pivotal role in enriching the IGM. However, an ongoing debate lingers as to their evolutionary origins at high-redshift, whether or not they are triggered by major mergers of gas-rich disk galaxies, or if they are solitary galaxies continually fed pristine gas from the intergalactic medium. Furthermore, their presence in early protoclusters, only revealed quite recently, pose intriguing questions regarding the collapse of large scale structure. I will discuss some of the latest observational programs dedicated to understanding dust-obscuration in and gas content of the early Universe, their context in the cosmic web, and future long-term observing campaigns that may reveal their relationship to `normal’ galaxies, thus teaching us valuable lessons on the physical mechanisms of galaxy growth and the collapse of large scale structure in an evolving Universe.
Cocaine addiction and personality: a mathematical model.
Caselles, Antonio; Micó, Joan C; Amigó, Salvador
2010-05-01
The existence of a close relation between personality and drug consumption is recognized, but the corresponding causal connection is not well known. Neither is it well known whether personality exercises an influence predominantly at the beginning and development of addiction, nor whether drug consumption produces changes in personality. This paper presents a dynamic mathematical model of personality and addiction based on the unique personality trait theory (UPTT) and the general modelling methodology. This model attempts to integrate personality, the acute effect of drugs, and addiction. The UPTT states the existence of a unique trait of personality called extraversion, understood as a dimension that ranges from impulsive behaviour and sensation-seeking (extravert pole) to fearful and anxious behaviour (introvert pole). As a consequence of drug consumption, the model provides the main patterns of extraversion dynamics through a system of five coupled differential equations. It combines genetic extraversion, as a steady state, and dynamic extraversion in a unique variable measured on the hedonic scale. The dynamics of this variable describes the effects of stimulant drugs on a short-term time scale (typical of the acute effect); while its mean time value describes the effects of stimulant drugs on a long-term time scale (typical of the addiction effect). This understanding may help to develop programmes of prevention and intervention in drug misuse.
Batanova, Milena D; Loukas, Alexandra
2012-10-01
Empathy in children has received considerable attention in the literature, but limited research has investigated the contributions of various socializing factors on both affective (e.g., empathic concern) and cognitive (e.g., perspective taking) components of empathy in early adolescents. Guided by socialization theories, this study examined the unique and interacting contributions of school connectedness and parent-child conflict to subsequent levels of both components of empathy across a 1-year period of time. Participants were 487 10- to 14- year old middle school students (54 % female; 76 % European-American) involved in two waves of a study with 1 year between each wave. Hierarchical regression analyses indicated that, among girls, reports of parent-child conflict contributed to a decrease in empathic concern one year later, whereas school connectedness was a protective factor that offset the negative impact of parent-child conflict on girls' subsequent perspective taking. Alternatively, only boys' reports of school connectedness contributed to subsequent increases in both empathic concern and perspective taking 1 year later. Findings indicate that school connectedness and conflict with parents play different socializing roles for girls' and boys' empathic concern and perspective taking. The current study calls for further research and youth programs to consider the important contributions that socializing agents can make on both components of empathy for early adolescent girls and boys.
Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components
NASA Astrophysics Data System (ADS)
Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron; Zhu, Allen; Jungmann, Ralf; Bellot, Gaetan; Ke, Yonggang; Yin, Peng
2017-12-01
Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can be produced within this molecular canvas, enabling the creation of shapes such as letters, a helicoid and a teddy bear. We anticipate that with further optimization of structure design, strand synthesis and assembly procedure even larger structures could be accessible, which could be useful for applications such as positioning functional components.
A Non-Degenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk
Blair, David R.; Lyttle, Christopher S.; Mortensen, Jonathan M.; Bearden, Charles F.; Jensen, Anders Boeck; Khiabanian, Hossein; Melamed, Rachel; Rabadan, Raul; Bernstam, Elmer V.; Brunak, Søren; Jensen, Lars Juhl; Nicolae, Dan; Shah, Nigam H.; Grossman, Robert L.; Cox, Nancy J.; White, Kevin P.; Rzhetsky, Andrey
2013-01-01
Summary Whereas countless highly penetrant variants have been associated with Mendelian disorders, the genetic etiologies underlying complex diseases remain largely unresolved. Here, we examine the extent to which Mendelian variation contributes to complex disease risk by mining the medical records of over 110 million patients. We detect thousands of associations between Mendelian and complex diseases, revealing a non-degenerate, phenotypic code that links each complex disorder to a unique collection of Mendelian loci. Using genome-wide association results, we demonstrate that common variants associated with complex diseases are enriched in the genes indicated by this “Mendelian code.” Finally, we detect hundreds of comorbidity associations among Mendelian disorders, and we use probabilistic genetic modeling to demonstrate that Mendelian variants likely contribute non-additively to the risk for a subset of complex diseases. Overall, this study illustrates a complementary approach for mapping complex disease loci and provides unique predictions concerning the etiologies of specific diseases. PMID:24074861
Hasson-Ohayon, Ilanit; Tuval-Mashiach, Rivka; Goldzweig, Gil; Levi, Rienat; Pizem, Noam; Kaufman, Bela
2016-08-01
Employing a cross-sectional design, the current study examined the relationships between various agents and types of support and posttraumatic growth (PTG) among women with breast cancer. Eighty married women who were coping with breast cancer completed social support and PTG questionnaires. All agents of social support (family, friends, belief-based), excluding spousal support, and all types of social support were found to be related to the various PTG dimensions and its total score. Regression analyses revealed that, among the agents of support, only support provided from friends and belief-based support uniquely contribute to prediction of total PTG score. While examining the contribution of various types of support, only cognitive support had a unique contribution to prediction of total PTG score. Various agents and types of support play different roles in the PTG process following breast cancer. Accordingly, friends as an agent of support and information as a type of support seem to be most important in enhancing PTG among women with breast cancer.
Silveri, Marisa M.
2015-01-01
There is a considerable body of literature demonstrating that adolescence is a unique age period, which includes rapid and dramatic maturation of behavioral, cognitive, hormonal and neurobiological systems. Most notably, adolescence is also a period of unique responsiveness to alcohol effects, with both hyposensitivity and hypersensitivity observed to the various effects of alcohol. Multiple neurotransmitter systems are undergoing fine-tuning during this critical period of brain development, including those that contribute to the rewarding effects of drugs of abuse. The role of developmental maturation of the γ-amino-butyric acid (GABA) system, however, has received less attention in contributing to age-specific alcohol sensitivities. This review integrates GABA findings from human magnetic resonance spectroscopy studies as they may translate to understanding adolescent-specific responsiveness to alcohol effects. Better understanding of the vulnerability of the GABA system both during adolescent development, and in psychiatric conditions that include alcohol dependence, could point to a putative mechanism, boosting brain GABA, that may have increased effectiveness for treating alcohol abuse disorders. PMID:24631274
Yeon, Sookkyung; Bae, Han Suk; Joshi, R Malatesha
2017-11-01
The present study examined unique and shared contributions of Korean (first language) phonological, orthographic and morphological awareness (PA, OA and MA, respectively) to English (second/foreign language) spelling among 287 fourth-grade, fifth-grade and sixth-grade Korean children. Korean measures of PA, OA and MA were administered, in addition to English vocabulary and spelling measures. Results from structural equation modelling showed that PA, OA and MA were caused by one common construct, metalinguistic awareness (META), and the contribution of Korean META to English spelling was statistically significant, controlling for English vocabulary. In particular, Korean MA and PA played unique roles in explaining English spelling; whereas Korean OA did not significantly contribute to English spelling. Findings from the present study provided empirical evidence of first language META transfer effect on second/foreign language spelling development. Educational implications and future research ideas are discussed. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
A Multilevel Bifactor Approach to Construct Validation of Mixed-Format Scales
ERIC Educational Resources Information Center
Wang, Yan; Kim, Eun Sook; Dedrick, Robert F.; Ferron, John M.; Tan, Tony
2018-01-01
Wording effects associated with positively and negatively worded items have been found in many scales. Such effects may threaten construct validity and introduce systematic bias in the interpretation of results. A variety of models have been applied to address wording effects, such as the correlated uniqueness model and the correlated traits and…
Factorial Structure of the French Version of the Rosenberg Self-Esteem Scale among the Elderly
ERIC Educational Resources Information Center
Gana, Kamel; Alaphilippe, Daniel; Bailly, Nathalie
2005-01-01
Ten different confirmatory factor analysis models, including ones with correlated traits correlated methods, correlated traits correlated uniqueness, and correlated traits uncorrelated methods, were proposed to examine the factorial structure of the French version of the Rosenberg Self-Esteem Scale (Rosenberg, 1965). In line with previous studies…
ERIC Educational Resources Information Center
Lockett, Charles T.; Harrell, Jules P.
2003-01-01
To examine the relationship between racial identity, self-esteem, and academic achievement, this study administered the Racial Identity Attitude Scale, Rosenberg Self-Esteem Scale, and a background questionnaire to African American students from a historically black college. Results showed that the unique effect of racial identity on academic…
USDA-ARS?s Scientific Manuscript database
Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...
Diagnostics of multi-fractality of magnetized plasma inside coronal holes and quiet sun areas
NASA Astrophysics Data System (ADS)
Abramenko, Valentyna
Turbulent and multi-fractal properties of magnetized plasma in solar Coronal Holes (CHs) and Quiet Sun (QS) photosphere were explored using high-resolution magnetograms measured with the New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO, USA), Hinode/SOT and SDO/HMI instruments. Distribution functions of size and magnetic flux measured for small-scale magnetic elements follow the log-normal law, which implies multi-fractal organization of the magnetic field and the absence of a unique power law for all scales. The magnetograms show multi-fractality in CHs on scales 400 - 10000 km, which becomes better pronounced as the spatial resolution of data improves. Photospheric granulation measured with NST exhibits multi-fractal properties on very small scales of 50 - 600 km. While multi-fractal nature of solar active regions is well known, newly established multi-fractality of weakest magnetic fields on the solar surface, i.e., in CHs and QS, leads us to a conclusion that the entire variety of solar magnetic fields is generated by a unique nonlinear dynamical process.
Parental physical and psychological aggression: psychological symptoms in young adults.
Miller-Perrin, Cindy L; Perrin, Robin D; Kocur, Jodie L
2009-01-01
The purpose of the present study was to evaluate the relationship between various levels of parent-child physical violence and psychological symptoms reported by college students, while controlling for demographic variables, severity and frequency of violence, and co-occurrence of parental psychological aggression. Participants included 298 college students ranging in age from 18 to 27 years. Participants completed a demographic information form, the Brief Symptom Inventory (BSI), and the Parent-Child Conflict Tactics Scale (CTSPC). Results of analysis of variance and multivariate analysis of variance indicated that individuals in the child physical abuse group obtained higher BSI scores compared to individuals in the corporal punishment and no violence groups. Few differences were observed between mild and severe corporal punishment groups. Multiple regression analyses indicated that when frequency of corporal punishment, child physical abuse, and psychological aggression, along with demographic variables, were considered simultaneously, psychological aggression was the most unique predictor of BSI scores. The findings suggest that severe forms of physical violence were associated with long-term psychological symptoms. When demographic variables and the frequency of several parent aggression variables were considered simultaneously, however, psychological aggression was most predictive of psychological outcome. These findings suggest that messages communicated to a child via psychological aggression may be more important in contributing to psychological outcome than the actual occurrence of physical violence toward the child. The current study supports the premise that severe physical aggression experienced in childhood is associated with serious psychological consequences in adulthood. In contrast, individuals who experienced less severe forms of parent-child violence, such as corporal aggression, exhibited similar symptom levels to those reporting no parent-child violence. When severe physical aggression, corporal aggression, and psychological aggression were considered simultaneously, however, psychological aggression emerged as the most unique predictor of psychological outcome. Researchers and clinicians who work with adults reporting childhood histories of severe parent-child violence should be aware of the importance of parent-child psychological aggression in contributing to psychological outcome.
Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.
