Science.gov

Sample records for scaling-up technique applied

  1. An efficient permeability scaling-up technique applied to the discretized flow equations

    SciTech Connect

    Urgelli, D.; Ding, Yu

    1997-08-01

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  2. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are

  3. Mechanochemistry applied to reformulation and scale-up production of Ethionamide: Salt selection and solubility enhancement.

    PubMed

    de Melo, Cristiane C; da Silva, Cecilia C P; Pereira, Carla C S S; Rosa, Paulo C P; Ellena, Javier

    2016-01-01

    Ethionamide (ETH), a Biopharmaceutics Classification System class II drug, is a second-line drug manufactured as an oral dosage form by Pfizer to treat tuberculosis. Since its discovery in 1956, only one reformulation was proposed in 2005 as part of the efforts to improve its solubility. Due to the limited scientific research on active pharmaceutical ingredients (APIs) for the treatment of neglected diseases, we focused on the development of an approachable and green supramolecular synthesis protocol for the production of novel solid forms of ETH. Initially, three salts were crystal engineered and supramolecular synthesized via slow evaporation of the solvent: a saccharinate, a maleate and an oxalate. The crystal structures of all salts were determined by single crystal X-ray diffraction. In sequence, mechanochemical protocols for them were developed, being the scale-up production of the maleate salt successfully reproducible and confirmed by powder X-ray diffraction. Finally, a more complete solid-state characterization was carried out for the ETH maleate salt, including thermal analysis, infrared spectroscopy, scanning electron microscopy and equilibrium solubility at different dissolution media. Although ETH maleate is thermodynamically less stable than ETH, the equilibrium solubility results revealed that this novel salt is much more soluble in purified water than ETH, thus being a suitable new candidate for future formulations. PMID:26472469

  4. Applying a framework for assessing the health system challenges to scaling up mHealth in South Africa

    PubMed Central

    2012-01-01

    Background Mobile phone technology has demonstrated the potential to improve health service delivery, but there is little guidance to inform decisions about acquiring and implementing mHealth technology at scale in health systems. Using the case of community-based health services (CBS) in South Africa, we apply a framework to appraise the opportunities and challenges to effective implementation of mHealth at scale in health systems. Methods A qualitative study reviewed the benefits and challenges of mHealth in community-based services in South Africa, through a combination of key informant interviews, site visits to local projects and document reviews. Using a framework adapted from three approaches to reviewing sustainable information and communication technology (ICT), the lessons from local experience and elsewhere formed the basis of a wider consideration of scale up challenges in South Africa. Results Four key system dimensions were identified and assessed: government stewardship and the organisational, technological and financial systems. In South Africa, the opportunities for successful implementation of mHealth include the high prevalence of mobile phones, a supportive policy environment for eHealth, successful use of mHealth for CBS in a number of projects and a well-developed ICT industry. However there are weaknesses in other key health systems areas such as organisational culture and capacity for using health information for management, and the poor availability and use of ICT in primary health care. The technological challenges include the complexity of ensuring interoperability and integration of information systems and securing privacy of information. Finally, there are the challenges of sustainable financing required for large scale use of mobile phone technology in resource limited settings. Conclusion Against a background of a health system with a weak ICT environment and limited implementation capacity, it remains uncertain that the potential

  5. Scale effects: HCMM data simulation. Usage of filtering techniques for scaling-up simulations

    NASA Technical Reports Server (NTRS)

    Digennaro, V. (Principal Investigator)

    1980-01-01

    Image reduction used to simulate increase in altitude of an acquisition platform is equivalent to data smoothing, and can be achieved either by neighborhood averaging or by filtering techniques. The averaging approach is limited for accurate simulation. A filtering method is described which was based on the hypothesis that all changes due to altitude increase can be represented by a point spread function. Determination of the scale function and factor are discussed as well as implementation of the filtering. Filtering can be either in the spatial or frequency domain. In the spatial domain, filtering consists of the convolution of the image with the weights mask, and then of the declination of the points according to the appropriates scale factor. A simulation of an aircraft day image in the infrared channel is examined.

  6. Scaling up Psycholinguistics

    ERIC Educational Resources Information Center

    Smith, Nathaniel J.

    2011-01-01

    This dissertation contains several projects, each addressing different questions with different techniques. In chapter 1, I argue that they are unified thematically by their goal of "scaling up psycholinguistics"; they are all aimed at analyzing large data-sets using tools that reveal patterns to propose and test mechanism-neutral hypotheses about…

  7. Novel technique for scaling up of micropropagated Ruta graveolens shoots using liquid culture systems: a step towards commercialization.

    PubMed

    Diwan, Renuka; Malpathak, Nutan

    2008-06-01

    Wide applications of Ruta graveolens L. in pharmaceutical industry has led to increased interest in large-scale plant production, with emphasis on use of in vitro cultures. Earlier reports describe use of in vitro germinated seedlings for raising shoot cultures and not regeneration. There is only a single regeneration protocol of R. graveolens; however, it employs conventional labour intensive techniques deterring automation. The aim of present investigation was to establish a cost effective protocol for large-scale plant production. We report for the first time a one-step protocol with improved regeneration efficiency for multiple shoots induction employing liquid culture systems. Effect of polyamines (putrescine and spermine) on growth and furanocoumarin was studied. Addition of spermine enhanced the number of multiple shoots formed (2.5-fold) and reduced the time taken by half. Spermine addition resulted in 1.47-fold in furanocoumarin production. The selected shoot line, RS2 was successfully scaled up to 5L in culture vessels, with 1.53-fold increase in biomass without affecting the productivity of these cultures. This proves to be a commercially feasible alternative to bioreactors for large-scale biomass and furanocoumarin production.

  8. Evaluating of scale-up methodologies of gas-solid spouted beds for coating TRISO nuclear fuel particles using advanced measurement techniques

    NASA Astrophysics Data System (ADS)

    Ali, Neven Y.

    The work focuses on implementing for the first time advanced non-invasive measurement techniques to evaluate the scale-up methodology of gas-solid spouted beds for hydrodynamics similarity that has been reported in the literature based on matching dimensionless groups and the new mechanistic scale up methodology that has been developed in our laboratory based on matching the radial profile of gas holdup since the gas dynamics dictate the hydrodynamics of the gas-solid spouted beds. These techniques are gamma-ray computed tomography (CT) to measure the cross-sectional distribution of the phases' holdups and their radial profiles along the bed height and radioactive particle tracking (RPT) to measure in three-dimension (3D) solids velocity and their turbulent parameters. The measured local parameters and the analysis of the results obtained in this work validate our new methodology of scale up of gas-solid spouted beds by comparing for the similarity the phases' holdups and the dimensionless solids velocities and their turbulent parameters that are non-dimensionalized using the minimum spouting superficial gas velocity. However, the scale-up methodology of gas-solid spouted beds that is based on matching dimensionless groups has not been validated for hydrodynamics similarity with respect to the local parameters such as phases' holdups and dimensionless solids velocities and their turbulent parameters. Unfortunately, this method was validated in the literature by only measuring the global parameters. Thus, this work confirms that validation of the scale-up methods of gas-solid spouted beds for hydrodynamics similarity should reside on measuring and analyzing the local hydrodynamics parameters.

  9. Scaling up as Catachresis

    ERIC Educational Resources Information Center

    Tobin, Joseph

    2005-01-01

    The metaphor of scaling up is the wrong one to use for describing and prescribing educational change. Many of the strategies being employed to achieve scaling up are counter-productive: they conceive of practitioners as delivery agents or consumers, rather than as co-constructors of change. An approach to educational innovation based on the…

  10. Applied ALARA techniques

    SciTech Connect

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  11. Scaling up Education Reform

    ERIC Educational Resources Information Center

    Gaffney, Jon D. H.; Richards, Evan; Kustusch, Mary Bridget; Ding, Lin; Beichner, Robert J.

    2008-01-01

    The SCALE-UP (Student-Centered Activities for Large Enrollment for Undergraduate Programs) project was developed to implement reforms designed for small classes into large physics classes. Over 50 schools across the country, ranging from Wake Technical Community College to Massachusetts Institute of Technology (MIT), have adopted it for classes of…

  12. A qualitative exploration of the human resource policy implications of voluntary counselling and testing scale-up in Kenya: applying a model for policy analysis

    PubMed Central

    2011-01-01

    Background Kenya experienced rapid scale up of HIV testing and counselling services in government health services from 2001. We set out to examine the human resource policy implications of scaling up HIV testing and counselling in Kenya and to analyse the resultant policy against a recognised theoretical framework of health policy reform (policy analysis triangle). Methods Qualitative methods were used to gain in-depth insights from policy makers who shaped scale up. This included 22 in-depth interviews with Voluntary Counselling and Testing (VCT) task force members, critical analysis of 53 sets of minutes and diary notes. We explore points of consensus and conflict amongst policymakers in Kenya and analyse this content to assess who favoured and resisted new policies, how scale up was achieved and the importance of the local context in which scale up occurred. Results The scale up of VCT in Kenya had a number of human resource policy implications resulting from the introduction of lay counsellors and their authorisation to conduct rapid HIV testing using newly introduced rapid testing technologies. Our findings indicate that three key groups of actors were critical: laboratory professionals, counselling associations and the Ministry of Health. Strategic alliances between donors, NGOs and these three key groups underpinned the process. The process of reaching consensus required compromise and time commitment but was critical to a unified nationwide approach. Policies around quality assurance were integral in ensuring standardisation of content and approach. Conclusion The introduction and scale up of new health service initiatives such as HIV voluntary counselling and testing necessitates changes to existing health systems and modification of entrenched interests around professional counselling and laboratory testing. Our methodological approach enabled exploration of complexities of scale up of HIV testing and counselling in Kenya. We argue that a better

  13. Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques.

    PubMed

    van 't Hoff, Marcel; Reuter, Marcel; Dryden, David T F; Oheim, Martin

    2009-09-21

    Bacteriophage lambda-DNA molecules are frequently used as a scaffold to characterize the action of single proteins unwinding, translocating, digesting or repairing DNA. However, scaling up such single-DNA-molecule experiments under identical conditions to attain statistically relevant sample sizes remains challenging. Additionally the movies obtained are frequently noisy and difficult to analyse with any precision. We address these two problems here using, firstly, a novel variable-angle total internal reflection fluorescence (VA-TIRF) reflector composed of a minimal set of optical reflective elements, and secondly, using single value decomposition (SVD) to improve the signal-to-noise ratio prior to analysing time-lapse image stacks. As an example, we visualize under identical optical conditions hundreds of surface-tethered single lambda-DNA molecules, stained with the intercalating dye YOYO-1 iodide, and stretched out in a microcapillary flow. Another novelty of our approach is that we arrange on a mechanically driven stage several capillaries containing saline, calibration buffer and lambda-DNA, respectively, thus extending the approach to high-content, high-throughput screening of single molecules. Our length measurements of individual DNA molecules from noise-reduced kymograph images using SVD display a 6-fold enhanced precision compared to raw-data analysis, reaching approximately 1 kbp resolution. Combining these two methods, our approach provides a straightforward yet powerful way of collecting statistically relevant amounts of data in a semi-automated manner. We believe that our conceptually simple technique should be of interest for a broader range of single-molecule studies, well beyond the specific example of lambda-DNA shown here.

  14. Scale up of large ALON windows

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Balasubramanian, Sreeram; Kashalikar, Uday; Foti, Robyn; Sastri, Suri

    2013-06-01

    Aluminum Oxynitride (ALON® Optical Ceramic) combines broadband transparency with excellent mechanical properties. ALON's cubic structure means that it is transparent in its polycrystalline form, allowing it to be manufactured by conventional powder processing techniques. Surmet has established a robust manufacturing process, beginning with synthesis of ALON® powder, continuing through forming/heat treatment of blanks, and ending with optical fabrication of ALON® windows. Surmet has made significant progress in our production capability in recent years. Additional scale up of Surmet's manufacturing capability, for larger sizes and higher quantities, is currently underway. ALON® transparent armor represents the state of the art in protection against armor piercing threats, offering a factor of two in weight and thickness savings over conventional glass laminates. Tiled and monolithic windows have been successfully produced and tested against a range of threats. Large ALON® window are also of interest to a range of visible to Mid-Wave Infra-Red (MWIR) sensor applications. These applications often have stressing imaging requirements which in turn require that these large windows have optical characteristics including excellent homogeneity of index of refraction and very low stress birefringence. Surmet is currently scaling up its production facility to be able to make and deliver ALON® monolithic windows as large as ~19x36-in. Additionally, Surmet has plans to scale up to windows ~3ftx3ft in size in the coming years. Recent results with scale up and characterization of the resulting blanks will be presented.

  15. Video techniques applied to astrometry

    NASA Astrophysics Data System (ADS)

    Thuillot, W.; Arlot, J.-E.; Fettig, S.; Colas, F.

    1991-03-01

    This paper reports on the application of video techniques to the astrometry of fast-moving objects in the solar system. Various phenomena may be observed for astrometric purposes, and 2D photometry is well adapted for this. This paper describes the method used to acquire and analyze such observations and gives the first results obtained concerning two observations of mutual phenomena of the Galilean satellites of Jupiter which occurred during the last (1985) campaign of observations.

  16. Scaling up of renewable chemicals.

    PubMed

    Sanford, Karl; Chotani, Gopal; Danielson, Nathan; Zahn, James A

    2016-04-01

    The transition of promising technologies for production of renewable chemicals from a laboratory scale to commercial scale is often difficult and expensive. As a result the timeframe estimated for commercialization is typically underestimated resulting in much slower penetration of these promising new methods and products into the chemical industries. The theme of 'sugar is the next oil' connects biological, chemical, and thermochemical conversions of renewable feedstocks to products that are drop-in replacements for petroleum derived chemicals or are new to market chemicals/materials. The latter typically offer a functionality advantage and can command higher prices that result in less severe scale-up challenges. However, for drop-in replacements, price is of paramount importance and competitive capital and operating expenditures are a prerequisite for success. Hence, scale-up of relevant technologies must be interfaced with effective and efficient management of both cell and steel factories. Details involved in all aspects of manufacturing, such as utilities, sterility, product recovery and purification, regulatory requirements, and emissions must be managed successfully. PMID:26874264

  17. The SCALE-UP Project

    NASA Astrophysics Data System (ADS)

    Beichner, Robert

    2015-03-01

    The Student Centered Active Learning Environment with Upside-down Pedagogies (SCALE-UP) project was developed nearly 20 years ago as an economical way to provide collaborative, interactive instruction even for large enrollment classes. Nearly all research-based pedagogies have been designed with fairly high faculty-student ratios. The economics of introductory courses at large universities often precludes that situation, so SCALE-UP was created as a way to facilitate highly collaborative active learning with large numbers of students served by only a few faculty and assistants. It enables those students to learn and succeed not only in acquiring content, but also to practice important 21st century skills like problem solving, communication, and teamsmanship. The approach was initially targeted at undergraduate science and engineering students taking introductory physics courses in large enrollment sections. It has since expanded to multiple content areas, including chemistry, math, engineering, biology, business, nursing, and even the humanities. Class sizes range from 24 to over 600. Data collected from multiple sites around the world indicates highly successful implementation at more than 250 institutions. NSF support was critical for initial development and dissemination efforts. Generously supported by NSF (9752313, 9981107) and FIPSE (P116B971905, P116B000659).

  18. Scaling up of renewable chemicals.

    PubMed

    Sanford, Karl; Chotani, Gopal; Danielson, Nathan; Zahn, James A

    2016-04-01

    The transition of promising technologies for production of renewable chemicals from a laboratory scale to commercial scale is often difficult and expensive. As a result the timeframe estimated for commercialization is typically underestimated resulting in much slower penetration of these promising new methods and products into the chemical industries. The theme of 'sugar is the next oil' connects biological, chemical, and thermochemical conversions of renewable feedstocks to products that are drop-in replacements for petroleum derived chemicals or are new to market chemicals/materials. The latter typically offer a functionality advantage and can command higher prices that result in less severe scale-up challenges. However, for drop-in replacements, price is of paramount importance and competitive capital and operating expenditures are a prerequisite for success. Hence, scale-up of relevant technologies must be interfaced with effective and efficient management of both cell and steel factories. Details involved in all aspects of manufacturing, such as utilities, sterility, product recovery and purification, regulatory requirements, and emissions must be managed successfully.

  19. Wax deposition scale-up modeling for waxy crude production lines

    SciTech Connect

    Hsu, J.J.C.; Brubaker, J.P.

    1995-12-01

    A wax deposition scale-up model has been developed to scale-up laboratory wax deposition results for waxy crude production lines. The wax deposition model allows users to predict wax deposition profile along a cold pipeline and predict potential wax problems and pigging frequency. Consideration of the flow turbulence effect significantly increases prediction accuracy. Accurate wax deposition prediction should save capital and operation investments for waxy crude production systems. Many wax deposition models only apply a molecular diffusion mechanism in modeling and neglect shear effect. However, the flow turbulence effect has significant impact on wax deposition and can not be neglected in wax deposition modeling. Wax deposition scale-up parameters including shear rate, shear stress, and Reynolds number have been studied. None of these parameters can be used as a scaler. Critical wax tension concept has been proposed as a scaler. A technique to scale up shear effect and then wax deposition is described. For a given oil and oil temperature, the laboratory wax deposition data can be scaled up by heat flux and flow velocity. The scale-up techniques could be applied to multiphase flow conditions. Examples are presented in this paper to describe profiles of wax deposition and effective inside diameter along North Sea and West Africa subsea pipelines. The difference of wax deposition profiles from stock tank oil and live oil is also presented.

  20. Steamflood modeling and scale up in a hetrogeneous reservoir

    SciTech Connect

    Dehghani, K.; Basham, W.M.; Durlofsky, L.J.

    1996-12-31

    A study was undertaken to investigate the effects of different levels of reservoir description for modeling the steamflood process in Midway-Sunset 26C south. This reservoir is highly stratified and interbedded with fine scale heterogeneities. The study also included development of a methodology for coarsening very detailed geostatistically derived models so that the effects of fine scale heterogeneities on the steamflood performance prediction can be captured. porosity and permeability cubes with three different levels of detail in layering were generated geostatistically for a 30 acre area in the 26C south using data from 57 wells. Cross section models were extracted from these cubes in both dipping and non-dipping structures for steamflood simulations using field injection data and the results were compared.The most detailed models were coarsened by two methods. In the first method, the impermeable layers were retained and the permeable sands coarsened by averaging each 10 layers. In the second method the dominant flow paths in the cross section are identified and used to selectively scale up the reservoir properties, leaving detail in regions where required and coarsening in other regions. The results showed that the detailed geostatistical model gives a more accurate performance prediction than a coarse geostatistical model. The results also showed that the most accurate coarsened models were obtained by applying the general scale up technique.

  1. Steamflood modeling and scale up in a hetrogeneous reservoir

    SciTech Connect

    Dehghani, K.; Basham, W.M.; Durlofsky, L.J. )

    1996-01-01

    A study was undertaken to investigate the effects of different levels of reservoir description for modeling the steamflood process in Midway-Sunset 26C south. This reservoir is highly stratified and interbedded with fine scale heterogeneities. The study also included development of a methodology for coarsening very detailed geostatistically derived models so that the effects of fine scale heterogeneities on the steamflood performance prediction can be captured. porosity and permeability cubes with three different levels of detail in layering were generated geostatistically for a 30 acre area in the 26C south using data from 57 wells. Cross section models were extracted from these cubes in both dipping and non-dipping structures for steamflood simulations using field injection data and the results were compared.The most detailed models were coarsened by two methods. In the first method, the impermeable layers were retained and the permeable sands coarsened by averaging each 10 layers. In the second method the dominant flow paths in the cross section are identified and used to selectively scale up the reservoir properties, leaving detail in regions where required and coarsening in other regions. The results showed that the detailed geostatistical model gives a more accurate performance prediction than a coarse geostatistical model. The results also showed that the most accurate coarsened models were obtained by applying the general scale up technique.

  2. Application of a new scale up methodology to the simulation of displacement processes in heterogeneous reservoirs

    SciTech Connect

    Durlofsky, L.J.; Milliken, W.J.; Dehghani, K.; Jones, R.C.

    1994-12-31

    A general method for the scale up of highly detailed, heterogeneous reservoir cross sections is presented and applied to the simulation of several recovery processes in a variety of geologic settings. The scale up technique proceeds by first identifying portions of the fine scale reservoir description which could potentially lead to high fluid velocities, typically regions of connected, high permeability. These regions are then modeled in detail while the remainder of the domain is coarsened using a general numerical technique for the calculation of effective permeability. The overall scale up method is applied to the cross sectional simulation of three actual fields. Waterflood, steamflood and miscible flood recovery processes are considered. In all these cases, the scale up technique is shown to give coarsened reservoir descriptions which provide simulation results in very good agreement with those of the detailed reservoir descriptions. For these simulations, speedups in computation times, for the coarsened models relative to their fine grid counterparts, range from a factor of 10 to a factor of 200.

  3. Scaling up Effects in the Organic Laboratory

    ERIC Educational Resources Information Center

    Persson, Anna; Lindstrom, Ulf M.

    2004-01-01

    A simple and effective way of exposing chemistry students to some of the effects of scaling up an organic reaction is described. It gives the student an experience that may encounter in an industrial setting.

  4. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  5. Flash Diffusivity Technique Applied to Individual Fibers

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Yowell, Leonard; Wang, Hsin

    2007-01-01

    A variant of the flash diffusivity technique has been devised for determining the thermal diffusivities, and thus the thermal conductivities, of individual aligned fibers. The technique is intended especially for application to nanocomposite fibers, made from narrower fibers of polyphenylene benzobisthiazole (PBZT) and carbon nanotubes. These highly aligned nanocomposite fibers could exploit the high thermal conductivities of carbon nanotubes for thermal-management applications. In the flash diffusivity technique as practiced heretofore, one or more heat pulse(s) is (are) applied to the front face of a plate or disk material specimen and the resulting time-varying temperature on the rear face is measured. Usually, the heat pulse is generated by use of a xenon flash lamp, and the variation of temperature on the rear face is measured by use of an infrared detector. The flash energy is made large enough to produce a usefully high temperature rise on the rear face, but not so large as to significantly alter the specimen material. Once the measurement has been completed, the thermal diffusivity of the specimen is computed from the thickness of the specimen and the time dependence of the temperature variation on the rear face. Heretofore, the infrared detector used in the flash diffusivity technique has been a single-point detector, which responds to a spatial average of the thermal radiation from the rear specimen surface. Such a detector cannot distinguish among regions of differing diffusivity within the specimen. Moreover, two basic assumptions of the thermaldiffusivity technique as practiced heretofore are that the specimen is homogeneous and that heat flows one-dimensionally from the front to the rear face. These assumptions are not valid for an inhomogeneous (composite) material.

  6. Applying DIP techniques to microscopic biological images

    NASA Astrophysics Data System (ADS)

    de Albuquerque Araujo, Arnaldo; de Faria, Bernardo M.; Silva, Marco R.; dos Reis, Helton J.

    2001-05-01

    This work reports and illustrates the application of enhancement techniques to animal nervous system images from a Laser Scanning Confocal Microscope. Images obtained from this equipment are used to help researchers on localizing several organelles and proteins. Different image components of the same tissue sample can be acquired varying the confocal microscope laser beam wavelength. Due to non-ideal acquisition, numerous images contain artifacts, poor distribution of gray levels and unsystematic contrast gradient. Several techniques have been implemented in order to enhance the images, including noise and artifacts reduction, contrast expansion and enhancements on organelles borders, such as emboss and 3D-visualization. A methodology to accurately solve the frequent contrast gradient problem has been implemented. The approach is based on blurring filter, histogram equalization and arithmetic operations. Image coloring is another issue. Each of the acquired components must be merged into one single image with its respective color. The final phase of the work consisted of gathering all implemented techniques to elaborate an application that enclosed facilities to automatically open files from confocal file format (.pic format), apply the developed methodologies to enhance the images, build the multi-component artificial color image and save the results in common formats. This application must deal with large amounts of images easily, providing facilities to batch processing and image indexing and labeling.

  7. Characterization of Filtration Scale-Up Performance

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Luna, Maria L.; Cantrell, Kirk J.; Peterson, Reid A.; Bonebrake, Michael L.; Shimskey, Rick W.; Jagoda, Lynette K.

    2009-03-09

    The scale-up performance of sintered stainless steel crossflow filter elements planned for use at the Pretreatment Engineering Platform (PEP) and at the Waste Treatment and Immobilization Plant (WTP) were characterized in partial fulfillment (see Table S.1) of the requirements of Test Plan TP RPP WTP 509. This test report details the results of experimental activities related only to filter scale-up characterization. These tests were performed under the Simulant Testing Program supporting Phase 1 of the demonstration of the pretreatment leaching processes at PEP. Pacific Northwest National Laboratory (PNNL) conducted the tests discussed herein for Bechtel National, Inc. (BNI) to address the data needs of Test Specification 24590-WTP-TSP-RT-07-004. Scale-up characterization tests employ high-level waste (HLW) simulants developed under the Test Plan TP-RPP-WTP-469. The experimental activities outlined in TP-RPP-WTP-509 examined specific processes from two broad areas of simulant behavior: 1) leaching performance of the boehmite simulant as a function of suspending phase chemistry and 2) filtration performance of the blended simulant with respect to filter scale-up and fouling. With regard to leaching behavior, the effect of anions on the kinetics of boehmite leaching was examined. Two experiments were conducted: 1) one examined the effect of the aluminate anion on the rate of boehmite dissolution and 2) another determined the effect of secondary anions typical of Hanford tank wastes on the rate of boehmite dissolution. Both experiments provide insight into how compositional variations in the suspending phase impact the effectiveness of the leaching processes. In addition, the aluminate anion studies provide information on the consequences of gibbsite in waste. The latter derives from the expected fast dissolution of gibbsite relative to boehmite. This test report concerns only results of the filtration performance with respect to scale-up. Test results for boehmite

  8. "Scaling Up" Good Practices in Girls' Education

    ERIC Educational Resources Information Center

    Subrahmanian, Ramya

    2005-01-01

    This publication focuses on strategies for meeting international targets and national goals for universalizing girls' access to, retention in and completion of quality education. This will be done through "scaling up" successful interventions, or components of interventions that can be replicated. UNESCO published this book within the framework of…

  9. Lessons Learned on "Scaling Up" of Projects

    ERIC Educational Resources Information Center

    Viadero, Debra

    2007-01-01

    Having developed a technology-based teaching unit on weather that appeared to work well for middle school students, Nancy Butler Songer and her colleagues at the University of Michigan decided in the late 1990s to take the next logical step in their research program: They scaled up. This article discusses lessons learned by several faculty…

  10. Magnetic Analysis Techniques Applied to Desert Varnish

    NASA Technical Reports Server (NTRS)

    Schmidgall, E. R.; Moskowitz, B. M.; Dahlberg, E. D.; Kuhlman, K. R.

    2003-01-01

    Desert varnish is a black or reddish coating commonly found on rock samples from arid regions. Typically, the coating is very thin, less than half a millimeter thick. Previous research has shown that the primary components of desert varnish are silicon oxide clay minerals (60%), manganese and iron oxides (20-30%), and trace amounts of other compounds [1]. Desert varnish is thought to originate when windborne particles containing iron and manganese oxides are deposited onto rock surfaces where manganese oxidizing bacteria concentrate the manganese and form the varnish [4,5]. If desert varnish is indeed biogenic, then the presence of desert varnish on rock surfaces could serve as a biomarker, indicating the presence of microorganisms. This idea has considerable appeal, especially for Martian exploration [6]. Magnetic analysis techniques have not been extensively applied to desert varnish. The only previous magnetic study reported that based on room temperature demagnetization experiments, there were noticeable differences in magnetic properties between a sample of desert varnish and the substrate sandstone [7]. Based upon the results of the demagnetization experiments, the authors concluded that the primary magnetic component of desert varnish was either magnetite (Fe3O4) or maghemite ( Fe2O3).

  11. Scaling up: Distributed machine learning with cooperation

    SciTech Connect

    Provost, F.J.; Hennessy, D.N.

    1996-12-31

    Machine-learning methods are becoming increasingly popular for automated data analysis. However, standard methods do not scale up to massive scientific and business data sets without expensive hardware. This paper investigates a practical alternative for scaling up: the use of distributed processing to take advantage of the often dormant PCs and workstations available on local networks. Each workstation runs a common rule-learning program on a subset of the data. We first show that for commonly used rule-evaluation criteria, a simple form of cooperation can guarantee that a rule will look good to the set of cooperating learners if and only if it would look good to a single learner operating with the entire data set. We then show how such a system can further capitalize on different perspectives by sharing learned knowledge for significant reduction in search effort. We demonstrate the power of the method by learning from a massive data set taken from the domain of cellular fraud detection. Finally, we provide an overview of other methods for scaling up machine learning.

  12. The projected effect of scaling up midwifery.

    PubMed

    Homer, Caroline S E; Friberg, Ingrid K; Dias, Marcos Augusto Bastos; ten Hoope-Bender, Petra; Sandall, Jane; Speciale, Anna Maria; Bartlett, Linda A

    2014-09-20

    We used the Lives Saved Tool (LiST) to estimate deaths averted if midwifery was scaled up in 78 countries classified into three tertiles using the Human Development Index (HDI). We selected interventions in LiST to encompass the scope of midwifery practice, including prepregnancy, antenatal, labour, birth, and post-partum care, and family planning. Modest (10%), substantial (25%), or universal (95%) scale-up scenarios from present baseline levels were all found to reduce maternal deaths, stillbirths, and neonatal deaths by 2025 in all countries tested. With universal coverage of midwifery interventions for maternal and newborn health, excluding family planning, for the countries with the lowest HDI, 61% of all maternal, fetal, and neonatal deaths could be prevented. Family planning alone could prevent 57% of all deaths because of reduced fertility and fewer pregnancies. Midwifery with both family planning and interventions for maternal and newborn health could avert a total of 83% of all maternal deaths, stillbirths, and neonatal deaths. The inclusion of specialist care in the scenarios resulted in an increased number of deaths being prevented, meaning that midwifery care has the greatest effect when provided within a functional health system with effective referral and transfer mechanisms to specialist care. PMID:24965814

  13. The projected effect of scaling up midwifery.

    PubMed

    Homer, Caroline S E; Friberg, Ingrid K; Dias, Marcos Augusto Bastos; ten Hoope-Bender, Petra; Sandall, Jane; Speciale, Anna Maria; Bartlett, Linda A

    2014-09-20

    We used the Lives Saved Tool (LiST) to estimate deaths averted if midwifery was scaled up in 78 countries classified into three tertiles using the Human Development Index (HDI). We selected interventions in LiST to encompass the scope of midwifery practice, including prepregnancy, antenatal, labour, birth, and post-partum care, and family planning. Modest (10%), substantial (25%), or universal (95%) scale-up scenarios from present baseline levels were all found to reduce maternal deaths, stillbirths, and neonatal deaths by 2025 in all countries tested. With universal coverage of midwifery interventions for maternal and newborn health, excluding family planning, for the countries with the lowest HDI, 61% of all maternal, fetal, and neonatal deaths could be prevented. Family planning alone could prevent 57% of all deaths because of reduced fertility and fewer pregnancies. Midwifery with both family planning and interventions for maternal and newborn health could avert a total of 83% of all maternal deaths, stillbirths, and neonatal deaths. The inclusion of specialist care in the scenarios resulted in an increased number of deaths being prevented, meaning that midwifery care has the greatest effect when provided within a functional health system with effective referral and transfer mechanisms to specialist care.

  14. Applying Mixed Methods Techniques in Strategic Planning

    ERIC Educational Resources Information Center

    Voorhees, Richard A.

    2008-01-01

    In its most basic form, strategic planning is a process of anticipating change, identifying new opportunities, and executing strategy. The use of mixed methods, blending quantitative and qualitative analytical techniques and data, in the process of assembling a strategic plan can help to ensure a successful outcome. In this article, the author…

  15. Neural networks techniques applied to reservoir engineering

    SciTech Connect

    Flores, M.; Barragan, C.

    1995-12-31

    Neural Networks are considered the greatest technological advance since the transistor. They are expected to be a common household item by the year 2000. An attempt to apply Neural Networks to an important geothermal problem has been made, predictions on the well production and well completion during drilling in a geothermal field. This was done in Los Humeros geothermal field, using two common types of Neural Network models, available in commercial software. Results show the learning capacity of the developed model, and its precision in the predictions that were made.

  16. Scale up of flow in porous media

    SciTech Connect

    An, L.; Glimm, J.; Zhang, Q.; Zhang, Q.

    1995-09-01

    The authors study the scale up problem for flow in porous media. The general nature of this problem is outlined, leading to a discussion of assumptions on random fields appropriate for the description of geological heterogeneities. The main point of this paper is to use direct numerical simulation to evaluate the ensemble averages describing fluid dispersion, for flow in porous media. The relation between ensemble dispersion and single realization dispersion is discussed in the case of linear transport, and the role of plume or channel width is also explored. Finally, they consider nonlinear transport, and contrast dispersive to hyperbolic renormalization of the flow equations. For the geological and fluid parameters considered here, the hyperbolic renormalization is trivial, indicating that dispersive renormalization is appropriate in these cases. Further study of the ideas explored in this paper will be required for a proper understanding of their role in a more complete theory which the authors hope will follow.

  17. Scaling Up Decision Theoretic Planning to Planetary Rover Problems

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Dearden, Richard; Washington, Rich

    2004-01-01

    Because of communication limits, planetary rovers must operate autonomously during consequent durations. The ability to plan under uncertainty is one of the main components of autonomy. Previous approaches to planning under uncertainty in NASA applications are not able to address the challenges of future missions, because of several apparent limits. On another side, decision theory provides a solid principle framework for reasoning about uncertainty and rewards. Unfortunately, there are several obstacles to a direct application of decision-theoretic techniques to the rover domain. This paper focuses on the issues of structure and concurrency, and continuous state variables. We describes two techniques currently under development that address specifically these issues and allow scaling-up decision theoretic solution techniques to planetary rover planning problems involving a small number of goals.

  18. Applying knowledge compilation techniques to model-based reasoning

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    Researchers in the area of knowledge compilation are developing general purpose techniques for improving the efficiency of knowledge-based systems. In this article, an attempt is made to define knowledge compilation, to characterize several classes of knowledge compilation techniques, and to illustrate how some of these techniques can be applied to improve the performance of model-based reasoning systems.

  19. A numerical investigation of the scale-up effects on flow, heat transfer, and kinetics processes of FCC units.

    SciTech Connect

    Chang, S. L.

    1998-08-25

    Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. Process development is generally very time consuming especially when a small pilot unit is being scaled-up to a large commercial unit because of the lack of information to aide in the design of scaled-up units. Such information can now be obtained by analysis based on the pilot scale measurements and computer simulation that includes controlling physics of the FCC system. A Computational fluid dynamic (CFD) code, ICRKFLO, has been developed at Argonne National Laboratory (ANL) and has been successfully applied to the simulation of catalytic petroleum cracking risers. It employs hybrid hydrodynamic-chemical kinetic coupling techniques, enabling the analysis of an FCC unit with complex chemical reaction sets containing tens or hundreds of subspecies. The code has been continuously validated based on pilot-scale experimental data. It is now being used to investigate the effects of scaled-up FCC units. Among FCC operating conditions, the feed injection conditions are found to have a strong impact on the product yields of scaled-up FCC units. The feed injection conditions appear to affect flow and heat transfer patterns and the interaction of hydrodynamics and cracking kinetics causes the product yields to change accordingly.

  20. Scale-up on electrokinetic remediation: Engineering and technological parameters.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; León, María J; Risco, Carolina; Rodrigo, Manuel A; Sáez, Cristina; Cañizares, Pablo

    2016-09-01

    This study analyses the effect of the scale-up of electrokinetic remediation (EKR) processes in natural soils. A procedure is proposed to prepare soils based on a compacting process to obtaining soils with similar moisture content and density to those found in real soils in the field. The soil used here was from a region with a high agrarian activity (Mora, Spain). The scale-up study was performed in two installations at different scales: a mock-up pilot scale (0.175m(3)) and a prototype with a scale that was very similar to a real application (16m(3)). The electrode configuration selected consisted of rows of graphite electrodes facing each other located in electrolyte wells. The discharge of 20mg of 2,4-dichlorophenoxyacetic acid [2,4-D] per kg of dry soil was treated by applying an electric potential gradient of 1Vcm(-1). An increase in scale was observed to directly influence the amount of energy supplied to the soil being treated. As a result, electroosmotic and electromigration flows and electric heating are more intense than in smaller-scale tests (24%, 1% and 25%, respectively respect to the values in prototype). In addition, possible leaks were evaluated by conducting a watertightness test and quantifying evaporation losses.

  1. Scale-up on electrokinetic remediation: Engineering and technological parameters.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; León, María J; Risco, Carolina; Rodrigo, Manuel A; Sáez, Cristina; Cañizares, Pablo

    2016-09-01

    This study analyses the effect of the scale-up of electrokinetic remediation (EKR) processes in natural soils. A procedure is proposed to prepare soils based on a compacting process to obtaining soils with similar moisture content and density to those found in real soils in the field. The soil used here was from a region with a high agrarian activity (Mora, Spain). The scale-up study was performed in two installations at different scales: a mock-up pilot scale (0.175m(3)) and a prototype with a scale that was very similar to a real application (16m(3)). The electrode configuration selected consisted of rows of graphite electrodes facing each other located in electrolyte wells. The discharge of 20mg of 2,4-dichlorophenoxyacetic acid [2,4-D] per kg of dry soil was treated by applying an electric potential gradient of 1Vcm(-1). An increase in scale was observed to directly influence the amount of energy supplied to the soil being treated. As a result, electroosmotic and electromigration flows and electric heating are more intense than in smaller-scale tests (24%, 1% and 25%, respectively respect to the values in prototype). In addition, possible leaks were evaluated by conducting a watertightness test and quantifying evaporation losses. PMID:27209275

  2. Scale-up of ecological experiments: Density variation in the mobile bivalve Macomona liliana

    USGS Publications Warehouse

    Schneider, D.C.; Walters, R.; Thrush, S.; Dayton, P.

    1997-01-01

    At present the problem of scaling up from controlled experiments (necessarily at a small spatial scale) to questions of regional or global importance is perhaps the most pressing issue in ecology. Most of the proposed techniques recommend iterative cycling between theory and experiment. We present a graphical technique that facilitates this cycling by allowing the scope of experiments, surveys, and natural history observations to be compared to the scope of models and theory. We apply the scope analysis to the problem of understanding the population dynamics of a bivalve exposed to environmental stress at the scale of a harbour. Previous lab and field experiments were found not to be 1:1 scale models of harbour-wide processes. Scope analysis allowed small scale experiments to be linked to larger scale surveys and to a spatially explicit model of population dynamics.

  3. GENOMIC AND PROTEOMIC TECHNIQUES APPLIED TO REPRODUCTIVE BIOLOGY

    EPA Science Inventory

    Genomic and proteomic techniques applied to reproductive biology
    John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Tria...

  4. Accounting for the cost of scaling-up health interventions.

    PubMed

    Johns, Benjamin; Baltussen, Rob

    2004-11-01

    Recent studies such as the Commission on Macroeconomics and Health have highlighted the need for expanding the coverage of services for HIV/AIDS, malaria, tuberculosis, immunisations and other diseases. In order for policy makers to plan for these changes, they need to analyse the change in costs when interventions are 'scaled-up' to cover greater percentages of the population. Previous studies suggest that applying current unit costs to an entire population can misconstrue the true costs of an intervention. This study presents the methodology used in WHO-CHOICE's generalised cost effectiveness analysis, which includes non-linear cost functions for health centres, transportation and supervision costs, as well as the presence of fixed costs of establishing a health infrastructure. Results show changing marginal costs as predicted by economic theory. PMID:15386683

  5. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  6. Understanding pathways for scaling up health services through the lens of complex adaptive systems.

    PubMed

    Paina, Ligia; Peters, David H

    2012-08-01

    Despite increased prominence and funding of global health initiatives, efforts to scale up health services in developing countries are falling short of the expectations of the Millennium Development Goals. Arguing that the dominant assumptions for scaling up are inadequate, we propose that interpreting change in health systems through the lens of complex adaptive systems (CAS) provides better models of pathways for scaling up. Based on an understanding of CAS behaviours, we describe how phenomena such as path dependence, feedback loops, scale-free networks, emergent behaviour and phase transitions can uncover relevant lessons for the design and implementation of health policy and programmes in the context of scaling up health services. The implications include paying more attention to local context, incentives and institutions, as well as anticipating certain types of unintended consequences that can undermine scaling up efforts, and developing and implementing programmes that engage key actors through transparent use of data for ongoing problem-solving and adaptation. We propose that future efforts to scale up should adapt and apply the models and methodologies which have been used in other fields that study CAS, yet are underused in public health. This can help policy makers, planners, implementers and researchers to explore different and innovative approaches for reaching populations in need with effective, equitable and efficient health services. The old assumptions have led to disappointed expectations about how to scale up health services, and offer little insight on how to scale up effective interventions in the future. The alternative perspectives offered by CAS may better reflect the complex and changing nature of health systems, and create new opportunities for understanding and scaling up health services.

  7. Understanding pathways for scaling up health services through the lens of complex adaptive systems.

    PubMed

    Paina, Ligia; Peters, David H

    2012-08-01

    Despite increased prominence and funding of global health initiatives, efforts to scale up health services in developing countries are falling short of the expectations of the Millennium Development Goals. Arguing that the dominant assumptions for scaling up are inadequate, we propose that interpreting change in health systems through the lens of complex adaptive systems (CAS) provides better models of pathways for scaling up. Based on an understanding of CAS behaviours, we describe how phenomena such as path dependence, feedback loops, scale-free networks, emergent behaviour and phase transitions can uncover relevant lessons for the design and implementation of health policy and programmes in the context of scaling up health services. The implications include paying more attention to local context, incentives and institutions, as well as anticipating certain types of unintended consequences that can undermine scaling up efforts, and developing and implementing programmes that engage key actors through transparent use of data for ongoing problem-solving and adaptation. We propose that future efforts to scale up should adapt and apply the models and methodologies which have been used in other fields that study CAS, yet are underused in public health. This can help policy makers, planners, implementers and researchers to explore different and innovative approaches for reaching populations in need with effective, equitable and efficient health services. The old assumptions have led to disappointed expectations about how to scale up health services, and offer little insight on how to scale up effective interventions in the future. The alternative perspectives offered by CAS may better reflect the complex and changing nature of health systems, and create new opportunities for understanding and scaling up health services. PMID:21821667

  8. Large-area, triple-junction a-Si alloy production scale-up

    SciTech Connect

    Oswald, R.; O'Dowd, J. . Thin Film Div.)

    1993-04-01

    This report describes Solarex's work to advance its photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance, and expand the Solarex commercial production capacity. Solarex will meet these objectives by improving the deposition and quality of the transport front contact; optimizing the laser patterning process; scaling up the semiconductor deposition process; improving the back-contact deposition; and scaling up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 1 portion of this subcontract, Solarex focused on scaling up components of the chemical vapor deposition system for deposition of the system contact, scaling up laser scribing techniques; triple-junction recipes for module production; and metal-oxide back contacts. The goal of these efforts is to adopt all portions of the manufacturing line to handle substrates larger than 0.37 m[sup 2].

  9. Scale-up of miscible flood processes

    SciTech Connect

    Orr, F.M. Jr.

    1992-05-01

    Results of a wide-ranging investigation of the scaling of the physical mechanisms of miscible floods are reported. Advanced techniques for analysis of crude oils are considered in Chapter 2. Application of supercritical fluid chromatography is demonstrated for characterization of crude oils for equation-of-state calculations of phase equilibrium. Results of measurements of crude oil and phase compositions by gas chromatography and mass spectrometry are also reported. The theory of development of miscibility is considered in detail in Chapter 3. The theory is extended to four components, and sample solutions for a variety of gas injection systems are presented. The analytical theory shows that miscibility can develop even though standard tie-line extension criteria developed for ternary systems are not satisfied. In addition, the theory includes the first analytical solutions for condensing/vaporizing gas drives. In Chapter 4, methods for simulation of viscous fingering are considered. The scaling of the growth of transition zones in linear viscous fingering is considered. In addition, extension of the models developed previously to three dimensions is described, as is the inclusion of effects of equilibrium phase behavior. In Chapter 5, the combined effects of capillary and gravity-driven crossflow are considered. The experimental results presented show that very high recovery can be achieved by gravity segregation when interfacial tensions are moderately low. We argue that such crossflow mechanisms are important in multicontact miscible floods in heterogeneous reservoirs. In addition, results of flow visualization experiments are presented that illustrate the interplay of crossflow driven by gravity with that driven by viscous forces.

  10. Applying Parallel Processing Techniques to Tether Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl

    1996-01-01

    The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.

