Sample records for scaling first-principles molecular

  1. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    DOE PAGES

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; ...

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less

  2. Multigrid based First-Principles Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fattebert, Jean-Luc; Osei-Kuffuor, Daniel; Dunn, Ian

    2017-06-01

    MGmol ls a First-Principles Molecular Dynamics code. It relies on the Born-Oppenheimer approximation and models the electronic structure using Density Functional Theory, either LDA or PBE. Norm-conserving pseudopotentials are used to model atomic cores.

  3. A Scalable O(N) Algorithm for Large-Scale Parallel First-Principles Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-01

    Traditional algorithms for first-principles molecular dynamics (FPMD) simulations only gain a modest capability increase from current petascale computers, due to their O(N 3) complexity and their heavy use of global communications. To address this issue, we are developing a truly scalable O(N) complexity FPMD algorithm, based on density functional theory (DFT), which avoids global communications. The computational model uses a general nonorthogonal orbital formulation for the DFT energy functional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We present a scalable algorithm for approximately computing selected entries of the inverse of the overlap matrix,more » based on an approximate inverse technique, by inverting local blocks corresponding to principal submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix can be omitted when computing selected entries of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute per molecular dynamics time step.« less

  4. First principles molecular dynamics of molten NaCl

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  5. Equilibration and analysis of first-principles molecular dynamics simulations of water

    NASA Astrophysics Data System (ADS)

    Dawson, William; Gygi, François

    2018-03-01

    First-principles molecular dynamics (FPMD) simulations based on density functional theory are becoming increasingly popular for the description of liquids. In view of the high computational cost of these simulations, the choice of an appropriate equilibration protocol is critical. We assess two methods of estimation of equilibration times using a large dataset of first-principles molecular dynamics simulations of water. The Gelman-Rubin potential scale reduction factor [A. Gelman and D. B. Rubin, Stat. Sci. 7, 457 (1992)] and the marginal standard error rule heuristic proposed by White [Simulation 69, 323 (1997)] are evaluated on a set of 32 independent 64-molecule simulations of 58 ps each, amounting to a combined cumulative time of 1.85 ns. The availability of multiple independent simulations also allows for an estimation of the variance of averaged quantities, both within MD runs and between runs. We analyze atomic trajectories, focusing on correlations of the Kohn-Sham energy, pair correlation functions, number of hydrogen bonds, and diffusion coefficient. The observed variability across samples provides a measure of the uncertainty associated with these quantities, thus facilitating meaningful comparisons of different approximations used in the simulations. We find that the computed diffusion coefficient and average number of hydrogen bonds are affected by a significant uncertainty in spite of the large size of the dataset used. A comparison with classical simulations using the TIP4P/2005 model confirms that the variability of the diffusivity is also observed after long equilibration times. Complete atomic trajectories and simulation output files are available online for further analysis.

  6. Equilibration and analysis of first-principles molecular dynamics simulations of water.

    PubMed

    Dawson, William; Gygi, François

    2018-03-28

    First-principles molecular dynamics (FPMD) simulations based on density functional theory are becoming increasingly popular for the description of liquids. In view of the high computational cost of these simulations, the choice of an appropriate equilibration protocol is critical. We assess two methods of estimation of equilibration times using a large dataset of first-principles molecular dynamics simulations of water. The Gelman-Rubin potential scale reduction factor [A. Gelman and D. B. Rubin, Stat. Sci. 7, 457 (1992)] and the marginal standard error rule heuristic proposed by White [Simulation 69, 323 (1997)] are evaluated on a set of 32 independent 64-molecule simulations of 58 ps each, amounting to a combined cumulative time of 1.85 ns. The availability of multiple independent simulations also allows for an estimation of the variance of averaged quantities, both within MD runs and between runs. We analyze atomic trajectories, focusing on correlations of the Kohn-Sham energy, pair correlation functions, number of hydrogen bonds, and diffusion coefficient. The observed variability across samples provides a measure of the uncertainty associated with these quantities, thus facilitating meaningful comparisons of different approximations used in the simulations. We find that the computed diffusion coefficient and average number of hydrogen bonds are affected by a significant uncertainty in spite of the large size of the dataset used. A comparison with classical simulations using the TIP4P/2005 model confirms that the variability of the diffusivity is also observed after long equilibration times. Complete atomic trajectories and simulation output files are available online for further analysis.

  7. Determination of structure and properties of molecular crystals from first principles.

    PubMed

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be

  8. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gygi, Francois; Galli, Giulia; Schwegler, Eric

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solarmore » energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex

  9. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  10. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  11. First-principles molecular transport calculation for the benzenedithiolate molecule

    NASA Astrophysics Data System (ADS)

    Rumetshofer, M.; Dorn, G.; Boeri, L.; Arrigoni, E.; von der Linden, W.

    2017-10-01

    A first-principles approach based on density functional theory and non-equilibrium Green’s functions is used to study the molecular transport system consisting of benzenedithiolate connected with monoatomic gold and platinum electrodes. Using symmetry arguments we explain why the conductance mechanism is different for gold and platinum electrodes. We present the charge stability diagram for the benzenedithiolate connected with monoatomic platinum electrodes including many-body effects in terms of an extended Hubbard Hamiltonian and discuss how the electrodes and the many-body effects influence the transport properties of the system.

  12. Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.

    PubMed

    Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J

    2018-05-14

    We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.

  13. Molecular electronics: insight from first-principles transport simulations.

    PubMed

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2010-01-01

    Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affect the electronic transport. Here we describe key computational ingredients and discuss these in relation to simulations for scanning tunneling microscopy (STM) experiments with C60 molecules where the experimental geometry is well characterized. We then show how molecular dynamics simulations may be combined with transport calculations to study more irregular situations, such as the evolution of a nanoscale contact with the mechanically controllable break-junction technique. Finally we discuss calculations of inelastic electron tunnelling spectroscopy as a characterization technique that reveals information about the atomic arrangement and transport channels.

  14. First principles molecular dynamics of metal/water interfaces under bias potential

    NASA Astrophysics Data System (ADS)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  15. Advances in first-principles calculations of thermodynamic properties of planetary materials (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, H. F.

    2013-12-01

    First-principles atomistic simulation is a vital tool for understanding the properties of materials at the high-pressure high-temperature conditions prevalent in giant planet interiors, but properties such as solubility and phase boundaries are dependent on entropy, a quantity not directly accessible in simulation. Determining entropic properties from atomistic simulations is a difficult problem typically requiring a time-consuming integration over molecular dynamics trajectories. Here I will describe recent advances in first-principles thermodynamic calculations which substantially increase the simplicity and efficiency of thermodynamic integration and make entropic properties more readily accessible. I will also describe the use of first-principles thermodynamic calculations for understanding problems including core solubility in gas giants and superionic phase changes in ice giants, as well as future prospects for combining first-principles thermodynamics with planetary-scale models to help us understand the origin and consequences of compositional inhomogeneity in giant planet interiors.

  16. First-principles simulations of shock front propagation in liquid deuterium

    NASA Astrophysics Data System (ADS)

    Gygi, Francois; Galli, Giulia

    2001-03-01

    We present large-scale first-principles molecular dynamics simulations of the formation and propagation of a shock front in liquid deuterium. Molecular deuterium was subjected to supersonic impacts at velocities ranging from 10 to 30 km/s. We used Density Functional Theory in the local density approximation, and simulation cells containing 1320 deuterium atoms. The formation of a shock front was observed and its velocity was measured and compared with the results of laser-driven shock experiments [1]. The pressure and density in the compressed fluid were also computed directly from statistical averages in appropriate regions of the simulation cell, and compared with previous first-principles calculations performed at equilibrium [2]. Details of the electronic structure at the shock front, and their influence on the properties of the compressed fluid will be discussed. [1] J.W.Collins et al. Science 281, 1178 (1998). [2] G.Galli, R.Q.Hood, A.U.Hazi and F.Gygi, Phys.Rev. B61, 909 (2000).

  17. Redox condition in molten salts and solute behavior: A first-principles molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Nam, Hyo On; Morgan, Dane

    2015-10-01

    Molten salts technology is of significant interest for nuclear, solar, and other energy systems. In this work, first-principles molecular dynamics (FPMD) was used to model the solute behavior in eutectic LiCl-KCl and FLiBe (Li2BeF4) melts at 773 K and 973 K, respectively. The thermo-kinetic properties for solute systems such as the redox potential, solute diffusion coefficients and structural information surrounding the solute were predicted from FPMD modeling and the calculated properties are generally in agreement with the experiments. In particular, we formulate an approach to model redox energetics vs. chlorine (or fluorine) potential from first-principles approaches. This study develops approaches for, and demonstrates the capabilities of, FPMD to model solute properties in molten salts.

  18. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    PubMed

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  19. Length dependence of electron transport through molecular wires--a first principles perspective.

    PubMed

    Khoo, Khoong Hong; Chen, Yifeng; Li, Suchun; Quek, Su Ying

    2015-01-07

    One-dimensional wires constitute a fundamental building block in nanoscale electronics. However, truly one-dimensional metallic wires do not exist due to Peierls distortion. Molecular wires come close to being stable one-dimensional wires, but are typically semiconductors, with charge transport occurring via tunneling or thermally-activated hopping. In this review, we discuss electron transport through molecular wires, from a theoretical, quantum mechanical perspective based on first principles. We focus specifically on the off-resonant tunneling regime, applicable to shorter molecular wires (<∼4-5 nm) where quantum mechanics dictates electron transport. Here, conductance decays exponentially with the wire length, with an exponential decay constant, beta, that is independent of temperature. Different levels of first principles theory are discussed, starting with the computational workhorse - density functional theory (DFT), and moving on to many-electron GW methods as well as GW-inspired DFT + Sigma calculations. These different levels of theory are applied in two major computational frameworks - complex band structure (CBS) calculations to estimate the tunneling decay constant, beta, and Landauer-Buttiker transport calculations that consider explicitly the effects of contact geometry, and compute the transmission spectra directly. In general, for the same level of theory, the Landauer-Buttiker calculations give more quantitative values of beta than the CBS calculations. However, the CBS calculations have a long history and are particularly useful for quick estimates of beta. Comparing different levels of theory, it is clear that GW and DFT + Sigma calculations give significantly improved agreement with experiment compared to DFT, especially for the conductance values. Quantitative agreement can also be obtained for the Seebeck coefficient - another independent probe of electron transport. This excellent agreement provides confirmative evidence of off

  20. First-principles studies of PETN molecular crystal vibrational frequencies under high pressure

    NASA Astrophysics Data System (ADS)

    Perger, Warren; Zhao, Jijun

    2005-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.

  1. The melting point of lithium: an orbital-free first-principles molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Hung, Linda; Huang, Chen

    2013-08-25

    The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453more » K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.« less

  2. First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties

    DOE PAGES

    von Lilienfeld, O. Anatole

    2013-02-26

    A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce-of-gold prizemore » challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. Here, these relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation.« less

  3. Oxidation of InP nanowires: a first principles molecular dynamics study.

    PubMed

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  4. First-principles molecular dynamics simulation study on electrolytes for use in redox flow battery

    NASA Astrophysics Data System (ADS)

    Choe, Yoong-Kee; Tsuchida, Eiji; Tokuda, Kazuya; Ootsuka, Jun; Saito, Yoshihiro; Masuno, Atsunobu; Inoue, Hiroyuki

    2017-11-01

    Results of first-principles molecular dynamics simulations carried out to investigate structural aspects of electrolytes for use in a redox flow battery are reported. The electrolytes studied here are aqueous sulfuric acid solutions where its property is of importance for dissolving redox couples in redox flow battery. The simulation results indicate that structural features of the acid solutions depend on the concentration of sulfuric acid. Such dependency arises from increase of proton dissociation from sulfuric acid.

  5. First-Principles Molecular Dynamics Studies of Organometallic Complexes and Homogeneous Catalytic Processes.

    PubMed

    Vidossich, Pietro; Lledós, Agustí; Ujaque, Gregori

    2016-06-21

    Computational chemistry is a valuable aid to complement experimental studies of organometallic systems and their reactivity. It allows probing mechanistic hypotheses and investigating molecular structures, shedding light on the behavior and properties of molecular assemblies at the atomic scale. When approaching a chemical problem, the computational chemist has to decide on the theoretical approach needed to describe electron/nuclear interactions and the composition of the model used to approximate the actual system. Both factors determine the reliability of the modeling study. The community dedicated much effort to developing and improving the performance and accuracy of theoretical approaches for electronic structure calculations, on which the description of (inter)atomic interactions rely. Here, the importance of the model system used in computational studies is highlighted through examples from our recent research focused on organometallic systems and homogeneous catalytic processes. We show how the inclusion of explicit solvent allows the characterization of molecular events that would otherwise not be accessible in reduced model systems (clusters). These include the stabilization of nascent charged fragments via microscopic solvation (notably, hydrogen bonding), transfer of charge (protons) between distant fragments mediated by solvent molecules, and solvent coordination to unsaturated metal centers. Furthermore, when weak interactions are involved, we show how conformational and solvation properties of organometallic complexes are also affected by the explicit inclusion of solvent molecules. Such extended model systems may be treated under periodic boundary conditions, thus removing the cluster/continuum (or vacuum) boundary, and require a statistical mechanics simulation technique to sample the accessible configurational space. First-principles molecular dynamics, in which atomic forces are computed from electronic structure calculations (namely, density

  6. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    PubMed

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  7. First-principles studies of electrical transport in nanoscale molecular junctions

    NASA Astrophysics Data System (ADS)

    Neaton, J. B.

    2008-03-01

    Understanding the conductance of individual molecular junctions is a forefront topic in theoretical nanoscience. The development of a general, efficient atomistic approach for treating an open system out of equilibrium with good accuracy, and then using it to inform experiment, is a significant open challenge in the field. Here I will describe studies where first-principles techniques, based on density functional theory (DFT) and beyond, are used to investigate some of the fundamental issues associated with single-molecule transport measurements. After a brief summary of previous work, a DFT-based scattering-state approach is presented and applied to H2 and amine-Au linked molecular junctions [1], two systems for which there exist reliable data [2]. Similar to most ab initio studies, we rely on a Landauer approach within DFT for junction conductance. Using this framework, which has proven relatively accurate for metallic point contacts, good agreement with experiment is obtained for the H2 conductance. For amine-Au linked junctions, however, the computed conductance is significantly larger than that measured,although structural trends are reproduced by the calculations. To explore this further, we draw on GW calculations of a prototypical metal-molecule contact, benzene on graphite, where interfacial polarization effects are found to drastically modify frontier orbital energies [3]. A physically motivated model self-energy correction is developed from our GW calculations,applied to the amine case, and shown to quantitatively explain the discrepancy with experiment. The importance of many-electron corrections beyond DFT for accurately computing molecular conductance and understanding experiments is thoroughly discussed. [1] S. Y. Quek et al., Nano Lett 7, 3482 (2007); K. H. Khoo et al., submitted (2007). [2] R. Smit et al., Nature 419, 906 (2002); L. Venkataraman et al., Nature 442 ,904 (2006). [3] J. B. Neaton et al., Phys. Rev. Lett. 97, 216405 (2006).

  8. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-07-01

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  9. Charge transport in organic molecular semiconductors from first principles: The bandlike hole mobility in a naphthalene crystal

    NASA Astrophysics Data System (ADS)

    Lee, Nien-En; Zhou, Jin-Jian; Agapito, Luis A.; Bernardi, Marco

    2018-03-01

    Predicting charge transport in organic molecular crystals is notoriously challenging. Carrier mobility calculations in organic semiconductors are dominated by quantum chemistry methods based on charge hopping, which are laborious and only moderately accurate. We compute from first principles the electron-phonon scattering and the phonon-limited hole mobility of naphthalene crystal in the framework of ab initio band theory. Our calculations combine GW electronic bandstructures, ab initio electron-phonon scattering, and the Boltzmann transport equation. The calculated hole mobility is in very good agreement with experiment between 100 -300 K , and we can predict its temperature dependence with high accuracy. We show that scattering between intermolecular phonons and holes regulates the mobility, though intramolecular phonons possess the strongest coupling with holes. We revisit the common belief that only rigid molecular motions affect carrier dynamics in organic molecular crystals. Our paper provides a quantitative and rigorous framework to compute charge transport in organic crystals and is a first step toward reconciling band theory and carrier hopping computational methods.

  10. A concurrent multiscale micromorphic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaofan, E-mail: shaofan@berkeley.edu; Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from firstmore » principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.« less

  11. First-principles electron transport with phonon coupling: Large scale at low cost

    NASA Astrophysics Data System (ADS)

    Gunst, Tue; Markussen, Troels; Palsgaard, Mattias L. N.; Stokbro, Kurt; Brandbyge, Mads

    2017-10-01

    Phonon-assisted tunneling plays a crucial role for electronic device performance and even more so with future size down-scaling. We show how one can include this effect in large-scale first-principles calculations using a single "special thermal displacement" (STD) of the atomic coordinates at almost the same cost as elastic transport calculations, by extending the recent method of Zacharias et al. [Phys. Rev. B 94, 075125 (2016), 10.1103/PhysRevB.94.075125] to the important case of Landauer conductance. We apply the method to ultrascaled silicon devices and demonstrate the importance of phonon-assisted band-to-band and source-to-drain tunneling. In a diode the phonons lead to a rectification ratio suppression in good agreement with experiments, while in an ultrathin body transistor the phonons increase off currents by four orders of magnitude, and the subthreshold swing by a factor of 4, in agreement with perturbation theory.

  12. High-pressure/high-temperature polymorphs of energetic materials by first-principles simulations

    NASA Astrophysics Data System (ADS)

    Le, Nam; Schweigert, Igor

    2017-06-01

    Energetic molecular crystals exhibit complex phase diagrams that include solid-solid phase transitions, melting, and decomposition. Sorescu and Rice have recently demonstrated that first-principles molecular dynamics (MD) simulations based on dispersion-corrected density functional theory (DFT) can capture the α to γ phase transition in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on time scales of several picoseconds. Motivated by their work, we are using DFT-based MD to model the relative stability of solid phases in several molecular crystals. In this presentation, we report simulations of pentaerythritol tetranitrate (PETN) and 2,4,6-trinitrotoluene (TNT) under high pressures and temperatures and compare them with experimentally observed polymorphs. This work was supported by the U.S. Naval Research Laboratory via the National Research Council and by the Office of Naval Research through the U.S. Naval Research Laboratory.

  13. GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction.

    PubMed

    Curtis, Farren; Li, Xiayue; Rose, Timothy; Vázquez-Mayagoitia, Álvaro; Bhattacharya, Saswata; Ghiringhelli, Luca M; Marom, Noa

    2018-04-10

    We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.

  14. Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations.

    PubMed

    Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei

    2017-02-14

    Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiC x O 6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young's modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young's modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.

  15. Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations

    NASA Astrophysics Data System (ADS)

    Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei

    2017-02-01

    Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.

  16. First-Principle Simulations of Water

    NASA Astrophysics Data System (ADS)

    Schwegler, Eric

    2004-03-01

    The structural and dynamical properties of water are investigated with a series of first-principle and classical molecular dynamics simulations. A number of effects that can influence the simulated properties of water will be discussed including temperature, intramolecular flexibility [1], and the quantum nature of protons. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48. [1] M. Allesch, E. Schwegler, G. Galli, F. Gygi, J. Chem. Phys. in press 2004.

  17. Massively parallel first-principles simulation of electron dynamics in materials

    DOE PAGES

    Draeger, Erik W.; Andrade, Xavier; Gunnels, John A.; ...

    2017-08-01

    Here we present a highly scalable, parallel implementation of first-principles electron dynamics coupled with molecular dynamics (MD). By using optimized kernels, network topology aware communication, and by fully distributing all terms in the time-dependent Kohn–Sham equation, we demonstrate unprecedented time to solution for disordered aluminum systems of 2000 atoms (22,000 electrons) and 5400 atoms (59,400 electrons), with wall clock time as low as 7.5 s per MD time step. Despite a significant amount of non-local communication required in every iteration, we achieved excellent strong scaling and sustained performance on the Sequoia Blue Gene/Q supercomputer at LLNL. We obtained up tomore » 59% of the theoretical sustained peak performance on 16,384 nodes and performance of 8.75 Petaflop/s (43% of theoretical peak) on the full 98,304 node machine (1,572,864 cores). Lastly, scalable explicit electron dynamics allows for the study of phenomena beyond the reach of standard first-principles MD, in particular, materials subject to strong or rapid perturbations, such as pulsed electromagnetic radiation, particle irradiation, or strong electric currents.« less

  18. Massively parallel first-principles simulation of electron dynamics in materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draeger, Erik W.; Andrade, Xavier; Gunnels, John A.

    Here we present a highly scalable, parallel implementation of first-principles electron dynamics coupled with molecular dynamics (MD). By using optimized kernels, network topology aware communication, and by fully distributing all terms in the time-dependent Kohn–Sham equation, we demonstrate unprecedented time to solution for disordered aluminum systems of 2000 atoms (22,000 electrons) and 5400 atoms (59,400 electrons), with wall clock time as low as 7.5 s per MD time step. Despite a significant amount of non-local communication required in every iteration, we achieved excellent strong scaling and sustained performance on the Sequoia Blue Gene/Q supercomputer at LLNL. We obtained up tomore » 59% of the theoretical sustained peak performance on 16,384 nodes and performance of 8.75 Petaflop/s (43% of theoretical peak) on the full 98,304 node machine (1,572,864 cores). Lastly, scalable explicit electron dynamics allows for the study of phenomena beyond the reach of standard first-principles MD, in particular, materials subject to strong or rapid perturbations, such as pulsed electromagnetic radiation, particle irradiation, or strong electric currents.« less

  19. Stability of vacancy-type defect clusters in Ni based on first-principles and molecular dynamics simulations

    DOE PAGES

    Zhao, Shijun; Zhang, Yanwen; Weber, William J.

    2017-10-17

    Using first-principles calculations based on density-functional theory, the energetics of different vacancy-type defects, including voids, stacking fault tetrahedra (SFT) and vacancy loops, in Ni are investigated. It is found that voids are more stable than SFT at 0 K, which is also the case after taking into account the volumetric strains. By carrying out ab initio molecular dynamics simulations at temperatures up to 1000 K, direct transformations from vacancy loops and voids into SFT are observed. Our results suggest the importance of temperature effects in determining thermodynamic stability of vacancy clusters in face-centered cubic metals.

  20. First principles calculations of thermal conductivity with out of equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.

  1. First-principles molecular dynamics simulation of the Ca 2UO 2(CO 3) 3 complex in water

    DOE PAGES

    Priest, Chad; Tian, Ziqi; Jiang, De-en

    2016-01-22

    Recent experiments have shown that the neutral Ca 2UO 2(CO 3) 3 complex is the dominant species of uranium in many uranyl-containing streams. However, the structure and solvation of such a species in water has not been investigated from first principles. Herein we present a first principles molecular dynamics perspective of the Ca 2UO 2(CO 3) 3 complex in water based on density functional theory and Born–Oppenheimer approximation. We find that the Ca 2UO 2(CO 3) 3 complex is very stable in our simulation timeframe for three different concentrations considered and that the key distances from our simulation are inmore » good agreement with the experimental data from extended X-ray absorption fine structure (EXAFS) spectroscopy. More important, we find that the two Ca ions bind differently in the complex, as a result of the hydrogen-bonding network around the whole complex. Furthermore, this finding invites confirmation from time-resolved EXAFS and has implications in understanding the dissociative equilibrium of the Ca 2UO 2(CO 3) 3 complex in water.« less

  2. Excitons in molecular crystals from first-principles many-body perturbation theory: Picene versus pentacene

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel

    2012-11-01

    By solving the first-principles many-body Bethe-Salpeter equation, we compare the optical properties of two prototype and technological relevant organic molecular crystals: picene and pentacene. Albeit very similar for the structural and electronic properties, picene and pentacene show remarkable differences in their optical spectra. While for pentacene the absorption onset is due to a charge-transfer exciton, in picene it is related to a strongly localized Frenkel exciton. The detailed comparison between the two materials allows us to discuss, on general grounds, how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. It represents a clear example of the relevance of the competition between localization and delocalization in the description of two-particle electronic correlation.

  3. First-Principles pH Theory

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Zhang, S. B.

    2006-03-01

    Despite being one of the most important macroscopic measures and a long history even before the quantum mechanics, the concept of pH has rarely been mentioned in microscopic theories, nor being incorporated computationally into first-principles theory of aqueous solutions. Here, we formulate a theory for the pH dependence of solution formation energy by introducing the proton chemical potential as the microscopic counterpart of pH in atomistic solution models. Within the theory, the general acid-base chemistry can be cast in a simple pictorial representation. We adopt density-functional molecular dynamics to demonstrate the usefulness of the method by studying a number of solution systems including water, small solute molecules such as NH3 and HCOOH, and more complex amino acids with several functional groups. For pure water, we calculated the auto- ionization constant to be 13.2 with a 95 % accuracy. For other solutes, the calculated dissociation constants, i.e., the so- called pKa, are also in reasonable agreement with experiments. Our first-principles pH theory can be readily applied to broad solution chemistry problems such as redox reactions.

  4. First-principles calculation of the optical properties of an amphiphilic cyanine dye aggregate.

    PubMed

    Haverkort, Frank; Stradomska, Anna; de Vries, Alex H; Knoester, Jasper

    2014-02-13

    Using a first-principles approach, we calculate electronic and optical properties of molecular aggregates of the dye amphi-pseudoisocyanine, whose structures we obtained from molecular dynamics (MD) simulations of the self-aggregation process. Using quantum chemistry methods, we translate the structural information into an effective time-dependent Frenkel exciton Hamiltonian for the dominant optical transitions in the aggregate. This Hamiltonian is used to calculate the absorption spectrum. Detailed analysis of the dynamic fluctuations in the molecular transition energies and intermolecular excitation transfer interactions in this Hamiltonian allows us to elucidate the origin of the relevant time scales; short time scales, on the order of up to a few hundreds of femtoseconds, result from internal motions of the dye molecules, while the longer (a few picosecond) time scales we ascribe to environmental motions. The absorption spectra of the aggregate structures obtained from MD feature a blue-shifted peak compared to that of the monomer; thus, our aggregates can be classified as H-aggregates, although considerable oscillator strength is carried by states along the entire exciton band. Comparison to the experimental absorption spectrum of amphi-PIC aggregates shows that the simulated line shape is too wide, pointing to too much disorder in the internal structure of the simulated aggregates.

  5. Current rectification by self-assembled molecular quantum dots from first principles

    NASA Astrophysics Data System (ADS)

    Larade, Brian; Bratkovsky, Alexander

    2003-03-01

    We present results of first-principles calculations of the current rectification by self-assembled molecular quantum dots. Molecules of that kind should be synthesized with a central conjugated (narrow band-gap) part, and two peripheral saturated (wide band-gap) barrier groups of substantially different lengths L1 and L_2. The peripheral groups must end with chemical Â"anchorÂ" groups, enabling attachment of the molecule to the electrodes. In such molecules, if they are not longer than about 2-3 nm, the electron transport is likely to proceed by resonant tunneling through molecular orbitals (MO) centered on the conjugated part of the molecule (Â"quantum dotÂ") [1,2]. Generally, either LUMO (lowest unoccupied MO) or HOMO (highest occupied MO) will be most transparent to the tunneling electrons because of their different coupling to electrodes. We have studied (i) single benzene ring C6H6 [2] and (ii) naphthalene C10H8, separated from gold electrodes by alkane chains of different lengths with the use of the non-equilibrium Green's function method and self-consistent density-functional theory. The results show significant changes in electron density and potential distribution in the vicinity of molecule-electrode contact. In the case of a naphthalene quantum dot, separated from electrodes by asymmetric alkane groups (CH2)2 and (CH2)6, the I-V curve shows current rectification on the order of ˜ 10^2. [1] A.M. Bratkovsky and P.E. Kornilovitch, Phys. Rev. B (2002), to be published. [2] P. E. Kornilovitch, A.M. Bratkovsky, and R.S. Williams, Phys. Rev. B 66, 165436 (2002).

  6. Principle of Parsimony, Fake Science, and Scales

    NASA Astrophysics Data System (ADS)

    Yeh, T. C. J.; Wan, L.; Wang, X. S.

    2017-12-01

    Considering difficulties in predicting exact motions of water molecules, and the scale of our interests (bulk behaviors of many molecules), Fick's law (diffusion concept) has been created to predict solute diffusion process in space and time. G.I. Taylor (1921) demonstrated that random motion of the molecules reach the Fickian regime in less a second if our sampling scale is large enough to reach ergodic condition. Fick's law is widely accepted for describing molecular diffusion as such. This fits the definition of the parsimony principle at the scale of our concern. Similarly, advection-dispersion or convection-dispersion equation (ADE or CDE) has been found quite satisfactory for analysis of concentration breakthroughs of solute transport in uniformly packed soil columns. This is attributed to the solute is often released over the entire cross-section of the column, which has sampled many pore-scale heterogeneities and met the ergodicity assumption. Further, the uniformly packed column contains a large number of stationary pore-size heterogeneity. The solute thus reaches the Fickian regime after traveling a short distance along the column. Moreover, breakthrough curves are concentrations integrated over the column cross-section (the scale of our interest), and they meet the ergodicity assumption embedded in the ADE and CDE. To the contrary, scales of heterogeneity in most groundwater pollution problems evolve as contaminants travel. They are much larger than the scale of our observations and our interests so that the ergodic and the Fickian conditions are difficult. Upscaling the Fick's law for solution dispersion, and deriving universal rules of the dispersion to the field- or basin-scale pollution migrations are merely misuse of the parsimony principle and lead to a fake science ( i.e., the development of theories for predicting processes that can not be observed.) The appropriate principle of parsimony for these situations dictates mapping of large-scale

  7. Lattice thermal conductivity of monolayer AsP from first-principles molecular dynamics.

    PubMed

    Sun, Yajing; Shuai, Zhigang; Wang, Dong

    2018-05-23

    Few-layered arsenic-phosphorus alloys, AsxP(1-x), with a puckered structure have been recently synthesized and demonstrated with fully tunable band gaps and optical properties. It is predicted that the carrier mobility of monolayer AsP compounds is even higher than that of black phosphorene (b-P). The anisotropic and orthogonal electrical and thermal transport properties of the puckered group VA elements make them intriguing materials for thermoelectric applications. Herein, we investigated the thermal transport properties of AsP based on first-principles molecular dynamics and the Boltzmann transport equation. We reveal that monolayer AsP with three different chemical structures possesses thermal conductivities lower than b-P, but with increased anisotropy. Further, these structures behave profoundly different on heat conduction. This can be attributed to the distinct low-frequency optical modes associated with their bonding nature. Our results highlight the impact of atomic arrangement on the thermal conductivity of AsP, and the structure-property relationship established may guide the fabrication of thermoelectric materials via the engineered alloying method.

  8. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo

    2015-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.

  9. Scaling laws for ignition at the National Ignition Facility from first principles.

    PubMed

    Cheng, Baolian; Kwan, Thomas J T; Wang, Yi-Ming; Batha, Steven H

    2013-10-01

    We have developed an analytical physics model from fundamental physics principles and used the reduced one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel. When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees with recent measurements.

  10. First-principles simulations of heat transport

    NASA Astrophysics Data System (ADS)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  11. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  12. First-principles study of complex material systems

    NASA Astrophysics Data System (ADS)

    He, Lixin

    This thesis covers several topics concerning the study of complex materials systems by first-principles methods. It contains four chapters. A brief, introductory motivation of this work will be given in Chapter 1. In Chapter 2, I will give a short overview of the first-principles methods, including density-functional theory (DFT), planewave pseudopotential methods, and the Berry-phase theory of polarization in crystallines insulators. I then discuss in detail the locality and exponential decay properties of Wannier functions and of related quantities such as the density matrix, and their application in linear-scaling algorithms. In Chapter 3, I investigate the interaction of oxygen vacancies and 180° domain walls in tetragonal PbTiO3 using first-principles methods. Our calculations indicate that the oxygen vacancies have a lower formation energy in the domain wall than in the bulk, thereby confirming the tendency of these defects to migrate to, and pin, the domain walls. The pinning energies are reported for each of the three possible orientations of the original Ti--O--Ti bonds, and attempts to model the results with simple continuum models are discussed. CaCu3Ti4O12 (CCTO) has attracted a lot of attention recently because it was found to have an enormous dielectric response over a very wide temperature range. In Chapter 4, I study the electronic and lattice structure, and the lattice dynamical properties, of this system. Our first-principles calculations together with experimental results point towards an extrinsic mechanism as the origin of the unusual dielectric response.

  13. First-principle simulations of electronic structure in semicrystalline polyethylene

    NASA Astrophysics Data System (ADS)

    Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.

    2017-05-01

    In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.

  14. Free-energy analyses of a proton transfer reaction by simulated-tempering umbrella sampling and first-principles molecular dynamics simulations.

    PubMed

    Mori, Yoshiharu; Okamoto, Yuko

    2013-02-01

    A simulated tempering method, which is referred to as simulated-tempering umbrella sampling, for calculating the free energy of chemical reactions is proposed. First principles molecular dynamics simulations with this simulated tempering were performed to study the intramolecular proton transfer reaction of malonaldehyde in an aqueous solution. Conformational sampling in reaction coordinate space can be easily enhanced with this method, and the free energy along a reaction coordinate can be calculated accurately. Moreover, the simulated-tempering umbrella sampling provides trajectory data more efficiently than the conventional umbrella sampling method.

  15. The Global Optimization of Pt13 Cluster Using the First-Principle Molecular Dynamics with the Quenching Technique

    NASA Astrophysics Data System (ADS)

    Chen, Xiangping; Duan, Haiming; Cao, Biaobing; Long, Mengqiu

    2018-03-01

    The high-temperature first-principle molecular dynamics method used to obtain the low energy configurations of clusters [L. L. Wang and D. D. Johnson, PRB 75, 235405 (2007)] is extended to a considerably large temperature range by combination with the quenching technique. Our results show that there are strong correlations between the possibilities for obtaining the ground-state structure and the temperatures. Larger possibilities can be obtained at relatively low temperatures (as corresponds to the pre-melting temperature range). Details of the structural correlation with the temperature are investigated by taking the Pt13 cluster as an example, which suggests a quite efficient method to obtain the lowest-energy geometries of metal clusters.

  16. First-principles study of hydrogen-bonded molecular conductor κ -H3(Cat-EDT-TTF/ST)2

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Seo, Hitoshi; Kato, Reizo; Miyazaki, Tsuyoshi

    2015-07-01

    We theoretically study hydrogen-bonded molecular conductors synthesized recently, κ -H3(Cat-EDT-TTF) 2 and its diselena analog, κ -H3(Cat-EDT-ST) 2, by first-principles density functional theory calculations. In these crystals, two H(Cat-EDT-TTF/ST) units share a hydrogen atom with a short O-H-O hydrogen bond. The calculated band structure near the Fermi level shows a quasi-two-dimensional character with a rather large interlayer dispersion due to the absence of insulating layers, in contrast with conventional molecular conductors. We discuss effective low-energy models based on H(Cat-EDT-TTF/ST) units and its dimers, respectively, where the microscopic character of the orbitals composing them are analyzed. Furthermore, we find a stable structure which is different from the experimentally determined structure, where the shared hydrogen atom becomes localized to one of the oxygen atoms, in which charge disproportionation between the two types of H(Cat-EDT-TTF) units is associated. The calculated potential energy surface for the H atom is very shallow near the minimum points; therefore the probability of the H atom can be delocalized between the two O atoms.

  17. Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters

    PubMed Central

    2017-01-01

    Metal–molecule–metal junctions are the key components of molecular electronics circuits. Gaining a microscopic understanding of their conducting properties is central to advancing the field. In the present contribution, we highlight the fundamental differences between single-molecule and ensemble junctions focusing on the fundamentals of transport through molecular clusters. In this way, we elucidate the collective behavior of parallel molecular wires, bridging the gap between single molecule and large-area monolayer electronics, where even in the latter case transport is usually dominated by finite-size islands. On the basis of first-principles charge-transport simulations, we explain why the scaling of the conductivity of a junction has to be distinctly nonlinear in the number of molecules it contains. Moreover, transport through molecular clusters is found to be highly inhomogeneous with pronounced edge effects determined by molecules in locally different electrostatic environments. These effects are most pronounced for comparably small clusters, but electrostatic considerations show that they prevail also for more extended systems. PMID:29043825

  18. Materials Databases Infrastructure Constructed by First Principles Calculations: A Review

    DOE PAGES

    Lin, Lianshan

    2015-10-13

    The First Principles calculations, especially the calculation based on High-Throughput Density Functional Theory, have been widely accepted as the major tools in atom scale materials design. The emerging super computers, along with the powerful First Principles calculations, have accumulated hundreds of thousands of crystal and compound records. The exponential growing of computational materials information urges the development of the materials databases, which not only provide unlimited storage for the daily increasing data, but still keep the efficiency in data storage, management, query, presentation and manipulation. This review covers the most cutting edge materials databases in materials design, and their hotmore » applications such as in fuel cells. By comparing the advantages and drawbacks of these high-throughput First Principles materials databases, the optimized computational framework can be identified to fit the needs of fuel cell applications. The further development of high-throughput DFT materials database, which in essence accelerates the materials innovation, is discussed in the summary as well.« less

  19. First-principles study of the variation of electron transport in a single molecular junction with the length of the molecular wire

    NASA Astrophysics Data System (ADS)

    Pal, Partha Pratim; Pati, Ranjit

    2010-07-01

    We report a first-principles study of quantum transport in a prototype two-terminal device consisting of a molecular nanowire acting as an inter-connect between two gold electrodes. The wire is composed of a series of bicyclo[1.1.1]pentane (BCP) cage-units. The length of the wire (L) is increased by sequentially increasing the number of BCP cage units in the wire from 1 to 3. A two terminal model device is made out of each of the three wires. A parameter free, nonequilibrium Green’s function approach, in which the bias effect is explicitly included within a many body framework, is used to calculate the current-voltage characteristics of each of the devices. In the low bias regime that is considered in our study, the molecular devices are found to exhibit Ohmic behavior with resistances of 0.12, 1.4, and 6.5μΩ for the wires containing one, two, and three cages respectively. Thus the conductance value, Gc , which is the reciprocal of resistance, decreases as e-βL with a decay constant (β) of 0.59Å-1 . This observed variation of conductance with the length of the wire is in excellent agreement with the earlier reported exponential decay feature of the electron transfer rate predicted from the electron transfer coupling matrix values obtained using the two-state Marcus-Hush model and the Koopman’s theorem approximation. The downright suppression of the computed electrical current for a bias up to 0.4 V in the longest wire can be exploited in designing a three terminal molecular transistor; this molecular wire could potentially be used as a throttle to avoid leakage gate current.

  20. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation.

    PubMed

    Tao, Yehan; Xue, Qingzhong; Liu, Zilong; Shan, Meixia; Ling, Cuicui; Wu, Tiantian; Li, Xiaofang

    2014-06-11

    First-principle density functional theory (DFT) calculation and molecular dynamic (MD) simulation are employed to investigate the hydrogen purification performance of two-dimensional porous graphene material (PG-ESX). First, the pore size of PG-ES1 (3.2775 Å) is expected to show high selectivity of H2 by DFT calculation. Then MD simulations demonstrate the hydrogen purification process of the PG-ESX membrane. The results indicate that the selectivity of H2 over several other gas molecules that often accompany H2 in industrial steam methane reforming or dehydrogenation of alkanes (such as N2, CO, and CH4) is sensitive to the pore size of the membrane. PG-ES and PG-ES1 membranes both exhibit high selectivity for H2 over other gases, but the permeability of the PG-ES membrane is much lower than the PG-ES1 membrane because of the smaller pore size. The PG-ES2 membrane with bigger pores demonstrates low selectivity for H2 over other gases. Energy barrier and electron density have been used to explain the difference of selectivity and permeability of PG-ESX membranes by DFT calculations. The energy barrier for gas molecules passing through the membrane generally increase with the decreasing of pore sizes or increasing of molecule kinetic diameter, due to the different electron overlap between gas and a membrane. The PG-ES1 membrane is far superior to other carbon membranes and has great potential applications in hydrogen purification, energy clean combustion, and making new concept membrane for gas separation.

  1. First-principles molecular dynamics study of water dissociation on the γ-U(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2015-05-01

    Based on first-principles molecular dynamics simulations at finite temperatures, we systematically study the adsorption and dissociation of water molecules on the γ-U(1 0 0) surface. We predict that water molecules spontaneously dissociate upon approaching the native γ-U(1 0 0) surface. The dissociation results from electronic interactions between surface uranium 6d states and 1b2, 3a1, and 1b1 molecular orbitals of water. With segregated Nb atoms existing on the surface, adsorbing water molecules also dissociate spontaneously because Nb 3d electronic states can also interact with the molecular orbitals similarly. After dissociation, the isolated hydrogen atoms are found to diffuse fast on both the γ-U surface and that with a surface substitutional Nb atom, which is very similar to the ‘Hot-Atom’ dissociation of oxygen molecules on the Al(1 1 1) surface. From a series of consecutive molecular dynamics simulations, we further reveal that on both the γ-U surface and that with a surface substitutional Nb atom, one surface U atom will be pulled out to form the U-O-U structure after dissociative adsorption of 0.44 ML water molecules. This result indicates that oxide nucleus can form at low coverage of water adsorption on the two surfaces.

  2. Disordered crystals from first principles I: Quantifying the configuration space

    NASA Astrophysics Data System (ADS)

    Kühne, Thomas D.; Prodan, Emil

    2018-04-01

    This work represents the first chapter of a project on the foundations of first-principle calculations of the electron transport in crystals at finite temperatures. We are interested in the range of temperatures, where most electronic components operate, that is, room temperature and above. The aim is a predictive first-principle formalism that combines ab-initio molecular dynamics and a finite-temperature Kubo-formula for homogeneous thermodynamic phases. The input for this formula is the ergodic dynamical system (Ω , G , dP) defining the thermodynamic crystalline phase, where Ω is the configuration space for the atomic degrees of freedom, G is the space group acting on Ω and dP is the ergodic Gibbs measure relative to the G-action. The present work develops an algorithmic method for quantifying (Ω , G , dP) from first principles. Using the silicon crystal as a working example, we find the Gibbs measure to be extremely well characterized by a multivariate normal distribution, which can be quantified using a small number of parameters. The latter are computed at various temperatures and communicated in the form of a table. Using this table, one can generate large and accurate thermally-disordered atomic configurations to serve, for example, as input for subsequent simulations of the electronic degrees of freedom.

  3. Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian; Scheffler, Matthias

    In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.

  4. First-principles calculations of novel materials

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng

    Computational material simulation is becoming more and more important as a branch of material science. Depending on the scale of the systems, there are many simulation methods, i.e. first-principles calculation (or ab-initio), molecular dynamics, mesoscale methods and continuum methods. Among them, first-principles calculation, which involves density functional theory (DFT) and based on quantum mechanics, has become to be a reliable tool in condensed matter physics. DFT is a single-electron approximation in solving the many-body problems. Intrinsically speaking, both DFT and ab-initio belong to the first-principles calculation since the theoretical background of ab-initio is Hartree-Fock (HF) approximation and both are aimed at solving the Schrodinger equation of the many-body system using the self-consistent field (SCF) method and calculating the ground state properties. The difference is that DFT introduces parameters either from experiments or from other molecular dynamic (MD) calculations to approximate the expressions of the exchange-correlation terms. The exchange term is accurately calculated but the correlation term is neglected in HF. In this dissertation, DFT based first-principles calculations were performed for all the novel materials and interesting materials introduced. Specifically, the DFT theory together with the rationale behind related properties (e.g. electronic, optical, defect, thermoelectric, magnetic) are introduced in Chapter 2. Starting from Chapter 3 to Chapter 5, several representative materials were studied. In particular, a new semiconducting oxytelluride, Ba2TeO is studied in Chapter 3. Our calculations indicate a direct semiconducting character with a band gap value of 2.43 eV, which agrees well with the optical experiment (˜ 2.93 eV). Moreover, the optical and defects properties of Ba2TeO are also systematically investigated with a view to understanding its potential as an optoelectronic or transparent conducting material. We find

  5. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics

    PubMed Central

    Kohanoff, Jorge

    2017-01-01

    Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile’s energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules. PMID:28267804

  6. Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws.

    PubMed

    Auffray, Charles; Nottale, Laurent

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, and discuss how scale laws of increasing complexity can be used to model and understand the behaviour of complex biological systems. In scale relativity theory, the geometry of space is considered to be continuous but non-differentiable, therefore fractal (i.e., explicitly scale-dependent). One writes the equations of motion in such a space as geodesics equations, under the constraint of the principle of relativity of all scales in nature. To this purpose, covariant derivatives are constructed that implement the various effects of the non-differentiable and fractal geometry. In this first review paper, the scale laws that describe the new dependence on resolutions of physical quantities are obtained as solutions of differential equations acting in the scale space. This leads to several possible levels of description for these laws, from the simplest scale invariant laws to generalized laws with variable fractal dimensions. Initial applications of these laws to the study of species evolution, embryogenesis and cell confinement are discussed.