2016-01-01
Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory-based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with Ångström-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na and Mg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca2+, previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic templates. PMID:27794119
Bonanno, Rina A; Hymel, Shelley
2013-05-01
Although recent research has demonstrated significant links between involvement in cyber bullying and various internalizing difficulties, there exists debate as to whether these links are independent of involvement in more traditional forms of bullying. The present study systematically examined the association between involvement in cyber bullying, as either a victim or a bully, and both depressive symptomatology and suicidal ideation. Self-report data were collected from 399 (57% female) Canadian adolescents in grades 8-10 (mean age = 14.2 years, SD = .91 years). Results indicated that involvement in cyber bullying, as either a victim or a bully, uniquely contributed to the prediction of both depressive symptomatology and suicidal ideation, over and above the contribution of involvement in traditional forms of bullying (physical, verbal, relational). Given the ever increasing rate of accessibility to technology in both schools and homes, these finding underscore the importance of addressing cyber bullying, with respect to both research and intervention, as a unique phenomenon with equally unique challenges for students, parents, school administrators and researchers alike.
Mielke, Howard W; Gonzales, Christopher R; Powell, Eric T; Mielke, Paul W
2016-09-01
The contribution of lead contaminated soil to blood lead, especially as it is a large reservoir of lead dust, has been underestimated relative to lead-based paint. On 29 August 2005 Hurricane Katrina flooded and disrupted habitation in New Orleans. Soil and blood lead were mapped prior to Katrina. This unique study addresses soil and blood lead conditions pre- and ten years post-Katrina and considers the effectiveness of low lead soil for lead exposure intervention. Comparison of soil and blood lead levels pre- and ten years post-Katrina to evaluate and assess the impact of flooding on soil and blood lead at the scale of the city of New Orleans. Post-Katrina soil and blood lead data were stratified by the same census tracts (n=176) as pre-Katrina data. This unique city scale data-set includes soil lead (n=3314 and 3320, pre- vs. post-Katrina), blood lead (n=39,620 and 17,739, pre- vs. post-Katrina), distance, and changes in percent pre-1940 housing. Statistical analysis entailed permutation procedures and Fisher's Exact Tests. Pre- vs. ten years post-Katrina soil lead median decreased from 280 mg/kg to 132 mg/kg, median blood lead decreased from 5μg/dL to 1.8μg/dL, respectively. Percent pre-1940 housing did not change significantly (P-value=0.674). Soil and blood lead decrease with distance from the center of New Orleans. Except for age-of-housing results, P-values were extremely small (<10(-12)). Ten years after Katrina, profound changes in soil lead and children's blood lead occurred in New Orleans. Decreasing the lead on soil surfaces reduces children's interaction with lead dust, thus underscoring soil as a major of source of exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bagley, Justin C; Johnson, Jerald B
2014-01-01
A central goal of comparative phylogeography is determining whether codistributed species experienced (1) concerted evolutionary responses to past geological and climatic events, indicated by congruent spatial and temporal patterns (“concerted-response hypothesis”); (2) independent responses, indicated by spatial incongruence (“independent-response hypothesis”); or (3) multiple responses (“multiple-response hypothesis”), indicated by spatial congruence but temporal incongruence (“pseudocongruence”) or spatial and temporal incongruence (“pseudoincongruence”). We tested these competing hypotheses using DNA sequence data from three livebearing fish species codistributed in the Nicaraguan depression of Central America (Alfaro cultratus, Poecilia gillii, and Xenophallus umbratilis) that we predicted might display congruent responses due to co-occurrence in identical freshwater drainages. Spatial analyses recovered different subdivisions of genetic structure for each species, despite shared finer-scale breaks in northwestern Costa Rica (also supported by phylogenetic results). Isolation-with-migration models estimated incongruent timelines of among-region divergences, with A. cultratus and Xenophallus populations diverging over Miocene–mid-Pleistocene while P. gillii populations diverged over mid-late Pleistocene. Approximate Bayesian computation also lent substantial support to multiple discrete divergences over a model of simultaneous divergence across shared spatial breaks (e.g., Bayes factor [B10] = 4.303 for Ψ [no. of divergences] > 1 vs. Ψ = 1). Thus, the data support phylogeographic pseudoincongruence consistent with the multiple-response hypothesis. Model comparisons also indicated incongruence in historical demography, for example, support for intraspecific late Pleistocene population growth was unique to P. gillii, despite evidence for finer-scale population expansions in the other taxa. Empirical tests for phylogeographic congruence indicate that multiple evolutionary responses to historical events have shaped the population structure of freshwater species codistributed within the complex landscapes in/around the Nicaraguan depression. Recent community assembly through different routes (i.e., different past distributions or colonization routes), and intrinsic ecological differences among species, has likely contributed to the unique phylogeographical patterns displayed by these Neotropical fishes. PMID:24967085
Evaluation of Contribution of Local Newspapers to Lifelong Learning (Example of Bartin Province)
ERIC Educational Resources Information Center
Çuhadar, Elif; Ünal, Fatma
2018-01-01
In this study, while the definition of informal education, which displays the main features of lifelong learning, is made, it is also attempted to identify the contributions of the local newspapers, through which the society can reach its own unique and necessary information, to the lifelong learning of their readers. In the research, within this…
ERIC Educational Resources Information Center
Zuffiano, Antonio; Alessandri, Guido; Gerbino, Maria; Kanacri, Bernadette Paula Luengo; Di Giunta, Laura; Milioni, Michela; Caprara, Gian Vittorio
2013-01-01
The present study examined the contribution of self-efficacy beliefs in self-regulated learning (SESRL) in predicting academic achievement at the end of junior high school above and beyond the effects of previous academic achievement, gender, socioeconomic status, intelligence, personality traits, and self-esteem. Participants included 170 (87…
Extending the Contribution of Albert Camus to Educational Thought: An Analysis of "The Rebel"
ERIC Educational Resources Information Center
Curzon-Hobson, Aidan
2014-01-01
The purpose of this article is to make a case for "The Rebel" as an important educational text. Discussing "The Rebel" in this way for the first time, the goal is to try and demonstrate that the work could have a unique contribution; in particular there might be a number of similarities between Camus and educational thinkers…
ERIC Educational Resources Information Center
Sagi, Abraham; Koren-Karie, Nina; Gini, Motti; Ziv, Yair; Joels, Tirtsa
2002-01-01
The Haifa Study of Early Child Care examined the unique contribution of various child-care-related correlates to infant-mother attachment. Findings indicated that, after controlling for other potential contributing variables (including mother characteristics, mother-child interaction, and mother- father relationship), center care adversely…
ERIC Educational Resources Information Center
Sawyer, Brook E.; Justice, Laura M.; Guo, Ying; Logan, Jessica A. R.; Petrill, Stephen A.; Glenn-Applegate, Katherine; Kaderavek, Joan N.; Pentimonti, Jill M.
2014-01-01
To contribute to the modest body of work examining the home literacy environment (HLE) and emergent literacy outcomes for children with disabilities, this study addressed two aims: (a) to determine the unique contributions of the HLE on print knowledge of preschool children with language impairment and (b) to identify whether specific child…
ERIC Educational Resources Information Center
Batanova, Milena D.; Loukas, Alexandra
2012-01-01
Empathy in children has received considerable attention in the literature, but limited research has investigated the contributions of various socializing factors on both affective (e.g., empathic concern) and cognitive (e.g., perspective taking) components of empathy in early adolescents. Guided by socialization theories, this study examined the…
ERIC Educational Resources Information Center
Fracasso, Lucille E.; Bangs, Kathryn; Binder, Katherine S.
2016-01-01
The Adult Basic Education (ABE) population consists of a wide range of abilities with needs that may be unique to this set of learners. The purpose of this study was to better understand the relative contributions of phonological decoding and morphological awareness to spelling, vocabulary, and comprehension across a sample of ABE students. In…
Structure-property relationships of a biological mesocrystal in the adult sea urchin spine
Seto, Jong; Ma, Yurong; Davis, Sean A.; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut
2012-01-01
Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature’s demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials. PMID:22343283
Mobile phones and malaria: modeling human and parasite travel
Buckee, Caroline O.; Wesolowski, Amy; Eagle, Nathan; Hansen, Elsa; Snow, Robert W.
2013-01-01
Human mobility plays an important role in the dissemination of malaria parasites between regions of variable transmission intensity. Asymptomatic individuals can unknowingly carry parasites to regions where mosquito vectors are available, for example, undermining control programs and contributing to transmission when they travel. Understanding how parasites are imported between regions in this way is therefore an important goal for elimination planning and the control of transmission, and would enable control programs to target the principal sources of malaria. Measuring human mobility has traditionally been difficult to do on a population scale, but the widespread adoption of mobile phones in low-income settings presents a unique opportunity to directly measure human movements that are relevant to the spread of malaria. Here, we discuss the opportunities for measuring human mobility using data from mobile phones, as well as some of the issues associated with combining mobility estimates with malaria infection risk maps to meaningfully estimate routes of parasite importation. PMID:23478045
Hyperspectral anomaly detection using Sony PlayStation 3
NASA Astrophysics Data System (ADS)
Rosario, Dalton; Romano, João; Sepulveda, Rene
2009-05-01
We present a proof-of-principle demonstration using Sony's IBM Cell processor-based PlayStation 3 (PS3) to run-in near real-time-a hyperspectral anomaly detection algorithm (HADA) on real hyperspectral (HS) long-wave infrared imagery. The PS3 console proved to be ideal for doing precisely the kind of heavy computational lifting HS based algorithms require, and the fact that it is a relatively open platform makes programming scientific applications feasible. The PS3 HADA is a unique parallel-random sampling based anomaly detection approach that does not require prior spectra of the clutter background. The PS3 HADA is designed to handle known underlying difficulties (e.g., target shape/scale uncertainties) often ignored in the development of autonomous anomaly detection algorithms. The effort is part of an ongoing cooperative contribution between the Army Research Laboratory and the Army's Armament, Research, Development and Engineering Center, which aims at demonstrating performance of innovative algorithmic approaches for applications requiring autonomous anomaly detection using passive sensors.
Genomic variation associated with local adaptation of weedy rice during de-domestication
Qiu, Jie; Zhou, Yongjun; Mao, Lingfeng; Ye, Chuyu; Wang, Weidi; Zhang, Jianping; Yu, Yongyi; Fu, Fei; Wang, Yunfei; Qian, Feijian; Qi, Ting; Wu, Sanling; Sultana, Most Humaira; Cao, Ya-Nan; Wang, Yu; Timko, Michael P.; Ge, Song; Fan, Longjiang; Lu, Yongliang
2017-01-01
De-domestication is a unique evolutionary process by which domesticated crops are converted into ‘wild predecessor like' forms. Weedy rice (Oryza sativa f. spontanea) is an excellent model to dissect the molecular processes underlying de-domestication. Here, we analyse the genomes of 155 weedy and 76 locally cultivated rice accessions from four representative regions in China that were sequenced to an average 18.2 × coverage. Phylogenetic and demographic analyses indicate that Chinese weedy rice was de-domesticated independently from cultivated rice and experienced a strong genetic bottleneck. Although evolving from multiple origins, critical genes underlying convergent evolution of different weedy types can be found. Allele frequency analyses suggest that standing variations and new mutations contribute differently to japonica and indica weedy rice. We identify a Mb-scale genomic region present in weedy rice but not cultivated rice genomes that shows evidence of balancing selection, thereby suggesting that there might be more complexity inherent to the process of de-domestication. PMID:28537247
Reinvestigating the surface and bulk electronic properties of Cd3As2
NASA Astrophysics Data System (ADS)
Roth, S.; Lee, H.; Sterzi, A.; Zacchigna, M.; Politano, A.; Sankar, R.; Chou, F. C.; Di Santo, G.; Petaccia, L.; Yazyev, O. V.; Crepaldi, A.
2018-04-01
Cd3As2 is widely considered among the few materials realizing the three-dimensional (3D) Dirac semimetal phase. Linearly dispersing states, responsible for the ultrahigh charge mobility, have been reported by several angle-resolved photoelectron spectroscopy (ARPES) investigations. However, in spite of the general agreement between these studies, some details are at odds. From scanning tunneling microscopy and optical experiments under magnetic field, a puzzling scenario emerges in which multiple states show linear dispersion at different energy scales. Here, we solve this apparent controversy by reinvestigating the electronic properties of the (112) surface of Cd3As2 by combining ARPES and theoretical calculations. We disentangle the presence of massive and massless metallic bulk and surface states, characterized by different symmetries. Our systematic experimental and theoretical study clarifies the complex band dispersion of Cd3As2 by extending the simplistic 3D Dirac semimetal model to account for multiple bulk and surface states crossing the Fermi level, and thus contributing to the unique material transport properties.
Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene.
Zheng, Huihuo; Gan, Yu; Abbamonte, Peter; Wagner, Lucas K
2017-10-20
Electron correlation in graphene is unique because of the interplay between the Dirac cone dispersion of π electrons and long-range Coulomb interaction. Because of the zero density of states at Fermi level, the random phase approximation predicts no metallic screening at long distance and low energy, so one might expect that graphene should be a poorly screened system. However, empirically graphene is a weakly interacting semimetal, which leads to the question of how electron correlations take place in graphene at different length scales. We address this question by computing the equal time and dynamic structure factor S(q) and S(q,ω) of freestanding graphene using ab initio fixed-node diffusion Monte Carlo simulations and the random phase approximation. We find that the σ electrons contribute strongly to S(q,ω) for relevant experimental values of ω even at distances up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb interactions results in the observed weakly correlated semimetal.
Fragmentation of relativistic nuclei in peripheral interactions in nuclear track emulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artemenkov, D. A., E-mail: artemenkov@lhe.jinr.ru; Bradnova, V.; Chernyavsky, M. M.
2008-09-15
The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions: nuclear 'white' stars. A complete pattern of the relativistic dissociation of a 8B nucleus with target fragment accompaniment is presented. Relativistic dissociation {sup 9}Be {yields} 2{alpha} is explored using significant statistics, and a relative contribution of {sup 8}Be decays from 0+ and 2+ states is established. Target fragment accompaniments are shown for relativistic fragmentation {sup 14}N {yields} 3He +H and {sup 22}Ne {yields} 5He. The leading role of the electromagnetic dissociation on heavy nuclei with respect to breakupsmore » on target protons is demonstrated in all these cases. It is possible to conclude that the peripheral dissociation of relativistic nuclei in nuclear track emulsion is a unique tool to study many-body systems composed of the lightest nuclei and nucleons in the energy scale relevant for nuclear astrophysics.« less
3D Visualization of Solar Data: Preparing for Solar Orbiter and Parker Solar Probe
NASA Astrophysics Data System (ADS)
Mueller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; Ireland, J.; Fleck, B.
2017-12-01
Solar Orbiter and Parker Solar Probe will focus on exploring the linkage between the Sun and the heliosphere. These new missions will collect unique data that will allow us to study, e.g., the coupling between macroscopic physical processes to those on kinetic scales, the generation of solar energetic particles and their propagation into the heliosphere and the origin and acceleration of solar wind plasma. Combined with the several petabytes of data from NASA's Solar Dynamics Observatory, the scientific community will soon have access to multidimensional remote-sensing and complex in-situ observations from different vantage points, complemented by petabytes of simulation data. Answering overarching science questions like "How do solar transients drive heliospheric variability and space weather?" will only be possible if the community has the necessary tools at hand. In this contribution, we will present recent progress in visualizing the Sun and its magnetic field in 3D using the open-source JHelioviewer framework, which is part of the ESA/NASA Helioviewer Project.
NASA Astrophysics Data System (ADS)
García-Lorenzo, B.; HARMONI Consortium
2015-05-01
HARMONI is the visible and near infrared integral field spectrograph (IFS) selected as a first-light instrument for the European Extremely Large Telescope (E-ELT). With four spatial scales and a range of spectral resolving powers, astronomers will optimally configure the instrument to overtake a wide range of scientific programs and to address many of the E-ELT science cases. The Centro de Astrobiología del CSIC/INTA (CAB-CSIC) and the Instituto de Astrofísica de Canarias (IAC) form part of the international consortium developing HARMONI, participation that will constitute an unique scientific opportunity for the Spanish astronomical community, allowing the access to the E-ELT as soon as it were operative via the guaranteed time. We describe here the instrument and its capabilities with special attention to the Spanish contribution to HARMONI. At the current stage of the project, HARMONI design is being revised due to significant modifications of the Nasmyth platform affecting the interface with HARMONI.
Non-condensable gas effects in ROSA/AP600 small-break LOCA experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Hideo; Kukita, Yutaka; Shaw, R.A.
1996-06-01
Integral experiments simulating the postulated accidents in the Westinghouse AP600 reactor have been conducted using the ROSA-V Large Scale Test Facility (LSTF). These experiments allowed the N{sub 2} gas for the pressurization of accumulator tanks to enter the primary system after the depletion of the tank water inventory. The gas migrated into the Passive Residual Heat Removal (PRHR) system heat exchanger tubes and into the Core Makeup Tanks (CMTs), and influenced the performance of these components which are unique to the AP600 reactor. Specifically, the PRHR was disabled soon after the N{sub 2} gas discharge in most of the experiments,more » although the core decay power was removed well by the steam discharge through the Automatic Depressurization System (ADS) after the PRHR was disabled. The N{sub 2} gas ingress into the CMTs occurred in the experiments with relatively large breaks ({ge} 2 inch in equivalent diameter), and contributed to a smooth draindown of the CMT inventory into the primary system.« less
Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng
2016-07-04
Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The role of comorbid psychiatric conditions in health status in epilepsy.
Zeber, John E; Copeland, Laurel A; Amuan, Megan; Cramer, Joyce A; Pugh, Mary Jo V
2007-06-01
Comorbid psychiatric conditions are highly prevalent in patients with epilepsy, yet the long-term implications across multiple mental health conditions are poorly understood. We examined the association between psychiatric diagnoses and self-reported health status in veterans with epilepsy. ANCOVA models were used to derive adjusted SF-36V scores for individuals with epilepsy alone (N=7379) or with additional psychiatric conditions (N=6320): depression, schizophrenia, bipolar disorder, anxiety disorder, substance abuse, and posttraumatic stress disorder (PTSD). Compared with patients with epilepsy alone, scores of veterans with comorbid psychiatric diagnoses averaged 21% lower across all domains. Role Limitation scales exhibited the greatest decrement across domains. A PTSD diagnosis consistently corresponded to lower scores, followed by depression. Schizophrenia contributed the least detriment to perceived health status. Comorbid psychiatric conditions impart significant emotional and physical burdens, requiring timely recognition and treatment of these disorders. Patients with epilepsy are uniquely at risk for high physical-psychiatric comorbidity profiles, with concomitant losses in perceived health status.
Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour
Vogel, David; Nicolis, Stamatios C.; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J. T.; Dussutour, Audrey
2015-01-01
Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: ‘slow–regular–social’, ‘fast–regular–social’ and ‘fast–irregular–asocial’. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. PMID:26609088
A computational study on outliers in world music.
Panteli, Maria; Benetos, Emmanouil; Dixon, Simon
2017-01-01
The comparative analysis of world music cultures has been the focus of several ethnomusicological studies in the last century. With the advances of Music Information Retrieval and the increased accessibility of sound archives, large-scale analysis of world music with computational tools is today feasible. We investigate music similarity in a corpus of 8200 recordings of folk and traditional music from 137 countries around the world. In particular, we aim to identify music recordings that are most distinct compared to the rest of our corpus. We refer to these recordings as 'outliers'. We use signal processing tools to extract music information from audio recordings, data mining to quantify similarity and detect outliers, and spatial statistics to account for geographical correlation. Our findings suggest that Botswana is the country with the most distinct recordings in the corpus and China is the country with the most distinct recordings when considering spatial correlation. Our analysis includes a comparison of musical attributes and styles that contribute to the 'uniqueness' of the music of each country.
``Recycling'' Geophysics: Monitoring and Isotopic Analysis of Engineered Biological Systems
NASA Astrophysics Data System (ADS)
Doherty, R.; Singh, K. P.; Ogle, N.; Ntarlagiannis, D.
2010-12-01
The emerging sub discipline of biogeophysics has provoked debate on the mechanisms of microbial processes that may contribute to geophysical signatures. At field scales geophysical signatures are often non unique due to the many parameters (physical, chemical, and biological) that are involved. It may be easier to apply geophysical techniques such as electrodic potential (EP), self potential (SP) and induced polarization (IP) to engineered biological systems where there is a degree of control over the design of the physical and chemical domain. Here we present results of a column experiment that was designed to anaerobically biodegrade dissolved organic matter in landfill leachate. The column utilises a recycled porous media (concrete) to help sequester organic carbon. Electrodic potential, self potential and induced polarisation are used in conjunction with chemical and isotopic techniques to monitor the effectiveness of this approach. Preliminary carbon and oxygen isotopic analysis on concrete from the column in contact with leachate show isotopic enrichment suggesting abiotic precipitation of carbonates.
Measurement of Neutrino-Induced Coherent Pion Production and the Diffractive Background in MINERvA
NASA Astrophysics Data System (ADS)
Gomez, Alicia; Minerva Collaboration
2015-04-01
Neutrino-induced coherent charged pion production is a unique neutrino-nucleus scattering process in which a muon and pion are produced while the nucleus is left in its ground state. The MINERvA experiment has made a model-independent differential cross section measurement of this process on carbon by selecting events with a muon and a pion, no evidence of nuclear break-up, and small momentum transfer to the nucleus | t | . A similar process which is a background to the measurement on carbon is diffractive pion production off the free protons in MINERvA's scintillator. This process is not modeled in the neutrino event generator GENIE. At low | t | these events have a similar final state to the aforementioned process. A study to quantify this diffractive event contribution to the background is done by emulating these diffractive events by reweighting all other GENIE-generated background events to the predicted | t | distribution of diffractive events, and then scaling to the diffractive cross section.
The utility of the diagnosis of pedophilia: a comparison of various classification procedures.
Kingston, Drew A; Firestone, Philip; Moulden, Heather M; Bradford, John M
2007-06-01
This study examined the utility of the diagnosis of pedophilia in a sample of extra-familial child molesters assessed at a university teaching hospital between 1982 and 1992. Pedophilia was defined in one of four ways: (1) DSM diagnosis made by a psychiatrist; (2) deviant phallometric profile; (3) DSM diagnosis and a deviant phallometric profile; and, (4) high scores based on the Screening Scale for Pedophilic Interest (Seto & Lalumière, 2001). Demographic data, psychological tests, and offence history were obtained and group differences were analyzed along with the ability of certain variables to contribute uniquely to the classification of pedophilia. Results indicated that few significant differences existed on psychological measures between pedophilic and nonpedophilic extra-familial child molesters regardless of the classification system employed. Finally, results indicated that the procedures used to define pedophilia were not significantly related to one another. Results are discussed in terms of the utility of the diagnosis of pedophilia.
Lindhiem, Oliver; Shaffer, Anne; Kolko, David J
2014-01-01
In the parent intervention outcome literatures, discipline practices are generally quantified as absolute frequencies or, less commonly, as relative frequencies. These differences in methodology warrant direct comparison as they have critical implications for study results and conclusions among treatments targeted at reducing parental aggression and harsh discipline. In this study, we directly compared the absolute frequency method and the relative frequency method for quantifying physically aggressive, psychologically aggressive, and nonaggressive discipline practices. Longitudinal data over a 3-year period came from an existing data set of a clinical trial examining the effectiveness of a psychosocial treatment in reducing parental physical and psychological aggression and improving child behavior (N = 139). Discipline practices (aggressive and nonaggressive) were assessed using the Conflict Tactics Scale. The two methods yielded different patterns of results, particularly for nonaggressive discipline strategies. We suggest that each method makes its own unique contribution to a more complete understanding of the association between parental aggression and intervention effects.
NASA Technical Reports Server (NTRS)
Mcvey, Sally
1991-01-01
Earth remote sensing is a uniquely valuable tool for large-scale resource management, a task whose importance will likely increase world-wide through the foreseeable future. NASA research and engineering have virtually created the existing U.S. system, and will continue to push the frontiers, primarily through Earth Observing System (EOS) instruments, research, and data and information systems. It is the researchers' view that the near-term health of remote sensing applications also deserves attention; it seems important not to abandon the system or its clients. The researchers suggest that, like its Landsat predecessor, a successful Earth Observing System program is likely to reinforce pressure to 'manage' natural resources, and consequently, to create more pressure for Earth Observations Commercialization (EOCAP) type applications. The current applications programs, though small, are valuable because of their technical and commercial results, and also because they support a community whose contributions will increase along with our ability to observe the Earth from space.
Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.
Vogel, David; Nicolis, Stamatios C; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J T; Dussutour, Audrey
2015-11-22
Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: 'slow-regular-social', 'fast-regular-social' and 'fast-irregular-asocial'. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. © 2015 The Author(s).
Zhang, Zhenhua; Zhang, Junjun; Kwong, Gordon; Li, Ji; Fan, Zhiqiang; Deng, Xiaoqing; Tang, Guiping
2013-01-01
All-carbon sp-sp2 hybrid structures comprised of a zigzag-edged trigonal graphene (ZTG)and carbon chains are proposed and constructed as nanojunctions. It has been found that such simple hybrid structures possess very intriguing propertiesapp:addword:intriguing. The high-performance rectifying behaviors similar to macroscopic p-n junction diodes, such as a nearly linear positive-bias I-V curve (metallic behavior), a very small leakage current under negative bias (insulating behavior), a rather low threshold voltage, and a large bias region contributed to a rectification, can be predicted. And also, a transistor can be built by such a hybrid structure, which can show an extremely high current amplification. This is because a sp-hybrid carbon chain has a special electronic structure which can limit the electronic resonant tunneling of the ZTG to a unique and favorable situation. These results suggest that these hybrid structures might promise importantly potential applications for developing nano-scale integrated circuits. PMID:23999318
Neutron Spin Resonance in the 112-Type Iron-Based Superconductor
NASA Astrophysics Data System (ADS)
Xie, Tao; Gong, Dongliang; Ghosh, Haranath; Ghosh, Abyay; Soda, Minoru; Masuda, Takatsugu; Itoh, Shinichi; Bourdarot, Frédéric; Regnault, Louis-Pierre; Danilkin, Sergey; Li, Shiliang; Luo, Huiqian
2018-03-01
We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca0.82La0.18Fe0.96Ni0.04As2 with bulk superconductivity below Tc=22 K . A two-dimensional spin resonance mode is found around E =11 meV , where the resonance energy is almost temperature independent and linearly scales with Tc along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4 p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the kz dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.
Structure-property relationships of a biological mesocrystal in the adult sea urchin spine.
Seto, Jong; Ma, Yurong; Davis, Sean A; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut
2012-03-06
Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature's demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials.
BMSW - Fast Solar Wind Monitor - three years in orbit: Status and prospects
NASA Astrophysics Data System (ADS)
Prech, Lubomir; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana; Vaverka, Jakub; Cermak, Ivo; Chesalin, Lev S.; Gavrilova, Elena
Fast Solar Wind Monitor BMSW is an instrument flown as a part of the PLASMA-F complex onboard the Russian Spektr-R radioastronomical spacecraft. The spacecraft was launched on July 18, 2011. During the COSPAR-2014 Assembly meeting, the instrument is supposed to celebrate three successful years in operation. With a set of 6 Faraday’s cups, the instrument has a unique time resolution --- 0.5--1 s for a full energy spectrum (96 energy steps) and 31~ms for basic solar wind plasma parameters directing the instrument to study of fast solar wind discontinuities including interplanetary shocks, a fast variability of proton and alpha particle parameters, and to study of solar wind turbulence up to the ion kinetic scales. The measurement technique, its implementation, and ground data processing are discussed in the contribution. The performance of the instrument design and electronics are presented. We discuss heritage of this instrument utilized in design of future instruments being prepared for the further projects as Luna-Glob.
On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity
Huang, Qing-Guo; Ribeiro, Raquel H.; Xing, Yu-Hang; ...
2015-07-03
In de Rham–Gabadadze–Tolley (dRGT) massive gravity and bi-gravity, a non-minimal matter coupling involving both metrics generically reintroduces the Boulware–Deser (BD) ghost. A non-minimal matter coupling via a simple, yet specific composite metric has been proposed, which eliminates the BD ghost below the strong coupling scale. Working explicitly in the metric formulation and for arbitrary spacetime dimensions, we show that this composite metric is the unique consistent non-minimal matter coupling below the strong coupling scale, which emerges out of two diagnostics, namely, the absence of Ostrogradski ghosts in the decoupling limit and the absence of the BD ghost from matter quantummore » loop corrections.« less
Food addiction associations with psychological distress among people with type 2 diabetes.
Raymond, Karren-Lee; Lovell, Geoff P
2016-01-01
To assess the relationship between a food addiction (FA) model and psychological distress among a type 2 diabetes (t2d) sample. A cross-sectional study of 334 participants with t2d diagnoses were invited to complete a web-based questionnaire. We measured variables of psychological distress implementing the Depression Anxiety and Stress Scale (DASS-21), the Yale Food Addiction Scale (YFAS), and other factors associated with t2d. In our study a novel finding highlighted people with t2d meeting the FA criterion had significantly higher depression, anxiety, and stress scores as compared to participants who did not meet the FA criterion. Moreover, FA symptomology explained 35% of the unique variance in depression scores, 34% of the unique variance in anxiety scores, and 34% of the unique variance in stress scores, while surprisingly, BMI explained less than 1% of the unique variance in scores. We identified that psychological distress among people with t2d was associated with the FA model, apparently more so than BMI, thereby indicating further research being necessary lending support for future research in this realm. Moreover the FA model may be beneficial when addressing treatment approaches for psychological distress among people with t2d. Copyright © 2016 Elsevier Inc. All rights reserved.
Cabrera, Esther; Zabalegui, Adelaida; Blanco, Ignacio
2011-01-15
The worry for falling ill has been described as a key element in the change of preventive attitudes. Levels of cancer worry not well fitted have been associated with inadequate adherence to preventive strategies. There is not a Spanish validated scale to evaluate the degree of worry for the cancer in our population. The aim of the present study was to perform the cross cultural adaptation and validation of the Cancer Worry Scale described by Lerman. A translation, re-translation of the Cancer Worry Scale to Spanish was done. Validation of the Spanish scale was performed by means of the factorial analysis of principal components with the rotation varimax test in a sample of 200 healthy women with family history of breast cancer. The Escala de Preocupación por el Cáncer (EPC) is the Spanish version of the Cancer Worry Scale and it contains 6 items with a total value ranging from 6 (minimal worry) to 24 (maximum worry). The analysis of content validity demonstrated that the EPC is conceptually equivalent to the original scale. The factorial analysis showed a unique factor that explains 53.07% of the variance confirming the unique dimension. The EPC presented good reliability test - re-test with an Intraclass Correlation Coefficient of 0.777. The Cronbach's alpha was 0.835 for the complete of the scale. The EPC is a validated Spanish scale to measure the cancer worry in healthy individuals, which shows a correct content validity and reliability. Copyright © 2010 Elsevier España, S.L. All rights reserved.
Michael Tomasello: Award for Distinguished Scientific Contributions.
2015-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2015 award winners is Michael Tomasello, who received this award for "outstanding empirical and theoretical contributions to understanding what makes the human mind unique. Michael Tomasello's pioneering research on the origins of social cognition has led to revolutionary insights in both developmental psychology and primate cognition." Tomasello's award citation, biography, and a selected bibliography are presented here. (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Heslop, E. E.; Mourre, B.; Juza, M.; Troupin, C.; Escudier, R.; Torner, M.; Tintore, J.
2016-02-01
Quasi-continuous glider observations over 5 years have uniquely characterised a high frequency variability in the circulation through the Ibiza Channel, an important `choke' point in the Western Mediterranean Sea. This `choke' point governs the basin/sub-basin scale circulation and the north/south exchanges of different water masses. The resulting multi-scale variability impacts the regional shelf and open ocean ecosystems, including the spawning grounds of Atlantic bluefin tuna. Through the unique glider record we show the relevance of the weekly/mesoscale variability, which is of same order as the previously established seasonal and inter-annual variability. To understand the drivers of this variability we combine the glider data with numerical simulations (WMOP) and altimetry. Two key drivers are identified; extreme winter events, which cause the formation of a cold winter mode water (Winter Intermediate Water) in the shelf areas to the north of the Ibiza Channel, and mesoscale activity, which to the north produce channel `blocking' eddies and to the south intermittent and vigorous flows of fresher `Atlantic' waters through the Ibiza Channel. Results from the 2 km resolution WMOP are compared with the high-resolution (2 - 3 km.) glider data, giving insight into model validation across different scales, for both circulation and water masses. There is an emerging consensus that gliders can uniquely access critical time and length scales and in this study gliders complement existing satellite measurements and models, while opening up new capabilities for multidisciplinary, autonomous and high-resolution ocean observation.
ERIC Educational Resources Information Center
Rutherford, Teomara; Kibrick, Melissa; Burchinal, Margaret; Richland, Lindsey; Conley, AnneMarie; Osborne, Keara; Schneider, Stephanie; Duran, Lauren; Coulson, Andrew; Antenore, Fran; Daniels, Abby; Martinez, Michael E.
2010-01-01
This paper describes the background, methodology, preliminary findings, and anticipated future directions of a large-scale multi-year randomized field experiment addressing the efficacy of ST Math [Spatial-Temporal Math], a fully-developed math curriculum that uses interactive animated software. ST Math's unique approach minimizes the use of…
ERIC Educational Resources Information Center
Russell, Keith; Gillis, Harold L.
2017-01-01
Adventure therapy (AT) is defined as "the prescriptive use of adventure experiences provided by mental health professionals, often conducted in natural settings, that kinesthetically engage clients on cognitive, affective, and behavioral levels". Despite an increase in research and evaluation in recent years examining the relative…
Use of Vineland Adaptive Behavior Scales-II in Children with Autism--An Indian Experience
ERIC Educational Resources Information Center
Manohari, S. M.; Raman, Vijaya; Ashok, M. V.
2013-01-01
The Vineland Adaptive Behavior Scales-II Edition 2005 (Vineland-II) is useful in assessing abilities in autism spectrum disorder, where an accurate assessment of intelligence using standardized tools is difficult both due to the unique social and communication difficulties that these children present with and the behavioral issues that occur as…
USDA-ARS?s Scientific Manuscript database
Radiance data recorded by remote sensors function as a unique source for monitoring the terrestrial biosphere and vegetation dynamics at a range of spatial and temporal scales. A key challenge is to relate the remote sensing signal to critical variables describing land surface vegetation canopies su...
Unique environmental effects on physical activity participation: a twin study.
Duncan, Glen E; Goldberg, Jack; Noonan, Carolyn; Moudon, Anne Vernez; Hurvitz, Philip; Buchwald, Dedra
2008-04-16
The health benefits of regular physical activity are well established. However, the relative contribution of heritable and environmental factors to physical activity participation remains controversial. Using a cut-point of 60 minutes of total activity per week, data from the GenomEUtwin project revealed consistent genetic influence on physical activity participation in 37,051 twin pairs from seven countries. We hypothesized that the heritability of physical activity participation would be attenuated using the CDC/ACSM recommended minimum threshold of 150 minutes of moderate intensity activity per week. Data were obtained from 1,389 twin pairs from the community-based University of Washington Twin Registry. Twin similarity in physical activity participation using both cut-points was analyzed using tetrachoric correlations and structural equation modeling in all same-sex pairs. Correlations were higher in monozygotic (r(MZ) = 0.43, 95% CI = 0.33-0.54) than dizygotic pairs (r(DZ) = 0.30, 95% CI = 0.12-0.47) using the 60 minute cut-point. However, differences were attenuated using the 150 minute standard (r(MZ) = 0.30, 95% CI = 0.20-0.40; r(DZ) = 0.25, 95% CI = 0.07-0.42). Using the lower cut-point, the best fitting model of twin resemblance only included additive genetics and unique environment, with a heritability of 45%. In contrast, using the higher threshold, the best fitting model included the common and unique environment, with the unique environment contributing 72% of the variance. Unique environment factors provide the strongest influence on physical activity participation at levels recommended for health benefits.
Early childhood precursors and adolescent sequelae of grade school peer rejection and victimization.