  11. Scale Up in Education. Volume 1: Ideas in Principle

    ERIC Educational Resources Information Center

    Schneider, Barbara Ed.; McDonald, Sarah-Kathryn Ed.

    2006-01-01

    "Scale Up in Education, Volume 1: Ideas in Principle" examines the challenges of "scaling up" from a multidisciplinary perspective. It brings together contributions from disciplines that routinely take promising innovations to scale, including medicine, business, engineering, computing, and education. Together the contributors explore appropriate…

  12. Readiness for Change. Scaling-Up Brief. Number 3

    ERIC Educational Resources Information Center

    Fixsen, Dean L.; Blase, Karen A.; Horner, Rob; Sugai, George

    2009-01-01

    The purpose of this "Brief" is to define the variables a state or large district leadership team may wish to consider as they determine if they are "ready" to invest in the scaling-up of an innovation in education. As defined here, "scaling up" means that at least 60% of the students who could benefit from an innovation have access to that…

  13. Multisite Studies and Scaling up in Educational Research

    ERIC Educational Resources Information Center

    Harwell, Michael

    2012-01-01

    A scale-up study in education typically expands the sample of students, schools, districts, and/or practices or materials used in smaller studies in ways that build in heterogeneity. Yet surprisingly little is known about the factors that promote successful scaling up efforts in education, in large part due to the absence of empirically supported…

  14. Applying DEA Technique to Library Evaluation in Academic Research Libraries.

    ERIC Educational Resources Information Center

    Shim, Wonsik

    2003-01-01

    This study applied an analytical technique called Data Envelopment Analysis (DEA) to calculate the relative technical efficiency of 95 academic research libraries, all members of the Association of Research Libraries. DEA, with the proper model of library inputs and outputs, can reveal best practices in the peer groups, as well as the technical…

  15. Scaling up depot medroxyprogesterone acetate (DMPA): a systematic literature review illustrating the AIDED model

    PubMed Central

    2013-01-01

    Background Use of depot medroxyprogesterone acetate (DMPA), often known by the brand name Depo-Provera, has increased globally, particularly in multiple low- and middle-income countries (LMICs). As a reproductive health technology that has scaled up in diverse contexts, DMPA is an exemplar product innovation with which to illustrate the utility of the AIDED model for scaling up family health innovations. Methods We conducted a systematic review of the enabling factors and barriers to scaling up DMPA use in LMICs. We searched 11 electronic databases for academic literature published through January 2013 (n = 284 articles), and grey literature from major health organizations. We applied exclusion criteria to identify relevant articles from peer-reviewed (n = 10) and grey literature (n = 9), extracting data on scale up of DMPA in 13 countries. We then mapped the resulting factors to the five AIDED model components: ASSESS, INNOVATE, DEVELOP, ENGAGE, and DEVOLVE. Results The final sample of sources included studies representing variation in geographies and methodologies. We identified 15 enabling factors and 10 barriers to dissemination, diffusion, scale up, and/or sustainability of DMPA use. The greatest number of factors were mapped to the ASSESS, DEVELOP, and ENGAGE components. Conclusions Findings offer early empirical support for the AIDED model, and provide insights into scale up of DMPA that may be relevant for other family planning product innovations. PMID:23915274

  16. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  17. Applying data mining techniques to detect abnormal flight characteristics

    NASA Astrophysics Data System (ADS)

    Aslaner, H. E.; Unal, Cagri; Iyigun, Cem

    2016-05-01

    This paper targets to highlight flight safety issues by applying data mining techniques to recorded flight data and proactively detecting abnormalities in certain flight phases. For this purpose, a result oriented method is offered which facilitates the process of post flight data analysis. In the first part of the study, a common time period of flight is defined and critical flight parameters are selected to be analyzed. Then the similarities of the flight parameters in time series basis are calculated for each flight by using Dynamic Time Warping (DTW) method. In the second part, hierarchical clustering technique is applied to the aggregate data matrix which is comprised of all the flights to be studied in terms of similarities among chosen parameters. Consequently, proximity levels among flight phases are determined. In the final part, an algorithm is constructed to distinguish outliers from clusters and classify them as suspicious flights.

  18. Distributed machine learning: Scaling up with coarse-grained parallelism

    SciTech Connect

    Provost, F.J.; Hennessy, D.N.

    1994-12-31

    Machine teaming methods are becoming accepted as additions to the biologist`s data-analysis tool kit. However, scaling these techniques up to large data sets, such as those in biological and medical domains, is problematic in terms of both the required computational search effort and required memory (and the detrimental effects of excessive swapping). Our approach to tackling the problem of scaling up to large datasets is to take advantage of the ubiquitous workstation networks that are generally available in scientific and engineering environments. This paper introduces the notion of the invariant-partitioning property--that for certain evaluation criteria it is possible to partition a data set across multiple processors such that any rule that is satisfactory over the entire data set will also be satisfactory on at least one subset. In addition, by taking advantage of cooperation through interprocess communication, it is possible to build distributed learning algorithms such that only rules that are satisfactory over the entire data set will be learned. We describe a distributed learning system, CorPRL, that takes advantage of the invariant-partitioning property to learn from very large data sets, and present results demonstrating CorPRL`s effectiveness in analyzing data from two databases.

  19. A new scale-up approach for dispersive mixing in twin-screw compounding

    NASA Astrophysics Data System (ADS)

    Fukuda, Graeme; Bigio, David I.; Andersen, Paul; Wetzel, Mark

    2015-05-01

    Scale-up rules in polymer processing are critical in ensuring consistency in product quality and properties when transitioning from low volume laboratory mixing processes to high volume industrial compounding. The scale-up approach investigated in this study evaluates the processes with respect to dispersive mixing. Demand of polymer composites with solid additives, such as carbon microfibers and nanotubes, has become increasingly popular. Dispersive mixing breaks down particles that agglomerate, which is paramount in processing composites because solid additives tend to collect and clump. The amount of stress imparted on the material governs the degree of dispersive mixing. A methodology has been developed to characterize the Residence Stress Distribution (RSD) within a twin-screw extruder in real time through the use of polymeric stress beads. Through this technique, certain mixing scale-up rules can be analyzed. The following research investigated two different scale-up rules. The industry standard for mixing scale-up takes the ratio of outer diameters cubed to convert the volumetric flow rate from the smaller process to a flow rate appropriate in the larger machine. This procedure then resolves both operating conditions since shear rate remains constant. The second rule studied is based on percent drag flow, or the fraction of pumping potential, for different elements along the screw configuration. The percent drag flow rule aims to bring greater focus to operating conditions when scaling-up with respect to dispersive mixing. Through the use of the RSD methodology and a Design of Experiment (DOE) approach, rigorous statistical analysis was used to determine the validity between the scale-up rules of argument.

  20. Highly charged ion beam applied to lithography technique.

    PubMed

    Momota, Sadao; Nojiri, Yoichi; Taniguchi, Jun; Miyamoto, Iwao; Morita, Noboru; Kawasegi, Noritaka

    2008-02-01

    In various fields of nanotechnology, the importance of nanoscale three-dimensional (3D) structures is increasing. In order to develop an efficient process to fabricate nanoscale 3D structures, we have applied highly charged ion (HCI) beams to the ion-beam lithography (IBL) technique. Ar-ion beams with various charge states (1+ to 9+) were applied to fabricate spin on glass (SOG) and Si by means of the IBL technique. The Ar ions were prepared by a facility built at Kochi University of Technology, which includes an electron cyclotron resonance ion source (NANOGAN, 10 GHz). IBL fabrication was performed as a function of not only the charge state but also the energy and the dose of Ar ions. The present results show that the application of an Ar(9+) beam reduces the etching time for SOG and enhances the etching depth compared with those observed with Ar ions in lower charged states. Considering the high-energy deposition of HCI at a surface, the former phenomena can be understood consistently. Also, the latter phenomena can be understood based on anomalously deep structural changes, which are remarkable for glasses. Furthermore, it has also been shown that the etching depth can be easily controlled with the kinetic energy of the Ar ions. These results show the possibilities of the IBL technique with HCI beams in the field of nanoscale 3D fabrication. PMID:18315242

  1. A quality by design approach to scale-up of high-shear wet granulation process.

    PubMed

    Pandey, Preetanshu; Badawy, Sherif

    2016-01-01

    High-shear wet granulation is a complex process that in turn makes scale-up a challenging task. Scale-up of high-shear wet granulation process has been studied extensively in the past with various different methodologies being proposed in the literature. This review article discusses existing scale-up principles and categorizes the various approaches into two main scale-up strategies - parameter-based and attribute-based. With the advent of quality by design (QbD) principle in drug product development process, an increased emphasis toward the latter approach may be needed to ensure product robustness. In practice, a combination of both scale-up strategies is often utilized. In a QbD paradigm, there is also a need for an increased fundamental and mechanistic understanding of the process. This can be achieved either by increased experimentation that comes at higher costs, or by using modeling techniques, that are also discussed as part of this review. PMID:26489403

  2. Soil Moisture Estimation under Vegetation Applying Polarimetric Decomposition Techniques

    NASA Astrophysics Data System (ADS)

    Jagdhuber, T.; Schön, H.; Hajnsek, I.; Papathanassiou, K. P.

    2009-04-01

    Polarimetric decomposition techniques and inversion algorithms are developed and applied on the OPAQUE data set acquired in spring 2007 to investigate their potential and limitations for soil moisture estimation. A three component model-based decomposition is used together with an eigenvalue decomposition in a combined approach to invert for soil moisture over bare and vegetated soils at L-band. The applied approach indicates a feasible capability to invert soil moisture after decomposing volume and ground scattering components over agricultural land surfaces. But there are still deficiencies in modeling the volume disturbance. The results show a root mean square error below 8.5vol.-% for the winter crop fields (winter wheat, winter triticale and winter barley) and below 11.5Vol-% for the summer crop field (summer barley) whereas all fields have a distinct volume layer of 55-85cm height.

  3. Scaling up breastfeeding programmes in a complex adaptive world.

    PubMed

    Pérez-Escamilla, Rafael; Hall Moran, Victoria

    2016-07-01

    The 2016 Breastfeeding Lancet Series continues to provide unequivocal evidence regarding the numerous benefits that optimal breastfeeding practices offer to children and women worldwide and the major savings that improving these practices can have as a result of their major public health benefits. Unfortunately, this knowledge remains underutilized as there has been little progress scaling up effective breastfeeding programmes globally. Improving the uptake and scaling up of effective national breastfeeding programmes that are potent enough to improve exclusive breastfeeding duration should be a top priority for all countries. Complex analysis systems longitudinal research is needed to understand how best to empower decision makers to achieve this goal through well-validated participatory decision-making tools to help their countries assess baseline needs, including costs, as well as progress with their scaling-up efforts. Sound systems thinking frameworks and scaling-up models are now available to guide and research prospectively future scaling-up efforts that can be replicated, with proper adaptations, across countries. PMID:27161881

  4. Estimating Population Size Using the Network Scale Up Method

    PubMed Central

    Maltiel, Rachael; Raftery, Adrian E.; McCormick, Tyler H.; Baraff, Aaron J.

    2015-01-01

    We develop methods for estimating the size of hard-to-reach populations from data collected using network-based questions on standard surveys. Such data arise by asking respondents how many people they know in a specific group (e.g. people named Michael, intravenous drug users). The Network Scale up Method (NSUM) is a tool for producing population size estimates using these indirect measures of respondents’ networks. Killworth et al. (1998a,b) proposed maximum likelihood estimators of population size for a fixed effects model in which respondents’ degrees or personal network sizes are treated as fixed. We extend this by treating personal network sizes as random effects, yielding principled statements of uncertainty. This allows us to generalize the model to account for variation in people’s propensity to know people in particular subgroups (barrier effects), such as their tendency to know people like themselves, as well as their lack of awareness of or reluctance to acknowledge their contacts’ group memberships (transmission bias). NSUM estimates also suffer from recall bias, in which respondents tend to underestimate the number of members of larger groups that they know, and conversely for smaller groups. We propose a data-driven adjustment method to deal with this. Our methods perform well in simulation studies, generating improved estimates and calibrated uncertainty intervals, as well as in back estimates of real sample data. We apply them to data from a study of HIV/AIDS prevalence in Curitiba, Brazil. Our results show that when transmission bias is present, external information about its likely extent can greatly improve the estimates. The methods are implemented in the NSUM R package. PMID:26949438

  5. Scaling Up Impact on Nutrition: What Will It Take?1234

    PubMed Central

    Gillespie, Stuart; Menon, Purnima; Kennedy, Andrew L

    2015-01-01

    Despite consensus on actions to improve nutrition globally, less is known about how to operationalize the right mix of actions—nutrition-specific and nutrition-sensitive—equitably, at scale, in different contexts. This review draws on a large scaling-up literature search and 4 case studies of large-scale nutrition programs with proven impact to synthesize critical elements for impact at scale. Nine elements emerged as central: 1) having a clear vision or goal for impact; 2) intervention characteristics; 3) an enabling organizational context for scaling up; 4) establishing drivers such as catalysts, champions, systemwide ownership, and incentives; 5) choosing contextually relevant strategies and pathways for scaling up, 6) building operational and strategic capacities; 7) ensuring adequacy, stability, and flexibility of financing; 8) ensuring adequate governance structures and systems; and 9) embedding mechanisms for monitoring, learning, and accountability. Translating current political commitment to large-scale impact on nutrition will require robust attention to these elements. PMID:26178028

  6. Brazilian meningococcal C conjugate vaccine: Scaling up studies.

    PubMed

    Bastos, Renata Chagas; de Souza, Iaralice Medeiros; da Silva, Milton Neto; Silva, Flavia de Paiva; Figueira, Elza Scott; Leal, Maria de Lurdes; Jessouroun, Ellen; da Silva, José Godinho; Medronho, Ricardo de Andrade; da Silveira, Ivna Alana Freitas Brasileiro

    2015-08-20

    Several outbreaks caused by Neisseria meningitidis group C have been occurred in different regions of Brazil. A conjugate vaccine for Neisseria meningitidis was produced by chemical linkage between periodate-oxidized meningococcal C polysaccharide and hydrazide-activated monomeric tetanus toxoid via a modified reductive amination conjugation method. Vaccine safety and immunogenicity tested in Phase I and II trials showed satisfactory results. Before starting Phase III trials, vaccine production was scaled up to obtain industrial lots under Good Manufacture Practices (GMP). Comparative analysis between data obtained from industrial and pilot scales of the meningococcal C conjugate bulk showed similar execution times in the scaling up production process without significant losses or alterations in the quality attributes of purified compounds. In conclusion, scale up was considered satisfactory and the Brazilian meningococcal conjugate vaccine production aiming to perform Phase III trials is feasible.

  7. Hyperspectral-imaging-based techniques applied to wheat kernels characterization

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Cesare, Daniela; Bonifazi, Giuseppe

    2012-05-01

    Single kernels of durum wheat have been analyzed by hyperspectral imaging (HSI). Such an approach is based on the utilization of an integrated hardware and software architecture able to digitally capture and handle spectra as an image sequence, as they results along a pre-defined alignment on a surface sample properly energized. The study was addressed to investigate the possibility to apply HSI techniques for classification of different types of wheat kernels: vitreous, yellow berry and fusarium-damaged. Reflectance spectra of selected wheat kernels of the three typologies have been acquired by a laboratory device equipped with an HSI system working in near infrared field (1000-1700 nm). The hypercubes were analyzed applying principal component analysis (PCA) to reduce the high dimensionality of data and for selecting some effective wavelengths. Partial least squares discriminant analysis (PLS-DA) was applied for classification of the three wheat typologies. The study demonstrated that good classification results were obtained not only considering the entire investigated wavelength range, but also selecting only four optimal wavelengths (1104, 1384, 1454 and 1650 nm) out of 121. The developed procedures based on HSI can be utilized for quality control purposes or for the definition of innovative sorting logics of wheat.

  8. Optimisation of rosemary oil encapsulation in polycaprolactone and scale-up of the process.

    PubMed

    Ephrem, Elissa; Greige-Gerges, Hélène; Fessi, Hatem; Charcosset, Catherine

    2014-01-01

    Rosemary essential oil (REO) has many biological activities, such as antioxidant, anticarcinogenic, cognition-enhancing, analgesic and antimicrobial activities. The aim of this study was to prepare, at laboratory scale and larger scale, nanoencapsulating REO in order to reduce its volatilisation, light sensitivity and to enhance its water solubility. The nanoprecipitation method was applied to prepare polycaprolactone (PCL)-based nanocapsules loaded with REO at laboratory scale and then the optimal formulation obtained was scaled-up (×6) using the membrane contactor technique. The effect of several parameters, such as the evaporation method, the type of emulsifiers and the amount of the formulation products (PCL, REO, emulsifiers, etc.) on the REO-loaded nanocapsules properties (mean size, polydispersity index (PdI), zeta potential and REO loss) was evaluated at laboratory scale in order to obtain the optimal formulation. REO-loaded nanocapsules obtained from nanoprecipitation presented a nanometric mean size (220 ± 10 nm) with a PdI below 0.25, indicating an adequate homogeneity of the system, a negative zeta potential (-19.9 ± 4.6 mV) and a high encapsulation efficiency (∼99% for the major components). In addition, the membrane contactor technique gave similar results using an adequate pressure of the organic phase (0.8-1.2 bar). It is then suggested that the nanoprecipitation method can be suitable for the preparation of essential oil-loaded nanocapsules.

  9. Scale-Up Method for the Shock Compaction of Powders

    NASA Astrophysics Data System (ADS)

    Carton, E. P.; Stuivinga, M.

    2004-07-01

    Shock wave compaction in the cylindrical configuration lends itself to be scaled-up for small-scale industrial applications. While scaling up in the axial direction is easy, scaling up in the lateral direction is less straightforward and may lead to cracks in the center. A different scale up method is presented here; aluminum tubes are filled with the powder to be compacted and placed in a circle inside a large metal tube, with a metal shock wave reflector in the center. The space in between is filled with an inert powder medium: alumina, salt or sand. It is found that salt is the best medium for the integrity of the aluminum tube and for the ease of removal of the aluminum tube out of the (densified) powder medium. Experimental results of (slightly ellipsoidal) shock compacted tubes that are produced this way are shown as an example. In the case of B4C, after infiltration with the aluminum of the tube, fully dense cermet compacts without any cracks are thus produced, batch by batch.

  10. New tuberculosis technologies: challenges for retooling and scale-up.

    PubMed

    Pai, M; Palamountain, K M

    2012-10-01

    The availability of new tools does not mean that they will be adopted, used correctly, scaled up or have public health impact. Experience to date with new diagnostics suggests that many national tuberculosis programmes (NTPs) in high-burden countries are reluctant to adopt and scale up new tools, even when these are backed by evidence and global policy recommendations. We suggest that there are several common barriers to effective national adoption and scale-up of new technologies: global policy recommendations that do not provide sufficient information for scale-up, complex decision-making processes and weak political commitment at the country level, limited engagement of and support to NTP managers, high cost of tools and poor fit with user needs, unregulated markets and inadequate business models, limited capacity for laboratory strengthening and implementation research, and insufficient advocacy and donor support. Overcoming these barriers will require enhanced country-level advocacy, resources, technical assistance and political commitment. Some of the BRICS (Brazil, Russia, India, China, South Africa) countries are emerging as early adopters of policies and technologies, and are increasing their investments in TB control. They may provide the first opportunities to fully assess the public health impact of new tools. PMID:23107630

  11. Sustaining and Scaling up the Impact of Professional Development Programmes

    ERIC Educational Resources Information Center

    Zehetmeier, Stefan

    2015-01-01

    This paper deals with a crucial topic: which factors influence the sustainability and scale-up of a professional development programme's impact? Theoretical models and empirical findings from impact research (e.g. Zehetmeier and Krainer, "ZDM Int J Math" 43(6/7):875-887, 2011) and innovation research (e.g. Cobb and Smith,…

  12. New tuberculosis technologies: challenges for retooling and scale-up.

    PubMed

    Pai, M; Palamountain, K M

    2012-10-01

    The availability of new tools does not mean that they will be adopted, used correctly, scaled up or have public health impact. Experience to date with new diagnostics suggests that many national tuberculosis programmes (NTPs) in high-burden countries are reluctant to adopt and scale up new tools, even when these are backed by evidence and global policy recommendations. We suggest that there are several common barriers to effective national adoption and scale-up of new technologies: global policy recommendations that do not provide sufficient information for scale-up, complex decision-making processes and weak political commitment at the country level, limited engagement of and support to NTP managers, high cost of tools and poor fit with user needs, unregulated markets and inadequate business models, limited capacity for laboratory strengthening and implementation research, and insufficient advocacy and donor support. Overcoming these barriers will require enhanced country-level advocacy, resources, technical assistance and political commitment. Some of the BRICS (Brazil, Russia, India, China, South Africa) countries are emerging as early adopters of policies and technologies, and are increasing their investments in TB control. They may provide the first opportunities to fully assess the public health impact of new tools.

  13. Scaling-Up Successfully: Pathways to Replication for Educational NGOs

    ERIC Educational Resources Information Center

    Jowett, Alice; Dyer, Caroline

    2012-01-01

    Non-government organisations (NGOs) are big players in international development, critical to the achievement of the Millennium Development Goals (MDGs) and constantly under pressure to "achieve more". Scaling-up their initiatives successfully and sustainably can be an efficient and cost effective way for NGOs to increase their impact across a…

  14. Three collaborative models for scaling up evidence-based practices.

    PubMed

    Chamberlain, Patricia; Roberts, Rosemarie; Jones, Helen; Marsenich, Lynne; Sosna, Todd; Price, Joseph M

    2012-07-01

    The current paper describes three models of research-practice collaboration to scale-up evidence-based practices (EBP): (1) the Rolling Cohort model in England, (2) the Cascading Dissemination model in San Diego County, and (3) the Community Development Team model in 53 California and Ohio counties. Multidimensional Treatment Foster Care (MTFC) and KEEP are the focal evidence-based practices that are designed to improve outcomes for children and families in the child welfare, juvenile justice, and mental health systems. The three scale-up models each originated from collaboration between community partners and researchers with the shared goal of wide-spread implementation and sustainability of MTFC/KEEP. The three models were implemented in a variety of contexts; Rolling Cohort was implemented nationally, Cascading Dissemination was implemented within one county, and Community Development Team was targeted at the state level. The current paper presents an overview of the development of each model, the policy frameworks in which they are embedded, system challenges encountered during scale-up, and lessons learned. Common elements of successful scale-up efforts, barriers to success, factors relating to enduring practice relationships, and future research directions are discussed.

  15. Millions Learning: Scaling up Quality Education in Developing Countries

    ERIC Educational Resources Information Center

    Robinson, Jenny Perlman; Winthrop, Rebecca

    2016-01-01

    "Millions Learning: Scaling up Quality Education in Developing Countries" tells the story of where and how quality education has scaled in low- and middle-income countries. The story emerges from wide-ranging research on scaling and learning, including 14 in-depth case studies from around the globe. Ultimately, "Millions…

  16. Charter Operators Spell Out Barriers to "Scaling Up"

    ERIC Educational Resources Information Center

    Zehr, Mary Ann

    2011-01-01

    The pace at which the highest-performing charter-management organizations (CMOs) are "scaling up" is being determined largely by how rapidly they can develop and hire strong leaders and acquire physical space, and by the level of support they receive for growth from city or state policies, say leaders from some charter organizations viewed by…

  17. Extrapolation techniques applied to matrix methods in neutron diffusion problems

    NASA Technical Reports Server (NTRS)

    Mccready, Robert R

    1956-01-01

    A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.

  18. Applying machine learning techniques to DNA sequence analysis

    SciTech Connect

    Shavlik, J.W.

    1992-01-01

    We are developing a machine learning system that modifies existing knowledge about specific types of biological sequences. It does this by considering sample members and nonmembers of the sequence motif being learned. Using this information (which we call a domain theory''), our learning algorithm produces a more accurate representation of the knowledge needed to categorize future sequences. Specifically, the KBANN algorithm maps inference rules, such as consensus sequences, into a neural (connectionist) network. Neural network training techniques then use the training examples of refine these inference rules. We have been applying this approach to several problems in DNA sequence analysis and have also been extending the capabilities of our learning system along several dimensions.

  19. Collaborative Group Learning using the SCALE-UP Pedagogy

    NASA Astrophysics Data System (ADS)

    Feldman, Gerald

    2011-10-01

    The time-honored conventional lecture (``teaching by telling'') has been shown to be an ineffective mode of instruction for science classes. In these cases, where the enhancement of critical thinking skills and the development of problem-solving abilities are emphasized, collaborative group learning environments have proven to be far more effective. In addition, students naturally improve their teamwork skills through the close interaction they have with their group members. Early work on the Studio Physics model at Rensselaer Polytechnic Institute in the mid-1990's was extended to large classes via the SCALE-UP model pioneered at North Carolina State University a few years later. In SCALE-UP, students sit at large round tables in three groups of three --- in this configuration, they carry out a variety of pencil/paper exercises (ponderables) using small whiteboards and perform hands-on activities like demos and labs (tangibles) throughout the class period. They also work on computer simulations using a shared laptop for each group of three. Formal lecture is reduced to a minimal level and the instructor serves more as a ``coach'' to facilitate the academic ``drills'' that the students are working on. Since its inception in 1997, the SCALE-UP pedagogical approach has been adopted by over 100 institutions across the country and about 20 more around the world. In this talk, I will present an overview of the SCALE-UP concept and I will outline the details of its deployment at George Washington University over the past 4 years. I will also discuss empirical data from assessments given to the SCALE-UP collaborative classes and the regular lecture classes at GWU in order to make a comparative study of the effectiveness of the two methodologies.

  20. Scale up of a viscous fungal fermentation: application of scale-up criteria with regime analysis and operating boundary conditions.

    PubMed

    Pollard, D J; Kirschner, T F; Hunt, G R; Tong, I-T; Stieber, R; Salmon, P M

    2007-02-01

    The scale up of the novel, pharmaceutically important pneumocandin (B(0)), from the filamentous fungus Glarea lozoyensis was successfully completed from pilot scale (0.07, 0.8, and 19 m(3)) to production scale (57 m(3)). This was accomplished, despite dissimilar reactor geometry, employing a combination of scale-up criteria, process sensitivity studies, and regime analysis using characteristic time constants for both oxygen mass transfer and bulk mixing. Dissolved oxygen tension, separated from the influence of agitation by gas blending at the 0.07 m(3)-scale, had a marked influence on the concentrations of pneumocandin analogs with different levels of hydroxylation, and these concentrations were used as an indicator of bulk mixing upon scale up. The profound impact of dissolved oxygen tension (DOT) (low and high levels) on analog formation dictated the use of constant DOT, at 80% air saturation, as a scale-up criterion. As a result k(L)a, Oxygen uptake rate (OUR) and hence the OTR were held constant, which were effectively conserved across the scales, while the use of other criterion such as P(g)/V(L), or mixing time were less effective. Production scale (57 m(3)) mixing times were found to be faster than those at 19 m(3) due to a difference in liquid height/tank diameter ratio (H(L)/D(T)). Regime analysis at 19 and 57 m(3) for bulk mixing (t(c)) and oxygen transfer (1/k(L)a) showed that oxygen transfer was the rate-limiting step for this highly shear thinning fermentation, providing additional support for the choice of scale-up criterion.

  1. Overview of seismic imagery techniques applied to landslides characterization.

    NASA Astrophysics Data System (ADS)

    Grandjean, Gilles; Romdhane, Anouar; Bitri, Adnand

    2010-05-01

    From numerous studies, geophysical methods based on seismic surveying appear to be well-adapted to investigate the morpho-structure of landslides and to progress in understanding the related mechanisms. Indeed, these methods allow direct and non-intrusive measurements of acoustic (Vp) or shear (Vs) wave velocity, two important physical parameters for estimating mechanical properties of reworked moving materials. Different processing techniques and inversion strategies were applied on the La Valette and Super-Sauze mudslides (French South Alps) as well as on the Ballandaz landslide (Savoie, France) to retrieve these parameters. On each of these sites, measurements were recorded along 2D profiles of several hundred meters length, with sensor spacing from 2 to 5m. (of about few meters). A first approach, based on first breaks acoustic inversion for estimating Vp distribution on the Super-Sauze and La Valette sites was carried out; then, SASW (spectral analysis of surface waves) was performed to image Vs distribution on the same site. In order to produce a more geotechnical diagnosis of these sections, a fuzzy logic fusion was used to assimilate both of these parameters into a highest level of interpretation. This approach has (also) the advantage to take into account the resolution and accuracy of each individual method. Finally, a 2D elastic full-waveform inversion test was carried out on a synthetic seismic data set computed from a conceptual Super-Sauze velocity model. This test highlights the difficulty to manage highly contrasted media in terms of velocity but also of topography. Nevertheless, the integration in the inversion process of the whole seismic signal produce a more coherent model in terms of Vp and Vs distribution compared to above-cited conventional techniques.

  2. Volcanic monitoring techniques applied to controlled fragmentation experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Alatorre-Ibarguengoitia, Miguel; Hort, Matthias; Kremers, Simon; Meier, Kristina; Scharff, Lea; Scheu, Bettina; Taddeucci, Jacopo; Dingwell, Donald B.

    2010-05-01

    . Although the involved volumes of pressurised sample and gas were small, we were able to record the experimental eruption. Thereby, we could validate in parallel the applicability of two independent methods (1 and 2) currently used to estimate the ejection velocity of erupted pyroclasts, an essential factor in ballistic hazard evaluation and eruption energy estimation. Additionally, infrasound measurements could be correlated with autoclave volume and applied pressure. We are positive that this link of experimental volcanology and monitoring techniques will profoundly enlarge our understanding of the behaviour of active volcanoes in general. If applied to a single volcano, a more refined knowledge of the state of the art will allow an adequate hazard assessment and risk mitigation.

  3. Scaling up of manufacturing processes of recycled carpet based composites

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Krishnan

    2011-12-01

    In this work, feasibility of recycling post-consumer carpets using a modified vacuum assisted resisted molding process into large-scale components was successfully demonstrated. The scale up also included the incorporation of nano-clay films in the carpet composites. It is expected that the films will enhance the ability of the composite to withstand environmental degradation and also serve as a fire retardant. Low-cost resins were used to fabricate the recycled carpet-based composites. The scale up in terms of process was achieved by manufacturing composites without a hot press and thereby saving additional equipment cost. Mechanical and physical properties were evaluated. Large-scale samples demonstrated mechanical properties that were different from results from small samples. Acoustic tests indicate good sound absorption of the carpet composite. Cost analysis of the composite material based on the cost of the raw materials and the manufacturing process has been presented.

  4. Scaling up high-impact interventions: how is it done?

    PubMed

    Smith, Jeffrey Michael; de Graft-Johnson, Joseph; Zyaee, Pashtoon; Ricca, Jim; Fullerton, Judith

    2015-06-01

    Building upon the World Health Organization's ExpandNet framework, 12 key principles of scale-up have emerged from the implementation of maternal and newborn health interventions. These principles are illustrated by three case studies of scale up of high-impact interventions: the Helping Babies Breathe initiative; pre-service midwifery education in Afghanistan; and advanced distribution of misoprostol for self-administration at home births to prevent postpartum hemorrhage. Program planners who seek to scale a maternal and/or newborn health intervention must ensure that: the necessary evidence and mechanisms for local ownership for the intervention are well-established; the intervention is as simple and cost-effective as possible; and the implementers and beneficiaries of the intervention are working in tandem to build institutional capacity at all levels and in consideration of all perspectives. PMID:26115856

  5. Drug nanocrystals: A way toward scale-up.

    PubMed

    Raghava Srivalli, Kale Mohana; Mishra, Brahmeshwar

    2016-07-01

    Drug nanocrystals comprise unique drug delivery platforms playing a significantly important and distinctive role in drug delivery and as such, the industry and academia are spending a lot of their time and money in developing the nanocrystal products. The current research works in this field depict a vivid shift from lab scale optimization studies to scale up focused studies. In this emerging scenario of nanocrystal technology, a review on some exemplary and progressing research studies with either scalability as their objective or upscaling as their future scope may smoothen the future upscaling attempts in this field. Hence, this paper reviews the efforts of such research works as case studies since an analysis of such research studies may input certain beneficial knowledge to carry out more scale up based research works on nanocrystals. PMID:27330370

  6. Scaling-up voluntary medical male circumcision - what have we learned?

    PubMed

    Ledikwe, Jenny H; Nyanga, Robert O; Hagon, Jaclyn; Grignon, Jessica S; Mpofu, Mulamuli; Semo, Bazghina-Werq

    2014-01-01

    In 2007, the World Health Organization (WHO) and the joint United Nations agency program on HIV/AIDS (UNAIDS) recommended voluntary medical male circumcision (VMMC) as an add-on strategy for HIV prevention. Fourteen priority countries were tasked with scaling-up VMMC services to 80% of HIV-negative men aged 15-49 years by 2016, representing a combined target of 20 million circumcisions. By December 2012, approximately 3 million procedures had been conducted. Within the following year, there was marked improvement in the pace of the scale-up. During 2013, the total number of circumcisions performed nearly doubled, with approximately 6 million total circumcisions conducted by the end of the year, reaching 30% of the initial target. The purpose of this review article was to apply a systems thinking approach, using the WHO health systems building blocks as a framework to examine the factors influencing the scale-up of the VMMC programs from 2008-2013. Facilitators that accelerated the VMMC program scale-up included: country ownership; sustained political will; service delivery efficiencies, such as task shifting and task sharing; use of outreach and mobile services; disposable, prepackaged VMMC kits; external funding; and a standardized set of indicators for VMMC. A low demand for the procedure has been a major barrier to achieving circumcision targets, while weak supply chain management systems and the lack of adequate financial resources with a heavy reliance on donor support have also adversely affected scale-up. Health systems strengthening initiatives and innovations have progressively improved VMMC service delivery, but an understanding of the contextual barriers and the facilitators of demand for the procedure is critical in reaching targets. There is a need for countries implementing VMMC programs to share their experiences more frequently to identify and to enhance best practices by other programs. PMID:25336991

  7. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast

  8. Scale-up considerations: Pilot to commercial scale

    NASA Astrophysics Data System (ADS)

    Weisiger, Dan

    1996-01-01

    The success of Photovoltaic (PV) technology as a viable business enterprise depends largely on its ability to provide a competitive advantage over other current energy technologies in meeting the customers' needs. Successful commercialization of the PV technology, therefore requires, in part, an efficient and effective manufacturing strategy in order to ensure a superior quality, low cost product. Several key design considerations for process scale-up were examined associated with GPI's PV module manufacturing expansion project completed in Spring, 1994. Particular emphasis was given to product specification, process specification, process engineering design, site location selection, environmental/health/safety (EHS) factors, and plant maintenance.

  9. The Q Sort Technique Applied to Nutrition Attitudes Investigation.

    ERIC Educational Resources Information Center

    Sutnick, Mona R.

    1981-01-01

    Suggests the use of the Q Sort Technique to assess attitudes toward nutrition-related topics. Describes research utilizing this technique to assess junior high school students' (N=512) attitudes toward and knowledge of nutrition with and without nutrition instruction. (DS)

  10. From Project to Program: Tupange's Experience with Scaling Up Family Planning Interventions in Urban Kenya.

    PubMed

    Keyonzo, Nelson; Nyachae, Paul; Kagwe, Peter; Kilonzo, Margaret; Mumba, Feddis; Owino, Kenneth; Kichamu, George; Kigen, Bartilol; Fajans, Peter; Ghiron, Laura; Simmons, Ruth

    2015-05-01

    This paper describes how the Urban Reproductive Health Initiative in Kenya, the Tupange Project (2010-2015), successfully applied the ExpandNet approach to sustainably scale up family planning interventions, first in Machakos and Kakamega, and subsequently also in its three core cities, Nairobi, Kisumu and Mombasa. This new focus meant shifting from a "project" to a "program" approach, which required paying attention to government leadership and ownership, limiting external inputs, institutionalizing interventions in existing structures and emphasizing sustainability. The paper also highlights the project's efforts to prepare for the future scale up of Tupange's interventions in other counties to support continuing and improved access to family planning services in the new context of devolution (decentralization) in Kenya.

  11. The First Scale-Up Production of Theranostic Nanoemulsions

    PubMed Central

    Liu, Lu; Bagia, Christina; Janjic, Jelena M.

    2015-01-01

    Abstract Theranostic nanomedicines are a promising new technological advancement toward personalized medicine. Although much progress has been made in pre-clinical studies, their clinical utilization is still under development. A key ingredient for successful theranostic clinical translation is pharmaceutical process design for production on a sufficient scale for clinical testing. In this study, we report, for the first time, a successful scale-up of a model theranostic nanoemulsion. Celecoxib-loaded near-infrared-labeled perfluorocarbon nanoemulsion was produced on three levels of scale (small at 54 mL, medium at 270 mL, and large at 1,000 mL) using microfluidization. The average size and polydispersity were not affected by the equipment used or production scale. The overall nanoemulsion stability was maintained for 90 days upon storage and was not impacted by nanoemulsion production scale or composition. Cell-based evaluations show comparable results for all nanoemulsions with no significant impact of nanoemulsion scale on cell toxicity and their pharmacological effects. This report serves as the first example of a successful scale-up of a theranostic nanoemulsion and a model for future studies on theranostic nanomedicine production and development. PMID:26309798

  12. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-01

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes.

  13. Scaling-up Transformation of Multisensor Images with Multiple Resolutions.

    PubMed

    Chen, Shaohui; Zhang, Renhua; Su, Hongbo; Tian, Jing; Xia, Jun

    2009-01-01

    For scaling up low resolution multispectral images (LRMIs) with high resolution panchromatic image (HRPI), intensity-hue-saturation (IHS) can produce satisfactory spatial enhancement but usually introduces spectral distortion in the fused high resolution multispectral images (HRMIs). In this paper, to minimize this problem, we present a generalized intensity modulation (GIM) by extending the IHS transform to an arbitrary number of LRMIs, which uses the information of the spectral response functions (SRFs) of the multispectral and panchromatic sensors. Before modulation, the generalized intensity is enhanced by injecting details extracted from the HRPI by means of empirical mode decomposition. After the enhanced generalized intensity is substituted for the old one, the HRMIs are obtained through the GIM. Quickbird images are used to illustrate the superiority of this proposed method. Extensive comparison results based on visual analysis and Wald's protocol demonstrate that the proposed method is more encouraging for scaling up the LRMIs with the HRPI spectrally and spatially than the tested fusion methods. PMID:22573959

  14. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-01

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes. PMID:17151661

  15. Applied Algebra: The Modeling Technique of Least Squares

    ERIC Educational Resources Information Center

    Zelkowski, Jeremy; Mayes, Robert

    2008-01-01

    The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)

  16. Do we have the right models for scaling up health services to achieve the Millennium Development Goals?

    PubMed Central

    2011-01-01

    Background There is widespread agreement on the need for scaling up in the health sector to achieve the Millennium Development Goals (MDGs). But many countries are not on track to reach the MDG targets. The dominant approach used by global health initiatives promotes uniform interventions and targets, assuming that specific technical interventions tested in one country can be replicated across countries to rapidly expand coverage. Yet countries scale up health services and progress against the MDGs at very different rates. Global health initiatives need to take advantage of what has been learned about scaling up. Methods A systematic literature review was conducted to identify conceptual models for scaling up health in developing countries, with the articles assessed according to the practical concerns of how to scale up, including the planning, monitoring and implementation approaches. Results We identified six conceptual models for scaling up in health based on experience with expanding pilot projects and diffusion of innovations. They place importance on paying attention to enhancing organizational, functional, and political capabilities through experimentation and adaptation of strategies in addition to increasing the coverage and range of health services. These scaling up approaches focus on fostering sustainable institutions and the constructive engagement between end users and the provider and financing organizations. Conclusions The current approaches to scaling up health services to reach the MDGs are overly simplistic and not working adequately. Rather than relying on blueprint planning and raising funds, an approach characteristic of current global health efforts, experience with alternative models suggests that more promising pathways involve "learning by doing" in ways that engage key stakeholders, uses data to address constraints, and incorporates results from pilot projects. Such approaches should be applied to current strategies to achieve the MDGs

  17. Gravimetry and Space Techniques Applied to Geodynamics and Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Schutz, Bob E.; Anderson, Allen; Froidevaux, Claude; Parke, Michael

    The variety of disciplines represented in this volume (including space geodesy, oceanography, geophysics, and celestial mechanics) attest to the interdisciplinary applications of gravimetry and space techniques. The relation to sea level is addressed within some of the papers and the contributions of the techniques to development of global gravity models are discussed. The space technique of satellite altimetry has become a prominent contributor to sea surface topography as well as ocean tide models and determination of gravity, especially in ocean areas. Ocean tides influence the motion of near-Earth satellites and the rotation of the Earth. Modern space geodesy is increasingly relying on the Global Positioning System for measuring geophysical phenomena manifested at the surface through crustal deformations. Furthermore, the geophysical interpretation of gravity anomalies has been facilitated by the introduction of modern techniques. This volume represents only a small "snapshot" of the interdisciplinary research being conducted. Modem space geodesy is one of the common links between the disciplines reflected in this volume. New developments in gravimetry and space techniques will further enhance and foster interdisciplinary work in coming years.

  18. Calibration and integrity verification techniques applied to GPS simulators

    NASA Astrophysics Data System (ADS)

    Stulken, D. A.

    Automated calibration and signal verification techniques which are used in GPS simulators to ensure a high level of fidelity of the test stimulus employed in evaluating the performance of GPS receivers have been developed. The present techniques involve satellite signal power levels, jammer signal power levels, time of arrival of satellite signals, and the coordinated timing of simulated satellite signals with respect to the simulation of the host vehicle interface signals. From initial simulation and evaluation system design efforts, a new family of GPS RF signal generators were developed, the multiple channel signal generator and the single channel signal generator.

  19. Quantity Versus Quality: A Survey Experiment to Improve the Network Scale-up Method

    PubMed Central

    Feehan, Dennis M.; Umubyeyi, Aline; Mahy, Mary; Hladik, Wolfgang; Salganik, Matthew J.

    2016-01-01

    The network scale-up method is a promising technique that uses sampled social network data to estimate the sizes of epidemiologically important hidden populations, such as sex workers and people who inject illicit drugs. Although previous scale-up research has focused exclusively on networks of acquaintances, we show that the type of personal network about which survey respondents are asked to report is a potentially crucial parameter that researchers are free to vary. This generalization leads to a method that is more flexible and potentially more accurate. In 2011, we conducted a large, nationally representative survey experiment in Rwanda that randomized respondents to report about one of 2 different personal networks. Our results showed that asking respondents for less information can, somewhat surprisingly, produce more accurate size estimates. We also estimated the sizes of 4 key populations at risk for human immunodeficiency virus infection in Rwanda. Our estimates were higher than earlier estimates from Rwanda but lower than international benchmarks. Finally, in this article we develop a new sensitivity analysis framework and use it to assess the possible biases in our estimates. Our design can be customized and extended for other settings, enabling researchers to continue to improve the network scale-up method. PMID:27015875

  20. Applying Empirical and Computer Technique in Teaching Undergraduate Sociology

    ERIC Educational Resources Information Center

    O'Kane, James M.

    1976-01-01

    A 2-semester undergraduate sociology course in empirical techniques and computer analysis is described which permits the student maximum freedom in his choice of a research problem while encouraging him to use both a statistical design and a computer analysis to test his hypotheses. (JT)

  1. Consulting with Parents: Applying Family Systems Concepts and Techniques.

    ERIC Educational Resources Information Center

    Mullis, Fran; Edwards, Dana

    2001-01-01

    This article describes family systems concepts and techniques that school counselors, as consultants, can use to better understand the family system. The concepts are life cycle transitions and extrafamilial influences, extended family influences, boundaries, parental hierarchy and power, and triangulation. (Contains 39 references.) (GCP)

  2. Biological conversion of synthesis gas. Limiting conditions/scale-up

    SciTech Connect

    Basu, R.; Klasson, K.T.; Takriff, M.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    The purpose of this research is to develop a technically and economically feasible process for biologically producing H(sub 2) from synthesis gas while, at the same time, removing harmful sulfur gas compounds. Six major tasks are being studied: 1. Culture development, where the best cultures are selected and conditions optimized for simultaneous hydrogen production and sulfur gas removal; 2. Mass transfer and kinetic studies in which equations necessary for process design are developed; 3. Bioreactor design studies, where the cultures chosen in Task 1 are utilized in continuous reaction vessels to demonstrate process feasibility and define operating conditions; 4. Evaluation of biological synthetic gas conversion under limiting conditions in preparation for industrial demonstration studies; 5. Process scale-up where laboratory data are scaled to larger-size units in preparation for process demonstration in a pilot-scale unit; and 6. Economic evaluation, where process simulations are used to project process economics and identify high cost areas during sensitivity analyses.