  7. Understanding the Conductance of Single-Molecule Junctions from First Principles

    NASA Astrophysics Data System (ADS)

    Quek, Su Ying

    2008-03-01

    Discovering the anatomy of single-molecule junctions, in order to exploit their transport behavior, poses fundamental challenges to nanoscience. First-principles calculations based on density-functional theory (DFT) can, together with experiment, provide detailed atomic-scale insights into the transport properties, and their relation to junction structure and electronic properties. Here, a DFT scattering state approach [1] is used to explore the single-molecule conductance of two prototypical junctions as a function of junction geometry, in the context of recent experiments. First, the computed conductance of 15 distinct benzene-diamine-Au junctions is compared to a large robust experimental data set [2]. The amine-gold bonding is shown to be highly selective, but flexible, resulting in a conductance that is insensitive to other details of the junction structure. The range of computed conductance corresponds well to the narrow distribution in experiment, although the average calculated conductance is approximately 7 times larger. This discrepancy is attributed to the absence of many-electron corrections in the DFT molecular orbital energies; a simple physically-motivated estimate for the self-energy corrections results in a conductance that is much closer to experiment [3]. Second, similar first-principles techniques are applied to a range of bipyridine-Au junctions. The extent to which Au-pyridine link bonding is affected by the constraints of forming bipyridine-Au junctions is investigated. In some contrast to the amine case, the computed conductance shows a strong sensitivity to the tilt of the bipyridine rings relative to the Au surfaces. Experiments probing the conductance of bipyridine-Au junctions are discussed in the context of these findings. [1] H. J. Choi et al, Phys Rev B, 76, 155420 (2007) [2] L. Venkataraman et al, Nano Lett 6, 458 (2006) [3] S. Y. Quek et al, Nano Lett. 7, 3477 (2007)

  8. First-principles study of the binding energy between nanostructures and its scaling with system size

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Jiao, Yang; Mo, Yuxiang; Yang, Zeng-Hui; Zhu, Jian-Xin; Hyldgaard, Per; Perdew, John P.

    2018-04-01

    The equilibrium van der Waals binding energy is an important factor in the design of materials and devices. However, it presents great computational challenges for materials built up from nanostructures. Here we investigate the binding-energy scaling behavior from first-principles calculations. We show that the equilibrium binding energy per atom between identical nanostructures can scale up or down with nanostructure size, but can be parametrized for large N with an analytical formula (in meV/atom), Eb/N =a +b /N +c /N2+d /N3 , where N is the number of atoms in a nanostructure and a , b , c , and d are fitting parameters, depending on the properties of a nanostructure. The formula is consistent with a finite large-size limit of binding energy per atom. We find that there are two competing factors in the determination of the binding energy: Nonadditivities of van der Waals coefficients and center-to-center distance between nanostructures. To decode the detail, the nonadditivity of the static multipole polarizability is investigated from an accurate spherical-shell model. We find that the higher-order multipole polarizability displays ultrastrong intrinsic nonadditivity, no matter if the dipole polarizability is additive or not.

  9. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  10. Understanding Lithium Solvation and Diffusion through Topological Analysis of First-Principles Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Harsh; Gyulassy, Attila; Ong, Mitchell

    2016-09-27

    The performance of lithium-ion batteries is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact, both, the solvation and diffusivity of Li ions. In this work, we present our application of the topological techniques to extract and predict such behavior in the data generated by the first-principles molecular dynamics simulation of Li ions in an important organic solvent -ethylene carbonate. More specifically, we use the scalar topology of the electron charge density field tomore » analyze the evolution of the solvation structures. This allows us to derive a parameter-free bond definition for lithium-oxygen bonds, to provide a quantitative measure for bond strength, and to understand the regions of influence of each atom in the simulation. This has provided new insights into how and under what conditions certain bonds may form and break. As a result, we can identify and, more importantly, predict, unstable configurations in solvation structures. This can be very useful in understanding when small changes to the atoms' movements can cause significantly different bond structures to evolve. Ultimately, this promises to allow scientists to explore lithium ion solvation and diffusion more systematically, with the aim of new insights and potentially accelerating the calculations themselves.« less

  11. Time-dependent vibrational spectral analysis of first principles trajectory of methylamine with wavelet transform.

    PubMed

    Biswas, Sohag; Mallik, Bhabani S

    2017-04-12

    The fluctuation dynamics of amine stretching frequencies, hydrogen bonds, dangling N-D bonds, and the orientation profile of the amine group of methylamine (MA) were investigated under ambient conditions by means of dispersion-corrected density functional theory-based first principles molecular dynamics (FPMD) simulations. Along with the dynamical properties, various equilibrium properties such as radial distribution function, spatial distribution function, combined radial and angular distribution functions and hydrogen bonding were also calculated. The instantaneous stretching frequencies of amine groups were obtained by wavelet transform of the trajectory obtained from FPMD simulations. The frequency-structure correlation reveals that the amine stretching frequency is weakly correlated with the nearest nitrogen-deuterium distance. The frequency-frequency correlation function has a short time scale of around 110 fs and a longer time scale of about 1.15 ps. It was found that the short time scale originates from the underdamped motion of intact hydrogen bonds of MA pairs. However, the long time scale of the vibrational spectral diffusion of N-D modes is determined by the overall dynamics of hydrogen bonds as well as the dangling ND groups and the inertial rotation of the amine group of the molecule.

  12. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics.

    PubMed

    Ong, Mitchell T; Verners, Osvalds; Draeger, Erik W; van Duin, Adri C T; Lordi, Vincenzo; Pask, John E

    2015-01-29

    Lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF6(-) anion. Li(+) prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li(+) solvation. Corresponding analysis for the PF6(-) anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. These results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.

  13. Solvation of Na^+ in water from first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    White, J. A.; Schwegler, E.; Galli, G.; Gygi, F.

    2000-03-01

    We have carried out ab initio molecular dynamics (MD) simulations of the Na^+ ion in water with an MD cell containing a single alkali ion and 53 water molecules. The electron-electron and electron-ion interactions were modeled by density functional theory with a generalized gradient approximation for the exchange-correlation functional. The computed radial distribution functions, coordination numbers, and angular distributions are consistent with available experimental data. The first solvation shell contains 5.2±0.6 water molecules, with some waters occasionally exchanging with those of the second shell. The computed Na^+ hydration number is larger than that from calculations for water clusters surrounding an Na^+ ion, but is consistent with that derived from x-ray measurements. Our results also indicate that the first hydration shell is better defined for Na^+ than for K^+ [1], as indicated by the first minimum in the Na-O pair distribution function. [1] L.M. Ramaniah, M. Bernasconi, and M. Parrinello, J. Chem. Phys. 111, 1587 (1999). This work was performed for DOE under contract W-7405-ENG-48.

  14. High resolution transmission electron microscope Imaging and first-principles simulations of atomic-scale features in graphene membrane

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bhandari, Sagar; Yi, Wei; Bell, David; Westervelt, Robert; Kaxiras, Efthimios

    2012-02-01

    Ultra-thin membranes such as graphene[1] are of great importance for basic science and technology applications. Graphene sets the ultimate limit of thinness, demonstrating that a free-standing single atomic layer not only exists but can be extremely stable and strong [2--4]. However, both theory [5, 6] and experiments [3, 7] suggest that the existence of graphene relies on intrinsic ripples that suppress the long-wavelength thermal fluctuations which otherwise spontaneously destroy long range order in a two dimensional system. Here we show direct imaging of the atomic features in graphene including the ripples resolved using monochromatic aberration-corrected transmission electron microscopy (TEM). We compare the images observed in TEM with simulated images based on an accurate first-principles total potential. We show that these atomic scale features can be mapped through accurate first-principles simulations into high resolution TEM contrast. [1] Geim, A. K. & Novoselov, K. S. Nat. Mater. 6, 183-191, (2007). [2] Novoselov, K. S.et al. Science 306, 666-669, (2004). [3] Meyer, J. C. et al. Nature 446, 60-63, (2007). [4] Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Science 321, 385-388, (2008). [5] Nelson, D. R. & Peliti, L. J Phys-Paris 48, 1085-1092, (1987). [6] Fasolino, A., Los, J. H. & Katsnelson, M. I. Nat. Mater. 6, 858-861, (2007). [7] Meyer, J. C. et al. Solid State Commun. 143, 101-109, (2007).

  15. Surface structure in simple liquid metals: An orbital-free first-principles study

    NASA Astrophysics Data System (ADS)

    González, D. J.; González, L. E.; Stott, M. J.

    2006-07-01

    Molecular dynamics simulations of the liquid-vapor interfaces in simple sp-bonded liquid metals have been performed using first-principles methods. Results are presented for liquid Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl, and Si at thermodynamic conditions near their respective triple points, for samples of 2000 particles in a slab geometry. The longitudinal ionic density profiles exhibit a pronounced stratification extending several atomic diameters into the bulk, which is a feature already experimentally observed in liquid K, Ga, In, Sn, and Hg. The wavelength of the ionic oscillations shows a good scaling with the radii of the associated Wigner-Seitz spheres. The structural rearrangements at the interface are analyzed in terms of the transverse pair correlation function, the coordination number, and the bond-angle distribution between nearest neighbors. The valence electronic density profile also shows (weaker) oscillations whose phase, with respect to those of the ionic profile, changes from opposite phase in the alkalis to almost in-phase for Si.

  16. Protection of DNA against low-energy electrons by amino acids: a first-principles molecular dynamics study.

    PubMed

    Gu, Bin; Smyth, Maeve; Kohanoff, Jorge

    2014-11-28

    Using first-principles molecular dynamics simulations, we have investigated the notion that amino acids can play a protective role when DNA is exposed to excess electrons produced by ionizing radiation. In this study we focus on the interaction of glycine with the DNA nucleobase thymine. We studied thymine-glycine dimers and a condensed phase model consisting of one thymine molecule solvated in amorphous glycine. Our results show that the amino acid acts as a protective agent for the nucleobase in two ways. If the excess electron is initially captured by the thymine, then a proton is transferred in a barrier-less way from a neighboring hydrogen-bonded glycine. This stabilizes the excess electron by reducing the net partial charge on the thymine. In the second mechanism the excess electron is captured by a glycine, which acts as a electron scavenger that prevents electron localization in DNA. Both these mechanisms introduce obstacles to further reactions of the excess electron within a DNA strand, e.g. by raising the free energy barrier associated with strand breaks.

  17. First-order metal-insulator transitions in vanadates from first principles

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Rabe, Karin

    2013-03-01

    Materials that exhibit first-order metal-insulator transitions, with the accompanying abrupt change in the conductivity, have potential applications as switches in future electronic devices. Identification of materials and exploration of the atomic-scale mechanisms for switching between the two electronic states is a focus of current research. In this work, we search for first-order metal-insulator transitions in transition metal compounds, with a particular focus on d1 and d2 systems, by using first principles calculations to screen for an alternative low-energy state having not only a electronic character opposite to that of the ground state, but a distinct structure and/or magnetic ordering which would permit switching by an applied field or stress. We will present the results of our investigation of the perovskite compounds SrVO3, LaVO3, CaVO3, YVO3, LaTiO3 and related layered phase, including superlattices and Ruddlesden-Popper phases. While the pure compounds do not satisfy the search criteria, the layered phases show promising results.

  18. First-principles Monte Carlo simulations of reaction equilibria in compressed vapors

    DOE PAGES

    Fetisov, Evgenii O.; Kuo, I-Feng William; Knight, Chris; ...

    2016-06-13

    Predictive modeling of reaction equilibria presents one of the grand challenges in the field of molecular simulation. Difficulties in the study of such systems arise from the need (i) to accurately model both strong, short-ranged interactions leading to the formation of chemical bonds and weak interactions arising from the environment, and (ii) to sample the range of time scales involving frequent molecular collisions, slow diffusion, and infrequent reactive events. Here we present a novel reactive first-principles Monte Carlo (RxFPMC) approach that allows for investigation of reaction equilibria without the need to prespecify a set of chemical reactions and their ideal-gasmore » equilibrium constants. We apply RxFPMC to investigate a nitrogen/oxygen mixture at T = 3000 K and p = 30 GPa, i.e., conditions that are present in atmospheric lightning strikes and explosions. The RxFPMC simulations show that the solvation environment leads to a significantly enhanced NO concentration that reaches a maximum when oxygen is present in slight excess. In addition, the RxFPMC simulations indicate the formation of NO 2 and N 2O in mole fractions approaching 1%, whereas N 3 and O 3 are not observed. Lastly, the equilibrium distributions obtained from the RxFPMC simulations agree well with those from a thermochemical computer code parametrized to experimental data.« less

  19. First-principles Monte Carlo simulations of reaction equilibria in compressed vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetisov, Evgenii O.; Kuo, I-Feng William; Knight, Chris

    Predictive modeling of reaction equilibria presents one of the grand challenges in the field of molecular simulation. Difficulties in the study of such systems arise from the need (i) to accurately model both strong, short-ranged interactions leading to the formation of chemical bonds and weak interactions arising from the environment, and (ii) to sample the range of time scales involving frequent molecular collisions, slow diffusion, and infrequent reactive events. Here we present a novel reactive first-principles Monte Carlo (RxFPMC) approach that allows for investigation of reaction equilibria without the need to prespecify a set of chemical reactions and their ideal-gasmore » equilibrium constants. We apply RxFPMC to investigate a nitrogen/oxygen mixture at T = 3000 K and p = 30 GPa, i.e., conditions that are present in atmospheric lightning strikes and explosions. The RxFPMC simulations show that the solvation environment leads to a significantly enhanced NO concentration that reaches a maximum when oxygen is present in slight excess. In addition, the RxFPMC simulations indicate the formation of NO 2 and N 2O in mole fractions approaching 1%, whereas N 3 and O 3 are not observed. Lastly, the equilibrium distributions obtained from the RxFPMC simulations agree well with those from a thermochemical computer code parametrized to experimental data.« less

  20. First-Principles Monte Carlo Simulations of Reaction Equilibria in Compressed Vapors

    PubMed Central

    2016-01-01

    Predictive modeling of reaction equilibria presents one of the grand challenges in the field of molecular simulation. Difficulties in the study of such systems arise from the need (i) to accurately model both strong, short-ranged interactions leading to the formation of chemical bonds and weak interactions arising from the environment, and (ii) to sample the range of time scales involving frequent molecular collisions, slow diffusion, and infrequent reactive events. Here we present a novel reactive first-principles Monte Carlo (RxFPMC) approach that allows for investigation of reaction equilibria without the need to prespecify a set of chemical reactions and their ideal-gas equilibrium constants. We apply RxFPMC to investigate a nitrogen/oxygen mixture at T = 3000 K and p = 30 GPa, i.e., conditions that are present in atmospheric lightning strikes and explosions. The RxFPMC simulations show that the solvation environment leads to a significantly enhanced NO concentration that reaches a maximum when oxygen is present in slight excess. In addition, the RxFPMC simulations indicate the formation of NO2 and N2O in mole fractions approaching 1%, whereas N3 and O3 are not observed. The equilibrium distributions obtained from the RxFPMC simulations agree well with those from a thermochemical computer code parametrized to experimental data. PMID:27413785

  1. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    DOE PAGES

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...

    2015-12-17

    Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less

  2. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics

    DOE PAGES

    Ong, Mitchell T.; Verners, Osvalds; Draeger, Erik W.; ...

    2014-12-19

    We report that lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF more » $$\\bar{6}$$ anion. Li + prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li + solvation. Corresponding analysis for the PF $$\\bar{6}$$ anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. In conclusion, these results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.« less

  3. First principles calculations for liquids and solids using maximally localized Wannier functions

    NASA Astrophysics Data System (ADS)

    Swartz, Charles W., VI

    The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can

  4. Combination of first-principles molecular dynamics and XANES simulations for LiCoO2-electrolyte interfacial reactions in a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Tamura, Tomoyuki; Kohyama, Masanori; Ogata, Shuji

    2017-07-01

    We performed a first-principles molecular dynamics (FPMD) simulation of the interfacial reactions between a LiCoO2 electrode and a liquid ethylene carbonate (EC) electrolyte. For configurations during the FPMD simulation, we also performed first-principles Co K-edge x-ray absorption near-edge structure (XANES) simulations, which can properly reproduce the bulk and surface spectra of LiCoO2. We observed strong absorption of an EC molecule on the LiCoO2 {110} surface, involving ring opening of the molecule, bond formation between oxygen atoms in the molecule and surface Co ions, and emission of one surface Li ion, while all the surface Co ions remain Co3 +. The surface Co ions having the bond with an oxygen atom in the molecule showed remarkable changes in simulated K-edge spectra which are similar to those of the in situ observation under electrolyte soaking [D. Takamatsu et al., Angew. Chem., Int. Ed. 51, 11597 (2012), 10.1002/anie.201203910]. Thus, the local environmental changes of surface Co ions due to the reactions with an EC molecule can explain the experimental spectrum changes.

  5. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study.

    PubMed

    Van Speybroeck, Veronique; De Wispelaere, Kristof; Van der Mynsbrugge, Jeroen; Vandichel, Matthias; Hemelsoet, Karen; Waroquier, Michel

    2014-11-07

    To optimally design next generation catalysts a thorough understanding of the chemical phenomena at the molecular scale is a prerequisite. Apart from qualitative knowledge on the reaction mechanism, it is also essential to be able to predict accurate rate constants. Molecular modeling has become a ubiquitous tool within the field of heterogeneous catalysis. Herein, we review current computational procedures to determine chemical kinetics from first principles, thus by using no experimental input and by modeling the catalyst and reacting species at the molecular level. Therefore, we use the methanol-to-olefin (MTO) process as a case study to illustrate the various theoretical concepts. This process is a showcase example where rational design of the catalyst was for a long time performed on the basis of trial and error, due to insufficient knowledge of the mechanism. For theoreticians the MTO process is particularly challenging as the catalyst has an inherent supramolecular nature, for which not only the Brønsted acidic site is important but also organic species, trapped in the zeolite pores, must be essentially present during active catalyst operation. All these aspects give rise to specific challenges for theoretical modeling. It is shown that present computational techniques have matured to a level where accurate enthalpy barriers and rate constants can be predicted for reactions occurring at a single active site. The comparison with experimental data such as apparent kinetic data for well-defined elementary reactions has become feasible as current computational techniques also allow predicting adsorption enthalpies with reasonable accuracy. Real catalysts are truly heterogeneous in a space- and time-like manner. Future theory developments should focus on extending our view towards phenomena occurring at longer length and time scales and integrating information from various scales towards a unified understanding of the catalyst. Within this respect molecular

  6. Molecular-Scale Electronics: From Concept to Function.

    PubMed

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  7. First-principles study of length dependence of conductance in alkanedithiols

    NASA Astrophysics Data System (ADS)

    Zhou, Y. X.; Jiang, F.; Chen, H.; Note, R.; Mizuseki, H.; Kawazoe, Y.

    2008-01-01

    Electronic transport properties of alkanedithiols are calculated by a first-principles method based on density functional theory and nonequilibrium Green's function formalism. At small bias, the I-V characteristics are linear and the resistances conform to the Magoga's exponential law. The calculated length-dependent decay constant γ which reflects the effect of internal molecular structure is in accordance with most experiments quantitatively. Also, the calculated effective contact resistance R0 is in good agreement with the results of repeatedly measuring molecule-electrode junctions [B. Xu and N. Tao, Science 301, 1221 (2003)].

  8. Communication: Charge-transfer rate constants in zinc-porphyrin-porphyrin-derived dyads: A Fermi golden rule first-principles-based study

    NASA Astrophysics Data System (ADS)

    Manna, Arun K.; Dunietz, Barry D.

    2014-09-01

    We investigate photoinduced charge transfer (CT) processes within dyads consisting of porphyrin derivatives in which one ring ligates a Zn metal center and where the rings vary by their degree of conjugation. Using a first-principles approach, we show that molecular-scale means can tune CT rates through stabilization affected by the polar environment. Such means of CT tuning are important for achieving high efficiency optoelectronic applications using organic semiconducting materials. Our fully quantum mechanical scheme is necessary for reliably modeling the CT process across different regimes, in contrast to the pervading semi-classical Marcus picture that grossly underestimates transfer in the far-inverted regime.

  9. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Artrith, Nongnuch; Urban, Alexander; Ceder, Gerbrand

    2018-06-01

    The atomistic modeling of amorphous materials requires structure sizes and sampling statistics that are challenging to achieve with first-principles methods. Here, we propose a methodology to speed up the sampling of amorphous and disordered materials using a combination of a genetic algorithm and a specialized machine-learning potential based on artificial neural networks (ANNs). We show for the example of the amorphous LiSi alloy that around 1000 first-principles calculations are sufficient for the ANN-potential assisted sampling of low-energy atomic configurations in the entire amorphous LixSi phase space. The obtained phase diagram is validated by comparison with the results from an extensive sampling of LixSi configurations using molecular dynamics simulations and a general ANN potential trained to ˜45 000 first-principles calculations. This demonstrates the utility of the approach for the first-principles modeling of amorphous materials.

  10. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials.

    PubMed

    Tsyshevsky, Roman V; Sharia, Onise; Kuklja, Maija M

    2016-02-19

    This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  11. Predicting the electronic properties of aqueous solutions from first-principles

    NASA Astrophysics Data System (ADS)

    Schwegler, Eric; Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen; Galli, Giulia

    Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum-mechanical methods. Yet it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. Here we propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, based on the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results for the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of their electronic properties, including excitation energies, of the solvent and solutes. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies. Part of this work was performed under the auspices of the U.S. Department of Energy at LLNL under Contract DE-AC52-07A27344.

  12. First-Principles Molecular Dynamics Simulations of NaCl in Water: Performance of Advanced Exchange-Correlation Approximations in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Kanai, Yosuke

    Our ability to correctly model the association of oppositely charged ions in water is fundamental in physical chemistry and essential to various technological and biological applications of molecular dynamics (MD) simulations. MD simulations using classical force fields often show strong clustering of NaCl in the aqueous ionic solutions as a consequence of a deep contact pair minimum in the potential of mean force (PMF) curve. First-Principles Molecular Dynamics (FPMD) based on Density functional theory (DFT) with the popular PBE exchange-correlation approximation, on the other hand, show a different result with a shallow contact pair minimum in the PMF. We employed two of most promising exchange-correlation approximations, ωB97xv by Mardiorossian and Head-Gordon and SCAN by Sun, Ruzsinszky and Perdew, to examine the PMF using FPMD simulations. ωB97xv is highly empirically and optimized in the space of range-separated hybrid functional with a dispersion correction while SCAN is the most recent meta-GGA functional that is constructed by satisfying various known conditions in well-defined physical limits. We will discuss our findings for PMF, charge transfer, water dipoles, etc.

  13. Exploiting periodic first-principles calculations in NMR spectroscopy of disordered solids.

    PubMed

    Ashbrook, Sharon E; Dawson, Daniel M

    2013-09-17

    Much of the information contained within solid-state nuclear magnetic resonance (NMR) spectra remains unexploited because of the challenges in obtaining high-resolution spectra and the difficulty in assigning those spectra. Recent advances that enable researchers to accurately and efficiently determine NMR parameters in periodic systems have revolutionized the application of density functional theory (DFT) calculations in solid-state NMR spectroscopy. These advances are particularly useful for experimentalists. The use of first-principles calculations aids in both the interpretation and assignment of the complex spectral line shapes observed for solids. Furthermore, calculations provide a method for evaluating potential structural models against experimental data for materials with poorly characterized structures. Determining the structure of well-ordered, periodic crystalline solids can be straightforward using methods that exploit Bragg diffraction. However, the deviations from periodicity, such as compositional, positional, or temporal disorder, often produce the physical properties (such as ferroelectricity or ionic conductivity) that may be of commercial interest. With its sensitivity to the atomic-scale environment, NMR provides a potentially useful tool for studying disordered materials, and the combination of experiment with first-principles calculations offers a particularly attractive approach. In this Account, we discuss some of the issues associated with the practical implementation of first-principles calculations of NMR parameters in solids. We then use two key examples to illustrate the structural insights that researchers can obtain when applying such calculations to disordered inorganic materials. First, we describe an investigation of cation disorder in Y2Ti(2-x)Sn(x)O7 pyrochlore ceramics using (89)Y and (119)Sn NMR. Researchers have proposed that these materials could serve as host phases for the encapsulation of lanthanide- and actinide

  14. Predicting Selectivity of Uranium vs. Vanadium from First Principles: Complete Molecular Design and Adsorption Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Aleksandr; Das, Sadananda; Bryantsev, Vyacheslav

    SUMMARYBackground: Uranium is used as the basic fuel for nuclear power plants, which generate significant amounts of electricity and have life cycle carbon emissions that are as low as renewable energy sources. The extraction of this valuable energy commodity from the ground remains controversial, however, mainly because of environmental and health impacts. Alternatively, seawater offers an enormous uranium resource that may be tapped at minimal environmental cost. Currently, amidoxime polymers are the most widely considered adsorbent materials for large-scale extraction of uranium from seawater, but they are not perfectly selective for uranyl, UO22+. In particular, the competition between UO22+ andmore » vanadium (VO2+/VO2+) cations poses a significant challenge to the efficient mining of UO22+. Thus, accelerating progress in the discovery and deployment of advanced materials for the recovery of uranium relies on the design of new ligands with high binding affinity and selectivity for uranium over competing metal ions. A cost-effective route to aid the discovery of new ligands is to apply computational methods to rapidly test attractive candidates and elucidate data-driven guidelines for rational design.Objectives: One of the key components in achieving rational design of highly selective ligands is the establishment of computational tools capable of assessing ligand selectivity trends. Therefore, the objectives of this study include:1.Establish first-principles methods, based on computational chemistry techniques, to calculate stability constants for UO22+ and VO2+/VO2+ complexes.2.Develop computational protocols to assess the binding strengths and selectivity of ligands that can be present in the actual poly(acrylamidoxime) adsorbents.3.Develop adsorption models that can use information from first-principles computational methods to predict the adsorption behavior of uranium and vanadium by adsorbents synthesized at ORNL and compare results with experimental

  15. Large Scale Screening of Low Cost Ferritic Steel Designs For Advanced Ultra Supercritical Boiler Using First Principles Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Lizhi

    Advanced Ultra Supercritical Boiler (AUSC) requires materials that can operate in corrosive environment at temperature and pressure as high as 760°C (or 1400°F) and 5000psi, respectively, while at the same time maintain good ductility at low temperature. We develop automated simulation software tools to enable fast large scale screening studies of candidate designs. While direct evaluation of creep rupture strength and ductility are currently not feasible, properties such as energy, elastic constants, surface energy, interface energy, and stack fault energy can be used to assess their relative ductility and creeping strength. We implemented software to automate the complex calculations tomore » minimize human inputs in the tedious screening studies which involve model structures generation, settings for first principles calculations, results analysis and reporting. The software developed in the project and library of computed mechanical properties of phases found in ferritic steels, many are complex solid solutions estimated for the first time, will certainly help the development of low cost ferritic steel for AUSC.« less

  16. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations.

    PubMed

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y; Schwegler, Eric

    2016-10-21

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. Such simulations are often performed at elevated temperatures to artificially "correct" for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. To address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na + , K + , and Cl - ions. We show that simulations at 390-400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. Our results suggest that an elevated temperature around 390-400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.

  17. Oxygen plasma etching of graphene: A first-principles dynamical inspection of the reaction mechanisms and related activation barriers

    NASA Astrophysics Data System (ADS)

    Koizumi, Kenichi; Boero, Mauro; Shigeta, Yasuteru; Oshiyama, Atsushi; Dept. of Applied Physics Team; Institute of Physics and Chemistry of Strasbourg (IPCMS) Collaboration; Department Of Materials Engineering Science Collaboration

    2013-03-01

    Oxygen plasma etching is a crucial step in the fabrication of electronic circuits and has recently received a renovated interest in view of the realization of carbon-based nanodevices. In an attempt at unraveling the atomic-scale details and to provide guidelines for the control of the etching processes mechanisms, we inspected the possible reaction pathways via reactive first principles simulations. These processes involve breaking and formation of several chemical bonds and are characterized by different free-energy barriers. Free-energy sampling techniques (metadynamics and blue moon), used to enhance the standard Car-Parrinello molecular dynamics, provide us a detailed microscopic picture of the etching of graphene surfaces and a comprehensive scenario of the activation barriers involved in the various steps. MEXT, Japan - contract N. 22104005

  18. How to Compute Electron Ionization Mass Spectra from First Principles.

    PubMed

    Bauer, Christoph Alexander; Grimme, Stefan

    2016-06-02

    The prediction of electron ionization (EI) mass spectra (MS) from first principles has been a major challenge for quantum chemistry (QC). The unimolecular reaction space grows rapidly with increasing molecular size. On the one hand, statistical models like Eyring's quasi-equilibrium theory and Rice-Ramsperger-Kassel-Marcus theory have provided valuable insight, and some predictions and quantitative results can be obtained from such calculations. On the other hand, molecular dynamics-based methods are able to explore automatically the energetically available regions of phase space and thus yield reaction paths in an unbiased way. We describe in this feature article the status of both methodologies in relation to mass spectrometry for small to medium sized molecules. We further present results obtained with the QCEIMS program developed in our laboratory. Our method, which incorporates stochastic and dynamic elements, has been a significant step toward the reliable routine calculation of EI mass spectra.

  19. The evolution of cell types in animals: emerging principles from molecular studies.

    PubMed

    Arendt, Detlev

    2008-11-01

    Cell types are fundamental units of multicellular life but their evolution is obscure. How did the first cell types emerge and become distinct in animal evolution? What were the sets of cell types that existed at important evolutionary nodes that represent eumetazoan or bilaterian ancestors? How did these ancient cell types diversify further during the evolution of organ systems in the descending evolutionary lines? The recent advent of cell type molecular fingerprinting has yielded initial insights into the evolutionary interrelationships of cell types between remote animal phyla and has allowed us to define some first principles of cell type diversification in animal evolution.

  20. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials

    DOE PAGES

    Tsyshevsky, Roman; Sharia, Onise; Kuklja, Maija

    2016-02-19

    Our review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our ownmore » first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Lastly, our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.« less

  1. First-Principles Molecular Dynamics Study of a Deep Eutectic Solvent: Choline Chloride/Urea and Its Mixture with Water

    DOE PAGES

    Fetisov, Evgenii O.; Harwood, David B.; Kuo, I-Feng William; ...

    2017-12-07

    First-principles molecular dynamics simulations in the canonical ensemble at temperatures of 333 and 363 K and at the corresponding experimental densities are carried out to investigate the behavior of the 1:2 choline chloride/urea (reline) deep eutectic solvent and its equimolar mixture with water. Analysis of atom–atom radial and spatial distribution functions and of the H-bond network reveals the microheterogeneous structure of these complex liquid mixtures. In neat reline, the structure is governed by strong H-bonds of the trans- and cis-H atoms of urea to the chloride ion. In hydrous reline, water competes for the anions, and the H atoms ofmore » urea have similar propensities to bond to the chloride ions and the O atoms of urea and water. Finally, the vibrational spectra exhibit relatively broad peaks reflecting the heterogeneity of the environment. Although the 100 ps trajectories allow only for a qualitative assessment of transport properties, the simulations indicate that water is more mobile than the other species and its addition also fosters faster motion of urea.« less

  2. Liquid Water from First Principles: Validation of Different Sampling Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundy, C J; Kuo, W; Siepmann, J

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is foundmore » that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.« less

  3. Smallest fullerene-like clusters in two-probe device junctions: first principle study

    NASA Astrophysics Data System (ADS)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    2017-07-01

    First principle calculations based on density functional theory are realised to investigate the electron transport of the smallest fullerene-like clusters as two-probe junction devices. The junction devices are constructed by mechanically controlled break junction techniques to ensure the maximum stability of the Be20, B20 and N20 cluster molecular junctions. We investigate the density of states, transmission spectrum, molecular orbitals, current and differential conductance characteristics at discrete bias voltages to gain insight about the various transport phenomena occurring in these nano-junctions. The results show that B20 molecule when stringed to gold electrodes works as an ideal nano-device similar to the pure C20 device and is more symmetric in its characteristic nature. However, in N20 molecular device, the conduction is negligible due to the higher atomic interactions within N20 molecule, despite the fact that it is constructed with penta-valent atoms.

  4. Diffusion coefficients of Mg isotopes in enstatite and forsterite melts calculated by first-principles molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Huang, F.; Qi, Y.; Liu, X.; He, L.

    2016-12-01

    Stable isotopes can be fractionated by kinetic chemical diffusion because diffusion coefficients (D) of isotopes are mass-dependent. Diffusive isotopic fractionation recorded in rocks and minerals provide unique temporal constrains on geological processes. The mass dependence of D can be described in the form of Di/Dj= (mj/mi)β, where m denotes masses of isotope i and j, and β is an emperical parameter used to quantify the diffusive transport of isotopes [1]. β values can be estimated by experimental calibration and observation of natural samples, which are still rarely reported because it is challenging to precisely quantify the boundary conditions of diffusion processes [2,3,4]. Recent advances in computation technique provide a new way to theoretically calculate β values. For instance, classical molecular dynamics with empirical potential have been used to simulate interactions between atoms and estimate β of Mg isotopes in MgSiO3 melt [3]. Here, to further consider the effect of bonding and electron properties on β values, we apply first-principles Born-Oppenheimer Molecular Dynamics and pseudo-isotope methods (assuming mj/mi = 1/24, 1/4, 2, and 5) to estimate β for MgSiO3 and Mg2SiO4 melts. Our calculation shows that β of Mg isotopes with pseudo-mass ratios are consistent, indicating the reliability of the pseudo-isotope method. For MgSiO3 melt, β is 0.18 at 4000K and 0 GPa, higher than the value calculatedusing molecular dynamics simulations (0.135) [3]. For Mg2SiO4 melt at 0 GPa, β values are: 0.23 ± 0.04 at 2300K, 0.24 ± 0.07 at 3000K, and 0.24 ± 0.01 at 4000K. Notably, β of MgSiO3 and Mg2SiO4 melts are significantly higher than the value determined by diffusion experiments (0.05) [2]. These results indicate that β values are not sensitive to temperature, but dependent on melt composition.

  5. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperaturesmore » to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na +, K +, and Cl - ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.« less

  6. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations

    DOE PAGES

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.; ...

    2016-10-17

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperaturesmore » to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na +, K +, and Cl - ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.« less

  7. First-Principles Prediction of Thermodynamically Stable Two-Dimensional Electrides

    DOE PAGES

    Ming, Wenmei; Yoon, Mina; Univ. of Tennessee, Knoxville, TN; ...

    2016-10-21

    Two-dimensional (2D) electrides, emerging as a new type of layered material whose electrons are confined in interlayer spaces instead of at atomic proximities, are receiving interest for their high performance in various (opto)electronics and catalytic applications. Experimentally, however, 2D electrides have been only found in a couple of layered nitrides and carbides. We report new thermodynamically stable alkaline-earth based 2D electrides by using a first-principles global structure optimization method, phonon spectrum analysis, and molecular dynamics simulation. The method was applied to binary compounds consisting of alkaline-earth elements as cations and group VA, VIA, or VIIA nonmetal elements as anions. Wemore » also revealed that the stability of a layered 2D electride structure is closely related to the cation/anion size ratio; stable 2D electrides possess a sufficiently large cation/anion size ratio to minimize electrostatic energy among cations, anions, and anionic electrons. This work demonstrates a new avenue to the discovery of thermodynamically stable 2D electrides beyond experimental material databases and provides new insight into the principles of electride design.« less

  8. Iron diffusion from first principles calculations

    NASA Astrophysics Data System (ADS)

    Wann, E.; Ammann, M. W.; Vocadlo, L.; Wood, I. G.; Lord, O. T.; Brodholt, J. P.; Dobson, D. P.

    2013-12-01

    The cores of Earth and other terrestrial planets are made up largely of iron1 and it is therefore very important to understand iron's physical properties. Chemical diffusion is one such property and is central to many processes, such as crystal growth, and viscosity. Debate still surrounds the explanation for the seismologically observed anisotropy of the inner core2, and hypotheses include convection3, anisotropic growth4 and dendritic growth5, all of which depend on diffusion. In addition to this, the main deformation mechanism at the inner-outer core boundary is believed to be diffusion creep6. It is clear, therefore, that to gain a comprehensive understanding of the core, a thorough understanding of diffusion is necessary. The extremely high pressures and temperatures of the Earth's core make experiments at these conditions a challenge. Low-temperature and low-pressure experimental data must be extrapolated across a very wide gap to reach the relevant conditions, resulting in very poorly constrained values for diffusivity and viscosity. In addition to these dangers of extrapolation, preliminary results show that magnetisation plays a major role in the activation energies for diffusion at low pressures therefore creating a break down in homologous scaling to high pressures. First principles calculations provide a means of investigating diffusivity at core conditions, have already been shown to be in very good agreement with experiments7, and will certainly provide a better estimate for diffusivity than extrapolation. Here, we present first principles simulations of self-diffusion in solid iron for the FCC, BCC and HCP structures at core conditions in addition to low-temperature and low-pressure calculations relevant to experimental data. 1. Birch, F. Density and composition of mantle and core. Journal of Geophysical Research 69, 4377-4388 (1964). 2. Irving, J. C. E. & Deuss, A. Hemispherical structure in inner core velocity anisotropy. Journal of Geophysical

  9. First-principles prediction of the softening of the silicon shock Hugoniot curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.; Militzer, B.; Collins, L. A.

    Here, whock compression of silicon (Si) under extremely high pressures (>100 Mbar) was investigated by using two first-principles methods of orbital-free molecular dynamics (OFMD) and path integral Monte Carlo (PIMC). While pressures from the two methods agree very well, PIMC predicts a second compression maximum because of 1s electron ionization that is absent in OFMD calculations since Thomas–Fermi-based theories lack inner shell structure. The Kohn–Sham density functional theory is used to calculate the equation of state (EOS) of warm dense silicon for low-pressure loadings (P < 100 Mbar). Combining these first-principles EOS results, the principal Hugoniot curve of silicon formore » pressures varying from 0.80 Mbar to above ~10 Gbar was derived. We find that silicon is ~20% or more softer than what was predicted by EOS models based on the chemical picture of matter. Existing experimental data (P ≈ 1–2 Mbar) seem to indicate this softening behavior of Si, which calls for future strong-shock experiments (P > 10 Mbar) to benchmark our results.« less

  10. First-principles prediction of the softening of the silicon shock Hugoniot curve

    DOE PAGES

    Hu, S. X.; Militzer, B.; Collins, L. A.; ...

    2016-09-15

    Here, whock compression of silicon (Si) under extremely high pressures (>100 Mbar) was investigated by using two first-principles methods of orbital-free molecular dynamics (OFMD) and path integral Monte Carlo (PIMC). While pressures from the two methods agree very well, PIMC predicts a second compression maximum because of 1s electron ionization that is absent in OFMD calculations since Thomas–Fermi-based theories lack inner shell structure. The Kohn–Sham density functional theory is used to calculate the equation of state (EOS) of warm dense silicon for low-pressure loadings (P < 100 Mbar). Combining these first-principles EOS results, the principal Hugoniot curve of silicon formore » pressures varying from 0.80 Mbar to above ~10 Gbar was derived. We find that silicon is ~20% or more softer than what was predicted by EOS models based on the chemical picture of matter. Existing experimental data (P ≈ 1–2 Mbar) seem to indicate this softening behavior of Si, which calls for future strong-shock experiments (P > 10 Mbar) to benchmark our results.« less

  11. Equation of state for technetium from X-ray diffraction and first-principle calculations

    NASA Astrophysics Data System (ADS)

    Mast, Daniel S.; Kim, Eunja; Siska, Emily M.; Poineau, Frederic; Czerwinski, Kenneth R.; Lavina, Barbara; Forster, Paul M.

    2016-08-01

    The ambient temperature equation of state (EoS) of technetium metal has been measured by X-ray diffraction. The metal was compressed using a diamond anvil cell and using a 4:1 methanol-ethanol pressure transmitting medium. The maximum pressure achieved, as determined from the gold pressureEquation of state for technetium from X-ray diffraction and first-principle calculations scale, was 67 GPa. The compression data shows that the HCP phase of technetium is stable up to 67 GPa. The compression curve of technetium was also calculated using first-principles total-energy calculations. Utilizing a number of fitting strategies to compare the experimental and theoretical data it is determined that the Vinet equation of state with an ambient isothermal bulk modulus of B0T=288 GPa and a first pressure derivative of B‧=5.9(2) best represent the compression behavior of technetium metal.

  12. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  13. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    DOE PAGES

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less

  14. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Evans, James W.

    2015-10-28

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C{sub 6}-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atommore » in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ∼0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. This in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001)« less

  15. Full-Scale Model of Subionospheric VLF Signal Propagation Based on First-Principles Charged Particle Transport Calculations

    NASA Astrophysics Data System (ADS)

    Kouznetsov, A.; Cully, C. M.; Knudsen, D. J.

    2016-12-01

    Changes in D-Region ionization caused by energetic particle precipitation are monitored by the Array for Broadband Observations of VLF/ELF Emissions (ABOVE) - a network of receivers deployed across Western Canada. The observed amplitudes and phases of subionospheric-propagating VLF signals from distant artificial transmitters depend sensitively on the free electron population created by precipitation of energetic charged particles. Those include both primary (electrons, protons and heavier ions) and secondary (cascades of ionized particles and electromagnetic radiation) components. We have designed and implemented a full-scale model to predict the received VLF signals based on first-principle charged particle transport calculations coupled to the Long Wavelength Propagation Capability (LWPC) software. Calculations of ionization rates and free electron densities are based on MCNP-6 (a general-purpose Monte Carlo N- Particle) software taking advantage of its capability of coupled neutron/photon/electron transport and novel library of cross-sections for low-energetic electron and photon interactions with matter. Cosmic ray calculations of background ionization are based on source spectra obtained both from PAMELA direct Cosmic Rays spectra measurements and based on the recently-implemented MCNP 6 galactic cosmic-ray source, scaled using our (Calgary) neutron monitor measurement results. Conversion from calculated fluxes (MCNP F4 tallies) to ionization rates for low-energy electrons are based on the total ionization cross-sections for oxygen and nitrogen molecules from the National Institute of Standard and Technology. We use our model to explore the complexity of the physical processes affecting VLF propagation.

  16. Copper(II) adsorption on the kaolinite(001) surface: Insights from first-principles calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Ping; Wang, Juan

    2016-12-01

    The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with ;upright; hydrogen and bidentate complex on site of two oxygens (one with ;upright; hydrogen and one with ;lying; hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with ;lying; hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.

  17. Effects of interlayer screening and temperature on dielectric functions of graphene by first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J. Y.; Liu, L. H., E-mail: lhliu@hit.edu.cn; Department of Physics, Harbin Institute of Technology, Harbin 150001

    2016-07-21

    The dielectric functions of few-layer graphene and the related temperature dependence are investigated from the atomic scale using first-principles calculations. Compared with ellipsometry experiments in the spectral range of 190–2500 nm, the normalized optical constants of mono-layer graphene demonstrate good agreement and further validate first-principles calculations. To interpret dielectric function of mono-layer graphene, the electronic band structure and density of states are analyzed. By comparing dielectric functions of mono-, bi-, and tri-layer graphene, it shows that interlayer screening strengthens intraband transition and greatly enhances the absorption peak located around 1 eV. The strengthened optical absorption is intrinsically caused by the increasing electronmore » states near the Fermi level. To investigate temperature effect, the first-principles calculations and lattice dynamics are combined. The lattice vibration enhances parallel optical absorption peak around 1 eV and induces redshift. Moreover, it is observed that the van der Waals force plays a key role in keeping the interlayer distance stable during dynamics simulations.« less

  18. Approximate similarity principle for a full-scale STOVL ejector

    NASA Astrophysics Data System (ADS)

    Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.

    1994-03-01

    Full-scale ejector experiments are expensive and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles, in particular the Munk and prim principle for isentropic flow, was explored. Static performance test data for a full-scale thrust augmenting ejector were analyzed for primary flow temperature up to 1560 R. At different primary temperatures, exit pressure contours were compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, properly chosen performance parameters were found to be similar for both flow and cold flow model tests.

  19. First principles study on the electronic transport properties of C{sub 60} and B{sub 80} molecular bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X. H., E-mail: xhzheng@theory.issp.ac.cn; Hao, H.; Lan, J.

    2014-08-21

    The electronic transport properties of molecular bridges constructed by C{sub 60} and B{sub 80} molecules which have the same symmetry are investigated by first principles calculations combined with a non-equilibrium Green's function technique. It is found that, like C{sub 60}, monomer B{sub 80} is a good conductor arising from the charge transfer from the leads to the molecule, while the dimer (B{sub 80}){sub 2} and (C{sub 60}){sub 2} are both insulators due to the potential barrier formed at the molecule-molecule interface. Our further study shows that, although both the homogeneous dimer (B{sub 80}){sub 2} and (C{sub 60}){sub 2} display poormore » conductivity, the heterogeneous dimer B{sub 80}C{sub 60} shows a very high conductance as a result from the decreased HOMO-LUMO gap and the excess charge redistribution. Finally, we find that the conductivity of both (B{sub 80}){sub 2} and (C{sub 60}){sub 2} can be significantly improved by electron doping, for example, by doping C in (B{sub 80}){sub 2} and doping N in (C{sub 60}){sub 2}.« less

  20. First principles determination of dislocation properties.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, John C.