Bierman, Karen L; Kalvin, Carla B; Heinrichs, Brenda S
2015-01-01
This study examined the early childhood precursors and adolescent outcomes associated with grade school peer rejection and victimization among children oversampled for aggressive-disruptive behaviors. A central goal was to better understand the common and unique developmental correlates associated with these two types of peer adversity. There were 754 participants (46% African American, 50% European American, 4% other; 58% male; average age=5.65 at kindergarten entry) followed into seventh grade. Six waves of data were included in structural models focused on three developmental periods. Parents and teachers rated aggressive behavior, emotion dysregulation, and internalizing problems in kindergarten and Grade 1 (Waves 1-2); peer sociometric nominations tracked "least liked" and victimization in Grades 2, 3, and 4 (Waves 3-5); and youth reported on social problems, depressed mood, school adjustment difficulties, and delinquent activities in early adolescence (Grade 7, Wave 6). Structural models revealed that early aggression and emotion dysregulation (but not internalizing behavior) made unique contributions to grade school peer rejection; only emotion dysregulation made unique contributions to grade school victimization. Early internalizing problems and grade school victimization uniquely predicted adolescent social problems and depressed mood. Early aggression and grade school peer rejection uniquely predicted adolescent school adjustment difficulties and delinquent activities. Aggression and emotion dysregulation at school entry increased risk for peer rejection and victimization, and these two types of peer adversity had distinct as well as shared risk and adjustment correlates. Results suggest that the emotional functioning and peer experiences of aggressive-disruptive children deserve further attention in developmental and clinical research.
Early Childhood Precursors and Adolescent Sequelae of Gradeschool Peer Rejection and Victimization
Bierman, Karen L.; Kalvin, Carla B.; Heinrichs, Brenda S.
2014-01-01
Objective This study examined the early childhood precursors and adolescent outcomes associated with gradeschool peer rejection and victimization among children oversampled for aggressive-disruptive behaviors. A central goal was to better understand the common and unique developmental correlates associated with these two types of peer adversity. Method 754 participants (46% African American, 50% European American, 4% other; 58% male; average age 5.65 at kindergarten entry) were followed into seventh grade. Six waves of data were included in structural models focused on three developmental periods. Parents and teachers rated aggressive behavior, emotion dysregulation, and internalizing problems in kindergarten and grade 1 (waves 1–2); peer sociometric nominations tracked “least liked” and victimization in grades 2, 3, and 4 (waves 3–5); and youth reported on social problems, depressed mood, school adjustment difficulties, and delinquent activities in early adolescence (grade 7, wave 6). Results Structural models revealed that early aggression and emotion dysregulation (but not internalizing behavior) made unique contributions to gradeschool peer rejection; only emotion dysregulation made unique contributions to gradeschool victimization. Early internalizing problems and gradeschool victimization uniquely predicted adolescent social problems and depressed mood. Early aggression and gradeschool peer rejection uniquely predicted adolescent school adjustment difficulties and delinquent activities. Conclusions Aggression and emotion dysregulation at school entry increased risk for peer rejection and victimization, and these two types of peer adversity had distinct, as well as shared risk and adjustment correlates. Results suggest that the emotional functioning and peer experiences of aggressive-disruptive children deserve further attention in developmental and clinical research. PMID:24527989
Li, Shuxia; Kyvik, Kirsten Ohm; Pang, Zengchang; Zhang, Dongfeng; Duan, Haiping; Tan, Qihua; Hjelmborg, Jacob; Kruse, Torben; Dalgård, Christine
2016-01-01
Objective The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders and disorder-related modifications. We analyzed data from longitudinal twin studies on multiple metabolic phenotypes in Danish and Chinese twins representing two populations of distinct ethnic, cultural, social-economic backgrounds and geographical environments. Materials and Methods The study covered a relatively large sample of 502 pairs of Danish adult twins followed up for a long period of 12 years with a mean age at intake of 38 years (range: 18–65) and a total of 181 Chinese adult twin pairs traced for about 7 years with a mean baseline age of 39.5 years (range: 23–64). The classical twin models were fitted to the longitudinal change in each phenotype (Δphenotype) to estimate the genetic and environmental contributions to the variation in Δphenotype. Results Moderate to high contributions by the unique environment were estimated for all phenotypes in both Danish (from 0.51 for low density lipoprotein cholesterol up to 0.72 for triglycerides) and Chinese (from 0.41 for triglycerides up to 0.73 for diastolic blood pressure) twins; low to moderate genetic components were estimated for long-term change in most of the phenotypes in Danish twins except for triglycerides and hip circumference. Compared with Danish twins, the Chinese twins tended to have higher genetic control over the longitudinal changes in lipids (except high density lipoprotein cholesterol) and glucose, higher unique environmental contribution to blood pressure but no genetic contribution to longitudinal change in body mass traits. Conclusion Our results emphasize the major contribution of unique environment to the observed intra-individual variation in all metabolic phenotypes in both samples, and meanwhile reveal differential patterns of genetic and common environmental regulation on changes over time in metabolic phenotypes across the two samples. PMID:26862898
Bartkowiak, Barbara A; Safford, Lindsey A; Stratman, Erik J
2014-01-01
Identifying educational needs related to professional practice gaps can be a complex process for continuing medical education (CME) committees and for physicians who submit activity applications. Medical librarians possess unique skills that may be useful for identifying practice gaps relevant to CME committees. We assessed this assumption by assessing a medical librarian's contributions to practice gap identification for the Marshfield Clinic's CME Committee. We reviewed all locally relevant, locally actionable practice gaps identified annually by various stakeholders and presented to our CME Committee from 2010 to 2013. Total numbers of practice gaps identified, total categorized as actionable, and numbers of subsequent activities resulting from these gaps were calculated for each year. Medical librarian totals were compared to those of other CME committee stakeholders to determine the relative contribution. The medical librarian identified unique, actionable published practice gaps that directly contributed to CME activity planning. For each study year, contributions by the medical librarian grew, from 0 of 27 actionable gaps validated by CME Committee in 2010 to 49 of 108 (45.4%) in 2013. With the librarian's assistance, the number of valid practice gaps submitted between 2010 and 2013 by stakeholders climbed from 23 for 155 activities (14.8%) to 133 for 157 activities (84.7%). Medical librarians can provide a valuable service to CME committees by identifying valid professional practice gaps that inform decisions about educational activities aimed at improving clinical practice. Medical librarians bring into deliberations unique information, including national health policy priorities, practice gaps found in the literature, and point-of-care search engine statistics. © 2014 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.
Feng, Huihui
2016-09-07
Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and -14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed -40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate.
Long-Term Variability of AGN at Hard X-Rays
NASA Technical Reports Server (NTRS)
Soldi, S.; Beckmann, V.; Baumgartner W. H.; Ponti, G.; Shrader, C. R.; Lubinski, P.; Krimm, H. A.; Mattana, F.; Tueller, J.
2013-01-01
Variability at all observed wavelengths is a distinctive property of active galactic nuclei (AGN). Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Characterizing the intrinsic hard X-ray variability of a large AGN sample and comparing it to the results obtained at lower X-ray energies can significantly contribute to our understanding of the mechanisms underlying the high-energy radiation. Methods. Swift/BAT provides us with the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. As a continuation of an early work on the first 9 months of BAT data, we study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80 of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10 larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).
Technique-Dependent Errors in the Satellite Laser Ranging Contributions to the ITRF
NASA Astrophysics Data System (ADS)
Pavlis, Erricos C.; Kuzmicz-Cieslak, Magdalena; König, Daniel
2013-04-01
Over the past decade Satellite Laser Ranging (SLR) has focused on its unique strength of providing accurate observations of the origin and scale of the International Terrestrial Reference Frame (ITRF). The origin of the ITRF is defined to coincide with the center of mass of the Earth system (geocenter). SLR realizes this origin as the focal point of the tracked satellite orbits, and being the only (nominally) unbiased ranging technique, it provides the best realization for it. The goal of GGOS is to provide an ITRF with accuracy at epoch of 1 mm or better and a stability of 0.1 mm/y. In order to meet this stringent goal, Space Geodesy is taking a two-pronged approach: modernizing the engineering components (ground and space segments), and revising the modeling standards to take advantage of recent improvements in many areas of geophysical modeling for system Earth components. As we gain improved understanding of the Earth system components, space geodesy adjusts its underlying modeling of the system to better and more completely describe it. Similarly, from the engineering side we examine the observational process for improvement of the calibration and reduction procedures that will enhance the accuracy of the individual observations thence the final SLR products. Two areas that are currently under scrutiny are (a) the station-dependent and tracking-mode-dependent correction of the observations for the "center-of-mass-offset" of each satellite target, and (b) the station- and pass-dependent correction for the calibrated delay that refers each measurement to the nominal "zero" of the instrument. The former affects primarily the accuracy of the scale definition, while the latter affects both, the scale and the origin. However, because of the non-uniform data volume and non-symmetric geographic locations of the SLR stations, the major impact of the latter is on the definition of the origin. The ILRS is currently investigating the quality of models available for the correction of the center-of-mass offset for the primary targets contributing to the ITRF and the impact of their application on the final products, which we will discuss with examples. The second source of error is more complex, primarily due to the fact that almost each of the current stations is a unique case and quality of the applied delays must be assessed on a case-by-case basis. We will examine typical series of these corrections for some of the most important sites of the network. The current practice in SLR contribution to ITRF is to provide a "snapshot" ITRF realization from the analysis of arcs spanning one week, selected as a compromise between the requirement for an accurate enough realization of the site positions and a short enough interval to minimize biasing the estimate from mass redistributions over that interval. A comparison of these weekly realizations to the static definition of the ITRF origin results in the so-called "geocenter variation" time series. Fitting a model for the dominant frequencies in the series, allows one to extend this model for future and past time-intervals not covered by the observations. We will present and compare geocenter variations series based on different modeling underlying our SLR analysis, using the ITRF2008 as the reference.
Large-Scale Wind Turbine Testing in the NASA 24.4m (80) by 36.6m(120) Wind Tunnel
NASA Technical Reports Server (NTRS)
Zell, Peter T.; Imprexia, Cliff (Technical Monitor)
2000-01-01
The 80- by 120-Foot Wind Tunnel at NASA Ames Research Center in California provides a unique capability to test large-scale wind turbines under controlled conditions. This special capability is now available for domestic and foreign entities wishing to test large-scale wind turbines. The presentation will focus on facility capabilities to perform wind turbine tests and typical research objectives for this type of testing.
Convective scale weather analysis and forecasting
NASA Technical Reports Server (NTRS)
Purdom, J. F. W.
1984-01-01
How satellite data can be used to improve insight into the mesoscale behavior of the atmosphere is demonstrated with emphasis on the GOES-VAS sounding and image data. This geostationary satellite has the unique ability to observe frequently the atmosphere (sounders) and its cloud cover (visible and infrared) from the synoptic scale down to the cloud scale. These uniformly calibrated data sets can be combined with conventional data to reveal many of the features important in mesoscale weather development and evolution.
A Life Events Scale for Armed Forces personnel
Chaudhury, Suprakash; Srivastava, Kalpana; Raju, M.S.V. Kama; Salujha, S.K.