  3. Bioprinting scale-up tissue and organ constructs for transplantation.

    PubMed

    Ozbolat, Ibrahim T

    2015-07-01

    Bioprinting is an emerging field that is having a revolutionary impact on the medical sciences. It offers great precision for the spatial placement of cells, proteins, genes, drugs, and biologically active particles to better guide tissue generation and formation. This emerging biotechnology appears to be promising for advancing tissue engineering toward functional tissue and organ fabrication for transplantation, drug testing, research investigations, and cancer or disease modeling, and has recently attracted growing interest worldwide among researchers and the general public. In this Opinion, I highlight possibilities for the bioprinting scale-up of functional tissue and organ constructs for transplantation and provide the reader with alternative approaches, their limitations, and promising directions for new research prospects.

  4. TA Beliefs in a SCALE-UP Style Classroom

    NASA Astrophysics Data System (ADS)

    DeBeck, George; Settelmeyer, Sam; Li, Sissi; Demaree, Dedra

    2010-10-01

    In Spring 2010, the Oregon State University physics department instituted a SCALE-UP (Student-Centered Active Learning Environment for Undergraduate Programs) style studio classroom in the introductory, calculus-based physics series. In our initial implementation, comprised of two hours lecture, two hours of studio, and two hours lab work, the studio session was lead by a faculty member and either 2 GTAs or 1 GTA and 1 LA. We plan to move to a model where senior GTAs can lead studio sections after co-teaching with the faculty member. It is critical that we know how to prepare and support the instructional team in facilitating student learning in this setting. We examine GTA and LA pedagogical beliefs through reflective journaling, interviews, and personal experience of the authors. In particular, we examine how these beliefs changed over their first quarter of instruction, as well as the resources used to adapt to the new classroom environment.

  5. Scaling Up Family Therapy in Fragile, Conflict-Affected States.

    PubMed

    Charlés, Laurie L

    2015-09-01

    This article discusses the design and delivery of two international family therapy-focused mental health and psychosocial support training projects, one in a fragile state and one in a post-conflict state. The training projects took place in Southeast Asia and the Middle East/North Africa. Each was funded, supported, and implemented by local, regional, and international stakeholders, and delivered as part of a broader humanitarian agenda to develop human resource capacity to work with families affected by atrocities. The two examples illustrate how task-shifting/task-sharing and transitional justice approaches were used to inform the scaling-up of professionals involved in each project. They also exemplify how state-citizen phenomena in each location affected the project design and delivery.

  6. Slurry F-T reactor hydrodynamics and scale-up

    SciTech Connect

    Smith, D.N.; O'Dowd, W.; Ruether, J.A.; Stiegel, G.J.; Shah, Y.T.

    1984-01-01

    The Fischer-Tropsch (F-T) synthesis of hydrocarbons by the hydrogenation of carbon monoxide over a catalyst via the indirect liquefaction route has only been demonstrated on a commercial scale in fixed-bed and entrained-bed reactors. The slurry reactor has been found to offer important advantages, such as low H/sub 2//CO feed ratios and isothermal stability on the laboratory and pilot-plant scale. Recent findings concerning slurry bubble column hydrodynamics are presented, and their relevance to slurry F-T reactor design and scale-up are discussed. The need for optimization of a slurry F-T reactor is apparent owing in large part to the nonselective formation of products on the catalyst, and the influence of hydrodynamics on the overall conversion of reactants. In this regard, the important transport resistances in the formation of products, and the influence of reactor dimensions on reactor performance are discussed. 9 refs., 14 figs., 1 tab.

  7. Identifying the Characteristics of Effective High Schools: Report from Year One of the National Center on Scaling up Effective Schools. Research Report

    ERIC Educational Resources Information Center

    Rutledge, Stacey; Cohen-Vogel, Lora; Osborne-Lampkin, La'Tara

    2012-01-01

    The National Center on Scaling up Effective Schools (NCSU) is a five-year project working to develop, implement, and test new processes to scale up effective practices in high schools that districts will be able to apply within the context of their own unique goals and circumstances. This report describes the activities and findings of the first…

  8. Carnosol purification. Scaling-up centrifugal partition chromatography separations.

    PubMed

    Bouju, Elodie; Berthod, Alain; Faure, Karine

    2016-09-30

    This paper illustrates the application of a recently proposed protocol allowing the scale-up prediction on hydrostatic countercurrent chromatography columns (centrifugal partition chromatographs or CPC). A commercial extract of rosemary (Rosmarinus officinalis L.) was used as the starting material containing 0.48% of carnosol, an active pharmaceutical ingredient with great potential. After a rapid method development on a small-scale 35-mL CPC instrument that allowed for the determination of the solvent system and maximum sample concentration and volume, the purification was transferred on two larger instruments using the "free space between peaks" method. The method takes into account the technical limitations of the larger instruments, such as pressure and/or maximum centrifugal field, and allows, by simply running an analytical-sized injection on the large scale rotor, to give an accurate prediction of the maximum sample load and best throughput. The 0.27g of rosemary extract maximum load on a 35-mL CPC was transferred as a 1.9g load on a 254-mL medium size CPC and 9g load on a 812-mL CPC. The maximum process efficiency of 3.1mg of carnosol per hour obtained on the small 35-mL column was transferred on the 254-mL CPC giving 8.3mg/h and, on the larger 812-mL column 49.4mg of carnosol could be obtained per hour. If the scaling-up in CPC instruments is not directly homothetic, it can be highly predictable through a few simple experiments. PMID:27590084

  9. Production Scale-Up or Activated Carbons for Ultracapacitors

    SciTech Connect

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  10. Carnosol purification. Scaling-up centrifugal partition chromatography separations.

    PubMed

    Bouju, Elodie; Berthod, Alain; Faure, Karine

    2016-09-30

    This paper illustrates the application of a recently proposed protocol allowing the scale-up prediction on hydrostatic countercurrent chromatography columns (centrifugal partition chromatographs or CPC). A commercial extract of rosemary (Rosmarinus officinalis L.) was used as the starting material containing 0.48% of carnosol, an active pharmaceutical ingredient with great potential. After a rapid method development on a small-scale 35-mL CPC instrument that allowed for the determination of the solvent system and maximum sample concentration and volume, the purification was transferred on two larger instruments using the "free space between peaks" method. The method takes into account the technical limitations of the larger instruments, such as pressure and/or maximum centrifugal field, and allows, by simply running an analytical-sized injection on the large scale rotor, to give an accurate prediction of the maximum sample load and best throughput. The 0.27g of rosemary extract maximum load on a 35-mL CPC was transferred as a 1.9g load on a 254-mL medium size CPC and 9g load on a 812-mL CPC. The maximum process efficiency of 3.1mg of carnosol per hour obtained on the small 35-mL column was transferred on the 254-mL CPC giving 8.3mg/h and, on the larger 812-mL column 49.4mg of carnosol could be obtained per hour. If the scaling-up in CPC instruments is not directly homothetic, it can be highly predictable through a few simple experiments.

  11. Gel compression considerations for chromatography scale-up for protein C purification.

    PubMed

    He, W; Bruley, D F; Drohan, W N

    1998-01-01

    This work is to establish theoretical and experimental relationships for the scale-up of Immobilized Metal Affinity Chromatography (IMAC) and Immuno Affinity Chromatography for the low cost production of large quantities of Protein C. The external customer requirements for this project have been established for Protein C deficient people with the goal of providing prophylactic patient treatment. Deep vein thrombosis is the major symptom for protein C deficiency creating the potential problem of embolism transport to important organs, such as, lung and brain. Gel matrices for protein C separation are being analyzed to determine the relationship between the material properties of the gel and the column collapse characteristics. The fluid flow rate and pressure drop is being examined to see how they influence column stability. Gel packing analysis includes two considerations; one is bulk compression due to flow rate, and the second is gel particle deformation due to fluid flow and pressure drop. Based on the assumption of creeping flow, Darcy's law is being applied to characterize the flow through the gel particles. Biot's mathematical description of three-dimensional consolidation in porous media is being used to develop a set of system equations. Finite difference methods are being utilized to obtain the equation solutions. In addition, special programs such as finite element approaches, ABAQUS, will be studied to determine their application to this particular problem. Experimental studies are being performed to determine flow rate and pressure drop correlation for the chromatographic columns with appropriate gels. Void fraction is being measured using pulse testing to allow Reynolds number calculations. Experimental yield stress is being measured to compare with the theoretical calculations. Total Quality Management (TQM) tools have been utilized to optimize this work. For instance, the "Scatter Diagram" has been used to evaluate and select the appropriate gels and

  12. Machine-Learning Techniques Applied to Antibacterial Drug Discovery

    PubMed Central

    Durrant, Jacob D.; Amaro, Rommie E.

    2014-01-01

    The emergence of drug-resistant bacteria threatens to catapult humanity back to the pre-antibiotic era. Even now, multi-drug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many pharmaceutical companies have abandoned antibiotic development in search of more lucrative therapeutics, academic researchers are uniquely positioned to fill the resulting vacuum. Traditional high-throughput screens and lead-optimization efforts are expensive and labor intensive. Computer-aided drug discovery techniques, which are cheaper and faster, can accelerate the identification of novel antibiotics in an academic setting, leading to improved hit rates and faster transitions to pre-clinical and clinical testing. The current review describes two machine-learning techniques, neural networks and decision trees, that have been used to identify experimentally validated antibiotics. We conclude by describing the future directions of this exciting field. PMID:25521642

  13. Machine-learning techniques applied to antibacterial drug discovery.

    PubMed

    Durrant, Jacob D; Amaro, Rommie E

    2015-01-01

    The emergence of drug-resistant bacteria threatens to revert humanity back to the preantibiotic era. Even now, multidrug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many pharmaceutical companies have abandoned antibiotic development in search of more lucrative therapeutics, academic researchers are uniquely positioned to fill the pipeline. Traditional high-throughput screens and lead-optimization efforts are expensive and labor intensive. Computer-aided drug-discovery techniques, which are cheaper and faster, can accelerate the identification of novel antibiotics, leading to improved hit rates and faster transitions to preclinical and clinical testing. The current review describes two machine-learning techniques, neural networks and decision trees, that have been used to identify experimentally validated antibiotics. We conclude by describing the future directions of this exciting field.

  14. Microwave de-embedding techniques applied to acoustics.

    PubMed

    Jackson, Charles M

    2005-07-01

    This paper describes the use of the microwave techniques of time domain reflectometry (TDR) and de-embedding in an acoustical application. Two methods of calibrating the reflectometer are presented to evaluate the consistency of the method. Measured and modeled S-parameters of woodwind instruments are presented. The raw measured data is de-embedded to obtain an accurate measurement. The acoustic TDR setup is described. PMID:16212248

  15. Power Line Carrier Techniques Applied to Spacecraft Data Handling

    NASA Astrophysics Data System (ADS)

    Bedu, J.-Y.; Morisse, J.; Auvergne, X.; Plancke, P.

    Power Line Carrier (PLC) data transmission coupled with spread spectrum technique is evaluated for onboard satellite purpose. Power Line Carrier present a great advantage in terms of mass saving and integration cost by suppressing the data bus harness. Spread Spectrum techniques allows data transmission inside the power supply noise. This paper will address the major functionality keys of this transmission method and will define the main trades off to conduct. INTRODUCTION A major trend for the next satellite generation stands in the increase of the equipment unit's quantity, of their complexity and of their communication needs. A first approach to reduce the number of links and also the overall mass stands in multiplexing Acq/Ctr on data bus. ALCATEL SPACE with its so-called new avionics 4000 has made a significant step with an intensive use of the data bus : round 140 units on its proprietary OBDH-485 bus and round 10 units on the MIL-STD-1553 data bus for Telecom Geostationnary satellite class. According to this state of the art, the following step is the suppression of the data bus harness by means of Wireless or Power Line Carrier (PLC) techniques that has been identified as a development axis. Many PLC components are available for domestic/industry applications. Nevertheless, transmission levels, operating frequencies, radiation hardening performances of these parts are usually not compatible with space environment constraints. 2/12

  16. Robotic radical hysterectomy: applying principles of the laparoscopic Pune technique.

    PubMed

    Puntambekar, Shailesh P; Agarwal, Geetanjali A; Joshi, Saurabh N; Rayate, Neeraj V; Puntambekar, Seema S; Sathe, Ravi M

    2010-12-01

    Minimal access surgery is an accepted treatment modality in cervical cancer. Despite the advantages of laparoscopy, the surgical technique of laparoscopic radical hysterectomy is not very commonly performed. Robotic surgery is an emerging field with rapid acceptance because of the 3-dimensional image, dexterity of instruments and autonomy of camera control. We report here our technique of performing robotic radical hysterectomy using the Da Vinci surgical system. Twenty patients with cervical cancer stage 1a1-1b2 underwent robotic radical hysterectomy since December 2009. The median duration of surgery was 122 min, and the average blood loss was 100 ml. Postoperative ureteric fistulas occurred in two patients and were managed by ureteric stenting. The median lymph node retrieval was 30 nodes (range 18-38). We compared our robotic results with our published data on laparoscopic radical hysterectomy (Pune technique). We were able to complete all 20 cases robotically with minimal morbidity, and could duplicate our laparoscopic steps in robotic radical hysterectomy. PMID:27627955

  17. Technology Assessment of Dust Suppression Techniques Applied During Structural Demolition

    SciTech Connect

    Boudreaux, J.F.; Ebadian, M.A.; Williams, P.T.; Dua, S.K.

    1998-10-20

    Hanford, Fernald, Savannah River, and other sites are currently reviewing technologies that can be implemented to demolish buildings in a cost-effective manner. In order to demolish a structure properly and, at the same time, minimize the amount of dust generated from a given technology, an evaluation must be conducted to choose the most appropriate dust suppression technology given site-specific conditions. Thus, the purpose of this research, which was carried out at the Hemispheric Center for Environmental Technology (HCET) at Florida International University, was to conduct an experimental study of dust aerosol abatement (dust suppression) methods as applied to nuclear D and D. This experimental study targeted the problem of dust suppression during the demolition of nuclear facilities. The resulting data were employed to assist in the development of mathematical correlations that can be applied to predict dust generation during structural demolition.

  18. Analysis of soil images applying Laplacian Pyramidal techniques

    NASA Astrophysics Data System (ADS)

    Ballesteros, F.; de Castro, J.; Tarquis, A. M.; Méndez, A.

    2012-04-01

    The Laplacian pyramid is a technique for image encoding in which local operators of many scales but identical shape are the basis functions. Our work describes some properties of the filters of the Laplacian pyramid. Specially, we pay attention to Gaussian and fractal behaviour of these filters, and we determine the normal and fractal ranges in the case of single parameter filters, while studying the influence of these filters in soil image processing. One usual property of any image is that neighboring pixels are highly correlated. This property makes inefficient to represent the image directly in terms of the pixel values, because most of the encoded information would be redundant. Burt and Adelson designed a technique, named Laplacian pyramid, for removing image correlation which combines features of predictive and transform methods. This technique is non causal, and its computations are simple and local. The predicted value for each pixel is computed as a local weighted average, using a unimodal weighting function centred on the pixel itself. Pyramid construction is equivalent to convolving the original image with a set of weighting functions determined by a parameter that defines the filter. According to the parameter values, these filters have a behaviour that goes from the Gaussian shape to the fractal. Previous works only analyze Gaussian filters, but we determine the Gaussian and fractal intervals and study the energy of the Laplacian pyramid images according to the filter types. The different behaviour, qualitatively, involves a significant change in statistical characteristics at different levels of iteration, especially the fractal case, which can highlight specific information from the images. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  19. Applying NISHIJIN historical textile technique for e-Textile.

    PubMed

    Kuroda, Tomohiro; Hirano, Kikuo; Sugimura, Kazushige; Adachi, Satoshi; Igarashi, Hidetsugu; Ueshima, Kazuo; Nakamura, Hideo; Nambu, Masayuki; Doi, Takahiro

    2013-01-01

    The e-Textile is the key technology for continuous ambient health monitoring to increase quality of life of patients with chronic diseases. The authors introduce techniques of Japanese historical textile, NISHIJIN, which illustrate almost any pattern from one continuous yarn within the machine weaving process, which is suitable for mixed flow production. Thus, NISHIJIN is suitable for e-Textile production, which requires rapid prototyping and mass production of very complicated patterns. The authors prototyped and evaluated a few vests to take twelve-lead electrocardiogram. The result tells that the prototypes obtains electrocardiogram, which is good enough for diagnosis.

  20. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  1. Low background techniques applied in the BOREXINO experiment

    SciTech Connect

    Zuzel, G.

    2015-08-17

    The BOREXINO detector, located in the Gran Sasso National Laboratory in Italy, has been designed for real-time spectroscopy of low-energy solar neutrinos. Within the experiment several novel background reduction and assay techniques have been established. In many cases they are still the most sensitive world-wide. Developed methods and apparatus provided tools for a strict quality control program during the construction phase of the BOREXINO detector, which was the key to meet the background requirements. Achievement of extremely low background rate opened the possibility to probe in realtime almost entire spectrum of the solar neutrinos.

  2. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  3. Applying manifold learning techniques to the CAESAR database

    NASA Astrophysics Data System (ADS)

    Mendoza-Schrock, Olga; Patrick, James; Arnold, Gregory; Ferrara, Matthew

    2010-04-01

    Understanding and organizing data is the first step toward exploiting sensor phenomenology for dismount tracking. What image features are good for distinguishing people and what measurements, or combination of measurements, can be used to classify the dataset by demographics including gender, age, and race? A particular technique, Diffusion Maps, has demonstrated the potential to extract features that intuitively make sense [1]. We want to develop an understanding of this tool by validating existing results on the Civilian American and European Surface Anthropometry Resource (CAESAR) database. This database, provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International, is a rich dataset which includes 40 traditional, anthropometric measurements of 4400 human subjects. If we could specifically measure the defining features for classification, from this database, then the future question will then be to determine a subset of these features that can be measured from imagery. This paper briefly describes the Diffusion Map technique, shows potential for dimension reduction of the CAESAR database, and describes interesting problems to be further explored.

  4. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    NASA Astrophysics Data System (ADS)

    Aird, H. M.

    2015-12-01

    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  5. Object detection techniques applied on mobile robot semantic navigation.

    PubMed

    Astua, Carlos; Barber, Ramon; Crespo, Jonathan; Jardon, Alberto

    2014-01-01

    The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency. PMID:24732101

  6. Object Detection Techniques Applied on Mobile Robot Semantic Navigation

    PubMed Central

    Astua, Carlos; Barber, Ramon; Crespo, Jonathan; Jardon, Alberto

    2014-01-01

    The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency. PMID:24732101

  7. Innovative Visualization Techniques applied to a Flood Scenario

    NASA Astrophysics Data System (ADS)

    Falcão, António; Ho, Quan; Lopes, Pedro; Malamud, Bruce D.; Ribeiro, Rita; Jern, Mikael

    2013-04-01

    The large and ever-increasing amounts of multi-dimensional, time-varying and geospatial digital information from multiple sources represent a major challenge for today's analysts. We present a set of visualization techniques that can be used for the interactive analysis of geo-referenced and time sampled data sets, providing an integrated mechanism and that aids the user to collaboratively explore, present and communicate visually complex and dynamic data. Here we present these concepts in the context of a 4 hour flood scenario from Lisbon in 2010, with data that includes measures of water column (flood height) every 10 minutes at a 4.5 m x 4.5 m resolution, topography, building damage, building information, and online base maps. Techniques we use include web-based linked views, multiple charts, map layers and storytelling. We explain two of these in more detail that are not currently in common use for visualization of data: storytelling and web-based linked views. Visual storytelling is a method for providing a guided but interactive process of visualizing data, allowing more engaging data exploration through interactive web-enabled visualizations. Within storytelling, a snapshot mechanism helps the author of a story to highlight data views of particular interest and subsequently share or guide others within the data analysis process. This allows a particular person to select relevant attributes for a snapshot, such as highlighted regions for comparisons, time step, class values for colour legend, etc. and provide a snapshot of the current application state, which can then be provided as a hyperlink and recreated by someone else. Since data can be embedded within this snapshot, it is possible to interactively visualize and manipulate it. The second technique, web-based linked views, includes multiple windows which interactively respond to the user selections, so that when selecting an object and changing it one window, it will automatically update in all the other

  8. Object detection techniques applied on mobile robot semantic navigation.

    PubMed

    Astua, Carlos; Barber, Ramon; Crespo, Jonathan; Jardon, Alberto

    2014-04-11

    The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency.

  9. Security Verification Techniques Applied to PatchLink COTS Software

    NASA Technical Reports Server (NTRS)

    Gilliam, David P.; Powell, John D.; Bishop, Matt; Andrew, Chris; Jog, Sameer

    2006-01-01

    Verification of the security of software artifacts is a challenging task. An integrated approach that combines verification techniques can increase the confidence in the security of software artifacts. Such an approach has been developed by the Jet Propulsion Laboratory (JPL) and the University of California at Davis (UC Davis). Two security verification instruments were developed and then piloted on PatchLink's UNIX Agent, a Commercial-Off-The-Shelf (COTS) software product, to assess the value of the instruments and the approach. The two instruments are the Flexible Modeling Framework (FMF) -- a model-based verification instrument (JPL), and a Property-Based Tester (UC Davis). Security properties were formally specified for the COTS artifact and then verified using these instruments. The results were then reviewed to determine the effectiveness of the approach and the security of the COTS product.

  10. Applying total quality management techniques to improve software development.

    PubMed

    Mezher, T; Assem Abdul Malak, M; el-Medawar, H

    1998-01-01

    Total Quality Management (TQM) is a new management philosophy and a set of guiding principles that represent the basis of a continuously improving organization. This paper sheds light on the application of TQM concepts for software development. A fieldwork study was conducted on a Lebanese software development firm and its customers to determine the major problems affecting the organization's operation and to assess the level of adoption of TQM concepts. Detailed questionnaires were prepared and handed out to the firm's managers, programmers, and customers. The results of the study indicate many deficiencies in applying TQM concepts, especially in the areas of planning, defining customer requirements, teamwork, relationship with suppliers, and adopting standards and performance measures. One of the major consequences of these deficiencies is considerably increased programming errors and delays in delivery. Recommendations on achieving quality are discussed.

  11. Technology Assessment of Dust Suppression Techniques applied During Structural Demolition

    SciTech Connect

    Boudreaux, J.F.; Ebadian, M.A.; Dua, S.K.

    1997-08-06

    Hanford, Fernald, Savannah River, and other sites are currently reviewing technologies that can be implemented to demolish buildings in a cost-effective manner. In order to demolish a structure and, at the same time, minimize the amount of dust generated by a given technology, an evaluation must be conducted to choose the most appropriate dust suppression technology. Thus, the purpose of this research, which was conducted by the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), was to perform an experimental study of dust aerosol abatement (dust suppression) methods as applied to nuclear D and D. This experimental study specifically targeted the problem of dust suppression during demolition. The resulting data were used in the development of mathematical correlations that can be applied to structural demolition. In the Fiscal Year 1996 (FY96), the effectiveness of different dust suppressing agents was investigated for different types of concrete blocks. Initial tests were conducted in a broad particle size range. In Fiscal Year 1997 (FY97), additional tests were performed in the size range in which most of the particles were detected. Since particle distribution is an important parameter for predicting deposition in various compartments of the human respiratory tract, various tests were aimed at determining the particle size distribution of the airborne dust particles. The effectiveness of dust suppressing agents for particles of various size was studied. Instead of conducting experiments on various types of blocks, it was thought prudent to carry out additional tests on blocks of the same type. Several refinements were also incorporated in the test procedures and data acquisition system used in FY96.

  12. Optical Trapping Techniques Applied to the Study of Cell Membranes

    NASA Astrophysics Data System (ADS)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that

  13. Computer Science Techniques Applied to Parallel Atomistic Simulation

    NASA Astrophysics Data System (ADS)

    Nakano, Aiichiro

    1998-03-01

    Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.

  14. Cleaning techniques for applied-B ion diodes

    SciTech Connect

    Cuneo, M.E.; Menge, P.R.; Hanson, D.L.

    1995-09-01

    Measurements and theoretical considerations indicate that the lithium-fluoride (LiF) lithium ion source operates by electron-assisted field-desorption, and provides a pure lithium beam for 10--20 ns. Evidence on both the SABRE (1 TW) and PBFA-II (20 TW) accelerators indicates that the lithium beam is replaced by a beam of protons, and carbon resulting from electron thermal desorption of hydrocarbon surface and bulk contamination with subsequent avalanche ionization. Appearance of contaminant ions in the beam is accompanied by rapid impedance collapse, possibly resulting from loss of magnetic insulation in the rapidly expanding and ionizing, neutral layer. Electrode surface and source substrate cleaning techniques are being developed on the SABRE accelerator to reduce beam contamination, plasma formation, and impedance collapse. We have increased lithium current density a factor of 3 and lithium energy a factor of 5 through a combination of in-situ surface and substrate coatings, impermeable substrate coatings, and field profile modifications.

  15. Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin

    PubMed Central

    Ritter, Eglof; Puskar, Ljiljana; Bartl, Franz J.; Aziz, Emad F.; Hegemann, Peter; Schade, Ulrich

    2015-01-01

    Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins. PMID:26217670

  16. Remote sensing techniques applied to seismic vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Juan Arranz, Jose; Torres, Yolanda; Hahgi, Azade; Gaspar-Escribano, Jorge

    2016-04-01

    Advances in remote sensing and photogrammetry techniques have increased the degree of accuracy and resolution in the record of the earth's surface. This has expanded the range of possible applications of these data. In this research, we have used these data to document the construction characteristics of the urban environment of Lorca, Spain. An exposure database has been created with the gathered information to be used in seismic vulnerability assessment. To this end, we have used data from photogrammetric flights at different periods, using both orthorectified images in the visible and infrared spectrum. Furthermore, the analysis is completed using LiDAR data. From the combination of these data, it has been possible to delineate the building footprints and characterize the constructions with attributes such as the approximate date of construction, area, type of roof and even building materials. To carry out the calculation, we have developed different algorithms to compare images from different times, segment images, classify LiDAR data, and use the infrared data in order to remove vegetation or to compute roof surfaces with height value, tilt and spectral fingerprint. In addition, the accuracy of our results has been validated with ground truth data. Keywords: LiDAR, remote sensing, seismic vulnerability, Lorca

  17. Digital prototyping technique applied for redesigning plastic products

    NASA Astrophysics Data System (ADS)

    Pop, A.; Andrei, A.

    2015-11-01

    After products are on the market for some time, they often need to be redesigned to meet new market requirements. New products are generally derived from similar but outdated products. Redesigning a product is an important part of the production and development process. The purpose of this paper is to show that using modern technology, like Digital Prototyping in industry is an effective way to produce new products. This paper tries to demonstrate and highlight the effectiveness of the concept of Digital Prototyping, both to reduce the design time of a new product, but also the costs required for implementing this step. The results of this paper show that using Digital Prototyping techniques in designing a new product from an existing one available on the market mould offers a significantly manufacturing time and cost reduction. The ability to simulate and test a new product with modern CAD-CAM programs in all aspects of production (designing of the 3D model, simulation of the structural resistance, analysis of the injection process and beautification) offers a helpful tool for engineers. The whole process can be realised by one skilled engineer very fast and effective.

  18. Scaling up: Assessing social impacts at the macro-scale

    SciTech Connect

    Schirmer, Jacki

    2011-04-15

    Social impacts occur at various scales, from the micro-scale of the individual to the macro-scale of the community. Identifying the macro-scale social changes that results from an impacting event is a common goal of social impact assessment (SIA), but is challenging as multiple factors simultaneously influence social trends at any given time, and there are usually only a small number of cases available for examination. While some methods have been proposed for establishing the contribution of an impacting event to macro-scale social change, they remain relatively untested. This paper critically reviews methods recommended to assess macro-scale social impacts, and proposes and demonstrates a new approach. The 'scaling up' method involves developing a chain of logic linking change at the individual/site scale to the community scale. It enables a more problematised assessment of the likely contribution of an impacting event to macro-scale social change than previous approaches. The use of this approach in a recent study of change in dairy farming in south east Australia is described.

  19. Fungal biosynthesis of gold nanoparticles: mechanism and scale up

    PubMed Central

    Kitching, Michael; Ramani, Meghana; Marsili, Enrico

    2015-01-01

    Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. PMID:25154648

  20. Scaling Up Data-Centric Middleware on a Cluster Computer

    SciTech Connect

    Liu, D T; Franklin, M J; Garlick, J; Abdulla, G M

    2005-04-29

    Data-centric workflow middleware systems are workflow systems that treat data as first class objects alongside programs. These systems improve the usability, responsiveness and efficiency of workflow execution over cluster (and grid) computers. In this work, we explore the scalability of one such system, GridDB, on cluster computers. We measure the performance and scalability of GridDB in executing data-intensive image processing workflows from the SuperMACHO astrophysics survey on a large cluster computer. Our first experimental study concerns the scale-up of GridDB. We make a rather surprising finding, that while the middleware system issues many queries and transactions to a DBMS, file system operations present the first-tier bottleneck. We circumvent this bottleneck and increase the scalability of GridDB by more than 2-fold on our image processing application (up to 128 nodes). In a second study, we demonstrate the sensitivity of GridDB performance (and therefore application performance) to characteristics of the workflows being executed. To manage these sensitivities, we provide guidelines for trading off the costs and benefits of GridDB at a fine-grain.

  1. Fungal biosynthesis of gold nanoparticles: mechanism and scale up.

    PubMed

    Kitching, Michael; Ramani, Meghana; Marsili, Enrico

    2015-11-01

    Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.

  2. Challenges and Opportunities in Scaling-Up Nutrition in Healthcare

    PubMed Central

    Darnton-Hill, Ian; Samman, Samir

    2015-01-01

    Healthcare continues to be in a state of flux; conventionally, this provides opportunities and challenges. The opportunities include technological breakthroughs, improved economies and increasing availability of healthcare. On the other hand, economic disparities are increasing and leading to differing accessibility to healthcare, including within affluent countries. Nutrition has received an increase in attention and resources in recent decades, a lot of it stimulated by the rise in obesity, type 2 diabetes mellitus and hypertension. An increase in ageing populations also has meant increased interest in nutrition-related chronic diseases. In many middle-income countries, there has been an increase in the double burden of malnutrition with undernourished children and overweight/obese parents and adolescents. In low-income countries, an increased evidence base has allowed scaling-up of interventions to address under-nutrition, both nutrition-specific and nutrition-sensitive interventions. Immediate barriers (institutional, structural and biological) and longer-term barriers (staffing shortages where most needed and environmental impacts on health) are discussed. Significant barriers remain for the near universal access to healthcare, especially for those who are socio-economically disadvantaged, geographically isolated, living in war zones or where environmental damage has taken place. However, these barriers are increasingly being recognized, and efforts are being made to address them. The paper aims to take a broad view that identifies and then comments on the many social, political and scientific factors affecting the achievement of improved nutrition through healthcare. PMID:27417744

  3. Scaling up the power of an electrospray microthruster

    NASA Astrophysics Data System (ADS)

    Lenguito, G.; Fernandez de la Mora, J.; Gomez, A.

    2014-05-01

    We report on the development of an electrospray (ES) microthruster that, by emitting fast nanodroplets, covers a wide range of specific impulse and thrust at high (>50%) propulsion efficiency. To achieve a useful thrust, many ES microthrusters must operate in parallel (multiplexing). The multiplexed electrospray microthruster (MES) is packaged in an alumina case that can operate at voltages up to ΔV = 7.56 kV and a reservoir pressure up to 5 bar. We compared nozzle arrays with 7, 37 and 91 capillaries (ID/OD = 10/30 µm). To ensure uniform flow through the various emitters, the hydraulic resistance was increased by filling the capillaries with 2.01 µm beads. The MES devices sprayed the ionic liquid ethylammonium nitrate. The 37-MES device covered a 2.6-fold range of specific impulse reaching 1870 s, and a 4.2-fold range of thrust up to 31.1 µN. The 91-MES device reached higher thrust, but it covered a narrower range. All devices operated stably for hours with modest current fluctuations. The beam cleared the electrodes, with no signs of erosion. The developed microthruster has already reached performances suitable for fine attitude control of microsatellites. Further scaling up by one order of magnitude would enable orbit change and station keeping for small satellites.

  4. Semantic Data And Visualization Techniques Applied To Geologic Field Mapping

    NASA Astrophysics Data System (ADS)

    Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.

    2015-12-01

    Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.

  5. Scaling-up ultrasound standing wave enhanced sedimentation filters.

    PubMed

    Prest, Jeff E; Treves Brown, Bernard J; Fielden, Peter R; Wilkinson, Stephen J; Hawkes, Jeremy J

    2015-02-01

    Particle concentration and filtration is a key stage in a wide range of processing industries and also one that can be present challenges for high throughput, continuous operation. Here we demonstrate some features which increase the efficiency of ultrasound enhanced sedimentation and could enable the technology the potential to be scaled up. In this work, 20 mm piezoelectric plates were used to drive 100 mm high chambers formed from single structural elements. The coherent structural resonances were able to drive particles (yeast cells) in the water to nodes throughout the chamber. Ultrasound enhanced sedimentation was used to demonstrate the efficiency of the system (>99% particle clearance). Sub-wavelength pin protrusions were used for the contacts between the resonant chamber and other elements. The pins provided support and transferred power, replacing glue which is inefficient for power transfer. Filtration energies of ∼4 J/ml of suspension were measured. A calculation of thermal convection indicates that the circulation could disrupt cell alignment in ducts >35 mm high when a 1K temperature gradient is present; we predict higher efficiencies when this maximum height is observed. For the acoustic design, although modelling was minimal before construction, the very simple construction allowed us to form 3D models of the nodal patterns in the fluid and the duct structure. The models were compared with visual observations of particle movement, Chladni figures and scanning laser vibrometer mapping. This demonstrates that nodal planes in the fluid can be controlled by the position of clamping points and that the contacts could be positioned to increase the efficiency and reliability of particle manipulations in standing waves.

  6. Beginning with sustainable scale up in mind: initial results from a population, health and environment project in East Africa.

    PubMed

    Ghiron, Laura; Shillingi, Lucy; Kabiswa, Charles; Ogonda, Godfrey; Omimo, Antony; Ntabona, Alexis; Simmons, Ruth; Fajans, Peter

    2014-05-01

    Small-scale pilot projects have demonstrated that integrated population, health and environment approaches can address the needs and rights of vulnerable communities. However, these and other types of health and development projects have rarely gone on to influence larger policy and programme development. ExpandNet, a network of health professionals working on scaling up, argues this is because projects are often not designed with future sustainability and scaling up in mind. Developing and implementing sustainable interventions that can be applied on a larger scale requires a different mindset and new approaches to small-scale/pilot testing. This paper shows how this new approach is being applied and the initial lessons from its use in the Health of People and Environment in the Lake Victoria Basin Project currently underway in Uganda and Kenya. Specific lessons that are emerging are: 1) ongoing, meaningful stakeholder engagement has significantly shaped the design and implementation, 2) multi-sectoral projects are complex and striving for simplicity in the interventins is challenging, and 3) projects that address a sharply felt need experience substantial pressure for scale up, even before their effectiveness is established. Implicit in this paper is the recommendation that other projects would also benefit from applying a scale-up perspective from the outset.

  7. Using Advanced Modeling to Accelerate the Scale-Up of Carbon Capture Technologies

    SciTech Connect

    Miller, David; Sun, Xin; Storlie, Curtis; Bhattacharyya, Debangsu

    2015-06-18

    Carbon capture and storage (CCS) is one of many approaches that are critical for significantly reducing domestic and global CO2 emissions. The U.S. Department of Energy’s Clean Coal Technology Program Plan envisions 2nd generation CO2 capture technologies ready for demonstration-scale testing around 2020 with the goal of enabling commercial deployment by 2025 [1]. Third generation technologies have a similarly aggressive timeline. A major challenge is that the development and scale-up of new technologies in the energy sector historically takes up to 15 years to move from the laboratory to pre-deployment and another 20 to 30 years for widespread industrial scale deployment. In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale up new carbon capture technologies. The CCSI Toolset (1) enables promising concepts to be more quickly identified through rapid computational screening of processes and devices, (2) reduces the time to design and troubleshoot new devices and processes by using optimization techniques to focus development on the best overall process conditions and by using detailed device-scale models to better understand and improve the internal behavior of complex equipment, and (3) provides quantitative predictions of device and process performance during scale up based on rigorously validated smaller scale simulations that take into account model and parameter uncertainty[2]. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  8. 77 FR 25469 - Applications for New Awards; Investing in Innovation Fund, Scale-Up Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... Scale-up NIA. DATES: Deadline for Transmittal of Applications: May 30, 2012. Deadline for... 27 i3 Scale-up NIA. The Department extends the deadline date for this competition to May 30, 2012 so... Applications for New Awards; Investing in Innovation Fund, Scale- Up Grants Catalog of Federal...

  9. Protein crystallization in stirred systems--scale-up via the maximum local energy dissipation.

    PubMed

    Smejkal, Benjamin; Helk, Bernhard; Rondeau, Jean-Michel; Anton, Sabine; Wilke, Angelika; Scheyerer, Peter; Fries, Jacqueline; Hekmat, Dariusch; Weuster-Botz, Dirk

    2013-07-01

    Macromolecular bioproducts like therapeutic proteins have usually been crystallized with µL-scale vapor diffusion experiments for structure determination by X-ray diffraction. Little systematic know-how exists for technical-scale protein crystallization in stirred vessels. In this study, the Fab-fragment of the therapeutic antibody Canakinumab was successfully crystallized in a stirred-tank reactor on a 6 mL-scale. A four times faster onset of crystallization of the Fab-fragment was observed compared to the non-agitated 10 µL-scale. Further studies on a liter-scale with lysozyme confirmed this effect. A 10 times faster onset of crystallization was observed in this case at an optimum stirrer speed. Commonly suggested scale-up criteria (i.e., minimum stirrer speed to keep the protein crystals in suspension or constant impeller tip speed) were shown not to be successful. Therefore, the criterion of constant maximum local energy dissipation was applied for scale-up of the stirred crystallization process for the first time. The maximum local energy dissipation was estimated by measuring the drop size distribution of an oil/surfactant/water emulsion in stirred-tank reactors on a 6 mL-, 100 mL-, and 1 L-scale. A comparable crystallization behavior was achieved in all stirred-tank reactors when the maximum local energy dissipation was kept constant for scale-up. A maximum local energy dissipation of 2.2 W kg(-1) was identified to be the optimum for lysozyme crystallization at all scales under study.

  10. Scaling up debris-flow experiments on a centrifuge

    NASA Astrophysics Data System (ADS)

    Hung, C.; Capart, H.; Crone, T. J.; Grinspum, E.; Hsu, L.; Kaufman, D.; Li, L.; Ling, H.; Reitz, M. D.; Smith, B.; Stark, C. P.

    2013-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Formulation of an erosion-rate law for debris flows is therefore a high priority, and it makes sense to build such a law around laboratory experiments. However, running experiments big enough to generate realistic boundary forces is a logistical challenge to say the least [1]. One alternative is to run table-top simulations with unnaturally weak but fast-eroding pseudo-bedrock, another is to extrapolate from micro-erosion of natural substrates driven by unnaturally weak impacts; hybrid-scale experiments have also been conducted [2]. Here we take a different approach in which we scale up granular impact forces by running our experiments under enhanced gravity in a geotechnical centrifuge [3]. Using a 40cm-diameter rotating drum [2] spun at up to 100g, we generate debris flows with an effective depth of over several meters. By varying effective gravity from 1g to 100g we explore the scaling of granular flow forces and the consequent bed and wall erosion rates. The velocity and density structure of these granular flows is monitored using laser sheets, high-speed video, and particle tracking [4], and the progressive erosion of the boundary surfaces is measured by laser scanning. The force structures and their fluctuations within the granular mass and at the boundaries are explored with contact dynamics numerical simulations that mimic the lab experimental conditions [5]. In this presentation we summarize these results and discuss how they can contribute to the formulation of debris-flow erosion law. [1] Major, J. J. (1997), Journal of Geology 105: 345-366, doi:10.1086/515930 [2] Hsu, L. (2010), Ph.D. thesis, University of California, Berkeley [3] Brucks, A., et al (2007), Physical Review E 75, 032301, doi:10.1103/PhysRevE.75.032301 [4] Spinewine, B., et al (2011), Experiments in Fluids 50: 1507-1525, doi: 10.1007/s00348

  11. Scale up tools in reactive extrusion and compounding processes. Could 1D-computer modeling be helpful?

    NASA Astrophysics Data System (ADS)

    Pradel, J.-L.; David, C.; Quinebèche, S.; Blondel, P.

    2014-05-01

    Industrial scale-up (or scale down) in Compounding and Reactive Extrusion processes is one of the most critical R&D challenges. Indeed, most of High Performances Polymers are obtained within a reactive compounding involving chemistry: free radical grafting, in situ compatibilization, rheology control... but also side reactions: oxidation, branching, chain scission... As described by basic Arrhenius and kinetics laws, the competition between all chemical reactions depends on residence time distribution and temperature. Then, to ensure the best possible scale up methodology, we need tools to match thermal history of the formulation along the screws from a lab scale twin screw extruder to an industrial one. This paper proposes a comparison between standard scale-up laws and the use of Computer modeling Software such as Ludovic® applied and compared to experimental data. Scaling data from a compounding line to another one, applying general rules (for example at constant specific mechanical energy), shows differences between experimental and computed data, and error depends on the screw speed range. For more accurate prediction, 1D-Computer Modeling could be used to optimize the process conditions to ensure the best scale-up product, especially in temperature sensitive reactive extrusion processes. When the product temperature along the screws is the key, Ludovic® software could help to compute the temperature profile along the screws and extrapolate conditions, even screw profile, on industrial extruders.

  12. Semantic Representation and Scale-Up of Integrated Air Traffic Management Data

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Ranjan, Shubha; Wei, Mei Y.; Eshow, Michelle M.

    2016-01-01

    Each day, the global air transportation industry generates a vast amount of heterogeneous data from air carriers, air traffic control providers, and secondary aviation entities handling baggage, ticketing, catering, fuel delivery, and other services. Generally, these data are stored in isolated data systems, separated from each other by significant political, regulatory, economic, and technological divides. These realities aside, integrating aviation data into a single, queryable, big data store could enable insights leading to major efficiency, safety, and cost advantages. In this paper, we describe an implemented system for combining heterogeneous air traffic management data using semantic integration techniques. The system transforms data from its original disparate source formats into a unified semantic representation within an ontology-based triple store. Our initial prototype stores only a small sliver of air traffic data covering one day of operations at a major airport. The paper also describes our analysis of difficulties ahead as we prepare to scale up data storage to accommodate successively larger quantities of data -- eventually covering all US commercial domestic flights over an extended multi-year timeframe. We review several approaches to mitigating scale-up related query performance concerns.

  13. Scale-down/scale-up studies leading to improved commercial beer fermentation.

    PubMed

    Nienow, Alvin W; Nordkvist, Mikkel; Boulton, Christopher A

    2011-08-01

    Scale-up/scale-down techniques are vital for successful and safe commercial-scale bioprocess design and operation. An example is given in this review of recent studies related to beer production. Work at the bench scale shows that brewing yeast is not compromised by mechanical agitation up to 4.5 W/kg; and that compared with fermentations mixed by CO(2) evolution, agitation ≥ 0.04 W/kg is able to reduce fermentation time by about 20%. Work at the commercial scale in cylindroconical fermenters shows that, without mechanical agitation, most of the yeast sediments into the cone for about 50% of the fermentation time, leading to poor temperature control. Stirrer mixing overcomes these problems and leads to a similar reduction in batch time as the bench-scale tests and greatly reduces its variability, but is difficult to install in extant fermenters. The mixing characteristics of a new jet mixer, a rotary jet mixer, which overcomes these difficulties, are reported, based on pilot-scale studies. This change enables the advantages of stirring to be achieved at the commercial scale without the problems. In addition, more of the fermentable sugars are converted into ethanol. This review shows the effectiveness of scale-up/scale-down studies for improving commercial operations. Suggestions for further studies are made: one concerning the impact of homogenization on the removal of vicinal diketones and the other on the location of bubble formation at the commercial scale. PMID:21744501

  14. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens

    PubMed Central

    Byrne, J. M.; Muhamadali, H.; Coker, V. S.; Cooper, J.; Lloyd, J. R.

    2015-01-01

    Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nanoscale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled up successfully from laboratory- to pilot plant-scale production, while maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 l bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 h. This procedure was capable of producing up to 120 g of biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 l, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kilogram to tonne quantities. PMID:25972437

  15. Improving Skill Development: An Exploratory Study Comparing a Philosophical and an Applied Ethical Analysis Technique

    ERIC Educational Resources Information Center

    Al-Saggaf, Yeslam; Burmeister, Oliver K.

    2012-01-01

    This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of…

  16. High pressure generation using scaled-up Kawai-cell

    NASA Astrophysics Data System (ADS)

    Shatskiy, A.; Katsura, T.; Litasov, K. D.; Shcherbakova, A. V.; Borzdov, Y. M.; Yamazaki, D.; Yoneda, A.; Ohtani, E.; Ito, E.