    2003-12-01

    This report details the work accomplished on first principles determination of dislocation properties. It contains an introduction and three chapters detailing three major accomplishments. First, we have used first principle calculations to determine the shear strength of an aluminum twin boundary. We find it to be remarkably small ({approx}17 mJ/m{sup 2}). This unexpected result is explained and will likely pertain for many other grain boundaries. Second, we have proven that the conventional explanation for finite grain boundary facets is wrong for a particular aluminum grain boundary. Instead of finite facets being stabilized by grain boundary stress, we find them tomore » originate from kinetic effects. Finally we report on a new application of the Frenkel-Kontorova model to understand reconstructions of (100) type surfaces. In addition to the commonly accepted formation of rectangular dislocation arrays, we find numerous other possible solutions to the model including hexagonal reconstructions and a clock-rotated structure.« less

  1. Synthetic Elucidation of Design Principles for Molecular Qubits

    NASA Astrophysics Data System (ADS)

    Graham, Michael James

    Quantum information processing (QIP) is an emerging computational paradigm with the potential to enable a vast increase in computational power, fundamentally transforming fields from structural biology to finance. QIP employs qubits, or quantum bits, as its fundamental units of information, which can exist in not just the classical states of 0 or 1, but in a superposition of the two. In order to successfully perform QIP, this superposition state must be sufficiently long-lived. One promising paradigm for the implementation of QIP involves employing unpaired electrons in coordination complexes as qubits. This architecture is highly tunable and scalable, however coordination complexes frequently suffer from short superposition lifetimes, or T2. In order to capitalize on the promise of molecular qubits, it is necessary to develop a set of design principles that allow the rational synthesis of complexes with sufficiently long values of T2. In this dissertation, I report efforts to use the synthesis of series of complexes to elucidate design principles for molecular qubits. Chapter 1 details previous work by our group and others in the field. Chapter 2 details the first efforts of our group to determine the impact of varying spin and spin-orbit coupling on T2. Chapter 3 examines the effect of removing nuclear spins on coherence time, and reports a series of vanadyl bis(dithiolene) complexes which exhibit extremely long coherence lifetimes, in excess of the 100 mus threshold for qubit viability. Chapters 4 and 5 form two complimentary halves of a study to determine the exact relationship between electronic spin-nuclear spin distance and the effect of the nuclear spins on T2. Finally, chapter 6 suggests next directions for the field as a whole, including the potential for work in this field to impact the development of other technologies as diverse as quantum sensors and magnetic resonance imaging contrast agents.

  2. Scale Up in Education. Volume 1: Ideas in Principle

    ERIC Educational Resources Information Center

    Schneider, Barbara Ed.; McDonald, Sarah-Kathryn Ed.

    2006-01-01

    "Scale Up in Education, Volume 1: Ideas in Principle" examines the challenges of "scaling up" from a multidisciplinary perspective. It brings together contributions from disciplines that routinely take promising innovations to scale, including medicine, business, engineering, computing, and education. Together the contributors explore appropriate…

  3. A first-principles analytical theory for 2D magnetic reconnection in electron and Hall MHD.

    NASA Astrophysics Data System (ADS)

    Zocco, A.; Simakov, A. N.; Chacon, L.

    2007-11-01

    While the relevance of two-fluid effects in fast magnetic reconnection is well-known,ootnotetextJ. Birn et al., J. Geophys. Res., 106 (A3), pp. 3715--3719 (2001) a first-principles theory --akin to Sweet and Parker's in resistive MHD-- has been elusive. Here, we present such a first principles steady-state theory for electron MHD,ootnotetextL. Chac'on, A. N. Simakov, A. Zocco, Phys. Rev. Lett., submitted and its extension to Hall.ootnotetextA. N. Simakov, L. Chac'on, in preparation The theory discretizes the extended MHD equations at the reconnection site, leading to a set of time-dependent ODEs. Their steady-state analysis provides predictions for the scaling of relevant quantities with the dissipation coefficients (e.g, resistivity and hyper-resistivity) and other relevant parameters. In particular, we will show that EMHD admits both elongated and open-X point configurations of the reconnection region, and that the reconnection rate Ez can be shown not to scale explicitly with the dissipation parameters. This analytic result confirms earlier computational work on the possibility of fast (dissipation-independent) magnetic reconnection in EMHD. We have extended the EMHD results to Hall MHD, and have found a general scaling law for the reconnection rate (and associated length scales) that bridges the gap between resistive and EMHD.

  4. Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles.

    PubMed

    Feliciano, Gustavo T; da Silva, Antonio J R; Reguera, Gemma; Artacho, Emilio

    2012-08-02

    The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved α-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pilin was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's α-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction.

  5. Equation of state of solid, liquid and gaseous tantalum from first principles

    DOE PAGES

    Miljacic, Ljubomir; Demers, Steven; Hong, Qi-Jun; ...

    2015-09-18

    Here, we present ab initio calculations of the phase diagram and the equation of state of Ta in a wide range of volumes and temperatures, with volumes from 9 to 180 Å 3/atom, temperature as high as 20000 K, and pressure up to 7 Mbars. The calculations are based on first principles, in combination with techniques of molecular dynamics, thermodynamic integration, and statistical modeling. Multiple phases are studied, including the solid, fluid, and gas single phases, as well as two-phase coexistences. We calculate the critical point by direct molecular dynamics sampling, and extend the equation of state to very lowmore » density through virial series fitting. The accuracy of the equation of state is assessed by comparing both the predicted melting curve and the critical point with previous experimental and theoretical investigations.« less

  6. A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherlis, D A; Fattebert, J; Gygi, F

    2005-11-14

    The electrostatic continuum solvent model developed by Fattebert and Gygi is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. The model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution, and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. They apply this approach to themore » study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.« less

  7. Inelastic transport theory from first principles: Methodology and application to nanoscale devices

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka

    2007-05-01

    We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies, electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born approximation. While these calculations often are computationally demanding, we show how they can be approximated by a simple and efficient lowest order expansion. Our method also addresses effects of energy dissipation and local heating of the junction via detailed calculations of the power flow. We demonstrate the developed procedures by considering inelastic transport through atomic gold wires of various lengths, thereby extending the results presented in Frederiksen [Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the system-specific mode selectivity and local heating.

  8. First-Principles Molecular Dynamics Study on the Electric-double layer Capacitance of Water-MXene interfaces

    NASA Astrophysics Data System (ADS)

    Ando, Yasunobu; Otani, Minoru

    MXenes are a new, large family of layered materials synthesized from MAX phases by simple chemical treatments. Due to their enormous variations, MXenes have attracted great attention as promising candidates as anode materials for next-generation secondary batteries. Unfortunately, the specific capacitance of MXenes supercapacitors is lower than that of active-carbon ones. Theoretical investigation of the electric-double layer (EDL) at electrode interfaces is necessary to improve their capacitance. First-principles molecular dynamics (FPMD) simulation based on the density functional theory (DFT) is performed to estimate the EDL capacitance from a potential profile V(z) and a charge distribution q(z) induced by the ions at water-Ti2CTx (T =O, F) interfaces. Potential profiles V(z) of both Ti2CO2 and Ti2CF2 decrease about 1.0 eV steeply in a region of only 3 Å from a Ti layer, which is the same profile at the platinum interfaces. On the other hand, induced charge distribution q(z) depends on the species of surface termination. Induced electrons are introduced at Ti layers in the case of O surface termination. However, Ti2CF2 is not capable to store electrons at Ti layers because it is mono-valence anions. It indicates that effective surface-position of MXenes depends on the surface terminations. Our results are revealed that small induced charge leads the low EDL capacitance at MXene interfaces. This is because interface polarization due to strong interaction between water and Ti2CTx induces net charge. The surface net charge hinders the introduction of ion-induced charges.

  9. Conformational structures of a decapeptide validated by first principles calculations and cold ion spectroscopy.

    PubMed

    Roy, Tapta Kanchan; Kopysov, Vladimir; Nagornova, Natalia S; Rizzo, Thomas R; Boyarkin, Oleg V; Gerber, R Benny

    2015-05-18

    Calculated structures of the two most stable conformers of a protonated decapeptide gramicidin S in the gas phase have been validated by comparing the vibrational spectra, calculated from first- principles and measured in a wide spectral range using infrared (IR)-UV double resonance cold ion spectroscopy. All the 522 vibrational modes of each conformer were calculated quantum mechanically and compared with the experiment without any recourse to an empirical scaling. The study demonstrates that first-principles calculations, when accounting for vibrational anharmonicity, can reproduce high-resolution experimental spectra well enough for validating structures of molecules as large as of 200 atoms. The validated accurate structures of the peptide may serve as templates for in silico drug design and absolute calibration of ion mobility measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A First-Principles Analytical Theory for 2D Magnetic Reconnection in Electron and Hall Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Simakov, A. N.; Zocco, A.

    2007-12-01

    Although the relevance of two-fluid effects in fast magnetic reconnection is well-known, (J. Birn et al., J. Geophys. Res., 106 (A3), 3715 (2001) a first-principles theory -- akin to Sweet and Parker's in resistive MHD -- has been elusive. Here, we present such a first principles steady-state analytical theory for electron MHD, (L. Chacón, A. N. Simakov, A. Zocco, Phys. Rev. Lett., submitted) and its extension to Hall MHD. (A. N. Simakov, L. Chacón, in preparation) The theory discretizes the extended MHD equations at the reconnection site, leading to a set of time-dependent ODEs. Their steady-state analysis, which describes the system at or around the point of maximum reconnection rate, provides predictions for the scaling of relevant quantities with the dissipation coefficients (e.g, resistivity and hyper-resistivity) and other relevant parameters. In particular, we will show that EMHD admits both elongated and open-X point configurations of the reconnection region, and that the reconnection rate can be shown not to scale explicitly with the dissipation parameters. This result is, to our knowledge, the first analytical confirmation of the possibility of fast magnetic reconnection in EMHD. In Hall MHD, the transition between resistive MHD and EMHD is studied, and scalings with the ion inertial length are obtained.

  11. Glass polymorphism in amorphous germanium probed by first-principles computer simulations

    NASA Astrophysics Data System (ADS)

    Mancini, G.; Celino, M.; Iesari, F.; Di Cicco, A.

    2016-01-01

    The low-density (LDA) to high-density (HDA) transformation in amorphous Ge at high pressure is studied by first-principles molecular dynamics simulations in the framework of density functional theory. Previous experiments are accurately reproduced, including the presence of a well-defined LDA-HDA transition above 8 GPa. The LDA-HDA density increase is found to be about 14%. Pair and bond-angle distributions are obtained in the 0-16 GPa pressure range and allowed us a detailed analysis of the transition. The local fourfold coordination is transformed in an average HDA sixfold coordination associated with different local geometries as confirmed by coordination number analysis and shape of the bond-angle distributions.

  12. Time scale of diffusion in molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  13. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra.

    PubMed

    Umari, P; Pasquarello, Alfredo

    2005-09-23

    We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.

  14. Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell

    PubMed Central

    Lim, Wendell A.; Lee, Connie M.; Tang, Chao

    2013-01-01

    A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks. PMID:23352241

  15. First principles molecular dynamics of molten NaI: Structure, self-diffusion, polarization effects, and charge transfer

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-09-01

    The structure and self-diffusion of NaI and NaCl at temperatures close to their melting points are studied by first principles Hellmann-Feynman molecular dynamics (HFMD). The results are compared with classical MD using rigid-ion (RI) and shell-model (ShM) interionic potentials. HFMD for NaCl was reported before at a higher temperature [N. Galamba and B. J. Costa Cabral, J. Chem. Phys. 126, 124502 (2007)]. The main differences between the structures predicted by HFMD and RI MD for NaI concern the cation-cation and the anion-cation pair correlation functions. A ShM which allows only for the polarization of I- reproduces the main features of the HFMD structure of NaI. The inclusion of polarization effects for both ionic species leads to a more structured ionic liquid, although a good agreement with HFMD is also observed. HFMD Green-Kubo self-diffusion coefficients are larger than those obtained from RI and ShM simulations. A qualitative study of charge transfer in molten NaI and NaCl was also carried out with the Hirshfeld charge partitioning method. Charge transfer in molten NaI is comparable to that in NaCl, and results for NaCl at two temperatures support the view that the magnitude of charge transfer is weakly state dependent for ionic systems. Finally, Hirshfeld charge distributions indicate that differences between RI and HFMD results are mainly related to polarization effects, while the influence of charge transfer fluctuations is minimal for these systems.

  16. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  17. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.

    PubMed

    Beran, Gregory J O; Hartman, Joshua D; Heit, Yonaton N

    2016-11-15

    Molecular crystals occur widely in pharmaceuticals, foods, explosives, organic semiconductors, and many other applications. Thanks to substantial progress in electronic structure modeling of molecular crystals, attention is now shifting from basic crystal structure prediction and lattice energy modeling toward the accurate prediction of experimentally observable properties at finite temperatures and pressures. This Account discusses how fragment-based electronic structure methods can be used to model a variety of experimentally relevant molecular crystal properties. First, it describes the coupling of fragment electronic structure models with quasi-harmonic techniques for modeling the thermal expansion of molecular crystals, and what effects this expansion has on thermochemical and mechanical properties. Excellent agreement with experiment is demonstrated for the molar volume, sublimation enthalpy, entropy, and free energy, and the bulk modulus of phase I carbon dioxide when large basis second-order Møller-Plesset perturbation theory (MP2) or coupled cluster theories (CCSD(T)) are used. In addition, physical insight is offered into how neglect of thermal expansion affects these properties. Zero-point vibrational motion leads to an appreciable expansion in the molar volume; in carbon dioxide, it accounts for around 30% of the overall volume expansion between the electronic structure energy minimum and the molar volume at the sublimation point. In addition, because thermal expansion typically weakens the intermolecular interactions, neglecting thermal expansion artificially stabilizes the solid and causes the sublimation enthalpy to be too large at higher temperatures. Thermal expansion also frequently weakens the lower-frequency lattice phonon modes; neglecting thermal expansion causes the entropy of sublimation to be overestimated. Interestingly, the sublimation free energy is less significantly affected by neglecting thermal expansion because the systematic

  18. First Principles Atomistic Model for Carbon-Doped Boron Suboxide

    DTIC Science & Technology

    2014-09-01

    First Principles Atomistic Model for Carbon-Doped Boron Suboxide by Amol B Rahane, Jennifer S Dunn, and Vijay Kumar ARL-TR-7106...2014 First Principles Atomistic Model for Carbon-Doped Boron Suboxide Amol B Rahane Dr Vijay Kumar Foundation 1969 Sector 4 Gurgaon...5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amol B Rahane, Jennifer S Dunn, and Vijay Kumar 5d. PROJECT

  19. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.

    PubMed

    Yu, Zhizhou; Chen, Jian; Zhang, Lei; Wang, Jian

    2013-12-11

    We report an investigation of Coulomb blockade transport through an endohedral N@C60 weakly coupled with aluminum leads, employing the first-principles method combined with the Keldysh non-equilibrium Green's function derived from the equation of motion beyond the Hartree-Fock approximation. The differential conductance characteristics of the molecular device are calculated within the Coulomb blockade regime, which shows the Coulomb diamond as observed experimentally. When the gate voltage is less than that of the degeneracy point, there are two peaks in the differential conductance with an excited state induced by the change of the exchange interaction between the spin of C60 and the encapsulated nitrogen atom due to the transition from N@C(1-)(60) to N@C(2-)(60), while for a gate voltage larger than that of the degeneracy point, no excited state is available due to the quenching of exchange energy. As a result, there is only one Coulomb blockade peak in the differential conductance from the electron tunneling through the highest energy level below the Fermi level. Our first-principles results are in good agreement with experimental data obtained by an endohedral N@C60 molecular device.

  20. First-principles study of the infrared spectra of the ice Ih (0001) surface

    DOE PAGES

    Pham, T. Anh; Huang, P.; Schwegler, E.; ...

    2012-08-22

    Here, we present a study of the infrared (IR) spectra of the (0001) deuterated ice surface based on first-principles molecular dynamics simulations. The computed spectra show a good agreement with available experimental IR measurements. We identified the bonding configurations associated with specific features in the spectra, allowing us to provide a detailed interpretation of IR signals. We computed the spectra of several proton ordered and disordered models of the (0001) surface of ice, and we found that IR spectra do not appear to be a sensitive probe of the microscopic arrangement of protons at ice surfaces.

  1. Theory of diatomic molecules in an external electromagnetic field from first quantum mechanical principles.

    PubMed

    Sindelka, Milan; Moiseyev, Nimrod

    2006-04-27

    We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in this paper is relevant to a variety of specific applications, such as alignment or orientation of molecules by lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular Hamiltonian suitable for description of the center of mass, rotational, vibrational, and electronic molecular motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born-Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an electromagnetic field is introduced. Special cases of the dc/ac-field limits are then discussed separately. Finally, we consider a perturbative regime of a weak dc/ac field, and obtain simple analytic formulas for the associated Born-Oppenheimer translational/rotational/vibrational molecular Hamiltonian.

  2. Molecular adsorption study of nicotine and caffeine on single-walled carbon nanotubes from first principles

    NASA Astrophysics Data System (ADS)

    Lee, Hyung-June; Kim, Gunn; Kwon, Young-Kyun

    2013-08-01

    Using first-principles calculations, we investigate the electronic structures and binding properties of nicotine and caffeine adsorbed on single-walled carbon nanotubes to determine whether CNTs are appropriate for filtering or sensing nicotine and caffeine molecules. We find that caffeine adsorbs more strongly than nicotine. The different binding characteristics are discussed by analyzing the modification of the electronic structure of the molecule-adsorbed CNTs. We also calculate the quantum conductance of the CNTs in the presence of nicotine or caffeine adsorbates and demonstrate that the influence of caffeine is stronger than nicotine on the conductance of the host CNT.

  3. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles.

    PubMed

    Wang, Xuelong; Xiao, Ruijuan; Li, Hong; Chen, Liquan

    2017-05-12

    Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS_{2}O_{2} are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.

  4. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles

    NASA Astrophysics Data System (ADS)

    Wang, Xuelong; Xiao, Ruijuan; Li, Hong; Chen, Liquan

    2017-05-01

    Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS2O2 are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.

  5. First Principles Model of Electric Cable Braid Penetration with Dielectrics

    DOE PAGES

    Campione, Salvatore; Warne, Larry Kevin; Langston, William L.; ...

    2018-01-01

    In this study, we report the formulation to account for dielectrics in a first principles multipole-based cable braid electromagnetic penetration model. To validate our first principles model, we consider a one-dimensional array of wires, which can be modeled analytically with a multipole-conformal mapping expansion for the wire charges; however, the first principles model can be readily applied to realistic cable geometries. We compare the elastance (i.e. the inverse of the capacitance) results from the first principles cable braid electromagnetic penetration model to those obtained using the analytical model. The results are found in good agreement up to a radius tomore » half spacing ratio of 0.5-0.6, depending on the permittivity of the dielectric used, within the characteristics of many commercial cables. We observe that for typical relative permittivities encountered in braided cables, the transfer elastance values are essentially the same as those of free space; the self-elastance values are also approximated by the free space solution as long as the dielectric discontinuity is taken into account for the planar mode.« less

  6. First Principles Model of Electric Cable Braid Penetration with Dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry Kevin; Langston, William L.

    In this study, we report the formulation to account for dielectrics in a first principles multipole-based cable braid electromagnetic penetration model. To validate our first principles model, we consider a one-dimensional array of wires, which can be modeled analytically with a multipole-conformal mapping expansion for the wire charges; however, the first principles model can be readily applied to realistic cable geometries. We compare the elastance (i.e. the inverse of the capacitance) results from the first principles cable braid electromagnetic penetration model to those obtained using the analytical model. The results are found in good agreement up to a radius tomore » half spacing ratio of 0.5-0.6, depending on the permittivity of the dielectric used, within the characteristics of many commercial cables. We observe that for typical relative permittivities encountered in braided cables, the transfer elastance values are essentially the same as those of free space; the self-elastance values are also approximated by the free space solution as long as the dielectric discontinuity is taken into account for the planar mode.« less

  7. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

    DOE PAGES

    Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; ...

    2015-02-10

    Here in this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectricmore » constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg 2+ -> Mg +), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg +. In contrast, BH 4 $-$ and BF 4 $-$ are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.« less

  8. Crystal structure of Earth's inner core: A first-principles study

    NASA Astrophysics Data System (ADS)

    Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A.

    2017-12-01

    Since the detection of the Earth's solid inner core (IC) by Lehmann in 1936, its composition and crystal structure (which are essential to understand Earth's evolution) have been controversial. While seismological measurements (e.g. PREM) can give a robust estimation of the density, pressure, and elasticity of the IC, they cannot be directly used to determine its composition and/or crystal structure. Experimentally, reaching the extreme IC conditions ( 330 GPa and 6000 K) and getting reliable measurements is very challenging. First-principles calculations provide a viable alternative that can work as a powerful investigative tool. Although several attempts have been made to assess phase stability at IC conditions computationally, they often use a low level of theory for electronic structure (e.g., classical force-field), adopt approximate methods (e.g., quasiharmonic approximation, fixed hcp-c/a), or do not consider finite-size effects. The study of phase stability using accurate first-principles methods is hampered in part by the difficulty of computing the free energy (FE), the central thermodynamic quantity that determines stability, while including anharmonic and finite-size effects. Additional difficulty related to the IC in particular is introduced by the dynamical instability of one of the IC candidate structures (bcc) at low temperature. Recently [1-3], we introduced a novel method (denoted as "harmonically mapped averaging", or HMA) to efficiently measure anharmonic properties (e.g. FE, pressure, elastic modulus) by molecular simulation, yielding orders of magnitude CPU speedup compared to conventional methods. We have applied this method to the hcp candidate phase of iron at the IC conditions, obtaining first-principles anharmonic FE values with unprecedented accuracy and precision [4]. We have now completed and report HMA calculations to assess the phase stability of all IC candidate phases (fcc/hcp/bcc). This knowledge is the prerequisite for

  9. Weak scale from the maximum entropy principle

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2015-03-01

    The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.

  10. First-principles investigations of proton generation in α-quartz

    NASA Astrophysics Data System (ADS)

    Yue, Yunliang; Song, Yu; Zuo, Xu

    2018-03-01

    Proton plays a key role in the interface-trap formation that is one of the primary reliability concerns, thus learning how it behaves is key to understand the radiation response of microelectronic devices. The first-principles calculations have been applied to explore the defects and their reactions associated with the proton release in α-quartz, the well-known crystalline isomer of amorphous silica. When a high concentration of molecular hydrogen (H2) is present, the proton generation can be enhanced by cracking the H2 molecules at the positively charged oxygen vacancies in dimer configuration. If the concentration of molecular hydrogen is low, the proton generation mainly depends on the proton dissociation of the doubly-hydrogenated defects. In particular, a fully passivated {E}2^{\\prime } center can dissociate to release a proton barrierlessly by structure relaxation once trapping a hole. This research provides a microscopic insight into the proton release in silicon dioxide, the critical step associated with the interface-trap formation under radiation in microelectronic devices. Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105), CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501), the National Natural Science Foundation China (Grant No. NSFC 11404300), and the National Basic Research Program of China (Grant No. 2011CB606405).

  11. Fundamental Reaction Pathway for Peptide Metabolism by Proteasome: Insights from First-principles Quantum Mechanical/Molecular Mechanical Free Energy Calculations

    PubMed Central

    Wei, Donghui; Fang, Lei; Tang, Mingsheng; Zhan, Chang-Guo

    2013-01-01

    Proteasome is the major component of the crucial nonlysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-Oγ. The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-Oγ, followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-Nz. Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-Nz to Thr1-Oγ. According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3b) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally-derived activation free energy of ~18.3–19.4 kcal/mol, suggesting that the computational results are reasonable. PMID:24111489

  12. First-principles anharmonic quantum calculations for peptide spectroscopy: VSCF calculations and comparison with experiments.

    PubMed

    Roy, Tapta Kanchan; Sharma, Rahul; Gerber, R Benny

    2016-01-21

    First-principles quantum calculations for anharmonic vibrational spectroscopy of three protected dipeptides are carried out and compared with experimental data. Using hybrid HF/MP2 potentials, the Vibrational Self-Consistent Field with Second-Order Perturbation Correction (VSCF-PT2) algorithm is used to compute the spectra without any ad hoc scaling or fitting. All of the vibrational modes (135 for the largest system) are treated quantum mechanically and anharmonically using full pair-wise coupling potentials to represent the interaction between different modes. In the hybrid potential scheme the MP2 method is used for the harmonic part of the potential and a modified HF method is used for the anharmonic part. The overall agreement between computed spectra and experiment is very good and reveals different signatures for different conformers. This study shows that first-principles spectroscopic calculations of good accuracy are possible for dipeptides hence it opens possibilities for determination of dipeptide conformer structures by comparison of spectroscopic calculations with experiment.

  13. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designsa)

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium-tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF "path" to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ˜2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT

  14. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; Boehly, T. R.

    2015-05-15

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into accountmore » in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κ{sub QMD}), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ∼2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP

  15. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE PAGES

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; ...

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (K QMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  16. Mechanical-Kinetic Modeling of a Molecular Walker from a Modular Design Principle

    NASA Astrophysics Data System (ADS)

    Hou, Ruizheng; Loh, Iong Ying; Li, Hongrong; Wang, Zhisong

    2017-02-01

    Artificial molecular walkers beyond burnt-bridge designs are complex nanomachines that potentially replicate biological walkers in mechanisms and functionalities. Improving the man-made walkers up to performance for widespread applications remains difficult, largely because their biomimetic design principles involve entangled kinetic and mechanical effects to complicate the link between a walker's construction and ultimate performance. Here, a synergic mechanical-kinetic model is developed for a recently reported DNA bipedal walker, which is based on a modular design principle, potentially enabling many directional walkers driven by a length-switching engine. The model reproduces the experimental data of the walker, and identifies its performance-limiting factors. The model also captures features common to the underlying design principle, including counterintuitive performance-construction relations that are explained by detailed balance, entropy production, and bias cancellation. While indicating a low directional fidelity for the present walker, the model suggests the possibility of improving the fidelity above 90% by a more powerful engine, which may be an improved version of the present engine or an entirely new engine motif, thanks to the flexible design principle. The model is readily adaptable to aid these experimental developments towards high-performance molecular walkers.

  17. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.

    PubMed

    Wu, Guangfen; Li, Zi; Zhang, Xu; Lu, Gang

    2014-08-07

    Charge separation and exciton dynamics play a crucial role in determining the performance of excitonic photovoltaics. Using time-dependent density functional theory with a range-separated exchange-correlation functional as well as nonadiabatic ab initio molecular dynamics, we have studied the formation and dynamics of charge-transfer (CT) excitons at polymer/ZnO interface. The interfacial atomic structure, exciton density of states and conversions between exciton species are examined from first-principles. The exciton dynamics exhibits both adiabatic and nonadiabatic characters. While the adiabatic transitions are facilitated by C═C vibrations along the polymer (P3HT) backbone, the nonadiabatic transitions are realized by exciton hopping between the excited states. We find that the localized ZnO surface states lead to localized low-energy CT states and poor charge separation. In contrast, the surface states of crystalline C60 are indistinguishable from the bulk states, resulting in delocalized CT states and efficient charge separation in polymer/fullerene (P3HT/PCBM) heterojunctions. The hot CT states are found to cool down in an ultrafast time scale and may not play a major role in charge separation of P3HT/ZnO. Finally we suggest that the dimensions of nanostructured acceptors can be tuned to obtain both efficient charge separation and high open circuit voltages.

  18. Principles that Govern the Performance of Molecular Motors

    NASA Astrophysics Data System (ADS)

    Eide, Jon; Chakraborty, Arup; Oster, George

    2003-03-01

    We have created a two dimensional polymeric coarse-grained model to simulate the power stroke from the F0F1 ATP synthase class of molecular motors. There has been much work to understand the structure and dynamics of this type of molecular motor using both constrained molecular dynamics and general Markov models but neither of them have been able to elucidate in a qualitative manner how a constant force is created and transferred in the motor at a nearly 100efficiency. Our model is a modified Rouse system using Brownian and Monte Carlo (with solvent) Dynamics, concentrating only on the catalytic site and protein structures that we think are important for motor motion and energy transfer. While modeling the real system as closely as possible, we have determined the optimum characteristics for maximum efficiency. The efficiency depends on the load against the polymer, the polymer flexibility, polymer and surface matching, and solvent interactions. Insight into the basic principles behind the mechanical motion of this system may have implications for many other molecular motors driven by nucleotide hydrolysis and help design synthetic devices that can carry out biomimetic tasks.

  19. Electron transport in dipyridazine and dipyridimine molecular junctions: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Parashar, Sweta

    2018-05-01

    We present density functional theory-nonequilibrium Green’s function method for electron transport of dipyridazine and dipyridimine molecular junctions with gold, copper and nickel electrodes. Our investigation reveals that the junctions formed with gold and copper electrodes bridging dipyridazine molecule through thiol anchoring group enhance current as compared to the junctions in which the molecule and electrode were coupled directly. Further, nickel electrode displays weak decrease of current with increase of voltage at about 1.2 V. The result is fully rationalized by means of the distribution of molecular orbitals as well as shift in molecular energy levels and HOMO-LUMO gap with applied bias voltage. Our findings are compared with theoretical and experimental results available for other molecular junctions. Present results predict potential avenues for changing the transport behavior by not only changing the electrodes, but also the position of nitrogen atom and type of anchoring-atom that connect molecule and electrodes, thus extending applications of dipyridazine and dipyridimine molecule in future integrated circuits.

  20. Towards computational materials design from first principles using alchemical changes and derivatives.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Lilienfeld-Toal, Otto Anatole

    2010-11-01

    The design of new materials with specific physical, chemical, or biological properties is a central goal of much research in materials and medicinal sciences. Except for the simplest and most restricted cases brute-force computational screening of all possible compounds for interesting properties is beyond any current capacity due to the combinatorial nature of chemical compound space (set of stoichiometries and configurations). Consequently, when it comes to computationally optimizing more complex systems, reliable optimization algorithms must not only trade-off sufficient accuracy and computational speed of the models involved, they must also aim for rapid convergence in terms of number of compoundsmore » 'visited'. I will give an overview on recent progress on alchemical first principles paths and gradients in compound space that appear to be promising ingredients for more efficient property optimizations. Specifically, based on molecular grand canonical density functional theory an approach will be presented for the construction of high-dimensional yet analytical property gradients in chemical compound space. Thereafter, applications to molecular HOMO eigenvalues, catalyst design, and other problems and systems shall be discussed.« less

  1. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System

    PubMed Central

    Okaty, Benjamin W.; Freret, Morgan E.; Rood, Benjamin D.; Brust, Rachael D.; Hennessy, Morgan L.; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N.; Dymecki, Susan M.

    2016-01-01

    Summary Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-Seq to deconstruct the mouse 5HT system at multiple levels of granularity—from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal: principles underlying system organization, novel 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers new subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. PMID:26549332

  2. Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles

    NASA Astrophysics Data System (ADS)

    Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo

    2017-07-01

    We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.

  3. Molecular Population Genetics

    PubMed Central

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  4. Surface chemistry of copper metal and copper oxide atomic layer deposition from copper(ii) acetylacetonate: a combined first-principles and reactive molecular dynamics study.

    PubMed

    Hu, Xiao; Schuster, Jörg; Schulz, Stefan E; Gessner, Thomas

    2015-10-28

    Atomistic mechanisms for the atomic layer deposition using the Cu(acac)2 (acac = acetylacetonate) precursor are studied using first-principles calculations and reactive molecular dynamics simulations. The results show that Cu(acac)2 chemisorbs on the hollow site of the Cu(110) surface and decomposes easily into a Cu atom and the acac-ligands. A sequential dissociation and reduction of the Cu precursor [Cu(acac)2 → Cu(acac) → Cu] are observed. Further decomposition of the acac-ligand is unfavorable on the Cu surface. Thus additional adsorption of the precursors may be blocked by adsorbed ligands. Molecular hydrogen is found to be nonreactive towards Cu(acac)2 on Cu(110), whereas individual H atoms easily lead to bond breaking in the Cu precursor upon impact, and thus release the surface ligands into the gas-phase. On the other hand, water reacts with Cu(acac)2 on a Cu2O substrate through a ligand-exchange reaction, which produces gaseous H(acac) and surface OH species. Combustion reactions with the main by-products CO2 and H2O are observed during the reaction between Cu(acac)2 and ozone on the CuO surface. The reactivity of different co-reactants toward Cu(acac)2 follows the order H > O3 > H2O.

  5. Functionalization-induced changes in the structural and physical properties of amorphous polyaniline: a first-principles and molecular dynamics study.

    PubMed

    Chen, X P; Liang, Q H; Jiang, J K; Wong, Cell K Y; Leung, Stanley Y Y; Ye, H Y; Yang, D G; Ren, T L

    2016-02-09

    In this paper, we present a first-principles and molecular dynamics study to delineate the functionalization-induced changes in the local structure and the physical properties of amorphous polyaniline. The results of radial distribution function (RDF) demonstrate that introducing -SO3(-)Na(+) groups at phenyl rings leads to the structural changes in both the intrachain and interchain ordering of polyaniline at shorter distances (≤5 Å). An unique RDF feature in 1.8-2.1 Å regions is usually observed in both the interchain and intrachain RDF profiles of the -SO3(-)Na(+) substituted polymer (i.e. Na-SPANI). Comparative studies of the atom-atom pairs, bond structures, torsion angles and three-dimensional structures show that EB-PANI has much better intrachain ordering than that of Na-SPANI. In addition, investigation of the band gap, density of states (DOS), and absorption spectra indicates that the derivatization at ring do not substantially alter the inherent electronic properties but greatly change the optical properties of polyaniline. Furthermore, the computed diffusion coefficient of water in Na-SPANI is smaller than that of EB-PANI. On the other hand, the Na-SPANI shows a larger density than that of EB-PANI. The computed RDF profiles, band gaps, absorption spectra, and diffusion coefficients are in quantitative agreement with the experimental data.

  6. [Principles for molecular identification of traditional Chinese materia medica using DNA barcoding].

    PubMed

    Chen, Shi-Lin; Yao, Hui; Han, Jian-Ping; Xin, Tian-Yi; Pang, Xiao-Hui; Shi, Lin-Chun; Luo, Kun; Song, Jing-Yuan; Hou, Dian-Yun; Shi, Shang-Mei; Qian, Zhong-Zhi

    2013-01-01

    Since the research of molecular identification of Chinese Materia Medica (CMM) using DNA barcode is rapidly developing and popularizing, the principle of this method is approved to be listed in the Supplement of the Pharmacopoeia of the People's Republic of China. Based on the study on comprehensive samples, the DNA barcoding systems have been established to identify CMM, i.e. ITS2 as a core barcode and psbA-trnH as a complementary locus for identification of planta medica, and COI as a core barcode and ITS2 as a complementary locus for identification of animal medica. This article introduced the principle of molecular identification of CMM using DNA barcoding and its drafting instructions. Furthermore, its application perspective was discussed.

  7. Towards a mulitphase equation of state of Carbon from first principles

    NASA Astrophysics Data System (ADS)

    Correa, Alfredo; Benedict, Lorin; Schwegler, Eric

    2007-03-01

    Ab initio molecular dynamics and electronic structure calculation had become one of the most useful tools to investigate properties of materials. Unfortunately these atomistic detailed results are rarely reused in calculations at a higher level of description, such as fluid dynamics and finite elements calculations. In this talk we present a concrete example showing the way that first principles results can be expressed in a way that is useful for hydrodynamics calculations, in particular we show how to build a analytic equation of state for Carbon that involves solid (diamond and BC8) and liquid phases. Applications of this newly obtained equation of state will be presented. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  8. First-principles quantum-mechanical investigations of biomass conversion at the liquid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Dang, Hongli; Xue, Wenhua; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    We report first-principles density-functional calculations and ab initio molecular dynamics (MD) simulations for the reactions involving furfural, which is an important intermediate in biomass conversion, at the catalytic liquid-solid interfaces. The different dynamic processes of furfural at the water-Cu(111) and water-Pd(111) interfaces suggest different catalytic reaction mechanisms for the conversion of furfural. Simulations for the dynamic processes with and without hydrogen demonstrate the importance of the liquid-solid interface as well as the presence of hydrogen in possible catalytic reactions including hydrogenation and decarbonylation of furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  9. Nanoscale Charge Balancing Mechanism in Calcium-Silicate-Hydrate Gels: Novel Complex Disordered Materials from First-principles

    NASA Astrophysics Data System (ADS)

    Ozcelik, Ongun; White, Claire

    Alkali-activated materials which have augmented chemical compositions as compared to ordinary Portland cement are sustainable technologies that have the potential to lower CO2 emissions associated with the construction industry. In particular, calcium-silicate-hydrate (C-S-H) gel is altered at the atomic scale due to changes in its chemical composition. Here, based on first-principles calculations, we predict a charge balancing mechanism at the molecular level in C-S-H gels when alkali atoms are introduced into their structure. This charge balancing process is responsible for the formation of novel structures which possess superior mechanical properties compared to their charge unbalanced counterparts. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these charge balancing effects on the structures is assessed by analyzing their formation energies, local bonding environments, diffusion barriers and mechanical properties. These results provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental mechanisms that play a crucial role in these complex disordered materials. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF.

  10. Open-Shell-Character-Based Molecular Design Principles: Applications to Nonlinear Optics and Singlet Fission.

    PubMed

    Nakano, Masayoshi

    2017-01-01

    Open-shell character, e. g., diradical character, is a quantum chemically well-defined quantity in ground-state molecular systems, which is not an observable but can quantify the degree of effective bond weakness in the chemical sense or electron correlation strength in the physical sense. Because this quantity also correlates to specific excited states, physicochemical properties concerned with those states are expected to strongly correlate to the open-shell character. This feature enables us to open a new path to revealing the mechanism of these properties as well as to realizing new design principles for efficient functional molecular systems. This account explains the open-shell-character-based molecular design principles and introduces their applications to the rational design of highly efficient nonlinear optical and singlet fission molecular systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System.

    PubMed

    Okaty, Benjamin W; Freret, Morgan E; Rood, Benjamin D; Brust, Rachael D; Hennessy, Morgan L; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N; Dymecki, Susan M

    2015-11-18

    Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces.

    PubMed

    Kharche, Neerav; Muckerman, James T; Hybertsen, Mark S

    2014-10-24

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The  GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

  13. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE PAGES

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1 b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation andmore » the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  14. First-principles simulations of doping-dependent mesoscale screening of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Mostofi, Arash; Corsetti, Fabiano; Wong, Dillon; Crommie, Michael; Lischner, Johannes

    Adsorbed atoms and molecules play an important role in controlling and tuning the functional properties of 2D materials. Understanding and predicting this phenomenon from theory is challenging because of the need to capture both the local chemistry of the adsorbate-substrate interaction and its complex interplay with the long-range screening response of the substrate. To address this challenge, we have developed a first-principles multi-scale approach that combines linear-scaling density-functional theory, continuum screening theory and large-scale tight-binding simulations. Focussing on the case of a calcium adatom on graphene, we draw comparison between the effect of (i) non-linearity, (ii) intraband and interband transitions, and (iii) the exchange-correlation potential, thus providing insight into the relative importance of these different factors on the screening response. We also determine the charge transfer from the adatom to the graphene substrate (the key parameter used in continuum screening models), showing it to be significantly larger than previous estimates. AM and FC acknowledge support of the EPSRC under Grant EP/J015059/1, and JL under Grant EP/N005244/1.

  15. First principles studies on anatase surfaces

    NASA Astrophysics Data System (ADS)

    Selcuk, Sencer

    TiO2 is one of the most widely studied metal oxides from both the fundamental and the technological points of view. A variety of applications have already been developed in the fields of energy production, environmental remediation, and electronics. Still, it is considered to have a high potential for further improvement and continues to be of great interest. This thesis describes our theoretical studies on the structural and electronic properties of anatase surfaces, and their (photo)chemical behavior. Recently much attention has been focused on anatase crystals synthesized by hydrofluoric acid assisted methods. These crystals exhibit a high percentage of {001} facets, generally considered to be highly reactive. We used first principles methods to investigate the structure of these facets, which is not yet well understood. Our results suggest that (001) surfaces exhibit the bulk-terminated structure when in contact with concentrated HF solutions. However, 1x4-reconstructed surfaces, as observed in UHV, become always more stable at the typical temperatures used to clean the as-prepared crystals in experiments. Since the reconstructed surfaces are only weakly reactive, we predict that synthetic anatase crystals with dominant {001} facets should not exhibit enhanced photocatalytic activity. Understanding how defects in solids interact with external electric fields is important for technological applications such as memristor devices. We studied the influence of an external electric field on the formation energies and diffusion barriers of the surface and the subsurface oxygen vacancies at the anatase (101) surface from first principles. Our results show that the applied field can have a significant influence on the relative stabilities of these defects, whereas the effect on the subsurface-to-surface defect migration is found to be relatively minor. Charge carriers play a key role in the transport properties and the surface chemistry of TiO2. Understanding their

  16. Diagnosis: Reasoning from first principles and experiential knowledge

    NASA Technical Reports Server (NTRS)

    Williams, Linda J. F.; Lawler, Dennis G.

    1987-01-01

    Completeness, efficiency and autonomy are requirements for suture diagnostic reasoning systems. Methods for automating diagnostic reasoning systems include diagnosis from first principles (i.e., reasoning from a thorough description of structure and behavior) and diagnosis from experiential knowledge (i.e., reasoning from a set of examples obtained from experts). However, implementation of either as a single reasoning method fails to meet these requirements. The approach of combining reasoning from first principles and reasoning from experiential knowledge does address the requirements discussed above and can possibly ease some of the difficulties associated with knowledge acquisition by allowing developers to systematically enumerate a portion of the knowledge necessary to build the diagnosis program. The ability to enumerate knowledge systematically facilitates defining the program's scope, completeness, and competence and assists in bounding, controlling, and guiding the knowledge acquisition process.

  17. A first principles prediction of the crystal structure of C6Br2ClFH2

    NASA Astrophysics Data System (ADS)

    Misquitta, Alston J.; Welch, Gareth W. A.; Stone, Anthony J.; Price, Sarah L.

    2008-04-01

    We have constructed an intermolecular potential for the 1,3-dibromo-2-chloro-5-fluorobenzene molecule from first principles using SAPT(DFT) interaction energy calculations and the Williams-Stone-Misquitta method for obtaining molecular properties in distributed form. This molecule was included in the fourth Blind Test of crystal structure prediction organised by the Cambridge Crystallographic Data Centre. Using our potential, we have predicted the crystal structure of CBrClFH and found the lowest energy solution to be in excellent agreement with the experimentally observed crystal when it was subsequently revealed.

  18. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zi; Zhang, Shen; Kang, Wei

    2016-05-15

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N{sub 2} molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electronmore » density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.« less

  19. [The beginning of the first principles: the anthropic principle].

    PubMed

    González de Posada, Francisco

    2004-01-01

    The nowadays classical Anthropic Principle is put both in the historical perspective of the traditional problem of "the place of man in the Universe', and in the confluence of several scientific "border" issues, some of which, due to their problematical nature, are also subject of philosophical analysis. On the one hand, the scientific uses of the Principle, related to the initial and constitutional conditions of "our Universe", are enumerated, as they are supposedly necessary for the appearance and consequent development of Life--up to Man--. On the other, an organized collection of the principles of today's Physics is synthetically exhibited. The object of this work is to determine the intrinsic scientific nature of the Anthropic Principle, and the role it plays in the global frame of the principles of Physics (Astrophysics, Astrobiology and Cosmology).

  20. Development of a "First Principles" Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient.

    PubMed

    Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco

    2013-12-10

    The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles". The comparison of the calculated vibration-rotation tunneling (VRT) spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.

  1. Structures, energetics, vibrational spectra of NH4+ (H2O)(n=4,6) clusters: Ab initio calculations and first principles molecular dynamics simulations.

    PubMed

    Karthikeyan, S; Singh, Jiten N; Park, Mina; Kumar, Rajesh; Kim, Kwang S

    2008-06-28

    Important structural isomers of NH(4) (+)(H(2)O)(n=4,6) have been studied by using density functional theory, Moller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH(4) (+)(H(2)O)(n=4,6) because otherwise wrong structures could be assigned for the most probable structures. For NH(4) (+)(H(2)O)(6), the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH(4) (+)(H(2)O)(4) and two lowest energy isomers of NH(4) (+)(H(2)O)(6) explains each experimental IR spectrum.

  2. Structures, energetics, vibrational spectra of NH4+(H2O)n=4,6 clusters: Ab initio calculations and first principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Karthikeyan, S.; Singh, Jiten N.; Park, Mina; Kumar, Rajesh; Kim, Kwang S.

    2008-06-01

    Important structural isomers of NH4+(H2O)n=4,6 have been studied by using density functional theory, Møller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH4+(H2O)n=4,6 because otherwise wrong structures could be assigned for the most probable structures. For NH4+(H2O)6, the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH4+(H2O)4 and two lowest energy isomers of NH4+(H2O)6 explains each experimental IR spectrum.