2006-01-01
Background: Armed Forces personnel are routinely exposed to a number of unique stressful life events. None of the available scales are relevant to service personnel. Aim: To construct a scale to measure life events in service personnel. Methods: In the first stage of the study open-ended questions along with items generated by the expert group by consensus method were administered to 50 soldiers. During the second stage a scale comprising 59 items and open-ended questions was administered to 165 service personnel. The final scale of 52 items was administered to 200 service personnel in group setting. Weightage was assigned on a 0 to 100 range. For normative study the Armed Forces Medical College Life Events Scale (AFMC LES) was administered to 1200 Army, 100 Air Force and 100 Navy personnel. Results: Service personnel experience an average of 4 life events in past one year and 13 events in a life-time. On an average service personnel experience 115 life change unit scores in past one year and 577 life change unit scores in life-time on the AFMC LES. The scale has concurrent validity when compared with the Presumptive Stressful Life Events Scale (PSLES). There is internal consistency in the scale with the routine items being rated very low. There is a pattern of uniformity with the civilian counterparts along with differences in the items specific to service personnel. Conclusions: The AFMC LES includes the unique stresses of service personnel that are not included in any life events scale available in India or in the west and should be used to assess stressful life events in service personnel. PMID:20844647
NASA Astrophysics Data System (ADS)
Kim, D. Y.; Marinelli, R. L.; Heidelberg, K., IV
2014-12-01
Studies have shown that undergraduate participation in research opportunities strengthens the retention of students in STEM fields. Increasing students' confidence levels in their scientific abilities, aiding in the development of their scientific identity, and strengthening their sense of belonging to a scientific community have been cited as important contributing factors. Research field stations offer unique advantages that amplify these benefits by challenging students to plan and work in the field, enhancing networking opportunities with multi-disciplinary professionals from numerous institutions and hierarchical levels, and creating a stronger sense of belonging and comradery within a science community. The USC Wrigley Institute for Environmental Studies' (WIES) Research Experiences for Undergraduates (REU) program is an 8-week program that begins on the main USC campus in Los Angeles and moves to a marine field station on Catalina Island during weeks 2-7, before returning to the mainland to complete the last week of the program. This unique model provides REU students with an opportunity to become integrated into faculty mentors' labs on the main campus, while exposing them to life as a researcher at a field station, both of which contribute significantly to the students' development as a scientist. Here, we present the WIES REU model and include a discussion of benefits and challenges to this unique infrastructure.
Spiders spinning electrically charged nano-fibres
Kronenberger, Katrin; Vollrath, Fritz
2015-01-01
Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland–duct–spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders. PMID:25631231
Spiders spinning electrically charged nano-fibres.
Kronenberger, Katrin; Vollrath, Fritz
2015-01-01
Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland-duct-spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Funk, Natasha; Vera, Marc; Szewciw, Lawrence J; Barthelat, Francois; Stoykovich, Mark P; Vernerey, Franck J
2015-03-18
The scaled skin of fish is a high-performance natural armor that represents a source of inspiration for novel engineering designs. In this paper, we present a biomimetic fish skin material, fabricated with a design and components that are simple, that achieves many of the advantageous attributes of natural materials, including the unique combination of flexibility and mechanical robustness. The bioinspired fish skin material is designed to replicate the structural, mechanical, and functional aspects of a natural teleost fish skin comprised of leptoid-like scales, similar to that of the striped red mullet Mullus surmuletus. The man-made fish skin material consists of a low-modulus elastic mesh or "dermis" layer that holds rigid, plastic scales. The mechanics of the synthetic material is characterized under in-plane, bending, and indentation modes of deformation and is successfully described by theoretical deformation models that have been developed. This combined experimental and modeling approach elucidates the critical mechanisms by which the composite material achieves its unique properties and provides design rules that allow for the engineering of scaled skins. Such artificial scaled skins that are flexible, lightweight, transparent, and robust under mechanical deformation may thus have potential as thin protective coatings for soft materials.
D-term contributions and CEDM constraints in E6 × SU(2)F × U(1)A SUSY GUT model
NASA Astrophysics Data System (ADS)
Shigekami, Yoshihiro
2017-11-01
We focus on E6 × SU(2)F × U(1)A supersymmetric (SUSY) grand unified theory (GUT) model. In this model, realistic Yukawa hierarchies and mixings are realized by introducing all allowed interactions with 𝓞(1) coefficients. Moreover, we can take stop mass is smaller than the other sfermion masses. This type of spectrum called by natural SUSY type sfermion mass spectrum can suppress the SUSY contributions to flavor changing neutral current (FCNC) and stabilize weak scale at the same time. However, light stop predicts large up quark CEDM and stop contributions are not decoupled. Since there is Kobayashi-Maskawa phase, stop contributions to the up quark CEDM is severely constrained even if all SUSY breaking parameters and Higgsino mass parameter μ are real. In this model, real up Yukawa couplings are realized at the GUT scale because of spontaneous CP violation. Therefore CEDM bounds are satisfied, although up Yukawa couplings are complex at the SUSY scale through the renormalization equation group effects. We calculated the CEDMs and found that EDM constraints can be satisfied even if stop mass is 𝓞(1) TeV. In addition, we investigate the size of D-terms in this model. Since these D-term contributions is flavor dependent, the degeneracy of sfermion mass spectrum is destroyed and the size of D-term is strongly constrained by FCNCs when SUSY breaking scale is the weak scale. However, SUSY breaking scale is larger than 1 TeV in order to obtain 125 GeV Higgs mass, and therefore sizable D-term contribution is allowed. Furthermore, we obtained the non-trivial prediction for the difference of squared sfermion mass.
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2018-03-01
Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.
Buras, Andrzej J.; Gérard, Jean -Marc; Bardeen, William A.
2014-05-20
We review and update our results for K → π π decays and K⁰- K¯⁰ mixing obtained by us in the 1980s within an approach based on the dual representation of QCD as a theory of weakly interacting mesons for large N colours. In our analytic approach the dynamics behind the enhancement of ReA 0 and suppression of ReA 2, the so-called ΔI = 1/2 rule for K → π π decays, has a simple structure: the usual octet enhancement through quark-gluon renormalization group evolution down to the scales O(1 GeV) is continued as a meson evolution down to zeromore » momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark-gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark-gluon evolution. The recent results on ReA 2 and ReA 0 from the RBC-UKQC collaboration give support for our approach. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. At NLO in 1/N we obtain R = ReA 0/ReA 2= 16.0±1.5 which amounts to an order of magnitude enhancement over the strict large N limit value √2. QCD penguins contribute at 15% level to this result. We also find B^ K = 0.73± 0.02, with the smallness of 1/N corrections to the large N value B^ K = 3/4 resulting within our approach from an approximate cancellation between pseudoscalar and vector meson one-loop contributions. We summarize the status of ΔM K in this approach.« less
ERIC Educational Resources Information Center
Boerner, Kathrin; Jopp, Daniela
2007-01-01
This article focuses on the common and unique contributions of three major life-span theories in addressing improvement/maintenance and reorientation, which represent central processes of coping with major life change and loss. For this purpose, we review and compare the dual-process model of assimilative and accommodative coping, the model of…
Chen, Hui-Ya; Tang, Pei-Fang
2016-03-01
Dual-task Timed "Up & Go" (TUG) tests are likely to have applications different from those of a single-task TUG test and may have different contributing factors. The purpose of this study was to compare factors contributing to performance on single- and dual-task TUG tests. This investigation was a cross-sectional study. Sixty-four adults who were more than 50 years of age and dwelled in the community were recruited. Interviews and physical examinations were performed to identify potential contributors to TUG test performance. The time to complete the single-task TUG test (TUGsingle) or the dual-task TUG test, which consisted of completing the TUG test while performing a serial subtraction task (TUGcognitive) or while carrying water (TUGmanual), was measured. Age, hip extensor strength, walking speed, general mental function, and Stroop scores for word and color were significantly associated with performance on all TUG tests. Hierarchical multiple regression models, without the input of walking speed, revealed different independent factors contributing to TUGsingle performance (Mini-Mental Status Examination score, β=-0.32), TUGmanual performance (age, β=0.35), and TUGcognitive performance (Stroop word score, β=-0.40; Mini-Mental Status Examination score, β=-0.31). At least 40% of the variance in the performance on the 3 TUG tests was not explained by common clinical measures, even when the factor of walking speed was considered. However, this study successfully identified some important factors contributing to performance on different TUG tests, and other studies have reported similar findings for single-task TUG test and dual-task gait performance. Although the TUGsingle and the TUGcognitive shared general mental function as a common factor, the TUGmanual was uniquely influenced by age and the TUGcognitive was uniquely influenced by focused attention. These results suggest that both common and unique factors contribute to performance on single- and dual-task TUG tests and suggest important applications of the combined use of the 3 TUG tests. © 2016 American Physical Therapy Association.
NASA Astrophysics Data System (ADS)
Moradi, A.
2015-12-01
To properly model soil thermal performance in unsaturated porous media, for applications such as SBTES systems, knowledge of both soil hydraulic and thermal properties and how they change in space and time is needed. Knowledge obtained from pore scale to macroscopic scale studies can help us to better understand these systems and contribute to the state of knowledge which can then be translated to engineering applications in the field (i.e. implementation of SBTES systems at the field scale). One important thermal property that varies with soil water content, effective thermal conductivity, is oftentimes included in numerical models through the use of empirical relationships and simplified mathematical formulations developed based on experimental data obtained at either small laboratory or field scales. These models assume that there is local thermodynamic equilibrium between the air and water phases for a representative elementary volume. However, this assumption may not always be valid at the pore scale, thus questioning the validity of current modeling approaches. The purpose of this work is to evaluate the validity of the local thermodynamic equilibrium assumption as related to the effective thermal conductivity at pore scale. A numerical model based on the coupled Cahn-Hilliard and heat transfer equation was developed to solve for liquid flow and heat transfer through variably saturated porous media. In this model, the evolution of phases and the interfaces between phases are related to a functional form of the total free energy of the system. A unique solution for the system is obtained by solving the Navier-Stokes equation through free energy minimization. Preliminary results demonstrate that there is a correlation between soil temperature / degree of saturation and equivalent thermal conductivity / heat flux. Results also confirm the correlation between pressure differential magnitude and equilibrium time for multiphase flow to reach steady state conditions. Based on these results, the equivalent time for steady-state heat transfer is much larger than the equivalent time for steady-state multiphase flow for a given pressure differential. Moreover, the wetting phase flow and consequently heat transfer appear to be sensitive to contact angle and porosity of the domain.
NASA Astrophysics Data System (ADS)
Heslop, E.; Ruiz, S.; Allen, J.; Tintoré, J.
2012-04-01
One of the clear challenges facing oceanography today is to define variability in ocean processes at a seasonal and sub-seasonal scale, in order to clearly identify the signature of both natural large-scale climatic oscillations and the long-term trends brought about by the human-induced change in atmospheric composition. Without visibility of this variance, which helps to determine the margins of significance for long-term trends and decipher cause and effect, the inferences drawn from sparse data points can be misleading. The cyclonic basin scale circulation pattern in the Western Mediterranean has long been known; the role/contribution that processes in the Balearic Basin play in modifying this is less well defined. The Balearic Channels (channels between the Balearic Islands) are constriction points on this basin scale circulation that appear to exert a controlling influence on the north/south exchange of water masses. Understanding the variability in current flows through these channels is important, not just for the transport of heat and salt, but also for ocean biology that responds to physical variability at the scale of that variability. Earlier studies at a seasonal scale identified; an interannual summer/winter variation of 1 Sv in the strength of the main circulation pattern and a high cruise-to-cruise variability in the pattern and strength of the flows through the channels brought about by mesoscale activity. Initial results using new high-resolution data from glider based monitoring missions across the Ibiza Channel (the main exchange channel in the Balearic Basin), combined with ship and contemporaneous satellite data, indicate surprisingly high and rapid changes in the flows of surface and intermediate waters imposed on the broad seasonal cycle. To date the data suggests that there are three potential 'modes' of water volume transport, generated from the interplay between basin and mesoscale circulation. We will review the concept of transport modes as seen through the earlier seasonal ship based studies and demonstrate that the scales of variability captured by the glider monitoring provides a unique view of variability in this circulation system, which is as high on a weekly timescale as the previously identified seasonal cycle.
DRAGON - 8U Nanosatellite Orbital Deployer
NASA Technical Reports Server (NTRS)
Dobrowolski, Marcin; Grygorczuk, Jerzy; Kedziora, Bartosz; Tokarz, Marta; Borys, Maciej
2014-01-01
The Space Research Centre of the Polish Academy of Sciences (SRC PAS) together with Astronika company have developed an Orbital Deployer called DRAGON for ejection of the Polish scientific nanosatellite BRITE-PL Heweliusz (Fig. 1). The device has three unique mechanisms including an adopted and scaled lock and release mechanism from the ESA Rosetta mission MUPUS instrument. This paper discusses major design restrictions of the deployer, unique design features, and lessons learned from development through testing.
Thompson, Rachel T.; Meslin, Eric M.; Braitstein, Paula K. A.; Nyandiko, Winstone M.; Ayaya, Samuel O.; Vreeman, Rachel C.