    2011-11-01

    A scaled-up version of a 6-8 Kawai-type multianvil apparatus equipped with 47-mm WC anvils has been developed at the Institute for the Study of the Earth's Interior for operation over pressure ranging up to 19 and 24 GPa using the conventional system with larger compressional volumes between 1.2 and 0.4 cm 3, respectively. This system is used under uniaxial compression along cube diagonal of the Kawai-cell up to the press load of 19 MN. Experiments are performed using octahedral pressure media (PM) made of MgO- and ZrO 2-based semi-sintered ceramics and unfired pyrophyllite gaskets. In this study we used "Toshiba-F" grade WC anvils allowing pressure generation up to 24 GPa. We perform pressure calibrations at room and high temperatures, with octahedron/anvil truncation edge-length ratios ( a0/ b, mm) of 12.2/6, 14/6, 14/7, 16/7, 18/7, 18/9, and 18/10. Different configurations show that an increase in edge-length ratio of a0/b permits the achievement of higher pressure, which agrees with the results of Frost at al. (Frost, D.J., Poe, B.T., Tronnes, R.G., Liebske, C., Duba, A., Rubie, D.C., 2004. A new large-volume multianvil system. Phys. Earth Planet. Inter. 143, 507). However, it also shifts the pressure maximum to higher press loads, in some cases exceeding the capacity of a press. Our and Frost et al. (2004) data reveal that the 14/6, 18/8, and 18/10 assemblies are the most suitable in generating pressures of up to 19-24 GPa at 19 MN press load limits. The assemblies with a low a0/ b ratio have a lower upper pressure limit; however, they exhibit a systematically higher efficiency in pressure generation at low press loads. Consequently, assemblages with high and low a0/ b ratios should be used in high and low pressure experiments, respectively. For example, the 18/12 assembly is suitable for 5-11 GPa pressure range (Stoyanov, E., Haussermann, U., Leinenweber, K., 2010. Large-volume multianvil cells designed for chemical synthesis at high pressures. High Pressure

  17. Commercial scale validation of a process scale-up model for lubricant blending of pharmaceutical powders.

    PubMed

    Kushner, Joseph; Schlack, Holger

    2014-11-20

    An experimental study was conducted to verify that lubrication mixing in commercial-scale bin blenders can be described by a previously-reported lubrication blending process scale-up model. Specifically, the mixing of two placebo formulations (2:1 MCC:lactose, and 2:1 MCC:DCP) with 1% magnesium stearate in 100, 400, and 2000 L bin blenders at 30% and 70% blend fill levels for several extents of lubricant mixing was examined. The lubricated powder blends were assessed for bulk/tapped density and powder flow, as measured by Hausner's ratio. The blends were then compressed into tablets and evaluated for tensile strength, friability, and disintegration. It was observed that the lubrication rate constant, γ, for tablet tensile strength and for bulk specific volume were similar. Furthermore, powder flow, as measured by Hausner's ratio, improved with increased extent of lubrication. Tablet disintegration and tablet friability were both minimally affected as a result of extended lubrication for the placebos blends evaluated in this study. The results of this study confirm that the lubrication mixing model can be applied to scale-up the lubrication blending process from batches made in 30 mL bottle blenders to batches made in 2000 L bin blenders, which is a range of nearly five orders of magnitude.

  18. Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production.

    PubMed

    Gil-Carrera, L; Escapa, A; Mehta, P; Santoyo, G; Guiot, S R; Morán, A; Tartakovsky, B

    2013-02-01

    This study demonstrates microbial electrolysis cell (MEC) scale-up from a 50mL to a 10L cell. Initially, a 50mL membraneless MEC with a gas diffusion cathode was operated on synthetic wastewater at different organic loads. It was concluded that process scale-up might be best accomplished using a "reactor-in-series" concept. Consequently, 855mL and 10L MECs were built and operated. By optimizing the hydraulic retention time (HRT) of the 855mL MEC and individually controlling the applied voltages of three anodic compartments with a real-time optimization algorithm, a COD removal of 5.7g L(R)(-1)d(-1) and a hydrogen production of 1.0-2.6L L(R)(-1)d(-1) was achieved. Furthermore, a two MECs in series 10L setup was constructed and operated on municipal wastewater. This test showed a COD removal rate of 0.5g L(R)(-1)d(-1), a removal efficiency of 60-76%, and an energy consumption of 0.9Whperg of COD removed. PMID:23334014

  19. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells.

    PubMed

    Reuter, Lauri J; Bailey, Michael J; Joensuu, Jussi J; Ritala, Anneli

    2014-05-01

    Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low-cost purification by surfactant-based aqueous two-phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY-2) suspension cell platform and the establishment of pilot-scale propagation and downstream processing including first-step purification by ATPS. Green fluorescent protein-hydrophobin fusion (GFP-HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY-2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP-HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large-scale hydrophobin-assisted production of recombinant proteins in tobacco BY-2 cell suspensions.

  20. Scale-up of native beta-lactoglobulin affinity separation process.

    PubMed

    Vyas, H K; Izco, J M; Jiménez-Flores, R

    2002-07-01

    Affinity separation of beta-lactoglobulin in its native form with all-trans-retinal immobilized on calcium bio-silicate was scaled up and applied to separate it from industrial sweet whey. Three different methods of mixing the modified calcium bio-silicate and whey for the interaction between all-trans-retinal and beta-lactoglobulin were tried at pilot scale. The three methods used were 1) a column packed with calcium bio-silicate, 2) a stirred tank, and 3) a fluidized bed column of calcium bio-silicate particles. Adsorption and desorption of beta-lactoglobulin were carried out at pH 5.1 and 7.0, using 0.01 and 0.1 M phosphate buffers, respectively. The phosphate buffer containing desorbed beta-lactoglobulin was concentrated 20 times using ultrafiltration and then freeze-dried. The packed column, stirred tank, and fluidized bed column produced beta-lactoglobulin with purity of 80, >95, and >95%, and recovery of 0.65, 2.88, and 2.88 g per kilogram of calcium bio-silicate, respectively. The comparative poor purity and recovery of beta-lactoglobulin in the case of the packed column was attributed to insufficient contact between the passing fluids and the calcium bio-silicate during adsorption, desorption, and intermittent washing. The fluidized bed column method, with a gentle mixing action, was considered the best suited for further scale up to the industrial level. PMID:12201513

  1. Scaling-up and rooting-down: a case study of North-South partnerships for health from Tanzania

    PubMed Central

    Corbin, J. Hope; Mittelmark, Maurice B.; Lie, Gro Th.

    2012-01-01

    Background North-South Partnership (NSP) is the mandated blueprint for much global health action. Northern partners contribute funding and expertise and Southern partners contribute capacity for local action. Potential Northern partners are attracted to Southern organizations that have a track record of participating in well-performing NSPs. This often leads to the rapid ‘scaling up’ of the Southern organization's activities, and more predictable and stable access to resources. Yet, scaling up may also present challenges and threats, as the literature on rapid organization growth shows. However, studies of the impact of scaling up within NSPs in particular are absent from the literature, and the positive and negative impact of scaling up on Southern partners’ functioning is a matter of speculation. Objective The purpose of this study is to examine how scaling up affects a Southern partner's organizational functioning, in a Southern grassroots NGO with 20 years of scaling up experience. Design A case study design was used to explore the process and impact of scaling up in KIWAKKUKI, a women's grassroots organization working on issues of HIV and AIDS in the Kilimanjaro region of Tanzania. Data included documents, observation notes and in-depth interviews with six participants. The data were analyzed by applying an established systems framework of partnership functioning, in addition to a scaling up typology. Results KIWAKKUKI has experienced significant scale-up of activities over the past 20 years. Over time, successful partnerships and programs have created synergy and led to further growth. As KIWAKUKKI expanded so did both its partnerships and grassroots base. The need for capacity building for volunteers exceeded the financial resources provided by Northern partners. Some partners did not have such capacity building as part of their own central mission. This gap in training has produced negative cycles within the organization and its NSPs. Conclusions

  2. Schinus terebinthifolius countercurrent chromatography (Part II): Intra-apparatus scale-up and inter-apparatus method transfer.

    PubMed

    Costa, Fernanda das Neves; Vieira, Mariana Neves; Garrard, Ian; Hewitson, Peter; Jerz, Gerold; Leitão, Gilda Guimarães; Ignatova, Svetlana

    2016-09-30

    Countercurrent chromatography (CCC) is being widely used across the world for purification of various materials, especially in natural product research. The predictability of CCC scale-up has been successfully demonstrated using specially designed instruments of the same manufacturer. The reality is that the most of CCC users do not have access to such instruments and do not have enough experience to transfer methods from one CCC column to another. This unique study of three international teams is based on innovative approach to simplify the scale-up between different CCC machines using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. The optimized separation methodology, recently developed by the authors (Part I), was repeatedly performed on CCC columns of different design available at most research laboratories across the world. Hexane - ethyl acetate - methanol - water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds to monitor stationary phase retention and calculate peak resolution. It has been demonstrated that volumetric, linear and length scale-up transfer factors based on column characteristics can be directly applied to different i.d., volume and length columns independently on instrument make in an intra-apparatus scale-up and inter-apparatus method transfer. PMID:27608619

  3. 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up.

    PubMed

    Kitson, Philip J; Marshall, Ross J; Long, Deliang; Forgan, Ross S; Cronin, Leroy

    2014-11-17

    3D printing techniques allow the laboratory-scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high-throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale-up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase-pure samples of coordination polymers MIL-96 and HKUST-1, in yields comparable to synthesis in traditional apparatus. PMID:25079230

  4. Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell.

    PubMed

    Happe, Manuel; Sugnaux, Marc; Cachelin, Christian Pierre; Stauffer, Marc; Zufferey, Géraldine; Kahoun, Thomas; Salamin, Paul-André; Egli, Thomas; Comninellis, Christos; Grogg, Alain-François; Fischer, Fabian

    2016-01-01

    Phosphate remobilization from digested sewage sludge containing iron phosphate was scaled-up in a microbial fuel cell (MFC). A 3litre triple chambered MFC was constructed. This reactor was operated as a microbial fuel cell and later as a microbial electrolysis cell to accelerate cathodic phosphate remobilization. Applying an additional voltage and exceeding native MFC power accelerated chemical base formation and the related phosphate remobilization rate. The electrolysis approach was extended using a platinum-RVC cathode. The pH rose to 12.6 and phosphate was recovered by 67% in 26h. This was significantly faster than using microbial fuel cell conditions. Shrinking core modelling particle fluid kinetics showed that the reaction resistance has to move inside the sewage sludge particle for considerable rate enhancement. Remobilized phosphate was subsequently precipitated as struvite and inductively coupled plasma mass spectrometry indicated low levels of cadmium, lead, and other metals as required by law for recycling fertilizers. PMID:26519694

  5. Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell.

    PubMed

    Happe, Manuel; Sugnaux, Marc; Cachelin, Christian Pierre; Stauffer, Marc; Zufferey, Géraldine; Kahoun, Thomas; Salamin, Paul-André; Egli, Thomas; Comninellis, Christos; Grogg, Alain-François; Fischer, Fabian

    2016-01-01

    Phosphate remobilization from digested sewage sludge containing iron phosphate was scaled-up in a microbial fuel cell (MFC). A 3litre triple chambered MFC was constructed. This reactor was operated as a microbial fuel cell and later as a microbial electrolysis cell to accelerate cathodic phosphate remobilization. Applying an additional voltage and exceeding native MFC power accelerated chemical base formation and the related phosphate remobilization rate. The electrolysis approach was extended using a platinum-RVC cathode. The pH rose to 12.6 and phosphate was recovered by 67% in 26h. This was significantly faster than using microbial fuel cell conditions. Shrinking core modelling particle fluid kinetics showed that the reaction resistance has to move inside the sewage sludge particle for considerable rate enhancement. Remobilized phosphate was subsequently precipitated as struvite and inductively coupled plasma mass spectrometry indicated low levels of cadmium, lead, and other metals as required by law for recycling fertilizers.

  6. Scale Up of Pan Coating Process Using Quality by Design Principles.

    PubMed

    Agrawal, Anjali M; Pandey, Preetanshu

    2015-11-01

    Scale up of pan coating process is of high importance to the pharmaceutical and food industry. The number of process variables and their interdependence in a pan coating process can make it a rather complex scale-up problem. This review discusses breaking down the coating process variables into three main categories: pan-related, spray-related, and thermodynamic-related factors. A review on how to scale up each of these factors is presented via two distinct strategies--"macroscopic" and "microscopic" scale-up. In a Quality by Design paradigm, where an increased process understanding is required, there is increased emphasis on "microscopic" scale-up, which by definition ensures a more reproducible process and thereby robust scale-up. This article also reviews the various existing and new modeling and process analytical technology tools that can provide additional information to facilitate a more fundamental understanding of the coating process.

  7. Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up.

    PubMed

    Oncel, S; Sabankay, M

    2012-10-01

    This study focuses on a scale-up procedure considering two vital parameters light energy and mixing for microalgae cultivation, taking Chlamydomonas reinhardtii as the model microorganism. Applying two stage hydrogen production protocol to 1L flat type and 2.5L tank type photobioreactors hydrogen production was investigated with constant light energy and mixing time. The conditions that provide the shortest transfer time to anaerobic culture (light energy; 2.96 kJ s(-1)m(-3) and mixing time; 1 min) and highest hydrogen production rate (light energy; 1.22 kJ s(-1)m(-3) and mixing time; 2.5 min) are applied to 5L photobioreactor. The final hydrogen production for 5L system after 192 h was measured as 195 ± 10 mL that is comparable with the other systems is a good validation for the scale-up procedure. PMID:22858490

  8. SCALE-UP OF ADVANCED HOT-GAS DESULFURIZATION SORBENTS

    SciTech Connect

    K. JOTHIMURUGESAN; S.K. GANGWAL

    1998-03-01

    The objective of this study was to develop advanced regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective was to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high sulfidation activity at temperatures as low as 343 C (650 F). Twenty sorbents were synthesized in this work. Details of the preparation technique and the formulations are proprietary, pending a patent application, thus no details regarding the technique are divulged in this report. Sulfidations were conducted with a simulated gas containing (vol %) 10 H{sub 2}, 15 CO, 5 CO{sub 2}, 0.4-1 H{sub 2}S, 15 H{sub 2}O, and balance N{sub 2} in the temperature range of 343-538 C. Regenerations were conducted at temperatures in the range of 400-600 C with air-N{sub 2} mixtures. To prevent sulfation, catalyst additives were investigated that promote regeneration at lower temperatures. Characterization were performed for fresh, sulfided and regenerated sorbents.

  9. [Scale-up preparation of phycoerythrin from Porphyra haitanensis].

    PubMed

    Li, Chunxia; Yan, Daiyuan; Ni, Jing; Guo, Ziye; Cai, Chun'er; He, Peimin

    2011-04-01

    We developed large-scale preparation of phycoerythrin from Porphyra haitanensis, a main economic red algae in China. Firstly, P. haitanensis thallus was broken by using "swelling and smash" method. Then times of grads ammonium sulfate precipitation applied to the crude extraction were compared. Desalted solution was further purified with one-step chromatography using hydroxyapatite and properties on spectrum and molecular weight were identified finally. The results indicated that after four times of ammonium sulfate precipitation (15%, 50%, 10% and 40%), the absorption spectrum purity of P. haitanensis achieved 0.9 (A564/A280), and 507.82 mg phycoerythrin (A564/A280 > 3.2) was obtained from 7 kg fresh algae after further hydroxyapatite chromatography. This research provides a potential way for preparation of phycoerythrin in large sclae.

  10. What are the barriers to scaling up health interventions in low and middle income countries? A qualitative study of academic leaders in implementation science

    PubMed Central

    2012-01-01

    Background Most low and middle income countries (LMICs) are currently not on track to reach the health-related Millennium Development Goals (MDGs). One way to accelerate progress would be through the large-scale implementation of evidence-based health tools and interventions. This study aimed to: (a) explore the barriers that have impeded such scale-up in LMICs, and (b) lay out an “implementation research agenda”—a series of key research questions that need to be addressed in order to help overcome such barriers. Methods Interviews were conducted with fourteen key informants, all of whom are academic leaders in the field of implementation science, who were purposively selected for their expertise in scaling up in LMICs. Interviews were transcribed by hand and manually coded to look for emerging themes related to the two study aims. Barriers to scaling up, and unanswered research questions, were organized into six categories, representing different components of the scaling up process: attributes of the intervention; attributes of the implementers; scale-up approach; attributes of the adopting community; socio-political, fiscal, and cultural context; and research context. Results Factors impeding the success of scale-up that emerged from the key informant interviews, and which are areas for future investigation, include: complexity of the intervention and lack of technical consensus; limited human resource, leadership, management, and health systems capacity; poor application of proven diffusion techniques; lack of engagement of local implementers and of the adopting community; and inadequate integration of research into scale-up efforts. Conclusions Key steps in expanding the evidence base on implementation in LMICs include studying how to: simplify interventions; train “scale-up leaders” and health workers dedicated to scale-up; reach and engage communities; match the best delivery strategy to the specific health problem and context; and raise the low

  11. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul A.

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  12. Scaling up multiphoton neural scanning: the SSA algorithm.

    PubMed

    Schuck, Renaud; Annecchino, Luca A; Schultz, Simon R

    2014-01-01

    In order to reverse-engineer the information processing capabilities of the cortical circuit, we need to densely sample neural circuit; it may be necessary to sample the activity of thousands of neurons simultaneously. Frame scanning techniques do not scale well in this regard, due to the time "wasted" scanning extracellular space. For scanners in which inertia can be neglected, path length minimization strategies enable large populations to be imaged at relatively high sampling rates. However, in a standard multiphoton microscope, the scanners responsible for beam deflection are inertial, indicating that an optimal solution should take rotor and mirror momentum into account. We therefore characterized the galvanometric scanners of a commercial multiphoton microscope, in order to develop and validate a MATLAB model of microscope scanning dynamics. We tested the model by simulating scan paths across pseudo-randomly positioned neuronal populations of differing neuronal density and field of view. This model motivated the development of a novel scanning algorithm, Adaptive Spiral Scanning (SSA), in which the radius of a circular trajectory is constantly updated such that it follows a spiral trajectory scanning all the cells. Due to the kinematic efficiency of near-circular trajectories, this algorithm achieves higher sampling rates than shortest path approaches, while retaining a relatively efficient coverage fraction in comparison to raster or resonance based frame-scanning approaches. PMID:25570582

  13. Scale-up of catalytic wet oxidation under moderate conditions

    SciTech Connect

    Harf, J.; Hug, A.; Vogel, F.; Rohr, P.R. von

    1999-05-01

    The Catalytic Wet Oxidation with pure oxygen is a suitable treatment process for the degradation of organic matter in wastewaters and sludges. The applied moderate reaction conditions lead only to a partial oxidation of the organics. Therefore the resulting process water has to be purified in a biological treatment plant. In this study, experimental data collected during the wet oxidation of phenol and sewage sludge in a laboratory batch reactor as well as in a pilot plant are presented. A generalized kinetic model combined with a residence time analysis allows to predict accurately the degradation of organic matter in the pilot plant. The wet oxidation of wastewaters and sewage sludge was realized in one single plant concept. Treating suspended or diluted organic wastes produces a highly biodegradable process water containing low molecular oxidation products. The investigated Catalytic Wet Oxidation of sewage sludge generates a residual solid complying with the European quality standards of disposal concerning leachability and organic content. Due to its low capital and operating costs, the Catalytic Wet Oxidation process constitutes an acceptable alternative to incineration for the disposal of sludges.

  14. Large-area, triple-junction a-Si alloy production scale-up. Semiannual technical progress report, 17 March 1992--18 September 1992

    SciTech Connect

    Oswald, R.; O`Dowd, J.

    1993-04-01

    This report describes Solarex`s work to advance its photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance, and expand the Solarex commercial production capacity. Solarex will meet these objectives by improving the deposition and quality of the transport front contact; optimizing the laser patterning process; scaling up the semiconductor deposition process; improving the back-contact deposition; and scaling up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 1 portion of this subcontract, Solarex focused on scaling up components of the chemical vapor deposition system for deposition of the system contact, scaling up laser scribing techniques; triple-junction recipes for module production; and metal-oxide back contacts. The goal of these efforts is to adopt all portions of the manufacturing line to handle substrates larger than 0.37 m{sup 2}.

  15. Scale-up of miscible flood processes. Annual report

    SciTech Connect

    Orr, F.M. Jr.

    1992-05-01

    Results of a wide-ranging investigation of the scaling of the physical mechanisms of miscible floods are reported. Advanced techniques for analysis of crude oils are considered in Chapter 2. Application of supercritical fluid chromatography is demonstrated for characterization of crude oils for equation-of-state calculations of phase equilibrium. Results of measurements of crude oil and phase compositions by gas chromatography and mass spectrometry are also reported. The theory of development of miscibility is considered in detail in Chapter 3. The theory is extended to four components, and sample solutions for a variety of gas injection systems are presented. The analytical theory shows that miscibility can develop even though standard tie-line extension criteria developed for ternary systems are not satisfied. In addition, the theory includes the first analytical solutions for condensing/vaporizing gas drives. In Chapter 4, methods for simulation of viscous fingering are considered. The scaling of the growth of transition zones in linear viscous fingering is considered. In addition, extension of the models developed previously to three dimensions is described, as is the inclusion of effects of equilibrium phase behavior. In Chapter 5, the combined effects of capillary and gravity-driven crossflow are considered. The experimental results presented show that very high recovery can be achieved by gravity segregation when interfacial tensions are moderately low. We argue that such crossflow mechanisms are important in multicontact miscible floods in heterogeneous reservoirs. In addition, results of flow visualization experiments are presented that illustrate the interplay of crossflow driven by gravity with that driven by viscous forces.

  16. Liposome and niosome preparation using a membrane contactor for scale-up.

    PubMed

    Pham, Thi Thuy; Jaafar-Maalej, Chiraz; Charcosset, Catherine; Fessi, Hatem

    2012-06-01

    The scaling-up ability of liposome and niosome production, from laboratory scale using a syringe-pump device to a pilot scale using the membrane contactor module, was investigated. For this aim, an ethanol injection-based method was applied for liposome and niosome preparation. The syringe-pump device was used for laboratory scale batches production (30 ml for liposomes, 20 ml for niosomes) then a pilot scale (750 ml for liposomes, 1000 ml for niosomes) were obtained using the SPG membrane contactor. Resulted nanovesicles were characterized in terms of mean vesicles size, polydispersity index (PdI) and zeta potential. The drug encapsulation efficiency (E.E.%) was evaluated using two drug-models: caffeine and spironolactone, a hydrophilic and a lipophilic molecule, respectively. As results, nanovectors mean size using the syringe-pump device was comprised between 82 nm and 95 nm for liposomes and between 83 nm and 127 nm for niosomes. The optimal E.E. of caffeine within niosomes, was found around 9.7% whereas the spironolactone E.E. reached 95.6% which may be attributed to its lipophilic properties. For liposomes these values were about 9.7% and 86.4%, respectively. It can be clearly seen that the spironolactone E.E. was slightly higher within niosomes than liposomes. Optimized formulations, which offered smaller size and higher E.E., were selected for pilot scale production using the SPG membrane. It has been found that vesicles characteristics (size and E.E.%) were reproducible using the membrane contactor module. Thus, the current study demonstrated the usefulness of the membrane contactor as a device for scaling-up both liposome and niosome preparations with small mean sizes.

  17. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up.

    PubMed

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I; Allwood, J William; Rattray, Nicholas J W; Correa, Elon; Alrabiah, Haitham; Lloyd, Jonathan R; Goodacre, Royston

    2015-05-15

    During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However

  18. What Does It Take to Scale Up and Sustain Evidence-Based Practices?

    ERIC Educational Resources Information Center

    Klingner, Janette K.; Boardman, Alison G.; Mcmaster, Kristen L.

    2013-01-01

    This article discusses the strategic scaling up of evidence-based practices. The authors draw from the scholarly work of fellow special education researchers and from the field of learning sciences. The article defines scaling up as the process by which researchers or educators initially implement interventions on a small scale, validate them, and…

  19. Fundamental Issues Concerning the Sustainment and Scaling Up of Professional Development Programs

    ERIC Educational Resources Information Center

    Tirosh, Dina; Tsamir, Pessia; Levenson, Esther

    2015-01-01

    The issue of sustaining and scaling up professional development for mathematics teachers raises several fundamental issues for researchers. This commentary addresses various definitions for sustainability and scaling up and how these definitions may affect the design of programs as well as the design of research. We consider four of the papers in…

  20. Discrete element method based scale-up model for material synthesis using ball milling

    NASA Astrophysics Data System (ADS)

    Santhanam, Priya Radhi

    Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully

  1. 'Scaling-up is a craft not a science': Catalysing scale-up of health innovations in Ethiopia, India and Nigeria.

    PubMed

    Spicer, Neil; Bhattacharya, Dipankar; Dimka, Ritgak; Fanta, Feleke; Mangham-Jefferies, Lindsay; Schellenberg, Joanna; Tamire-Woldemariam, Addis; Walt, Gill; Wickremasinghe, Deepthi

    2014-11-01

    Donors and other development partners commonly introduce innovative practices and technologies to improve health in low and middle income countries. Yet many innovations that are effective in improving health and survival are slow to be translated into policy and implemented at scale. Understanding the factors influencing scale-up is important. We conducted a qualitative study involving 150 semi-structured interviews with government, development partners, civil society organisations and externally funded implementers, professional associations and academic institutions in 2012/13 to explore scale-up of innovative interventions targeting mothers and newborns in Ethiopia, the Indian state of Uttar Pradesh and the six states of northeast Nigeria, which are settings with high burdens of maternal and neonatal mortality. Interviews were analysed using a common analytic framework developed for cross-country comparison and themes were coded using Nvivo. We found that programme implementers across the three settings require multiple steps to catalyse scale-up. Advocating for government to adopt and finance health innovations requires: designing scalable innovations; embedding scale-up in programme design and allocating time and resources; building implementer capacity to catalyse scale-up; adopting effective approaches to advocacy; presenting strong evidence to support government decision making; involving government in programme design; invoking policy champions and networks; strengthening harmonisation among external programmes; aligning innovations with health systems and priorities. Other steps include: supporting government to develop policies and programmes and strengthening health systems and staff; promoting community uptake by involving media, community leaders, mobilisation teams and role models. We conclude that scale-up has no magic bullet solution - implementers must embrace multiple activities, and require substantial support from donors and governments in

  2. Reactor scale up for biological conversion of cellulosic biomass to ethanol.

    PubMed

    Shao, Xiongjun; Lynd, Lee; Bakker, André; LaRoche, Richard; Wyman, Charles

    2010-05-01

    The absence of a systematic scale-up approach for biological conversion of cellulosic biomass to commodity products is a significant bottleneck to realizing the potential benefits offered by such conversion. Motivated by this, we undertook to develop a scale-up approach for conversion of waste paper sludge to ethanol. Physical properties of the system were measured and correlations were developed for their dependence upon cellulose conversion. Just-suspension of solid particles was identified as the scale up criterion based on experiments at lab scale. The impeller speed for just solids suspension at large scale was predicted using computational fluid dynamics simulations. The scale-up strategy was validated by analyzing mixing requirements such as solid-liquid mass transfer under the predicted level of agitation at large scale. The scale-up approach enhances the prediction of reactor performance and helps provide guidelines for the analysis and design of large scale bioreactors based on bench scale experimentation. PMID:19649658

  3. Scale-up and cost evaluation of a foamed emulsion bioreactor.

    PubMed

    Kan, E; Deshusses, M A

    2006-06-01

    In the present paper, the potential of the foamed emulsion bioreactor (FEBR), a novel biological reactor for air pollution control was evaluated. Experimental data obtained on a laboratory-scale prototype were used to scale-up the process for a hypothetical case consisting of a contaminated air flow rate of 10,000 m(3) h(-1), a toluene inlet concentration of 1 g m(-3) and minimum required treatment efficiency of 92%. Reactor design and operating issues for the full-scale FEBR were identified. They included the requirement for stable foam generation with appropriate air distributors, and recycling of the auxiliary organic phase, surfactants and cells from the discharge of the reactor. The capital and operating costs for the concept full-scale FEBR were evaluated and compared to those of competing technologies, namely biofiltration, biotrickling filtration and catalytic and thermal oxidation. All three biological techniques had significantly lower capital and operating costs. Among the biological techniques, the FEBR had the lowest estimated capital cost since its greater effectiveness allowed a smaller reactor to meet the treatment objectives. The operating costs for the FEBR were higher than those of biofilters and biotrickling filters because of the requirements for nutrients and auxiliary chemicals. Overall, the results highlight that biotreatment is much more cost effective than thermal and catalytic oxidation. They further suggest that the FEBR may an interesting alternative to biofilters and biotrickling filters where the available space for air pollution control equipment is limited.

  4. Improving skill development: an exploratory study comparing a philosophical and an applied ethical analysis technique

    NASA Astrophysics Data System (ADS)

    Al-Saggaf, Yeslam; Burmeister, Oliver K.

    2012-09-01

    This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of ICT students and professionals. In particular the skill development focused on includes: being able to recognise ethical challenges and formulate coherent responses; distancing oneself from subjective judgements; developing ethical literacy; identifying stakeholders; and communicating ethical decisions made, to name a few.

  5. Recreation in a Zoo Environment: Applying Animal Behavior Research Techniques to Understand How Visitors Allocate Time.

    ERIC Educational Resources Information Center

    Harris, Lisa

    1995-01-01

    A focal-animal sampling technique was applied to measure and quantify visitor behavior at an enclosed hummingbird aviary. The amount of time visitors stayed within the aviary and how they allocated time was measured. Results can be used by exhibit designers to create and modify museum exhibits. (LZ)

  6. Two Student Self-Management Techniques Applied to Data-Based Program Modification.

    ERIC Educational Resources Information Center

    Wesson, Caren

    Two student self-management techniques, student charting and student selection of instructional activities, were applied to ongoing data-based program modification. Forty-two elementary school resource room students were assigned randomly (within teacher) to one of three treatment conditions: Teacher Chart-Teacher Select Instructional Activities…

  7. The effect of applying orthogonal projection technique in short window segments to obtain fetal magnetocardiogram

    PubMed Central

    Sriram, Bhargavi; Wilson, James D.; Govindan, Rathinaswamy B.; Lowery, Curtis L.; Preissl, Hubert

    2015-01-01

    Non-invasive recordings of fetal heart and brain have been possible for almost a decade with the advancement in biomagnetic sensors using the SQUID (Superconducting Quantum Interference Device) technology. Techniques such as orthogonal projection and ICA have been applied to attenuate interference from other biological sources such as maternal heart. Successful application of such techniques among other factors depend on the non-stationary characteristics of the signals. To minimize the effect of non-stationarity due to maternal and/or fetal movement in long duration datasets, we proposed to investigate the minimal time window that is needed to obtain averaging with good SNR to apply the orthogonal projection technique to attenuate maternal magnetocardiogram (MCG) and obtain fetal MCG. The quantifying measure is based on spectral estimation of signals from 151-channel SQUID array system. PMID:24109713

  8. Scaling-up Process-Oriented Guided Inquiry Learning Techniques for Teaching Large Information Systems Courses

    ERIC Educational Resources Information Center

    Trevathan, Jarrod; Myers, Trina; Gray, Heather

    2014-01-01

    Promoting engagement during lectures becomes significantly more challenging as class sizes increase. Therefore, lecturers need to experiment with new teaching methodologies to embolden deep learning outcomes and to develop interpersonal skills amongst students. Process Oriented Guided Inquiry Learning is a teaching approach that uses highly…

  9. Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines

    PubMed Central

    Zhang, Kai; Lan, Liang; Kwok, James T.; Vucetic, Slobodan; Parvin, Bahram

    2014-01-01

    When the amount of labeled data are limited, semi-supervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via ℓ1-regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning. PMID:25720002

  10. Scale-up of stirring as foam disruption (SAFD) to industrial scale.

    PubMed

    Hoeks, Frans W J M M; Boon, Lotte A; Studer, Fabian; Wolff, Menno O; van der Schot, Freija; Vrabél, Peter; van der Lans, Rob G J M; Bujalski, Waldemar; Manelius, Asa; Blomsten, Gustav; Hjorth, Sven; Prada, Giovanna; Luyben, Karel Ch A M; Nienow, Alvin W

    2003-02-01

    Foam disruption by agitation-the stirring as foam disruption (SAFD) technique-was scaled up to pilot and production scale using Rushton turbines and an up-pumping hydrofoil impeller, the Scaba 3SHP1. The dominating mechanism behind SAFD-foam entrainment-was also demonstrated at production scale. The mechanistic model for SAFD defines a fictitious liquid velocity generated by the (upper) impeller near the dispersion surface, which is correlated with complete foam disruption. This model proved to be scalable, thus enabling the model to be used for the design of SAFD applications. Axial upward pumping impellers appeared to be more effective with respect to SAFD than Rushton turbines, as demonstrated by retrofitting a 12,000 l bioreactor, i.e. the triple Rushton configuration was compared with a mixed impeller configuration from Scaba with a 20% lower ungassed power draw. The retrofitted impeller configuration allowed 10% more broth without risking excessive foaming. In this way a substantial increase in the volumetric productivity of the bioreactor was achieved. Design recommendations for the application of SAFD are given in this paper. Using these recommendations for the design of a 30,000 l scale bioreactor, almost foamless Escherichia coli fermentations were realised. PMID:12612787

  11. A Route to Scale Up DNA Origami Using DNA Tiles as Folding Staples

    SciTech Connect

    Zhao, Zhao; Yan, Hao; Liu, Yan

    2010-01-26

    A new strategy is presented to scale up DNA origami using multi-helical DNA tiles as folding staples. Atomic force microscopy images demonstrate the two-dimensional structures formed by using this strategy.

  12. Methodologies Used for Scaling-up From a Single Energy Production Unit to State Energy Sector

    NASA Astrophysics Data System (ADS)

    Cimdina, Ginta; Timma, Lelde; Veidenbergs, Ivars; Blumberga, Dagnija

    2015-12-01

    In a well-functioning and sustainable national energy sector, each of its elements should function with maximum efficiency. To ensure maximum efficiency and study possible improvement of the sector, a scaling-up framework is presented in this work. The scaling-up framework means that the starting point is a CHP unit and its operation, the next step of aggregation is in a district heating network, followed by a municipal energy plan and finally leading to a low carbon strategy. In this framework the authors argue, that the successful, innovative practices developed and tested at the lower level of aggregation can be then transferred to the upper levels of aggregation, thus leading to a scaling-up effect of innovative practices. The work summarizes 12 methodologies used in the energy sector, by dividing these methodologies among the levels of aggregation in a scaling-up framework.

  13. Scaling up and error analysis of transpiration for Populus euphratica in a desert riparian forest

    NASA Astrophysics Data System (ADS)

    Si, J.; Li, W.; Feng, Q.

    2013-12-01

    Water consumption information of the forest stand is the most important factor for regional water resources management. However, water consumption of individual trees are usually measured based on the limited sample trees , so, it is an important issue how to realize eventual scaling up of data from a series of sample trees to entire stand. Estimation of sap flow flux density (Fd) and stand sapwood area (AS-stand) are among the most critical factors for determining forest stand transpiration using sap flow measurement. To estimate Fd, the various links in sap flow technology have great impact on the measurement of sap flow, to estimate AS-stand, an appropriate indirect technique for measuring each tree sapwood area (AS-tree) is required, because it is impossible to measure the AS-tree of all trees in a forest stand. In this study, Fd was measured in 2 mature P. euphratic trees at several radial depths, 0~10, 10~30mm, using sap flow sensors with the heat ratio method, the relationship model between AS-tree and stem diameter (DBH), growth model of AS-tree were established, using investigative original data of DBH, tree-age, and AS-tree. The results revealed that it can achieve scaling up of transpiration from sample trees to entire forest stand using AS-tree and Fd, however, the transpiration of forest stand (E) will be overvalued by 12.6% if using Fd of 0~10mm, and it will be underestimated by 25.3% if using Fd of 10~30mm, it implied that major uncertainties in mean stand Fd estimations are caused by radial variations in Fd. E will be obviously overvalued when the AS-stand is constant, this result imply that it is the key to improve the prediction accuracy that how to simulate the AS-stand changes in the day scale; They also showed that the potential errors in transpiration with a sample size of approximately ≥30 were almost stable for P.euphrtica, this suggests that to make an allometric equation it might be necessary to sample at least 30 trees.

  14. Scaling up nano-milling of poorly water soluble compounds using a rotation/revolution pulverizer.

    PubMed

    Yuminoki, K; Tachibana, S; Nishimura, Y; Mori, H; Takatsuka, T; Hashimoto, N

    2016-02-01

    We previously reported that a rotation/revolution pulverizer (NP-100) could mill a small amount of a drug (0.1 g) into nanoparticles in several minutes. In this investigation, scale up from the milligram to the kilogram scale of the nano-milling process by the rotation/revolution pulverizer was studied. Phenytoin was used as a model drug with low solubility in water. After confirming the improvement of the phenytoin bioavailability by milling to nanoparticles using NP-100, scaling parameters were evaluated using NP-100 and the middle scale model of NP-100 (ARV-3000T). A theoretical equation for the specific collisional energy was adapted for wet milling; this suggested that the relative centrifugal acceleration of revolution (revolution G) and the drug concentration in the suspension were the two most important parameters. The results obtained using NP-100 and ARV-3000T correlated well when these two parameters were identical. These results were applied to the large scale model of NP-100 (ARV-10KT), where 2 kg (1 kg x 2) of phenytoin nanoparticles were obtained in 60 min. The results from PXRD and DSC indicated that the milled phenytoin by ARV-3000T and ARV-10KT maintained its crystallinity. These results suggest nano-milling using a rotation/revolution pulverizer will be widely applicable to the development of nano-medicine.

  15. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up

    PubMed Central

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I.; Allwood, J. William; Rattray, Nicholas J. W.; Correa, Elon; Alrabiah, Haitham

    2015-01-01

    During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However

  16. Comparison of a laboratory and a production coating spray gun with respect to scale-up.

    PubMed

    Mueller, Ronny; Kleinebudde, Peter

    2007-01-19

    A laboratory spray gun and a production spray gun were investigated in a scale-up study. Two Schlick spray guns, which are equipped with a new antibearding cap, were used in this study. The influence of the atomization air pressure, spray gun-to tablet bed distance, polymer solution viscosity, and spray rate were analyzed in a statistical design of experiments. The 2 spray guns were compared with respect to the spray width and height, droplet size, droplet velocity, and spray density. The droplet size, velocity, and spray density were measured with a Phase Doppler Particle Analyzer. A successful scale-up of the atomization is accomplished if similar droplet sizes, droplet velocities, and spray densities are achieved in the production scale as in the laboratory scale. This study gives basic information for the scale-up of the settings from the laboratory spray gun to the production spray gun. Both spray guns are highly comparable with respect to the droplet size and velocity. The scale-up of the droplet size should be performed by an adjustment of the atomization air pressure. The scale-up of the droplet velocity should be performed by an adjustment of the spray gun to tablet bed distance. The presented statistical model and surface plots are convenient and powerful tools for scaling up the spray settings if the spray gun is changed from laboratory spray gun to the production spray gun.

  17. A comparison of two conformal mapping techniques applied to an aerobrake body

    NASA Technical Reports Server (NTRS)

    Hommel, Mark J.

    1987-01-01

    Conformal mapping is a classical technique which has been utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping has been successfully applied in the construction of grids around airfoils, engine inlets and other aircraft configurations. Conformal mapping techniques were applied to an aerobrake body having an axis of symmetry. Two different approaches were utilized: (1) Karman-Trefftz transformation; and (2) Point Wise Schwarz Christoffel transformation. In both cases, the aerobrake body was mapped onto a near circle, and a grid was generated in the mapped plane. The mapped body and grid were then mapped back into physical space and the properties of the associated grids were examined. Advantages and disadvantages of both approaches are discussed.

  18. Confirmation of standard error analysis techniques applied to EXAFS using simulations

    SciTech Connect

    Booth, Corwin H; Hu, Yung-Jin

    2009-12-14

    Systematic uncertainties, such as those in calculated backscattering amplitudes, crystal glitches, etc., not only limit the ultimate accuracy of the EXAFS technique, but also affect the covariance matrix representation of real parameter errors in typical fitting routines. Despite major advances in EXAFS analysis and in understanding all potential uncertainties, these methods are not routinely applied by all EXAFS users. Consequently, reported parameter errors are not reliable in many EXAFS studies in the literature. This situation has made many EXAFS practitioners leery of conventional error analysis applied to EXAFS data. However, conventional error analysis, if properly applied, can teach us more about our data, and even about the power and limitations of the EXAFS technique. Here, we describe the proper application of conventional error analysis to r-space fitting to EXAFS data. Using simulations, we demonstrate the veracity of this analysis by, for instance, showing that the number of independent dat a points from Stern's rule is balanced by the degrees of freedom obtained from a 2 statistical analysis. By applying such analysis to real data, we determine the quantitative effect of systematic errors. In short, this study is intended to remind the EXAFS community about the role of fundamental noise distributions in interpreting our final results.