  3. Silver in geological fluids from in situ X-ray absorption spectroscopy and first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Pokrovski, Gleb S.; Roux, Jacques; Ferlat, Guillaume; Jonchiere, Romain; Seitsonen, Ari P.; Vuilleumier, Rodolphe; Hazemann, Jean-Louis

    2013-04-01

    The molecular structure and stability of species formed by silver in aqueous saline solutions typical of hydrothermal settings were quantified using in situ X-ray absorption spectroscopy (XAS) measurements, quantum-chemical modeling of near-edge absorption spectra (XANES) and extended fine structure spectra (EXAFS), and first-principles molecular dynamics (FPMD). Results show that in nitrate-bearing acidic solutions to at least 200 °C, silver speciation is dominated by the hydrated Ag+ cation surrounded by 4-6 water molecules in its nearest coordination shell with mean Ag-O distances of 2.32 ± 0.02 Å. In NaCl-bearing acidic aqueous solutions of total Cl concentration from 0.7 to 5.9 mol/kg H2O (m) at temperatures from 200 to 450 °C and pressures to 750 bar, the dominant species are the di-chloride complex AgCl2- with Ag-Cl distances of 2.40 ± 0.02 Å and Cl-Ag-Cl angle of 160 ± 10°, and the tri-chloride complex AgCl32- of a triangular structure and mean Ag-Cl distances of 2.60 ± 0.05 Å. With increasing temperature, the contribution of the tri-chloride species decreases from ˜50% of total dissolved Ag in the most concentrated solution (5.9m Cl) at 200 °C to less than 10-20% at supercritical temperatures for all investigated solutions, so that AgCl2- becomes by far the dominant Ag-bearing species at conditions typical of hydrothermal-magmatic fluids. Both di- and tri-chloride species exhibit outer-sphere interactions with the solvent as shown by the detection, using FPMD modeling, of H2O, Cl-, and Na+ at distances of 3-4 Å from the silver atom. The species fractions derived from XAS and FPMD analyses, and total AgCl(s) solubilities, measured in situ in this work from the absorption edge height of XAS spectra, are in accord with thermodynamic predictions using the stability constants of AgCl2- and AgCl32- from Akinfiev and Zotov (2001) and Zotov et al. (1995), respectively, which are based on extensive previous AgCl(s) solubility measurements. These data

  4. Diffusion coefficients of Mg isotopes in MgSiO3 and Mg2SiO4 melts calculated by first-principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Qi, Yuhan; Zheng, Daye; Zhou, Chen; He, Lixin; Huang, Fang

    2018-02-01

    The mass dependence of diffusion coefficient (D) can be described in the form of Di/Dj = (mj/mi)β, where m denotes masses of isotope i and j, and β is an empirical parameter as used to quantify the diffusive transport of isotopes. Recent advances in computation techniques allow theoretically calculation of β values. Here, we apply first-principles Born-Oppenheimer molecular dynamics (MD) and pseudo-isotope method (taking mj/mi = 1/24, 6/24, 48/24, 120/24) to estimate β for MgSiO3 and Mg2SiO4 melts. Our calculation shows that β values for Mg calculated with 24Mg and different pseudo Mg isotopes are identical, indicating the reliability of the pseudo-isotope method. For MgSiO3 melt, β is 0.272 ± 0.005 at 4000 K and 0 GPa, higher than the value calculated using classical MD simulations (0.135). For Mg2SiO4 melt, β is 0.184 ± 0.006 at 2300 K, 0.245 ± 0.007 at 3000 K, and 0.257 ± 0.012 at 4000 K. Notably, β values of MgSiO3 and Mg2SiO4 melts are significantly higher than the value in basalt-rhyolite melts determined by chemical diffusion experiments (0.05). Our results suggest that β values are not sensitive to the temperature if it is well above the liquidus, but can be significantly smaller when the temperature is close to the liquidus. The small difference of β between silicate liquids with simple compositions of MgSiO3 and Mg2SiO4 suggests that the β value may depend on the chemical composition of the melts. This study shows that first-principles MD provide a promising tool to estimate β of silicate melts.

  5. Accurate atomistic first-principles calculations of electronic stopping

    DOE PAGES

    Schleife, André; Kanai, Yosuke; Correa, Alfredo A.

    2015-01-20

    In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less

  6. Electrical properties of improper ferroelectrics from first principles

    NASA Astrophysics Data System (ADS)

    Stengel, Massimiliano; Fennie, Craig J.; Ghosez, Philippe

    2012-09-01

    We study the interplay of structural and polar distortions in hexagonal YMnO3 and short-period PbTiO3/SrTiO3 (PTO/STO) superlattices by means of first-principles calculations at constrained electric displacement field D. We find that in YMnO3 the tilts of the oxygen polyhedra produce a robustly polar ground state, which persists at any choice of the electrical boundary conditions. Conversely, in PTO/STO the antiferrodistortive instabilities alone do not break inversion symmetry, and open-circuit boundary conditions restore a nonpolar state. We suggest that this qualitative difference naturally provides a route to rationalizing the concept of “improper ferroelectricity” from the point of view of first-principles theory. We discuss the implications of our arguments for the design of novel multiferroic materials with enhanced functionalities and for the symmetry analysis of the phase transitions.

  7. Molecular Population Genetics.

    PubMed

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  8. Elastic interaction of hydrogen atoms on graphene: A multiscale approach from first principles to continuum elasticity

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.

    2016-10-01

    The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.

  9. Application of Merrill's First Principles of Instruction in a Museum Education Context

    ERIC Educational Resources Information Center

    Nelson, Kari Ross

    2015-01-01

    In an effort to support a solid grounding in educational theory within the field of museum education, three texts considered essential reading for museum educators were surveyed for correlations with Merrill's First Principles of Instruction, an influential work in the field of instructional design. Each of five First Principles were found to be…

  10. First-principles study on electron transport properties of carbon-silicon mixed chains

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zhou, Qinghua; Liang, Yan; Liu, Wenhua; Wang, Tao; Wan, Haiqing

    2018-03-01

    In this paper, the transport properties of carbon-silicon mixed chains are studied by using the first-principles. We studied five atomic chain models. In these studies, we found that the equilibrium conductances of atomic chains appear to oscillate, the maximum conductance and the minimum conductance are more than twice the difference. Their I-V curves are linear and show the behavior of metal resistance, M5 system and M2 system current ratio is the largest in 0.9 V, which is 3.3, showing a good molecular switch behavior. In the case of bias, while the bias voltage increases, the transmission peaks move from the Fermi level. The resonance transmission peak height is reduced near the Fermi level. In the higher energy range, a large resonance transmission peak reappears, there is still no energy cut-off range.

  11. First-principles study of transition-metal nitrides as diffusion barriers against Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zhi-Gang; Yacout, Abdellatif M.; Kim, Yeon Soo

    2016-04-01

    Using density-functional theory based first-principles calculations we provided a comparative study of the diffusion barrier properties of TiN, ZrN, and HfN against Al for U-Mo dispersion fuel applications. We firstly examined the thermodynamic stability of these transition-metal nitrides with Al. The calculated heats of reaction show that both TiN and ZrN are thermodynamically unstable diffusion barrier materials, which might be decomposed by Al at relatively high temperatures. As a comparison, HfN is a stable diffusion barrier material for Al. To evaluate the kinetic stability of these nitride systems against Al diffusion, we investigated the diffusion mechanisms of Al in TiN,more » ZrN and HfN using atomic scale simulations. The effect of non-stoichiometry on the defect formation and Al migration was systematically studied. (C) 2015 ELSEVIER B.V. All rights reserved« less

  12. On the search for design principles in biological systems.

    PubMed

    Poyatos, Juan F

    2012-01-01

    The search for basic concepts and underlying principles was at the core of the systems approach to science and technology. This approach was somehow abandoned in mainstream biology after its initial proposal, due to the rise and success of molecular biology. This situation has changed. The accumulated knowledge of decades of molecular studies in combination with new technological advances, while further highlighting the intricacies of natural systems, is also bringing back the quest-for-principles research program. Here, I present two lessons that I derived from my own quest: the importance of studying biological information processing to identify common principles in seemingly unrelated contexts and the adequacy of using known design principles at one level of biological organization as a valuable tool to help recognizing principles at an alternative one. These and additional lessons should contribute to the ultimate goal of establishing principles able to integrate the many scales of biological complexity.

  13. Novel Natural Convection Heat Sink Design Concepts From First Principles

    DTIC Science & Technology

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited NOVEL NATURAL ...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...geometric structures that incorporate the principles of the stack effect to improve the heat transfer capability of a heat sink under natural convection

  14. Molecular Level Understanding of the Factors Affecting the Stability of Dimethoxy Benzene Catholyte Candidates from First-Principles Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assary, Rajeev S.; Zhang, Lu; Huang, Jinhua

    First-principles simulations are performed to gain molecular level insights into the factors affecting the stability of seven 1,4-dimethoxybenzene (DMB) derivatives. These molecules are potential catholyte candidates for nonaqueous redox flow battery systems. Computations are performed to predict oxidation potentials in various dielectric mediums, intrinsic-reorganization energies, and structural changes of these representative catholyte molecules during the redox process. In order to understand the stability of the DMB-based radical cations, the thermodynamic feasibility of the following reactions is computed using density functional theory: (a) deprotonation, (b) dimerization, (c) hydrolysis, and (d) demethylation. The computations indicate that radical cations of the 2,3-dimethyl andmore » 2,5-dimethyl derivatives are the most stable among the DMB derivatives considered in this study. In the presence of solvents with high-proton solvating ability (water, DMSO, acetonitrile), degradation of cation radical occurring via deprotonation is the most likely mechanism. In the presence of solvents such as propylene carbonate (PC), demethylation was found to be the most likely reaction that causes degradation of radical cations. From the computed enthalpy of activation (Delta H-double dagger) for a demethylation reaction in PC, the 2,5-dimethyl DMB cation radical would exhibit better kinetic stability in comparison to the other candidates. Finally, this investigation suggests that computational studies of structural properties such as redox potentials, reorganization energies, and the computed reaction energetics (deprotonation and demethylation) of charged species can be used to predict the relative stability of a large set of molecules required for the discovery of novel redox active materials for flow battery applications« less

  15. Molecular Level Understanding of the Factors Affecting the Stability of Dimethoxy Benzene Catholyte Candidates from First-Principles Investigations

    DOE PAGES

    Assary, Rajeev S.; Zhang, Lu; Huang, Jinhua; ...

    2016-06-14

    First-principles simulations are performed to gain molecular level insights into the factors affecting the stability of seven 1,4-dimethoxybenzene (DMB) derivatives. These molecules are potential catholyte candidates for nonaqueous redox flow battery systems. Computations are performed to predict oxidation potentials in various dielectric mediums, intrinsic-reorganization energies, and structural changes of these representative catholyte molecules during the redox process. In order to understand the stability of the DMB-based radical cations, the thermodynamic feasibility of the following reactions is computed using density functional theory: (a) deprotonation, (b) dimerization, (c) hydrolysis, and (d) demethylation. The computations indicate that radical cations of the 2,3-dimethyl andmore » 2,5-dimethyl derivatives are the most stable among the DMB derivatives considered in this study. In the presence of solvents with high-proton solvating ability (water, DMSO, acetonitrile), degradation of cation radical occurring via deprotonation is the most likely mechanism. In the presence of solvents such as propylene carbonate (PC), demethylation was found to be the most likely reaction that causes degradation of radical cations. From the computed enthalpy of activation (Delta H-double dagger) for a demethylation reaction in PC, the 2,5-dimethyl DMB cation radical would exhibit better kinetic stability in comparison to the other candidates. Finally, this investigation suggests that computational studies of structural properties such as redox potentials, reorganization energies, and the computed reaction energetics (deprotonation and demethylation) of charged species can be used to predict the relative stability of a large set of molecules required for the discovery of novel redox active materials for flow battery applications« less

  16. Scaling Principles for Understanding and Exploiting Adhesion

    NASA Astrophysics Data System (ADS)

    Crosby, Alfred

    A grand challenge in the science of adhesion is the development of a general design paradigm for adhesive materials that can sustain large forces across an interface yet be detached with minimal force upon command. Essential to this challenge is the generality of achieving this performance under a wide set of external conditions and across an extensive range of forces. Nature has provided some guidance through various examples, e.g. geckos, for how to meet this challenge; however, a single solution is not evident upon initial investigation. To help provide insight into nature's ability to scale reversible adhesion and adapt to different external constraints, we have developed a general scaling theory that describes the force capacity of an adhesive interface in the context of biological locomotion. We have demonstrated that this scaling theory can be used to understand the relative performance of a wide range of organisms, including numerous gecko species and insects, as well as an extensive library of synthetic adhesive materials. We will present the development and testing of this scaling theory, and how this understanding has helped guide the development of new composite materials for high capacity adhesives. We will also demonstrate how this scaling theory has led to the development of new strategies for transfer printing and adhesive applications in manufacturing processes. Overall, the developed scaling principles provide a framework for guiding the design of adhesives.

  17. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study

    NASA Astrophysics Data System (ADS)

    Caliskan, Serkan

    2018-05-01

    Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.

  18. Empirical investigation of the ethical reasoning of physicians and molecular biologists - the importance of the four principles of biomedical ethics.

    PubMed

    Ebbesen, Mette; Pedersen, Birthe D

    2007-10-25

    This study presents an empirical investigation of the ethical reasoning and ethical issues at stake in the daily work of physicians and molecular biologists in Denmark. The aim of this study was to test empirically whether there is a difference in ethical considerations and principles between Danish physicians and Danish molecular biologists, and whether the bioethical principles of the American bioethicists Tom L. Beauchamp and James F. Childress are applicable to these groups. This study is based on 12 semi-structured interviews with three groups of respondents: a group of oncology physicians working in a clinic at a public hospital and two groups of molecular biologists conducting basic research, one group employed at a public university and the other in a private biopharmaceutical company. In this sample, the authors found that oncology physicians and molecular biologists employed in a private biopharmaceutical company have the specific principle of beneficence in mind in their daily work. Both groups are motivated to help sick patients. According to the study, molecular biologists explicitly consider nonmaleficence in relation to the environment, the researchers' own health, and animal models; and only implicitly in relation to patients or human subjects. In contrast, considerations of nonmaleficence by oncology physicians relate to patients or human subjects. Physicians and molecular biologists both consider the principle of respect for autonomy as a negative obligation in the sense that informed consent of patients should be respected. However, in contrast to molecular biologists, physicians experience the principle of respect for autonomy as a positive obligation as the physician, in dialogue with the patient, offers a medical prognosis based upon the patients wishes and ideas, mutual understanding, and respect. Finally, this study discloses utilitarian characteristics in the overall conception of justice as conceived by oncology physicians and molecular

  19. Diffusion in thorium carbide: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2015-12-01

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature.

  20. Monolayer II-VI semiconductors: A first-principles prediction

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.

  1. Roy's safety-first portfolio principle in financial risk management of disastrous events.

    PubMed

    Chiu, Mei Choi; Wong, Hoi Ying; Li, Duan

    2012-11-01

    Roy pioneers the concept and practice of risk management of disastrous events via his safety-first principle for portfolio selection. More specifically, his safety-first principle advocates an optimal portfolio strategy generated from minimizing the disaster probability, while subject to the budget constraint and the mean constraint that the expected final wealth is not less than a preselected disaster level. This article studies the dynamic safety-first principle in continuous time and its application in asset and liability management. We reveal that the distortion resulting from dropping the mean constraint, as a common practice to approximate the original Roy's setting, either leads to a trivial case or changes the problem nature completely to a target-reaching problem, which produces a highly leveraged trading strategy. Recognizing the ill-posed nature of the corresponding Lagrangian method when retaining the mean constraint, we invoke a wisdom observed from a limited funding-level regulation of pension funds and modify the original safety-first formulation accordingly by imposing an upper bound on the funding level. This model revision enables us to solve completely the safety-first asset-liability problem by a martingale approach and to derive an optimal policy that follows faithfully the spirit of the safety-first principle and demonstrates a prominent nature of fighting for the best and preventing disaster from happening. © 2012 Society for Risk Analysis.

  2. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.

    PubMed

    Okubo, Masashi; Yamada, Atsuo

    2017-10-25

    Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.

  3. Equation of state for technetium from X-ray diffraction and first-principle calculations

    DOE PAGES

    Mast, Daniel S.; Kim, Eunja; Siska, Emily M.; ...

    2016-03-20

    Here, the ambient temperature equation of state (EoS) of technetium metal has been measured by X-ray diffraction. The metal was compressed using a diamond anvil cell and using a 4:1 methanol-ethanol pressure transmitting medium. The maximum pressure achieved, as determined from the gold pressure scale, was 67 GPa. The compression data shows that the HCP phase of technetium is stable up to 67 GPa. The compression curve of technetium was also calculated using first-principles total-energy calculations. Utilizing a number of fitting strategies to compare the experimental and theoretical data it is determined that the Vinet equation of state with anmore » ambient isothermal bulk modulus of B 0T = 288 GPa and a first pressure derivative of B' = 5.9(2) best represent the compression behavior of technetium metal.« less

  4. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kiabek

    2015-06-01

    We consider the ignition of a high-pressure gamma-phase of an explosive crystal of RDX which forms during overdriven shock initiation. Molecular dynamics (MD), with first-principles based or reactive force field based molecular potentials, provides a description of the chemistry as an extremely complex reaction network. The results of the molecular simulation is analyzed by sorting molecular product fragments into high and low molecular groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation, that has a single temperature and stress state for the mixture is used to represent the same RDX material and its chemistry. Each component in the continuum model has a corresponding Gibbs continuum potential, that are in turn inferred from molecular MD informed equation of state libraries such as CHEETAH, or are directly simulated by Monte Carlo MD simulations. Information about transport, kinetic rates and diffusion are derived from the MD simulation and the growth of a reactive hot spot in the RDX is studied with both simulations that mirror the other results to provide an essential, continuum/atomistic link. Supported by N000014-12-1-0555, subaward-36561937 (ONR).

  5. Design parameters for tuning the type 1 Cu multicopper oxidase redox potential: insight from a combination of first principles and empirical molecular dynamics simulations.

    PubMed

    Hong, Gongyi; Ivnitski, Dmitri M; Johnson, Glenn R; Atanassov, Plamen; Pachter, Ruth

    2011-04-06

    The redox potentials and reorganization energies of the type 1 (T1) Cu site in four multicopper oxidases were calculated by combining first principles density functional theory (QM) and QM/MM molecular dynamics (MD) simulations. The model enzymes selected included the laccase from Trametes versicolor, the laccase-like enzyme isolated from Bacillus subtilis, CueO required for copper homeostasis in Escherichia coli, and the small laccase (SLAC) from Streptomyces coelicolor. The results demonstrated good agreement with experimental data and provided insight into the parameters that influence the T1 redox potential. Effects of the immediate T1 Cu site environment, including the His(N(δ))-Cys(S)-His(N(δ)) and the axial coordinating amino acid, as well as the proximate H(N)(backbone)-S(Cys) hydrogen bond, were discerned. Furthermore, effects of the protein backbone and side-chains, as well as of the aqueous solvent, were studied by QM/MM molecular dynamics (MD) simulations, providing an understanding of influences beyond the T1 Cu coordination sphere. Suggestions were made regarding an increase of the T1 redox potential in SLAC, i.e., of Met198 and Thr232 in addition to the axial amino acid Met298. Finally, the results of this work presented a framework for understanding parameters that influence the Type 1 Cu MCO redox potential, useful for an ever-growing range of laccase-based applications. © 2011 American Chemical Society

  6. Preface: Special Topic on Frontiers in Molecular Scale Electronics

    NASA Astrophysics Data System (ADS)

    Evers, Ferdinand; Venkataraman, Latha

    2017-03-01

    The electronic, mechanical, and thermoelectric properties of molecular scale devices have fascinated scientists across several disciplines in natural sciences and engineering. The interest is partially technological, driven by the fast miniaturization of integrated circuits that now have reached characteristic features at the nanometer scale. Equally important, a very strong incentive also exists to elucidate the fundamental aspects of structure-function relations for nanoscale devices, which utilize molecular building blocks as functional units. Thus motivated, a rich research field has established itself, broadly termed "Molecular Electronics," that hosts a plethora of activities devoted to this goal in chemistry, physics, and electrical engineering. This Special Topic on Frontiers of Molecular Scale Electronics captures recent theoretical and experimental advances in the field.

  7. Penetration Barrier of Water through Graphynes' Pores: First-Principles Predictions and Force Field Optimization.

    PubMed

    Bartolomei, Massimiliano; Carmona-Novillo, Estela; Hernández, Marta I; Campos-Martínez, José; Pirani, Fernando; Giorgi, Giacomo; Yamashita, Koichi

    2014-02-20

    Graphynes are novel two-dimensional carbon-based materials that have been proposed as molecular filters, especially for water purification technologies. We carry out first-principles electronic structure calculations at the MP2C level of theory to assess the interaction between water and graphyne, graphdiyne, and graphtriyne pores. The computed penetration barriers suggest that water transport is unfeasible through graphyne while being unimpeded for graphtriyne. For graphdiyne, with a pore size almost matching that of water, a low barrier is found that in turn disappears if an active hydrogen bond with an additional water molecule on the opposite side of the opening is considered. Thus, in contrast with previous determinations, our results do not exclude graphdiyne as a promising membrane for water filtration. In fact, present calculations lead to water permeation probabilities that are 2 orders of magnitude larger than estimations based on common force fields. A new pair potential for the water-carbon noncovalent component of the interaction is proposed for molecular dynamics simulations involving graphdiyne and water.

  8. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE PAGES

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy; ...

    2018-02-07

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  9. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  10. Optimized Materials From First Principles Simulations: Are We There Yet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, G; Gygi, F

    2005-07-26

    In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less

  11. First principles Peierls-Boltzmann phonon thermal transport: A topical review

    DOE PAGES

    Lindsay, Lucas

    2016-08-05

    The advent of coupled thermal transport calculations with interatomic forces derived from density functional theory has ushered in a new era of fundamental microscopic insight into lattice thermal conductivity. Subsequently, significant new understanding of phonon transport behavior has been developed with these methods, and because they are parameter free and successfully benchmarked against a variety of systems, they also provide reliable predictions of thermal transport in systems for which little is known. This topical review will describe the foundation from which first principles Peierls-Boltzmann transport equation methods have been developed, and briefly describe important necessary ingredients for accurate calculations. Samplemore » highlights of reported work will be presented to illustrate the capabilities and challenges of these techniques, and to demonstrate the suite of tools available, with an emphasis on thermal transport in micro- and nano-scale systems. In conclusion, future challenges and opportunities will be discussed, drawing attention to prospects for methods development and applications.« less

  12. The solvation structure of Mg ions in dichloro complex solutions from first-principles molecular dynamics and simulated X-ray absorption spectra.

    PubMed

    Wan, Liwen F; Prendergast, David

    2014-10-15

    The knowledge of Mg solvation structure in the electrolyte is requisite to understand the transport behavior of Mg ions and their dissolution/deposition mechanism at electrolyte/electrode interfaces. In the first established rechargeable Mg-ion battery system [D. Aurbach et al. Nature 2000, 407, 724], the electrolyte is of the dichloro complex (DCC) solution family, Mg(AlCl2BuEt)2/THF, resulting from the reaction of Bu2Mg and EtAlCl2 with a molar ratio of 1:2. There is disagreement in the literature regarding the exact solvation structure of Mg ions in such solutions, i.e., whether Mg(2+) is tetra- or hexacoordinated by a combination of Cl(-) and THF. In this work, theoretical insight into the solvation complexes present is provided based on first-principles molecular dynamics simulations (FPMD). Both Mg monomer and dimer structures are considered in both neutral and positively charged states. We found that, at room temperature, the Mg(2+) ion tends to be tetracoordinated in the THF solution phase instead of hexacoordinated, which is the predominant solid-phase coordination. Simulating the X-ray absorption spectra (XAS) at the Mg K-edge by sampling our FPMD trajectories, our predicted solvation structure can be readily compared with experimental measurements. It is found that when changing from tetra- to hexacoordination, the onset of X-ray absorption should exhibit at least a 1 eV blue shift. We propose that this energy shift can be used to monitor changes in the Mg solvation sphere as it migrates through the electrolyte to electrolyte/electrode interfaces and to elucidate the mechanism of Mg dissolution/deposition.

  13. Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations.

    PubMed

    Folliet, Nicolas; Roiland, Claire; Bégu, Sylvie; Aubert, Anne; Mineva, Tzonka; Goursot, Annick; Selvaraj, Kaliaperumal; Duma, Luminita; Tielens, Frederik; Mauri, Francesco; Laurent, Guillaume; Bonhomme, Christian; Gervais, Christel; Babonneau, Florence; Azaïs, Thierry

    2011-10-26

    In the context of nanomedicine, liposils (liposomes and silica) have a strong potential for drug storage and release schemes: such materials combine the intrinsic properties of liposome (encapsulation) and silica (increased rigidity, protective coating, pH degradability). In this work, an original approach combining solid state NMR, molecular dynamics, first principles geometry optimization, and NMR parameters calculation allows the building of a precise representation of the organic/inorganic interface in liposils. {(1)H-(29)Si}(1)H and {(1)H-(31)P}(1)H Double Cross-Polarization (CP) MAS NMR experiments were implemented in order to explore the proton chemical environments around the silica and the phospholipids, respectively. Using VASP (Vienna Ab Initio Simulation Package), DFT calculations including molecular dynamics, and geometry optimization lead to the determination of energetically favorable configurations of a DPPC (dipalmitoylphosphatidylcholine) headgroup adsorbed onto a hydroxylated silica surface that corresponds to a realistic model of an amorphous silica slab. These data combined with first principles NMR parameters calculations by GIPAW (Gauge Included Projected Augmented Wave) show that the phosphate moieties are not directly interacting with silanols. The stabilization of the interface is achieved through the presence of water molecules located in-between the head groups of the phospholipids and the silica surface forming an interfacial H-bonded water layer. A detailed study of the (31)P chemical shift anisotropy (CSA) parameters allows us to interpret the local dynamics of DPPC in liposils. Finally, the VASP/solid state NMR/GIPAW combined approach can be extended to a large variety of organic-inorganic hybrid interfaces.

  14. Extensive first-principles molecular dynamics study on Li encapsulation into C60 and its experimental confirmation.

    PubMed

    Ohno, K; Manjanath, A; Kawazoe, Y; Hatakeyama, R; Misaizu, F; Kwon, E; Fukumura, H; Ogasawara, H; Yamada, Y; Zhang, C; Sumi, N; Kamigaki, T; Kawachi, K; Yokoo, K; Ono, S; Kasama, Y

    2018-01-25

    The aim of increasing the production ratio of endohedral C 60 by impinging foreign atoms against C 60 is a crucial matter of the science and technology employed towards industrialization of these functional building block materials. Among these endohedral fullerenes, Li + @C 60 exhibits a wide variety of physical and chemical phenomena and has the potential to be applicable in areas spanning the medical field to photovoltaics. However, currently, Li + @C 60 can be experimentally produced with only ∼1% ratio using the plasma shower method with a 30 eV kinetic energy provided to the impinging Li + ion. From extensive first-principles molecular dynamics simulations, it is found that the maximum production ratio of Li + @C 60 per hit is increased to about 5.1% (5.3%) when a Li + ion impinges vertically on a six-membered ring of C 60 with 30 eV (40 eV) kinetic energy, although many C 60 molecules are damaged during this collision. On the contrary, when it impinges vertically on a six-membered ring with 10 eV kinetic energy, the production ratio remains at 1.3%, but the C 60 molecules are not damaged at all. On the other hand, when the C 60 is randomly oriented, the production ratio reduces to about 3.7 ± 0.5%, 3.3 ± 0.5%, and 0.2 ± 0.03% for 30 eV, 40 eV, and 10 eV kinetic energy, respectively. Based on these observations we demonstrate the possibility of increasing the production ratio by fixing six-membered rings atop C 60 using the Cu(111) substrate or UV light irradiation. In order to assess the ideal experimental production ratio, the 7 Li solid NMR spectroscopy measurement is also performed for the multilayer randomly oriented C 60 sample irradiated by Li + using the plasma shower method combined with inductively coupled plasma atomic emission spectroscopy (ICP-AES). Time-of-flight mass spectroscopy measurements are also performed to cross check whether Li + @C 60 molecules are produced in the sample. The resulting experimental estimate, 4% for 30 eV incident

  15. First principles NMR calculations of phenylphosphinic acid C 6H 5HPO(OH): Assignments, orientation of tensors by local field experiments and effect of molecular motion

    NASA Astrophysics Data System (ADS)

    Gervais, C.; Coelho, C.; Azaı¨s, T.; Maquet, J.; Laurent, G.; Pourpoint, F.; Bonhomme, C.; Florian, P.; Alonso, B.; Guerrero, G.; Mutin, P. H.; Mauri, F.

    2007-07-01

    The complete set of NMR parameters for 17O enriched phenylphosphinic acid C 6H 5HP ∗O( ∗OH) is calculated from first principles by using the Gauge Including Projected Augmented Wave (GIPAW) approach [C.J. Pickard, F. Mauri, All-electron magnetic response with pseudopotentials: NMR chemical shifts, Phys. Rev. B 63 (2001) 245101/1-245101/13]. The analysis goes beyond the successful assignment of the spectra for all nuclei ( 1H, 13C, 17O, 31P), as: (i) the 1H CSA (chemical shift anisotropy) tensors (magnitude and orientation) have been interpreted in terms of H bonding and internuclear distances. (ii) CSA/dipolar local field correlation experiments have allowed the orientation of the direct P-H bond direction in the 31P CSA tensor to be determined. Experimental and calculated data were compared. (iii) The overestimation of the calculated 31P CSA has been explained by local molecular reorientation and confirmed by low temperature static 1H → 31P CP experiments.

  16. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    NASA Astrophysics Data System (ADS)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  17. First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate

    NASA Astrophysics Data System (ADS)

    Toyoura, Kazuaki; Ohta, Masataka; Nakamura, Atsutomo; Matsunaga, Katsuyuki

    2015-08-01

    The phase transitions and ferroelectricity of LiNbO3 and LiTaO3 have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency between Nb4d-O2p and Ta5d-O2p orbitals, particularly dxz-px/dyz-py orbitals (π orbitals), from the electronic point of view.

  18. First-principles calculations reveal controlling principles for carrier mobilities in semiconductors

    DOE PAGES

    Wu, Yu -Ning; Zhang, Xiaoguang; Pantelides, Sokrates T.; ...

    2016-10-11

    It has long been believed that carrier mobilities in semiconductors can be calculated by Fermi s golden rule (Born approximation). Phenomenological models for scattering amplitudes are typically used for engineering- level device modeling. Here we introduce a parameter-free, first-principles approach based on complex- wavevector energy bands that does not invoke the Born approximation. We show that phonon-limited mobility is controlled by low-resistivity percolation paths and that in ionized-impurity scattering one must account for the effect of the screening charge, which cancels most of the Coulomb tail.Finally, calculated electron mobilities in silicon are in agreement with experimental data.

  19. First-Principles Studies of Pentaerythritol Tetranitrate (PETN) Single Crystal Unit Cell Volumes and Vibrational Frequencies under Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.

    2006-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.

  20. Dopamine and Caffeine Encapsulation within Boron Nitride (14,0) Nanotubes: Classical Molecular Dynamics and First Principles Calculations.

    PubMed

    García-Toral, Dolores; González-Melchor, Minerva; Rivas-Silva, Juan F; Meneses-Juárez, Efraín; Cano-Ordaz, José; H Cocoletzi, Gregorio

    2018-06-07

    Classical molecular dynamics (MD) and density functional theory (DFT) calculations are developed to investigate the dopamine and caffeine encapsulation within boron nitride (BN) nanotubes (NT) with (14,0) chirality. Classical MD studies are done at canonical and isobaric-isothermal conditions at 298 K and 1 bar in explicit water. Results reveal that both molecules are attracted by the nanotube; however, only dopamine is able to enter the nanotube, whereas caffeine moves in its vicinity, suggesting that both species can be transported: the first by encapsulation and the second by drag. Findings are analyzed using the dielectric behavior, pair correlation functions, diffusion of the species, and energy contributions. The DFT calculations are performed according to the BLYP approach and applying the atomic base of the divided valence 6-31g(d) orbitals. The geometry optimization uses the minimum-energy criterion, accounting for the total charge neutrality and multiplicity of 1. Adsorption energies in the dopamine encapsulation indicate physisorption, which induces the highly occupied molecular orbital-lower unoccupied molecular orbital gap reduction yielding a semiconductor behavior. The charge redistribution polarizes the BNNT/dopamine and BNNT/caffeine structures. The work function decrease and the chemical potential values suggest the proper transport properties in these systems, which may allow their use in nanobiomedicine.

  1. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  2. First-principles calculation of electronic energy level alignment at electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Azar, Yavar T.; Payami, Mahmoud

    2017-08-01

    Energy level alignment at solid-solvent interfaces is an important step in determining the properties of electrochemical systems. The positions of conduction and valence band edges of a semiconductor are affected by its environment. In this study, using first-principles DFT calculation, we have determined the level shifts of the semiconductors TiO2 and ZnO at the interfaces with MeCN and DMF solvent molecules. The level shifts of semiconductor are obtained using the potential difference between the clean and exposed surfaces of asymmetric slabs. In this work, neglecting the effects of present ions in the electrolyte solution, we have shown that the solvent molecules give rise to an up-shift for the levels, and the amount of this shift varies with coverage. It is also shown that the shapes of density of states do not change sensibly near the gap. Molecular dynamics simulations of the interface have shown that at room temperatures the semiconductor surface is not fully covered by the solvent molecules, and one must use intermediate values in an static calculations.

  3. First-principles study of Ga-vacancy induced magnetism in β-Ga2O3.

    PubMed

    Yang, Ya; Zhang, Jihua; Hu, Shunbo; Wu, Yabei; Zhang, Jincang; Ren, Wei; Cao, Shixun

    2017-11-01

    First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga 2 O 3 in the presence of cation vacancies. We investigated two kinds of Ga vacancies at different symmetry sites and the consequent structural distortion and defect states. We found that both the six-fold coordinated octahedral site and the four-fold coordinated tetrahedral site vacancies can lead to a spin polarized ground state. Furthermore, the calculation identified a relationship between the spin polarization and the charge states of the vacancies, which might be explained by a molecular orbital model consisting of uncompensated O 2- 2p dangling bonds. The calculations for the two vacancy systems also indicated a potential long-range ferromagnetic order which is beneficial for spintronics application.

  4. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    PubMed

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  5. Testing the equivalence principle on cosmological scales

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Fleury, Pierre

    2018-05-01

    The equivalence principle, that is one of the main pillars of general relativity, is very well tested in the Solar system; however, its validity is more uncertain on cosmological scales, or when dark matter is concerned. This article shows that relativistic effects in the large-scale structure can be used to directly test whether dark matter satisfies Euler's equation, i.e. whether its free fall is characterised by geodesic motion, just like baryons and light. After having proposed a general parametrisation for deviations from Euler's equation, we perform Fisher-matrix forecasts for future surveys like DESI and the SKA, and show that such deviations can be constrained with a precision of order 10%. Deviations from Euler's equation cannot be tested directly with standard methods like redshift-space distortions and gravitational lensing, since these observables are not sensitive to the time component of the metric. Our analysis shows therefore that relativistic effects bring new and complementary constraints to alternative theories of gravity.

  6. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    NASA Astrophysics Data System (ADS)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  7. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  8. Empirical investigation of the ethical reasoning of physicians and molecular biologists – the importance of the four principles of biomedical ethics

    PubMed Central

    Ebbesen, Mette; Pedersen, Birthe D

    2007-01-01

    Background This study presents an empirical investigation of the ethical reasoning and ethical issues at stake in the daily work of physicians and molecular biologists in Denmark. The aim of this study was to test empirically whether there is a difference in ethical considerations and principles between Danish physicians and Danish molecular biologists, and whether the bioethical principles of the American bioethicists Tom L. Beauchamp and James F. Childress are applicable to these groups. Method This study is based on 12 semi-structured interviews with three groups of respondents: a group of oncology physicians working in a clinic at a public hospital and two groups of molecular biologists conducting basic research, one group employed at a public university and the other in a private biopharmaceutical company. Results In this sample, the authors found that oncology physicians and molecular biologists employed in a private biopharmaceutical company have the specific principle of beneficence in mind in their daily work. Both groups are motivated to help sick patients. According to the study, molecular biologists explicitly consider nonmaleficence in relation to the environment, the researchers' own health, and animal models; and only implicitly in relation to patients or human subjects. In contrast, considerations of nonmaleficence by oncology physicians relate to patients or human subjects. Physicians and molecular biologists both consider the principle of respect for autonomy as a negative obligation in the sense that informed consent of patients should be respected. However, in contrast to molecular biologists, physicians experience the principle of respect for autonomy as a positive obligation as the physician, in dialogue with the patient, offers a medical prognosis based upon the patients wishes and ideas, mutual understanding, and respect. Finally, this study discloses utilitarian characteristics in the overall conception of justice as conceived by oncology

  9. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  10. Application of First Principles Ni-Cd and Ni-H2 Battery Models to Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Bugga, Ratnakumar; DiStefano, Salvador

    1997-01-01

    The conclusions of the application of first principles model to spacecraft operations are: the first principles of Bi-phasic electrode presented model provides an explanation for many behaviors on voltage fading on LEO cycling.

  11. Thermal conductivity and dielectric functions of alkali chloride XCl (X = Li, Na, K and Rb): a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, M.; Yang, J. Y.; Liu, L. H.

    2016-07-01

    The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared-visible-ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon-phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls-Boltzmann transport equation. The photon-phonon and electron-photon interaction intrinsically induce the infrared and visible-ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.

  12. Toward control of the metal-organic interfacial electronic structure in molecular electronics: a first-principles study on self-assembled monolayers of pi-conjugated molecules on noble metals.

    PubMed

    Heimel, Georg; Romaner, Lorenz; Zojer, Egbert; Brédas, Jean-Luc

    2007-04-01

    Self-assembled monolayers (SAMs) of organic molecules provide an important tool to tune the work function of electrodes in plastic electronics and significantly improve device performance. Also, the energetic alignment of the frontier molecular orbitals in the SAM with the Fermi energy of a metal electrode dominates charge transport in single-molecule devices. On the basis of first-principles calculations on SAMs of pi-conjugated molecules on noble metals, we provide a detailed description of the mechanisms that give rise to and intrinsically link these interfacial phenomena at the atomic level. The docking chemistry on the metal side of the SAM determines the level alignment, while chemical modifications on the far side provide an additional, independent handle to modify the substrate work function; both aspects can be tuned over several eV. The comprehensive picture established in this work provides valuable guidelines for controlling charge-carrier injection in organic electronics and current-voltage characteristics in single-molecule devices.

  13. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  14. Origin of Spinel Nanocheckerboards via First Principles

    NASA Astrophysics Data System (ADS)

    Kornbluth, Mordechai; Marianetti, Chris A.

    2015-06-01

    Self-organizing nanocheckerboards have been experimentally fabricated in Mn-based spinels but have not yet been explained with first principles. Using density-functional theory, we explain the phase diagram of the ZnMnxGa2 -xO4 system and the origin of nanocheckerboards. We predict total phase separation at zero temperature and then show the combination of kinetics, thermodynamics, and Jahn-Teller physics that generates the system's observed behavior. We find that the {011 } surfaces are strongly preferred energetically, which mandates checkerboard ordering by purely geometrical considerations.

  15. Optically inactive defects in monolayer and bilayer phosphorene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Huang, Ling-yi; Zhang, Xu; Zhang, Mingliang; Lu, Gang

    2018-05-01

    Many-body excitonic effect is crucial in two-dimensional (2D) materials and can significantly impact their optoelectronic properties. Because defects are inevitable in 2D materials, understanding how they influence the optical and excitonic properties of the 2D materials is of significant scientific and technological importance. Here we focus on intrinsic point defects in monolayer and bilayer phosphorene and examine whether and how their optoelectronic properties may be modified by the defects. Based on large-scale first-principles calculations, we have systematically explored the optical and excitonic properties of phosphorene in the presence and absence of the point defects. We find that the optical properties of bilayer phosphorene depend on the stacking order of the layers. More importantly, we reveal that the dominant point defects in few-layer phosphorene are optically inactive, which renders phosphorene particularly attractive in optoelectronic applications.

  16. Si-centered capped trigonal prism ordering in liquid Pd 82Si 18 alloy study by first-principles calculations

    DOE PAGES

    Dong, F.; Yue, G. Q.; Ames Lab. and Iowa State Univ., Ames, IA; ...

    2017-03-24

    First-principles molecular dynamic (MD) simulation and X-ray diffraction were employed to study the local structures of Pd–Si liquid at the eutectic composition (Pd 82Si 18). Here, a strong repulsion is found between Si atoms, and Si atoms prefer to be evenly distributed in the liquid. The dominate local structures around Si atoms are found to be with of a trigonal prism capped by three half-octahedra and an archimedean anti-prism. The populations of these clusters increase significantly upon cooling, and may play an important role in the formation of Pd 82Si 18 alloy glass.

  17. Si-centered capped trigonal prism ordering in liquid Pd 82Si 18 alloy study by first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.; Yue, G. Q.; Ames Lab. and Iowa State Univ., Ames, IA

    First-principles molecular dynamic (MD) simulation and X-ray diffraction were employed to study the local structures of Pd–Si liquid at the eutectic composition (Pd 82Si 18). Here, a strong repulsion is found between Si atoms, and Si atoms prefer to be evenly distributed in the liquid. The dominate local structures around Si atoms are found to be with of a trigonal prism capped by three half-octahedra and an archimedean anti-prism. The populations of these clusters increase significantly upon cooling, and may play an important role in the formation of Pd 82Si 18 alloy glass.

  18. Use of an approximate similarity principle for the thermal scaling of a full-scale thrust augmenting ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.

    1992-01-01

    Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.

  19. Use of an approximate similarity principle for the thermal scaling of a full-scale thrust augmenting ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy; Perusek, Gail P.; Ibrahim, Mounir

    1992-01-01

    Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow paramenter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.

  20. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    NASA Astrophysics Data System (ADS)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  1. Alzheimer's Disease as Subcellular `Cancer' --- The Scale-Invariant Principles Underlying the Mechanisms of Aging ---

    NASA Astrophysics Data System (ADS)

    Murase, M.

    1996-01-01

    with self-organization, has been thought to underlie `creative' aspects of biological phenomena such as the origin of life, adaptive evolution of viruses, immune recognition and brain function. It therefore must be surprising to find that the same principles will also underlie `non-creative' aspects, for example, the development of cancer and the aging of complex organisms. Although self-organization has extensively been studied in nonliving things such as chemical reactions and laser physics, it is undoubtedly true that the similar sources of the order are available to living things at different levels and scales. Several paradigm shifts are, however, required to realize how the general principles of natural selection can be extensible to non-DNA molecules which do not possess the intrinsic nature of self-reproduction. One of them is, from the traditional, genetic inheritance view that DNA (or RNA) molecules are the ultimate unit of heritable variations and natural selection at any organization level, to the epigenetic (nongenetic) inheritance view that any non-DNA molecule can be the target of heritable variations and molecular selection to accumulate in certain biochemical environment. Because they are all enriched with a β-sheet content, ready to mostly interact with one another, different denatured proteins like β-amyloid, PHF and prions can individually undergo self-templating or self-aggregating processes out of gene control. Other paradigm shifts requisite for a break-through in the etiology of neurodegenerative disorders will be discussed. As it is based on the scale-invariant principles, the present theory also predicts plausible mechanisms underlying quite different classes of disorders such as amyotrophic lateral sclerosis (ALS), atherosclerosis, senile cataract and many other symptoms of aging. The present theory, thus, provides the consistent and comprehensive account to the origin of aging by means of natural selection and self-organization.

  2. First-principles modeling of biological systems and structure-based drug-design.

    PubMed

    Sgrignani, Jacopo; Magistrato, Alessandra

    2013-03-01

    Molecular modeling techniques play a relevant role in drug design providing detailed information at atomistic level on the structural, dynamical, mechanistic and electronic properties of biological systems involved in diseases' onset, integrating and supporting commonly used experimental approaches. These information are often not accessible to the experimental techniques taken singularly, but are of crucial importance for drug design. Due to the enormous increase of the computer power in the last decades, quantum mechanical (QM) or first-principles-based methods have become often used to address biological issues of pharmaceutical relevance, providing relevant information for drug design. Due to their complexity and their size, biological systems are often investigated by means of a mixed quantum-classical (QM/MM) approach, which treats at an accurate QM level a limited chemically relevant portion of the system and at the molecular mechanics (MM) level the remaining of the biomolecule and its environment. This method provides a good compromise between computational cost and accuracy, allowing to characterize the properties of the biological system and the (free) energy landscape of the process in study with the accuracy of a QM description. In this review, after a brief introduction of QM and QM/MM methods, we will discuss few representative examples, taken from our work, of the application of these methods in the study of metallo-enzymes of pharmaceutical interest, of metal-containing anticancer drugs targeting the DNA as well as of neurodegenerative diseases. The information obtained from these studies may provide the basis for a rationale structure-based drug design of new and more efficient inhibitors or drugs.

  3. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.