2013-01-01
Orphans are a subpopulation with a unique set of additional vulnerabilities. Increasing focus on children’s rights, pediatric global health, and pediatric research makes it imperative to recognize and address unique vulnerabilities of orphaned children. This paper describes the unique vulnerabilities of the orphaned pediatric population and offers a structured set of factors that require consideration when including orphans in biomedical research. Pediatric orphans are particularly vulnerable due to decreased economic resources, psychosocial instability, increased risk of abuse, and delayed/decreased access to healthcare. These vulnerabilities are significant. By carefully considering each issue in a population in a culturally specific and study-specific manner, researchers can make valuable contributions to the overall health and well-being of this uniquely vulnerable population. PMID:23086048
NASA GSFC's Role in the US Space Program
NASA Technical Reports Server (NTRS)
Simpson, James E.
2004-01-01
The paper discussss the GSFC research interests and how GSFC contributes to solve some of most basic questions Humans having been asking for thousands of years. How big is universe? How old is the universe? Will Humans and industrialization of the Earth change the climate significantly? Can Humans live in space? How does the Sun affect life on Earth? Goddard s role in Earth Science is very unique. We buy and build instruments that collect data about weather around the world. By flying those instruments on spacecraft, we have a unique vantage point to observe the weather patterns on a global scale. The best example is a satellite network called GOES (Geostationary Operational Environmental Satellite) which produces the weather pictures and videos you see on the nightly news and weather channel. Earth Science is another area of great interest to Goddard scientists and spacecraft designers. This photo of an oil fire in Iraq taken on March 2Ist of this year shows the down range effect pollution will have on entire region. Space Weather has become extremely important in the Space business. Satellites not only can become inoperable due to the occasional high level of radiation but astronauts can be exposed to dangerous levels of radiation. Space Weather is actually an issue when planning Extra Vehicular Activities (EVA). At Goddard, our operation of the Hubble Space Telescope has meant we have worked closely with several Shuttle crews over the years.
Ravinet, Mark; Harrod, Chris; Eizaguirre, Christophe; Prodöhl, Paulo A
2014-06-01
Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.
Ravinet, Mark; Harrod, Chris; Eizaguirre, Christophe; Prodöhl, Paulo A
2014-01-01
Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna. PMID:25360281
NASA Astrophysics Data System (ADS)
Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid
2017-04-01
Fluctuations of the surface brightness of cosmic X-ray background (CXB) carry unique information about faint and low-luminosity source populations, which is inaccessible for conventional large-scale structure (LSS) studies based on resolved sources. We used XBOOTES (5ks deep Chandra X-ray Observatory ACIS-I maps of the ˜ 9 deg2 Bootes field of the NOAO Deep Wide-Field Survey) to conduct the most accurate measurement to date of the power spectrum of fluctuations of the unresolved CXB on the angular scales of 3 arcsec-17 arcmin. We find that at sub-arcmin angular scales, the power spectrum is consistent with the active galactic nucleus (AGN) shot noise, without much need for any significant contribution from their one-halo term. This is consistent with the theoretical expectation that low-luminosity AGN reside alone in their dark matter haloes. However, at larger angular scales, we detect a significant LSS signal above the AGN shot noise. Its power spectrum, obtained after subtracting the AGN shot noise, follows a power law with the slope of -0.8 ± 0.1 and its amplitude is much larger than what can be plausibly explained by the two-halo term of AGN. We demonstrate that the detected LSS signal is produced by unresolved clusters and groups of galaxies. For the flux limit of the XBOOTES survey, their flux-weighted mean redshift equals
LARGE-SCALE PREDICTIONS OF MOBILE SOURCE CONTRIBUTIONS TO CONCENTRATIONS OF TOXIC AIR POLLUTANTS
This presentation shows concentrations and deposition of toxic air pollutants predicted by a 3-D air quality model, the Community Multi Scale Air Quality (CMAQ) modeling system. Contributions from both on-road and non-road mobile sources are analyzed.
Groundwater vulnerability maps for pesticides for Flanders
NASA Astrophysics Data System (ADS)
Dams, Jef; Joris, Ingeborg; Bronders, Jan; Van Looy, Stijn; Vanden Boer, Dirk; Heuvelmans, Griet; Seuntjens, Piet
2017-04-01
Pesticides are increasingly being detected in shallow groundwater and and are one of the main causes of the poor chemical status of phreatic groundwater bodies in Flanders. There is a need for groundwater vulnerability maps in order to design monitoring strategies and land-use strategies for sensitive areas such as drinking water capture zones. This research focuses on the development of generic vulnerability maps for pesticides for Flanders and a tool to calculate substance-specific vulnerability maps at the scale of Flanders and at the local scale. (1) The generic vulnerability maps are constructed using an index based method in which maps of the main contributing factors in soil and saturated zone to high concentrations of pesticides in groundwater are classified and overlain. Different weights are assigned to the contributing factors according to the type of pesticide (low/high mobility, low/high persistence). Factors that are taken into account are the organic matter content and texture of soil, depth of the unsaturated zone, organic carbon and redox potential of the phreatic groundwater and thickness and conductivity of the phreatic layer. (2) Secondly a tool is developed that calculates substance-specific vulnerability maps for Flanders using a hybrid approach where a process-based leaching model GeoPEARL is combined with vulnerability indices that account for dilution in the phreatic layer. The GeoPEARL model is parameterized for Flanders in 1434 unique combinations of soil properties, climate and groundwater depth. Leaching is calculated for a 20 year period for each 50 x 50 m gridcell in Flanders. (3) At the local scale finally, a fully process-based approach is applied combining GeoPEARL leaching calculations and flowline calculations of pesticide transport in the saturated zone to define critical zones in the capture zone of a receptor such as a drinking water well or a river segment. The three approaches are explained more in detail and illustrated with the results for the entire Flanders region and for a case-study focusing at a drinking water production site in West Flanders.
Shuman, Clayton J; Liu, Xuefeng; Aebersold, Michelle L; Tschannen, Dana; Banaszak-Holl, Jane; Titler, Marita G
2018-04-25
Nurse managers have a pivotal role in fostering unit climates supportive of implementing evidence-based practices (EBPs) in care delivery. EBP leadership behaviors and competencies of nurse managers and their impact on practice climates are widely overlooked in implementation science. The purpose of this study was to examine the contributions of nurse manager EBP leadership behaviors and nurse manager EBP competencies in explaining unit climates for EBP implementation in adult medical-surgical units. A multi-site, multi-unit cross-sectional research design was used to recruit the sample of 24 nurse managers and 553 randomly selected staff nurses from 24 adult medical-surgical units from 7 acute care hospitals in the Northeast and Midwestern USA. Staff nurse perceptions of nurse manager EBP leadership behaviors and unit climates for EBP implementation were measured using the Implementation Leadership Scale and Implementation Climate Scale, respectively. EBP competencies of nurse managers were measured using the Nurse Manager EBP Competency Scale. Participants were emailed a link to an electronic questionnaire and asked to respond within 1 month. The contributions of nurse manager EBP leadership behaviors and competencies in explaining unit climates for EBP implementation were estimated using mixed-effects models controlling for nurse education and years of experience on current unit and accounting for the variability across hospitals and units. Significance level was set at α < .05. Two hundred sixty-four staff nurses and 22 nurse managers were included in the final sample, representing 22 units in 7 hospitals. Nurse manager EBP leadership behaviors (p < .001) and EBP competency (p = .008) explained 52.4% of marginal variance in unit climate for EBP implementation. Leadership behaviors uniquely explained 45.2% variance. The variance accounted for by the random intercepts for hospitals and units (p < .001) and years of nursing experience in current unit (p < .05) were significant but level of nursing education was not. Nurse managers are significantly related to unit climates for EBP implementation primarily through their leadership behaviors. Future implementation studies should consider the leadership of nurse managers in creating climates supportive of EBP implementation.
Unique wing scale photonics of male Rajah Brooke's birdwing butterflies.
Wilts, Bodo D; Giraldo, Marco A; Stavenga, Doekele G
2016-01-01
Ultrastructures in butterfly wing scales can take many shapes, resulting in the often striking coloration of many butterflies due to interference of light. The plethora of coloration mechanisms is dazzling, but often only single mechanisms are described for specific animals. We have here investigated the male Rajah Brooke's birdwing, Trogonoptera brookiana, a large butterfly from Malaysia, which is marked by striking, colorful wing patterns. The dorsal side is decorated with large, iridescent green patterning, while the ventral side of the wings is primarily brown-black with small white, blue and green patches on the hindwings. Dense arrays of red hairs, creating a distinct collar as well as contrasting areas ventrally around the thorax, enhance the butterfly's beauty. The remarkable coloration is realized by a diverse number of intricate and complicated nanostructures in the hairs as well as the wing scales. The red collar hairs contain a broad-band absorbing pigment as well as UV-reflecting multilayers resembling the photonic structures of Morpho butterflies; the white wing patches consist of scales with prominent thin film reflectors; the blue patches have scales with ridge multilayers and these scales also have centrally concentrated melanin. The green wing areas consist of strongly curved scales, which possess a uniquely arranged photonic structure consisting of multilayers and melanin baffles that produces highly directional reflections. Rajah Brooke's birdwing employs a variety of structural and pigmentary coloration mechanisms to achieve its stunning optical appearance. The intriguing usage of order and disorder in related photonic structures in the butterfly wing scales may inspire novel optical materials as well as investigations into the development of these nanostructures in vivo.
Circuitry to explain how the relative number of L and M cones shapes color experience
Schmidt, Brian P.; Touch, Phanith; Neitz, Maureen; Neitz, Jay
2016-01-01
The wavelength of light that appears unique yellow is surprisingly consistent across people even though the ratio of middle (M) to long (L) wavelength sensitive cones is strikingly variable. This observation has been explained by normalization to the mean spectral distribution of our shared environment. Our purpose was to reconcile the nearly perfect alignment of everyone's unique yellow through a normalization process with the striking variability in unique green, which varies by as much as 60 nm between individuals. The spectral location of unique green was measured in a group of volunteers whose cone ratios were estimated with a technique that combined genetics and flicker photometric electroretinograms. In contrast to unique yellow, unique green was highly dependent upon relative cone numerosity. We hypothesized that the difference in neural architecture of the blue-yellow and red-green opponent systems in the presence of a normalization process creates the surprising dependence of unique green on cone ratio. We then compared the predictions of different theories of color vision processing that incorporate L and M cone ratio and a normalization process. The results of this analysis reveal that—contrary to prevailing notions--postretinal contributions may not be required to explain the phenomena of unique hues. PMID:27366885
Hyland, Philip; Brewin, Chris R; Maercker, Andreas
2017-04-01
The 11 th edition of the International Classification of Diseases (ICD-11; World Health Organization, 2017) proposes a model of posttraumatic stress disorder (PTSD) that includes 6 symptoms. This study assessed the ability of a classification-independent measure of posttraumatic stress symptoms, the Impact of Event Scale-Revised (Weiss & Marmar, 1996), to capture the ICD-11 model of PTSD. The current study also provided the first assessment of the predictive validity of ICD-11 PTSD. Former East German political prisoners were assessed in 1994 (N = 144) and in 2008-2009 (N = 88) on numerous psychological variables using self-report measures. Of the participants, 48.2% and 36.8% met probable diagnosis for ICD-11 PTSD at the first and second assessments, respectively. Confirmatory factor analysis supported the factorial validity of the 3-factor ICD-11 model of PTSD, as represented by items selected from the Impact of Event Scale-Revised. Hierarchical multiple regression analysis demonstrated that, controlling for sex, the symptom clusters of ICD-11 PTSD (reexperiencing, avoidance, and sense of threat) significantly contributed to the explanation of depression (R 2 = .17), quality of life (R 2 = .21), internalized anger (R 2 = .10), externalized anger (R 2 = .12), hatred of perpetrators (R 2 = .15), dysfunctional disclosure (R 2 = .27), and social acknowledgment as a victim (R 2 = .12) across the 15-year study period. Current findings add support for the factorial and predictive validity of ICD-11 PTSD within a unique cohort of political prisoners. Copyright © 2017 International Society for Traumatic Stress Studies.