  19. Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    PubMed

    Bousquet, J; Farrell, J; Crooks, G; Hellings, P; Bel, E H; Bewick, M; Chavannes, N H; de Sousa, J Correia; Cruz, A A; Haahtela, T; Joos, G; Khaltaev, N; Malva, J; Muraro, A; Nogues, M; Palkonen, S; Pedersen, S; Robalo-Cordeiro, C; Samolinski, B; Strandberg, T; Valiulis, A; Yorgancioglu, A; Zuberbier, T; Bedbrook, A; Aberer, W; Adachi, M; Agusti, A; Akdis, C A; Akdis, M; Ankri, J; Alonso, A; Annesi-Maesano, I; Ansotegui, I J; Anto, J M; Arnavielhe, S; Arshad, H; Bai, C; Baiardini, I; Bachert, C; Baigenzhin, A K; Barbara, C; Bateman, E D; Beghé, B; Kheder, A Ben; Bennoor, K S; Benson, M; Bergmann, K C; Bieber, T; Bindslev-Jensen, C; Bjermer, L; Blain, H; Blasi, F; Boner, A L; Bonini, M; Bonini, S; Bosnic-Anticevitch, S; Boulet, L P; Bourret, R; Bousquet, P J; Braido, F; Briggs, A H; Brightling, C E; Brozek, J; Buhl, R; Burney, P G; Bush, A; Caballero-Fonseca, F; Caimmi, D; Calderon, M A; Calverley, P M; Camargos, P A M; Canonica, G W; Camuzat, T; Carlsen, K H; Carr, W; Carriazo, A; Casale, T; Cepeda Sarabia, A M; Chatzi, L; Chen, Y Z; Chiron, R; Chkhartishvili, E; Chuchalin, A G; Chung, K F; Ciprandi, G; Cirule, I; Cox, L; Costa, D J; Custovic, A; Dahl, R; Dahlen, S E; Darsow, U; De Carlo, G; De Blay, F; Dedeu, T; Deleanu, D; De Manuel Keenoy, E; Demoly, P; Denburg, J A; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dray, G; Dubakiene, R; Durham, S R; Dykewicz, M S; El-Gamal, Y; Emuzyte, R; Fabbri, L M; Fletcher, M; Fiocchi, A; Fink Wagner, A; Fonseca, J; Fokkens, W J; Forastiere, F; Frith, P; Gaga, M; Gamkrelidze, A; Garces, J; Garcia-Aymerich, J; Gemicioğlu, B; Gereda, J E; González Diaz, S; Gotua, M; Grisle, I; Grouse, L; Gutter, Z; Guzmán, M A; Heaney, L G; Hellquist-Dahl, B; Henderson, D; Hendry, A; Heinrich, J; Heve, D; Horak, F; Hourihane, J O' B; Howarth, P; Humbert, M; Hyland, M E; Illario, M; Ivancevich, J C; Jardim, J R; Jares, E J; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Julge, K; Jung, K S; Just, J; Kaidashev, I; Kaitov, M R; Kalayci, O; Kalyoncu, A F; Keil, T; Keith, P K; Klimek, L; Koffi N'Goran, B; Kolek, V; Koppelman, G H; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Lambrecht, B; Lau, S; Larenas-Linnemann, D; Laune, D; Le, L T T; Lieberman, P; Lipworth, B; Li, J; Lodrup Carlsen, K; Louis, R; MacNee, W; Magard, Y; Magnan, A; Mahboub, B; Mair, A; Majer, I; Makela, M J; Manning, P; Mara, S; Marshall, G D; Masjedi, M R; Matignon, P; Maurer, M; Mavale-Manuel, S; Melén, E; Melo-Gomes, E; Meltzer, E O; Menzies-Gow, A; Merk, H; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Mohammad, G M Y; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; Mösges, R; Mullol, J; Nafti, S; Namazova-Baranova, L; Naclerio, R; Neou, A; Neffen, H; Nekam, K; Niggemann, B; Ninot, G; Nyembue, T D; O'Hehir, R E; Ohta, K; Okamoto, Y; Okubo, K; Ouedraogo, S; Paggiaro, P; Pali-Schöll, I; Panzner, P; Papadopoulos, N; Papi, A; Park, H S; Passalacqua, G; Pavord, I; Pawankar, R; Pengelly, R; Pfaar, O; Picard, R; Pigearias, B; Pin, I; Plavec, D; Poethig, D; Pohl, W; Popov, T A; Portejoie, F; Potter, P; Postma, D; Price, D; Rabe, K F; Raciborski, F; Radier Pontal, F; Repka-Ramirez, S; Reitamo, S; Rennard, S; Rodenas, F; Roberts, J; Roca, J; Rodriguez Mañas, L; Rolland, C; Roman Rodriguez, M; Romano, A; Rosado-Pinto, J; Rosario, N; Rosenwasser, L; Rottem, M; Ryan, D; Sanchez-Borges, M; Scadding, G K; Schunemann, H J; Serrano, E; Schmid-Grendelmeier, P; Schulz, H; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Simons, F E R; Sisul, J C; Skrindo, I; Smit, H A; Solé, D; Sooronbaev, T; Spranger, O; Stelmach, R; Sterk, P J; Sunyer, J; Thijs, C; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valia, E; Valovirta, E; Van Ganse, E; van Hage, M; Vandenplas, O; Vasankari, T; Vellas, B; Vestbo, J; Vezzani, G; Vichyanond, P; Viegi, G; Vogelmeier, C; Vontetsianos, T; Wagenmann, M; Wallaert, B; Walker, S; Wang, D Y; Wahn, U; Wickman, M; Williams, D M; Williams, S; Wright, J; Yawn, B P; Yiallouros, P K; Yusuf, O M; Zaidi, A; Zar, H J; Zernotti, M E; Zhang, L; Zhong, N; Zidarn, M; Mercier, J

    2016-01-01

    Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing. PMID:27478588

  20. Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    PubMed

    Bousquet, J; Farrell, J; Crooks, G; Hellings, P; Bel, E H; Bewick, M; Chavannes, N H; de Sousa, J Correia; Cruz, A A; Haahtela, T; Joos, G; Khaltaev, N; Malva, J; Muraro, A; Nogues, M; Palkonen, S; Pedersen, S; Robalo-Cordeiro, C; Samolinski, B; Strandberg, T; Valiulis, A; Yorgancioglu, A; Zuberbier, T; Bedbrook, A; Aberer, W; Adachi, M; Agusti, A; Akdis, C A; Akdis, M; Ankri, J; Alonso, A; Annesi-Maesano, I; Ansotegui, I J; Anto, J M; Arnavielhe, S; Arshad, H; Bai, C; Baiardini, I; Bachert, C; Baigenzhin, A K; Barbara, C; Bateman, E D; Beghé, B; Kheder, A Ben; Bennoor, K S; Benson, M; Bergmann, K C; Bieber, T; Bindslev-Jensen, C; Bjermer, L; Blain, H; Blasi, F; Boner, A L; Bonini, M; Bonini, S; Bosnic-Anticevitch, S; Boulet, L P; Bourret, R; Bousquet, P J; Braido, F; Briggs, A H; Brightling, C E; Brozek, J; Buhl, R; Burney, P G; Bush, A; Caballero-Fonseca, F; Caimmi, D; Calderon, M A; Calverley, P M; Camargos, P A M; Canonica, G W; Camuzat, T; Carlsen, K H; Carr, W; Carriazo, A; Casale, T; Cepeda Sarabia, A M; Chatzi, L; Chen, Y Z; Chiron, R; Chkhartishvili, E; Chuchalin, A G; Chung, K F; Ciprandi, G; Cirule, I; Cox, L; Costa, D J; Custovic, A; Dahl, R; Dahlen, S E; Darsow, U; De Carlo, G; De Blay, F; Dedeu, T; Deleanu, D; De Manuel Keenoy, E; Demoly, P; Denburg, J A; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dray, G; Dubakiene, R; Durham, S R; Dykewicz, M S; El-Gamal, Y; Emuzyte, R; Fabbri, L M; Fletcher, M; Fiocchi, A; Fink Wagner, A; Fonseca, J; Fokkens, W J; Forastiere, F; Frith, P; Gaga, M; Gamkrelidze, A; Garces, J; Garcia-Aymerich, J; Gemicioğlu, B; Gereda, J E; González Diaz, S; Gotua, M; Grisle, I; Grouse, L; Gutter, Z; Guzmán, M A; Heaney, L G; Hellquist-Dahl, B; Henderson, D; Hendry, A; Heinrich, J; Heve, D; Horak, F; Hourihane, J O' B; Howarth, P; Humbert, M; Hyland, M E; Illario, M; Ivancevich, J C; Jardim, J R; Jares, E J; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Julge, K; Jung, K S; Just, J; Kaidashev, I; Kaitov, M R; Kalayci, O; Kalyoncu, A F; Keil, T; Keith, P K; Klimek, L; Koffi N'Goran, B; Kolek, V; Koppelman, G H; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Lambrecht, B; Lau, S; Larenas-Linnemann, D; Laune, D; Le, L T T; Lieberman, P; Lipworth, B; Li, J; Lodrup Carlsen, K; Louis, R; MacNee, W; Magard, Y; Magnan, A; Mahboub, B; Mair, A; Majer, I; Makela, M J; Manning, P; Mara, S; Marshall, G D; Masjedi, M R; Matignon, P; Maurer, M; Mavale-Manuel, S; Melén, E; Melo-Gomes, E; Meltzer, E O; Menzies-Gow, A; Merk, H; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Mohammad, G M Y; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; Mösges, R; Mullol, J; Nafti, S; Namazova-Baranova, L; Naclerio, R; Neou, A; Neffen, H; Nekam, K; Niggemann, B; Ninot, G; Nyembue, T D; O'Hehir, R E; Ohta, K; Okamoto, Y; Okubo, K; Ouedraogo, S; Paggiaro, P; Pali-Schöll, I; Panzner, P; Papadopoulos, N; Papi, A; Park, H S; Passalacqua, G; Pavord, I; Pawankar, R; Pengelly, R; Pfaar, O; Picard, R; Pigearias, B; Pin, I; Plavec, D; Poethig, D; Pohl, W; Popov, T A; Portejoie, F; Potter, P; Postma, D; Price, D; Rabe, K F; Raciborski, F; Radier Pontal, F; Repka-Ramirez, S; Reitamo, S; Rennard, S; Rodenas, F; Roberts, J; Roca, J; Rodriguez Mañas, L; Rolland, C; Roman Rodriguez, M; Romano, A; Rosado-Pinto, J; Rosario, N; Rosenwasser, L; Rottem, M; Ryan, D; Sanchez-Borges, M; Scadding, G K; Schunemann, H J; Serrano, E; Schmid-Grendelmeier, P; Schulz, H; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Simons, F E R; Sisul, J C; Skrindo, I; Smit, H A; Solé, D; Sooronbaev, T; Spranger, O; Stelmach, R; Sterk, P J; Sunyer, J; Thijs, C; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valia, E; Valovirta, E; Van Ganse, E; van Hage, M; Vandenplas, O; Vasankari, T; Vellas, B; Vestbo, J; Vezzani, G; Vichyanond, P; Viegi, G; Vogelmeier, C; Vontetsianos, T; Wagenmann, M; Wallaert, B; Walker, S; Wang, D Y; Wahn, U; Wickman, M; Williams, D M; Williams, S; Wright, J; Yawn, B P; Yiallouros, P K; Yusuf, O M; Zaidi, A; Zar, H J; Zernotti, M E; Zhang, L; Zhong, N; Zidarn, M; Mercier, J

    2016-01-01

    Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.

  1. A scale-up method for reference data for validation of global land cover maps using ALOS/AVNIR-2 satellite data

    NASA Astrophysics Data System (ADS)

    Soyama, Noriko; Muramatsu, Kanako; Ohashi, Itsuko; Daigo, Motomasa; Ochiai, Fumio; Tadono, Takeo; Nasahara, Kenlo

    2015-10-01

    Validating the accuracy of land cover products using a reliable reference dataset is an important task. Recently, the amount of ground truth data provided by volunteers has increased. Although ground truth data can provide information that can produce reliable reference data, the information is only correct within the observable landscape. It is necessary to scale up reference data derived from ground truth data to match the spatial resolution of the global land cover product. We propose a scale-up method that confirms expanding land cover characteristics for a target position using the occurrence ratio of pixels that meet the criteria for the target position to the total pixels for the target scale. The results of applying the scale-up method to test sites showed that the occurrence ratio method was a better judge of expanding target land cover types than the average method.

  2. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem.

    PubMed

    Queirós, Ana M; Fernandes, José A; Faulwetter, Sarah; Nunes, Joana; Rastrick, Samuel P S; Mieszkowska, Nova; Artioli, Yuri; Yool, Andrew; Calosi, Piero; Arvanitidis, Christos; Findlay, Helen S; Barange, Manuel; Cheung, William W L; Widdicombe, Stephen

    2015-01-01

    . Scaling up the results of experimental climate change research requires approaches that account for long-term, multiscale responses to multiple stressors, in an ecosystem context.

  3. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem.

    PubMed

    Queirós, Ana M; Fernandes, José A; Faulwetter, Sarah; Nunes, Joana; Rastrick, Samuel P S; Mieszkowska, Nova; Artioli, Yuri; Yool, Andrew; Calosi, Piero; Arvanitidis, Christos; Findlay, Helen S; Barange, Manuel; Cheung, William W L; Widdicombe, Stephen

    2015-01-01

    . Scaling up the results of experimental climate change research requires approaches that account for long-term, multiscale responses to multiple stressors, in an ecosystem context. PMID:25044416

  4. A comparative study of progressive versus successive spectrophotometric resolution techniques applied for pharmaceutical ternary mixtures

    NASA Astrophysics Data System (ADS)

    Saleh, Sarah S.; Lotfy, Hayam M.; Hassan, Nagiba Y.; Salem, Hesham

    2014-11-01

    This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision.

  5. A comparative study of progressive versus successive spectrophotometric resolution techniques applied for pharmaceutical ternary mixtures.

    PubMed

    Saleh, Sarah S; Lotfy, Hayam M; Hassan, Nagiba Y; Salem, Hesham

    2014-11-11

    This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision.

  6. Enabling and challenging factors in institutional reform: The case of SCALE-UP

    NASA Astrophysics Data System (ADS)

    Foote, Kathleen; Knaub, Alexis; Henderson, Charles; Dancy, Melissa; Beichner, Robert J.

    2016-06-01

    While many innovative teaching strategies exist, integration into undergraduate science teaching has been frustratingly slow. This study aims to understand the low uptake of research-based instructional innovations by studying 21 successful implementations of the Student Centered Active Learning with Upside-down Pedagogies (SCALE-UP) instructional reform. SCALE-UP significantly restructures the classroom environment and pedagogy to promote highly active and interactive instruction. Although originally designed for university introductory physics courses, SCALE-UP has spread to many other disciplines at hundreds of departments around the world. This study reports findings from in-depth, open-ended interviews with 21 key contact people involved with successful secondary implementations of SCALE-UP throughout the United States. We defined successful implementations as those who restructured their pedagogy and classroom and sustained and/or spread the change. Interviews were coded to identify the most common enabling and challenging factors during reform implementation and compared to the theoretical framework of Kotter's 8-step Change Model. The most common enabling influences that emerged are documenting and leveraging evidence of local success, administrative support, interaction with outside SCALE-UP user(s), and funding. Many challenges are linked to the lack of these enabling factors including difficulty finding funding, space, and administrative and/or faculty support for reform. Our focus on successful secondary implementations meant that most interviewees were able to overcome challenges. Presentation of results is illuminated with case studies, quotes, and examples that can help secondary implementers with SCALE-UP reform efforts specifically. We also discuss the implications for policy makers, researchers, and the higher education community concerned with initiating structural change.

  7. Scaling up HIV treatment and prevention through national responses and innovative leadership.

    PubMed

    Kanki, Phyllis; Kakkattil, Pradeep; Simao, Mariangela

    2012-08-01

    Over the past decade, there has been an unprecedented global response to the AIDS epidemic. This infusion of new funding has led to a rapid scale-up of HIV treatment and prevention and consequently has saved millions of lives and transformed communities around the world. However, as clearly demonstrated by a review of national responses, successes have been due in large part to strong and innovative leadership from governments, the private sector, and nongovernmental organizations. Examples from Brazil, Botswana, Nigeria, Uganda, and India illustrate the vital role played by bold and collaborative leadership in the global and local scale-up of HIV prevention and treatment.

  8. Scale-up of a fluid-bed process for production of light olefins from methanol

    SciTech Connect

    Gould, R.M.; Avidan, A.A.; Soto, J.L.; Chang, C.D.; Socha, R.F.

    1986-01-01

    Mobil Research and Development Corporation has developed a fluid-bed process for the production of olefins from methanol. The olefins can be converted to gasoline, distillate, and/or aviation fuels by commercially available technologies. The process is based on the ZSM-5 family of shape selective zeolite catalysts. Initial development in fixed and fluid-bed micro-units gave total olefins selectivities exceeding 75 wt% of hydrocarbons with complete methanol conversion. Scale-up to a 4 BPD fluid-bed pilot plant was successful in maintaining high olefin yield. The process has recently been scaled up in a 100 BPD demonstration plant in Germany.

  9. 78 FR 32381 - Applications for New Awards, Investing in Innovation Fund, Scale-up and Validation Grants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Scale-up and Validation grants (78 FR 25977) and (78 FR 25990). The NIAs inadvertently omitted part of... Applications for New Awards, Investing in Innovation Fund, Scale- up and Validation Grants; Correction AGENCY...., newsletters) mechanisms, the results of any evaluations it conducts of its funded activities. For Scale-up...

  10. Formulation and development of tablets based on Ludipress and scale-up from laboratory to production scale.

    PubMed

    Heinz, R; Wolf, H; Schuchmann, H; End, L; Kolter, K

    2000-05-01

    In spite of the wealth of experience available in the pharmaceutical industry, tablet formulations are still largely developed on an empirical basis, and the scale-up from laboratory to production is a time-consuming and costly process. Using Ludipress greatly simplifies formulation development and the manufacturing process because only the active ingredient Ludipress and a lubricant need to be mixed briefly before being compressed into tablets. The studies described here were designed to investigate the scale-up of Ludipress-based formulations from laboratory to production scale, and to predict changes in tablet properties due to changes in format, compaction pressure, and the use of different tablet presses. It was found that the tensile strength of tablets made of Ludipress increased linearly with compaction pressures up to 300 MPa. It was also independent of the geometry of the tablets (diameter, thickness, shape). It is therefore possible to give an equation with which the compaction pressure required to achieve a given hardness can be calculated for a given tablet form. The equation has to be modified slightly to convert from a single-punch press to a rotary tableting machine. Tablets produced in the rotary machine at the same pressure have a slightly higher tensile strength. The rate of increase in pressure, and therefore the throughput, has no effect on the tensile strength of Ludipress tablets. It is thought that a certain minimum dwell time is responsible for this difference. The production of tablets based on Ludipress can be scaled up from one rotary press to another without problem if the powder mixtures are prepared with the same mixing energy. The tensile strength curve determined for tablets made with Ludipress alone can also be applied to tablets with a small quantity (< 10%) of an active ingredient. PMID:10789063

  11. Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM

    NASA Astrophysics Data System (ADS)

    Babu, P. Ravi; Divya, V. P. Sree

    2011-08-01

    The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances, the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network, Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor, reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.

  12. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  13. Geophysical techniques applied to urban planning in complex near surface environments. Examples of Zaragoza, NE Spain

    NASA Astrophysics Data System (ADS)

    Pueyo-Anchuela, Ó.; Casas-Sainz, A. M.; Soriano, M. A.; Pocoví-Juan, A.

    Complex geological shallow subsurface environments represent an important handicap in urban and building projects. The geological features of the Central Ebro Basin, with sharp lateral changes in Quaternary deposits, alluvial karst phenomena and anthropic activity can preclude the characterization of future urban areas only from isolated geomechanical tests or from non-correctly dimensioned geophysical techniques. This complexity is here analyzed in two different test fields, (i) one of them linked to flat-bottomed valleys with irregular distribution of Quaternary deposits related to sharp lateral facies changes and irregular preconsolidated substratum position and (ii) a second one with similar complexities in the alluvial deposits and karst activity linked to solution of the underlying evaporite substratum. The results show that different geophysical techniques allow for similar geological models to be obtained in the first case (flat-bottomed valleys), whereas only the application of several geophysical techniques can permit to correctly evaluate the geological model complexities in the second case (alluvial karst). In this second case, the geological and superficial information permit to refine the sensitivity of the applied geophysical techniques to different indicators of karst activity. In both cases 3D models are needed to correctly distinguish alluvial lateral sedimentary changes from superimposed karstic activity.

  14. Comparision of nerve stimulator and ultrasonography as the techniques applied for brachial plexus anesthesia

    PubMed Central

    2011-01-01

    Background Brachial plexus block is useful for upper extremity surgery, and many techniques are available. The aim of our study was to compare the efficacy of axillary brachial plexus block using an ultrasound technique to the peripheral nerve stimulation technique. Methods 60 patients scheduled for surgery of the forearm or hand were randomly allocated into two groups (n = 30 per group). For Group 1; US, and for Group 2 PNS was applied. The quality and the onset of the sensorial and motor blockade were assessed. The sensorial blockade, motor blockade time and quality of blockade were compared among the cases. Results The time needed to perform the axillary brachial plexus block averaged is similar in both groups (p > 0.05). Although not significant statistically, it was observed that the sensory block had formed earlier in Group 1 (p > 0.05). But the degree of motor blockade was intenser in Group 1 than in Group 2 (p < 0.05). Conclusions Ultrasound offers a new possibility for identifiying the nerves of the brachial plexus for regional anesthesia. The ultrasound-guided axillary brachial plexus block is a safe method with faster onset time and better quality of motor blockade compared to peripheral nerve stimulation technique. PMID:21255404

  15. Applying traditional signal processing techniques to social media exploitation for situational understanding

    NASA Astrophysics Data System (ADS)

    Abdelzaher, Tarek; Roy, Heather; Wang, Shiguang; Giridhar, Prasanna; Al Amin, Md. Tanvir; Bowman, Elizabeth K.; Kolodny, Michael A.

    2016-05-01

    Signal processing techniques such as filtering, detection, estimation and frequency domain analysis have long been applied to extract information from noisy sensor data. This paper describes the exploitation of these signal processing techniques to extract information from social networks, such as Twitter and Instagram. Specifically, we view social networks as noisy sensors that report events in the physical world. We then present a data processing stack for detection, localization, tracking, and veracity analysis of reported events using social network data. We show using a controlled experiment that the behavior of social sources as information relays varies dramatically depending on context. In benign contexts, there is general agreement on events, whereas in conflict scenarios, a significant amount of collective filtering is introduced by conflicted groups, creating a large data distortion. We describe signal processing techniques that mitigate such distortion, resulting in meaningful approximations of actual ground truth, given noisy reported observations. Finally, we briefly present an implementation of the aforementioned social network data processing stack in a sensor network analysis toolkit, called Apollo. Experiences with Apollo show that our techniques are successful at identifying and tracking credible events in the physical world.

  16. Scaling up watershed model parameters: flow and load simulations of the Edisto River Basin, South Carolina, 2007-09

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul A.

    2014-01-01

    As part of an ongoing effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin, analyses and simulations of the hydrology of the Edisto River Basin were made using the topography-based hydrological model (TOPMODEL). A primary focus of the investigation was to assess the potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River Basin. Scaling up was done in a step-wise manner, beginning with applying the calibration parameters, meteorological data, and topographic-wetness-index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made for subsequent simulations, culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River Basin and updated calibration parameters for some of the TOPMODEL calibration parameters. The scaling-up process resulted in nine simulations being made. Simulation 7 best matched the streamflows at station 02175000, Edisto River near Givhans, SC, which was the downstream limit for the TOPMODEL setup, and was obtained by adjusting the scaling factor, including streamflow routing, and using NEXRAD precipitation data for the Edisto River Basin. The Nash-Sutcliffe coefficient of model-fit efficiency and Pearson’s correlation coefficient for simulation 7 were 0.78 and 0.89, respectively. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the McTier Creek and Edisto River models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the substantial difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL

  17. Evaluating scale-up rules of a high-shear wet granulation process.

    PubMed

    Tao, Jing; Pandey, Preetanshu; Bindra, Dilbir S; Gao, Julia Z; Narang, Ajit S

    2015-07-01

    This work aimed to evaluate the commonly used scale-up rules for high-shear wet granulation process using a microcrystalline cellulose-lactose-based low drug loading formulation. Granule properties such as particle size, porosity, flow, and tabletability, and tablet dissolution were compared across scales using scale-up rules based on different impeller speed calculations or extended wet massing time. Constant tip speed rule was observed to produce slightly less granulated material at the larger scales. Longer wet massing time can be used to compensate for the lower shear experienced by the granules at the larger scales. Constant Froude number and constant empirical stress rules yielded granules that were more comparable across different scales in terms of compaction performance and tablet dissolution. Granule porosity was shown to correlate well with blend tabletability and tablet dissolution, indicating the importance of monitoring granule densification (porosity) during scale-up. It was shown that different routes can be chosen during scale-up to achieve comparable granule growth and densification by altering one of the three parameters: water amount, impeller speed, and wet massing time. PMID:26010137

  18. Lessons from scaling up a depression treatment program in primary care in Chile.

    PubMed

    Araya, Ricardo; Alvarado, Rubén; Sepúlveda, Rodrigo; Rojas, Graciela

    2012-09-01

    In Chile, the National Depression Detection and Treatment Program (Programa Nacional de Diagnóstico y Tratamiento de la Depresión, PNDTD) in primary care is a rare example of an evidence-based mental health program that was scaled up to the national level in a low- or middle-income country. This retrospective qualitative study aimed to better understand how policymakers made the decision to scale up mental health services to the national level, and to explore the elements, contexts, and processes that facilitated the decision to implement and sustain PNDTD. In-depth semistructured interviews with six key informants selected through intentional sampling were conducted in August-December 2008. Interviewees were senior officers at the Ministry of Health who were directly involved in the decision to scale up the program. Results yielded four elements pivotal to the decisionmaking process: scientific evidence, teamwork and leadership, strategic alliances, and program institutionalization. Each element contributed to building consensus, securing funding, attracting resources, and gaining lasting support from policymakers. Additionally, a review of available documentation led the authors to consider sociopolitical context and use of the media to be important factors. While research evidence for the effectiveness of mental health services in the primary care setting continues to accumulate, low- and middle-income countries should get started on the lengthy process of scaling up by incorporating the elements that led to decisionmaking and implementation of the PNDTD in Chile. PMID:23183564

  19. Scaling up STEM Academies Statewide: Implementation, Network Supports, and Early Outcomes

    ERIC Educational Resources Information Center

    Young, Viki; House, Ann; Sherer, David; Singleton, Corinne; Wang, Haiwen; Klopfenstein, Kristin

    2016-01-01

    This chapter presents a case study of scaling up the T-STEM initiative in Texas. Data come from the four-year longitudinal evaluation of the Texas High School Project (THSP). The evaluation studied the implementation and impact of T-STEM and the other THSP reforms using a mixed-methods design, including qualitative case studies; principal,…

  20. Integrated Graduate and Continuing Education in Protein Chromatography for Bioprocess Development and Scale-Up

    ERIC Educational Resources Information Center

    Carta, Jungbauer

    2011-01-01

    We describe an intensive course that integrates graduate and continuing education focused on the development and scale-up of chromatography processes used for the recovery and purification of proteins with special emphasis on biotherapeutics. The course includes lectures, laboratories, teamwork, and a design exercise and offers a complete view of…

  1. Declining tuberculosis case notification rates with the scale-up of antiretroviral therapy in Zimbabwe

    PubMed Central

    Harries, A. D.; Sandy, C.; Mutasa-Apollo, T.; Zishiri, C.

    2016-01-01

    Setting: Zimbabwe has a human immunodeficiency virus (HIV) driven tuberculosis (TB) epidemic, with antiretroviral therapy (ART) scaled up in the public sector since 2004. Objective: To determine whether national ART scale-up was associated with annual national TB case notification rates (CNR), stratified by disease type and category, between 2000 and 2013. Design: This was a retrospective study using aggregate data from global reports. Results: The number of people living with HIV and retained on ART from 2004 to 2013 increased from 8400 to 665 299, with ART coverage increasing from <0.5% to 48%. TB CNRs, all types and categories, increased from 2000 to 2003, and declined thereafter from 2004 to 2013. The decreases in annual TB notifications between the highest rates (before 2004) and lowest rates (2013) were all forms of TB (56%), new TB (60%), previously treated TB (53%), new smear-positive pulmonary TB (PTB) (40%), new smear-negative/smear-unknown PTB (58%) and extra-pulmonary TB (58%). Conclusion: Significant declines in TB CNRs were observed during ART scale-up, especially for smear-negative PTB and extra-pulmonary TB. These encouraging national trends support the continued scale-up of ART for people living with HIV as a way of tackling the twin epidemics of HIV/acquired immune-deficiency syndrome and TB in Zimbabwe.

  2. Smallness, Autonomy, and Choice: Scaling Up. Statewide "Safe Places" for Distinctive Schools

    ERIC Educational Resources Information Center

    Meier, Deborah

    2004-01-01

    For those who would like to see Ron Wolk's vision of schools realized, the challenge of scaling up is the most daunting one faced. Skeptics like to say, "Oh well, that 'X' and 'Y' did something really special is irrelevant; they're exceptions." But the author's experience suggests that today's exceptions can become tomorrow's norms. If that is to…

  3. Declining tuberculosis case notification rates with the scale-up of antiretroviral therapy in Zimbabwe

    PubMed Central

    Harries, A. D.; Sandy, C.; Mutasa-Apollo, T.; Zishiri, C.

    2016-01-01

    Setting: Zimbabwe has a human immunodeficiency virus (HIV) driven tuberculosis (TB) epidemic, with antiretroviral therapy (ART) scaled up in the public sector since 2004. Objective: To determine whether national ART scale-up was associated with annual national TB case notification rates (CNR), stratified by disease type and category, between 2000 and 2013. Design: This was a retrospective study using aggregate data from global reports. Results: The number of people living with HIV and retained on ART from 2004 to 2013 increased from 8400 to 665 299, with ART coverage increasing from <0.5% to 48%. TB CNRs, all types and categories, increased from 2000 to 2003, and declined thereafter from 2004 to 2013. The decreases in annual TB notifications between the highest rates (before 2004) and lowest rates (2013) were all forms of TB (56%), new TB (60%), previously treated TB (53%), new smear-positive pulmonary TB (PTB) (40%), new smear-negative/smear-unknown PTB (58%) and extra-pulmonary TB (58%). Conclusion: Significant declines in TB CNRs were observed during ART scale-up, especially for smear-negative PTB and extra-pulmonary TB. These encouraging national trends support the continued scale-up of ART for people living with HIV as a way of tackling the twin epidemics of HIV/acquired immune-deficiency syndrome and TB in Zimbabwe. PMID:27695678

  4. From scaling up to sustainability in HIV: potential lessons for moving forward

    PubMed Central

    2013-01-01

    Background In 30 years of experience in responding to the HIV epidemic, critical decisions and program characteristics for successful scale-up have been studied. Now leaders face a new challenge: sustaining large-scale HIV prevention programs. Implementers, funders, and the communities served need to assess what strategies and practices of scaling up are also relevant for sustaining delivery at scale. Methods We reviewed white and gray literature to identify domains central to scaling-up programs and reviewed HIV case studies to identify how these domains might relate to sustaining delivery at scale. Results We found 10 domains identified as important for successfully scaling up programs that have potential relevance for sustaining delivery at scale: fiscal support; political support; community involvement, integration, buy-in, and depth; partnerships; balancing flexibility/adaptability and standardization; supportive policy, regulatory, and legal environment; building and sustaining strong organizational capacity; transferring ownership; decentralization; and ongoing focus on sustainability. We identified one additional potential domain important for programs sustaining delivery at scale: emphasizing equity. Conclusions Today, the public and private sector are examining their ability to generate value for populations. All stakeholders are aiming to stem the tide of the HIV epidemic. Implementers need a framework to guide the evolution of their strategies and management practices. Greater research is needed to refine the domains for policy and program implementers working to sustain HIV program delivery at scale. PMID:24199749

  5. Scaling-Up Aid to Education: Is Absorptive Capacity a Constraint?

    ERIC Educational Resources Information Center

    Rose, Pauline

    2009-01-01

    "Absorptive capacity" is a frequently used term amongst development practitioners in education. It is adopted by some as a reason for caution over scaling up aid. Others are of the view that absorptive capacity is an excuse by some donors for not delivering on their Education for All financing commitments. Drawing on interviews with…

  6. 77 FR 18216 - Applications for New Awards; Investing in Innovation Fund, Scale-Up Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... FR 11087) and is available at http://www.gpo.gov/fdsys/pkg/FR-2012-02-24/pdf/2012-4357.pdf . Scale-up... FR 12004- 12071)(2010 i3 NFP). Priorities: This competition includes five absolute priorities and... the Federal Register on December 15, 2010 (75 FR 78486-78511), and corrected on May 12, 2011 (76...

  7. Introduction to SCALE-UP: Student-Centered Activities for Large Enrollment University Physics.

    ERIC Educational Resources Information Center

    Beichner, Robert J.; Saul, Jeffery M.; Allain, Rhett J.; Deardorff, Duane L.; Abbott, David S.

    SCALE-UP is an extension of the highly successful IMPEC (Integrated Math, Physics, Engineering, and Chemistry) project, one of North Carolina State's curricular reform efforts undertaken as part of the SUCCEED coalition. The authors utilize the interactive, collaboratively based instruction that worked well in smaller class settings and find ways…

  8. Scaling up Comprehensive Sexuality Education in Nigeria: From National Policy to Nationwide Application

    ERIC Educational Resources Information Center

    Huaynoca, Silvia; Chandra-Mouli, Venkatraman; Yaqub, Nuhu, Jr.; Denno, Donna Marie

    2014-01-01

    Nigeria is one of few countries that reports having translated national policies on school-based comprehensive sexuality education (CSE) into near-nationwide implementation. We analysed data using the World Health Organization-ExpandNet framework, which provides a systematic structure for planning and managing the scaling up of health innovations.…

  9. Scaling Up Success: Lessons Learned from Technology-Based Educational Improvement

    ERIC Educational Resources Information Center

    Dede, Chris, Ed.; Honan, James P., Ed.; Peters, Laurence C., Ed.

    2005-01-01

    Drawing from the information presented at a conference sponsored by the Harvard Graduate School of Education and the Mid-Atlantic Regional Technology in Education Consortium, educators, researchers, and policymakers translate theory into practice to provide a hands-on resource that describes different models for scaling up success. This resource…

  10. The Role of Scaling up Research in Designing for and Evaluating Robustness

    ERIC Educational Resources Information Center

    Roschelle, J.; Tatar, D.; Shechtman, N.; Knudsen, J.

    2008-01-01

    One of the great strengths of Jim Kaput's research program was his relentless drive towards scaling up his innovative approach to teaching the mathematics of change and variation. The SimCalc mission, "democratizing access to the mathematics of change," was enacted by deliberate efforts to reach an increasing number of teachers and students each…

  11. "Scaling Up" Educational Change: Some Musings on Misrecognition and Doxic Challenges

    ERIC Educational Resources Information Center

    Thomson, Pat

    2014-01-01

    Educational policy-makers around the world are strongly committed to the notion of "scaling up". This can mean anything from encouraging more teachers to take up a pedagogical innovation, all the way through to system-wide efforts to implement "what works" across all schools. In this paper, I use Bourdieu's notions of…

  12. Early College for All: Efforts to Scale up Early Colleges in Multiple Settings

    ERIC Educational Resources Information Center

    Edmunds, Julie A.

    2016-01-01

    Given the positive impacts of the small, stand-alone early college model and the desire to provide those benefits to more students, organizations have begun efforts to scale up the early college model in a variety of settings. These efforts have been supported by the federal government, particularly by the Investing in Innovation (i3) program.…

  13. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  14. Enabling and Challenging Factors in Institutional Reform: The Case of SCALE-UP

    ERIC Educational Resources Information Center

    Foote, Kathleen; Knaub, Alexis; Henderson, Charles; Dancy, Melissa; Beichner, Robert J.

    2016-01-01

    While many innovative teaching strategies exist, integration into undergraduate science teaching has been frustratingly slow. This study aims to understand the low uptake of research-based instructional innovations by studying 21 successful implementations of the Student Centered Active Learning with Upside-down Pedagogies (SCALE-UP) instructional…

  15. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  16. Final-Year Results from the i3 Scale-Up of Reading Recovery

    ERIC Educational Resources Information Center

    May, Henry; Sirinides, Philip; Gray, Abby; Davila, Heather Goldsworthy; Sam, Cecile; Blalock, Toscha; Blackman, Horatio; Anderson-Clark, Helen; Schiera, Andrew J.

    2015-01-01

    As part of the 2010 economic stimulus, a $55 million "Investing in Innovation" (i3) grant from the US Department of Education was awarded to scale up Reading Recovery across the nation. This paper presents the final round of results from the large-scale, mixed methods randomized evaluation of the implementation and impacts of Reading…

  17. 77 FR 25152 - Applications for New Awards; Investing in Innovation Fund, Scale-Up Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION Applications for New Awards; Investing in Innovation Fund, Scale- Up Grants Correction In notice document 2012-7362 appearing on pages 18216-18229 in the issue of Tuesday, March 27, 2012 make the...

  18. Establishment, Culture, and Scale-up of Brugmansia candida Hairy Roots for the Production of Tropane Alkaloids.

    PubMed

    Cardillo, Alejandra Beatriz; Rodriguez Talou, Julián; Giulietti, Ana María

    2016-01-01

    Brugmansia candida (syn. Datura candida) is a South American native plant that produces tropane alkaloids. Hyoscyamine, 6β-hydroxyhyoscyamine (anisodamine), and scopolamine are the most important ones due to their anticholinergic activity. These bioactive compounds have been historically and widely applied in medicine and their demand is continuous. Their chemical synthesis is costly and complex, and thereby, these alkaloids are industrially produced from natural producer plants. The production of these secondary metabolites by plant in vitro cultures such as hairy roots presents certain advantages over the natural source and chemical synthesis. It is well known that hairy roots produced by Agrobacterium rhizogenes infection are fast-growing cultures, genetically stable and able to grow in hormone-free media. Additionally, recent progress achieved in the scaling up of hairy root cultures makes this technology an attractive tool for industrial processes. This chapter is focused on the methods for the induction and establishment of B. candida hairy roots. In addition, the scaling up of hairy root cultures in bioreactors and tropane alkaloid analysis is discussed. PMID:27108317

  19. Case study: how to apply data mining techniques in a healthcare data warehouse.

    PubMed

    Silver, M; Sakata, T; Su, H C; Herman, C; Dolins, S B; O'Shea, M J

    2001-01-01

    Healthcare provider organizations are faced with a rising number of financial pressures. Both administrators and physicians need help analyzing large numbers of clinical and financial data when making decisions. To assist them, Rush-Presbyterian-St. Luke's Medical Center and Hitachi America, Ltd. (HAL), Inc., have partnered to build an enterprise data warehouse and perform a series of case study analyses. This article focuses on one analysis, which was performed by a team of physicians and computer science researchers, using a commercially available on-line analytical processing (OLAP) tool in conjunction with proprietary data mining techniques developed by HAL researchers. The initial objective of the analysis was to discover how to use data mining techniques to make business decisions that can influence cost, revenue, and operational efficiency while maintaining a high level of care. Another objective was to understand how to apply these techniques appropriately and to find a repeatable method for analyzing data and finding business insights. The process used to identify opportunities and effect changes is described.

  20. Data compression techniques applied to high resolution high frame rate video technology

    NASA Technical Reports Server (NTRS)

    Hartz, William G.; Alexovich, Robert E.; Neustadter, Marc S.

    1989-01-01

    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended.

  1. Applying machine learning techniques to DNA sequence analysis. Progress report, February 14, 1991--February 13, 1992

    SciTech Connect

    Shavlik, J.W.

    1992-04-01

    We are developing a machine learning system that modifies existing knowledge about specific types of biological sequences. It does this by considering sample members and nonmembers of the sequence motif being learned. Using this information (which we call a ``domain theory``), our learning algorithm produces a more accurate representation of the knowledge needed to categorize future sequences. Specifically, the KBANN algorithm maps inference rules, such as consensus sequences, into a neural (connectionist) network. Neural network training techniques then use the training examples of refine these inference rules. We have been applying this approach to several problems in DNA sequence analysis and have also been extending the capabilities of our learning system along several dimensions.

  2. A New Normalized Difference Cloud Retrieval Technique Applied to Landsat Radiances Over the Oklahoma ARM Site

    NASA Technical Reports Server (NTRS)

    Orepoulos, Lazaros; Cahalan, Robert; Marshak, Alexander; Wen, Guoyong

    1999-01-01

    We suggest a new approach to cloud retrieval, using a normalized difference of nadir reflectivities (NDNR) constructed from a non-absorbing and absorbing (with respect to liquid water) wavelength. Using Monte Carlo simulations we show that this quantity has the potential of removing first order scattering effects caused by cloud side illumination and shadowing at oblique Sun angles. Application of the technique to TM (Thematic Mapper) radiance observations from Landsat-5 over the Southern Great Plains site of the ARM (Atmospheric Radiation Measurement) program gives very similar regional statistics and histograms, but significant differences at the pixel level. NDNR can be also combined with the inverse NIPA (Nonlocal Independent Pixel Approximation) of Marshak (1998) which is applied for the first time on overcast Landsat scene subscenes. We demonstrate the sensitivity of the NIPA-retrieved cloud fields on the parameters of the method and discuss practical issues related to the optimal choice of these parameters.

  3. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid.

    PubMed

    He, Li; Zhang, Pei; Besser, Matthew F; Kramer, Matthew Joseph; Voyles, Paul M

    2015-08-01

    Electron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature T g and the crystallization temperature, T x . τ determined from the mean diffraction intensity autocorrelation function g 2(t) decreases with temperature following an Arrhenius relationship between T g and T g +25 K, and then increases as temperature approaches T x . The distribution of τ determined from the g 2(t) of single speckles is broad and changes significantly with temperature.

  4. A comparative assessment of texture analysis techniques applied to bone tool use-wear

    NASA Astrophysics Data System (ADS)

    Watson, Adam S.; Gleason, Matthew A.

    2016-06-01

    The study of bone tools, a specific class of artifacts often essential to perishable craft production, provides insight into industries otherwise largely invisible archaeologically. Building on recent breakthroughs in the analysis of microwear, this research applies confocal laser scanning microscopy and texture analysis techniques drawn from the field of surface metrology to identify use-wear patterns on experimental and archaeological bone artifacts. Our approach utilizes both conventional parameters and multi-scale geometric characterizations of the areas of worn surfaces to identify statistical similarities as a function of scale. The introduction of this quantitative approach to the study of microtopography holds significant potential for advancement in use-wear studies by reducing inter-observer variability and identifying new parameters useful in the detection of differential wear-patterns.

  5. Feasibility Studies of Applying Kalman Filter Techniques to Power System Dynamic State Estimation

    SciTech Connect

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jarek

    2007-08-01

    Abstract—Lack of dynamic information in power system operations mainly attributes to the static modeling of traditional state estimation, as state estimation is the basis driving many other operations functions. This paper investigates the feasibility of applying Kalman filter techniques to enable the inclusion of dynamic modeling in the state estimation process and the estimation of power system dynamic states. The proposed Kalman-filter-based dynamic state estimation is tested on a multi-machine system with both large and small disturbances. Sensitivity studies of the dynamic state estimation performance with respect to measurement characteristics – sampling rate and noise level – are presented as well. The study results show that there is a promising path forward to implementation the Kalman-filter-based dynamic state estimation with the emerging phasor measurement technologies.

  6. Film thickness measurement techniques applied to micro-scale two-phase flow systems

    SciTech Connect

    Tibirica, Cristiano Bigonha; do Nascimento, Francisco Julio; Ribatski, Gherhardt

    2010-05-15

    Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (author)

  7. Shadowgraph Technique Applied to STARDUST Facility for Dust Tracking: First Results

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Malizia, A.; Camplani, M.; Barbato, F.; Antonelli, L.; Gelfusa, M.; Del Vecchio, M.; Salgado, L.; Bellecci, C.; Richetta, M.

    The problem of dust resuspension in case of Loss Of Vacuum Accident (LOVA) in a nuclear fusion plant (ITER or DEMO like) is an important issue for the safety of workers and the security of environment. The Quantum Electronics and Plasma Physics Research Group has implemented an optical set-up to track dust during a LOVA reproduction inside the experimental facility STARDUST. The shadowgraph technique, in this work, it is applied to track dark dust (like Tungsten). The shadowgraph technique is based on an expanded collimated beam of light emitted by a laser (or a lamp) transversely to the flow field direction. Inside STARDUST the dust moving in the air flow causes variations of refractive index of light that can be detected by the means of a CCD camera. A spatial modulation of the light-intensity distribution on the camera can be measured. The resulting pattern is a shadow of the refractive index field that prevails in the region of the disturbance. The authors use an incandescent white lamp to illuminate the vacuum vessel of STARDUST facility. The light-area passes through the test section that has to be investigated and the images of the dust shadows are collected with a fast CCD camera. The images are then elaborated with mathematical algorithms to obtain information about the velocity fields of dust during the accidents reproduction. The experimental set-up together with a critical analysis of the first results are presented in this paper.

  8. In vivo measurement of human skin absorption of topically applied substances by a photoacoustic technique.

    PubMed

    Gutiérrez-Juárez, G; Vargas-Luna, M; Córdova, T; Varela, J B; Bernal-Alvarado, J J; Sosa, M

    2002-08-01

    A photoacoustic technique is used for studying topically applied substance absorption in human skin. The proposed method utilizes a double-chamber PA cell. The absorption determination was obtained through the measurement of the thermal effusivity of the binary system substance-skin. The theoretical model assumes that the effective thermal effusivity of the binary system corresponds to that of a two-phase system. Experimental applications of the method employed different substances of topical application in different parts of the body of a volunteer. The method is demonstrated to be an easily used non-invasive technique for dermatology research. The relative concentrations as a function of time of substances such as ketoconazol and sunscreen were determined by fitting a sigmoidal function to the data, while an exponential function corresponds to the best fit for the set of data for nitrofurazona, vaseline and vaporub. The time constants associated with the rates of absorption, were found to vary in the range between 10 and 58 min, depending on the substance and the part of the body. PMID:12214760

  9. Solar coronal magnetic fields derived using seismology techniques applied to omnipresent sunspot waves

    NASA Astrophysics Data System (ADS)

    Jess, David B.; Reznikova, Veronika E.; Ryans, Robert S. I.; Christian, Damian J.; Keys, Peter H.; Mathioudakis, Mihalis; Mackay, Duncan H.; Krishna Prasad, S.; Banerjee, Dipankar; Grant, Samuel D. T.; Yau, Sean; Diamond, Conor

    2016-02-01

    Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9-55 G (refs ,,,). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 +/- 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.

  10. Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques.

    PubMed

    Garzón-Machado, Víctor; Otto, Rüdiger; del Arco Aguilar, Marcelino José

    2014-07-01

    Different spatial interpolation techniques have been applied to construct objective bioclimatic maps of La Palma, Canary Islands. Interpolation of climatic data on this topographically complex island with strong elevation and climatic gradients represents a challenge. Furthermore, meteorological stations are not evenly distributed over the island, with few stations at high elevations. We carried out spatial interpolations of the compensated thermicity index (Itc) and the annual ombrothermic Index (Io), in order to obtain appropriate bioclimatic maps by using automatic interpolation procedures, and to establish their relation to potential vegetation units for constructing a climatophilous potential natural vegetation map (CPNV). For this purpose, we used five interpolation techniques implemented in a GIS: inverse distance weighting (IDW), ordinary kriging (OK), ordinary cokriging (OCK), multiple linear regression (MLR) and MLR followed by ordinary kriging of the regression residuals. Two topographic variables (elevation and aspect), derived from a high-resolution digital elevation model (DEM), were included in OCK and MLR. The accuracy of the interpolation techniques was examined by the results of the error statistics of test data derived from comparison of the predicted and measured values. Best results for both bioclimatic indices were obtained with the MLR method with interpolation of the residuals showing the highest R2 of the regression between observed and predicted values and lowest values of root mean square errors. MLR with correction of interpolated residuals is an attractive interpolation method for bioclimatic mapping on this oceanic island since it permits one to fully account for easily available geographic information but also takes into account local variation of climatic data.