    PubMed

    Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul

    2016-07-21

    Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. First-principles and molecular dynamics study of thermoelectric transport properties of N-type silicon-based superlattice-nanocrystalline heterostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Yanguang; Gong, Xiaojing; Xu, Ben; Hu, Ming

    2017-08-01

    Electrical and thermal transport in silicon germanium superlattice nanostructures has received extensive attention from scientists for understanding carrier properties at the nanoscale, and the figure-of-merit (ZT) reported in such structures has inspired engineers to develop cost-effective waste heat recovery systems. In this paper, the thermoelectric transport properties of the silicon-based superlattice- and anti-superlattice-nanocrystalline heterostructures are systematically studied by first-principles and molecular dynamics simulations combined with the Boltzmann transport theory. The thermal conductivity, which is thought to be the essential bottleneck for bulk crystalline Si to gain a high ZT value, of such structures is found to be reduced by two orders of magnitude and reaches a level far below the amorphous limit of Si. This is achieved due to the extremely strong phonon-boundary scattering at both grain boundaries and Si-Ge interfaces, which will lead to the phonon mean free path being much smaller than the grain size (Casmir limit): for instance, the dominant phonons are in range of 0.5 to 3 nm for the heterostructures with a grain size of around 8 nm. Meanwhile, the power factor can be preserved at the level comparable to bulk crystalline because of the quantum confinement effect, which resulted from the conduction band minima converge, reduction of band gap, and the short mean free path of carriers. As a result, the ZT of such superlattice based nanomembranes can reach around 0.3 at room temperature, which is two orders of magnitude higher than the bulk crystalline case. The corresponding bulk superlattice-nanocrystalline heterostructures possess a ZT value of 0.5 at room temperature, which is superior to all other bulk silicon-based thermoelectrics. Our results here show that nanostructuring the superlattice structure can further decrease the thermal conductivity while keeping the electrical transport properties at the bulk comparable level, and

  5. Structural, electronic, and vibrational properties of high-density amorphous silicon: a first-principles molecular-dynamics study.

    PubMed

    Morishita, Tetsuya

    2009-05-21

    We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).

  6. First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoura, Kazuaki, E-mail: toyoura@numse.nagoya-u.ac.jp; Ohta, Masataka; Nakamura, Atsutomo

    2015-08-14

    The phase transitions and ferroelectricity of LiNbO{sub 3} and LiTaO{sub 3} have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency betweenmore » Nb4d-O2p and Ta5d-O2p orbitals, particularly d{sub xz}-p{sub x}/d{sub yz}-p{sub y} orbitals (π orbitals), from the electronic point of view.« less

  7. First-principles photoemission spectroscopy in DNA and RNA nucleobases from Koopmans-compliant functionals

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola

    The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.

  8. First-principles investigations of equilibrium Ca, Mg, Si and O isotope fractionations between silicate melts and minerals

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Liu, X.; Kang, J.; He, L.

    2017-12-01

    Equilibrium isotope fractionation factors are essential for using stable isotope data to study many geosciences processes such as planetary differentiation and mantle evolution. The mass-dependent equilibrium isotope fractionation is primarily controlled by the difference in bond energies triggered by the isotope substitution. With the recent advances in computational capabilities, first-principles calculation has become a reliable tool to investigate equilibrium isotopic fractionations, greatly improving our understanding of the factors controlling isotope fractionations. It is important to understand the isotope fractionation between melts and minerals because magmatism is critical for creating and shaping the Earth. However, because isotope fractionation between melts and minerals is small at high temperature, it is difficult to experimentally calibrate such small signature. Due to the disordered and dynamic character of melts, calculations of equilibrium isotope fractionation of melts are more challenging than that for gaseous molecules or minerals. Here, we apply first-principles molecular dynamics method to calculate equilibrium Ca, Mg, Si, and O isotope fractionations between silicate melts and minerals. Our results show that equilibrium Mg, Si, and O isotope fractionations between olivine and pure Mg2SiO4 melt are close to zero at high temperature (e.g. δ26Mgmelt-ol = 0.03 ± 0.04‰, δ30Simelt-ol = -0.06 ± 0.07‰, δ18Omelt-ol = 0.07‰ ± 0.08 at 1500 K). Equilibrium Ca, Mg, Si, and O isotope fractionations between diopside and basalt melt (67% CaMgSi2O6 + 33% CaAl2Si2O8) are also negligible at high temperature (e.g. δ44/40Camelt-cpx = -0.01 ± 0.02‰, δ26Mgmelt-cpx = -0.05 ± 0.14‰, δ30Simelt-cpx = 0.04 ± 0.04‰, δ18Omelt-cpx = 0.03 ± 0.07‰ at 1500 K). These results are consistent with the observations in natural samples that there is no significant Ca, Mg, Si, and O isotope fractionation during mantle partial melting, demonstrating the

  9. Structure of hydrophobic hydration of benzene and hexafluorobenzene from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allesch, M; Schwegler, E; Galli, G

    We report on the aqueous hydration of benzene and hexafluorobenzene, as obtained by carrying out extensive (>100 ps) first principles molecular dynamics simulations. Our results show that benzene and hexafluorobenzene do not behave as ordinary hydrophobic solutes, but rather present two distinct regions, one equatorial and the other axial, that exhibit different solvation properties. While in both cases the equatorial regions behave as typical hydrophobic solutes, the solvation properties of the axial regions depend strongly on the nature of the {pi}-water interaction. In particular, {pi}-hydrogen and {pi}-lone pair interactions are found to dominate in benzene and hexafluorobenzene, respectively, which leadsmore » to substantially different orientations of water near the two solutes. We present atomic and electronic structure results (in terms of Maximally Localized Wannier Functions) providing a microscopic description of benzene- and hexafluorobenzene-water interfaces, as well as a comparative study of the two solutes. Our results point at the importance of an accurate description of interfacial water in order to characterize hydration properties of apolar molecules, as these are strongly influenced by subtle charge rearrangements and dipole moment redistributions in interfacial regions.« less

  10. Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media.

    PubMed

    Bourg, Ian C; Sposito, Garrison

    2010-03-15

    In this paper, we address the manner in which the continuum-scale diffusive properties of smectite-rich porous media arise from their molecular- and pore-scale features. Our starting point is a successful model of the continuum-scale apparent diffusion coefficient for water tracers and cations, which decomposes it as a sum of pore-scale terms describing diffusion in macropore and interlayer "compartments." We then apply molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients D(interlayer) of water tracers and representative cations (Na(+), Cs(+), Sr(2+)) in Na-smectite interlayers. We find that a remarkably simple expression relates D(interlayer) to the pore-scale parameter δ(nanopore) ≤ 1, a constrictivity factor that accounts for the lower mobility in interlayers as compared to macropores: δ(nanopore) = D(interlayer)/D(0), where D(0) is the diffusion coefficient in bulk liquid water. Using this scaling expression, we can accurately predict the apparent diffusion coefficients of tracers H(2)0, Na(+), Sr(2+), and Cs(+) in compacted Na-smectite-rich materials.

  11. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE PAGES

    Hu, S. X.; Collins, Lee A.; Goncharov, V. N.; ...

    2016-04-14

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations on the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm 3 and T = 15,625 to 500,000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which exhibits the correct behaviors of continuum lowering and pressure ionization. The thermal conductivities (κ QMD) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted withmore » a generalized Coulomb logarithm [(lnΛ) QMD] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Furthermore, hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted –20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  12. LAD Dissertation Prize Talk: Molecular Collisional Excitation in Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.

    2017-06-01

    While molecular excitation calculations are vital in determining particle velocity distributions, internal state distributions, abundances, and ionization balance in gaseous environments, both theoretical calculations and experimental data for these processes are lacking. Reliable molecular collisional data with the most abundant species - H2, H, He, and electrons - are needed to probe material in astrophysical environments such as nebulae, molecular clouds, comets, and planetary atmospheres. However, excitation calculations with the main collider, H2, are computationally expensive and therefore various approximations are used to obtain unknown rate coefficients. The widely-accepted collider-mass scaling approach is flawed, and alternate scaling techniques based on physical and mathematical principles are presented here. The most up-to-date excitation data are used to model the chemical evolution of primordial species in the Recombination Era and produce accurate non-thermal spectra of the molecules H2+, HD, and H2 in a primordial cloud as it collapses into a first generation star.

  13. The principle of respect for autonomy--concordant with the experience of oncology physicians and molecular biologists in their daily work?

    PubMed

    Ebbesen, Mette; Pedersen, Birthe D

    2008-03-26

    This article presents results from a qualitative empirical investigation of how Danish oncology physicians and Danish molecular biologists experience the principle of respect for autonomy in their daily work. This study is based on 12 semi-structured interviews with three groups of respondents: a group of oncology physicians working in a clinic at a public hospital and two groups of molecular biologists conducting basic research, one group employed at a public university and the other in a private biopharmaceutical company. We found that that molecular biologists consider the principle of respect for autonomy as a negative obligation, where the informed consent of patients or research subjects should be respected. Furthermore, molecular biologists believe that very sick patients are constraint by the circumstances to a certain choice. However, in contrast to molecular biologists, oncology physicians experience the principle of respect for autonomy as a positive obligation, where the physician in dialogue with the patient performs a medical prognosis based on the patient's wishes and ideas, mutual understanding and respect. Oncology physicians believe that they have a positive obligation to adjust to the level of the patient when providing information making sure that the patient understands. Oncology physicians experience situations where the principle of respect for autonomy does not apply because the patient is in a difficult situation. In this study we explore the moral views and attitudes of oncology physicians and molecular biologists and compare these views with bioethical theories of the American bioethicists Tom L. Beauchamp & James F. Childress and the Danish philosophers Jakob Rendtorff & Peter Kemp. This study shows that essential parts of the two bioethical theories are reflected in the daily work of Danish oncology physicians and Danish molecular biologists. However, the study also explores dimensions where the theories can be developed further to be

  14. Sustainability in the Qatar national dietary guidelines, among the first to incorporate sustainability principles.

    PubMed

    Seed, Barbara

    2015-09-01

    To present one of the first national dietary guidelines that incorporates food sustainability principles into its public health recommendations. The paper outlines recommendations and utilizes an ecological framework of policy analysis to examine context, drivers, consequences and future suggestions in establishing and maintaining sustainability principles within the Qatar Dietary Guidelines. Qatar. Population of Qatar. Qatar has produced one of the first national dietary guidelines to integrate principles of food sustainability. National interest in environmental sustainability and food security, population concern over food waste (reinforced by Islamic religious law), strong authority of the Supreme Council of Health (supported by an Emirate government), a small domestic food industry and a lack of food industry influence on the guidelines have contributed to the inclusion of sustainability principles within the document. Whether these principles will be embraced or rejected by the population in the long term will likely be determined by the Dietary Guidelines Task Force and the Supreme Council of Health's commitment to educating the population about the relevance and importance of these principles and establishing champions to advocate for them.

  15. A comprehensive picture in the view of atomic scale on piezoelectricity of ZnO tunnel junctions: The first principles simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Genghong; Zhu, Jia; Jiang, Gelei

    Piezoelectricity is closely related with the performance and application of piezoelectric devices. It is a crucial issue to understand its detailed fundamental for designing functional devices with more peculiar performances. Basing on the first principles simulations, the ZnO piezoelectric tunnel junction is taken as an example to systematically investigate its piezoelectricity (including the piezopotential energy, piezoelectric field, piezoelectric polarization and piezocharge) and explore their correlation. The comprehensive picture of the piezoelectricity in the ZnO tunnel junction is revealed at atomic scale and it is verified to be the intrinsic characteristic of ZnO barrier, independent of its terminated surface but dependentmore » on its c axis orientation and the applied strain. In the case of the ZnO c axis pointing from right to left, an in-plane compressive strain will induce piezocharges (and a piezopotential energy drop) with positive and negative signs (negative and positive signs) emerging respectively at the left and right terminated surfaces of the ZnO barrier. Meanwhile a piezoelectric polarization (and a piezoelectric field) pointing from right to left (from left to right) are also induced throughout the ZnO barrier. All these piezoelectric physical quantities would reverse when the applied strain switches from compressive to tensile. This study provides an atomic level insight into the fundamental behavior of the piezoelectricity of the piezoelectric tunnel junction and should have very useful information for future designs of piezoelectric devices.« less

  16. First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoritaka; Matsushita, Yu-ichiro

    2018-02-01

    A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.

  17. First principles crystal engineering of nonlinear optical materials. I. Prototypical case of urea

    NASA Astrophysics Data System (ADS)

    Masunov, Artëm E.; Tannu, Arman; Dyakov, Alexander A.; Matveeva, Anastasia D.; Freidzon, Alexandra Ya.; Odinokov, Alexey V.; Bagaturyants, Alexander A.

    2017-06-01

    The crystalline materials with nonlinear optical (NLO) properties are critically important for several technological applications, including nanophotonic and second harmonic generation devices. Urea is often considered to be a standard NLO material, due to the combination of non-centrosymmetric crystal packing and capacity for intramolecular charge transfer. Various approaches to crystal engineering of non-centrosymmetric molecular materials were reported in the literature. Here we propose using global lattice energy minimization to predict the crystal packing from the first principles. We developed a methodology that includes the following: (1) parameter derivation for polarizable force field AMOEBA; (2) local minimizations of crystal structures with these parameters, combined with the evolutionary algorithm for a global minimum search, implemented in program USPEX; (3) filtering out duplicate polymorphs produced; (4) reoptimization and final ranking based on density functional theory (DFT) with many-body dispersion (MBD) correction; and (5) prediction of the second-order susceptibility tensor by finite field approach. This methodology was applied to predict virtual urea polymorphs. After filtering based on packing similarity, only two distinct packing modes were predicted: one experimental and one hypothetical. DFT + MBD ranking established non-centrosymmetric crystal packing as the global minimum, in agreement with the experiment. Finite field approach was used to predict nonlinear susceptibility, and H-bonding was found to account for a 2.5-fold increase in molecular hyperpolarizability to the bulk value.

  18. Molecular dynamics simulations of graphoepitaxy of organic semiconductors, sexithiophene, and pentacene: Molecular-scale mechanisms of organic graphoepitaxy

    NASA Astrophysics Data System (ADS)

    Ikeda, Susumu

    2018-03-01

    Molecular dynamics (MD) simulations of the organic semiconductors α-sexithiophene (6T) and pentacene were carried out to clarify the mechanism of organic graphoepitaxy at the molecular level. First, the models of the grooved substrates were made and the surfaces of the inside of the grooves were modified with -OH or -OSi(CH3)3, making the surfaces hydrophilic or hydrophobic. By the MD simulations of 6T, it was found that three stable azimuthal directions exist (0, ˜45, and 90° the angle that the c-axis makes with the groove), being consistent with experimental results. MD simulations of deposition processes of 6T and pentacene were also carried out, and pentacene molecules showed the spontaneous formation of herringbone packing during deposition. Some pentacene molecules stood on the surface and formed a cluster whose a-axis was parallel to the groove. It is expected that a deep understanding of the molecular-scale mechanisms will lead graphoepitaxy to practical applications, improving the performance of organic devices.

  19. Two-dimensional arsenic monolayer sheet predicted from first-principles

    NASA Astrophysics Data System (ADS)

    Pu, Chun-Ying; Ye, Xiao-Tao; Jiang, Hua-Long; Zhang, Fei-Wu; Lu, Zhi-Wen; He, Jun-Bao; Zhou, Da-Wei

    2015-03-01

    Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 eV in the hybrid HSE06 functional calculations. The valence band maximum (VBM) and the conduction band minimum (CBM) are mainly occupied by the 4p orbitals of arsenic atoms, which is consistent with the partial charge densities of VBM and CBM. The charge density of the VBM G point has the character of a π bond, which originates from p orbitals. Furthermore, tensile and compressive strains are applied in the armchair and zigzag directions, related to the tensile deformations of zigzag and armchair nanotubes, respectively. We find that the ultimate strain in zigzag deformation is 0.13, smaller than 0.18 of armchair deformation. The limit compressive stresses of single-layer arsenic along armchair and zigzag directions are -4.83 GPa and -4.76 GPa with corresponding strains of -0.15 and -0.14, respectively. Projected supported by the Henan Joint Funds of the National Natural Science Foundation of China (Grant Nos. U1304612 and U1404608), the National Natural Science Foundation of China (Grant Nos. 51374132 and 11404175), the Special Fund for Theoretical Physics of China (Grant No. 11247222), and Nanyang Normal University Science Foundation, China (Grant Nos. ZX2012018 and ZX2013019).

  20. Modeling the Blast Load Simulator Airblast Environment using First Principles Codes. Report 1, Blast Load Simulator Environment

    DTIC Science & Technology

    2016-11-01

    ER D C/ G SL T R- 16 -3 1 Modeling the Blast Load Simulator Airblast Environment Using First Principles Codes Report 1, Blast Load...Simulator Airblast Environment using First Principles Codes Report 1, Blast Load Simulator Environment Gregory C. Bessette, James L. O’Daniel...evaluate several first principles codes (FPCs) for modeling airblast environments typical of those encountered in the BLS. The FPCs considered were

  1. Shaping the Atomic-Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices.

    PubMed

    Zhao, Zhikai; Liu, Ran; Mayer, Dirk; Coppola, Maristella; Sun, Lu; Kim, Youngsang; Wang, Chuankui; Ni, Lifa; Chen, Xing; Wang, Maoning; Li, Zongliang; Lee, Takhee; Xiang, Dong

    2018-04-01

    A straightforward method to generate both atomic-scale sharp and atomic-scale planar electrodes is reported. The atomic-scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic-scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal-driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine-linked molecular junctions can be enhanced ≈50% as the atomic-scale sharp electrodes are used. However, the atomic-scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite-element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations.

    PubMed

    Varga, Matthew J; Schwartz, Steven D

    2016-04-12

    In this study, we develop and test a method to determine the rate of particle transfer and kinetic isotope effects in enzymatic reactions, specifically yeast alcohol dehydrogenase (YADH), from first-principles. Transition path sampling (TPS) and normal mode centroid dynamics (CMD) are used to simulate these enzymatic reactions without knowledge of their reaction coordinates and with the inclusion of quantum effects, such as zero-point energy and tunneling, on the transferring particle. Though previous studies have used TPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. The calculated primary H/D kinetic isotope effect agrees with previously reported experimental results, within experimental error. The kinetic isotope effects calculated with this method correspond to the kinetic isotope effect of the transfer event itself. The results reported here show that the kinetic isotope effects calculated from first-principles, purely for barrier passage, can be used to predict experimental kinetic isotope effects in enzymatic systems.

  3. Optimality principle for the coupled chemical reactions of ATP synthesis and its molecular interpretation

    NASA Astrophysics Data System (ADS)

    Nath, Sunil

    2018-05-01

    Metabolic energy obtained from the coupled chemical reactions of oxidative phosphorylation (OX PHOS) is harnessed in the form of ATP by cells. We experimentally measured thermodynamic forces and fluxes during ATP synthesis, and calculated the thermodynamic efficiency, η and the rate of free energy dissipation, Φ. We show that the OX PHOS system is tuned such that the coupled nonequilibrium processes operate at optimal η. This state does not coincide with the state of minimum Φ but is compatible with maximum Φ under the imposed constraints. Conditions that must hold for species concentration in order to satisfy the principle of optimal efficiency are derived analytically and a molecular explanation based on Nath's torsional mechanism of energy transduction and ATP synthesis is suggested. Differences of the proposed principle with Prigogine's principle are discussed.

  4. Molecular cloud-scale star formation in NGC 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan

    2014-07-01

    We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of ∼10{sup 5} M {sub ☉} to 7 × 10{sup 5} M {sub ☉}. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily tomore » the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 μm, and Hα narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.« less

  5. The principle of respect for autonomy – Concordant with the experience of oncology physicians and molecular biologists in their daily work?

    PubMed Central

    Ebbesen, Mette; Pedersen, Birthe D

    2008-01-01

    Background This article presents results from a qualitative empirical investigation of how Danish oncology physicians and Danish molecular biologists experience the principle of respect for autonomy in their daily work. Methods This study is based on 12 semi-structured interviews with three groups of respondents: a group of oncology physicians working in a clinic at a public hospital and two groups of molecular biologists conducting basic research, one group employed at a public university and the other in a private biopharmaceutical company. Results We found that that molecular biologists consider the principle of respect for autonomy as a negative obligation, where the informed consent of patients or research subjects should be respected. Furthermore, molecular biologists believe that very sick patients are constraint by the circumstances to a certain choice. However, in contrast to molecular biologists, oncology physicians experience the principle of respect for autonomy as a positive obligation, where the physician in dialogue with the patient performs a medical prognosis based on the patient's wishes and ideas, mutual understanding and respect. Oncology physicians believe that they have a positive obligation to adjust to the level of the patient when providing information making sure that the patient understands. Oncology physicians experience situations where the principle of respect for autonomy does not apply because the patient is in a difficult situation. Conclusion In this study we explore the moral views and attitudes of oncology physicians and molecular biologists and compare these views with bioethical theories of the American bioethicists Tom L. Beauchamp & James F. Childress and the Danish philosophers Jakob Rendtorff & Peter Kemp. This study shows that essential parts of the two bioethical theories are reflected in the daily work of Danish oncology physicians and Danish molecular biologists. However, the study also explores dimensions where the

  6. Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) Simulations of the Molecular Crystal alphaRDX

    DTIC Science & Technology

    2013-08-01

    potential for HMX / RDX (3, 9). ...................................................................................8 1 1. Purpose This work...6 dispersion and electrostatic interactions. Constants for the SB potential are given in table 1. 8 Table 1. SB potential for HMX / RDX (3, 9...modeling dislocations in the energetic molecular crystal RDX using the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular

  7. Achieving accuracy in first-principles calculations at extreme temperature and pressure

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann; Wills, John

    2013-06-01

    First-principles calculations are increasingly used to provide EOS data at pressures and temperatures where experimental data is difficult or impossible to obtain. The lack of experimental data, however, also precludes validation of the calculations in those regimes. Factors influencing the accuracy of first-principles data include theoretical approximations, and computational approximations used in implementing and solving the underlying equations. The first category includes approximate exchange-correlation functionals and wave equations simplifying the Dirac equation. In the second category are, e.g., basis completeness and pseudo-potentials. While the first category is extremely hard to assess without experimental data, inaccuracies of the second type should be well controlled. We are using two rather different electronic structure methods (VASP and RSPt) to make explicit the requirements for accuracy of the second type. We will discuss the VASP Projector Augmented Wave potentials, with examples for Li and Mo. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. First-principles study of amorphous Ga4Sb6Te3 phase-change alloys

    NASA Astrophysics Data System (ADS)

    Bouzid, Assil; Gabardi, Silvia; Massobrio, Carlo; Boero, Mauro; Bernasconi, Marco

    2015-05-01

    First-principles molecular dynamics simulations within the density functional theory framework were performed to generate amorphous models of the Ga4Sb6Te3 phase change alloy by quenching from the melt. We find that Ga-Sb and Ga-Te are the most abundant bonds with only a minor amount of Sb-Te bonds participating to the alloy network. Ga and four-coordinated Sb atoms present a tetrahedral-like geometry, whereas three-coordinated Sb atoms are in a pyramidal configuration. The tetrahedral-like geometries are similar to those of the crystalline phase of the two binary compounds GaTe and GaSb. A sizable fraction of Sb-Sb bonds is also present, indicating a partial nanoscale segregation of Sb. Despite the fact that the composition Ga4Sb6Te3 lies on the pseudobinary Ga Sb -Sb2Te3 tie line, the amorphous network can be seen as a mixture of the two binary compounds GaTe and GaSb with intertwined elemental Sb.

  9. First principles kinetic Monte Carlo study on the growth patterns of WSe2 monolayer

    NASA Astrophysics Data System (ADS)

    Nie, Yifan; Liang, Chaoping; Zhang, Kehao; Zhao, Rui; Eichfeld, Sarah M.; Cha, Pil-Ryung; Colombo, Luigi; Robinson, Joshua A.; Wallace, Robert M.; Cho, Kyeongjae

    2016-06-01

    The control of domain morphology and defect level of synthesized transition metal dichalcogenides (TMDs) is of crucial importance for their device applications. However, current TMDs synthesis by chemical vapor deposition and molecular beam epitaxy is in an early stage of development, where much of the understanding of the process-property relationships is highly empirical. In this work, we use a kinetic Monte Carlo coupled with first principles calculations to study one specific case of the deposition of monolayer WSe2 on graphene, which can be expanded to the entire TMD family. Monolayer WSe2 domains are investigated as a function of incident flux, temperature and precursor ratio. The quality of the grown WSe2 domains is analyzed by the stoichiometry and defect density. A phase diagram of domain morphology is developed in the space of flux and the precursor stoichiometry, in which the triangular compact, fractal and dendritic domains are identified. The phase diagram has inspired a new synthesis strategy for large TMD domains with improved quality.

  10. First-principles definition and measurement of planetary electromagnetic-energy budget.

    PubMed

    Mishchenko, Michael I; Lock, James A; Lacis, Andrew A; Travis, Larry D; Cairns, Brian

    2016-06-01

    The imperative to quantify the Earth's electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting-vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  11. First-principles definition and measurement of planetary electromagnetic-energy budget

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; James, L.; Lacis, A. A.; Travis, L. D.; Cairns, B.

    2016-12-01

    The imperative to quantify the Earth's electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this talk we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting-vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated concepts of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  12. First-Principles Definition and Measurement of Planetary Electromagnetic-Energy Budget

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Lock, James A.; Lacis, Andrew A.; Travis, Larry D.; Cairns, Brian

    2016-01-01

    The imperative to quantify the Earths electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting- vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  13. Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides.

    PubMed

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2017-02-08

    In all realms of soft matter research a fundamental understanding of the structure/property relationships based on molecular interactions is crucial for developing a framework for the targeted design of soft materials. However, a molecular picture is often difficult to ascertain and yet essential for understanding the many different competing interactions at play, including entropies and cooperativities, hydration effects, and the enormous design space of soft matter. Here, we characterized for the first time the interaction between single hydrophobic molecules quantitatively using atomic force microscopy, and demonstrated that single molecular hydrophobic interaction free energies are dominated by the area of the smallest interacting hydrophobe. The interaction free energy amounts to 3-4 kT per hydrophobic unit. Also, we find that the transition state of the hydrophobic interactions is located at 3 Å with respect to the ground state, based on Bell-Evans theory. Our results provide a new path for understanding the nature of hydrophobic interactions at the single molecular scale. Our approach enables us to systematically vary hydrophobic and any other interaction type by utilizing peptide chemistry providing a strategic advancement to unravel molecular surface and soft matter interactions at the single molecular scale.

  14. First-Principles Evaluation of the Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Koretsune, Takashi; Kikuchi, Toru; Arita, Ryotaro

    2018-04-01

    We review recent developments of formulations to calculate the Dzyaloshinskii-Moriya (DM) interaction from first principles. In particular, we focus on three approaches. The first one evaluates the energy change due to the spin twisting by directly calculating the helical spin structure. The second one employs the spin gauge field technique to perform the derivative expansion with respect to the magnetic moment. This gives a clear picture that the DM interaction can be represented as the spin current in the equilibrium within the first order of the spin-orbit couplings. The third one is the perturbation expansion with respect to the exchange couplings and can be understood as the extension of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction to the noncentrosymmetric spin-orbit systems. By calculating the DM interaction for the typical chiral ferromagnets Mn1-xFexGe and Fe1-xCoxGe, we discuss how these approaches work in actual systems.

  15. Basic principles of molecular effects of irradiation.

    PubMed

    Selzer, Edgar; Hebar, Alexandra

    2012-02-01

    In order to understand the consequences of radiation a thorough understanding of the radiobiological mechanisms of the molecular up to the clinical level is of importance. Radiobiology therefore combines the basic principles of physics as well as biology and medicine and is concerned with the action of radiation from the subcellular level up to the living organism. Topics of interest and relevance are covered in much more broadness as is possible in the short following article in the literature to which the interested reader is referred to. Classical books in this field were written by Steel et al. (1989) as well as by Hall (1994). Topics usually covered by radiobiological reviews are the classification of different types of radiation, cell cycle dependency of radiation effects, types of radiation damage and cell death, dose response curves, measurement of radiation damage, the oxygen effect, relative biological effectiveness, the influence of dose rate, and several other important research areas. This short overview will concentrate on a subset of radiobiological topics of high importance and relative novelty.

  16. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alexander J.; Center for Nonlinear Studies; Gorshkov, Vyacheslav N.

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantummore » mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.« less

  17. First-Principles Study of Impurities in TlBr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Mao-Hua

    2012-01-01

    TlBr is a promising semiconductor material for room-temperature radiation detection. Material purification has been the driver for the recent improvement in the TlBr detector performance, mainly reflected by the significant increase in the carrier mobility-lifetime product. This suggests that impurities have significant impact on the carrier transport in TlBr. In this paper, first-principles calculations are used to study the properties of a number of commonly observed impurities in TlBr. The impurity-induced gap states are presented and their effects on the carrier trapping are discussed.

  18. First-principles study of impurities in TlBr

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua

    2012-04-01

    TlBr is a promising semiconductor material for room-temperature radiation detection. Material purification has been the driver for the recent improvement in the TlBr detector performance, mainly reflected by the significant increase in the carrier mobility-lifetime product. This suggests that impurities have significant impact on the carrier transport in TlBr. In this paper, first-principles calculations are used to study the properties of a number of commonly observed impurities in TlBr. The impurity-induced gap states are presented and their effects on the carrier trapping are discussed.

  19. Vitreous Anorthite (CaAl2Si2O8) at High Pressure: A First-Principles Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Ghosh, D. B.; Karki, B. B.

    2017-12-01

    Due to the high abundance of silicates and aluminosilicates inside the earth, their corresponding melts are likely to be one of the key transport agents in the chemical and thermal evolution of our planet and therefore, have long been the subject of investigations. Experimentally, in-situ melt properties of these materials, particularly at high pressure-temperature conditions are extremely difficult to constrain and the corresponding glass phases are considered as analogs. This, however, prohibits one-to-one comparison between the properties of silicate melt and its corresponding glass. With the aim to enable such comparison, we investigate the equation of state and structural properties of CaAl2Si2O8 glass at 300 K as a function of pressure up to 160 GPa from first principles molecular dynamics simulation results. Our results show that at ambient pressure: (i) Si's remain mostly (> 95%) under tetrahedral oxygen surroundings, (ii) unlike anorthite crystal, presence of high coordination (> 4) Al's with 30% abundance, (iii) and significant presence of both non bridging (8%) and triply (17%) coordinated oxygen. In the 0-10 GPa interval, mainly topological changes occur in the Si-O (also Al-O to some extent) surroundings in the cold compressed case in comparison to smooth increase in the average bond distance and coordination in the hot compressed case. Further compression results in gradual increases in: mean coordination, proportion of O-triclusters and increasing appearance of tetrahedral oxgyens, with Si-O (Al-O) reaching 6 (6.5) and O-T > 3 (T=Si and Al) at the highest compression. Due to the absence of kinetic barrier, the hot compressed glasses consistently produce greater densities and higher coordination numbers than the cold compression cases. Decompressed glasses show irreversible compaction along with retention of high coordination species when decompressed from > 10 GPa and degree of irreversibility depends on the peak pressure of decompression. These

  20. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; McCrory, R. L.

    2016-04-15

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm{sup 3} and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atommore » model in conjunction with the pressure-matching mixing rule. The thermal conductivities (κ{sub QMD}) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(lnΛ){sub QMD}] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ∼20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  1. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2015-09-01

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  2. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  3. First principles calculation of two dimensional antimony and antimony arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K.

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  4. Using colors to assess pain in toddlers: validation of "the rainbow pain scale"-a proof-of-principle study.

    PubMed

    Mahon, Paula; Holsti, Liisa; Siden, Harold; Strahlendorf, Caron; Turnham, Lucy; Giaschi, Deborah

    2015-01-01

    Self-report, when available, is considered the ideal way to assess the intensity and other aspects of pain in children. However, self-report scales are often too complex cognitively for preschool-aged children (2-4 years). The Rainbow Pain Scale (RPS) was developed to provide individualized self-reported pain ratings for preschool-aged children. The psychometric properties of this scale have yet to be evaluated. To ensure validity, our first step was to compare RPS scores to a well-validated scale in older children who were able to self-report their pain. The purpose of this study was to assess the concurrent validity of the RPS in children aged 5 to 10 years as proof of principle. We compared ratings of 49 children's pain using the RPS with those on the Faces Pain Scale-Revised (FPS-R). Participants suffering from pain related to cancer and cancer treatment were recruited to complete both scales at 3 time points, during both inpatient and outpatient clinic visits. Pearson's r and Cohen's κ were used to evaluate the level of association between the scales. The association between RPS and the FPS-R was greater than .7 at all 3 visits; r = .96 between the scales at the first clinic visit, .97 at the second visit, and .93 at the third visit. Cohen's κ between scales was 1.0 at the first clinic visit, .95 at the second visit, and .87 at the third visit. The RPS shows excellent concurrent validity with the FPS-R in school-aged children. The next step will be to examine the psychometric properties of the RPS in preschool-aged children. © 2014 by Association of Pediatric Hematology/Oncology Nurses.

  5. Hydrogen adatom interaction on graphene: A first principles study

    DOE PAGES

    Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing; ...

    2018-05-01

    Interaction between two hydrogen adatoms on graphene was studied by first-principles calculations. We showed that there is an attraction between two H adatoms on graphene. However, the strength of interaction between two hydrogen adatoms and magnetic properties of graphene are strongly dependent on the residence of the two adatoms on the graphene sublattices. Hydrogen adatoms introduce lattice distortion and electron localization in graphene which mediate the attractive interaction between the two H adatoms.

  6. Hydrogen adatom interaction on graphene: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing

    Interaction between two hydrogen adatoms on graphene was studied by first-principles calculations. We showed that there is an attraction between two H adatoms on graphene. However, the strength of interaction between two hydrogen adatoms and magnetic properties of graphene are strongly dependent on the residence of the two adatoms on the graphene sublattices. Hydrogen adatoms introduce lattice distortion and electron localization in graphene which mediate the attractive interaction between the two H adatoms.

  7. Quantum probability ranking principle for ligand-based virtual screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  8. Quantum probability ranking principle for ligand-based virtual screening

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  9. First-principles calculations of lattice dynamics and thermal properties of polar solids

    DOE PAGES

    Wang, Yi; Shang, Shun -Li; Fang, Huazhi; ...

    2016-05-13

    Although the theory of lattice dynamics was established six decades ago, its accurate implementation for polar solids using the direct (or supercell, small displacement, frozen phonon) approach within the framework of density-function-theory-based first-principles calculations had been a challenge until recently. It arises from the fact that the vibration-induced polarization breaks the lattice periodicity, whereas periodic boundary conditions are required by typical first-principles calculations, leading to an artificial macroscopic electric field. In conclusion, the article reviews a mixed-space approach to treating the interactions between lattice vibration and polarization, its applications to accurately predicting the phonon and associated thermal properties, and itsmore » implementations in a number of existing phonon codes.« less

  10. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    DOE PAGES

    Zhou, Fei; Nielson, Weston; Xia, Yi; ...

    2014-10-27

    First-principles prediction of lattice thermal conductivity K L of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu 12Sb 4S 13, an earth-abundant thermoelectric with strong phononphonon interactions thatmore » limit the room-temperature K L to values near the amorphous limit.« less

  11. First-principles investigation of mechanical properties of silicene, germanene and stanene

    NASA Astrophysics Data System (ADS)

    Mortazavi, Bohayra; Rahaman, Obaidur; Makaremi, Meysam; Dianat, Arezoo; Cuniberti, Gianaurelio; Rabczuk, Timon

    2017-03-01

    Two-dimensional allotropes of group-IV substrates including silicene, germanene and stanene have recently attracted considerable attention in nanodevice fabrication industry. These materials involving the buckled structure have been experimentally fabricated lately. In this study, first-principles density functional theory calculations were utilized to investigate the mechanical properties of single-layer and free-standing silicene, germanene and stanene. Uniaxial tensile and compressive simulations were carried out to probe and compare stress-strain properties; such as the Young's modulus, Poisson's ratio and ultimate strength. We evaluated the chirality effect on the mechanical response and bond structure of the 2D substrates. Our first-principles simulations suggest that in all studied samples application of uniaxial loading can alter the electronic nature of the buckled structures into the metallic character. Our investigation provides a general but also useful viewpoint with respect to the mechanical properties of silicene, germanene and stanene.

  12. Interactions between low energy electrons and DNA: a perspective from first-principles simulations

    NASA Astrophysics Data System (ADS)

    Kohanoff, Jorge; McAllister, Maeve; Tribello, Gareth A.; Gu, Bin

    2017-09-01

    studying these phenomena. Hence, a special place in this Topical Review is occupied by our recent first-principles molecular dynamics simulations that address the issue of how the environment favours or prevents LEEs from causing damage to DNA. We finish by summarising the conclusions achieved so far, and by suggesting a number of possible directions for further study.

  13. Interactions between low energy electrons and DNA: a perspective from first-principles simulations.

    PubMed

    Kohanoff, Jorge; McAllister, Maeve; Tribello, Gareth A; Gu, Bin

    2017-09-27

    these phenomena. Hence, a special place in this Topical Review is occupied by our recent first-principles molecular dynamics simulations that address the issue of how the environment favours or prevents LEEs from causing damage to DNA. We finish by summarising the conclusions achieved so far, and by suggesting a number of possible directions for further study.

  14. First-principles quantum mechanical investigations: Catalytic reactions of furfural on Pd(111) and at the water/Pd(111) interface

    NASA Astrophysics Data System (ADS)

    Xue, Wenhua

    Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL

  15. A first-principles and experimental study of helium diffusion in periclase MgO

    NASA Astrophysics Data System (ADS)

    Song, Zhewen; Wu, Henry; Shu, Shipeng; Krawczynski, Mike; Van Orman, James; Cherniak, Daniele J.; Bruce Watson, E.; Mukhopadhyay, Sujoy; Morgan, Dane

    2018-02-01

    The distribution of He isotopes is used to trace heterogeneities in the Earth's mantle, and is particularly useful for constraining the length scale of heterogeneity due to the generally rapid diffusivity of helium. However, such an analysis is challenging because He diffusivities are largely unknown in lower mantle phases, which can influence the He profiles in regions that cycle through the lower mantle. With this motivation, we have used first-principles simulations based on density functional theory to study He diffusion in MgO, an important lower mantle phase. We first studied the case of interstitial helium diffusion in perfect MgO and found a migration barrier of 0.73 eV at zero pressure. Then we used the kinetic Monte Carlo method to study the case of substitutional He diffusion in MgO, where we assumed that He diffuses on the cation sublattice through cation vacancies. We also performed experiments on He diffusion at atmospheric pressure using ion implantation and nuclear reaction analysis in both as-received and Ga-doped samples. A comparison between the experimental and simulation results are shown. This work provides a foundation for further studies at high-pressure.

  16. Molecular Knots

    PubMed Central

    Fielden, Stephen D. P.; Woltering, Steffen L.

    2017-01-01

    Abstract The first synthetic molecular trefoil knot was prepared in the late 1980s. However, it is only in the last few years that more complex small‐molecule knot topologies have been realized through chemical synthesis. The steric restrictions imposed on molecular strands by knotting can impart significant physical and chemical properties, including chirality, strong and selective ion binding, and catalytic activity. As the number and complexity of accessible molecular knot topologies increases, it will become increasingly useful for chemists to adopt the knot terminology employed by other disciplines. Here we give an overview of synthetic strategies towards molecular knots and outline the principles of knot, braid, and tangle theory appropriate to chemistry and molecular structure. PMID:28477423

  17. First-principles analysis of anharmonic nuclear motion and thermal transport in thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Tadano, Terumasa; Tsuneyuki, Shinji

    2015-12-01

    We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi2Te3 based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO3 can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.

  18. Pushing the frontiers of first-principles based computer simulations of chemical and biological systems.

    PubMed

    Brunk, Elizabeth; Ashari, Negar; Athri, Prashanth; Campomanes, Pablo; de Carvalho, F Franco; Curchod, Basile F E; Diamantis, Polydefkis; Doemer, Manuel; Garrec, Julian; Laktionov, Andrey; Micciarelli, Marco; Neri, Marilisa; Palermo, Giulia; Penfold, Thomas J; Vanni, Stefano; Tavernelli, Ivano; Rothlisberger, Ursula

    2011-01-01

    The Laboratory of Computational Chemistry and Biochemistry is active in the development and application of first-principles based simulations of complex chemical and biochemical phenomena. Here, we review some of our recent efforts in extending these methods to larger systems, longer time scales and increased accuracies. Their versatility is illustrated with a diverse range of applications, ranging from the determination of the gas phase structure of the cyclic decapeptide gramicidin S, to the study of G protein coupled receptors, the interaction of transition metal based anti-cancer agents with protein targets, the mechanism of action of DNA repair enzymes, the role of metal ions in neurodegenerative diseases and the computational design of dye-sensitized solar cells. Many of these projects are done in collaboration with experimental groups from the Institute of Chemical Sciences and Engineering (ISIC) at the EPFL.

  19. First principles calculation of current-induced forces in atomic gold contacts

    NASA Astrophysics Data System (ADS)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy; Mozos, Jose-Luis; Ordejon, Pablo

    2002-03-01

    We have recently developed an first principles method [1] for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested SIESTA program [2]. We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. In this talk we show results for the forces acting on the contact atoms due to the nonequilibrium situation in the electronic subsystem, i.e. in the presence of an electronic current. We concentrate on one atom wide gold contacts/wires connected to bulk gold electrodes. References [1] Our implementation is called TranSIESTA and is described in M. Brandbyge, J. Taylor, K. Stokbro, J-L. Mozos, and P. Ordejon, cond-mat/0110650 [2] D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).

  20. Deriving principles of microbiology by multiscaling laws of molecular physics.

    PubMed

    Ortoleva, Peter; Adhangale, P; Cheluvaraja, S; Fontus, Max; Shreif, Zeina

    2009-01-01

    It has long been an objective of the physical sciences to derive principles of biology from the laws of physics. At the angstrom scale for processes evolving on timescales of 10(-14) s, many systems can be characterized in terms of atomic vibrations and collisions. In contrast, biological systems display dramatic transformations including self-assembly and reorganization from one cell phenotype to another as the microenvironment changes. We have developed a framework for understanding the emergence of living systems from the underlying atomic chaos.

  1. First Principles Optical Absorption Spectra of Organic Molecules Adsorbed on Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar; Mete, Ersen; Gulseren, Oguz; Ellialtioglu, Sinasi

    2012-02-01

    We present results from first principles computations on passivated rutile TiO2 nanoparticles in both free-standing and dye-sensitized configurations to investigate the size dependence of their optical absorption spectra. The computations are performed using time-dependent density functional theory (TDDFT) as well as GW-Bethe-Salpeter-Equation (GWBSE) methods and compared with each other. We interpret the first principles spectra for free-standing TiO2 nanoparticles within the framework of the classical Mie-Gans theory using the bulk dielectric function of TiO2. We investigate the effects of the titania support on the absorption spectra of a particular set of perylene-diimide (PDI) derived dye molecules, namely brominated PDI (Br2C24H8N2O4) and its glycine and aspartine derivatives.

  2. Evaluation of charge mobility in organic materials: from localized to delocalized descriptions at a first-principles level.

    PubMed

    Shuai, Zhigang; Wang, Linjun; Li, Qikai

    2011-03-04

    The carrier mobility for carbon electronic materials is an important parameter for optoelectronics. We report here some recently developed theoretical tools to predict the mobility without any free parameters. Carrier scatterings with phonons and traps are the key factors in evaluating the mobility. We consider three major scattering regimes: i) where the molecular internal vibration severely induces charge self-trapping and, thus, the hopping mechanism dominates; ii) where both intermolecular and intramolecular scatterings come to play roles, so the Holstein-Peierls polaron model is applied; and, iii) where charge is well delocalized with coherence length comparable with acoustic phonon wavelength, so that a deformation potential approach is more appropriate. We develop computational methods at the first-principles level for the three different cases that have extensive potential application in rationalizing material design.

  3. Electrostatic engineering of strained ferroelectric perovskites from first principles

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Stengel, Massimiliano

    2015-12-01

    Design of novel artificial materials based on ferroelectric perovskites relies on the basic principles of electrostatic coupling and in-plane lattice matching. These rules state that the out-of-plane component of the electric displacement field and the in-plane components of the strain are preserved across a layered superlattice, provided that certain growth conditions are respected. Intense research is currently directed at optimizing materials functionalities based on these guidelines, often with remarkable success. Such principles, however, are of limited practical use unless one disposes of reliable data on how a given material behaves under arbitrary electrical and mechanical boundary conditions. Here we demonstrate, by focusing on the prototypical ferroelectrics PbTiO3 and BiFeO3 as test cases, how such information can be calculated from first principles in a systematic and efficient way. In particular, we construct a series of two-dimensional maps that describe the behavior of either compound (e.g., concerning the ferroelectric polarization and antiferrodistortive instabilities) at any conceivable choice of the in-plane lattice parameter, a , and out-of-plane electric displacement, D . In addition to being of immediate practical applicability to superlattice design, our results bring new insight into the complex interplay of competing degrees of freedom in perovskite materials and reveal some notable instances where the behavior of these materials depart from what naively is expected.

  4. Ab-initio study on the absorption spectrum of color change sapphire based on first-principles calculations with considering lattice relaxation-effect

    NASA Astrophysics Data System (ADS)

    Novita, Mega; Nagoshi, Hikari; Sudo, Akiho; Ogasawara, Kazuyoshi

    2018-01-01

    In this study, we performed an investigation on α-Al2O3: V3+ material, or the so-called color change sapphire, based on first-principles calculations without referring to any experimental parameter. The molecular orbital (MO) structure was estimated by the one-electron MO calculations using the discrete variational-Xα (DV-Xα) method. Next, the absorption spectra were estimated by the many-electron calculations using the discrete variational multi-electron (DVME) method. The effect of lattice relaxation on the crystal structures was estimated based on the first-principles band structure calculations. We performed geometry optimizations on the pure α-Al2O3 and with the impurity V3+ ion using Cambridge Serial Total Energy Package (CASTEP) code. The effect of energy corrections such as configuration dependence correction and correlation correction was also investigated in detail. The results revealed that the structural change on the α-Al2O3: V3+ resulted from the geometry optimization improved the calculated absorption spectra. By a combination of both the lattice relaxation-effect and the energy correction-effect improve the agreement to the experiment fact.