Wilson, Mark L; Renne, Elisha; Roncoli, Carla; Agyei-Baffour, Peter; Tenkorang, Emmanuel Yamoah
2015-07-15
This article is one of three synthesis reports resulting from an integrated assessment (IA) of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities that involve multiple drivers and diverse disciplines influencing ASGM, an IA framework was used to analyze economic, social, health, and environmental data and to co-develop evidence-based responses in collaboration with pertinent stakeholders. We look at both micro- and macro-economic processes surrounding ASGM, including causes, challenges, and consequences. At the micro-level, social and economic evidence suggests that the principal reasons whereby most people engage in ASGM involve "push" factors aimed at meeting livelihood goals. ASGM provides an important source of income for both proximate and distant communities, representing a means of survival for impoverished farmers as well as an engine for small business growth. However, miners and their families often end up in a "poverty trap" of low productivity and indebtedness, which reduce even further their economic options. At a macro level, Ghana's ASGM activities contribute significantly to the national economy even though they are sometimes operating illegally and at a disadvantage compared to large-scale industrial mining companies. Nevertheless, complex issues of land tenure, social stability, mining regulation and taxation, and environmental degradation undermine the viability and sustainability of ASGM as a livelihood strategy. Although more research is needed to understand these complex relationships, we point to key findings and insights from social science and economics research that can guide policies and actions aimed to address the unique challenges of ASGM in Ghana and elsewhere.
NASA Astrophysics Data System (ADS)
Münzenberg, Gottfried; Geissel, Hans; Litvinov, Yuri A.
2010-04-01
This contribution is based on the combination of the talks: "What can we learn from large-scale mass measurements," "Present and future experiments with stored exotic nuclei at relativistic energies," and "Beta decay of highly-charged ions." Studying the nuclear mass surface gives information on the evolution of nuclear structure such as nuclear shells, the onset of deformation and the drip-lines. Previously, most of the masses far-off stability has been obtained from decay data. Modern methods allow direct mass measurements. They are much more sensitive, down to single atoms, access short-lived species and have high accuracy. Large-scale explorations of the nuclear mass surface are ideally performed with the combination of the in-flight FRagment Separator FRS and the Experimental Storage Ring ESR. After a brief historic introduction selected examples such as the evolution of shell closures far-off stability and the proton-neutron interaction will be discussed in the framework of our data. Recently, the experiments have been extended and led to the discovery of new heavy neutron-rich isotopes along with their mass and lifetime measurements. Storage rings applied at relativistic energies are a unique tool to study the radioactive decay of bare or few-electron atomic nuclei. New features observed with the analysis of stored circulating mother and daughter ions including oscillations in the decay curves of hydrogen-like nuclei will be addressed. Future experiments with NUSTAR at FAIR will further extend our knowledge to the borderlines of nuclear existence.
Intolerance of uncertainty in opioid dependency - Relationship with trait anxiety and impulsivity.
Garami, Julia; Haber, Paul; Myers, Catherine E; Allen, Michael T; Misiak, Blazej; Frydecka, Dorota; Moustafa, Ahmed A
2017-01-01
Intolerance of uncertainty (IU) is the tendency to interpret ambiguous situations as threatening and having negative consequences, resulting in feelings of distress and anxiety. IU has been linked to a number of anxiety disorders, and anxiety felt in the face of uncertainty may result in maladaptive behaviors such as impulsive decision making. Although there is strong evidence that anxiety and impulsivity are risk factors for addiction, there is a paucity of research examining the role of IU in this disorder. The rate of opioid addiction, in particular, has been rising steadily in recent years, which necessitates deeper understanding of risk factors in order to develop effective prevention and treatment methods. The current study tested for the first time whether opioid-dependent adults are less tolerant of uncertainty compared to a healthy comparison group. Opioid dependent patients undergoing methadone maintenance therapy (n = 114) and healthy comparisons (n = 69) completed the following scales: Intolerance of Uncertainty Scale, the Barrett Impulsivity Scale, and the State Trait Anxiety Inventory. Analysis revealed that these measures were positively correlated with each other and that opioid-dependent patients had significantly higher IU scores. Regression analysis revealed that anxiety mediated the relationship between IU and impulsivity. Hierarchical moderation regression found an interaction between addiction status and impulsivity on IU scores in that the relationship between these variables was only observed in the patient group. Findings suggest that IU is a feature of addiction but does not necessarily play a unique role. Further research is needed to explore the complex relationship between traits and how they may contribute to the development and maintenance of addiction.
Atomistically derived cohesive zone model of intergranular fracture in polycrystalline graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guin, Laurent; Department of Mechanical Engineering, Columbia University, New York, New York 10027; Raphanel, Jean L.
2016-06-28
Pristine single crystal graphene is the strongest known two-dimensional material, and its nonlinear anisotropic mechanical properties are well understood from the atomic length scale up to a continuum description. However, experiments indicate that grain boundaries in the polycrystalline form reduce the mechanical behavior of polycrystalline graphene. Herein, we perform atomistic-scale molecular dynamics simulations of the deformation and fracture of graphene grain boundaries and express the results as continuum cohesive zone models (CZMs) that embed notions of the grain boundary ultimate strength and fracture toughness. To facilitate energy balance, we employ a new methodology that simulates a quasi-static controlled crack propagationmore » which renders the kinetic energy contribution to the total energy negligible. We verify good agreement between Griffith's critical energy release rate and the work of separation of the CZM, and we note that the energy of crack edges and fracture toughness differs by about 35%, which is attributed to the phenomenon of bond trapping. This justifies the implementation of the CZM within the context of the finite element method (FEM). To enhance computational efficiency in the FEM implementation, we discuss the use of scaled traction-separation laws (TSLs) for larger element sizes. As a final result, we have established that the failure characteristics of pristine graphene and high tilt angle bicrystals differ by less than 10%. This result suggests that one could use a unique or a few typical TSLs as a good approximation for the CZMs associated with the mechanical simulations of the polycrystalline graphene.« less
NASA Technical Reports Server (NTRS)
Martin, Heath T.
2015-01-01
Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.
Wilson, Mark L.; Renne, Elisha; Roncoli, Carla; Agyei-Baffour, Peter; Yamoah Tenkorang, Emmanuel
2015-01-01
This article is one of three synthesis reports resulting from an integrated assessment (IA) of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities that involve multiple drivers and diverse disciplines influencing ASGM, an IA framework was used to analyze economic, social, health, and environmental data and to co-develop evidence-based responses in collaboration with pertinent stakeholders. We look at both micro- and macro-economic processes surrounding ASGM, including causes, challenges, and consequences. At the micro-level, social and economic evidence suggests that the principal reasons whereby most people engage in ASGM involve “push” factors aimed at meeting livelihood goals. ASGM provides an important source of income for both proximate and distant communities, representing a means of survival for impoverished farmers as well as an engine for small business growth. However, miners and their families often end up in a “poverty trap” of low productivity and indebtedness, which reduce even further their economic options. At a macro level, Ghana’s ASGM activities contribute significantly to the national economy even though they are sometimes operating illegally and at a disadvantage compared to large-scale industrial mining companies. Nevertheless, complex issues of land tenure, social stability, mining regulation and taxation, and environmental degradation undermine the viability and sustainability of ASGM as a livelihood strategy. Although more research is needed to understand these complex relationships, we point to key findings and insights from social science and economics research that can guide policies and actions aimed to address the unique challenges of ASGM in Ghana and elsewhere. PMID:26184277
The Purchase of a Shirt: International Implications.
ERIC Educational Resources Information Center
Dickerson, Kitty G.; Hester, Susan B.
1984-01-01
This study examines the international textile and clothing industry--its unique characteristics, its contributions as a major world employer, and the problem of regulating trade. Presents issues as they relate to consumers. (JOW)
Mobile Smog Simulator: New Capabilities to Study Urban Mixtures
A smog simulator developed by EPA scientists and engineers has unique capabilities that will provide information for assessing the health impacts of relevant multipollutant atmospheres and identify contributions of specific sources.
Heritability of personality disorder traits: a twin study.
Jang, K L; Livesley, W J; Vernon, P A; Jackson, D N
1996-12-01
Genetic and non-genetic influences on the hierarchy of traits that delineate personality disorder as measured by the Dimensional Assessment of Personality Problems (DAPP-DQ) scale were examined using data from a sample of 483 volunteer twin pairs (236 monozygotic pairs and 247 dizygotic pairs). The DAPP-DQ assesses four higher-order factors, 18 basic dimensions and 69 facet traits of personality disorder. The correlation coefficients for monozygotic and dizygotic twin pairs ranged from 0.26 to 0.56 and from 0.03 to 0.41, respectively. Broad heritability estimates ranged from 0 to 58% (median value 45%). Additive genetic effects and unique environmental effects emerged as the primary influences on these scales, with unique environmental influences accounting for the largest proportion of the variance for most traits at all levels of the hierarchy.
Modeling and Simulation of Nanoindentation
NASA Astrophysics Data System (ADS)
Huang, Sixie; Zhou, Caizhi
2017-11-01
Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.
Toward High-Energy-Density, High-Efficiency, and Moderate-Temperature Chip-Scale Thermophotovoltaics
2013-04-02
this architecture include concentrated solar photovoltaics , thermoelectrics , and fuel cells. System Testing. Themicroreactorwas ignitedbyhydrogen...2, 3), thermoelectrics (4, 5), and thermophotovoltaics (TPVs) (6, 7). TPVs present an extremely appealing approach for small-scale power sources due...into spectrally confined thermal radiation, optically coupled to low-bandgap photovoltaic (PV) diodes that are electrically interfaced with a unique
ERIC Educational Resources Information Center
Dodeen, Hamzeh
2015-01-01
The purpose of this study was to evaluate the factor structure of the University of California, Los Angeles (UCLA) Loneliness Scale and examine possible wording effects on a sample of 1,429 students from the United Arab Emirates University. Correlated traits-correlated uniqueness as well as correlated traits-correlated methods were used to examine…
Frontal Neurons Modulate Memory Retrieval across Widely Varying Temporal Scales
ERIC Educational Resources Information Center
Zhang, Wen-Hua; Williams, Ziv M.
2015-01-01
Once a memory has formed, it is thought to undergo a gradual transition within the brain from short- to long-term storage. This putative process, however, also poses a unique problem to the memory system in that the same learned items must also be retrieved across broadly varying time scales. Here, we find that neurons in the ventrolateral…
Plant systems biology: network matters.
Lucas, Mikaël; Laplaze, Laurent; Bennett, Malcolm J
2011-04-01
Systems biology is all about networks. A recent trend has been to associate systems biology exclusively with the study of gene regulatory or protein-interaction networks. However, systems biology approaches can be applied at many other scales, from the subatomic to the ecosystem scales. In this review, we describe studies at the sub-cellular, tissue, whole plant and crop scales and highlight how these studies can be related to systems biology. We discuss the properties of system approaches at each scale as well as their current limits, and pinpoint in each case advances unique to the considered scale but representing potential for the other scales. We conclude by examining plant models bridging different scales and considering the future prospects of plant systems biology. © 2011 Blackwell Publishing Ltd.
Ultrafast dynamics and stabilization in chip-scale optical frequency combs (Conference Presentation)
NASA Astrophysics Data System (ADS)
Huang, Shu Wei
2017-02-01
Optical frequency comb technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, re-definition of time, extreme light-matter interaction, and attosecond sciences. Recently emerged Kerr-active microresonators are promising alternatives to the current benchmark femtosecond laser platform. These chip-scale frequency combs, or Kerr combs, are unique in their compact footprints and offer the potential for monolithic electronic and feedback integration, thereby expanding the already remarkable applications of optical frequency combs. In this talk, I will first report the generation and characterization of low-phase-noise Kerr frequency combs. Measurements of the Kerr comb ultrafast dynamics and phase noise will be presented and discussed. Then I will describe novel strategies to fully stabilize Kerr comb line frequencies towards chip-scale optical frequency synthesizers with a relative uncertainty better than 2.7×10-16. I will show that the unique generation physics of Kerr frequency comb can provide an intrinsic self-referenced access to the Kerr comb line frequencies. The strategy improves the optical frequency stability by more than two orders of magnitude, while preserving the Kerr comb's key advantage of low SWaP and potential for chip-scale electronic and photonic integration.