  11. Micropillar Compression Technique Applied to Micron-Scale Mudstone Elasto-Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Boyce, B.; Buchheit, T.; Heath, J. E.; Chidsey, T.; Michael, J.

    2010-12-01

    Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Single Layer Centrifugation Can Be Scaled-Up Further to Process up to 150 mL Semen

    PubMed Central

    Morrell, J. M.; van Wienen, M.; Wallgren, M.

    2011-01-01

    Single-Layer centrifugation has been used to improve the quality of sperm samples in several species. However, where stallion or boar semen is to be used for AI, larger volumes of semen have to be processed than for other species, thus limiting the effectiveness of the original technique. The objective of the present study was to scale up the SLC method for both stallion and boar semen. Stallion semen could be processed in 100 mL glass tubes without a loss of sperm quality, and similarly, boar semen could be processed in 200 mL and 500 mL tubes without losing sperm quality. The results of these preliminary studies are encouraging, and larger trials are underway to evaluate using these methods in the field. PMID:23738111

  13. Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge.

    PubMed

    Olkiewicz, Magdalena; Torres, Carmen M; Jiménez, Laureano; Font, Josep; Bengoa, Christophe

    2016-08-01

    Municipal wastewater sludge is a promising lipid feedstock for biodiesel production, but the need to eliminate the high water content before lipid extraction is the main limitation for scaling up. This study evaluates the economic feasibility of biodiesel production directly from liquid primary sludge based on experimental data at laboratory scale. Computational tools were used for the modelling of the process scale-up and the different configurations of lipid extraction to optimise this step, as it is the most expensive. The operational variables with a major influence in the cost were the extraction time and the amount of solvent. The optimised extraction process had a break-even price of biodiesel of 1232 $/t, being economically competitive with the current cost of fossil diesel. The proposed biodiesel production process from waste sludge eliminates the expensive step of sludge drying, lowering the biodiesel price. PMID:27131292

  14. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  15. Decline in national tuberculosis notifications with national scale-up of antiretroviral therapy in Malawi.

    PubMed

    Kanyerere, H; Mganga, A; Harries, A D; Tayler-Smith, K; Jahn, A; Chimbwandira, F M; Mpunga, J

    2014-06-21

    From 2000 to 2012, Malawi scaled up antiretroviral therapy (ART) from <3000 to 404 905 persons living with HIV/AIDS (human immunodeficiency virus/acquired immune-deficiency syndrome), representing an ART coverage of 40.6% among those living with HIV. During this time, annual tuberculosis (TB) notifications declined by 28%, from 28 234 to 20 463. Percentage declines in annual TB case notifications were as follows: new TB (26%), recurrent TB (40%), new smear-positive pulmonary TB (19%), new smear-negative pulmonary TB (42%), extra-pulmonary TB (19%), HIV-positive TB (30%) and HIV-negative TB (10%). The decline in TB notifications is associated with ART scale-up, supporting its value in controlling TB in high HIV prevalence areas in sub-Saharan Africa.

  16. Decline in national tuberculosis notifications with national scale-up of antiretroviral therapy in Malawi

    PubMed Central

    Kanyerere, H.; Mganga, A.; Tayler-Smith, K.; Jahn, A.; Chimbwandira, F. M.; Mpunga, J.

    2014-01-01

    From 2000 to 2012, Malawi scaled up antiretroviral therapy (ART) from <3000 to 404 905 persons living with HIV/AIDS (human immunodeficiency virus/acquired immune-deficiency syndrome), representing an ART coverage of 40.6% among those living with HIV. During this time, annual tuberculosis (TB) notifications declined by 28%, from 28 234 to 20 463. Percentage declines in annual TB case notifications were as follows: new TB (26%), recurrent TB (40%), new smear-positive pulmonary TB (19%), new smear-negative pulmonary TB (42%), extra-pulmonary TB (19%), HIV-positive TB (30%) and HIV-negative TB (10%). The decline in TB notifications is associated with ART scale-up, supporting its value in controlling TB in high HIV prevalence areas in sub-Saharan Africa. PMID:26399210

  17. Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.

    PubMed

    Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C

    2016-07-01

    Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between

  18. CYMIC{reg_sign} -- Boiler scale-up and full scale demonstration experiences

    SciTech Connect

    Kokko, A.; Karvinen, R.; Ahlstedt, H.

    1995-12-31

    This paper describes the CYMIC boiler scale-up principles, first full scale experiences from demonstration plant and results from mathematical modelling of the cyclones. CYMIC pilot testing was successfully completed with very positive results, the next step was a CYMIC scale-up and full scale demonstration. The 30 MWth demonstration plant was commissioned during the fall of 1994. The plant is owned by VAPO Oy and it is in the city of Lieksa, eastern Finland. The CYMIC has been scaled up by developing six different cyclones and the multiplication system to cover the capacity range from 30 to 600 MWth. The design of this CYMIC series and the first sold industrial scale CYMIC are presented in the paper. The scale-up of the cyclone was mathematically modelled by Professor Karvinen and his group at Tampere University of Technology. The model which uses Sflow-code was tested and the parameters were set using the pilot test results. The model operated well, so three bigger cyclones were calculated. The first was the cyclone for the Lieksa plant and the other two were bigger standard cyclones. Particles were also included in the model. The variables in the calculations were the cyclone diameter, inlet vane shape and position. Commissioning of the Lieksa plant began in August 1994. The process including operation of the cyclone and the gaslock were then verified at full scale. Flue gas emissions, the combustion efficiency and the performance of the cyclone were also measured. This paper discuss the most interesting results of the measurements.

  19. Scaling up of HIV-TB collaborative activities: Achievements and challenges in India.

    PubMed

    Deshmukh, Rajesh; Shah, Amar; Sachdeva, K S; Sreenivas, A N; Gupta, R S; Khaparde, S D

    2016-01-01

    India has been implementing HIV/TB collaborative activities since 2001 with rapid scale-up of infrastructure across the country during past decade in National AIDS Control Programme and Revised National TB Control Programme. India has shown over 50% reduction in new infections and around 35% reduction in AIDS-related deaths, thereby being one of the success stories globally. Substantial progress in the implementation of collaborative TB/HIV activities has occurred in India and it is marching towards target set out in the Global Plan to Stop TB and endorsed by the UN General Assembly to halve HIV associated TB deaths by 2015. While the successful approaches have led to impressive gains in HIV/TB control in India, there are emerging challenges including newer pockets with rising HIV trends in North India, increasing drug resistance, high mortality among co-infected patients, low HIV testing rates among TB patients in northern and eastern states in India, treatment delays and drop-outs, stigma and discrimination, etc. In spite of these difficulties, established HIV/TB coordination mechanisms at different levels, rapid scale-up of facilities with decentralisation of treatment services, regular joint supervision and monitoring, newer initiatives like use of rapid diagnostics for early diagnosis of TB among people living with HIV, TB notification, etc. have led to success in combating the threat of HIV/TB in India. This article highlights the steps taken by India, one of the largest HIV/TB programmes in world, in scaling up of the joint HIV-TB collaborative activities, the achievements so far and discusses the emerging challenges which could provide important lessons for other countries in scaling up their programmes. PMID:27235937

  20. Scale-up of HIV Viral Load Monitoring--Seven Sub-Saharan African Countries.

    PubMed

    Lecher, Shirley; Ellenberger, Dennis; Kim, Andrea A; Fonjungo, Peter N; Agolory, Simon; Borget, Marie Yolande; Broyles, Laura; Carmona, Sergio; Chipungu, Geoffrey; De Cock, Kevin M; Deyde, Varough; Downer, Marie; Gupta, Sundeep; Kaplan, Jonathan E; Kiyaga, Charles; Knight, Nancy; MacLeod, William; Makumbi, Boniface; Muttai, Hellen; Mwangi, Christina; Mwangi, Jane W; Mwasekaga, Michael; Ng'Ang'A, Lucy W; Pillay, Yogan; Sarr, Abdoulaye; Sawadogo, Souleymane; Singer, Daniel; Stevens, Wendy; Toure, Christiane Adje; Nkengasong, John

    2015-11-27

    To achieve global targets for universal treatment set forth by the Joint United Nations Programme on human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) (UNAIDS), viral load monitoring for HIV-infected persons receiving antiretroviral therapy (ART) must become the standard of care in low- and middle-income countries (LMIC) (1). CDC and other U.S. government agencies, as part of the President's Emergency Plan for AIDS Relief, are supporting multiple countries in sub-Saharan Africa to change from the use of CD4 cell counts for monitoring of clinical response to ART to the use of viral load monitoring, which is the standard of care in developed countries. Viral load monitoring is the preferred method for immunologic monitoring because it enables earlier and more accurate detection of treatment failure before immunologic decline. This report highlights the initial successes and challenges of viral load monitoring in seven countries that have chosen to scale up viral load testing as a national monitoring strategy for patients on ART in response to World Health Organization (WHO) recommendations. Countries initiating viral load scale-up in 2014 observed increases in coverage after scale-up, and countries initiating in 2015 are anticipating similar trends. However, in six of the seven countries, viral load testing coverage in 2015 remained below target levels. Inefficient specimen transport, need for training, delays in procurement and distribution, and limited financial resources to support scale-up hindered progress. Country commitment and effective partnerships are essential to address the financial, operational, technical, and policy challenges of the rising demand for viral load monitoring. PMID:26605986

  1. Scale-up of HIV Viral Load Monitoring--Seven Sub-Saharan African Countries.

    PubMed

    Lecher, Shirley; Ellenberger, Dennis; Kim, Andrea A; Fonjungo, Peter N; Agolory, Simon; Borget, Marie Yolande; Broyles, Laura; Carmona, Sergio; Chipungu, Geoffrey; De Cock, Kevin M; Deyde, Varough; Downer, Marie; Gupta, Sundeep; Kaplan, Jonathan E; Kiyaga, Charles; Knight, Nancy; MacLeod, William; Makumbi, Boniface; Muttai, Hellen; Mwangi, Christina; Mwangi, Jane W; Mwasekaga, Michael; Ng'Ang'A, Lucy W; Pillay, Yogan; Sarr, Abdoulaye; Sawadogo, Souleymane; Singer, Daniel; Stevens, Wendy; Toure, Christiane Adje; Nkengasong, John

    2015-11-27

    To achieve global targets for universal treatment set forth by the Joint United Nations Programme on human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) (UNAIDS), viral load monitoring for HIV-infected persons receiving antiretroviral therapy (ART) must become the standard of care in low- and middle-income countries (LMIC) (1). CDC and other U.S. government agencies, as part of the President's Emergency Plan for AIDS Relief, are supporting multiple countries in sub-Saharan Africa to change from the use of CD4 cell counts for monitoring of clinical response to ART to the use of viral load monitoring, which is the standard of care in developed countries. Viral load monitoring is the preferred method for immunologic monitoring because it enables earlier and more accurate detection of treatment failure before immunologic decline. This report highlights the initial successes and challenges of viral load monitoring in seven countries that have chosen to scale up viral load testing as a national monitoring strategy for patients on ART in response to World Health Organization (WHO) recommendations. Countries initiating viral load scale-up in 2014 observed increases in coverage after scale-up, and countries initiating in 2015 are anticipating similar trends. However, in six of the seven countries, viral load testing coverage in 2015 remained below target levels. Inefficient specimen transport, need for training, delays in procurement and distribution, and limited financial resources to support scale-up hindered progress. Country commitment and effective partnerships are essential to address the financial, operational, technical, and policy challenges of the rising demand for viral load monitoring.

  2. How HIV/AIDS scale-up has impacted on non- HIV priority services in Zambia

    PubMed Central

    2010-01-01

    Background Much of the debate as to whether or not the scaling up of HIV service delivery in Africa benefits non-HIV priority services has focused on the use of nationally aggregated data. This paper analyses and presents routine health facility record data to show trend correlations across priority services. Methods Review of district office and health facility client records for 39 health facilities in three districts of Zambia, covering four consecutive years (2004-07). Intra-facility analyses were conducted, service and coverage trends assessed and rank correlations between services measured to compare service trends within facilities. Results VCT, ART and PMTCT client numbers and coverage levels increased rapidly. There were some strong positive correlations in trends within facilities between reproductive health services (family planning and antenatal care) and ART and PMTCT, with Spearman rank correlations ranging from 0.33 to 0.83. Childhood immunisation coverage also increased. Stock-outs of important drugs for non-HIV priority services were significantly more frequent than were stock-outs of antiretroviral drugs. Conclusions The analysis shows scale-up in reproductive health service numbers in the same facilities where HIV services were scaling up. While district childhood immunisations increased overall, this did not necessarily occur in facility catchment areas where HIV service scale-up occurred. The paper demonstrates an approach for comparing correlation trends across different services, using routine health facility information. Larger samples and explanatory studies are needed to understand the client, facility and health systems factors that contribute to positive and negative synergies between priority services. PMID:20825666

  3. Scale Up of Extended Thin Film Electrocatalyst Structures (ETFECS) (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    This NREL Hydrogen and Fuel Cell Technical Highlight discusses how NREL synthesized >1 gram of platinum ETFECS (nanotubes) for use as novel fuel cell catalysts. These materials represent the cumulative yield of four individual batch syntheses (each >250 milligrams yield). By producing these materials at gram quantity, NREL has shown the viability of scale up and produced sufficient material to allow further validation of properties, as well as in-depth electrode optimization and fuel cell testing.

  4. Toroidal coil chromatography: the effect of scale-up and "g" field on stage efficiency.

    PubMed

    Sutherland, Ian; Hewitson, Peter; de Folter, Joost

    2011-09-01

    Selected test results have been taken from various publications and resolution and stage efficiency measured using an established model. All experiments used the same sample and, where possible, the same sample loading. The results show that stage mixing efficiencies have increased from 1.1% in 1998 to greater than 25% in the latest scaled-up version of a Toroidal coil chromatography (TCC) instrument working at 240 g. PMID:21227439

  5. Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.

    PubMed

    Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C

    2016-07-01

    Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between

  6. Coated conductor scale-up program at IGC-SuperPower

    NASA Astrophysics Data System (ADS)

    Selvamanickam, V.; Li, Y.; Sathiaraju, S.; Qiao, Y.; Zdun, K.; Hope, L.; Reeves, J.; Lenseth, K.; Haldar, P.

    2002-01-01

    The objective of the coated conductor program at IGC-SuperPower is to scale up substrate, buffer, and YBCO deposition process to manufacturing. Recently, pilot-scale manufacturing facilities were established for substrate, buffer, and YBCO preparation at IGC-SuperPower. High-quality substrate, buffer, and Y-Ba-Cu-O (YBCO) tapes are being produced in the pilot-scale facilities. .

  7. Scaling up of HIV-TB collaborative activities: Achievements and challenges in India.

    PubMed

    Deshmukh, Rajesh; Shah, Amar; Sachdeva, K S; Sreenivas, A N; Gupta, R S; Khaparde, S D

    2016-01-01

    India has been implementing HIV/TB collaborative activities since 2001 with rapid scale-up of infrastructure across the country during past decade in National AIDS Control Programme and Revised National TB Control Programme. India has shown over 50% reduction in new infections and around 35% reduction in AIDS-related deaths, thereby being one of the success stories globally. Substantial progress in the implementation of collaborative TB/HIV activities has occurred in India and it is marching towards target set out in the Global Plan to Stop TB and endorsed by the UN General Assembly to halve HIV associated TB deaths by 2015. While the successful approaches have led to impressive gains in HIV/TB control in India, there are emerging challenges including newer pockets with rising HIV trends in North India, increasing drug resistance, high mortality among co-infected patients, low HIV testing rates among TB patients in northern and eastern states in India, treatment delays and drop-outs, stigma and discrimination, etc. In spite of these difficulties, established HIV/TB coordination mechanisms at different levels, rapid scale-up of facilities with decentralisation of treatment services, regular joint supervision and monitoring, newer initiatives like use of rapid diagnostics for early diagnosis of TB among people living with HIV, TB notification, etc. have led to success in combating the threat of HIV/TB in India. This article highlights the steps taken by India, one of the largest HIV/TB programmes in world, in scaling up of the joint HIV-TB collaborative activities, the achievements so far and discusses the emerging challenges which could provide important lessons for other countries in scaling up their programmes.

  8. Mainstreaming nutrition into maternal and child health programmes: scaling up of exclusive breastfeeding.

    PubMed

    Bhandari, Nita; Kabir, A K M Iqbal; Salam, Mohammed Abdus

    2008-04-01

    Interventions to promote exclusive breastfeeding have been estimated to have the potential to prevent 13% of all under-5 deaths in developing countries and are the single most important preventive intervention against child mortality. According to World Health Organization and United Nations Children Funds (UNICEF), only 39% infants are exclusively breastfed for less than 4 months. This review examines programme efforts to scale up exclusive breastfeeding in different countries and draws lesson for successful scale-up. Opportunities and challenges in scaling up of exclusive breastfeeding into Maternal and Child Health programmes are identified. The key processes required for exclusive breastfeeding scale-up are: (1) an evidence-based policy and science-driven technical guidelines; and (2) an implementation strategy and plan for achieving high exclusive breastfeeding rates in all strata of society, on a sustainable basis. Factors related to success include political will, strong advocacy, enabling policies, well-defined short- and long-term programme strategy, sustained financial support, clear definition of roles of multiple stakeholders and emphasis on delivery at the community level. Effective use of antenatal, birth and post-natal contacts at homes and through community mobilization efforts is emphasized. Formative research to ensure appropriate intervention design and delivery is critical particularly in areas with high HIV prevalence. Strong communication strategy and support, quality trainers and training contributed significantly to programme success. Monitoring and evaluation with feedback systems that allow for periodic programme corrections and continued innovation are central to very high coverage. Legal framework must make it possible for mothers to exclusively breastfeed for at least 4 months. Sustained programme efforts are critical to achieve high coverage and this requires strong national- and state-level leadership.

  9. Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study.

    PubMed

    Martín de Vidales, María J; Cotillas, Salvador; Perez-Serrano, José F; Llanos, Javier; Sáez, Cristina; Cañizares, Pablo; Rodrigo, Manuel A

    2016-10-01

    This work focuses on the scale-up of electrochemical and photoelectrochemical oxidation processes with diamond anodes for the removal of organic pollutants and disinfection of treated urban wastewater, two of the most important parameters for the reclaiming of wastewater. The removal of organics was studied with actual biologically treated urban wastewater intensified with 100 mg dm(-3) of caffeine, added as a trace organic pollutant. The disinfection was also studied with biologically treated urban wastewater, and Escherichia coli was used to monitor the efficiency of the process. Results obtained with a single DiaCell® 101 were compared with those obtained with a single-stack DiaCell® 1001 and with a pilot plant made up of five of these stacks. Results obtained demonstrate that scale-up is not a simple but a very complex process, in which not only the electrode and the irradiation dose are important but also mass transfer conditions. Enhanced mass transport conditions have a determining and very positive effect on the removal of organics and a negative effect on the disinfection. Likewise, ultraviolet (UV) irradiation affects in a different way in the different setups used, having a great influence on the removal of complex organics and on the speciation of oxidants produced during disinfection. This works helps to understand the key differences observed in the scale-up, and it is a first approach for future works focused on the real application of conductive diamond electrochemical oxidation. PMID:27406224

  10. Moving from a project to programmatic response: scaling up harm reduction in Asia.

    PubMed

    Chatterjee, Anindya; Sharma, Mukta

    2010-03-01

    The response to the HIV epidemics among people who inject drugs in Asia began to emerge in the early to mid 1990s, with the rather hesitant implementation of small-scale needle syringe programmes and community care initiatives aiming to support those who were already living with the virus. Since then Asia has seen a significant scaling up of harm reduction, despite very limited resources and difficult policy and legislative environments. One of the major reasons this has happened, is the utilisation of programme based approaches and the firm entrenchment of harm reduction thinking within national HIV/AIDS programmes and strategic plans--in most cases aided by multilateral and bilateral donors. Several models of scale up have been noted in Asia. The transition away from project based approaches, while on the whole positive, can also have a negative impact if the involvement of civil society and a client focussed approach is not protected. Also there are implications for which models of capacity building can be systematised for ongoing scale up. Most crucially, the tensions between drug policy, human rights and public health policies need to be resolved if harm reduction services are to be made available to the millions in Asia who are still unable to access these services. PMID:20079618

  11. Theoretical and Practical Issues That Are Relevant When Scaling Up hMSC Microcarrier Production Processes

    PubMed Central

    Jossen, Valentin; Schirmer, Cedric; Mostafa Sindi, Dolman; Eibl, Regine; Kraume, Matthias; Pörtner, Ralf; Eibl, Dieter

    2016-01-01

    The potential of human mesenchymal stem cells (hMSCs) for allogeneic cell therapies has created a large amount of interest. However, this presupposes the availability of efficient scale-up procedures. Promising results have been reported for stirred bioreactors that operate with microcarriers. Recent publications focusing on microcarrier-based stirred bioreactors have demonstrated the successful use of Computational Fluid Dynamics (CFD) and suspension criteria (NS1u, NS1) for rapidly scaling up hMSC expansions from mL- to pilot scale. Nevertheless, one obstacle may be the formation of large microcarrier-cell-aggregates, which may result in mass transfer limitations and inhomogeneous distributions of stem cells in the culture broth. The dependence of microcarrier-cell-aggregate formation on impeller speed and shear stress levels was investigated for human adipose derived stromal/stem cells (hASCs) at the spinner scale by recording the Sauter mean diameter (d32) versus time. Cultivation at the suspension criteria provided d32 values between 0.2 and 0.7 mm, the highest cell densities (1.25 × 106 cells mL−1 hASCs), and the highest expansion factors (117.0 ± 4.7 on day 7), while maintaining the expression of specific surface markers. Furthermore, suitability of the suspension criterion NS1u was investigated for scaling up microcarrier-based processes in wave-mixed bioreactors for the first time. PMID:26981131

  12. HIV testing as prevention among MSM in China: the business of scaling-up.

    PubMed

    Fan, Elsa L

    2014-01-01

    In this paper, I examine the emergence of goumai fuwu, or contracting with social organisations to provide social services, in the HIV/AIDS sector in China. In particular, I interrogate the outsourcing of HIV testing to community-based organisations (CBOs) serving men who have sex with men (MSM) as a means of scaling-up testing in this population, and how the commodification of testing enables new forms of surveillance and citizenship to emerge. In turn, I tie the scaling-up of testing and its commodification to the sustainability of CBOs as they struggle to survive. In recent years, the HIV/AIDS response in China has shifted to expanding testing among MSM in order to reduce new infections. This response has been catalysed by the transition to sexual contact as the primary transmission route for HIV and the rising rates of infection among MSM, leading government institutions and international donors to mobilise CBOs to expand testing. These efforts to scale-up are as much about testing as they are about making visible this hidden population. CBOs, in facilitating testing, come to rely on outsourcing as a long-term funding base and in doing so, unintentionally extend the reach of the state into the everyday lives of MSM. PMID:24498955

  13. Differences in antiretroviral scale up in three South African provinces: the role of implementation management

    PubMed Central

    2010-01-01

    Background South Africa’s antiretroviral programme is governed by defined national plans, establishing treatment targets and providing funding through ring-fenced conditional grants. However, in terms of the country’s quasi-federal constitution, provincial governments bear the main responsibility for provision of health care, and have a certain amount of autonomy and therefore choice in the way their HIV/AIDS programmes are implemented. Methods The paper is a comparative case study of the early management of ART scale up in three South African provincial governments – Western Cape, Gauteng and Free State – focusing on both operational and strategic dimensions. Drawing on surveys of models of ART care and analyses of the policy process conducted in the three provinces between 2005 and 2007, as well as a considerable body of grey and indexed literature on ART scale up in South Africa, it draws links between implementation processes and variations in provincial ART coverage (low, medium and high) achieved in the three provinces. Results While they adopted similar chronic disease care approaches, the provinces differed with respect to political and managerial leadership of the programme, programme design, the balance between central standardisation and local flexibility, the effectiveness of monitoring and evaluation systems, and the nature and extent of external support and programme partnerships. Conclusions This case study points to the importance of sub-national programme processes and the influence of factors other than financing or human resource capacity, in understanding intervention scale up. PMID:20594370

  14. Nurse Family Partnership: Comparing Costs per Family in Randomized Trials Versus Scale-Up.

    PubMed

    Miller, Ted R; Hendrie, Delia

    2015-12-01

    The literature that addresses cost differences between randomized trials and full-scale replications is quite sparse. This paper examines how costs differed among three randomized trials and six statewide scale-ups of nurse family partnership (NFP) intensive home visitation to low income first-time mothers. A literature review provided data on pertinent trials. At our request, six well-established programs reported their total expenditures. We adjusted the costs to national prices based on mean hourly wages for registered nurses and then inflated them to 2010 dollars. A centralized data system provided utilization. Replications had fewer home visits per family than trials (25 vs. 31, p = .05), lower costs per client ($8860 vs. $12,398, p = .01), and lower costs per visit ($354 vs. $400, p = .30). Sample size limited the significance of these differences. In this type of labor intensive program, costs probably were lower in scale-up than in randomized trials. Key cost drivers were attrition and the stable caseload size possible in an ongoing program. Our estimates reveal a wide variation in cost per visit across six state programs, which suggests that those planning replications should not expect a simple rule to guide cost estimations for scale-ups. Nevertheless, NFP replications probably achieved some economies of scale.

  15. Nurse Family Partnership: Comparing Costs per Family in Randomized Trials Versus Scale-Up.

    PubMed

    Miller, Ted R; Hendrie, Delia

    2015-12-01

    The literature that addresses cost differences between randomized trials and full-scale replications is quite sparse. This paper examines how costs differed among three randomized trials and six statewide scale-ups of nurse family partnership (NFP) intensive home visitation to low income first-time mothers. A literature review provided data on pertinent trials. At our request, six well-established programs reported their total expenditures. We adjusted the costs to national prices based on mean hourly wages for registered nurses and then inflated them to 2010 dollars. A centralized data system provided utilization. Replications had fewer home visits per family than trials (25 vs. 31, p = .05), lower costs per client ($8860 vs. $12,398, p = .01), and lower costs per visit ($354 vs. $400, p = .30). Sample size limited the significance of these differences. In this type of labor intensive program, costs probably were lower in scale-up than in randomized trials. Key cost drivers were attrition and the stable caseload size possible in an ongoing program. Our estimates reveal a wide variation in cost per visit across six state programs, which suggests that those planning replications should not expect a simple rule to guide cost estimations for scale-ups. Nevertheless, NFP replications probably achieved some economies of scale. PMID:26507844

  16. Fermentation scale up for α-arbutin production by Xanthomonas BT-112.

    PubMed

    Wei, Meng; Ren, Yi; Liu, Changxia; Liu, Ruican; Zhang, Peng; Wei, Yi; Xu, Tao; Wang, Fang; Tan, Tianwei; Liu, Chunqiao

    2016-09-10

    α-Arbutin is a glycosylated hydroquinone that has an inhibitory function against tyrosinase. The aim of the present study is to develop an efficient and inexpensive method for large-scale production of α-arbutin by using Xanthomonas BT-112 as biocatalyst. To accomplish this goal, various surfactants were tested to enhance the α-arbutin production, and the optimal operational conditions for 30L jar fermenter were scaled up for a production level of 3000L with using a constant volumetric oxygen transfer coefficient (KLa) and the volumetric aeration rate per volume unit (Q/V) as scale-up criteria. Under the optimized conditions, the α-arbutin produced in the presence of 0.4% (w/v) Tween-80 was 124.8% higher than that of the control, and the yield of α-arbutin in 3000L fermenter was 38.2g/L with a molar conversion ratio of 93.7% based on the amount of hydroquinone supplied. This result is comparable to the results from laboratory-scale fermenter. Hence, 100-fold scale-up was successfully achieved.

  17. Scale-up of high shear granulation based on the internal stress measurement.

    PubMed

    Watano, Satoru; Okamoto, Takumi; Sato, Yoshinobu; Osako, Yoshifumi

    2005-04-01

    Scale-up of wet granulation in a vertical high shear mixer was conducted. Pharmaceutical excipient powders composed of lactose, cornstarch and micro-crystallinecellulose, and hydroxypropylcellulose as a binder were mixed together and then granulated with purified water under various operating conditions and vessel scales. A novel internal stress measurement system was developed and stress of normal and tangential directions that granules received from the agitator blade during the granulation was continuously measured. The results indicated that granules received stress mainly from the tangential direction, which also showed the largest value near at the vessel wall. The effects of the agitator tip speed and the centrifugal acceleration on the measured stress was investigated. It was found that the tip speed of the agitator blade could be the main factor for the granule growth. The physical properties such as strength, size distribution and compressibility of granules prepared by changing the operating conditions and the vessel scales were evaluated and the scale-up characteristics of high shear granulation were investigated experimentally. The results showed that these physical properties had linear correlations with the tip speed. It was finally concluded that the scale-up of high shear granulation could be well conducted by means of the tip speed of the agitator blade. PMID:15802830

  18. Analysis and improvement of a scaled-up and stacked microbial fuel cell.

    PubMed

    Dekker, Arjan; Ter Heijne, Annemiek; Saakes, Michel; Hamelers, Hubertus V M; Buisman, Cees J N

    2009-12-01

    Scaling up microbial fuel cells (MFCs) is inevitable when power outputs have to be obtained that can power electrical devices other than small sensors. This research has used a bipolar plate MFC stack of four cells with a total working volume of 20 L and a total membrane surface area of 2 m(2). The cathode limited MFC performance due to oxygen reduction rate and cell reversal. Furthermore, residence time distribution curves showed that bending membranes resulted in flow paths through which the catholyte could flow from inlet to outlet, while leaving the reactants unconverted. The cathode was improved by decreasing the pH, purging pure oxygen, and increasing the flow rate, which resulted in a 13-fold power density increase to 144 W m(-3) and a volumetric resistivity of only 1.2 mOmega m(3) per cell. Both results are major achievements compared to results currently published for laboratory and scaled-up MFCs. When designing a scaled-up MFC, it is important to ensure optimal contact between electrodes and substrate and to minimize the distances between electrodes.

  19. Scale-up of controlled-shear affinity filtration using computational fluid dynamics.

    PubMed

    Francis, Patrick; Haynes, Charles A

    2009-05-01

    Controlled shear affinity filtration (CSAF) is an integrated bioprocess that positions a contoured rotor above a membrane affinity chromatography column to permit the capture and purification of a secreted protein product directly from cell culture. Here, computational fluid dynamics (CFD) simulations previously used on a laboratory-scale unit (Francis et al., Biotechnol. Bioeng. 2005, 95, 1207-1217) are extended to study the fluid hydrodynamics and expected filter performance of the CSAF device for rotor sizes up to 140 cm in radius. We show that the fluid hydrodynamics within the rotor chamber of larger-scale CSAF units are complex and include turbulent boundary layers; thus, CFD likely provides the only reliable route to CSAF scale-up. We then model design improvements that will be required for CSAF scale-up to permit processing of industrial feedstock. The result is the in silico design of a preparative CSAF device with an optimized rotor 140 cm in radius. The scaled up device has an effective filtration area of 5.93 m(2), which should allow for complete processing in ca. 2 h of 1000 L of culture harvested from either a perfusion, fed-batch or batch bioreactor. Finally, a novel method for the parallelization of CSAF units is presented for use in bioprocessing operations larger than 1000 L. PMID:19452478

  20. Innovate Use of SCALE-UP for Teaching General Education Astronomy

    NASA Astrophysics Data System (ADS)

    Keller, Luke; Rogers, M.

    2006-12-01

    Current development at Ithaca College is focused on transforming our general education astronomy courses from lecture-based into hands-on, active-learning courses by using the SCALE-UP model. SCALE-UP (Student Centered Activities for Large Enrollment University Physics) pioneered at North Carolina State University expands the successes of Studio Physics (developed at RPI) to large enrollment courses. Studio Physics does away with the usual lecture/recitation/laboratory sessions by having one dynamic, active-learning environment for approximately 40 students. SCALE-UP expands this model to accommodate 100+ students by using large round tables usually seating nine students who work in groups of three. Classes meet three times per week with each class blending lecture, hands-on activities, group problem solving, and the use of student polling devices. It is expected that this mode of teaching astronomy will lead to a better understanding of astronomy and the nature of science. We just finished renovating two existing classrooms and two storerooms to create a 99-seat active learning room. This poster will present the steps we took from initial planning meetings to our current curriculum development stage. We will highlight how we obtained administration buy-in, obtained funding, and planned the renovation with our facilities staff. We will also present our plans for curriculum development and assessment of our efforts.

  1. A scaled-up system to evaluate zooplankton spatial avoidance and the population immediate decline concentration.

    PubMed

    Rosa, Rita; Materatski, Patrick; Moreira-Santos, Matilde; Sousa, José Paulo; Ribeiro, Rui

    2012-06-01

    Most laboratory tests may underestimate adverse effects in real scenarios of contamination because they imply the forced exposure of organisms to contaminants, thus overlooking the possibility of emigration. Avoidance from contaminants has been observed in several aquatic organisms, and avoidance-based tests have been recommended to be included in risk assessment studies. To reduce uncertainty in the extrapolation of laboratory derived results, the first aim of the present study was to compare both the median avoidance concentration and the lowest-observed-effect gradient (LOEG) values of atrazine for the cladoceran Daphnia magna, between an already developed 1.1-m-long system and a scaled-up system, three times longer. Second, the present study aimed at evaluating the population immediate decline--the proportion of the population that disappears (avoids and, if not, dies)--through the integration of the relationships between lethality and avoidance versus contaminant concentration. Daphnia magna significantly avoided atrazine, during 12-h exposures, with similar results in the original and scaled-up systems. The population immediate decline at the 48-h median lethal concentration would be 94%. Even at a concentration eliciting only 5% mortality, the population immediate decline would be over 50%. Achieving a higher pertinence of avoidance results and a better understanding of the LOEG values and their time dependence, scaling up the system further both spatially and temporally, and modeling explicit spatial dynamics in exposure and organism movement in space and time are needed.

  2. Analysis and improvement of a scaled-up and stacked microbial fuel cell.

    PubMed

    Dekker, Arjan; Ter Heijne, Annemiek; Saakes, Michel; Hamelers, Hubertus V M; Buisman, Cees J N

    2009-12-01

    Scaling up microbial fuel cells (MFCs) is inevitable when power outputs have to be obtained that can power electrical devices other than small sensors. This research has used a bipolar plate MFC stack of four cells with a total working volume of 20 L and a total membrane surface area of 2 m(2). The cathode limited MFC performance due to oxygen reduction rate and cell reversal. Furthermore, residence time distribution curves showed that bending membranes resulted in flow paths through which the catholyte could flow from inlet to outlet, while leaving the reactants unconverted. The cathode was improved by decreasing the pH, purging pure oxygen, and increasing the flow rate, which resulted in a 13-fold power density increase to 144 W m(-3) and a volumetric resistivity of only 1.2 mOmega m(3) per cell. Both results are major achievements compared to results currently published for laboratory and scaled-up MFCs. When designing a scaled-up MFC, it is important to ensure optimal contact between electrodes and substrate and to minimize the distances between electrodes. PMID:19943685

  3. Estimates of child deaths prevented from malaria prevention scale-up in Africa 2001-2010

    PubMed Central

    2012-01-01

    Background Funding from external agencies for malaria control in Africa has increased dramatically over the past decade resulting in substantial increases in population coverage by effective malaria prevention interventions. This unprecedented effort to scale-up malaria interventions is likely improving child survival and will likely contribute to meeting Millennium Development Goal (MDG) 4 to reduce the < 5 mortality rate by two thirds between 1990 and 2015. Methods The Lives Saved Tool (LiST) model was used to quantify the likely impact that malaria prevention intervention scale-up has had on malaria mortality over the past decade (2001-2010) across 43 malaria endemic countries in sub-Saharan African. The likely impact of ITNs and malaria prevention interventions in pregnancy (intermittent preventive treatment [IPTp] and ITNs used during pregnancy) over this period was assessed. Results The LiST model conservatively estimates that malaria prevention intervention scale-up over the past decade has prevented 842,800 (uncertainty: 562,800-1,364,645) child deaths due to malaria across 43 malaria-endemic countries in Africa, compared to a baseline of the year 2000. Over the entire decade, this represents an 8.2% decrease in the number of malaria-caused child deaths that would have occurred over this period had malaria prevention coverage remained unchanged since 2000. The biggest impact occurred in 2010 with a 24.4% decrease in malaria-caused child deaths compared to what would have happened had malaria prevention interventions not been scaled-up beyond 2000 coverage levels. ITNs accounted for 99% of the lives saved. Conclusions The results suggest that funding for malaria prevention in Africa over the past decade has had a substantial impact on decreasing child deaths due to malaria. Rapidly achieving and then maintaining universal coverage of these interventions should be an urgent priority for malaria control programmes in the future. Successful scale-up in many

  4. Adaptive meshing technique applied to an orthopaedic finite element contact problem.

    PubMed

    Roarty, Colleen M; Grosland, Nicole M

    2004-01-01

    Finite element methods have been applied extensively and with much success in the analysis of orthopaedic implants. Recently a growing interest has developed, in the orthopaedic biomechanics community, in how numerical models can be constructed for the optimal solution of problems in contact mechanics. New developments in this area are of paramount importance in the design of improved implants for orthopaedic surgery. Finite element and other computational techniques are widely applied in the analysis and design of hip and knee implants, with additional joints (ankle, shoulder, wrist) attracting increased attention. The objective of this investigation was to develop a simplified adaptive meshing scheme to facilitate the finite element analysis of a dual-curvature total wrist implant. Using currently available software, the analyst has great flexibility in mesh generation, but must prescribe element sizes and refinement schemes throughout the domain of interest. Unfortunately, it is often difficult to predict in advance a mesh spacing that will give acceptable results. Adaptive finite-element mesh capabilities operate to continuously refine the mesh to improve accuracy where it is required, with minimal intervention by the analyst. Such mesh adaptation generally means that in certain areas of the analysis domain, the size of the elements is decreased (or increased) and/or the order of the elements may be increased (or decreased). In concept, mesh adaptation is very appealing. Although there have been several previous applications of adaptive meshing for in-house FE codes, we have coupled an adaptive mesh formulation with the pre-existing commercial programs PATRAN (MacNeal-Schwendler Corp., USA) and ABAQUS (Hibbit Karlson and Sorensen, Pawtucket, RI). In doing so, we have retained several attributes of the commercial software, which are very attractive for orthopaedic implant applications.

  5. The 40Ar/39Ar dating technique applied to planetary sciences

    NASA Astrophysics Data System (ADS)

    Jourdan, F.

    2012-12-01

    The 40Ar/39Ar technique is a powerful geochronological method that can help to unravel the evolution of the solar system. The 40Ar/39Ar system can not only record the timing of volcanic and metamorphic processes on asteroids and planets, it finds domain of predilection in dating impact events throughout the solar system. However, the 40Ar/39Ar method is a robust analytical technique if, and only if, the events to be dated are well understood and data are not over interpreted. Yet, too many 'ages' reported in the literature are still based on over-interpretation of perturbed age spectra which tends to blur the big picture. This presentation is centred on the most recent applications of the 40Ar/39Ar technique applied to planetary material and through several examples, will attempt to demonstrate the benefit of focusing on statistically robust data. For example, 40Ar/39Ar dating of volcanic events on the Moon suggests that volcanism was mostly concentrated between ca. 3.8 and 3.1 Ga but statistical filtering of the data allow identifying a few well-defined eruptive events. The study of lunar volcanism would also benefit from dating of volcanic spherules. Rigorous filtering of the 40Ar/39Ar age database of lunar melt breccias yielded concordant and ages with high precision for two major basins (i.e. Imbrium & Serenitatis) of the Moon. 40Ar/39Ar dating of lunar impact spherules recovered from four different sites and with high- and low-K compositions shows an increase of ages younger than 400 Ma suggesting a recent increase in the impact flux. The impact history of the LL parent body (bodies?) has yet to be well constrained but may mimic the LHB observed on the Moon, which would indicate that the LL parent body was quite large. 40Ar/39Ar dating (in progress) of grains from the asteroid Itokawa recovered by the japanese Hayabusa mission have the potential to constrain the formation history and exposure age of Itokawa and will allow us to compare the results with the

  6. Sampled-Data Techniques Applied to a Digital Controller for an Altitude Autopilot

    NASA Technical Reports Server (NTRS)

    Schmidt, Stanley F.; Harper, Eleanor V.

    1959-01-01

    Sampled-data theory, using the Z transformation, is applied to the design of a digital controller for an aircraft-altitude autopilot. Particular attention is focused on the sensitivity of the design to parameter variations and the abruptness of the response, that is, the normal acceleration required to carry out a transient maneuver. Consideration of these two characteristics of the system has shown that the finite settling time design method produces an unacceptable system, primarily because of the high sensitivity of the response to parameter variations, although abruptness can be controlled by increasing the sampling period. Also demonstrated is the importance of having well-damped poles or zeros if cancellation is attempted in the design methods. A different method of smoothing the response and obtaining a design which is not excessively sensitive is proposed, and examples are carried through to demonstrate the validity of the procedure. This method is based on design concepts of continuous systems, and it is shown that if no pole-zero cancellations are allowed in the design, one can obtain a response which is not too abrupt, is relatively insensitive to parameter variations, and is not sensitive to practical limits on control-surface rate. This particular design also has the simplest possible pulse transfer function for the digital controller. Simulation techniques and root loci are used for the verification of the design philosophy.

  7. Unsteady vortex lattice techniques applied to wake formation and performance of the statically thrusting propeller

    NASA Technical Reports Server (NTRS)

    Hall, G. F.

    1975-01-01

    The application is considered of vortex lattice techniques to the problem of describing the aerodynamics and performance of statically thrusting propellers. A numerical lifting surface theory to predict the aerodynamic forces and power is performed. The chordwise and spanwise loading is modelled by bound vortices fixed to a twisted flat plate surface. In order to eliminate any apriori assumptions regarding the wake shape, it is assumed the propeller starts from rest. The wake is generated in time and allowed to deform under its own self-induced velocity field as the motion of the propeller progresses. The bound circulation distribution is then determined with time by applying the flow tangency boundary condition at certain selected control points on the blades. The aerodynamics of the infinite wing and finite wing are also considered. The details of wake formation and roll-up are investigated, particularly the localized induction effect. It is concluded that proper wake roll-up and roll-up rates can be established by considering the details of motion at the instant of start.

  8. Formulation of Indomethacin Colon Targeted Delivery Systems Using Polysaccharides as Carriers by Applying Liquisolid Technique

    PubMed Central

    Elkhodairy, Kadria A.; Elsaghir, Hanna A.; Al-Subayiel, Amal M.

    2014-01-01

    The present study aimed at the formulation of matrix tablets for colon-specific drug delivery (CSDD) system of indomethacin (IDM) by applying liquisolid (LS) technique. A CSDD system based on time-dependent polymethacrylates and enzyme degradable polysaccharides was established. Eudragit RL 100 (E-RL 100) was employed as time-dependent polymer, whereas bacterial degradable polysaccharides were presented as LS systems loaded with the drug. Indomethacin-loaded LS systems were prepared using different polysaccharides, namely, guar gum (GG), pectin (PEC), and chitosan (CH), as carriers separately or in mixtures of different ratios of 1 : 3, 1 : 1, and 3 : 1. Liquisolid systems that displayed promising results concerning drug release rate in both pH 1.2 and pH 6.8 were compressed into tablets after the addition of the calculated amount of E-RL 100 and lubrication with magnesium stearate and talc in the ratio of 1 : 9. It was found that E-RL 100 improved the flowability and compressibility of all LS formulations. The release data revealed that all formulations succeeded to sustain drug release over a period of 24 hours. Stability study indicated that PEC-based LS system as well as its matrix tablets was stable over the period of storage (one year) and could provide a minimum shelf life of two years. PMID:24971345

  9. Spatial analysis techniques applied to uranium prospecting in Chihuahua State, Mexico

    NASA Astrophysics Data System (ADS)

    Hinojosa de la Garza, Octavio R.; Montero Cabrera, María Elena; Sanín, Luz H.; Reyes Cortés, Manuel; Martínez Meyer, Enrique

    2014-07-01

    To estimate the distribution of uranium minerals in Chihuahua, the advanced statistical model "Maximun Entropy Method" (MaxEnt) was applied. A distinguishing feature of this method is that it can fit more complex models in case of small datasets (x and y data), as is the location of uranium ores in the State of Chihuahua. For georeferencing uranium ores, a database from the United States Geological Survey and workgroup of experts in Mexico was used. The main contribution of this paper is the proposal of maximum entropy techniques to obtain the mineral's potential distribution. For this model were used 24 environmental layers like topography, gravimetry, climate (worldclim), soil properties and others that were useful to project the uranium's distribution across the study area. For the validation of the places predicted by the model, comparisons were done with other research of the Mexican Service of Geological Survey, with direct exploration of specific areas and by talks with former exploration workers of the enterprise "Uranio de Mexico". Results. New uranium areas predicted by the model were validated, finding some relationship between the model predictions and geological faults. Conclusions. Modeling by spatial analysis provides additional information to the energy and mineral resources sectors.