  5. The vibrational spectrum of the hydrated alanine-leucine peptide in the amide region from IR experiments and first principles calculations

    NASA Astrophysics Data System (ADS)

    Hassan, Irtaza; Donati, Luca; Stensitzki, Till; Keller, Bettina G.; Heyne, Karsten; Imhof, Petra

    2018-04-01

    We have combined infrared (IR) experiments with molecular dynamics (MD) simulations in solution at finite temperature to analyse the vibrational signature of the small floppy peptide Alanine-Leucine. IR spectra computed from first-principles MD simulations exhibit no distinct differences between conformational clusters of α -helix or β -sheet-like folds with different orientations of the bulky leucine side chain. All computed spectra show two prominent bands, in good agreement with the experiment, that are assigned to the stretch vibrations of the carbonyl and carboxyl group, respectively. Variations in band widths and exact maxima are likely due to small fluctuations in the backbone torsion angles.

  6. Thermodynamic scaling of dynamic properties of liquid crystals: Verifying the scaling parameters using a molecular model

    NASA Astrophysics Data System (ADS)

    Satoh, Katsuhiko

    2013-08-01

    The thermodynamic scaling of molecular dynamic properties of rotation and thermodynamic parameters in a nematic phase was investigated by a molecular dynamic simulation using the Gay-Berne potential. A master curve for the relaxation time of flip-flop motion was obtained using thermodynamic scaling, and the dynamic property could be solely expressed as a function of TV^{γ _τ }, where T and V are the temperature and volume, respectively. The scaling parameter γτ was in excellent agreement with the thermodynamic parameter Γ, which is the logarithm of the slope of a line plotted for the temperature and volume at constant P2. This line was fairly linear, and as good as the line for p-azoxyanisole or using the highly ordered small cluster model. The equivalence relation between Γ and γτ was compared with results obtained from the highly ordered small cluster model. The possibility of adapting the molecular model for the thermodynamic scaling of other dynamic rotational properties was also explored. The rotational diffusion constant and rotational viscosity coefficients, which were calculated using established theoretical and experimental expressions, were rescaled onto master curves with the same scaling parameters. The simulation illustrates the universal nature of the equivalence relation for liquid crystals.

  7. TOPICAL REVIEW: First principles studies of multiferroic materials

    NASA Astrophysics Data System (ADS)

    Picozzi, Silvia; Ederer, Claude

    2009-07-01

    Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO3 as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO3, ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO3), the magnetically induced ferroelectric polarization can be as large as a few µC cm-2. The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the

  8. Point defects in thorium nitride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2016-11-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  9. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Jie; School of Science, Qilu University of Technology, Jinan, Shandong 250353; Xu, Ming-Chun

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. Formore » heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.« less

  10. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.

    PubMed

    Hu, S X; Collins, L A; Goncharov, V N; Boehly, T R; Epstein, R; McCrory, R L; Skupsky, S

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρ(D)=0.5 to 673.518g/cm(3) and temperatures from T=5000K up to the Fermi temperature T(F) for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ∼10% up to a factor of ∼2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.

  11. Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Marker, Cassie

    An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database

  12. Research on regularized mean-variance portfolio selection strategy with modified Roy safety-first principle.

    PubMed

    Atta Mills, Ebenezer Fiifi Emire; Yan, Dawen; Yu, Bo; Wei, Xinyuan

    2016-01-01

    We propose a consolidated risk measure based on variance and the safety-first principle in a mean-risk portfolio optimization framework. The safety-first principle to financial portfolio selection strategy is modified and improved. Our proposed models are subjected to norm regularization to seek near-optimal stable and sparse portfolios. We compare the cumulative wealth of our preferred proposed model to a benchmark, S&P 500 index for the same period. Our proposed portfolio strategies have better out-of-sample performance than the selected alternative portfolio rules in literature and control the downside risk of the portfolio returns.

  13. A first principles calculation and statistical mechanics modeling of defects in Al-H system

    NASA Astrophysics Data System (ADS)

    Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming

    2007-03-01

    The behavior of defects and hydrogen in Al was investigated by first principles calculations and statistical mechanics modeling. The formation energy of different defects in Al+H system such as Al vacancy, H in institution and multiple H in Al vacancy were calculated by first principles method. Defect concentration in thermodynamical equilibrium was studied by total free energy calculation including configuration entropy and defect-defect interaction from low concentration limit to hydride limit. In our grand canonical ensemble model, hydrogen chemical potential under different environment plays an important role in determing the defect concentration and properties in Al-H system.

  14. Proton transfer from water to ketyl radical anion: Assessment of critical size of hydrated cluster and free energy barrier in solution from first principles simulations

    NASA Astrophysics Data System (ADS)

    Biswas, Sohag; Dasgupta, Teesta; Mallik, Bhabani S.

    2016-09-01

    We present the reactivity of an organic intermediate by studying the proton transfer process from water to ketyl radical anion using gas phase electronic structure calculations and the metadynamics method based first principles molecular dynamics (FPMD) simulations. Our results indicate that during the micro solvation of anion by water molecules systematically, the presence of minimum three water molecules in the gas phase cluster is sufficient to observe the proton transfer event. The analysis of trajectories obtained from initial FPMD simulation of an aqueous solution of the anion does not show any evident of complete transfer of the proton from water. The cooperativity of water molecules and the relatively weak anion-water interaction in liquid state prohibit the full release of the proton. Using biasing potential through first principles metadynamics simulations, we report the observation of proton transfer reaction from water to ketyl radical anion with a barrier height of 16.0 kJ/mol.

  15. Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles

    NASA Astrophysics Data System (ADS)

    Jarolimek, K.; Hazrati, E.; de Groot, R. A.; de Wijs, G. A.

    2017-07-01

    The band offsets between crystalline and hydrogenated amorphous silicon (a -Si ∶H ) are key parameters governing the charge transport in modern silicon heterojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using x-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here, we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction-band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.29 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence-band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015), 10.1063/1.4906195].

  16. Giant molecular cloud scaling relations: the role of the cloud definition

    NASA Astrophysics Data System (ADS)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  17. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    NASA Astrophysics Data System (ADS)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  18. A Kennicutt-Schmidt relation at molecular cloud scales and beyond

    NASA Astrophysics Data System (ADS)

    Khoperskov, Sergey A.; Vasiliev, Evgenii O.

    2017-06-01

    Using N-body/gasdynamic simulations of a Milky Way-like galaxy, we analyse a Kennicutt-Schmidt (KS) relation, Σ _SFR ∝ Σ _gas^N, at different spatial scales. We simulate synthetic observations in CO lines and ultraviolet (UV) band. We adopt the star formation rate (SFR) defined in two ways: based on free fall collapse of a molecular cloud - ΣSFR, cl, and calculated by using a UV flux calibration - ΣSFR,UV. We study a KS relation for spatially smoothed maps with effective spatial resolution from molecular cloud scales to several hundred parsecs. We find that for spatially and kinematically resolved molecular clouds the Σ _{SFR, cl} ∝ σ _{gas}^N relation follows the power law with index N ≈ 1.4. Using UV flux as SFR calibrator, we confirm a systematic offset between the ΣSFR,UV and Σgas distributions on scales compared to molecular cloud sizes. Degrading resolution of our simulated maps for surface densities of gas and SFRs, we establish that there is no relation ΣSFR,UV -Σgas below the resolution ˜50 pc. We find a transition range around scales ˜50-120 pc, where the power-law index N increases from 0 to 1-1.8 and saturates for scales larger ˜120 pc. A value of the index saturated depends on a surface gas density threshold and it becomes steeper for higher Σgas threshold. Averaging over scales with size of ≳ 150 pc the power-law index N equals 1.3-1.4 for surface gas density threshold ˜5 M⊙ pc-2. At scales ≳ 120 pc surface SFR densities determined by using CO data and UV flux, ΣSFR,UV/SFR, cl, demonstrate a discrepancy about a factor of 3. We argue that this may be originated from overestimating (constant) values of conversion factor, star formation efficiency or UV calibration used in our analysis.

  19. Polymorphism and Elastic Response of Molecular Materials from First Principles: How Hard Can it Be?

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2014-03-01

    Molecular materials are of great fundamental and applied importance in science and industry, with numerous applications in pharmaceuticals, electronics, sensing, and catalysis. A key challenge for theory has been the prediction of their stability, polymorphism and response to perturbations. While pairwise models of van der Waals (vdW) interactions have improved the ability of density functional theory (DFT) to model these systems, substantial quantitative and even qualitative failures remain. In this contribution we show how a many-body description of vdW interactions can dramatically improve the accuracy of DFT for molecular materials, yielding quantitative description of stabilities and polymorphism for these challenging systems. Moreover, the role of many-body vdW interactions goes beyond stabilities to response properties. In particular, we have studied the elastic properties of a series of molecular crystals, finding that many-body vdW interactions can account for up to 30% of the elastic response, leading to quantitative and qualitative changes in elastic behavior. We will illustrate these crucial effects with the challenging case of the polymorphs of aspirin, leading to a better understanding of the conflicting experimental and theoretical studies of this system.

  20. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    PubMed Central

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  1. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Karl Johnson

    The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. Newmore » materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.« less

  2. First-principles study of point defects in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2014-11-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  3. The vertical growth of MoS2 layers at the initial stage of CVD from first-principles

    NASA Astrophysics Data System (ADS)

    Xue, Xiong-Xiong; Feng, Yexin; Chen, Keqiu; Zhang, Lixin

    2018-04-01

    Chemical vapor deposition (CVD) is the highly preferred method for mass production of transition metal dichalcogenide (TMD) layers, yet the atomic-scale knowledge is still lacking about the nucleation and growth. In this study, by using first-principles calculations, we show that, on Au(111) surface, one-dimensional (1D) MoxSy chains are first formed by coalescing of smaller feeding species and are energetically favored at the early stage of nucleation. Two-dimensional (2D) layers can be stabilized only after the number of Mo atoms exceeds ˜12. A vertical growth mode is revealed which accomplishes the structural transformation from the 1D chains to the 2D layers for the clusters while growing. The competition between intralayer and interlayer interactions is the key. These findings serve as new insights for better understanding the atomistic mechanism of the nucleation and growth of TMDs on the surface.

  4. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Linfeng; Han, Jiequn; Wang, Han; Car, Roberto; E, Weinan

    2018-04-01

    We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

  5. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery.

    PubMed

    Hellerstein, Marc K

    2008-01-01

    Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.

  6. First-principles study of low compressibility osmium borides

    NASA Astrophysics Data System (ADS)

    Gou, Huiyang; Hou, Li; Zhang, Jingwu; Li, Hui; Sun, Guifang; Gao, Faming

    2006-05-01

    Using first-principles total energy calculations we investigate the structural, elastic, and electronic properties of OsB2 and OsB, respectively. The calculated equilibrium structural parameters of OsB2 are in agreement with the available experimental results. The calculations indicate that OsB in tungsten carbide is more energetically stable under the ambient condition than the metastable cesium chloride phase of OsB. Results of bulk modulus show that they are potential low compressible materials. The hardness of OsB2 is estimated by employing a semiempirical theory. The results indicate that OsB2 is an ultraincompressible material, but not a superhard material. The method designing superhard materials is different from one creating ultraincompressible materials.

  7. First-principles study of Li decorated coronene graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Yafei; Cheng, Xinlu

    2017-11-01

    We use the first-principles calculation based on density functional theory (DFT) to investigate the hydrogen storage of Li decorated coronene graphene. Our result indicates that single Li atom can adsorb three H2 molecules and the adsorption energy per H2 is -0.224 eV. When four Li atoms doped, the largest hydrogen gravimetric density is 6.82 wt.% and this is higher than the 2017 target by the US department of energy (DOE). Meanwhile, the adsorption energy per H2 is -0.220 eV, which is suitable for H2 molecules to store. Therefore, Li decorated coronene graphene will be a candidate for hydrogen storage materials in the future.

  8. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  9. First principles design of a core bioenergetic transmembrane electron-transfer protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteinsmore » and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.« less

  10. Atomic-scale structural and electronic properties of SrTiO3/GaAs interfaces: A combined STEM-EELS and first-principles study

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Klie, Robert F.; Öǧüt, Serdar

    2017-07-01

    The electronic properties of epitaxial oxide thin films grown on compound semiconductors are largely determined by the interfacial atomic structure, as well as the thermodynamic conditions during synthesis. Ferroelectric polarization and Fermi-level pinning in SrTiO3 films have been attributed to the presence of oxygen vacancies at the oxide/semiconductor interface. Here, we present scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy analyses of GaAs films grown on SrTiO3 combined with first-principles calculations to determine the atomic and electronic structures of the SrTiO3/GaAs interfaces. An atomically abrupt SrO/As interface is observed and the interfacial SrO layer is found to be O-deficient. First-principles density functional theory (DFT) calculations show SrO/Ga and Sr/As interfaces are favorable under O-rich and O-poor conditions, respectively. The SrO/Ga interface is reconstructed via the formation of Ga-Ga dimers while the Sr/As interface is abrupt and consistent with the experiment. DFT calculations further reveal that intrinsic two-dimensional electron gas (2DEG) forms in both SrO/Ga and Sr/As interfaces, and the Fermi level is pinned to the localized 2DEG states. Interfacial O vacancies can enhance the 2DEG density while it is possible for Ga/As vacancies to unpin the Fermi level from the 2DEG states.

  11. Surface structures of L10-MnGa (001) by scanning tunneling microscopy and first-principles theory

    NASA Astrophysics Data System (ADS)

    Corbett, J. P.; Guerrero-Sanchez, J.; Richard, A. L.; Ingram, D. C.; Takeuchi, N.; Smith, A. R.

    2017-11-01

    We report on the surface reconstructions of L10-ordered MnGa (001) thin films grown by molecular beam epitaxy on a 50 nm Mn3N2 (001) layer freshly grown on a magnesium oxide (001) substrate. Scanning tunneling microscopy, Auger electron spectroscopy, and reflection high energy electron diffraction are combined with first-principles density functional theory calculations to determine the reconstructions of the L10-ordered MnGa (001) surface. We find two lowest energy reconstructions of the MnGa (001) face: a 1 × 1 Ga-terminated structure and a 1 × 2 structure with a Mn replacing a Ga in the 1 × 1 Ga-terminated surface. The 1 × 2 reconstruction forms a row structure along [100]. The manganese:gallium stoichiometry within the surface based on theoretical modeling is in good agreement with experiment. Magnetic moment calculations for the two lowest energy structures reveal important surface and bulk effects leading to oscillatory total magnetization for ultra-thin MnGa (001) films.

  12. From intermolecular interactions to structures and properties of a novel cocrystal explosive: a first-principles study.

    PubMed

    Zhang, Lei; Wu, Ji-Zhou; Jiang, Sheng-Li; Yu, Yi; Chen, Jun

    2016-09-29

    By employing a first-principles method, we conducted a thorough study on a novel cocrystal explosive 1 : 1 NTO : TZTN and gained insight into the interaction-structure-property interrelationship. Mulliken bond orders, Hirshfeld surfaces, intermolecular binding energies, packing coefficients, and oxygen balance were calculated to analyze the intermolecular interactions and structures of the cocrystal explosive. The cocrystallization of NTO and TZTN molecules enhances the intermolecular binding force, which drives the synthesis of the cocrystal. However, the cocrystallization decreases the molecular packing density along the closest packed directions, which reduces the density by 10.5% and deteriorates the oxygen balance. All of these lead to a reduction in the detonation performance compared to NTO explosives. We have also proposed a new method to evaluate the impact sensitivity according to the lattice dynamics calculation. The cocrystal explosive has a lower impact sensitivity than TZTN but higher than NTO, which agrees well with experiments.

  13. Thermodynamic properties of paramagnetic α - and β -Mn from first principles: The effect of transverse spin fluctuations

    NASA Astrophysics Data System (ADS)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    First-principles-based thermodynamic modeling of cubic α and β phases of Mn represent a challenge due to their structural complexity and the necessity of simultaneous treatment of several types of disorder (electronic, magnetic, and vibrational) that have very different characteristic time scales. Here we employ mean-field theoretical models to describe the different types of disorder and then we connect each layer of theory to the others using the adiabatic principle of separating faster and slower degrees of freedom. The slowest (vibrational) degrees of freedom are treated using the Moruzzi, Janak, and Schwarz formalism [Phys. Rev. B 37, 790 (1988), 10.1103/PhysRevB.37.790] of the Debye-Grüneisen model parametrized based on the first-principles calculated equation of state which includes the free-energy contributions due to the fast (electronic and magnetic) degrees of freedom via the Fermi-Dirac distribution function and a mean-field theory of transverse spin fluctuations. The magnetic contribution due to transverse spin fluctuations has been computed self-consistently within the disordered local moment picture of the paramagnetic state. The obtained results for thermodynamic properties such as lattice parameter, linear thermal expansion coefficient, and heat capacity of both phases show a good agreement with available experimental data. We also tested the assumption about the nature (localized versus delocalized) of magnetic moment on site IV in α -Mn and site I in β -Mn on the thermodynamic properties of these two phases. Similar to the findings of experimental studies, we conclude that magnetic moment on site IV in α -Mn is not of a localized character. However, a similar analysis suggests that the magnetic moment of site I in β -Mn should be treated as localized.

  14. Structural and electronic phase transitions of ThS 2 from first-principles calculations

    DOE PAGES

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; ...

    2016-10-07

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS 2, which may play an important role in the next generation nuclear energy fuel technology.

  15. Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com

    Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension ofmore » a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.« less

  16. Exchange and spin-orbit induced phenomena in diluted (Ga,Mn)As from first principles

    NASA Astrophysics Data System (ADS)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2016-08-01

    Physical properties induced by exchange interactions (Curie temperature and spin stiffness) and spin-orbit coupling (anomalous Hall effect, anisotropic magnetoresistance, and Gilbert damping) in the diluted (Ga,Mn)As ferromagnetic semiconductor are studied from first principles. Recently developed Kubo-Bastin transport theory and nonlocal torque operator formulation of the Gilbert damping as formulated in the tight-binding linear muffin-tin orbital method are used. The first-principles Liechtenstein mapping is employed to construct an effective Heisenberg Hamiltonian and to estimate Curie temperature and spin stiffness in the real-space random-phase approximation. Good agreement of calculated physical quantities with experiments on well-annealed samples containing only a small amount of compensating defects is obtained.

  17. Astrophysical reaction rates from a symmetry-informed first-principles perspective

    NASA Astrophysics Data System (ADS)

    Dreyfuss, Alison; Launey, Kristina; Baker, Robert; Draayer, Jerry; Dytrych, Tomas

    2017-01-01

    With a view toward a new unified formalism for studying bound and continuum states in nuclei, to understand stellar nucleosynthesis from a fully ab initio perspective, we studied the nature of surface α-clustering in 20Ne by considering the overlap of symplectic states with cluster-like states. We compute the spectroscopic amplitudes and factors, α-decay width, and absolute resonance strength - characterizing major contributions to the astrophysical reaction rate through a low-lying 1- resonant state in 20Ne. As a next step, we consider a fully microscopic treatment for the n+4 He system, based on the successful first-principles No-Core Shell Model/Resonating Group Method (NCSM/RGM) for light nuclei, but with the capability to reach intermediate-mass nuclei. The new model takes advantage of the symmetry-based concept central to the Symmetry-Adapted No-Core Shell Model (SA-NCSM) to reduce computational complexity in physically-informed and methodical way, with sights toward first-principles calculations of rates for important astrophysical reactions, such as the 23 Al(p , γ) 24 Si reaction, believed to have a strong influence on X-ray burst light curves. Supported by the U.S. NSF (OCI-0904874, ACI -1516338) and the U.S. DOE (DE-SC0005248), and benefitted from computing resources provided by Blue Waters and the LSU Center for Computation & Technology.

  18. Stability of hydrogenated graphene: a first-principles study

    DOE PAGES

    Yi, Ding; Yang, Liu; Xie, Shijie; ...

    2015-02-10

    In order to explain the disagreement between present theoretical and experimental investigations on the stability of hydrogenated graphene, we have systematically studied hydrogenated graphene with different configurations from the consideration of single-side and double-side adsorption using first-principles calculations. Both binding energy and formation energy are calculated to characterize the stability of the system. It is found that single-side hydrogenated graphene is always unstable. However, for double-side hydrogenation, some configurations are stable due to the increased carbon–carbon sp 3 hybridization compared to single-side hydrogenation. Furthermore, it is found that the system is energetically favorable when an equal number of hydrogen atomsmore » are adsorbed on each side of the graphene.« less

  19. First-principles quantum-mechanical investigations: The role of water in catalytic conversion of furfural on Pd(111)

    NASA Astrophysics Data System (ADS)

    Xue, Wenhua; Borja, Miguel Gonzalez; Resasco, Daniel E.; Wang, Sanwu

    2015-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of water has attracted wide attention. Recent experiments showed that the proportion of alcohol product from catalytic reactions of furfural conversion with palladium in the presence of water is significantly increased, when compared with other solvent including dioxane, decalin, and ethanol. We investigated the microscopic mechanism of the reactions based on first-principles quantum-mechanical calculations. We particularly identified the important role of water and the liquid/solid interface in furfural conversion. Our results provide atomic-scale details for the catalytic reactions. Supported by DOE (DE-SC0004600). This research used the supercomputer resources at NERSC, of XSEDE, at TACC, and at the Tandy Supercomputing Center.

  20. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO 3

    DOE PAGES

    Kezsmarki, I.; Fishman, Randy Scott

    2016-04-18

    Due to the complicated magnetic and crystallographic structures of BiFeO 3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a firstprinciples approach, we uncover all possibleMEcouplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO 3. First-principles calculations are used to understand the microscopic origins of theMEcouplings.Wefind that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamicME effects in BiFeO 3. A model motivated by first principles reproduces the absorption difference of counter-propagatingmore » light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic MEcouplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hiddenMEcouplings on the atomic scale and for exploiting opticalMEeffects in the next generation of technological devices such as optical diodes.« less

  1. Spinterface between tris(8-hydroxyquinoline)metal(III) molecules and magnetic surfaces: a first-principles study

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Wang, Jingying; Dougherty, Daniel; Liu, Feng; Feng Liu Team; Daniel Dougherty Team

    Using first-principles calculations, we have systematically investigated the hybridization between tris(8-hydroxyquinoline)metal(III) (Mq3, M = Fe, Cr, Al) molecules and magnetic substrates (Co and Cr). Mq3 with different central metal elements but the same organic framework has dramatically different interaction with different magnetic substrates, which affect the interface state significantly. AFM coupling was observed between magnetic Mq3 molecules and ferromagnetic (Co) as well as antiferromagnetic (Cr) substrate, manifested with a superexchange and direct exchange interaction, respectively. Such strong magnetic interfacial coupling may open a gap around the Fermi level and significantly change interface transport properties. Nonmagnetic Alq3 molecule was found to enhance the interface spin polarization due to hybridization between the lowest unoccupied molecular orbitals (LUMO) of Alq3 and metallic surface state. These findings will help better understand spinterface and shed new light on future application of Mq3 molecules in spintronics devices. This work was support by NSF-MRSEC (DMR-1121252) and DOE-BES (DE-FG02-04ER46148).

  2. First-Principles Predictions of Near-Edge X-ray Absorption Fine Structure Spectra of Semiconducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gregory M.; Patel, Shrayesh N.; Pemmaraju, C. D.

    The electronic structure and molecular orientation of semiconducting polymers in thin films determine their ability to transport charge. Methods based on near-edge X-ray absorption fine structure (NEXAFS) spectroscopy can be used to probe both the electronic structure and microstructure of semiconducting polymers in both crystalline and amorphous films. However, it can be challenging to interpret NEXAFS spectra on the basis of experimental data alone, and accurate, predictive calculations are needed to complement experiments. Here, we show that first-principles density functional theory (DFT) can be used to model NEXAFS spectra of semiconducting polymers and to identify the nature of transitions inmore » complicated NEXAFS spectra. Core-level X-ray absorption spectra of a set of semiconducting polymers were calculated using the excited electron and core-hole (XCH) approach based on constrained-occupancy DFT. A comparison of calculations on model oligomers and periodic structures with experimental data revealed the requirements for accurate prediction of NEXAFS spectra of both conjugated homopolymers and donor–acceptor polymers. The NEXAFS spectra predicted by the XCH approach were applied to study molecular orientation in donor–acceptor polymers using experimental spectra and revealed the complexity of using carbon edge spectra in systems with large monomeric units. The XCH approach has sufficient accuracy in predicting experimental NEXAFS spectra of polymers that it should be considered for design and analysis of measurements using soft X-ray techniques, such as resonant soft X-ray scattering and scanning transmission X-ray microscopy.« less

  3. Energetic basis for the molecular-scale organization of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua

    2014-12-24

    The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  4. Energetic basis for the molecular-scale organization of bone

    DOE PAGES

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua; ...

    2014-12-24

    Here, the remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption onmore » single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  5. Energetic basis for the molecular-scale organization of bone.

    PubMed

    Tao, Jinhui; Battle, Keith C; Pan, Haihua; Salter, E Alan; Chien, Yung-Ching; Wierzbicki, Andrzej; De Yoreo, James J

    2015-01-13

    The remarkable properties of bone derive from a highly organized arrangement of coaligned nanometer-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the nonmineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and atomic force microscopy (AFM) observations of collagen adsorption on single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and transmission electron microscopy (TEM) analyses of native tissues shows that only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations, and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular-scale organization of bone.

  6. Energetic basis for the molecular-scale organization of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua

    The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  7. First principles investigations of small bimetallic PdGa clusters as catalysts for hydrogen dissociation

    NASA Astrophysics Data System (ADS)

    Kaul, Indu; Ghosh, Prasenjit

    2017-04-01

    Using first principles density functional theory based calculations, we have studied hydrogen dissociation on sub nanometer bimetallic clusters formed from d-block (Pd) and p-block (Ga) elements in gas phase to explore the feasibility of using them as cheap catalysts for hydrogen dissociation. Our calculations show that the dimers, trimers and tetramers of these clusters are thermodynamically more stable than the pure ones for all Ga concentrations. For a given cluster size, we find that the clusters containing equal amount of Pd and Ga are the most stable ones. In contrast to bulk PdGa, the contribution of Pd-d states to the highest occupied molecular orbitals of the bimetallic clusters are either very small or absent. Study of adsorption of hydrogen molecule on these clusters show that hydrogen binds in an activated form only on the Pd rich clusters. From the calculations of hydrogen dissociation barriers on tetramers of pure Pd, 25% Ga (Pd3Ga) and 50% Ga (Pd2Ga2) we find that Pd3Ga is the most efficient catalyst for hydrogen dissociation with barriers even lower than that on the PdGa surfaces.

  8. First-principles calculations of mobility

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Karthik

    First-principles calculations can be a powerful predictive tool for studying, modeling and understanding the fundamental scattering mechanisms impacting carrier transport in materials. In the past, calculations have provided important qualitative insights, but numerical accuracy has been limited due to computational challenges. In this talk, we will discuss some of the challenges involved in calculating electron-phonon scattering and carrier mobility, and outline approaches to overcome them. Topics will include the limitations of models for electron-phonon interaction, the importance of grid sampling, and the use of Gaussian smearing to replace energy-conserving delta functions. Using prototypical examples of oxides that are of technological importance-SrTiO3, BaSnO3, Ga2O3, and WO3-we will demonstrate computational approaches to overcome these challenges and improve the accuracy. One approach that leads to a distinct improvement in the accuracy is the use of analytic functions for the band dispersion, which allows for an exact solution of the energy-conserving delta function. For select cases, we also discuss direct quantitative comparisons with experimental results. The computational approaches and methodologies discussed in the talk are general and applicable to other materials, and greatly improve the numerical accuracy of the calculated transport properties, such as carrier mobility, conductivity and Seebeck coefficient. This work was performed in collaboration with B. Himmetoglu, Y. Kang, W. Wang, A. Janotti and C. G. Van de Walle, and supported by the LEAST Center, the ONR EXEDE MURI, and NSF.

  9. Gypsum under pressure: A first-principles study

    NASA Astrophysics Data System (ADS)

    Giacomazzi, Luigi; Scandolo, Sandro

    2010-02-01

    We investigate by means of first-principles methods the structural response of gypsum (CaSO4ṡ2H2O) to pressures within and above the stability range of gypsum-I (P≤4GPa) . Structural and vibrational properties calculated for gypsum-I are in excellent agreement with experimental data. Compression within gypsum-I takes place predominantly through a reduction in the volume of the CaO8 polyhedra and through a distortion of the hydrogen bonds. The distance between CaSO4 layers becomes increasingly incompressible, indicating a mechanical limit to the packing of water molecules between the layers. We find that a structure with collapsed interlayer distances becomes more stable than gypsum-I above about 5 GPa. The collapse is concomitant with a rearrangement of the hydrogen-bond network of the water molecules. Comparison of the vibrational spectra calculated for this structure with experimental data taken above 5 GPa supports the validity of our model for the high-pressure phase of gypsum.

  10. Primordial Black Holes from First Principles (Overview)

    NASA Astrophysics Data System (ADS)

    Lam, Casey; Bloomfield, Jolyon; Moss, Zander; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    Given a power spectrum from inflation, our goal is to calculate, from first principles, the number density and mass spectrum of primordial black holes that form in the early universe. Previously, these have been calculated using the Press- Schechter formalism and some demonstrably dubious rules of thumb regarding predictions of black hole collapse. Instead, we use Monte Carlo integration methods to sample field configurations from a power spectrum combined with numerical relativity simulations to obtain a more accurate picture of primordial black hole formation. We demonstrate how this can be applied for both Gaussian perturbations and the more interesting (for primordial black holes) theory of hybrid inflation. One of the tools that we employ is a variant of the BBKS formalism for computing the statistics of density peaks in the early universe. We discuss the issue of overcounting due to subpeaks that can arise from this approach (the ``cloud-in-cloud'' problem). MIT UROP Office- Paul E. Gray (1954) Endowed Fund.

  11. First-Principle Characterization for Singlet Fission Couplings.

    PubMed

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  12. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Trung D; Carrillo, Jan-Michael Y; Brown, W Michael

    2014-01-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top ofmore » thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.« less

  13. Achieving accuracy in first-principles calculations for EOS: basis completeness at high temperatures

    NASA Astrophysics Data System (ADS)

    Wills, John; Mattsson, Ann

    2013-06-01

    First-principles electronic structure calculations can provide EOS data in regimes of pressure and temperature where accurate experimental data is difficult or impossible to obtain. This lack, however, also precludes validation of calculations in those regimes. Factors that influence the accuracy of first-principles data include (1) theoretical approximations and (2) computational approximations used in implementing and solving the underlying equations. In the first category are the approximate exchange/correlation functionals and approximate wave equations approximating the Dirac equation; in the second are basis completeness, series convergence, and truncation errors. We are using two rather different electronic structure methods (VASP and RSPt) to make definitive the requirements for accuracy of the second type, common to both. In this talk, we discuss requirements for converged calculation at high temperature and moderated pressure. At convergence we show that both methods give identical results. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle.

    PubMed

    Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; André, Yves; Baghi, Quentin; Bergé, Joël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice; Chhun, Ratana; Christophe, Bruno; Cipolla, Valerio; Damour, Thibault; Danto, Pascale; Dittus, Hansjoerg; Fayet, Pierre; Foulon, Bernard; Gageant, Claude; Guidotti, Pierre-Yves; Hagedorn, Daniel; Hardy, Emilie; Huynh, Phuong-Anh; Inchauspe, Henri; Kayser, Patrick; Lala, Stéphanie; Lämmerzahl, Claus; Lebat, Vincent; Leseur, Pierre; Liorzou, Françoise; List, Meike; Löffler, Frank; Panet, Isabelle; Pouilloux, Benjamin; Prieur, Pascal; Rebray, Alexandre; Reynaud, Serge; Rievers, Benny; Robert, Alain; Selig, Hanns; Serron, Laura; Sumner, Timothy; Tanguy, Nicolas; Visser, Pieter

    2017-12-08

    According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10^{-15} precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ(Ti,Pt)=[-1±9(stat)±9(syst)]×10^{-15} (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.

  15. MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; André, Yves; Baghi, Quentin; Bergé, Joël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice; Chhun, Ratana; Christophe, Bruno; Cipolla, Valerio; Damour, Thibault; Danto, Pascale; Dittus, Hansjoerg; Fayet, Pierre; Foulon, Bernard; Gageant, Claude; Guidotti, Pierre-Yves; Hagedorn, Daniel; Hardy, Emilie; Huynh, Phuong-Anh; Inchauspe, Henri; Kayser, Patrick; Lala, Stéphanie; Lämmerzahl, Claus; Lebat, Vincent; Leseur, Pierre; Liorzou, Françoise; List, Meike; Löffler, Frank; Panet, Isabelle; Pouilloux, Benjamin; Prieur, Pascal; Rebray, Alexandre; Reynaud, Serge; Rievers, Benny; Robert, Alain; Selig, Hanns; Serron, Laura; Sumner, Timothy; Tanguy, Nicolas; Visser, Pieter

    2017-12-01

    According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10-15 precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ (Ti ,Pt )=[-1 ±9 (stat)±9 (syst)]×10-15 (1 σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.

  16. Valuing lives and allocating resources: a defense of the modified youngest first principle of scarce resource distribution.

    PubMed

    Tallman, Ruth

    2014-06-01

    In this paper, I argue that the 'modified youngest first' principle provides a morally appropriate criterion for making decisions regarding the distribution of scarce medical resources, and that it is morally preferable to the simple 'youngest first' principle. Based on the complete lives system's goal of maximizing complete lives rather than individual life episodes, I argue that essential to the value we see in complete lives is the first person value attributed by the experiencer of that life. For a life to be 'complete' or 'incomplete,' the subject of that life must be able to understand the concept of a complete life, to have started goals and projects, and to know what it would be for that life to be complete. As the very young are not able to do this, it can reasonably be said that their characteristically human lives have not yet begun, giving those accepting a complete lives approach good reason to accept the modified youngest first principle over a simple 'youngest first' approach. © 2012 John Wiley & Sons Ltd.

  17. First-principles investigation on transport properties of NiO monowire-based molecular device

    NASA Astrophysics Data System (ADS)

    Chandiramouli, R.; Sriram, S.

    2014-08-01

    The electronic transport properties of novel NiO monowire connected to the gold electrodes are investigated using density functional theory combined with nonequilibrium Green's functions formalism. The densities of states of the monowire under various bias conditions are discussed. The transport properties are discussed in terms of the transmission spectrum and current-voltage characteristics of NiO monowire. The transmission pathways provide the insight to the transmission of electrons along the monowire. With different bias voltages, current in the order of few microampere flows across the monowire. The applied voltage controls the flow of current through the monowire, which can be used to control the current efficiently in the low order of magnitude in the molecular device.

  18. Electromagnetic response of C 12 : A first-principles calculation

    DOE PAGES

    Lovato, A.; Gandolfi, S.; Carlson, J.; ...

    2016-08-15

    Here, the longitudinal and transverse electromagnetic response functions ofmore » $$^{12}$$C are computed in a ``first-principles'' Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of measured versus calculated longitudinal response. This is further corroborated by a re-analysis of the Coulomb sum rule, in which the contributions from the low-lying $$J^\\pi\\,$$=$$\\, 2^+$$, $0^+$ (Hoyle), and $4^+$ states in $$^{12}$$C are accounted for explicitly in evaluating the total inelastic strength.« less

  19. The first principle calculation of two-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Lu, Jin

    2017-12-01

    As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.

  20. Accurate prediction of the refractive index of polymers using first principles and data modeling

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    Organic polymers with a high refractive index (RI) have recently attracted considerable interest due to their potential application in optical and optoelectronic devices. The ability to tailor the molecular structure of polymers is the key to increasing the accessible RI values. Our work concerns the creation of predictive in silico models for the optical properties of organic polymers, the screening of large-scale candidate libraries, and the mining of the resulting data to extract the underlying design principles that govern their performance. This work was set up to guide our experimentalist partners and allow them to target the most promising candidates. Our model is based on the Lorentz-Lorenz equation and thus includes the polarizability and number density values for each candidate. For the former, we performed a detailed benchmark study of different density functionals, basis sets, and the extrapolation scheme towards the polymer limit. For the number density we devised an exceedingly efficient machine learning approach to correlate the polymer structure and the packing fraction in the bulk material. We validated the proposed RI model against the experimentally known RI values of 112 polymers. We could show that the proposed combination of physical and data modeling is both successful and highly economical to characterize a wide range of organic polymers, which is a prerequisite for virtual high-throughput screening.

  1. Interplay of oxygen octahedral rotations and electronic instabilities in strontium ruthenate Ruddlesden-Poppers from first principles

    NASA Astrophysics Data System (ADS)

    Voss, Johannes; Fennie, Craig J.

    2011-03-01

    The Ruddlesden-Popper ruthenates Sr n+1 Ru n O3 n + 1 display a broad range of electronic phases including p -wave superconductivity, electronic nematicity, and ferromagnetism. Elucidating the role of the number of perovskite blocks, n , in the realization of these differently ordered electronic states remains a challenge. Additionally dramatic experimental advances now enable the atomic scale growth of these complex oxide thin films on a variety of substrates coherently, allowing for the application of tunable epitaxial strain and subsequently the ability to control structural distortions such as oxygen octahedral rotations. Here we investigate from first principles the effect of oxygen octahedral rotations on the electronic structure of Sr 2 Ru O4 and Sr 3 Ru 2 O7 . We discuss possible implications for the physics of the bulk systems and point towards new effects in thin films.

  2. ``Making the Molecular Movie'': First Frames

    NASA Astrophysics Data System (ADS)

    Miller, R. J. Dwayne

    2011-03-01

    Femtosecond Electron Diffraction has enabled atomic resolution to structural changes as they occur, essentially watching atoms move in real time--directly observe transition states. This experiment has been referred to as ``making the molecular movie'' and has been previously discussed in the context of a gedanken experiment. With the recent development of femtosecond electron pulses with sufficient number density to execute single shot structure determinations, this experiment has been finally realized. A new concept in electron pulse generation was developed based on a solution to the N-body electron propagation problem involving up to 10,000 interacting electrons that has led to a new generation of extremely bright electron pulsed sources that minimizes space charge broadening effects. Previously thought intractable problems of determining t=0 and fully characterizing electron pulses on the femtosecond time scale have now been solved through the use of the laser pondermotive potential to provide a time dependent scattering source. Synchronization of electron probe and laser excitation pulses is now possible with an accuracy of 10 femtoseconds to follow even the fastest nuclear motions. The camera for the ``molecular movie'' is well in hand based on high bunch charge electron sources. Several movies depicting atomic motions during passage through structural transitions will be shown. Atomic level views of the simplest possible structural transition, melting, will be presented for a number of systems in which both thermal and purely electronically driven atomic displacements can be correlated to the degree of directional bonding. Optical manipulation of charge distributions and effects on interatomic forces/bonding can be directly observed through the ensuing atomic motions. New phenomena involving strongly correlated electron systems will be presented in which an exceptionally cooperative phase transitions has been observed. The primitive origin of molecular

  3. Design and Properties Prediction of AMCO3F by First-Principles Calculations.

    PubMed

    Tian, Meng; Gao, Yurui; Ouyang, Chuying; Wang, Zhaoxiang; Chen, Liquan

    2017-04-19

    Computer simulation accelerates the rate of identification and application of new materials. To search for new materials to meet the increasing demands of secondary batteries with higher energy density, the properties of some transition-metal fluorocarbonates ([CO 3 F] 3- ) were simulated in this work as cathode materials for Li- and Na-ion batteries based on first-principles calculations. These materials were designed by substituting the K + ions in KCuCO 3 F with Li + or Na + ions and the Cu 2+ ions with transition-metal ions such as Fe 2+ , Co 2+ , Ni 2+ , and Mn 2+ ions, respectively. The phase stability, electronic conductivity, ionic diffusion, and electrochemical potential of these materials were calculated by first-principles calculations. After taking comprehensive consideration of the kinetic and thermodynamic properties, LiCoCO 3 F and LiFeCO 3 F are believed to be promising novel cathode materials in all of the calculated AMCO 3 F (A = Li and Na; M = Fe, Mn, Co, and Ni). These results will help the design and discovery of new materials for secondary batteries.

  4. Size-independent neural networks based first-principles method for accurate prediction of heat of formation of fuels

    NASA Astrophysics Data System (ADS)

    Yang, GuanYa; Wu, Jiang; Chen, ShuGuang; Zhou, WeiJun; Sun, Jian; Chen, GuanHua

    2018-06-01

    Neural network-based first-principles method for predicting heat of formation (HOF) was previously demonstrated to be able to achieve chemical accuracy in a broad spectrum of target molecules [L. H. Hu et al., J. Chem. Phys. 119, 11501 (2003)]. However, its accuracy deteriorates with the increase in molecular size. A closer inspection reveals a systematic correlation between the prediction error and the molecular size, which appears correctable by further statistical analysis, calling for a more sophisticated machine learning algorithm. Despite the apparent difference between simple and complex molecules, all the essential physical information is already present in a carefully selected set of small molecule representatives. A model that can capture the fundamental physics would be able to predict large and complex molecules from information extracted only from a small molecules database. To this end, a size-independent, multi-step multi-variable linear regression-neural network-B3LYP method is developed in this work, which successfully improves the overall prediction accuracy by training with smaller molecules only. And in particular, the calculation errors for larger molecules are drastically reduced to the same magnitudes as those of the smaller molecules. Specifically, the method is based on a 164-molecule database that consists of molecules made of hydrogen and carbon elements. 4 molecular descriptors were selected to encode molecule's characteristics, among which raw HOF calculated from B3LYP and the molecular size are also included. Upon the size-independent machine learning correction, the mean absolute deviation (MAD) of the B3LYP/6-311+G(3df,2p)-calculated HOF is reduced from 16.58 to 1.43 kcal/mol and from 17.33 to 1.69 kcal/mol for the training and testing sets (small molecules), respectively. Furthermore, the MAD of the testing set (large molecules) is reduced from 28.75 to 1.67 kcal/mol.

  5. Obtaining the lattice energy of the anthracene crystal by modern yet affordable first-principles methods

    NASA Astrophysics Data System (ADS)

    Sancho-García, J. C.; Aragó, J.; Ortí, E.; Olivier, Y.

    2013-05-01

    The non-covalent interactions in organic molecules are known to drive their self-assembly to form molecular crystals. We compare, in the case of anthracene and against experimental (electronic-only) sublimation energy, how modern quantum-chemical methods are able to calculate this cohesive energy taking into account all the interactions between occurring dimers in both first-and second-shells. These include both O(N6)- and O(N5)-scaling methods, Local Pair Natural Orbital-parameterized Coupled-Cluster Single and Double, and Spin-Component-Scaled-Møller-Plesset perturbation theory at second-order, respectively, as well as the most modern family of conceived density functionals: double-hybrid expressions in several variants (B2-PLYP, mPW2-PLYP, PWPB95) with customized dispersion corrections (-D3 and -NL). All-in-all, it is shown that these methods behave very accurately producing errors in the 1-2 kJ/mol range with respect to the experimental value taken into account the experimental uncertainty. These methods are thus confirmed as excellent tools for studying all kinds of interactions in chemical systems.

  6. Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations

    NASA Astrophysics Data System (ADS)

    Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke

    2018-02-01

    Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.

  7. A first principles study of the oxidation energetics and kinetics of realgar

    NASA Astrophysics Data System (ADS)

    Renock, Devon; Becker, Udo

    2010-08-01

    Quantum-mechanical calculations allow resolving and quantifying in detail important aspects of reaction mechanisms such as spin transitions and oxygen dissociation that can be the major rate-limiting steps in redox processes on sulfide and oxide surfaces. In addition, this knowledge can help experimentalists in setting up the framework of rate equations that can be used to describe the kinetics of, e.g., oxidation processes. The unique molecular crystal structure of realgar, As 4S 4 clusters held together by van der Waals bonds, allows for a convenient quantum-mechanical (q.m.) cluster approach to investigate the thermodynamics and kinetic pathways of oxidation. The interaction of As 4S 4 clusters with oxygen and co-adsorbed ions provides a model system for understanding the molecular-scale processes that underpin empirically-derived rate expressions, and provides clues to the oxidation mechanisms of other sulfides and oxides. Two activated processes are shown to dominate the kinetics of oxidation by molecular oxygen: (i) a paramagnetic 3O to diamagnetic 1O spin transition and (ii) oxygen dissociation on the surface, in that order. The activation energies for the spin transition and O 2 dissociation step were determined to be 1.1 eV (106 kJ/mol) and 0.9 eV (87 kJ/mol), respectively, if molecular oxygen is the only reactant on the surface. In the case of As 4S 4, q.m. calculations reveal that 3O transfers its spin to the cluster and forms a low-spin, peroxo intermediate on the surface before dissociating. The adsorption of a hydroxide ion on the surface proximate to the 3O adsorption site changes the adsorption mechanism by lowering the activation energy barriers for both the spin transition (0.30 eV/29 kJ/mol) and the O 2 dissociation step (0.72 eV/69 kJ/mol). Thus, while spin transition is rate limiting for oxidation with O 2 alone, dissociation becomes the rate-limiting step for oxidation with co-adsorption of OH -. First-principles, periodic calculations of the

  8. Toward the accurate first-principles prediction of ionization equilibria in proteins.

    PubMed

    Khandogin, Jana; Brooks, Charles L

    2006-08-08

    The calculation of pK(a) values for ionizable sites in proteins has been traditionally based on numerical solutions of the Poisson-Boltzmann equation carried out using a high-resolution protein structure. In this paper, we present a method based on continuous constant pH molecular dynamics (CPHMD) simulations, which allows the first-principles description of protein ionization equilibria. Our method utilizes an improved generalized Born implicit solvent model with an approximate Debye-Hückel screening function to account for salt effects and the replica-exchange (REX) protocol for enhanced conformational and protonation state sampling. The accuracy and robustness of the present method are demonstrated by 1 ns REX-CPHMD titration simulations of 10 proteins, which exhibit anomalously large pK(a) shifts for the carboxylate and histidine side chains. The experimental pK(a) values of these proteins are reliably reproduced with a root-mean-square error ranging from 0.6 unit for proteins containing few buried ionizable side chains to 1.0 unit or slightly higher for proteins containing ionizable side chains deeply buried in the core and experiencing strong charge-charge interactions. This unprecedented level of agreement with experimental benchmarks for the de novo calculation of pK(a) values suggests that the CPHMD method is maturing into a practical tool for the quantitative prediction of protein ionization equilibria, and this, in turn, opens a door to atomistic simulations of a wide variety of pH-coupled conformational phenomena in biological macromolecules such as protein folding or misfolding, aggregation, ligand binding, membrane interaction, and catalysis.