  10. Floating field ring technique applied to enhance fill factor of silicon photomultiplier elementary cell

    NASA Astrophysics Data System (ADS)

    Maresca, L.; De Laurentis, M.; Riccio, M.; Irace, A.; Breglio, G.

    2011-06-01

    A silicon photomultiplier (SiPM) is a matrix of Geiger-mode avalanche photodiodes (GM-APDs) connected in parallel. One of the main drawback in the SiPm is the low Photon Detection Efficiency(PDE) also due to the low geometrical fill factor of the microcells array. This paper reports on the analysis and simulation of the single floating field ring technique, applied to the junction termination of the single cell of a Silicon Photomultiplier (SiPm). A floating guard ring is made along the border of the single microcell and it is not connected to the cathodic contact. Even if the ring is not electrically connected to the main junction, it mitigates the variation of the electrical field at the main termination. The effect of the junction-to-ring distance is analytically investigated by using cylindrical coordinates and an optimal distance together with the optimal width is found. Results show that the single floating ring reduces the junction edge electric field by keeping constant the size of the microcell allowing, then, an improvement for the geometrical fill factor. Results are supported by TCAD simulations.

  11. A study and evaluation of image analysis techniques applied to remotely sensed data

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.

    1976-01-01

    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.

  12. Formulation of indomethacin colon targeted delivery systems using polysaccharides as carriers by applying liquisolid technique.

    PubMed

    Elkhodairy, Kadria A; Elsaghir, Hanna A; Al-Subayiel, Amal M

    2014-01-01

    The present study aimed at the formulation of matrix tablets for colon-specific drug delivery (CSDD) system of indomethacin (IDM) by applying liquisolid (LS) technique. A CSDD system based on time-dependent polymethacrylates and enzyme degradable polysaccharides was established. Eudragit RL 100 (E-RL 100) was employed as time-dependent polymer, whereas bacterial degradable polysaccharides were presented as LS systems loaded with the drug. Indomethacin-loaded LS systems were prepared using different polysaccharides, namely, guar gum (GG), pectin (PEC), and chitosan (CH), as carriers separately or in mixtures of different ratios of 1:3, 1:1, and 3:1. Liquisolid systems that displayed promising results concerning drug release rate in both pH 1.2 and pH 6.8 were compressed into tablets after the addition of the calculated amount of E-RL 100 and lubrication with magnesium stearate and talc in the ratio of 1:9. It was found that E-RL 100 improved the flowability and compressibility of all LS formulations. The release data revealed that all formulations succeeded to sustain drug release over a period of 24 hours. Stability study indicated that PEC-based LS system as well as its matrix tablets was stable over the period of storage (one year) and could provide a minimum shelf life of two years. PMID:24971345

  13. Phase-ratio technique as applied to the assessment of lunar surface roughness

    NASA Astrophysics Data System (ADS)

    Kaydash, Vadym; Videen, Gorden; Shkuratov, Yuriy

    Regoliths of atmosphereless celestial bodies demonstrate prominent light backscattering that is common for particulate surfaces. This occurs over a wide range of phase angles and can be seen in the phase function [1]. The slope of the function may characterize the complexity of planetary surface structure. Imagery of such a parameter suggests that information can be obtained about the surface, like variations of unresolved surface roughness and microtopography [2]. Phase-ratio imagery allows one to characterize the phase function slope. This imagery requires the ratio of two co-registered images acquired at different phase angles. One important advantage of the procedure is that the inherent albedo variations of the surface are suppressed, and, therefore, the resulting image is sensitive to the surface structure variation [2,3]. The phase-ratio image characterizes surface roughness variation at spatial scales on the order of the incident wavelengths to that of the image resolution. Applying the phase-ratio technique to ground-based telescope data has allowed us to find new lunar surface formations in the southern part of Oceanus Procellarum. These are suggested to be weak swirls [4]. We also combined the phase-ratio technique with the space-derived photometry data acquired from the NASA Lunar Reconnaissance Orbiter with high spatial resolution. Thus we exploited the method to analyze the sites of Apollo landings and Soviet sample-return missions. Phase-ratio imagery has revealed anomalies of the phase-curve slope indicating a smoothing of the surface microstructure at the sites caused by dust uplifted by the engine jets of the descent and ascent modules [5,6]. Analysis of phase-ratios helps to understand how the regolith properties have been affected by robotic and human activity on the Moon [7,8]. We have demonstrated the use of the method to search for fresh natural disturbances of surface structure, e.g., to detect areas of fresh slumps, accumulated material on

  14. Implementation of legal abortion in Nepal: a model for rapid scale-up of high-quality care

    PubMed Central

    2012-01-01

    Unsafe abortion's significant contribution to maternal mortality and morbidity was a critical factor leading to liberalization of Nepal's restrictive abortion law in 2002. Careful, comprehensive planning among a range of multisectoral stakeholders, led by Nepal's Ministry of Health and Population, enabled the country subsequently to introduce and scale up safe abortion services in a remarkably short timeframe. This paper examines factors that contributed to rapid, successful implementation of legal abortion in this mountainous republic, including deliberate attention to the key areas of policy, health system capacity, equipment and supplies, and information dissemination. Important elements of this successful model of scaling up safe legal abortion include: the pre-existence of postabortion care services, through which health-care providers were already familiar with the main clinical technique for safe abortion; government leadership in coordinating complementary contributions from a wide range of public- and private-sector actors; reliance on public-health evidence in formulating policies governing abortion provision, which led to the embrace of medical abortion and authorization of midlevel providers as key strategies for decentralizing care; and integration of abortion care into existing Safe Motherhood and the broader health system. While challenges remain in ensuring that all Nepali women can readily exercise their legal right to early pregnancy termination, the national safe abortion program has already yielded strong positive results. Nepal's experience making high-quality abortion care widely accessible in a short period of time offers important lessons for other countries seeking to reduce maternal mortality and morbidity from unsafe abortion and to achieve Millennium Development Goals. PMID:22475782

  15. Antiretroviral Treatment Scale-Up and Tuberculosis Mortality in High TB/HIV Burden Countries: An Econometric Analysis

    PubMed Central

    Yan, Isabel; Bendavid, Eran; Korenromp, Eline L.

    2016-01-01

    Introduction Antiretroviral therapy (ART) reduces mortality in patients with active tuberculosis (TB), but the population-level relationship between ART coverage and TB mortality is untested. We estimated the reduction in population-level TB mortality that can be attributed to increasing ART coverage across 41 high HIV-TB burden countries. Methods We compiled TB mortality trends between 1996 and 2011 from two sources: (1) national program-reported TB death notifications, adjusted for annual TB case detection rates, and (2) WHO TB mortality estimates. National coverage with ART, as proportion of HIV-infected people in need, was obtained from UNAIDS. We applied panel linear regressions controlling for HIV prevalence (5-year lagged), coverage of TB interventions (estimated by WHO and UNAIDS), gross domestic product per capita, health spending from domestic sources, urbanization, and country fixed effects. Results Models suggest that that increasing ART coverage was followed by reduced TB mortality, across multiple specifications. For death notifications at 2 to 5 years following a given ART scale-up, a 1% increase in ART coverage predicted 0.95% faster mortality rate decline (p = 0.002); resulting in 27% fewer TB deaths in 2011 alone than would have occurred without ART. Based on WHO death estimates, a 1% increase in ART predicted a 1.0% reduced TB death rate (p<0.001), and 31% fewer deaths in 2011. TB mortality was higher at higher HIV prevalence (p<0.001), but not related to coverage of isoniazid preventive therapy, cotrimoxazole preventive therapy, or other covariates. Conclusion This econometric analysis supports a substantial impact of ART on population-level TB mortality realized already within the first decade of ART scale-up, that is apparent despite variable-quality mortality data. PMID:27536864

  16. Scale-up considerations relevant to experimental studies of nuclear waste-package behavior

    SciTech Connect

    Coles, D.G.; Peters, R.D.

    1986-04-01

    Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance.

  17. The scale-up and design of pressure hydrometallurgical process plants

    NASA Astrophysics Data System (ADS)

    Campbell, F.; Vardill, W. D.; Trytten, L.

    1999-09-01

    This article reviews more than 45 years of experience in the scale-up of pressure hydrometallurgical processes, from the pioneering collaboration between Sherritt and Chemical Construction Company to current process development by their successor, Dynatec Corporation. The evolution of test work is discussed, from traditional pilot-plant operations using semicommercial equipment to small scale or minipiloting with equipment several thousand times smaller than commercial units. Nickel, uranium, zinc, and gold processes have been developed and successfully implemented in worldwide operations treating a variety of feed materials, including concentrates, ores, and mattes. Data on test work duration and the ramp-up of commercial plants are presented.

  18. Recommendations for scale-up of community-based misoprostol distribution programs.

    PubMed

    Robinson, Nuriya; Kapungu, Chisina; Carnahan, Leslie; Geller, Stacie

    2014-06-01

    Community-based distribution of misoprostol for prevention of postpartum hemorrhage (PPH) in resource-poor settings has been shown to be safe and effective. However, global recommendations for prenatal distribution and monitoring within a community setting are not yet available. In order to successfully translate misoprostol and PPH research into policy and practice, several critical points must be considered. A focus on engaging the community, emphasizing the safe nature of community-based misoprostol distribution, supply chain management, effective distribution, coverage, and monitoring plans are essential elements to community-based misoprostol program introduction, expansion, or scale-up. PMID:24680582

  19. SCALE-UP Your Astronomy and Physics Undergraduate Courses to Incorporate Heliophysics

    NASA Astrophysics Data System (ADS)

    Al-Rawi, Ahlam N.; Cox, Amanda; Hoshino, Laura; Fitzgerald, Cullen; Cebulka, Rebecca; Rodriguez Garrigues, Alvar; Montgomery, Michele; Velissaris, Chris; Flitsiyan, Elena

    2016-01-01

    Although physics and astronomy courses include heliophysics topics, students still leave these courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program of incorporating heliophysics into undergraduate curriculum, UCF Physics has modified courses such as Astronomy (for non-science majors), Astrophysics, and SCALE-UP: Electricity and Magnetism for Engineers and Scientists to incorporate heliophysics topics. In this presentation, we discuss these incorporations and give examples that have been published in NASA Wavelength. In an associated poster, we present data on student learnin

  20. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview.

    PubMed

    Garcia-Ochoa, Felix; Gomez, Emilio

    2009-01-01

    In aerobic bioprocesses, oxygen is a key substrate; due to its low solubility in broths (aqueous solutions), a continuous supply is needed. The oxygen transfer rate (OTR) must be known, and if possible predicted to achieve an optimum design operation and scale-up of bioreactors. Many studies have been conducted to enhance the efficiency of oxygen transfer. The dissolved oxygen concentration in a suspension of aerobic microorganisms depends on the rate of oxygen transfer from the gas phase to the liquid, on the rate at which oxygen is transported into the cells (where it is consumed), and on the oxygen uptake rate (OUR) by the microorganism for growth, maintenance and production. The gas-liquid mass transfer in a bioprocess is strongly influenced by the hydrodynamic conditions in the bioreactors. These conditions are known to be a function of energy dissipation that depends on the operational conditions, the physicochemical properties of the culture, the geometrical parameters of the bioreactor and also on the presence of oxygen consuming cells. Stirred tank and bubble column (of various types) bioreactors are widely used in a large variety of bioprocesses (such as aerobic fermentation and biological wastewater treatments, among others). Stirred tanks bioreactors provide high values of mass and heat transfer rates and excellent mixing. In these systems, a high number of variables affect the mass transfer and mixing, but the most important among them are stirrer speed, type and number of stirrers and gas flow rate used. In bubble columns and airlifts, the low-shear environment compared to the stirred tanks has enabled successful cultivation of shear sensitive and filamentous cells. Oxygen transfer is often the rate-limiting step in the aerobic bioprocess due to the low solubility of oxygen in the medium. The correct measurement and/or prediction of the volumetric mass transfer coefficient, (k(L)a), is a crucial step in the design, operation and scale-up of

  1. An integrated health sector response to violence against women in Malaysia: lessons for supporting scale up

    PubMed Central

    2012-01-01

    Background Malaysia has been at the forefront of the development and scale up of One-Stop Crisis Centres (OSCC) - an integrated health sector model that provides comprehensive care to women and children experiencing physical, emotional and sexual abuse. This study explored the strengths and challenges faced during the scaling up of the OSCC model to two States in Malaysia in order to identify lessons for supporting successful scale-up. Methods In-depth interviews were conducted with health care providers, policy makers and key informants in 7 hospital facilities. This was complemented by a document analysis of hospital records and protocols. Data were coded and analysed using NVivo 7. Results The implementation of the OSCC model differed between hospital settings, with practise being influenced by organisational systems and constraints. Health providers generally tried to offer care to abused women, but they are not fully supported within their facility due to lack of training, time constraints, limited allocated budget, or lack of referral system to external support services. Non-specialised hospitals in both States struggled with a scarcity of specialised staff and limited referral options for abused women. Despite these challenges, even in more resource-constrained settings staff who took the initiative found it was possible to adapt to provide some level of OSCC services, such as referring women to local NGOs or community support groups, or training nurses to offer basic counselling. Conclusions The national implementation of OSCC provides a potentially important source of support for women experiencing violence. Our findings confirm that pilot interventions for health sector responses to gender based violence can be scaled up only when there is a sound health infrastructure in place – in other words a supportive health system. Furthermore, the successful replication of the OSCC model in other similar settings requires that the model – and the system

  2. Advanced modeling to accelerate the scale up of carbon capture technologies

    SciTech Connect

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  3. Recommendations for scale-up of community-based misoprostol distribution programs.

    PubMed

    Robinson, Nuriya; Kapungu, Chisina; Carnahan, Leslie; Geller, Stacie

    2014-06-01

    Community-based distribution of misoprostol for prevention of postpartum hemorrhage (PPH) in resource-poor settings has been shown to be safe and effective. However, global recommendations for prenatal distribution and monitoring within a community setting are not yet available. In order to successfully translate misoprostol and PPH research into policy and practice, several critical points must be considered. A focus on engaging the community, emphasizing the safe nature of community-based misoprostol distribution, supply chain management, effective distribution, coverage, and monitoring plans are essential elements to community-based misoprostol program introduction, expansion, or scale-up.

  4. Scale-up of microwave nitridation of sintered reaction bonded silicon nitride parts. Final report

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O.; Garvey, G.A.

    1997-10-01

    Scale-up were performed in which microwave heating was used to fabricate reaction-bonded silicon nitride and sintered reaction-bonded silicon nitride (SRBSN). Tests were performed in both a 2.45 GHz, 500 liter and a 2.45 GHz, 4000 liter multimode cavities. The silicon preforms processed in the studies were clevis pins for diesel engines. Up to 230 samples were processed in a single microwave furnace run. Data were collected which included weight gains for nitridation and sintering studies were performed using a conventional resistance-heated furnace.

  5. Scaling Up Early Infant Male Circumcision: Lessons From the Kingdom of Swaziland

    PubMed Central

    Fitzgerald, Laura; Benzerga, Wendy; Mirira, Munamato; Adamu, Tigistu; Shissler, Tracey; Bitchong, Raymond; Malaza, Mandla; Mamba, Makhosini; Mangara, Paul; Curran, Kelly; Khumalo, Thembisile; Mlambo, Phumzile; Njeuhmeli, Emmanuel; Maziya, Vusi

    2016-01-01

    ABSTRACT Background: The government of the Kingdom of Swaziland recognizes that it must urgently scale up HIV prevention interventions, such as voluntary medical male circumcision (VMMC). Swaziland has adopted a 2-phase approach to male circumcision scale-up. The catch-up phase prioritizes VMMC services for adolescents and adults, while the sustainability phase involves the establishment of early infant male circumcision (EIMC). Swaziland does not have a modern-day tradition of circumcision, and the VMMC program has met with client demand challenges. However, since the launch of the EIMC program in 2010, Swaziland now leads the Eastern and Southern Africa region in the scale-up of EIMC. Here we review Swaziland’s program and its successes and challenges. Methods: From February to May 2014, we collected data while preparing Swaziland’s “Male Circumcision Strategic and Operational Plan for HIV Prevention 2014–2018.” We conducted structured stakeholder focus group discussions and in-depth interviews, and we collected EIMC service delivery data from an implementing partner responsible for VMMC and EIMC service delivery. Data were summarized in consolidated narratives. Results: Between 2010 and 2014, trained providers performed more than 5,000 EIMCs in 11 health care facilities in Swaziland, and they reported no moderate or severe adverse events. According to a broad group of EIMC program stakeholders, an EIMC program needs robust support from facility, regional, and national leadership, both within and outside of HIV prevention coordination bodies, to promote institutionalization and ownership. Providers and health care managers in 3 of Swaziland’s 4 regional hospitals suggest that when EIMC is introduced into reproductive, maternal, newborn, and child health platforms, dedicated staff attention can help ensure that EIMC is performed amid competing priorities. Creating informed demand from communities also supports EIMC as a service delivery priority

  6. Principles for Scaling Up: Choosing, Measuring Effects, and Promoting the Widespread Use of Educational Innovation. CSE Report 634

    ERIC Educational Resources Information Center

    Baker, Eva L.

    2004-01-01

    The goal of scaling up of educational innovation is to produce robust, effective, replicable outcomes. This report addresses requirements to support scale-up of scientifically vetted innovation (or new ideas that are built on the findings of quality research and development). In this report, a number of issues are considered: the context of…

  7. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are

  8. Large-scale biomass plantings in Minnesota: Scale-up and demonstration projects in perspective

    SciTech Connect

    Kroll, T.; Downing, M.

    1995-09-01

    Scale-up projects are an important step toward demonstration and commercialization of woody biomass because simply planting extensive acreage of hybrid poplar will not develop markets. Project objectives are to document the cost to plant and establish, and effort needed to monitor and maintain woody biomass on agricultural land. Conversion technologies and alternative end-uses are examined in a larger framework in order to afford researchers and industrial partners information necessary to develop supply and demand on a local or regional scale. Likely to be determined are risk factors of crop failure and differences between establishment of research plots and agricultural scale field work. Production economics are only one consideration in understanding demonstration and scale-up. Others are environmental, marketing, industrial, and agricultural in nature. Markets for energy crops are only beginning to develop. Although information collected as a result of planting up to 5000 acres of hybrid poplar in central Minnesota will not necessarily be transferable to other areas of the country, a national perspective will come from development of regional markets for woody and herbaceous crops. Several feedstocks, with alternative markets in different regions will eventually comprise the entire picture of biofuels feedstock market development. Current projects offer opportunities to learn about the complexity and requirements that will move biomass from research and development to actual market development. These markets may include energy and other end-uses such as fiber.

  9. A Critical and Cell-Autonomous Role for MeCP2 in Synaptic Scaling Up

    PubMed Central

    Blackman, Melissa P.; Djukic, Biljana; Nelson, Sacha B.; Turrigiano, Gina G.

    2012-01-01

    Rett syndrome is the leading genetic cause of mental retardation in females. Most cases of Rett are due to loss of function mutations in the gene coding for the transcriptional regulator methyl-CpG binding protein 2 (MeCP2), but despite much effort it remains unclear how a loss of MeCP2 function generates the neurological deficits of Rett. Here we show that MeCP2 plays an essential and cell-autonomous role in homeostatic synaptic scaling up in response to reduced firing or reduced sensory drive in rat visual cortical pyramidal neurons. We found that acute RNAi knockdown of MeCP2 blocked synaptic scaling within targeted neocortical pyramidal neurons. Further, MeCP2 knockdown decreased excitatory synapse number without affecting basal mEPSC amplitude or AMPAR accumulation at spared synapses, demonstrating that MeCP2 acts cell-autonomously to maintain both excitatory synapse number and synaptic scaling in individual neocortical neurons. Finally, we used a mouse model of Rett to show that MeCP2 loss prevents homeostatic synaptic scaling up in response to visual deprivation in vivo, demonstrating for the first time that MeCP2 loss disrupts homeostatic plasticity within the intact developing neocortex. Our results establish MeCP2 as a critical mediator of synaptic scaling, and raise the possibility that some of the neurological defects of Rett arise from a disruption of homeostatic plasticity. PMID:23015442

  10. A critical and cell-autonomous role for MeCP2 in synaptic scaling up.

    PubMed

    Blackman, Melissa P; Djukic, Biljana; Nelson, Sacha B; Turrigiano, Gina G

    2012-09-26

    Rett syndrome (Rett) is the leading genetic cause of mental retardation in females. Most cases of Rett are caused by loss-of-function mutations in the gene coding for the transcriptional regulator methyl-CpG binding protein 2 (MeCP2), but despite much effort, it remains unclear how a loss of MeCP2 function generates the neurological deficits of Rett. Here we show that MeCP2 plays an essential and cell-autonomous role in homeostatic synaptic scaling up in response to reduced firing or reduced sensory drive in rat visual cortical pyramidal neurons. We found that acute RNAi knockdown of MeCP2 blocked synaptic scaling within targeted neocortical pyramidal neurons. Furthermore, MeCP2 knockdown decreased excitatory synapse number without affecting basal mEPSC amplitude or AMPAR accumulation at spared synapses, demonstrating that MeCP2 acts cell-autonomously to maintain both excitatory synapse number and synaptic scaling in individual neocortical neurons. Finally, we used a mouse model of Rett to show that MeCP2 loss prevents homeostatic synaptic scaling up in response to visual deprivation in vivo, demonstrating for the first time that MeCP2 loss disrupts homeostatic plasticity within the intact developing neocortex. Our results establish MeCP2 as a critical mediator of synaptic scaling and raise the possibility that some of the neurological defects of Rett arise from a disruption of homeostatic plasticity. PMID:23015442

  11. Scale-up of high shear granulation based on agitation power.

    PubMed

    Sato, Yoshinobu; Okamoto, Takumi; Watano, Satoru

    2005-12-01

    Scale-up of wet granulation in a vertical high shear mixer was conducted. Pharmaceutical excipient mixtures composed of lactose, cornstarch and micro-crystalline cellulose, and hydroxypropylecellulose as a binder were mixed together and then granulated with purified water under various operating conditions and vessel scales. Torque of agitator shaft was continuously measured and then agitation power per unit vessel volume was calculated. The agitation power per unit vessel volume showed a good correlation with physical properties of obtained granules, such as mass median diameter, strength and compressibility. This implied that the scale-up characteristics could be well analyzed by means of the agitation power per unit vessel volume. In addition, the effects of agitator tip speed and Froude number on the agitation power per unit vessel volume were investigated. The results showed that the agitation power per unit vessel volume was well characterized by the tip speed rather than the Froude number. This meant that the granule growth mainly progressed by the shear stress from the agitator blade. Dynamic characteristics of high shear granulation were also discussed here. PMID:16327186

  12. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    PubMed

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways.

  13. Scaling up early infant diagnosis of HIV in Rwanda, 2008-2010.

    PubMed

    Binagwaho, Agnes; Mugwaneza, Placidie; Irakoze, Ange Anitha; Nsanzimana, Sabin; Agbonyitor, Mawuena; Nutt, Cameron T; Wagner, Claire M; Rukundo, Alphonse; Ahayo, Anita; Drobac, Peter; Karema, Corine; Hinda, Ruton; Leung, Lucinda; Bandara, Sachini; Chopyak, Elena; Fawzi, Mary C Smith

    2013-01-01

    More than 390,000 children are newly infected with HIV each year, only 28 per cent of whom benefit from early infant diagnosis (EID). Rwanda's Ministry of Health identified several major challenges hindering EID scale-up in care of HIV-positive infants. It found poor counseling and follow-up by caregivers of HIV-exposed infants, lack of coordination with maternal and child health-care programs, and long delays between the collection of samples and return of results to the health facility and caregiver. By increasing geographic access, integrating EID with vaccination programs, and investing in a robust mobile phone reporting system, Rwanda increased population coverage of EID from approximately 28 to 72.4 per cent (and to 90.3 per cent within the prevention of mother to child transmission program) between 2008 and 2011. Turnaround time from sample collection to receipt of results at the originating health facility was reduced from 144 to 20 days. Rwanda rapidly scaled up and improved its EID program, but challenges persist for linking infected infants to care. PMID:23191941

  14. Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea.

    PubMed

    Palit, Mousumi; Tudu, Bipan; Bhattacharyya, Nabarun; Dutta, Ankur; Dutta, Pallab Kumar; Jana, Arun; Bandyopadhyay, Rajib; Chatterjee, Anutosh

    2010-08-18

    In an electronic tongue, preprocessing on raw data precedes pattern analysis and choice of the appropriate preprocessing technique is crucial for the performance of the pattern classifier. While attempting to classify different grades of black tea using a voltammetric electronic tongue, different preprocessing techniques have been explored and a comparison of their performances is presented in this paper. The preprocessing techniques are compared first by a quantitative measurement of separability followed by principle component analysis; and then two different supervised pattern recognition models based on neural networks are used to evaluate the performance of the preprocessing techniques.

  15. A New Normalized Difference Cloud Retrieval Technique Applied to Landsat Radiances over the Oklahoma ARM Site.

    NASA Astrophysics Data System (ADS)

    Oreopoulos, Lazaros; Cahalan, Robert F.; Marshak, Alexander; Wen, Guoyong

    2000-12-01

    that corrects for radiative smoothing, thus providing a retrieval framework where all 3D cloud effects can potentially be accounted for. The effectiveness of the new technique is demonstrated using Monte Carlo simulations. Real-world application is shown to be feasible using Thematic Mapper (TM) radiance observations from Landsat-5 over the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. For the moderately oblique (45°) solar zenith angle of the available Landsat scene, NDNR gives similar regional statistics and histograms when compared with standard independent pixel approximation (IPA), but significant differences at the pixel level. Inverse NIPA is also applied for the first time on observed high-resolution radiances of overcast Landsat subscenes. The dependence of the NIPA-retrieved cloud fields on the parameters of the method is illustrated and practical issues related to the optimal choice of these parameters are discussed.It is natural to compare novel cloud retrieval techniques with standard IPA retrievals. IPA is useful in revealing the inadequacy of plane parallel theory in certain situations and in demonstrating sensitivities to parameter choices, parameterizations, and assumptions. For example, it is found that IPA has problems in matching modeled and observed band-7 (2.2 m) reflectance values for 6% of the pixels, most of which are at cloud edges. For simultaneous cloud optical depth-droplet effective radius retrievals (where a conservative and an absorptive TM band are needed), it is found that the band-4 (0.83 m)-band-7 pair was the most well behaved, having less saturation, smaller changes in nominal calibration, and better overall consistency with modeled values than other bands. Mean values of optical depth, effective radius, and liquid water path (LWP) for typical IPA retrievals using this pair are = 22, re = 11 m, and LWP = 157 g m2, respectively. Inclusion of aerosol scattering above clouds results

  16. Novel computational and analytic techniques for nonlinear systems applied to structural and celestial mechanics

    NASA Astrophysics Data System (ADS)

    Elgohary, Tarek Adel Abdelsalam

    In this Dissertation, computational and analytic methods are presented to address nonlinear systems with applications in structural and celestial mechanics. Scalar Homotopy Methods (SHM) are first introduced for the solution of general systems of nonlinear algebraic equations. The methods are applied to the solution of postbuckling and limit load problems of solids and structures as exemplified by simple plane elastic frames, considering only geometrical nonlinearities. In many problems, instead of simply adopting a root solving method, it is useful to study the particular problem in more detail in order to establish an especially efficient and robust method. Such a problem arises in satellite geodesy coordinate transformation where a new highly efficient solution, providing global accuracy with a non-iterative sequence of calculations, is developed. Simulation results are presented to compare the solution accuracy and algorithm performance for applications spanning the LEO-to-GEO range of missions. Analytic methods are introduced to address problems in structural mechanics and astrodynamics. Analytic transfer functions are developed to address the frequency domain control problem of flexible rotating aerospace structures. The transfer functions are used to design a Lyapunov stable controller that drives the spacecraft to a target position while suppressing vibrations in the flexible appendages. In astrodynamics, a Taylor series based analytic continuation technique is developed to address the classical two-body problem. A key algorithmic innovation for the trajectory propagation is that the classical averaged approximation strategy is replaced with a rigorous series based solution for exactly computing the acceleration derivatives. Evidence is provided to demonstrate that high precision solutions are easily obtained with the analytic continuation approach. For general nonlinear initial value problems (IVPs), the method of Radial Basis Functions time domain

  17. Finite-element technique applied to heat conduction in solids with temperature dependent thermal conductivity

    NASA Technical Reports Server (NTRS)

    Aguirre-Ramirez, G.; Oden, J. T.

    1969-01-01

    Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH

  18. Integrating Cognitive Behavioral and Applied Behavior Techniques With Dysfunctional Family Behavior.

    ERIC Educational Resources Information Center

    Barrish, I. J.

    Families experiencing severe conflict are often unable to effectively implement applied behavioral procedures due to interfering emotional responses (anger, blaming, anxiety and depression) and behavioral responses (yelling, crying and physical fighting), which often reduce effective implementation of applied behavioral procedures. Specific…

  19. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    NASA Astrophysics Data System (ADS)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results

  20. Scaling up cervical cancer screening in the midst of human papillomavirus vaccination advocacy in Thailand

    PubMed Central

    2010-01-01

    Background Screening tests for cervical cancer are effective in reducing the disease burden. In Thailand, a Pap smear program has been implemented throughout the country for 40 years. In 2008 the Ministry of Public Health (MoPH) unexpectedly decided to scale up the coverage of free cervical cancer screening services, to meet an ambitious target. This study analyzes the processes and factors that drove this policy innovation in the area of cervical cancer control in Thailand. Methods In-depth interviews with key policy actors and review of relevant documents were conducted in 2009. Data analysis was guided by a framework, developed on public policy models and existing literature on scaling-up health care interventions. Results Between 2006 and 2008 international organizations and the vaccine industry advocated the introduction of Human Papillomavirus (HPV) vaccine for the primary prevention of cervical cancer. Meanwhile, a local study suggested that the vaccine was considerably less cost-effective than cervical cancer screening in the Thai context. Then, from August to December 2008, the MoPH carried out a campaign to expand the coverage of its cervical cancer screening program, targeting one million women. The study reveals that several factors were influential in focusing the attention of policymakers on strengthening the screening services. These included the high burden of cervical cancer in Thailand, the launch of the HPV vaccine onto the global and domestic markets, the country’s political instability, and the dissemination of scientific evidence regarding the appropriateness of different options for cervical cancer prevention. Influenced by the country’s political crisis, the MoPH’s campaign was devised in a very short time. In the view of the responsible health officials, the campaign was not successful and indeed, did not achieve its ambitious target. Conclusion The Thai case study suggests that the political crisis was a crucial factor that drew the

  1. Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass

    PubMed Central

    2013-01-01

    Background Ionic liquid (IL) pretreatment is receiving significant attention as a potential process that enables fractionation of lignocellulosic biomass and produces high yields of fermentable sugars suitable for the production of renewable fuels. However, successful optimization and scale up of IL pretreatment involves challenges, such as high solids loading, biomass handling and transfer, washing of pretreated solids and formation of inhibitors, which are not addressed during the development stages at the small scale in a laboratory environment. As a first in the research community, the Joint BioEnergy Institute, in collaboration with the Advanced Biofuels Process Demonstration Unit, a Department of Energy funded facility that supports academic and industrial entities in scaling their novel biofuels enabling technologies, have performed benchmark studies to identify key challenges associated with IL pretreatment using 1-ethyl-3-methylimidazolium acetate and subsequent enzymatic saccharification beyond bench scale. Results Using switchgrass as the model feedstock, we have successfully executed 600-fold, relative to the bench scale (6 L vs 0.01 L), scale-up of IL pretreatment at 15% (w/w) biomass loading. Results show that IL pretreatment at 15% biomass generates a product containing 87.5% of glucan, 42.6% of xylan and only 22.8% of lignin relative to the starting material. The pretreated biomass is efficiently converted into monosaccharides during subsequent enzymatic hydrolysis at 10% loading over a 150-fold scale of operations (1.5 L vs 0.01 L) with 99.8% fermentable sugar conversion. The yield of glucose and xylose in the liquid streams were 94.8% and 62.2%, respectively, and the hydrolysate generated contains high titers of fermentable sugars (62.1 g/L of glucose and 5.4 g/L cellobiose). The overall glucan and xylan balance from pretreatment and saccharification were 95.0% and 77.1%, respectively. Enzymatic inhibition by [C2mim][OAc] at high solids

  2. A multiblock grid generation technique applied to a jet engine configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1992-01-01

    Techniques are presented for quickly finding a multiblock grid for a 2D geometrically complex domain from geometrical boundary data. An automated technique for determining a block decomposition of the domain is explained. Techniques for representing this domain decomposition and transforming it are also presented. Further, a linear optimization method may be used to solve the equations which determine grid dimensions within the block decomposition. These algorithms automate many stages in the domain decomposition and grid formation process and limit the need for human intervention and inputs. They are demonstrated for the meridional or throughflow geometry of a bladed jet engine configuration.

  3. Scale up aspects of directional solidification and Czochralski silicon growth processes in traveling magnetic fields

    NASA Astrophysics Data System (ADS)

    Dropka, Natasha; Ervik, Torunn; Czupalla, Matthias; Kiessling, Frank M.

    2016-10-01

    We performed 3D simulations of directional solidification (DS) and Czochralski (Cz) silicon growth processes in traveling magnetic fields (TMFs) and verified them with the experimental data that were available. Particularly, we studied silicon DS growth in real G1, G2 and G5 size setups and Cz growth in 6″ and 24″ crucibles in furnaces provided with KRISTMAG® heater magnet modules (HMMs). TMFs were used for a solid/liquid interface shaping and for a melt stirring. Based on our simulation findings, we discussed scale up challenges and proposed a method for safe upscaling. The method related all present driving forces using dimensionless numbers: Grashof (Gr), Stephan (Ste), Reynolds (Re), Shielding (S) and magnetic forcing number (F).

  4. Expanded bed chromatography of proteins in small-diameter columns. II. Methods development and scale up.

    PubMed

    Ghose, S; Chase, H

    2000-01-01

    The scaled down system developed in Part I of this series was further validated by using a 1-cm diameter column for method development studies for the separation of two model proteins, alcohol dehydrogenase and alpha-glucosidase, from unclarified yeast homogenate by hydrophobic interaction expanded bed chromatography based on the STREAMLINE matrix. The efficacy of solids removal and establishment of optimal binding and separation condition by stepwise elution were investigated. Equilibration of the EBA column and loading at high salt strengths affected the subsequent recovery of the two target proteins. Although good resolution between the target proteins could be achieved, peak tailing was found to be a consistent problem. The optimised separation protocol was scaled up 25-fold to a column diameter of 5.0 cm. The results were in good agreement with the run conducted in the 1-cm column, indicating the potential of using the small columns as an viable approach for method scouting and development studies.

  5. Scaling up the health workforce in the public sector: the role of government fiscal policy.

    PubMed

    Vujicic, Marko

    2010-01-01

    Health workers play a key role in increasing access to health care services. Global and country-level estimates show that staffing in many developing countries - particularly in Sub-Saharan Africa - is far leaner than needed to deliver essential health services to the population. One factor that can limit scaling up the health workforce in developing countries is the government's overall wage policy which sometimes creates restrictions on hiring in the health sector. But while there is considerable debate, the information base in this important area has been quite limited. This paper summarizes the process that determines the budget for health wages in the public sector, how it is linked to overall wage policies, and how this affects staffing in the health sector. The author draws mainly from a recent World Bank report. PMID:21155425

  6. Standards of Evidence for Efficacy, Effectiveness, and Scale-up Research in Prevention Science: Next Generation.

    PubMed

    Gottfredson, Denise C; Cook, Thomas D; Gardner, Frances E M; Gorman-Smith, Deborah; Howe, George W; Sandler, Irwin N; Zafft, Kathryn M

    2015-10-01

    A decade ago, the Society of Prevention Research (SPR) endorsed a set of standards for evidence related to research on prevention interventions. These standards (Flay et al., Prevention Science 6:151-175, 2005) were intended in part to increase consistency in reviews of prevention research that often generated disparate lists of effective interventions due to the application of different standards for what was considered to be necessary to demonstrate effectiveness. In 2013, SPR's Board of Directors decided that the field has progressed sufficiently to warrant a review and, if necessary, publication of "the next generation" of standards of evidence. The Board convened a committee to review and update the standards. This article reports on the results of this committee's deliberations, summarizing changes made to the earlier standards and explaining the rationale for each change. The SPR Board of Directors endorses "The Standards of Evidence for Efficacy, Effectiveness, and Scale-up Research in Prevention Science: Next Generation."

  7. Single remote sensing image scale-up combining modulation transform function compensation

    NASA Astrophysics Data System (ADS)

    Cao, Shixiang; Liu, Wei; Zhou, Nan; He, Hongyan; Jiang, Jie

    2016-01-01

    Remote sensing images usually need scale-up for visualization or representation, using only one original image. According to the performance of detective sensors, a new and more applicable method is proposed here. To enhance the high-frequency components, the modulation transform function compensation (MTFC) part focuses on how to adjust the spatial response before and after launch, under signal-to-noise ratio control. This largely reduces the ring phenomenon from incorrect point spread function guesses. Then a contour stencil prior manages to limit edge artifacts in the upscaled image after MTFC. An iterative backprojection operation with fast convergence is also utilized to bring about intensity and contour consistency. We finally present our analysis based on real images with parallel design for full speed. Compared with existing algorithms, the operator illustrates its potential to keep geometric features and extend the visual and quantitative quality for further analysis.

  8. Drug nanocrystals: four basic prerequisites for formulation development and scale-up.

    PubMed

    Srivalli, Kale Mohana Raghava; Mishra, Brahmeshwar

    2015-01-01

    Drug nanocrystals have been studied since the 1990s and there are already six therapeutic nanocrystal products on market and many more in clinical trials. Nanocrystals are encapsulating-carrier free nanoparticles wherein 100% drug loading could be achieved. This signifies that nanocrystals, among other nanoparticulate products, could be more easily manufactured even at the initial formulation development stages to evaluate the effect of size reduction on the bioavailability of drugs. Additionally, a drug nanocrystal is considered not as a generic product but as a "new drug" by FDA. Process characterization, equipment choice, robust formulation and stability are discussed as four basic prerequisites for formulation development and scale-up of drug nanocrystals. The fast growing and relatively superior market profile of nanocrystals amongst other nanoparticle systems is due to their rational formulation design and production simplicity. In this emerging scenario, keeping an eye on the four basic prerequisites can further improve the success of drug nanocrystals.

  9. Edge electrospinning: a facile needle-less approach to realize scaled up production of quality nanofibers

    NASA Astrophysics Data System (ADS)

    Bochinski, J. R.; Curtis, C.; Roman, M. P.; Clarke, L. I.; Wang, Q.; Thoppey, N. M.; Gorga, R. E.

    2014-03-01

    Utilizing unconfined polymer fluids (e.g., from solution or melt), edge electrospinning provides a straightforward approach for scaled up production of high quality nanofibers through the formation of many parallel jets. From simple geometries (using solution contained within a sharp-edged bowl or on a flat plate), jets form and spontaneously re-arrange on the fluid surface near the edge. Using appropriate control of the electric field induced feed rate, comparable per jet fabrication as traditional single-needle electrospinning can be realized, resulting in nanofibers with similar diameters, diameter distribution, and collected mat porosity. The presence of multiple jets proportionally enhances the production rate of the system, with minimal experimental complexity and without the possibility of clogging. Extending this needle-less approach to commercial polyethylene polymers, micron scale fibers can be melt electrospun using a similar apparatus. Support from National Science Foundation (CMMI-0800237).

  10. Elimination of blinding trachoma by 2020: a call for rapid scale-up and strengthening programmes.

    PubMed

    Haddad, Danny; Gebre, Teshome; Rono, Hillary

    2014-09-01

    Elimination of blinding trachoma is targeted for the year 2020, making scale-up extremely urgent. Preferred practices have been developed for mass drug administration and trichiasis surgery to assist new countries and districts. However, these need to be utilised on a broader scale to ensure quality output of programmes and the highest coverage possible of their implementation. Although in recent years there has been a significant increase in programmatic funding, there are still gaps. In addition, continued insecurity in several regions and outbreaks that require refocusing of staff threaten the goal. Close partnerships and collaboration enable the trachoma community to be well on track to reaching the goal, but it cannot be business as usual to achieve this.

  11. Teaching assistant-student interactions in a modified SCALE-UP classroom

    NASA Astrophysics Data System (ADS)

    DeBeck, George; Demaree, Dedra

    2012-02-01

    In the spring term of 2010, Oregon State University (OSU) began using a SCALE-UP style classroom in the instruction of the introductory calculus-based physics series. Instruction in this classroom was conducted in weekly two-hour sessions facilitated by the primary professor and either two graduate teaching assistants (GTAs) or a graduate teaching assistant and an undergraduate learning assistant (LA). During the course of instruction, two of the eight tables in the room were audio and video recorded. We examine the practices of the GTAs in interacting with the students through both qualitative and quantitative analyses of these recordings. Quantitatively, significant differences are seen between the most experienced GTA and the rest. A major difference in confidence is also observed in the qualitative analysis of this GTA compared to a less experienced GTA.

  12. Performance of kilowatt-class laser modules in scaling up laser produced plasma (LPP) EUV source

    NASA Astrophysics Data System (ADS)

    Ellwi, Samir; Comley, Andrew; Hay, Nick; Henderson, Ian; Brownell, Michael

    2005-05-01

    Powerlase has made significant steps forward in developing reliable and cost-effective, kilowatt-class laser modules with short pulse duration and small footprint, for use as EUV drivers. These characteristics in parallel to EUV target requirements are essential for the generation of 115W of in-band EUV power at the intermediate focus. These laser modules can be coupled to the EUV target by using our flexible spatial and temporal multiplexing approach in order to scale up the laser average power on target. The multiplexing method developed by Powerlase is modular and optimised for maximum EUV collection angle. To further this goal we are currently evaluating target materials such as xenon in various phases and forms and also have a programme in place to investigate suitable tin targets.

  13. Scaling up a high average power dye laser amplifier and its new pumping designs

    SciTech Connect

    Takehisa, K.

    1997-01-01

    Scaling up of a high average power dye laser amplifier is discussed. Differences in the characteristics between a high average power dye laser amplifier with transverse pumping and longitudinal pumping are presented by a simple theory and simulations. The simulation results for dye laser amplifiers of 10-kW average output power show that longitudinal pumping is as efficient as transverse pumping with the potential of orders of magnitude lower dye flow rate. New pumping designs are also proposed for a dye laser amplifier aimed to achieve high gain with high efficiency to reduce the number of amplifier stages. Simulation results suggest that the new designs, in comparison with a conventional amplifier, can produce several orders of magnitude higher gain without decreasing the conversion efficiency. {copyright} 1997 Optical Society of America

  14. Scale-up of the nitridation and sintering of silicon preforms using microwave heating

    SciTech Connect

    Kiggans, J.O. Jr.; Tiegs, T.N.; Davisson, C.C.; Morrow, M.S.; Garvey, G.J.

    1996-05-01

    Scale-up studies were performed in which microwave heating was used to fabricate reaction-bonded silicon nitride and sintered reaction-bonded silicon nitride (SRBSN). Tests were performed in both a 2.45 GHz, 500 liter and a 2.45 GHz, 4,000 liter multimode cavities. A variety of sizes, shapes, and compositions of silicon preforms were processed in the studies, including bucket tappets and clevis pins for diesel engines. Up to 230 samples were processed in a single microwave furnace run. Data were collected which included weight gains for nitridation experiments, and final densities for nitridation and sintering experiments. For comparison, nitridation and sintering studies were performed using a conventional resistance-heated furnace.

  15. Evaluation of liquid-fed ceramic melter scale-up correlations

    SciTech Connect

    Koegler, S.S.; Mitchell, S.J.

    1988-08-01

    This study was conducted to determine the parameters governing factors of scale for liquid-fed ceramic melters (LFCMs) in order to design full-scale melters using smaller-scale melter data. Results of melter experiments conducted at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory (SRL) are presented for two feed compositions and five different liquid-fed ceramic melters. The melter performance data including nominal feed rate and glass melt rate are correlated as a function of melter surface area. Comparisons are made between the actual melt rate data and melt rates predicted by a cold cap heat transfer model. The heat transfer model could be used in scale-up calculations, but insufficient data are available on the cold cap characteristics. Experiments specifically designed to determine heat transfer parameters are needed to further develop the model. 17 refs.