  9. First-principles calculations of shear moduli for Monte Carlo-simulated Coulomb solids

    NASA Technical Reports Server (NTRS)

    Ogata, Shuji; Ichimaru, Setsuo

    1990-01-01

    The paper presents a first-principles study of the shear modulus tensor for perfect and imperfect Coulomb solids. Allowance is made for the effects of thermal fluctuations for temperatures up to the melting conditions. The present theory treats the cases of the long-range Coulomb interaction, where volume fluctuations should be avoided in the Ewald sums.

  10. Automated first-principles mapping for phase-change materials.

    PubMed

    Esser, Marc; Maintz, Stefan; Dronskowski, Richard

    2017-04-05

    Plotting materials on bi-coordinate maps according to physically meaningful descriptors has a successful tradition in computational solid-state science spanning more than four decades. Equipped with new ab initio techniques introduced in this work, we generate an improved version of the treasure map for phase-change materials (PCMs) as introduced previously by Lencer et al. which, other than before, charts all industrially used PCMs correctly. Furthermore, we suggest seven new PCM candidates, namely SiSb 4 Te 7 , Si 2 Sb 2 Te 5 , SiAs 2 Te 4 , PbAs 2 Te 4 , SiSb 2 Te 4 , Sn 2 As 2 Te 5 , and PbAs 4 Te 7 , to be used as synthetic targets. To realize aforementioned maps based on orbital mixing (or "hybridization") and ionicity coordinates, structural information was first included into an ab initio numerical descriptor for sp 3 orbital mixing and then generalized beyond high-symmetry structures. In addition, a simple, yet powerful quantum-mechanical ionization measure also including structural information was introduced. Taken together, these tools allow for (automatically) generating materials maps solely relying on first-principles calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2005-11-01

    Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green’s function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between the full nonequilibrium Green’s function calculation and the newly derived expressions is obtained while simplifying the computational burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of the conductance including nonequilibrium heating and provide a convenient way of parameterizing the physics. This is exemplified by fitting the expressions to the experimentally observed conductances through both an atomic gold wire and a hydrogen molecule.

  12. Similarity principles for the biology of pelagic animals

    PubMed Central

    Barenblatt, G. I.; Monin, A. S.

    1983-01-01

    A similarity principle is formulated according to which the statistical pattern of the pelagic population is identical in all scales sufficiently large in comparison with the molecular one. From this principle, a power law is obtained analytically for the pelagic animal biomass distribution over the animal sizes. A hypothesis is presented according to which, under fixed external conditions, the oxygen exchange intensity of an animal is governed only by its mass and density and by the specific absorbing capacity of the animal's respiratory organ. From this hypothesis a power law is obtained by the method of dimensional analysis for the exchange intensity mass dependence. The known empirical values of the exponent of this power law are interpreted as an indication that the oxygen-absorbing organs of the animals can be represented as so-called fractal surfaces. In conclusion the biological principle of the decrease in specific exchange intensity with increase in animal mass is discussed. PMID:16593327

  13. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated

  14. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE PAGES

    Swatek, Przemys?aw Wojciech

    2018-03-23

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  15. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swatek, Przemys?aw Wojciech

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  16. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    PubMed

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  17. First principles calculation of material properties of group IV elements and III-V compounds

    NASA Astrophysics Data System (ADS)

    Malone, Brad Dean

    This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present

  18. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    PubMed

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  19. Mechanical Modulation of Tunneling Current in Transition Metal Dichalcogenides Heterostructures: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Kuroda, Marcelo

    Recent experiments in MoS2 heterostructures reported that out-of-plane tunneling piezoresistivity (TPR) - mechanical modulation of the tunneling current - achieves sensitivities of one decade per Ådisplacement. Owing to their nanometer scale, a quantitative theoretical framework providing the TPR structure-property relationship is necessary to further improve sensitivities. To this end, first principles calculations within density functional theory are used to characterize the phenomenon in MoX2 (with X = S, Se). The TPR is quantified in relation to electrode composition and film thickness showing remarkable agreement with experiments. The origin of the TPR is attributed to the heterostructure compliance rather than band alignment changes with strain, and differs from mechanisms in other nanometer-thick bulk films. Large work function metals (Pt, Au) are singled out as best candidates for enhanced TPR gauges due to weak bonding and negligible thermionic emission; compliant bilayers show larger stress-sensitivity than monolayers. By accounting for the atomistic details and material composition of 2D material-based heterostructures, this work has the potential to advance sensor and nano-electro-mechanical system technologies.

  20. First-principles design of nanostructured hybrid photovoltaics based on layered transition metal phosphates

    DOE PAGES

    Lentz, Levi C.; Kolpak, Alexie M.

    2017-04-28

    The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematicallymore » tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. Here, this work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photo Zirconium phosphate was chosen, in part, due to previous experiment voltaics.« less

  1. First-principles design of nanostructured hybrid photovoltaics based on layered transition metal phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Levi C.; Kolpak, Alexie M.

    The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematicallymore » tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. Here, this work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photo Zirconium phosphate was chosen, in part, due to previous experiment voltaics.« less

  2. First-principles molecular dynamics simulations of anorthite (CaAl2Si2O8) glass at high pressure

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipta B.; Karki, Bijaya B.

    2018-06-01

    We report first-principles molecular dynamics study of the equation of state, structural, and elastic properties of CaAl2Si2O8 glass at 300 K as a function of pressure up to 155 GPa. Our results for the ambient pressure glass show that: (1) as with other silicates, Si atoms remain mostly (> 95%) under tetrahedral oxygen surroundings; (2) unlike anorthite crystal, presence of high-coordination (> 4) Al atoms with 30% abundance; (3) and significant presence of both non-bridging (8%) and triply (17%) coordinated oxygen. To achieve the glass configurations at various pressures, we use two different simulation schedules: cold and hot compression. Cold compression refers to sequential compression at 300 K. Compression at 3000 K and subsequent isochoric quenching to 300 K is considered as hot compression. At the initial stages of compression (0-10 GPa), smooth increase in bond distance and coordination occurs in the hot-compressed glass. Whereas in cold compression, Si (also Al to some extent) displays mainly topological changes (without significantly affecting the average bond distance or coordination) in this pressure interval. Further increase in pressure results in gradual increases in mean coordination, with Si-O (Al-O) coordination eventually reaching and remaining 6 (6.5) at the highest compression. Similarly, the ambient pressure Ca-O coordination of 5.9 increases to 9.5 at 155 GPa. The continuous pressure-induced increase in the proportion of oxygen triclusters along with the appearance and increasing abundance of tetrahedral oxygens results in mean O-T (T = Si and Al) coordination of > 3 from a value of 2.1 at ambient pressure. Due to the absence of kinetic barrier, the hot-compressed glasses consistently produce greater densities and higher coordination numbers than the cold compression cases. Decompressed glasses show irreversible compaction along with retention of high-coordination species when decompressed from pressure ≥ 10 GPa. The different density

  3. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn; Zheng, Xiao, E-mail: xz58@ustc.edu.cn

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It ismore » confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.« less

  4. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field approach

    NASA Astrophysics Data System (ADS)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  5. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: multi-center molecular Ornstein-Zernike self-consistent field approach.

    PubMed

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-07

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  6. Requirements and principles for the implementation and construction of large-scale geographic information systems

    NASA Technical Reports Server (NTRS)

    Smith, Terence R.; Menon, Sudhakar; Star, Jeffrey L.; Estes, John E.

    1987-01-01

    This paper provides a brief survey of the history, structure and functions of 'traditional' geographic information systems (GIS), and then suggests a set of requirements that large-scale GIS should satisfy, together with a set of principles for their satisfaction. These principles, which include the systematic application of techniques from several subfields of computer science to the design and implementation of GIS and the integration of techniques from computer vision and image processing into standard GIS technology, are discussed in some detail. In particular, the paper provides a detailed discussion of questions relating to appropriate data models, data structures and computational procedures for the efficient storage, retrieval and analysis of spatially-indexed data.

  7. Principles of cooperation across systems: from human sharing to multicellularity and cancer.

    PubMed

    Aktipis, Athena

    2016-01-01

    From cells to societies, several general principles arise again and again that facilitate cooperation and suppress conflict. In this study, I describe three general principles of cooperation and how they operate across systems including human sharing, cooperation in animal and insect societies and the massively large-scale cooperation that occurs in our multicellular bodies. The first principle is that of Walk Away: that cooperation is enhanced when individuals can leave uncooperative partners. The second principle is that resource sharing is often based on the need of the recipient (i.e., need-based transfers) rather than on strict account-keeping. And the last principle is that effective scaling up of cooperation requires increasingly sophisticated and costly cheater suppression mechanisms. By comparing how these principles operate across systems, we can better understand the constraints on cooperation. This can facilitate the discovery of novel ways to enhance cooperation and suppress cheating in its many forms, from social exploitation to cancer.

  8. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    2018-04-01

    Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

  9. Nonequilibrium BN-ZnO: Optical properties and excitonic effects from first principles

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, André

    2018-03-01

    The nonequilibrium boron nitride (BN) phase of zinc oxide (ZnO) has been reported for thin films and nanostructures, however, its properties are not well understood due to a persistent controversy that prevents reconciling experimental and first-principles results for its atomic coordinates. We use first-principles theoretical spectroscopy to accurately compute electronic and optical properties, including single-quasiparticle and excitonic effects: Band structures and densities of states are computed using density functional theory, hybrid functionals, and the G W approximation. Accurate optical absorption spectra and exciton binding energies are computed by solving the Bethe-Salpeter equation for the optical polarization function. Using this data we show that the band-gap difference between BN-ZnO and wurtzite (WZ) ZnO agrees very well with experiment when the theoretical lattice geometry is used, but significantly disagrees for the experimental atomic coordinates. We also show that the optical anisotropy of BN-ZnO differs significantly from that of WZ-ZnO, allowing us to optically distinguish both polymorphs. By using the transfer-matrix method to solve Maxwell's equations for thin films composed of both polymorphs, we illustrate that this opens up a promising route for tuning optical properties.

  10. Topology of molecular interaction networks.

    PubMed

    Winterbach, Wynand; Van Mieghem, Piet; Reinders, Marcel; Wang, Huijuan; de Ridder, Dick

    2013-09-16

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks.Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs.Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.

  11. Topology of molecular interaction networks

    PubMed Central

    2013-01-01

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks. Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs. Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes. Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further. PMID:24041013

  12. Bacteremia after supragingival scaling and dental extraction: Culture and molecular analyses.

    PubMed

    Reis, L C; Rôças, I N; Siqueira, J F; de Uzeda, M; Lacerda, V S; Domingues, Rmcp; Miranda, K R; Saraiva, R M

    2018-05-01

    To study the incidence and magnitude of bacteremia after dental extraction and supragingival scaling. Blood samples were taken before and 5 and 30 min after dental extraction and supragingival scaling from individuals at high (n = 44) or negligible risk (n = 51) for infective endocarditis. The former received prophylactic antibiotic therapy. Samples were subjected to aerobic and anaerobic culture and quantitative real-time polymerase chain reaction to determine the incidence of bacteremia and total bacterial levels. Patients who did not receive prophylactic antibiotic therapy had a higher incidence of positive blood cultures (30% 5 min after extraction) than patients who received prophylactic antibiotic therapy (0% 5 min after extraction; p < .01). Molecular analysis did not reveal significant differences in the incidence or magnitude of bacteremia between the two patient groups either 5 or 30 min after each of the procedures evaluated. Extraction was associated with higher incidence of bacteremia than supragingival scaling by blood culture (p = .03) and molecular analysis (p = .05). Molecular methods revealed that dental extraction and supragingival scaling were associated with similar incidence of bacteremia in groups receiving or not prophylactic antibiotic therapy. However, blood culture revealed that antibiotic therapy reduced viable cultivable bacteria in the bloodstream in the extraction group. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Direct determination of three-phase contact line properties on nearly molecular scale

    DOE PAGES

    Winkler, P. M.; McGraw, R. L.; Bauer, P. S.; ...

    2016-05-17

    Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of 1nm. For water nucleating heterogeneously on Ag nanoparticles we find contact angles around 15 degrees compared to 90 degrees for the corresponding macroscopicallymore » measured equilibrium angle. The obtained microscopic contact angles can be attributed to negative line tension in the order of –10 –10 J/m that becomes increasingly dominant with increasing curvature of the contact line. Furthermore, these results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.« less

  14. Equation of state and shock compression of warm dense sodium—A first-principles study

    DOE PAGES

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...

    2017-02-21

    As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less

  15. Some Stereochemical Principles from Polymers: Molecular Symmetry and Molecular Flexibility

    ERIC Educational Resources Information Center

    Price, Charles C.

    1973-01-01

    Discusses the use of the properties of polyethylene, polypropylene, polyisobutylene, and their three epoxides to illustrate the relationships of entropy to molecular properties and the concepts of molecular chirality, geometry, and flexibility. (CC)

  16. Multiple-time-scale motion in molecularly linked nanoparticle arrays.

    PubMed

    George, Christopher; Szleifer, Igal; Ratner, Mark

    2013-01-22

    We explore the transport of electrons between electrodes that encase a two-dimensional array of metallic quantum dots linked by molecular bridges (such as α,ω alkaline dithiols). Because the molecules can move at finite temperatures, the entire transport structure comprising the quantum dots and the molecules is in dynamical motion while the charge is being transported. There are then several physical processes (physical excursions of molecules and quantum dots, electronic migration, ordinary vibrations), all of which influence electronic transport. Each can occur on a different time scale. It is therefore not appropriate to use standard approaches to this sort of electron transfer problem. Instead, we present a treatment in which three different theoretical approaches-kinetic Monte Carlo, classical molecular dynamics, and quantum transport-are all employed. In certain limits, some of the dynamical effects are unimportant. But in general, the transport seems to follow a sort of dynamic bond percolation picture, an approach originally introduced as formal models and later applied to polymer electrolytes. Different rate-determining steps occur in different limits. This approach offers a powerful scheme for dealing with multiple time scale transport problems, as will exist in many situations with several pathways through molecular arrays or even individual molecules that are dynamically disordered.

  17. First principles studies of electron tunneling in proteins

    PubMed Central

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  18. Defect states at organic-inorganic interfaces: Insight from first principles calculations for pentaerythritol tetranitrate on MgO surface

    NASA Astrophysics Data System (ADS)

    Tsyshevsky, Roman V.; Rashkeev, Sergey N.; Kuklja, Maija M.

    2015-07-01

    Light-responsive organic-inorganic interfaces offer experimental opportunities that are otherwise difficult to achieve. Since laser light can be manipulated very precisely, it becomes possible to engineer selective, predictive, and highly controlled interface properties. Photochemistry of organic-inorganic energetic interfaces is a rapidly emerging research field in which energy absorption and interface stability mechanisms have yet to be established. To explore the interaction of the laser irradiation with molecular materials, we performed first principle calculations of a prototype organic-inorganic interface between a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12) and a magnesium oxide (MgO) surface. We found that the light absorption is defined by the band alignment between interface components and interfacial charge transfer coupled with electronic states in the band gap, generated by oxide surface defects. Hence the choice of an oxide substrate and its morphology makes the optical absorption tunable and governs both the energy accumulation and energy release at the interface. The obtained results offer a possible consistent interpretation of experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by excitation energy much lower than the band gap. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. Our conclusions predict ways for a complete separation of thermo- and photo-stimulated interface chemistry of molecular materials, which is imperative for highly controllable fast decomposition and was not attainable before. The methodology described here can be applied to any type of molecular material/wide band gap dielectric interfaces. It provides a solid basis for novel design and targeted improvements of organic-inorganic interfaces with desired properties that promise to enable vastly new concepts

  19. Urban growth simulation from "first principles".

    PubMed

    Andersson, Claes; Lindgren, Kristian; Rasmussen, Steen; White, Roger

    2002-08-01

    General and mathematically transparent models of urban growth have so far suffered from a lack in microscopic realism. Physical models that have been used for this purpose, i.e., diffusion-limited aggregation, dielectric breakdown models, and correlated percolation all have microscopic dynamics for which analogies with urban growth appear stretched. Based on a Markov random field formulation we have developed a model that is capable of reproducing a variety of important characteristic urban morphologies and that has realistic microscopic dynamics. The results presented in this paper are particularly important in relation to "urban sprawl," an important aspect of which is aggressively spreading low-density land uses. This type of growth is increasingly causing environmental, social, and economical problems around the world. The microdynamics of our model, or its "first principles," can be mapped to human decisions and motivations and thus potentially also to policies and regulations. We measure statistical properties of macrostates generated by the urban growth mechanism that we propose, and we compare these to empirical measurements as well as to results from other models. To showcase the open-endedness of the model and to thereby relate our work to applied urban planning we have also included a simulated city consisting of a large number of land use classes in which also topographical data have been used.

  20. First principles study of CuAlO2 doping with S

    NASA Astrophysics Data System (ADS)

    Gao, Haigen; Zhou, Jian; Lu, Minghui

    2010-07-01

    We study the electronic properties of CuAlO2 doped with S by the first principles calculations and find that the band gap of CuAlO2 is reduced after the doping. At the same time, the effective masses are also reduced and the density of states could cross the Fermi level. These results show that the conductivity of CuAlO2 could be enhanced by doping the impurities of S, which needs to be further studied.

  1. First-Principles Approach to Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark

    2015-03-01

    We have developed a first principles method to calculate the energy level alignment between semiconductor band edges and reference energy levels at aqueous interfaces. This alignment is fundamental to understand the electrochemical characteristics of any semiconductor electrode in general and the potential for photocatalytic activity in particular. For example, in the search for new photo-catalytic materials, viable candidates must demonstrate both efficient absorption of the solar spectrum and an appropriate alignment of the band edge levels in the semiconductor to the redox levels for the target reactions. In our approach, the interface-specific contribution to the electrostatic step across the interface is evaluated using density functional theory (DFT) based molecular dynamics to sample the physical interface structure and the corresponding change in the electrostatic potential at the interface. The reference electronic levels in the semiconductor and in the water are calculated using the GW approach, which naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. Taken together, our calculations provide the alignment of the semiconductor valence band edge to the centroid of the highest occupied 1b1 level in water. The known relationship of the 1b1 level to the normal hydrogen electrode completes the connection to electrochemical levels. We discuss specific results for GaN, ZnO, and TiO2. The effect of interface structural motifs, such as different degrees of water dissociation, and of dynamical characteristics, will be presented together with available experimental data. Work supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886.

  2. Electronic processes in fast thermite chemical reactions: a first-principles molecular dynamics study.

    PubMed

    Shimojo, Fuyuki; Nakano, Aiichiro; Kalia, Rajiv K; Vashishta, Priya

    2008-06-01

    Rapid reaction of a molten metal with an oxide is the key to understanding recently discovered fast reactions in nanothermite composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics simulations with interatomic forces calculated quantum mechanically in the framework of the density functional theory. A redox reaction to form iron metal and Al2O3 initiates with the rapid formation of Al-O bonds at the interface within 1 ps, followed by the propagation of the combustion front with a velocity of 70 m/s for at least 5 ps at 2000 K. The reaction time for an oxygen atom to change character from Fe2O3 type to Al2O3 type at the interface is estimated to be 1.7+/-0.9 ps , and bond-overlap population analysis has been used to calculate reaction rates.

  3. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang

    2018-04-01

    Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.

  4. Environment-dependent interfacial strength using first principles thermodynamics: The example of the Pt-HfO2 interface

    NASA Astrophysics Data System (ADS)

    Cardona Quintero, Y.; Ramanath, Ganpati; Ramprasad, R.

    2013-10-01

    A parameter-free, quantitative, first-principles methodology to determine the environment-dependent interfacial strength of metal-metal oxide interfaces is presented. This approach uses the notion of the weakest link to identify the most likely cleavage plane, and first principles thermodynamics to calculate the average work of separation as a function of the environment (in this case, temperature and oxygen pressure). The method is applied to the case of the Pt-HfO2 interface, and it is shown that the computed environment-dependent work of separation is in quantitative agreement with available experimental data.

  5. First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals

    NASA Astrophysics Data System (ADS)

    Tadano, Terumasa; Tsuneyuki, Shinji

    2018-04-01

    We review our recent development of a first-principles lattice dynamics method that can treat anharmonic effects nonperturbatively. The method is based on the self-consistent phonon theory, and temperature-dependent phonon frequencies can be calculated efficiently by incorporating recent numerical techniques to estimate anharmonic force constants. The validity of our approach is demonstrated through applications to cubic strontium titanate, where overall good agreement with experimental data is obtained for phonon frequencies and lattice thermal conductivity. We also show the feasibility of highly accurate calculations based on a hybrid exchange-correlation functional within the present framework. Our method provides a new way of studying lattice dynamics in severely anharmonic materials where the standard harmonic approximation and the perturbative approach break down.

  6. Phonon-Assisted Optical Absorption in Silicon from First Principles

    NASA Astrophysics Data System (ADS)

    Noffsinger, Jesse; Kioupakis, Emmanouil; Van de Walle, Chris G.; Louie, Steven G.; Cohen, Marvin L.

    2012-04-01

    The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasiparticle level entirely from first principles. We make use of the Wannier interpolation formalism to determine the quasiparticle energies, as well as the optical transition and electron-phonon coupling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset of indirect absorption is in very good agreement with experimental measurements for a range of temperatures. Moreover, our method can accurately determine the optical absorption spectrum of silicon in the visible range, an important process for optoelectronic and photovoltaic applications that cannot be addressed with simple models. The computational formalism is quite general and can be used to understand the phonon-assisted absorption processes in general.

  7. Moving Contact Lines: Linking Molecular Dynamics and Continuum-Scale Modeling.

    PubMed

    Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K

    2018-05-17

    Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.

  8. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  9. Magnetically induced phonon splitting in A Cr 2 O 4 spinels from first principles

    DOE PAGES

    Wysocki, Aleksander L.; Birol, Turan

    2016-04-22

    We study the magnetically-induced phonon splitting in cubic ACr 2O 4 (A=Mg, Zn, Cd) spinels from first principles and demonstrate that the sign of the splitting, which is experimentally observed to be opposite in CdCr 2O 4 compared to ZnCr 2O 4 and MgCr 2O 4, is determined solely by the particular magnetic ordering pattern observed in these compounds. We further show that this interaction between magnetism and phonon frequencies can be fully described by the previously proposed spin-phonon coupling model [C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505 (2006)] that includes only the nearest neighbormore » exchange. In conclusion, using this model with materials specific parameters calculated from first principles, we provide additional insights into the physics of spin-phonon coupling in this intriguing family of compounds.« less

  10. First-principles investigation of polarization and ion conduction mechanisms in hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Shusuke; Sugino, Osamu

    We report first-principles simulation of polarization mechanisms in hydroxyapatite to explain the underlying mechanism behind the reported ion conductivities and polarization under electrical poling at elevated temperatures. It is found that ion conduction occurs mainly in the column of OH$^-$ ions along the $c$-axis through a combination of the flipping of OH$^-$ ions, exchange of proton vacancies between OH$^-$ ions, and the hopping of the OH$^-$ vacancy. The calculated activation energies are consistent with those found in conductivity measurements and thermally stimulated depolarization current measurements.

  11. First-principles study on stability of transition metal solutes in aluminum by analyzing the underlying forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Xu, Yichun; Li, Xiangyan

    2015-05-07

    Although there have been some investigations on behaviors of solutes in metals under strain, the underlying mechanism of how strain changes the stability of a solute is still unknown. To gain such knowledge, first-principles calculations are performed on substitution energy of transition metal solutes in fcc Al host under rhombohedral strain (RS). Our results show that under RS, substitution energy decreases linearly with the increase of outermost d radius r{sub d} of the solute due to Pauli repulsion. The screened Coulomb interaction increases or decreases the substitution energy of a solute on condition that its Pauling electronegativity scale ϕ{sub P}more » is less or greater than that of Al under RS. This paper verifies a linear relation of substitution energy change versus r{sub d} and ϕ{sub P} under RS, which might be instructive for composition design of long life alloys serving in high stress condition.« less

  12. Ab Initio Reactive Computer Aided Molecular Design

    DOE PAGES

    Martínez, Todd J.

    2017-03-21

    Few would dispute that theoretical chemistry tools can now provide keen insights into chemical phenomena. Yet the holy grail of efficient and reliable prediction of complex reactivity has remained elusive. Fortunately, recent advances in electronic structure theory based on the concepts of both element- and rank-sparsity, coupled with the emergence of new highly parallel computer architectures, have led to a significant increase in the time and length scales which can be simulated using first principles molecular dynamics. This then opens the possibility of new discovery-based approaches to chemical reactivity, such as the recently proposed ab initio nanoreactor. Here, we arguemore » that due to these and other recent advances, the holy grail of computational discovery for complex chemical reactivity is rapidly coming within our reach.« less

  13. Ab Initio Reactive Computer Aided Molecular Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Todd J.

    Few would dispute that theoretical chemistry tools can now provide keen insights into chemical phenomena. Yet the holy grail of efficient and reliable prediction of complex reactivity has remained elusive. Fortunately, recent advances in electronic structure theory based on the concepts of both element- and rank-sparsity, coupled with the emergence of new highly parallel computer architectures, have led to a significant increase in the time and length scales which can be simulated using first principles molecular dynamics. This then opens the possibility of new discovery-based approaches to chemical reactivity, such as the recently proposed ab initio nanoreactor. Here, we arguemore » that due to these and other recent advances, the holy grail of computational discovery for complex chemical reactivity is rapidly coming within our reach.« less

  14. Unraveling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molecular Dynamics Simulations.

    PubMed

    Stock, Philipp; Monroe, Jacob I; Utzig, Thomas; Smith, David J; Shell, M Scott; Valtiner, Markus

    2017-03-28

    Interactions between hydrophobic moieties steer ubiquitous processes in aqueous media, including the self-organization of biologic matter. Recent decades have seen tremendous progress in understanding these for macroscopic hydrophobic interfaces. Yet, it is still a challenge to experimentally measure hydrophobic interactions (HIs) at the single-molecule scale and thus to compare with theory. Here, we present a combined experimental-simulation approach to directly measure and quantify the sequence dependence and additivity of HIs in peptide systems at the single-molecule scale. We combine dynamic single-molecule force spectroscopy on model peptides with fully atomistic, both equilibrium and nonequilibrium, molecular dynamics (MD) simulations of the same systems. Specifically, we mutate a flexible (GS) 5 peptide scaffold with increasing numbers of hydrophobic leucine monomers and measure the peptides' desorption from hydrophobic self-assembled monolayer surfaces. Based on the analysis of nonequilibrium work-trajectories, we measure an interaction free energy that scales linearly with 3.0-3.4 k B T per leucine. In good agreement, simulations indicate a similar trend with 2.1 k B T per leucine, while also providing a detailed molecular view into HIs. This approach potentially provides a roadmap for directly extracting qualitative and quantitative single-molecule interactions at solid/liquid interfaces in a wide range of fields, including interactions at biointerfaces and adhesive interactions in industrial applications.

  15. Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material

    NASA Astrophysics Data System (ADS)

    Christensen, Thomas; Yan, Wei; Jauho, Antti-Pekka; Soljačić, Marin; Mortensen, N. Asger

    2017-04-01

    The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions—the Feibelman d parameters—in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum rule for complementary structures, a rigorous reformulation of Kreibig's phenomenological damping prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.

  16. Predictions of Crystal Structures from First Principles

    DTIC Science & Technology

    2007-06-01

    RDX crystal in hoped that the problem could be resolved by the molecular dynamics simulations . The fully ab initio development of density functional... Molecular Dynamics Simulations of RDX i.e., without any use of experimental results (except that Crystal the geometry of monomers was derived from X-ray...applied in molecular dynamics simulations of the RDX system, due to its size, is intractable by any high-level ab crystal. We performed isothermal

  17. First-Principles Prediction of Liquid/Liquid Interfacial Tension.

    PubMed

    Andersson, M P; Bennetzen, M V; Klamt, A; Stipp, S L S

    2014-08-12

    The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid/liquid systems of arbitrary compositions. The consistency of the predictions with experimental data is significant for binary, ternary, and multicomponent water/organic compound systems, which offers confidence in using the model to predict behavior where no data exists. The method is fast and can be used as a screening technique as well as to extend experimental data into conditions where measurements are technically too difficult, time consuming, or impossible.

  18. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic.

    PubMed

    Wernet, Mathias F; Perry, Michael W; Desplan, Claude

    2015-06-01

    Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here, we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to the habitat and way of life of an animal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The evolutionary diversity of insect retinal mosaics: Common design principles and emerging molecular logic

    PubMed Central

    Wernet, Mathias F.; Perry, Michael W.; Desplan, Claude

    2015-01-01

    Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to an animal’s habitat and way of life. PMID:26025917

  20. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn

    2016-04-14

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximatemore » to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.« less

  1. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    NASA Astrophysics Data System (ADS)

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  2. Uranium phase diagram from first principles

    NASA Astrophysics Data System (ADS)

    Yanilkin, Alexey; Kruglov, Ivan; Migdal, Kirill; Oganov, Artem; Pokatashkin, Pavel; Sergeev, Oleg

    2017-06-01

    The work is devoted to the investigation of uranium phase diagram up to pressure of 1 TPa and temperature of 15 kK based on density functional theory. First of all the comparison of pseudopotential and full potential calculations is carried out for different uranium phases. In the second step, phase diagram at zero temperature is investigated by means of program USPEX and pseudopotential calculations. Stable and metastable structures with close energies are selected. In order to obtain phase diagram at finite temperatures the preliminary selection of stable phases is made by free energy calculation based on small displacement method. For remaining candidates the accurate values of free energy are obtained by means of thermodynamic integration method (TIM). For this purpose quantum molecular dynamics are carried out at different volumes and temperatures. Interatomic potentials based machine learning are developed in order to consider large systems and long times for TIM. The potentials reproduce the free energy with the accuracy 1-5 meV/atom, which is sufficient for prediction of phase transitions. The equilibrium curves of different phases are obtained based on free energies. Melting curve is calculated by modified Z-method with developed potential.

  3. Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles

    NASA Astrophysics Data System (ADS)

    Charles, Nenian

    Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure

  4. Negative thermal expansion in TiF3 from the first-principles prediction

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yuan, Peng-Fei; Wang, Fei; Sun, Qiang; Liang, Er-Jun; Jia, Yu; Guo, Zheng-Xiao

    2014-08-01

    In negative thermal expansion (NTE) materials, rhombohedral TiF3 as a new member is predicted from first-principles calculation. The NTE behavior of rhombohedral TiF3 occurs at low temperatures. In our work, the NTE mechanism is elaborated in accordance with vibrational modes. It is confirmed that the rigid unit mode (RUM) of internal TiF6 octahedra in low-frequency optical range is most responsible for the NTE properties.

  5. First-principles study of molecular NO dissociation on Ir(100) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2014-02-01

    The dissociation of NO on Ir(100) surface is investigated using density functional theory (DFT). The pathway and transition state (TS) of the dissociation of NO molecule are determined using climbing image nudge elastic band (CI-NEB). The prerequisite state of NO dissociation is determining the most stable sites of the reactant and products. We found that the most energetically stable sites are the hollow for N atom and the bridge for NO molecule as well as O atom. We found that the bending of NO is the first step of the dissociation reaction due to the increase of the back-donation from the d-band of Ir to 2 π ∗ orbital of NO, which causes the weakening of NO bond. The dissociation energy barrier of NO molecule on Ir(100) surface is 0.49 eV.

  6. First principle calculation in FeCo overlayer on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vishal, E-mail: vjain045@gmail.com; Lakshmi, N.; Jain, Vivek Kumar

    In this work the first principle electronic structure calculation is reported for FeCo/GaAs thin film system to investigate the effect of orientation on the electronic structural properties. A unit cell describing FeCo layers and GaAs layers is constructed for (100), (110), (111) orientation with vacuum of 30Å to reduce dimensions. It is found that although the (110) orientation is energetically more favorable than others, the magnetic moment is quite large in (100) and (111) system compared to the (110) and is due to the total DOS variation with orientation.

  7. Fullerene-like CS x: A first-principles study of synthetic growth

    NASA Astrophysics Data System (ADS)

    Goyenola, C.; Gueorguiev, G. K.; Stafström, S.; Hultman, L.

    2011-04-01

    Fullerene-Like (FL) Sulpho-Carbide (CSx) compounds have been addressed by first principles calculations. Geometry optimization and cohesive energy results are presented for the relative stability of precursor species such as C2S, CS2, and C2S2 in isolated form. The energy cost for structural defects, arising from the substitution of C by S is also reported. Similar to previously synthesized FL-CNx and FL-CPx compounds, the pentagon, the double pentagon defects as well as the Stone-Wales defects are confirmed as energetically feasible in CSx compounds.

  8. Principles and Design of a Zeeman–Sisyphus Decelerator for Molecular Beams

    PubMed Central

    Tarbutt, M. R.

    2016-01-01

    Abstract We explore a technique for decelerating molecules using a static magnetic field and optical pumping. Molecules travel through a spatially varying magnetic field and are repeatedly pumped into a weak‐field seeking state as they move towards each strong field region, and into a strong‐field seeking state as they move towards weak field. The method is time‐independent and so is suitable for decelerating both pulsed and continuous molecular beams. By using guiding magnets at each weak field region, the beam can be simultaneously guided and decelerated. By tapering the magnetic field strength in the strong field regions, and exploiting the Doppler shift, the velocity distribution can be compressed during deceleration. We develop the principles of this deceleration technique, provide a realistic design, use numerical simulations to evaluate its performance for a beam of CaF, and compare this performance to other deceleration methods. PMID:27629547

  9. Screening based approach and dehydrogenation kinetics for MgH2: Guide to find suitable dopant using first-principles approach.

    PubMed

    Kumar, E Mathan; Rajkamal, A; Thapa, Ranjit

    2017-11-14

    First-principles based calculations are performed to investigate the dehydrogenation kinetics considering doping at various layers of MgH 2 (110) surface. Doping at first and second layer of MgH 2 (110) has a significant role in lowering the H 2 desorption (from surface) barrier energy, whereas the doping at third layer has no impact on the barrier energy. Molecular dynamics calculations are also performed to check the bonding strength, clusterization, and system stability. We study in details about the influence of doping on dehydrogenation, considering the screening factors such as formation enthalpy, bulk modulus, and gravimetric density. Screening based approach assist in finding Al and Sc as the best possible dopant in lowering of desorption temperature, while preserving similar gravimetric density and Bulk modulus as of pure MgH 2 system. The electron localization function plot and population analysis illustrate that the bond between Dopant-Hydrogen is mainly covalent, which weaken the Mg-Hydrogen bonds. Overall we observed that Al as dopant is suitable and surface doping can help in lowering the desorption temperature. So layer dependent doping studies can help to find the best possible reversible hydride based hydrogen storage materials.

  10. First-principles study of codoping in lanthanum bromide

    NASA Astrophysics Data System (ADS)

    Erhart, Paul; Sadigh, Babak; Schleife, André; Åberg, Daniel

    2015-04-01

    Codoping of Ce-doped LaBr3 with Ba, Ca, or Sr improves the energy resolution that can be achieved by radiation detectors based on these materials. Here, we present a mechanism that rationalizes this enhancement on the basis of first-principles electronic structure calculations and point defect thermodynamics. It is shown that incorporation of Sr creates neutral VBr-SrLa complexes that can temporarily trap electrons. As a result, Auger quenching of free carriers is reduced, allowing for a more linear, albeit slower, scintillation light yield response. Experimental Stokes shifts can be related to different CeLa-SrLa-VBr triple complex configurations. Codoping with other alkaline as well as alkaline-earth metals is considered as well. Alkaline elements are found to have extremely small solubilities on the order of 0.1 ppm and below at 1000 K. Among the alkaline-earth metals the lighter dopant atoms prefer interstitial-like positions and create strong scattering centers, which has a detrimental impact on carrier mobilities. Only the heavier alkaline-earth elements (Ca, Sr, Ba) combine matching ionic radii with sufficiently high solubilities. This provides a rationale for the experimental finding that improved scintillator performance is exclusively achieved using Sr, Ca, or Ba. The present mechanism demonstrates that codoping of wide-gap materials can provide an efficient means for managing charge carrier populations under out-of-equilibrium conditions. In the present case dopants are introduced that manipulate not only the concentrations but also the electronic properties of intrinsic defects without introducing additional gap levels. This leads to the availability of shallow electron traps that can temporarily localize charge carriers, effectively deactivating carrier-carrier recombination channels. The principles of this mechanism are therefore not specific to the material considered here but can be adapted for controlling charge carrier populations and

  11. First-Principles Thermodynamics Study of Spinel MgAl 2 O 4 Surface Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Wang, Jian-guo; Wang, Yong

    The surface stability of all possible terminations for three low-index (111, 110, 100) structures of the spinel MgAl2O4 has been studied using first-principles based thermodynamic approach. The surface Gibbs free energy results indicate that the 100_AlO2 termination is the most stable surface structure under ultra-high vacuum at T=1100 K regardless of Al-poor or Al-rich environment. With increasing oxygen pressure, the 111_O2(Al) termination becomes the most stable surface in the Al-rich environment. The oxygen vacancy formation is thermodynamically favorable over the 100_AlO2, 111_O2(Al) and the (111) structure with Mg/O connected terminations. On the basis of surface Gibbs free energies for bothmore » perfect and defective surface terminations, the 100_AlO2 and 111_O2(Al) are the most dominant surfaces in Al-rich environment under atmospheric condition. This is also consistent with our previously reported experimental observation. This work was supported by a Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL). The computing time was granted by the National Energy Research Scientific Computing Center (NERSC). Part of computing time was also granted by a scientific theme user proposal in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington.« less

  12. Variation of fundamental constants on sub- and super-Hubble scales: From the equivalence principle to the multiverse

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2013-02-01

    Fundamental constants play a central role in many modern developments in gravitation and cosmology. Most extensions of general relativity lead to the conclusion that dimensionless constants are actually dynamical fields. Any detection of their variation on sub-Hubble scales would signal a violation of the Einstein equivalence principle and hence a lead to gravity beyond general relativity. On super-Hubble scales, or maybe should we say on super-universe scales, such variations are invoked as a solution to the fine-tuning problem, in connection with an anthropic approach.

  13. Vibrational signatures in the THz spectrum of 1,3-DNB: A first-principles and experimental study

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Azad, Abul K.; Chellappa, Raja; Higginbotham-Duque, Amanda; Dattelbaum, Dana M.; Zhu, Jian-Xin; Moore, David; Graf, Matthias J.

    2016-05-01

    Understanding the fundamental processes of light-matter interaction is important for detection of explosives and other energetic materials, which are active in the infrared and terahertz (THz) region. We report a comprehensive study on electronic and vibrational lattice properties of structurally similar 1,3-dinitrobenzene (1,3-DNB) crystals through first-principles electronic structure calculations and THz spectroscopy measurements on polycrystalline samples. Starting from reported x-ray crystal structures, we use density-functional theory (DFT) with periodic boundary conditions to optimize the structures and perform linear response calculations of the vibrational properties at zero phonon momentum. The theoretically identified normal modes agree qualitatively with those obtained experimentally in a frequency range up to 2.5 THz and quantitatively at much higher frequencies. The latter frequencies are set by intra-molecular forces. Our results suggest that van der Waals dispersion forces need to be included to improve the agreement between theory and experiment in the THz region, which is dominated by intermolecular modes and sensitive to details in the DFT calculation. An improved comparison is needed to assess and distinguish between intra- and intermolecular vibrational modes characteristic of energetic materials.

  14. First simultaneous detection of terrestrial ionospheric molecular ions in the Earth's inner magnetosphere and at the Moon

    NASA Astrophysics Data System (ADS)

    Dandouras, I.; Poppe, A. R.; Fillingim, M. O.; Kistler, L. M.; Mouikis, C. G.; Rème, H.

    2017-09-01

    First coordinated observation of escaping heavy molecular ions in the Earth's inner magnetosphere and at the Moon. Quantifying the underlying escape mechanisms is important in order to understand the long-term (billion years scale) evolution of the atmospheric composition, and in particular the evolution of the N/O ratio, which is essential for habitability. Terrestrial heavy ions, transported to the Moon, suggest also that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar regolith.

  15. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-01

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  16. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics.

    PubMed

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-14

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  17. First-principles theory of cation- and intercalation-ordering in Li_xCoO_2

    NASA Astrophysics Data System (ADS)

    Wolverton, C.; Zunger, Alex

    1998-03-01

    Using a combination of first-principles total energies, a cluster expansion technique, and Monte Carlo simulations, we present a first-principles theory which can predict both cation- and intercalation-ordering patterns at both zero and finite temperatures, and can provide first-principles predictions of battery voltages of Li_xCoO_2/Li cells. The classes of ordering problems that we study are the following: (i) The LiMO2 oxides (M=3d metal) form a series of structures based on an octahedrally-coordinated network with anions (O) on one fcc sublattice and cations (Li and M) on the other, leading to Li/Co ordering in LiCoO2 (x=1). We find the ground state is the CuPt or (111)-layered cation arrangment, in agreement with the observed structure. (ii) In battery applications, Li is (de)intercalated from the compound, creating a vacancy (denoted Box) that can be positioned in different lattice locations; Thus, Box/Co ordering in BoxCoO2 (x=0) is also of interest. We find the ground state for BoxCoO2 is also a (111)-layered structure, although a different stacking sequence (AAA) of close-packed layers is preferred. (iii) The vacancies left behind by Li extraction can form ordered vacancy compounds in partially de-lithiated Li_xCoO_2, leading to a Box/Li ordering problem (0<=x<=1). Our calculations agree with the observed voltage profiles in these systems, and predict the existence of new intercalation-ordered compounds. Supported by BES/OER/DMS under contract DE-AC36-83CH10093.

  18. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    DOE PAGES

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    2015-11-05

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd 5Si-μ, Pd 9Si 2-α, Pd 3 Si-β, Pd 2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd 9 Si 2-α, Pd 3Si-β, and Pdmore » 2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd 5Si-μ, Pd 9Si 2-α, Pd 3Si-β, Pd 2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less

  19. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd 5Si-μ, Pd 9Si 2-α, Pd 3 Si-β, Pd 2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd 9 Si 2-α, Pd 3Si-β, and Pdmore » 2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd 5Si-μ, Pd 9Si 2-α, Pd 3Si-β, Pd 2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less

  20. First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard

    2017-10-01

    Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.

  1. First-principles study on structural, thermal, mechanical and dynamic stability of T'-MoS2.

    PubMed

    Liu, Y C; Wang, V; Xia, M G; Zhang, S L

    2017-03-08

    Using first-principles density functional theory calculations, we investigate the structure, stability, optical modes and electronic band gap of a distorted tetragonal MoS 2 monolayer (T'-MoS 2 ). Our simulated scanning tunnel microscopy (STM) images of T'-MoS 2 are dramatically similar to those STM images which were identified as K x (H 2 O) y MoS 2 from a previous experimental study. This similarity suggests that T'-MoS 2 might have already been experimentally observed, but due to being unexpected was misidentified. Furthermore, we verify the stability of T'-MoS 2 from the thermal, mechanical and dynamic aspects, by ab initio molecular dynamics simulation, elastic constants evaluation and phonon band structure calculation based on density functional perturbation theory, respectively. In addition, we calculate the eigenfrequencies and eigenvectors of the optical modes of T'-MoS 2 at [Formula: see text] point and distinguish their Raman and infrared activity by pointing out their irreducible representations using group theory. At the same time, we compare the Raman modes of T'-MoS 2 with those of H-MoS 2 and T-MoS 2 . Our results provide useful guidance for further experimental identification and characterization of T'-MoS 2 .

  2. Mesoscale Thermodynamic Analysis of Atomic-Scale Dislocation-Obstacle Interactions Simulated by Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monet, Giath; Bacon, David J; Osetskiy, Yury N

    2010-01-01

    Given the time and length scales in molecular dynamics (MD) simulations of dislocation-defect interactions, quantitative MD results cannot be used directly in larger scale simulations or compared directly with experiment. A method to extract fundamental quantities from MD simulations is proposed here. The first quantity is a critical stress defined to characterise the obstacle resistance. This mesoscopic parameter, rather than the obstacle 'strength' designed for a point obstacle, is to be used for an obstacle of finite size. At finite temperature, our analyses of MD simulations allow the activation energy to be determined as a function of temperature. The resultsmore » confirm the proportionality between activation energy and temperature that is frequently observed by experiment. By coupling the data for the activation energy and the critical stress as functions of temperature, we show how the activation energy can be deduced at a given value of the critical stress.« less

  3. Scaling of the VASIMR thruster first stage operation

    NASA Astrophysics Data System (ADS)

    Molvig, Kim; Batishchev, Oleg

    2002-11-01

    An effective helicon plasma source [1,2] is used in the variable high specific impulse VASIMR plasma thruster [3]. Experimental prototypes - VX-3 and recently up-scaled VX-10 [4] configurations operate with hydrogen, deuterium and helium plasmas. A set of models [5-7] has been developed to study VASIMR light gases helicon discharge. Using zero-dimensional model incorporating energy and mass balance equations we study scaling of the plasma source efficiency with the increased mass flow rate, applied electrical power and dimensions of the quartz tube. We compare theoretical results with existing experimental data. [1] M.A.Lieberman, A.J.Lihtenberg, 'Principles of ..', Wiley, 1994; [2] F.F.Chen, Plas. Phys. Contr. Fus. 33, 339, 1991; [3] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [4] J.Squire et al., Bull. APS 45 (7) 130, 2000; [5] O.Batishchev, K.Molvig, AIAA technical paper 2000-3754, 2001; [6] O.Batishchev, K.Molvig, IEPC-01-208 paper, 27th Int. Electrical Propulsion Conf., 2001; [7] O.Batishchev, K.Molvig, AIAA technical paper 2002-0347, 2002.

  4. First-principles simulations of electrostatic interactions between dust grains

    NASA Astrophysics Data System (ADS)

    Itou, H.; Amano, T.; Hoshino, M.

    2014-12-01

    We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. [Phys. Lett. A 239, 181-186 (1998)]. Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams [Phys. Lett. A 278, 152-158 (2000)], indicating the absence of the ODS attractive force.

  5. A first-principles model for orificed hollow cathode operation

    NASA Technical Reports Server (NTRS)

    Salhi, A.; Turchi, P. J.

    1992-01-01

    A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.

  6. NMR shifts for polycyclic aromatic hydrocarbons from first-principles

    NASA Astrophysics Data System (ADS)

    Thonhauser, T.; Ceresoli, Davide; Marzari, Nicola

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13 shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  7. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2013-10-07

    First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.

  8. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

    NASA Astrophysics Data System (ADS)

    Tacconi, L. J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N. M.; Lilly, S.; Lutz, D.; Wuyts, S.; Accurso, G.; Boissier, J.; Boone, F.; Bouché, N.; Bournaud, F.; Burkert, A.; Carollo, M.; Cooper, M.; Cox, P.; Feruglio, C.; Freundlich, J.; Herrera-Camus, R.; Juneau, S.; Lippa, M.; Naab, T.; Renzini, A.; Salome, P.; Sternberg, A.; Tadaki, K.; Übler, H.; Walter, F.; Weiner, B.; Weiss, A.

    2018-02-01

    This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M */M ⊙) = 9.0–11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10‑1.3 to 102.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z)‑0.6 × (δMS)‑0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (1+z{)}2.5× {(δ {MS})}0.52× {({M}* )}-0.36, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z. Based on observations of an IRAM Legacy Program carried out with the NOEMA, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  9. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    NASA Astrophysics Data System (ADS)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  10. Ethics needs principles--four can encompass the rest--and respect for autonomy should be "first among equals".

    PubMed

    Gillon, R

    2003-10-01

    It is hypothesised and argued that "the four principles of medical ethics" can explain and justify, alone or in combination, all the substantive and universalisable claims of medical ethics and probably of ethics more generally. A request is renewed for falsification of this hypothesis showing reason to reject any one of the principles or to require any additional principle(s) that can't be explained by one or some combination of the four principles. This approach is argued to be compatible with a wide variety of moral theories that are often themselves mutually incompatible. It affords a way forward in the context of intercultural ethics, that treads the delicate path between moral relativism and moral imperialism. Reasons are given for regarding the principle of respect for autonomy as "first among equals", not least because it is a necessary component of aspects of the other three. A plea is made for bioethicists to celebrate the approach as a basis for global moral ecumenism rather than mistakenly perceiving and denigrating it as an attempt at global moral imperialism.

  11. Design and exploration of semiconductors from first principles: A review of recent advances

    NASA Astrophysics Data System (ADS)

    Oba, Fumiyasu; Kumagai, Yu

    2018-06-01

    Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal–semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III–V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In–Ga–Zn–O transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II–VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1‑ x Ga x Se2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and Cu

  12. First Principles Simulations fo the Supercritical Behavior of Ore Forming Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weare, John H

    2013-04-19

    Abstract of Selected Research Progress: I. First-principles simulation of solvation structure and deprotonation reactions of ore forming metal ions in very nonideal solutions: Advances in algorithms and computational performance achieved in this grant period have allowed the atomic level dynamical simulation of complex nanoscale materials using interparticle forces calculated directly from an accurate density functional solution to the electronic Schr dinger equation (ab-initio molecular dynamics, AIMD). Focus of this program was on the prediction and analysis of the properties of environmentally important ions in aqueous solutions. AIMD methods have provided chemical interpretations of these very complex systems with an unprecedentedmore » level of accuracy and detail. The structure of the solvation region neighboring a highly charged metal ion (e.g., 3+) in an aqueous solution is very different from that of bulk water. The many-body behaviors (polarization, charge transfer, etc.) of the ion-water and water-water interactions in this region are difficult to capture with conventional empirical potentials. However, a large numbers of waters (up to 128 waters) are required to fully describe chemical events in the extended hydrations shells and long simulation times are needed to reliably sample the system. Taken together this makes simulation at the 1st principles level a very large computational problem. Our AIMD simulation results using these methods agree with the measured octahedral structure of the 1st solvation shell of Al3+ at the 1st shell boundary and a calculated radius of 1.937 (exp. 1.9). Our calculated average 2nd shell radius agrees remarkably well with the measured radius, 4.093 calculated vs. the measured value of 4.0-4.15 . Less can be experimentally determined about the structure of the 2nd shell. Our simulations show that this shell contains roughly 12 water molecules, which are trigonally coordinated to the 1st shell waters. This structure

  13. First principles calculations of interactions of ZrCl4 precursors with the bare and hydroxylated ZrO2 surfaces

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Bagatur'yants, A. A.; Potapkin, B. V.; Korkin, A. A.

    2004-05-01

    First-principles calculations have been performed to determine the structures and relative energies of different zirconium chloride groups chemisorbed on the tetragonal ZrO2(001) surface and to study the effects of the surface coverage with metal chloride groups and the degree of hydroxylation on the adsorption energies of metal precursors. It is shown that the molecular and dissociative adsorption energies of the ZrCl4 precursor on the bare t-ZrO2(001) surface are too small to hold ZrCl4 molecules on the surface during an atomic layer deposition (ALD) cycle at temperatures higher than 300°C. On the contrary, it has been found that molecular adsorption on the fully hydroxylated zirconia surface leads to the formation of a stable adsorbed complex. This strong adsorption of ZrCl4 molecules can lead to a decrease in the film growth rate of the ALD process at lower temperatures (<200°C). The energies of interaction between adsorbed ZrCl4 groups at a 50% surface coverage has been found to be relatively small, which explains the maximum film growth rate observed in the ZrCl4:H2O ALD process. Moreover, we found that the adsorbed ZrCl4 precursors after hydrolysis give rise to very stable hydroxyl groups, which can be responsible for film growth at high temperatures (up to 900°C).

  14. Colored spectrum characteristics of thermal noise on the molecular scale.

    PubMed

    Zhu, Zhi; Sheng, Nan; Fang, Haiping; Wan, Rongzheng

    2016-11-02

    Thermal noise is of fundamental importance to many processes. Traditionally, thermal noise has been treated as white noise on the macroscopic scale. Using molecular dynamics simulations and power spectrum analysis, we show that the thermal noise of solute molecules in water is non-white on the molecular scale, which is in contrast to the conventional theory. In the frequency domain from 2 × 10 11 Hz to 10 13 Hz, the power spectrum of thermal noise for polar solute molecules resembles the spectrum of 1/f noise. The power spectrum of thermal noise for non-polar solute molecules deviates only slightly from the spectrum of white noise. The key to this phenomenon is the existence of hydrogen bonds between polar solute molecules and solvent water molecules. Furthermore, for polar solute molecules, the degree of power spectrum deviation from that of white noise is associated with the average lifetime of the hydrogen bonds between the solute and the solvent molecules.

  15. Resolving phase stability in the Ti-O binary with first-principles statistical mechanics methods

    NASA Astrophysics Data System (ADS)

    Gunda, N. S. Harsha; Puchala, Brian; Van der Ven, Anton

    2018-03-01

    The Ti-O system consists of a multitude of stable and metastable oxides that are used in wide ranging applications. In this work we investigate phase stability in the Ti-O binary from first principles. We perform a systematic search for ground state structures as a function of oxygen concentration by considering oxygen-vacancy and/or titanium-vacancy orderings over four parent crystal structures: (i) hcp Ti, (ii) ω -Ti, (iii) rocksalt, and (iv) hcp oxygen containing interstitial titanium. We explore phase stability at finite temperature using cluster expansion Hamiltonians and Monte Carlo simulations. The calculations predict a high oxygen solubility in hcp Ti and the stability of suboxide phases that undergo order-disorder transitions upon heating. Vacancy ordered rocksalt phases are also predicted at low temperature that disorder to form an extended solid solution at high temperatures. Predicted stable and metastable phase diagrams are qualitatively consistent with experimental observations, however, important discrepancies are revealed between first-principles density functional theory predictions of phase stability and the current understanding of phase stability in this system.

  16. First-principles calculations, experimental study, and thermodynamic modeling of the Al-Co-Cr system.

    PubMed

    Liu, Xuan L; Gheno, Thomas; Lindahl, Bonnie B; Lindwall, Greta; Gleeson, Brian; Liu, Zi-Kui

    2015-01-01

    The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT) and phase-equilibria experiments that led to X-ray diffraction (XRD) and electron probe micro-analysis (EPMA) measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD) method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS) calculations predict a large bcc-A2 (disordered)/B2 (ordered) miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.

  17. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    DOE PAGES

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; ...

    2015-06-23

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co 5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co 11Zr 2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculationsmore » showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co 5Zr phase and larger than that of the low-temperature Co 5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.« less

  18. Molecular-scale properties of MoO3 -doped pentacene

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Meyer, Jens; Kahn, Antoine

    2010-10-01

    The mechanisms of molecular doping in organic electronic materials are explored through investigation of pentacene p -doped with molybdenum trioxide (MoO3) . Doping is confirmed with ultraviolet photoelectron spectroscopy. Isolated dopants are imaged at the molecular scale using scanning tunneling microscopy (STM) and effects due to localized holes are observed. The results demonstrate that donated charges are localized by the counterpotential of ionized dopants in MoO3 -doped pentacene, generalizing similar effects previously observed for pentacene doped with tetrafluoro-tetracyanoquinodimethane. Such localized hole effects are only observed for low molecular weight MoO3 species. It is shown that for larger MoO3 polymers and clusters, the ionized dopant potential is sufficiently large as to mask the effect of the localized hole in STM images. Current-voltage measurements recorded using scanning tunneling spectroscopy reveal that electron conductivity decreases in MoO3 -doped films, as expected for electron capture and p -doping.

  19. Effect of dispersion correction on the Au(1 1 1)-H2O interface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Nadler, Roger; Sanz, Javier Fdez.

    2012-09-01

    A theoretical study of the H2O-Au(1 1 1) interface based on first principles density functional theory (DFT) calculations with and without inclusion of dispersion correction is reported. Three different computational approaches are considered. First, the standard generalized gradient approximation (GGA) functional PBE is employed. Second, an additional energy term is further included that adds a semi-empirically derived dispersion correction (PBE-D2), and, finally, a recently proposed functional that includes van der Waals (vdW) interactions directly in its functional form (optB86b-vdW) was used to represent the state-of-the art of DFT functionals. The monomeric water adsorption was first considered in order to explore the dependency of geometry on the details of the model slab used to represent it (size, thickness, coverage). When the dispersion corrections are included the Au-H2O interaction is stronger, as manifested by the smaller dAu-O and stronger adsorption energies. Additionally, the interfacial region between Au(1 1 1) slab surfaces and a liquid water layer was investigated with Born-Oppenheimer molecular dynamics (BOMD) using the same functionals. Two or three interfacial orientations can be determined, depending on the theoretical methodology applied. Closest to the surface, H2O is adsorbed O-down, whereas further away it is oriented with one OH bond pointing to the surface and the molecular plane parallel to the normal direction. For the optB86b-vdW functional a third orientation is found where one H atom points into the bulk water layer and the second OH bond is oriented parallel to the metal surface. As for the water density in the first adsorption layer we find a very small increase of roughly 8%. From the analysis of vibrational spectra a weakening of the H-bond network is observed upon the inclusion of the Au(1 1 1) slab, however, no disruption of H-bonds is observed. While the PBE and PBE-D2 spectra are very similar, the optB86b-vdW spectrum shows

  20. First-principles study of LiPON and related solid electrolytes

    NASA Astrophysics Data System (ADS)

    Du, Yaojun A.; Holzwarth, N. A. W.

    2010-05-01

    Lithium phosphorus oxynitride materials have been investigated for many years, especially in relation to the thin-film electrolyte LiPON, developed at Oak Ridge National Laboratory. We have carried out first-principles simulations of related crystalline materials as a first step toward understanding the sources of stability and mechanisms of Li-ion conductivity in these materials. In addition to a comprehensive survey of known crystalline materials related to LiPON, we have also predicted some materials. For example, starting with crystalline LiPO3 which has twisted phosphate chains, we considered the possibility of modifying the structure by substituting N and Li for O. The optimized structures were computed to have regularized phosphate chains which form planar -P-N-P-N- backbones. To the best of our knowledge, the predicted crystals, which we call s1-Li2PO2N with a 24-atom unit cell and s2-Li2PO2N with a 12-atom unit cell, have not yet been observed experimentally. We suggest several possible exothermic reaction pathways to synthesize these crystals.

  1. A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil.

    PubMed

    Raghavendran, Vijayendran; Basso, Thalita Peixoto; da Silva, Juliana Bueno; Basso, Luiz Carlos; Gombert, Andreas Karoly

    2017-07-01

    Although first-generation fuel ethanol is produced in Brazil from sugarcane-based raw materials with high efficiency, there is still little knowledge about the microbiology, the biochemistry and the molecular mechanisms prevalent in the non-aseptic fermentation environment. Learning-by-doing has hitherto been the strategy to improve the process so far, with further improvements requiring breakthrough technologies. Performing experiments at an industrial scale are often expensive, complicated to set up and difficult to reproduce. Thus, developing an appropriate scaled down system for this process has become a necessity. In this paper, we present the design and demonstration of a simple and effective laboratory-scale system mimicking the industrial process used for first generation (1G) fuel ethanol production in the Brazilian sugarcane mills. We benchmarked this system via the superior phenotype of the Saccharomyces cerevisiae PE-2 strain, compared to other strains from the same species: S288c, baker's yeast, and CEN.PK113-7D. We trust that such a system can be easily implemented in different laboratories worldwide, and will allow a better understanding of the S. cerevisiae strains that can persist and dominate in this industrial, non-aseptic and peculiar environment.

  2. First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications.

    PubMed

    Mohamad, Mazmira; Ahmed, Rashid; Shaari, Amirudin; Goumri-Said, Souraya

    2015-02-01

    Escalating demand for sustainable energy resources, because of the rapid exhaustion of conventional energy resources as well as to maintain the environmental level of carbon dioxide (CO2) to avoid its adverse effect on the climate, has led to the exploitation of photovoltaic technology manifold more than ever. In this regard organic materials have attracted great attention on account of demonstrating their potential to harvest solar energy at an affordable rate for photovoltaic technology. 2-vinyl-4,5-dicyanoimidazole (vinazene) is considered as a suitable material over the fullerenes for photovoltaic applications because of its particular chemical and physical nature. In the present study, DFT approaches are employed to provide an exposition of optoelectronic properties of vinazene molecule and molecular crystal. To gain insight into its properties, different forms of exchange correlation energy functional/potential such as LDA, GGA, BLYP, and BL3YP are used. Calculated electronic structure of vinazene molecule has been displayed via HOMO-LUMO isosurfaces, whereas electronic structure of the vinazene molecular crystal, via electronic band structure, is presented. The calculated electronic and optical properties were analyzed and compared as well. Our results endorse vinazene as a suitable material for organic photovoltaic applications.

  3. First-Principles Study of Defects in GaN, AlN and Their Alloys

    DTIC Science & Technology

    2010-08-31

    Compounds 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 65 19a. NAME OF RESPONSIBLE... compounds because we would like to systematically study the trend of the elastic constants and sound velocities with respect to the ionicity of material...Singapore International Convention & Exhibition Centre, Singapore [C6] “First Principles Study of Gallium -Frenkel Pairs in Gallium Nitride” at the

  4. Chemical Principles Exemplified

    ERIC Educational Resources Information Center

    Plumb, Robert C.

    1972-01-01

    Collection of two short descriptions of chemical principles seen in life situations: the autocatalytic reaction seen in the bombardier beetle, and molecular potential energy used for quick roasting of beef. Brief reference is also made to methanol lighters. (PS)

  5. First-principles calculations of CdS-based nanolayers and nanotubes

    NASA Astrophysics Data System (ADS)

    Bandura, A. V.; Kuruch, D. D.; Evarestov, R. A.

    2018-05-01

    The first-principles simulations using hybrid exchange-correlation density functional and localized atomic basis set were performed to investigate the properties of CdS nanolayers and nanotubes constructed from wurtzite and zinc blende phases. Different types of cylindrical and facetted nanotubes have been considered. The new classification of the facetted nanotubes is proposed. The stability of CdS nanotubes has been analyzed using formation and strain energies. Obtained results show that facetted tubes are favorable as compared to the most of cylindrical ones. Nevertheless, the cylindrical nanotubes generated from the layers with experimentally proved freestanding existence, also have a chance to be synthesized. Preliminary calculation of facetted nanotubes constructed from the zinc blende phase gives evidence for their possible using in the photocatalytic decomposition of water.

  6. Properties of amorphous GaN from first-principles simulations

    NASA Astrophysics Data System (ADS)

    Cai, B.; Drabold, D. A.

    2011-08-01

    Amorphous GaN (a-GaN) models are obtained from first-principles simulations. We compare four a-GaN models generated by “melt-and-quench” and the computer alchemy method. We find that most atoms tend to be fourfold, and a chemically ordered continuous random network is the ideal structure for a-GaN albeit with some coordination defects. Where the electronic structure is concerned, the gap is predicted to be less than 1.0 eV, underestimated as usual by a density functional calculation. We observe a highly localized valence tail and a remarkably delocalized exponential conduction tail in all models generated. Based upon these results, we speculate on potential differences in n- and p-type doping. The structural origin of tail and defect states is discussed. The vibrational density of states and dielectric function are computed and seem consistent with experiment.

  7. Experiment-scale molecular simulation study of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y.; Matheson, Michael A.; Brown, W. Michael

    2014-03-01

    Supercomputers have now reached a performance level adequate for studying thin films with molecular detail at the relevant scales. By exploiting the power of GPU accelerators on Titan, we have been able to perform simulations of characteristic liquid crystal films that provide remarkable qualitative agreement with experimental images. We have demonstrated that key features of spinodal instability can only be observed with sufficiently large system sizes, which were not accessible with previous simulation studies. Our study emphasizes the capability and significance of petascale simulations in providing molecular-level insights in thin film systems as well as other interfacial phenomena.

  8. Thermal Conductivity and Large Isotope Effect in GaN from First Principles

    DTIC Science & Technology

    2012-08-28

    August 2012) We present atomistic first principles results for the lattice thermal conductivity of GaN and compare them to those for GaP, GaAs, and GaSb ...weak scattering results from stiff atomic bonds and the large Ga to N mass ratio, which give phonons high frequencies and also a pronounced energy gap...66.70.f, 63.20.kg, 71.15.m Introduction.—Gallium nitride (GaN) is a wide band gap semiconductor and a promising candidate for use in opto- electronic

  9. Grain growth in U–7Mo alloy: A combined first-principles and phase field study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zhi-Gang; Liang, Linyun; Kim, Yeon Soo

    2016-05-01

    Grain size is an important factor in controlling the swelling behavior in irradiated U-Mo dispersion fuels. Increasing the grain size in UeMo fuel particles by heat treatment is believed to delay the fuel swelling at high fission density. In this work, a multiscale simulation approach combining first-principles calculation and phase field modeling is used to investigate the grain growth behavior in U-7Mo alloy. The density functional theory based first-principles calculations were used to predict the material properties of U-7Mo alloy. The obtained grain boundary energies were then adopted as an input parameter for mesoscale phase field simulations. The effects ofmore » annealing temperature, annealing time and initial grain structures of fuel particles on the grain growth in U-7Mo alloy were examined. The predicted grain growth rate compares well with the empirical correlation derived from experiments. (C) 2016 Elsevier B.V. All rights reserved.« less

  10. Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles.

    PubMed

    Fang, Teng; Zhao, Xinbing; Zhu, Tiejun

    2018-05-19

    Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type M NiSb ( M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type Fe R Sb ( R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed.

  11. Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles

    PubMed Central

    Fang, Teng; Zhao, Xinbing

    2018-01-01

    Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type MNiSb (M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type FeRSb (R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed. PMID:29783759

  12. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    PubMed

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  13. First principles study of iron-bearing MgO under ultrahigh pressure

    NASA Astrophysics Data System (ADS)

    Umemoto, K.; Hsu, H.

    2017-12-01

    Understanding of minerals under ultrahigh pressure is essential to model interiors of super-Earths. Chemical compositions of the super-Earths are expected to be similar to those of the Earth. Computational studies on Mg-Si-O ternary systems under ultrahigh pressures, which are difficult to be achieved by diamond-anvil-cell experiments, have been intensively performed (e.g., [1] for MgO, [2,3] for SiO2, and [4,5] for MgSiO3). However, as far as we know, these studies have been restricted to pure Mg-Si-O systems. In the mantles of super-Earths, we expect that there should be impurities as in the Earth's mantle. Among candidates of impurities, iron is especially important to model interiors of super-Earths. Here, we investigate iron-bearing MgO under ultrahigh pressures by first principles. We clarify effects of iron on the phase transition of MgO and thermodynamic quantities by first principles. The role of the 3d electrons will be elucidated. [1] Z. Wu, R. M. Wentzcovitch, K. Umemoto, B. Li, K. Hirose, and J. C. Zheng, J. Geophys. Res. 113, B06204 (2008). [2] S. Q. Wu, K. Umemoto, M. Ji, C. Z. Wang, K. M. Ho, and R. M. Wentzcovitch, Phys. Rev. B 83, 184102 (2011). [3] T. Tsuchiya and J. Tsuchiya, Proc. Nat. Acad. Sci. 108, 1252 (2011) [4] S. Q. Wu, M. Ji, C. Z. Wang, M. C. Nguye, X. Zhao, K. Umemoto, R. M. Wentzcovitch, and K. M. Ho, J. Phys.: Condens. Matter 26, 035402 (2014). [5] H. Niu, A. R. Oganov, X.-C. Chen, and D. Li, Sci. Rep. 5, 18347 (2015).

  14. First principle study of transport properties of a graphene nano structure

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Sharma, Munish; Sharma, Jyoti Dhar; Ahluwalia, P. K.

    2013-06-01

    The first principle quantum transport calculations have been performed for graphene using Tran SIESTA which calculates transport properties using nonequilibrium Green's function method in conjunction with density-functional theory. Transmission functions, electron density of states and current-voltage characteristic have been calculated for a graphene nano structure using graphene electrodes. Transmission function, density of states and projected density of states show a discrete band structure which varies with applied voltage. The value of current is very low for applied voltage between 0.0 V to 5.0 V and lies in the range of pico ampere. In the V-I characteristic current shows non-linear fluctuating pattern with increase in voltage.

  15. Structure and properties of microporous titanosilicate determined by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ching, W. Y.; Xu, Yong-Nian; Gu, Zong-Quan

    1996-12-01

    The structure of EST-10, a member of synthetic microporous titanosilicates, was recently determined by an ingenious combination of experimental and simulational techniques. However, the locations of the alkali atoms in the framework remain elusive and its electronic structure is totally unknown. Based on first-principles local density calculations, the possible locations of the alkali atoms are identified and its electronic structure and bonding fully elucidated. ETS-10 is a semiconductor with a direct band gap of 2.33 eV. The Na atoms are likely to locate inside the seven-member ring pore adjacent to the one-dimensional Ti-O-Ti-O- chain.

  16. First-principles study of Ti intercalation between graphene and Au surface

    NASA Astrophysics Data System (ADS)

    Kaneko, T.; Imamura, H.

    2011-06-01

    We investigate the effects of Ti intercalation between graphene and Au surface on binding energy and charge doping by using the first-principles calculations. We show that the largest binding energy is realized by the intercalation of single mono-layer of Ti. We also show that electronic structure is very sensitive to the arrangement of metal atoms at the interface. If the composition of the interface layer is Ti0.33Au0.67 and the Ti is located at the top site, the Fermi level lies closely at the Dirac point, i.e., the Dirac cone of the ideal free-standing graphene is recovered.

  17. Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.

    PubMed

    Schulz, Roland; Lindner, Benjamin; Petridis, Loukas; Smith, Jeremy C

    2009-10-13

    A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million-atom biological systems scale well up to ∼30k cores, producing ∼30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.

  18. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done

  19. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  20. Non-metallic dopant modulation of conductivity in substoichiometric tantalum pentoxide: A first-principles study

    NASA Astrophysics Data System (ADS)

    Bondi, Robert J.; Fox, Brian P.; Marinella, Matthew J.

    2017-06-01

    We apply density-functional theory calculations to predict dopant modulation of electrical conductivity (σo) for seven dopants (C, Si, Ge, H, F, N, and B) sampled at 18 quantum molecular dynamics configurations of five independent insertion sites into two (high/low) baseline references of σo in amorphous Ta2O5, where each reference contains a single, neutral O vacancy center (VO0). From this statistical population (n = 1260), we analyze defect levels, physical structure, and valence charge distributions to characterize nanoscale modification of the atomistic structure in local dopant neighborhoods. C is the most effective dopant at lowering Ta2Ox σo, while also exhibiting an amphoteric doping behavior by either donating or accepting charge depending on the host oxide matrix. Both B and F robustly increase Ta2Ox σo, although F does so through elimination of Ta high charge outliers, while B insertion conversely creates high charge O outliers through favorable BO3 group formation, especially in the low σo reference. While N applications to dope and passivate oxides are prevalent, we found that N exacerbates the stochasticity of σo we sought to mitigate; sensitivity to the N insertion site and some propensity to form N-O bond chemistries appear responsible. We use direct first-principles predictions of σo to explore feasible Ta2O5 dopants to engineer improved oxides with lower variance and greater repeatability to advance the manufacturability of resistive memory technologies.

  1. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    NASA Astrophysics Data System (ADS)

    Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele

    2016-09-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.

  2. First-principles quantum molecular dynamics study of Ti x Zr1-x N(111)/SiN y heterostructures and comparison with experimental results.

    PubMed

    Ivashchenko, Volodymyr; Veprek, Stan; Pogrebnjak, Alexander; Postolnyi, Bogdan

    2014-04-01

    The heterostructures of five monolayers B1-Ti x Zr 1- x N(111), x = 1.0, 0.6, 0.4 and 0.0 (where B1 is a NaCl-type structure) with one monolayer of a Si 3 N 4 -like Si 2 N 3 interfacial layer were investigated by means of first-principles quantum molecular dynamics and a structure optimization procedure using the Quantum ESPRESSO code. Slabs consisting of stoichiometric TiN and ZrN and random, as well as segregated, B1-Ti x Zr 1- x N(111) solutions were considered. The calculations of the B1-Ti x Zr 1- x N solid solutions, as well as of the heterostructures, showed that the pseudo-binary TiN-ZrN system exhibits a miscibility gap. The segregated heterostructures in which Zr atoms surround the Si y N z interface were found to be the most stable. For the Zr-rich heterostructures, the total energy of the random solid solution was lower compared to that of the segregated one, whereas for the Ti-rich heterostructures the opposite tendency was observed. Hard and super hard Zr-Ti-Si-N coatings with thicknesses from 2.8 to 3.5 μ m were obtained using a vacuum arc source with high frequency stimulation. The samples were annealed in a vacuum and in air at 1200 °C. Experimental investigations of Zr-Ti-N, Zr-Ti-Si-N and Ti-Si-N coatings with different Zr, Ti and Si concentrations were carried out for comparison with results obtained from Ti x Zr 1 - x N(111)/SiN y systems. During annealing, the hardness of the best series samples was increased from (39.6 ± 1.4) to 53.6 GPa, which seemed to indicate that a spinodal segregation along grain interfaces was finished. A maximum hardness of 40.8 GPa before and 55 GPa after annealing in air at 500 °C was observed for coatings with a concentration of elements of Si≽ (7-8) at.%, Ti ≽ 22 at.% and Zr ⩽ 70 at.%.

  3. First principles calculations for interaction of tyrosine with (ZnO)3 cluster

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.

  4. First-principles simulation on Seebeck coefficient in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Nakamura, Koichi

    2017-06-01

    The Seebeck coefficients of silicon nanowires (SiNWs) were simulated on the basis of first-principles calculation using various atomistic structure models. The electronic band structures of fully hydrogen-terminated SiNW models give the correct image of quantum mechanical confinement from bulk silicon to SiNW for each axial direction, and the change in the density of states by dimensional reduction to SiNW enhances the thermoelectric performance in terms of the Seebeck coefficient, compared with those of bulk silicon and silicon nanosheets. The uniaxial tensile strain for the SiNW models does not strongly affect the Seebeck coefficient even for the SiNW system with giant piezoresistivity. In contrast, dangling bonds on a wire wall sharply reduce the Seebeck coefficient of SiNW and totally degrade thermoelectric performance from the viewpoint of the power factor. The exclusion of dangling bonds is a key element for the design and application of high-performance thermoelectric nanowires of semiconducting materials.

  5. Shot noise in parallel atomic wires from first principles

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan; Chen, Yu-Chang; di Ventra, Massimiliano

    2003-03-01

    We report first-principles calculations of shot noise in two parallel carbon atomic wires as a function of the wires separation and length. The calculations have been performed with a novel field-theoretic approach to calculate shot noise [1] in terms of the single-particle wavefunctions obtained with density-functional theory.[2] We find that current fluctuations are a non-linear function of the distance between the wires and can be suppressed at wires separations small compared to the independent-wire distance. We discuss these results in terms of the coherence effects between the wires and the interference effects at the contacts. Work supported in part by NSF, Carilion Biomedical Institute and ACS-Petroleum Research Fund. [1] Y.-C. Chen and M. Di Ventra, submitted. [2] N.D. Lang, Phys. Rev. B 52, 5335 (1995); M. Di Ventra and N.D. Lang, Phys. Rev. B 65, 045402 (2002); Z. Yang, A. Tackett and M. Di Ventra, Phys. Rev. B 66, 041405 (2002).

  6. Physical properties and scaling relations of molecular clouds: the effect of stellar feedback

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn; Agertz, Oscar; Renaud, Florent; Romeo, Alessandro B.

    2018-06-01

    Using hydrodynamical simulations of entire galactic discs similar to the Milky Way, reaching 4.6{ pc} resolution, we study the origins of observed physical properties of giant molecular clouds (GMCs). We find that efficient stellar feedback is a necessary ingredient in order to develop a realistic interstellar medium (ISM), leading to molecular cloud masses, sizes, velocity dispersions and virial parameters in excellent agreement with Milky Way observations. GMC scaling relations observed in the Milky Way, such as the mass-size (M-R), velocity dispersion-size (σ-R), and the σ-RΣ relations, are reproduced in a feedback driven ISM when observed in projection, with M∝R2.3 and σ∝R0.56. When analysed in 3D, GMC scaling relations steepen significantly, indicating potential limitations of our understanding of molecular cloud 3D structure from observations. Furthermore, we demonstrate how a GMC population's underlying distribution of virial parameters can strongly influence the scatter in derived scaling relations. Finally, we show that GMCs with nearly identical global properties exist in different evolutionary stages, where a majority of clouds being either gravitationally bound or expanding, but with a significant fraction being compressed by external ISM pressure, at all times.

  7. Transport and first-principles study of novel thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  8. Course-Level Implementation of First Principles, Goal Orientations, and Cognitive Engagement: A Multilevel Mediation Model

    ERIC Educational Resources Information Center

    Lee, Sunghye; Koszalka, Tiffany A.

    2016-01-01

    The First Principles of Instruction (FPI) represent ideologies found in most instructional design theories and models. Few attempts, however, have been made to empirically test the relationship of these FPI to instructional outcomes. This study addresses whether the degree to which FPI are implemented in courses makes a difference to student…

  9. First-principles determination of the Raman fingerprint of rhombohedral graphite

    NASA Astrophysics Data System (ADS)

    Torche, Abderrezak; Mauri, Francesco; Charlier, Jean-Christophe; Calandra, Matteo

    2017-09-01

    Multilayer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to 17 layers were tentatively attributed to ABC sequences although the Raman fingerprint of rhombohedral multilayer graphene is currently unknown and the 2D resonant Raman spectrum of Bernal graphite is not understood. We provide a first principles description of the 2D Raman peak in three and four layers graphene (all stackings) as well as in Bernal, rhombohedral, and an alternation of Bernal and rhombohedral graphite. We give practical prescriptions to identify long range sequences of ABC multilayer graphene. Our work is a prerequisite to experimental nondestructive identification and synthesis of rhombohedral graphite.

  10. Convergence acceleration of molecular dynamics methods for shocked materials using velocity scaling

    NASA Astrophysics Data System (ADS)

    Taylor, DeCarlos E.

    2017-03-01

    In this work, a convergence acceleration method applicable to extended system molecular dynamics techniques for shock simulations of materials is presented. The method uses velocity scaling to reduce the instantaneous value of the Rankine-Hugoniot conservation of energy constraint used in extended system molecular dynamics methods to more rapidly drive the system towards a converged Hugoniot state. When used in conjunction with the constant stress Hugoniostat method, the velocity scaled trajectories show faster convergence to the final Hugoniot state with little difference observed in the converged Hugoniot energy, pressure, volume and temperature. A derivation of the scale factor is presented and the performance of the technique is demonstrated using the boron carbide armour ceramic as a test material. It is shown that simulation of boron carbide Hugoniot states, from 5 to 20 GPa, using both a classical Tersoff potential and an ab initio density functional, are more rapidly convergent when the velocity scaling algorithm is applied. The accelerated convergence afforded by the current algorithm enables more rapid determination of Hugoniot states thus reducing the computational demand of such studies when using expensive ab initio or classical potentials.

  11. Pure spin current and phonon thermoelectric transport in a triangulene-based molecular junction.

    PubMed

    Wang, Qiang; Li, Jianwei; Nie, Yihang; Xu, Fuming; Yu, Yunjin; Wang, Bin

    2018-06-13

    The experimental synthesis and characterization of enigmatic triangulene were reported for the first time recently. Based on this enigmatic molecule, we proposed a triangulene-based molecular junction and presented first principles calculations to investigate the electron and phonon thermoelectric transport properties. Numerical results show that the spin polarized electric transport properties of the triangulene-based molecular junction can be adjusted effectively by bias voltage and gate voltage. Through varying the gate voltage applied on the triangulene molecule, the system can exhibit a perfect spin filter effect. When a temperature gradient is applied between the two leads, spin up current and spin down current flow along opposite directions in the system simultaneously. Thus pure spin current can be obtained on a large scale by changing the temperature, temperature gradient, and gate voltage. When the phonon vibration effect is considered in thermal transport, the figure of merit is suppressed distinctively especially when the temperature is within the 10 K < T < 100 K range. More importantly, a large spin figure of merit can be achieved accompanied by a small charge figure of merit by adjusting the temperature, gate voltage and chemical potential in a wide range, which indicates a favorable application prospect of the triangulene-based molecular junction as a spin calorigenic device.

  12. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    DOE PAGES

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; ...

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO 2|ZrO 2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results couldmore » serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.« less

  13. Liquid Iron Alloys with Hydrogen at Outer Core Conditions by First Principles

    NASA Astrophysics Data System (ADS)

    Umemoto, K.; Hirose, K.

    2015-12-01

    Since the density of the outer core deduced from seismic data is about 10% lower than that of pure iron at core pressures and temperatures (P-T), it is widely believed that the outer core includes one or more light elements. Although intensive experimental and theoretical studies have been performed so far, the light element in the core has not yet been identified. Comparison of the density and sound velocity of liquid iron alloys with observations, such as the PREM, is a promising way to determine the species and quantity of light alloying component(s) in the outer core. Here we report the results of a first-principles molecular dynamics study on liquid iron alloyed with hydrogen, one of candidates of the light elements. Hydrogen had been much less studied than other candidates. However, hydrogen has been known to reduce the melting temperature of Fe-H solid [1]. Furthermore, very recently, Nomura et al. argued that the outer core may include 24 at.% H in order to be molten under relatively low temperature (< 3600 K) [2]. Since then hydrogen has attracted strong interests. We clarify the effects of hydrogen on density and sound velocity of liquid iron alloys under outer core P-T conditions. It is shown that ~1 wt% hydrogen can reproduce PREM density and sound velocity simultaneously very well. In addition, we show the presence of hydrogen rather reduces Gruneisen parameters. It indicates that, if hydrogen exists in the outer core, temperature profile of the outer core could be changed considerably from one estimated so far. [1] Sakamaki, K., E. Takahashi, Y. Nakajima, Y. Nishihara, K. Funakoshi, T. Suzuki, and Y. Fukai, Phys. Earth Planet. Inter., 174, 192-201 (2009). [2] Nomura, R., K. Hirose, K. Uesugi, Y. Ohishi, A. Tsuchiyama, A. Miyake, and Y. Ueno, Science 31, 522-525 (2014).

  14. First-Principles DFT Studies of the Vibrational Properties of Germanene Nanoflakes

    NASA Astrophysics Data System (ADS)

    Richardson, Steven; Peroparde, Borja; Andrade, Xavier; Aspuru-Guzik, AláN.

    The germanium analogue of graphene, germanene, is a potentially new atomically thin quantum material which theory predicts will possess unique transport and optoelectronic properties. Recently, there have been a number of experimental efforts to successfully grow two-dimensional films of germanene on noble metal substrates using molecular beam epitaxy. In addition to this top-down approach of synthesizing large scale films of germanene, we would like to focus on a bottom-up approach where nanoflakes of germanene could be used as molecular seeds or precursors to grow large films of two-dimensional germanene. A knowledge of their infrared and Raman spectra will be critical for characterizing these germanene nanoflakes in future experiments. In this work we used density-functional theory (DFT) to compute the vibrational spectra of a selected number of lower order germanene nanoflakes (e.g. hexagermabenzene, germa-naphthalene, germa-anthracene, germa-phenanthrene, germa-pyrene, germa-tetracene, and germa-pentacene). Our DFT studies also reveal that these germanene nanoflakes are vibrationally stable with buckling of these molecules from their normal two-dimensional planar forms which exist in graphene nanoflakes. This research is supported by NSF Grant No. DMR-1231319.

  15. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  16. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    NASA Astrophysics Data System (ADS)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  17. Accurate line intensities of methane from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Nikitin, Andrei V.; Rey, Michael; Tyuterev, Vladimir G.

    2017-10-01

    In this work, we report first-principle theoretical predictions of methane spectral line intensities that are competitive with (and complementary to) the best laboratory measurements. A detailed comparison with the most accurate data shows that discrepancies in integrated polyad intensities are in the range of 0.4%-2.3%. This corresponds to estimations of the best available accuracy in laboratory Fourier Transform spectra measurements for this quantity. For relatively isolated strong lines the individual intensity deviations are in the same range. A comparison with the most precise laser measurements of the multiplet intensities in the 2ν3 band gives an agreement within the experimental error margins (about 1%). This is achieved for the first time for five-atomic molecules. In the Supplementary Material we provide the lists of theoretical intensities at 269 K for over 5000 strongest transitions in the range below 6166 cm-1. The advantage of the described method is that this offers a possibility to generate fully assigned exhaustive line lists at various temperature conditions. Extensive calculations up to 12,000 cm-1 including high-T predictions will be made freely available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru) that contains ab initio born line lists and provides a user-friendly graphical interface for a fast simulation of the absorption cross-sections and radiance.

  18. Hierarchical Fragmentation in the Perseus Molecular Cloud: From the Cloud Scale to Protostellar Objects

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Myers, Philip C.; Dunham, Michael M.; Stephens, Ian W.; Sadavoy, Sarah I.; Zhang, Qizhou; Bourke, Tyler L.; Tobin, John J.; Lee, Katherine I.; Gutermuth, Robert A.; Offner, Stella S. R.

    2018-01-01

    We present a study of hierarchical structure in the Perseus molecular cloud, from the scale of the entire cloud (≳ 10 pc) to smaller clumps (∼1 pc), cores (∼0.05–0.1 pc), envelopes (∼300–3000 au), and protostellar objects (∼15 au). We use new observations from the Submillimeter Array (SMA) large project “Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES)” to probe the envelopes, and recent single-dish and interferometric observations from the literature for the remaining scales. This is the first study to analyze hierarchical structure over five scales in the same cloud complex. We compare the number of fragments with the number of Jeans masses in each scale to calculate the Jeans efficiency, or the ratio of observed to expected number of fragments. The velocity dispersion is assumed to arise either from purely thermal motions or from combined thermal and non-thermal motions inferred from observed spectral line widths. For each scale, thermal Jeans fragmentation predicts more fragments than observed, corresponding to inefficient thermal Jeans fragmentation. For the smallest scale, thermal plus non-thermal Jeans fragmentation also predicts too many protostellar objects. However, at each of the larger scales thermal plus non-thermal Jeans fragmentation predicts fewer than one fragment, corresponding to no fragmentation into envelopes, cores, and clumps. Over all scales, the results are inconsistent with complete Jeans fragmentation based on either thermal or thermal plus non-thermal motions. They are more nearly consistent with inefficient thermal Jeans fragmentation, where the thermal Jeans efficiency increases from the largest to the smallest scale.

  19. Multi-scale continuum modeling of biological processes: from molecular electro-diffusion to sub-cellular signaling transduction

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Kekenes-Huskey, P.; Hake, J. E.; Holst, M. J.; McCammon, J. A.; Michailova, A. P.

    2012-01-01

    This paper presents a brief review of multi-scale modeling at the molecular to cellular scale, with new results for heart muscle cells. A finite element-based simulation package (SMOL) was used to investigate the signaling transduction at molecular and sub-cellular scales (http://mccammon.ucsd.edu/smol/, http://FETK.org) by numerical solution of the time-dependent Smoluchowski equations and a reaction-diffusion system. At the molecular scale, SMOL has yielded experimentally validated estimates of the diffusion-limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using crystallographic structural data. The predicted rate constants exhibit increasingly delayed steady-state times, with increasing ionic strength, and demonstrate the role of an enzyme's electrostatic potential in influencing ligand binding. At the sub-cellular scale, an extension of SMOL solves a nonlinear, reaction-diffusion system describing Ca2+ ligand buffering and diffusion in experimentally derived rodent ventricular myocyte geometries. Results reveal the important role of mobile and stationary Ca2+ buffers, including Ca2+ indicator dye. We found that alterations in Ca2+-binding and dissociation rates of troponin C (TnC) and total TnC concentration modulate sub-cellular Ca2+ signals. The model predicts that reduced off-rate in the whole troponin complex (TnC, TnI, TnT) versus reconstructed thin filaments (Tn, Tm, actin) alters cytosolic Ca2+ dynamics under control conditions or in disease-linked TnC mutations. The ultimate goal of these studies is to develop scalable methods and theories for the integration of molecular-scale information into simulations of cellular-scale systems.

  20. Thermoelectric properties of bismuth telluride nanoplate thin films determined using combined infrared spectroscopy and first-principles calculation

    NASA Astrophysics Data System (ADS)

    Wada, Kodai; Tomita, Koji; Takashiri, Masayuki

    2018-06-01

    The thermoelectric properties of bismuth telluride (Bi2Te3) nanoplate thin films were estimated using combined infrared spectroscopy and first-principles calculation, followed by comparing the estimated properties with those obtained using the standard electrical probing method. Hexagonal single-crystalline Bi2Te3 nanoplates were first prepared using solvothermal synthesis, followed by preparing Bi2Te3 nanoplate thin films using the drop-casting technique. The nanoplates were joined by thermally annealing them at 250 °C in Ar (95%)–H2 (5%) gas (atmospheric pressure). The electronic transport properties were estimated by infrared spectroscopy using the Drude model, with the effective mass being determined from the band structure using first-principles calculations based on the density functional theory. The electrical conductivity and Seebeck coefficient obtained using the combined analysis were higher than those obtained using the standard electrical probing method, probably because the contact resistance between the nanoplates was excluded from the estimation procedure of the combined analysis method.