  16. Scale-up research in a dual fluidized bed gasification process.

    PubMed

    Narobe, Miha; Golob, Janvit; Mele, Jernej; Sekavčnik, Mihael; Senegačnik, Andrej; Klinar, Dušan

    2015-01-01

    A successful co-gasification of plastics and biomass was achieved on the 100 kW dual fluidized bed (DFB) gasification pilot plant. The results of a pilot plant experiment were used as a sound basis for scale-up prediction to 750 kW semi-industrial DFB plant. By an eightfold increase of mass and heat flows a rather simplified co-gasification process was predicted. Namely, the losses occurring in gasification plants are expected to be relatively smaller in larger plants. The effect of decreased losses was studied with an equilibrium model. Three different situations were simulated with the following fixed values of losses: 70 kW, 115 kW and 160 kW. The model showed an increase in fuel conversion when losses were reduced.

  17. Scale-up research in a dual fluidized bed gasification process.

    PubMed

    Narobe, Miha; Golob, Janvit; Mele, Jernej; Sekavčnik, Mihael; Senegačnik, Andrej; Klinar, Dušan

    2015-01-01

    A successful co-gasification of plastics and biomass was achieved on the 100 kW dual fluidized bed (DFB) gasification pilot plant. The results of a pilot plant experiment were used as a sound basis for scale-up prediction to 750 kW semi-industrial DFB plant. By an eightfold increase of mass and heat flows a rather simplified co-gasification process was predicted. Namely, the losses occurring in gasification plants are expected to be relatively smaller in larger plants. The effect of decreased losses was studied with an equilibrium model. Three different situations were simulated with the following fixed values of losses: 70 kW, 115 kW and 160 kW. The model showed an increase in fuel conversion when losses were reduced. PMID:26085423

  18. Drawdown of floating solids in stirred tanks: scale-up study using CFD modeling.

    PubMed

    Waghmare, Yogesh; Falk, Rick; Graham, Lisa; Koganti, Venkat

    2011-10-14

    This work shows development of a scale up correlation using computational fluid dynamic (CFD) simulations for floating solids drawdown operation in stirred tanks. Discrete phase modeling (DPM) simulations were used in conjunction with the lab scale experimental measurements to develop a semi-empirical correlation for the prediction of rate of drawdown of floating solid particles. The rate was correlated to average liquid velocity at the free liquid surface. Since, this correlation is based on a fundamental hydrodynamic parameter, velocity, rather than an operating parameters such as the impeller speed, it can be used for a variety of impeller types and tank geometries. The correlation was developed based on the data obtained from the 2L tank using four different tank designs and was validated against the data obtained from the 10L scale tank. The correlation was further extended to the pilot and the commercial scale tanks ranging from 40L to 4000L scale based solely on the CFD model.

  19. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  20. Scaling Up Chronic Disease Prevention Interventions in Lower- and Middle-Income Countries

    PubMed Central

    Gaziano, Thomas A.; Pagidipati, Neha

    2013-01-01

    Chronic diseases are increasingly becoming a health burden in lower-and middle-income countries, putting pressure on public health efforts to scale up interventions. This article reviews current efforts in interventions on a population and individual level. Population-level interventions include ongoing efforts to reduce smoking rates, reduce intake of salt and trans–fatty acids, and increase physical activity in increasingly sedentary populations. Individual-level interventions include control and treatment of risk factors for chronic diseases and secondary prevention. This review also discusses the barriers in interventions, particularly those specific to low- and middle-income countries. Continued discussion of proven cost-effective interventions for chronic diseases in the developing world will be useful for improving public health policy. PMID:23297660

  1. Trans-National Scale-Up of Services in Global Health

    PubMed Central

    Shahin, Ilan; Sohal, Raman; Ginther, John; Hayden, Leigh; MacDonald, John A.; Mossman, Kathryn; Parikh, Himanshu; McGahan, Anita; Mitchell, Will; Bhattacharyya, Onil

    2014-01-01

    Background Scaling up innovative healthcare programs offers a means to improve access, quality, and health equity across multiple health areas. Despite large numbers of promising projects, little is known about successful efforts to scale up. This study examines trans-national scale, whereby a program operates in two or more countries. Trans-national scale is a distinct measure that reflects opportunities to replicate healthcare programs in multiple countries, thereby providing services to broader populations. Methods Based on the Center for Health Market Innovations (CHMI) database of nearly 1200 health programs, the study contrasts 116 programs that have achieved trans-national scale with 1,068 single-country programs. Data was collected on the programs' health focus, service activity, legal status, and funding sources, as well as the programs' locations (rural v. urban emphasis), and founding year; differences are reported with statistical significance. Findings This analysis examines 116 programs that have achieved trans-national scale (TNS) across multiple disease areas and activity types. Compared to 1,068 single-country programs, we find that trans-nationally scaled programs are more donor-reliant; more likely to focus on targeted health needs such as HIV/AIDS, TB, malaria, or family planning rather than provide more comprehensive general care; and more likely to engage in activities that support healthcare services rather than provide direct clinical care. Conclusion This work, based on a large data set of health programs, reports on trans-national scale with comparison to single-country programs. The work is a step towards understanding when programs are able to replicate their services as they attempt to expand health services for the poor across countries and health areas. A subset of these programs should be the subject of case studies to understand factors that affect the scaling process, particularly seeking to identify mechanisms that lead to

  2. Minnesota wood energy scale-up project 1994 establishment cost data

    SciTech Connect

    Downing, M.; Pierce, R.; Kroll, T.

    1996-03-18

    The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

  3. Scaling-up from species to ecosystems: How close can we get to actual decomposition?

    NASA Astrophysics Data System (ADS)

    Poca, María; Vaieretti, María Victoria; Cingolani, Ana María; Pérez-Harguindeguy, Natalia

    2015-04-01

    Predicting global changes and their effects on ecosystem functioning has been a central issue of ecology during the last decades. Scaling-up from species characteristics to ecosystem processes is a common approach to achieve that goal. However, ecosystem processes are shaped by complex interactions between biotic and abiotic components, complicating their predictability. We evaluated how close we can get to ecosystem-level decomposition (i.e. in situ litter mixtures decomposition) based on aggregated functional traits (calculated as weighted averages of species litter quality and decomposability) in mountain grasslands patches of central Argentina. We found that aggregated functional traits were not significantly correlated to in situ decomposition; i.e. contrary to other works, in our system it is not possible to scale up from species characteristics to ecosystem-level decomposition. This pattern was consistent when litter quality and decomposability were weighted by either species standing biomass or by litter input. These two ways of aggregation were highly correlated, indicating that standing biomass was a good proxy of the contribution that species make to litter layer. Aggregated functional traits were strongly associated to litter mixtures decomposability (a proxy for community-level decomposition), indicating that there are no strong interactions among litters of the species decomposing together. However, litter mixtures decomposability was not correlated to in situ decomposition, showing that community-level and ecosystem-level decomposition were not related. We suggest that the soil environment generated by vegetation structure of the different grassland patches could be controlling in situ decomposition. The prediction of decomposition and nutrient cycling changes associated to land-use change calls for the consideration of variables which integrate different controls; i.e. not only species identity and abundance, but also climate and microclimate. In

  4. Supervision, monitoring and evaluation of nationwide scale-up of antiretroviral therapy in Malawi.

    PubMed Central

    Libamba, Edwin; Makombe, Simon; Mhango, Eustice; de Ascurra Teck, Olga; Limbambala, Eddie; Schouten, Erik J.; Harries, Anthony D.

    2006-01-01

    OBJECTIVE: To describe the supervision, monitoring and evaluation strategies used to assess the delivery of antiretroviral therapy during nationwide scale-up of treatment in Malawi. METHODS: In the first quarter of 2005, the HIV Unit of the Ministry of Health and its partners (the Lighthouse Clinic; Médecins Sans Frontières-Belgium, Thyolo district; and WHO's Country Office) undertook structured supervision and monitoring of all public sector health facilities in Malawi delivering antiretroviral therapy. FINDINGS: Data monitoring showed that by the end of 2004, there were 13,183 patients (5274 (40%) male, 12 527 (95%) adults) who had ever started antiretroviral therapy. Of patients who had ever started, 82% (10 761/13,183) were alive and taking antiretrovirals; 8% (1026/13,183) were dead; 8% (1039/13,183) had been lost to follow up; <1% (106/13,183) had stopped treatment; and 2% (251/13,183) had transferred to another facility. Of those alive and on antiretrovirals, 98% (7098/7258) were ambulatory; 85% (6174/7258) were fit to work; 10% (456/4687) had significant side effects; and, based on pill counts, 96% (6824/7114) had taken their treatment correctly. Mistakes in the registration and monitoring of patients were identified and corrected. Drug stocks were checked, and one potential drug stock-out was averted. As a result of the supervisory visits, by the end of March 2005 recruitment of patients to facilities scheduled to start delivering antiretroviral therapy had increased. CONCLUSION: This report demonstrates the importance of early supervision for sites that are starting to deliver antiretroviral therapy, and it shows the value of combining data collection with supervision. Making regular supervisory and monitoring visits to delivery sites are essential for tracking the national scale-up of delivery of antiretrovirals. PMID:16628306

  5. Computational psychotherapy research: scaling up the evaluation of patient-provider interactions.

    PubMed

    Imel, Zac E; Steyvers, Mark; Atkins, David C

    2015-03-01

    In psychotherapy, the patient-provider interaction contains the treatment's active ingredients. However, the technology for analyzing the content of this interaction has not fundamentally changed in decades, limiting both the scale and specificity of psychotherapy research. New methods are required to "scale up" to larger evaluation tasks and "drill down" into the raw linguistic data of patient-therapist interactions. In the current article, we demonstrate the utility of statistical text analysis models called topic models for discovering the underlying linguistic structure in psychotherapy. Topic models identify semantic themes (or topics) in a collection of documents (here, transcripts). We used topic models to summarize and visualize 1,553 psychotherapy and drug therapy (i.e., medication management) transcripts. Results showed that topic models identified clinically relevant content, including affective, relational, and intervention related topics. In addition, topic models learned to identify specific types of therapist statements associated with treatment-related codes (e.g., different treatment approaches, patient-therapist discussions about the therapeutic relationship). Visualizations of semantic similarity across sessions indicate that topic models identify content that discriminates between broad classes of therapy (e.g., cognitive-behavioral therapy vs. psychodynamic therapy). Finally, predictive modeling demonstrated that topic model-derived features can classify therapy type with a high degree of accuracy. Computational psychotherapy research has the potential to scale up the study of psychotherapy to thousands of sessions at a time. We conclude by discussing the implications of computational methods such as topic models for the future of psychotherapy research and practice. PMID:24866972

  6. Computational psychotherapy research: scaling up the evaluation of patient-provider interactions.

    PubMed

    Imel, Zac E; Steyvers, Mark; Atkins, David C

    2015-03-01

    In psychotherapy, the patient-provider interaction contains the treatment's active ingredients. However, the technology for analyzing the content of this interaction has not fundamentally changed in decades, limiting both the scale and specificity of psychotherapy research. New methods are required to "scale up" to larger evaluation tasks and "drill down" into the raw linguistic data of patient-therapist interactions. In the current article, we demonstrate the utility of statistical text analysis models called topic models for discovering the underlying linguistic structure in psychotherapy. Topic models identify semantic themes (or topics) in a collection of documents (here, transcripts). We used topic models to summarize and visualize 1,553 psychotherapy and drug therapy (i.e., medication management) transcripts. Results showed that topic models identified clinically relevant content, including affective, relational, and intervention related topics. In addition, topic models learned to identify specific types of therapist statements associated with treatment-related codes (e.g., different treatment approaches, patient-therapist discussions about the therapeutic relationship). Visualizations of semantic similarity across sessions indicate that topic models identify content that discriminates between broad classes of therapy (e.g., cognitive-behavioral therapy vs. psychodynamic therapy). Finally, predictive modeling demonstrated that topic model-derived features can classify therapy type with a high degree of accuracy. Computational psychotherapy research has the potential to scale up the study of psychotherapy to thousands of sessions at a time. We conclude by discussing the implications of computational methods such as topic models for the future of psychotherapy research and practice.

  7. Scaling up the 454 Titanium Library Construction and Pooling of Barcoded Libraries

    SciTech Connect

    Phung, Wilson; Hack, Christopher; Shapiro, Harris; Lucas, Susan; Cheng, Jan-Fang

    2009-03-23

    We have been developing a high throughput 454 library construction process at the Joint Genome Institute to meet the needs of de novo sequencing a large number of microbial and eukaryote genomes, EST, and metagenome projects. We have been focusing efforts in three areas: (1) modifying the current process to allow the construction of 454 standard libraries on a 96-well format; (2) developing a robotic platform to perform the 454 library construction; and (3) designing molecular barcodes to allow pooling and sorting of many different samples. In the development of a high throughput process to scale up the number of libraries by adapting the process to a 96-well plate format, the key process change involves the replacement of gel electrophoresis for size selection with Solid Phase Reversible Immobilization (SPRI) beads. Although the standard deviation of the insert sizes increases, the overall quality sequence and distribution of the reads in the genome has not changed. The manual process of constructing 454 shotgun libraries on 96-well plates is a time-consuming, labor-intensive, and ergonomically hazardous process; we have been experimenting to program a BioMek robot to perform the library construction. This will not only enable library construction to be completed in a single day, but will also minimize any ergonomic risk. In addition, we have implemented a set of molecular barcodes (AKA Multiple Identifiers or MID) and a pooling process that allows us to sequence many targets simultaneously. Here we will present the testing of pooling a set of selected fosmids derived from the endomycorrhizal fungus Glomus intraradices. By combining the robotic library construction process and the use of molecular barcodes, it is now possible to sequence hundreds of fosmids that represent a minimal tiling path of this genome. Here we present the progress and the challenges of developing these scaled-up processes.

  8. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    NASA Astrophysics Data System (ADS)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  9. Production and scale-up of a monoclonal antibody against 17-hydroxyprogesterone.

    PubMed

    Chua, Gek Kee; Abdul-Rahman, Badarulhisam; Chisti, Yusuf

    2013-01-01

    The hybridoma 192 was used to produce a monoclonal antibody (MAb) against 17-hydroxyprogesterone (17-OHP), for possible use in screening for congenital adrenal hyperplasia (CAH). The factors influencing the MAb production were screened and optimized in a 2 L stirred bioreactor. The production was then scaled up to a 20 L bioreactor. All of the screened factors (aeration rate, stirring speed, dissolved oxygen concentration, pH, and temperature) were found to significantly affect production. Optimization using the response surface methodology identified the following optimal production conditions: 36.8°C, pH 7.4, stirring speed of 100 rpm, 30% dissolved oxygen concentration, and an aeration rate of 0.09 vvm. Under these conditions, the maximum viable cell density achieved was 1.34 ± 0.21 × 10(6) cells mL(-1) and the specific growth rate was 0.036 ± 0.004 h(-1) . The maximum MAb titer was 11.94 ± 4.81 μg mL(-1) with an average specific MAb production rate of 0.273 ± 0.135 pg cell(-1) h(-1) . A constant impeller tip speed criterion was used for the scale-up. The specific growth rate (0.040 h(-1) ) and the maximum viable cell density (1.89 × 10(6) cells mL(-1) ) at the larger scale were better than the values achieved at the small scale, but the MAb titer in the 20 L bioreactor was 18% lower than in the smaller bioreactor. A change in the culture environment from the static conditions of a T-flask to the stirred bioreactor culture did not affect the specificity of the MAb toward its antigen (17-OHP) and did not compromise the structural integrity of the MAb.

  10. Nde of Advanced Automotive Composite Materials that Apply Ultrasound Infrared Thermography Technique

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hyun; Park, Soo-Keun; Kim, Jae-Yeol

    The infrared thermographic nondestructive inspection technique is a quality inspection and stability assessment method used to diagnose the physical characteristics and defects by detecting the infrared ray radiated from the object without destructing it. Recently, the nondestructive inspection and assessment that use the ultrasound-infrared thermography technique are widely adopted in diverse areas. The ultrasound-infrared thermography technique uses the phenomenon that the ultrasound wave incidence to an object with cracks or defects on its mating surface generates local heat on the surface. The car industry increasingly uses composite materials for their lightweight, strength, and environmental resistance. In this study, the car piston passed through the ultrasound-infrared thermography technique for nondestructive testing, among the composite material car parts. This study also examined the effects of the frequency and power to optimize the nondestructive inspection.

  11. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH.

    PubMed

    Seletzky, Juri M; Noak, Ute; Fricke, Jens; Welk, Eike; Eberhard, Werner; Knocke, Christof; Büchs, Jochen

    2007-11-01

    Scale-up from shake flasks to fermenters has been hampered by the lack of knowledge concerning the influence of operating conditions on mass transfer, hydromechanics, and power input. However, in recent years the properties of shake flasks have been described with empirical models. A practical scale-up strategy for everyday use is introduced for the scale-up of aerobic cultures from shake flasks to fermenters in batch and continuous mode. The strategy is based on empirical correlations of the volumetric mass transfer coefficient (k(L) a) and the pH. The accuracy of the empirical k(L) a correlations and the assumptions required to use these correlations for an arbitrary biological medium are discussed. To determine the optimal pH of the culture medium a simple laboratory method based on titration curves of the medium and a mechanistic pH model, which is solely based on the medium composition, is applied. The effectiveness of the scale-up strategy is demonstrated by comparing the behavior of Corynebacterium glutamicum on lactic acid in shake flasks and fermenters in batch and continuous mode. The maximum growth rate (micro(max) = 0.32 h(-1)) and the oxygen substrate coefficient (Y O2 /S= 0.0174 mol/l) of C. glutamicum on lactic acid were equal for shake flask, fermenter, batch, and continuous cultures. The biomass substrate yield was independent of the scale, but was lower in batch cultures (Y(X/S) = 0.36 g/g) than in continuous cultures (Y(X/S) = 0.45 g/g). The experimental data (biomass, respiration, pH) could be described with a simple biological model combined with a mechanistic pH model.

  12. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    PubMed Central

    Zhu, Zhengfei

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these two techniques are also discussed. PMID:26207214

  13. Error analysis of the phase-shifting technique when applied to shadow moire

    SciTech Connect

    Han, Changwoon; Han Bongtae

    2006-02-20

    An exact solution for the intensity distribution of shadow moire fringes produced by a broad spectrum light is presented. A mathematical study quantifies errors in fractional fringe orders determined by the phase-shifting technique, and its validity is corroborated experimentally. The errors vary cyclically as the distance between the reference grating and the specimen increases. The amplitude of the maximum error is approximately 0.017 fringe, which defines the theoretical limit of resolution enhancement offered by the phase-shifting technique.

  14. [The applying and foreground of quantifying DNA content by image analysis technique in determining postmortem interval].

    PubMed

    Wang, Cheng-yi; Liu, Liang

    2002-02-01

    Image Analysis Technique(IAT) was developed at 1950's, which quantifies the changing all the part of image by sampling, processing, quantifying, computing, analyzing the information of image. And now it has become a normal quantifying technique in biology and medicine research. In the present paper, we reviewed briefly the principium of quantifying the DNA content by IAT, the law of degradation of DNA in nucleus and the foreground of this method in determining PMI in forensic pathology.

  15. Barriers and Facilitators to Scaling Up the Non-Pneumatic Anti-Shock Garment for Treating Obstetric Hemorrhage: A Qualitative Study

    PubMed Central

    Jordan, Keely; Butrick, Elizabeth; Yamey, Gavin; Miller, Suellen

    2016-01-01

    Background Obstetric hemorrhage (OH), which includes hemorrhage from multiple etiologies during pregnancy, childbirth, or postpartum, is the leading cause of maternal mortality and accounts for one-quarter of global maternal deaths. The Non-pneumatic Anti-Shock Garment (NASG) is a first-aid device for obstetric hemorrhage that can be applied for post-partum/post miscarriage and for ectopic pregnancies to buy time for a woman to reach a health care facility for definitive treatment. Despite successful field trials, and endorsement by safe motherhood organizations and the World Health Organization (WHO), scale-up has been slow in some countries. This qualitative study explores contextual factors affecting uptake. Methods From March 2013 to April 2013, we conducted 13 key informant interviews across four countries with a large burden of maternal mortality that had achieved varying success in scaling up the NASG: Ethiopia, India, Nigeria, and Zimbabwe. These key informants were health providers or program specialists working with the NASG. We applied a health policy analysis framework to organize the results. The framework has five domains: attributes of the intervention, attributes of the implementers, delivery strategy, attributes of the adopting community, the socio-political context, and the research context. Results The interviews from our study found that relevant facilitators for scale-up are the simplicity of the device, local and international champions, well-developed training sessions, recommendations by WHO and the International Federation of Gynecology and Obstetrics, and dissemination of NASG clinical trial results. Barriers to scaling up the NASG included limited health infrastructure, relatively high upfront cost of the NASG, initial resistance by providers and policy makers, lack of in-country champions or policy makers advocating for NASG implementation, inadequate return and exchange programs, and lack of political will. Conclusions There was a

  16. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    NASA Astrophysics Data System (ADS)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  17. Applying data mining techniques to medical time series: an empirical case study in electroencephalography and stabilometry.

    PubMed

    Anguera, A; Barreiro, J M; Lara, J A; Lizcano, D

    2016-01-01

    One of the major challenges in the medical domain today is how to exploit the huge amount of data that this field generates. To do this, approaches are required that are capable of discovering knowledge that is useful for decision making in the medical field. Time series are data types that are common in the medical domain and require specialized analysis techniques and tools, especially if the information of interest to specialists is concentrated within particular time series regions, known as events. This research followed the steps specified by the so-called knowledge discovery in databases (KDD) process to discover knowledge from medical time series derived from stabilometric (396 series) and electroencephalographic (200) patient electronic health records (EHR). The view offered in the paper is based on the experience gathered as part of the VIIP project. Knowledge discovery in medical time series has a number of difficulties and implications that are highlighted by illustrating the application of several techniques that cover the entire KDD process through two case studies. This paper illustrates the application of different knowledge discovery techniques for the purposes of classification within the above domains. The accuracy of this application for the two classes considered in each case is 99.86% and 98.11% for epilepsy diagnosis in the electroencephalography (EEG) domain and 99.4% and 99.1% for early-age sports talent classification in the stabilometry domain. The KDD techniques achieve better results than other traditional neural network-based classification techniques.

  18. Scale-up of electrochemical oxidation system for treatment of produced water generated by Brazilian petrochemical industry.

    PubMed

    dos Santos, Elisama Vieira; Sena, Shirley Feitosa Machado; da Silva, Djalma Ribeiro; Ferro, Sergio; De Battisti, Achille; Martínez-Huitle, Carlos A

    2014-01-01

    Scale-up of anodic oxidation system is critical to the practical application of electrochemical treatment in bio-refractory organic wastewater treatment. In this study, the scale-up of electrochemical flow system was investigated by treating petrochemical wastewater using platinized titanium (Ti/Pt) and boron-doped diamond (BDD) anodes. It was demonstrated that flow cell was successfully scaled-up because when it was compared with batch mode (Rocha et al. 2012b), higher performances on organic matter removal were achieved. Under the suitable operating conditions and better anode material, the chemical oxygen demand (COD) of petrochemical wastewater was reduced from 2,746 to 200 mg L(-1) within 5 h with an energy consumption of only 56.2 kWh m(-3) in the scaled-up BDD anode system. These results demonstrate that anode flow system is very promising in practical bio-refractory organic wastewater treatment.

  19. Scale-up of electrochemical oxidation system for treatment of produced water generated by Brazilian petrochemical industry.

    PubMed

    dos Santos, Elisama Vieira; Sena, Shirley Feitosa Machado; da Silva, Djalma Ribeiro; Ferro, Sergio; De Battisti, Achille; Martínez-Huitle, Carlos A

    2014-01-01

    Scale-up of anodic oxidation system is critical to the practical application of electrochemical treatment in bio-refractory organic wastewater treatment. In this study, the scale-up of electrochemical flow system was investigated by treating petrochemical wastewater using platinized titanium (Ti/Pt) and boron-doped diamond (BDD) anodes. It was demonstrated that flow cell was successfully scaled-up because when it was compared with batch mode (Rocha et al. 2012b), higher performances on organic matter removal were achieved. Under the suitable operating conditions and better anode material, the chemical oxygen demand (COD) of petrochemical wastewater was reduced from 2,746 to 200 mg L(-1) within 5 h with an energy consumption of only 56.2 kWh m(-3) in the scaled-up BDD anode system. These results demonstrate that anode flow system is very promising in practical bio-refractory organic wastewater treatment. PMID:24687787

  20. Applied techniques for high bandwidth data transfers across wide area networks

    SciTech Connect

    Lee, Jason; Gunter, Dan; Tierney, Brian; Allcock, Bill; Bester, Joe; Bresnahan, John; Tuecke, Steve

    2001-04-30

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference.

  1. Reformulation linearization technique based branch-and-reduce approach applied to regional water supply system planning

    NASA Astrophysics Data System (ADS)

    Lan, Fujun; Bayraksan, Güzin; Lansey, Kevin

    2016-03-01

    A regional water supply system design problem that determines pipe and pump design parameters and water flows over a multi-year planning horizon is considered. A non-convex nonlinear model is formulated and solved by a branch-and-reduce global optimization approach. The lower bounding problem is constructed via a three-pronged effort that involves transforming the space of certain decision variables, polyhedral outer approximations, and the Reformulation Linearization Technique (RLT). Range reduction techniques are employed systematically to speed up convergence. Computational results demonstrate the efficiency of the proposed algorithm; in particular, the critical role range reduction techniques could play in RLT based branch-and-bound methods. Results also indicate using reclaimed water not only saves freshwater sources but is also a cost-effective non-potable water source in arid regions. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2015.1016508.

  2. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-15

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  3. Using simulation and budget models to scale-up nitrogen leaching from field to region in Canada.

    PubMed

    Huffman, E C; Yang, J Y; Gameda, S; De Jong, R

    2001-12-11

    Efforts are underway at Agriculture and Agri-Food Canada (AAFC) to develop an integrated, nationally applicable, socioeconomic/biophysical modeling capability in order to predict the environmental impacts of policy and program scenarios. This paper outlines our Decision Support System (DSS), which integrates the IROWCN (Indicator of the Risk of Water Contamination by Nitrogen) index with the agricultural policy model CRAM (Canadian Regional Agricultural Model) and presents an outline of our methodology to provide independent assessments of the IROWCN results through the use of nitrogen (N) simulation models in select, data-rich areas. Three field-level models--DSSAT, N_ABLE, and EPIC--were evaluated using local measured data. The results show that all three dynamic models can be used to simulate biomass, grain yield, and soil N dynamics at the field level; but the accuracy of the models differ, suggesting that models need to be calibrated using local measured data before they are used in Canada. Further simulation of IROWCN in a maize field using N_ABLE showed that soil-mineral N levels are highly affected by the amount of fertilizer N applied and the time of year, meaning that fertilizer and manure N applications and weather data are crucial for improving IROWCN. Methods of scaling-up simulated IROWCN from field-level to soil-landscape polygons and CRAM regions are discussed.

  4. Development of combinatorial chemistry methods for coatings: high-throughput weathering evaluation and scale-up of combinatorial leads.

    PubMed

    Potyrailo, Radislav A; Ezbiansky, Karin; Chisholm, Bret J; Morris, William G; Cawse, James N; Hassib, Lamyaa; Medford, George; Reitz, Hariklia

    2005-01-01

    Combinatorial screening of materials formulations followed by the scale-up of combinatorial leads has been applied for the development of high-performance coating materials for automotive applications. We replaced labor-intensive coating formulation, testing, and measurement with a "combinatorial factory" that includes robotic formulation of coatings, their deposition as 48 coatings on a 9x12-cm plastic substrate, accelerated performance testing, and automated spectroscopic and image analysis of resulting performance. This high-throughput (HT) performance testing and measurement of the resulting properties provided a powerful set of tools for the 10-fold accelerated discovery of these coating materials. Performance of coatings is evaluated with respect to their weathering, because this parameter is one of the primary considerations in end-use automotive applications. Our HT screening strategy provides previously unavailable capabilities of (1) high speed and reproducibility of testing by using robotic automation and (2) improved quantification by using optical spectroscopic analysis of discoloration of coating-substrate structure and automatic imaging of the integrity loss of coatings. Upon testing, the coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Using our HT methodology, we have developed several cost-competitive coatings leads that match the performance of more costly coatings. These HT screening results for the best coating compositions have been validated on the traditional scales of coating formulation and weathering testing. These validation results have confirmed the improved weathering performance of combinatorially developed coatings over conventional coatings on the traditional scale. PMID:15762746

  5. Monitoring gypsy moth defoliation by applying change detection techniques to Landsat imagery

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Stauffer, M. L.

    1978-01-01

    The overall objective of a research effort at NASA's Goddard Space Flight Center is to develop and evaluate digital image processing techniques that will facilitate the assessment of the intensity and spatial distribution of forest insect damage in Northeastern U.S. forests using remotely sensed data from Landsats 1, 2 and C. Automated change detection techniques are presently being investigated as a method of isolating the areas of change in the forest canopy resulting from pest outbreaks. In order to follow the change detection approach, Landsat scene correction and overlay capabilities are utilized to provide multispectral/multitemporal image files of 'defoliation' and 'nondefoliation' forest stand conditions.

  6. Innovative vibration technique applied to polyurethane foam as a viable substitute for conventional fatigue testing

    NASA Astrophysics Data System (ADS)

    Peralta, Alexander; Just-Agosto, Frederick; Shafiq, Basir; Serrano, David

    2012-12-01

    Lifetime prediction using three-point bending (TPB) can at times be prohibitively time consuming and costly, whereas vibration testing at higher frequency may potentially save time and revenue. A vibration technique that obtains lifetimes that reasonably match those determined under flexural TPB fatigue is developed. The technique designs the specimen with a procedure based on shape optimization and finite element analysis. When the specimen is vibrated in resonance, a stress pattern that mimics the stress pattern observed under conventional TPB fatigue testing is obtained. The proposed approach was verified with polyurethane foam specimens, resulting in an average error of 4.5% when compared with TPB.

  7. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    NASA Astrophysics Data System (ADS)

    Schukar, Vivien G.; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R.

    2012-08-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions.

  8. Wavelet Techniques Applied to Modeling Transitional/Turbulent Flows in Turbomachinery

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Computer simulation is an essential part of the design and development of jet engines for the aeropropulsion industry. Engineers concerned with calculating the flow in jet engine components, such as compressors and turbines, need simple engineering models that accurately describe the complex flow of air and gases and that allow them to quickly estimate loads, losses, temperatures, and other design parameters. In this ongoing collaborative project, advanced wavelet analysis techniques are being used to gain insight into the complex flow phenomena. These insights, which cannot be achieved by commonly used methods, are being used to develop innovative new flow models and to improve existing ones. Wavelet techniques are very suitable for analyzing the complex turbulent and transitional flows pervasive in jet engines. These flows are characterized by intermittency and a multitude of scales. Wavelet analysis results in information about these scales and their locations. The distribution of scales is equivalent to the frequency spectrum provided by commonly used Fourier analysis techniques; however, no localization information is provided by Fourier analysis. In addition, wavelet techniques allow conditional sampling analyses of the individual scales, which is not possible by Fourier methods.

  9. Applying Web Usability Techniques to Assess Student Awareness of Library Web Resources

    ERIC Educational Resources Information Center

    Krueger, Janice; Ray, Ron L.; Knight, Lorrie

    2004-01-01

    The authors adapted Web usability techniques to assess student awareness of their library's Web site. Students performed search tasks using a Web browser. Approaches were categorized according to a student's preference for, and success with, the library's Web resources. Forty-five percent of the students utilized the library's Web site as first…

  10. A comparison of model-based and hyperbolic localization techniques as applied to marine mammal calls

    NASA Astrophysics Data System (ADS)

    Tiemann, Christopher O.; Porter, Michael B.

    2003-10-01

    A common technique for the passive acoustic localization of singing marine mammals is that of hyperbolic fixing. This technique assumes straight-line, constant wave speed acoustic propagation to associate travel time with range, but in some geometries, these assumptions can lead to localization errors. A new localization algorithm based on acoustic propagation models can account for waveguide and multipath effects, and it has successfully been tested against real acoustic data from three different environments (Hawaii, California, and Bahamas) and three different species (humpback, blue, and sperm whales). Accuracy of the model-based approach has been difficult to verify given the absence of concurrent visual and acoustic observations of the same animal. However, the model-based algorithm was recently exercised against a controlled source of known position broadcasting recorded whale sounds, and location estimates were then compared to hyperbolic techniques and true source position. In geometries where direct acoustic paths exist, both model-based and hyperbolic techniques perform equally well. However, in geometries where bathymetric and refractive effects are important, such as at long range, the model-based approach shows improved accuracy.

  11. Applying Gaming and Simulation Techniques to the Design of Online Instruction

    ERIC Educational Resources Information Center

    Rude-Parkins, Carolyn; Miller, Karen Hughes; Ferguson, Karen; Bauer, Robert

    2006-01-01

    Critical in virtually all educational arenas, gaming and simulation techniques and distance learning are major areas of interest in today's U.S. Army training. The U.S. Army Armor School at Ft. Knox, KY contracted with the University of Louisville and Northrop Grumman Mission Systems in 2003 to develop online training for Army Captains. They…

  12. Practising What We Teach: Vocational Teachers Learn to Research through Applying Action Learning Techniques

    ERIC Educational Resources Information Center

    Lasky, Barbara; Tempone, Irene

    2004-01-01

    Action learning techniques are well suited to the teaching of organisation behaviour students because of their flexibility, inclusiveness, openness, and respect for individuals. They are no less useful as a tool for change for vocational teachers, learning, of necessity, to become researchers. Whereas traditional universities have always had a…

  13. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    NASA Astrophysics Data System (ADS)

    Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  14. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade

    PubMed Central

    Gainey, Melanie A.; Tatavarty, Vedakumar; Nahmani, Marc; Lin, Heather; Turrigiano, Gina G.

    2015-01-01

    Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing in response to changes in synapse number and strength. Scaling up in response to action-potential blockade is accomplished through increased synaptic accumulation of GluA2-containing AMPA receptors (AMPAR), but the receptor trafficking steps that drive this process remain largely obscure. Here, we show that the AMPAR-binding protein glutamate receptor-interacting protein-1 (GRIP1) is essential for regulated synaptic AMPAR accumulation during scaling up. Synaptic abundance of GRIP1 was enhanced by activity deprivation, directly increasing synaptic GRIP1 abundance through overexpression increased the amplitude of AMPA miniature excitatory postsynaptic currents (mEPSCs), and shRNA-mediated GRIP1 knockdown prevented scaling up of AMPA mEPSCs. Furthermore, knockdown and replace experiments targeting either GRIP1 or GluA2 revealed that scaling up requires the interaction between GRIP1 and GluA2. Finally, GRIP1 synaptic accumulation during scaling up did not require GluA2 binding. Taken together, our data support a model in which activity-dependent trafficking of GRIP1 to synaptic sites drives the forward trafficking and enhanced synaptic accumulation of GluA2-containing AMPAR during synaptic scaling up. PMID:26109571

  15. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  16. Applying Socio-Identity Analysis to Counseling Practice and Preparation: A Review of Four Techniques.

    ERIC Educational Resources Information Center

    Johnson, Samuel D., Jr.

    1990-01-01

    Reviews four training strategies for applying socioidentity analysis to multicultural counseling; the Clarification Group (C Group); the Personal Dimensions of Difference Self-Inventory (PDD); the Multifactor Needs Assessment; and the Cultural Grid. Each highlights a slightly different aspect of the complex matrix of relationships that define the…

  17. Applying the Management-by-Objectives Technique in an Industrial Library

    ERIC Educational Resources Information Center

    Stanton, Robert O.

    1975-01-01

    An experimental "management-by-objectives" performance system was operated by the Libraries and Information Systems Center of Bell Laboratories during 1973. It was found that, though the system was very effective for work planning and the development of people, difficulties were encountered in applying it to certain classes of employees. (Author)

  18. Time-lapse motion picture technique applied to the study of geological processes

    USGS Publications Warehouse

    Miller, R.D.; Crandell, D.R.

    1959-01-01

    Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.

  19. The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project

    NASA Astrophysics Data System (ADS)

    Beichner, Robert J.

    2011-04-01

    How do you keep a classroom of 100 undergraduates actively learning? Can students practice communication and teamwork skills in a large class? How do you boost the performance of underrepresented groups? The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project has addressed these concerns. Because of their inclusion in a leading introductory physics textbook, project materials are used by more than 1/3 of all science, math, and engineering majors nationwide. The room design and pedagogy have been adopted at more than 100 leading institutions across the country. Physics, chemistry, math, astronomy, biology, engineering, earth sciences, and even literature classes are currently being taught this way. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. We promote active learning in a redesigned classroom for 100 students or more. (Of course, smaller classes can also benefit.) Class time is spent primarily on "tangibles" and "ponderables"--hands-on activities, simulations, and interesting questions. Nine students sit in three teams at round tables. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Hundreds of hours of classroom video and audio recordings, transcripts of numerous interviews and focus groups, data from conceptual learning assessments (using widely-recognized instruments in a pretest/posttest protocol), and collected portfolios of student work are part of our rigorous assessment effort. Our findings (based on data from over 16,000 students collected over five years as well as replications at adopting sites) can be summarized as the following: 1) Female failure rate is 1/5 of previous levels, even though more is demanded of students. 2) Minority failure rate is 1/4 that seen in traditionally taught courses. 3) At-risk students are more

  20. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson's Disease.

    PubMed

    de Celis Alonso, Benito; Hidalgo-Tobón, Silvia S; Menéndez-González, Manuel; Salas-Pacheco, José; Arias-Carrión, Oscar

    2015-01-01

    Parkinson's disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson's disease. PMID:26191037

  1. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson’s Disease

    PubMed Central

    de Celis Alonso, Benito; Hidalgo-Tobón, Silvia S.; Menéndez-González, Manuel; Salas-Pacheco, José; Arias-Carrión, Oscar

    2015-01-01

    Parkinson’s disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson’s disease. PMID:26191037

  2. Modelling laser speckle photographs of decayed teeth by applying a digital image information technique

    NASA Astrophysics Data System (ADS)

    Ansari, M. Z.; da Silva, L. C.; da Silva, J. V. P.; Deana, A. M.

    2016-09-01

    We report on the application of a digital image model to assess early carious lesions on teeth. When decay is in its early stages, the lesions were illuminated with a laser and the laser speckle images were obtained. Due to the differences in the optical properties between healthy and carious tissue, both regions produced different scatter patterns. The digital image information technique allowed us to produce colour-coded 3D surface plots of the intensity information in the speckle images, where the height (on the z-axis) and the colour in the rendering correlate with the intensity of a pixel in the image. The quantitative changes in colour component density enhance the contrast between the decayed and sound tissue, and visualization of the carious lesions become significantly evident. Therefore, the proposed technique may be adopted in the early diagnosis of carious lesions.

  3. Improving throughput and user experience for information intensive websites by applying HTTP compression technique.

    PubMed

    Malla, Ratnakar

    2008-11-06

    HTTP compression is a technique specified as part of the W3C HTTP 1.0 standard. It allows HTTP servers to take advantage of GZIP compression technology that is built into latest browsers. A brief survey of medical informatics websites show that compression is not enabled. With compression enabled, downloaded files sizes are reduced by more than 50% and typical transaction time is also reduced from 20 to 8 minutes, thus providing a better user experience.

  4. A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

    SciTech Connect

    Rubinacci, Guglielmo Liu, Yueqiang

    2009-03-20

    This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

  5. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  6. Applying Data-mining techniques to study drought periods in Spain

    NASA Astrophysics Data System (ADS)

    Belda, F.; Penades, M. C.

    2010-09-01

    Data-mining is a technique that it can be used to interact with large databases and to help in the discovery relations between parameters by extracting information from massive and multiple data archives. Drought affects many economic and social sectors, from agricultural to transportation, going through urban water deficit and the development of modern industries. With these problems and drought geographical and temporal distribution it's difficult to find a single definition of drought. Improving the understanding of the knowledge of climatic index is necessary to reduce the impacts of drought and to facilitate quick decisions regarding this problem. The main objective is to analyze drought periods from 1950 to 2009 in Spain. We use several kinds of information, different formats, sources and transmission mode. We use satellite-based Vegetation Index, dryness index for several temporal periods. We use daily and monthly precipitation and temperature data and soil moisture data from numerical weather model. We calculate mainly Standardized Precipitation Index (SPI) that it has been used amply in the bibliography. We use OLAP-Mining techniques to discovery of association rules between remote-sensing, numerical weather model and climatic index. Time series Data- Mining techniques organize data as a sequence of events, with each event having a time of recurrence, to cluster the data into groups of records or cluster with similar characteristics. Prior climatological classification is necessary if we want to study drought periods over all Spain.

  7. Quantification of material slippage in the iliotibial tract when applying the partial plastination clamping technique.

    PubMed

    Sichting, Freddy; Steinke, Hanno; Wagner, Martin F-X; Fritsch, Sebastian; Hädrich, Carsten; Hammer, Niels

    2015-09-01

    The objective of this study was to evaluate the potential of the partial plastination technique in minimizing material slippage and to discuss the effects on the tensile properties of thin dense connective tissue. The ends of twelve iliotibial tract samples were primed with polyurethane resin and covered by plastic plates to provide sufficient grip between the clamps. The central part of the samples remained in an anatomically unfixed condition. Strain data of twelve partially plastinated samples and ten samples in a completely anatomically unfixed state were obtained using uniaxial crosshead displacement and an optical image tracking technique. Testing of agreement between the strain data revealed ongoing but markedly reduced material slippage in partially plastinated samples compared to the unfixed samples. The mean measurement error introduced by material slippage was up to 18.0% in partially plastinated samples. These findings might complement existing data on measurement errors during material testing and highlight the importance of individual quantitative evaluation of errors that come along with self-made clamping techniques. PMID:26005842

  8. IPR techniques applied to a multimedia environment in the HYPERMEDIA project

    NASA Astrophysics Data System (ADS)

    Munoz, Alberto; Ribagorda, Arturo; Sierra, Jose M.

    1999-04-01

    Watermarking techniques have been proved as a good method to protect intellectual copyrights in digital formats. But the simplicity for processing information supplied by digital platforms also offers many chances for eliminating marks embedded in the data due to the wide variety of techniques to modify information in digital formats. This paper analyzes a selection of the most interesting methods for image watermarking in order to test its qualities. The comparison of these watermarking techniques has shown new interesting lines of work. Some changes and extensions to these methods are proposed to increase its robustness against some usual attacks and specific watermark attacks. This works has been realized in order to provide the HYPERMEDIA project with an efficient tool for protecting IPR. The objective of this project is to establish an experimental stage on continuous multimedia material (audiovisuals) handling and delivering in a multimedia service environment, allowing the user to navigate in the hyperspace through database which belong to actors of the service chain and protecting IPR of authors or owners.

  9. Quantification of material slippage in the iliotibial tract when applying the partial plastination clamping technique.

    PubMed

    Sichting, Freddy; Steinke, Hanno; Wagner, Martin F-X; Fritsch, Sebastian; Hädrich, Carsten; Hammer, Niels

    2015-09-01

    The objective of this study was to evaluate the potential of the partial plastination technique in minimizing material slippage and to discuss the effects on the tensile properties of thin dense connective tissue. The ends of twelve iliotibial tract samples were primed with polyurethane resin and covered by plastic plates to provide sufficient grip between the clamps. The central part of the samples remained in an anatomically unfixed condition. Strain data of twelve partially plastinated samples and ten samples in a completely anatomically unfixed state were obtained using uniaxial crosshead displacement and an optical image tracking technique. Testing of agreement between the strain data revealed ongoing but markedly reduced material slippage in partially plastinated samples compared to the unfixed samples. The mean measurement error introduced by material slippage was up to 18.0% in partially plastinated samples. These findings might complement existing data on measurement errors during material testing and highlight the importance of individual quantitative evaluation of errors that come along with self-made clamping techniques.

  10. A neuro-evolutive technique applied for predicting the liquid crystalline property of some organic compounds

    NASA Astrophysics Data System (ADS)

    Drăgoi, Elena-Niculina; Curteanu, Silvia; Lisa, Cătălin

    2012-10-01

    A simple self-adaptive version of the differential evolution algorithm was applied for simultaneous architectural and parametric optimization of feed-forward neural networks, used to classify the crystalline liquid property of a series of organic compounds. The developed optimization methodology was called self-adaptive differential evolution neural network (SADE-NN) and has the following characteristics: the base vector used is chosen as the best individual in the current population, two differential terms participate in the mutation process, the crossover type is binomial, a simple self-adaptive mechanism is employed to determine the near-optimal control parameters of the algorithm, and the integration of the neural network into the differential evolution algorithm is performed using a direct encoding scheme. It was found that a network with one hidden layer is able to make accurate predictions, indicating that the proposed methodology is efficient and, owing to its flexibility, it can be applied to a large range of problems.

  11. Assessment of ground-based monitoring techniques applied to landslide investigations

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J.

    2016-01-01

    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009-2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of 'S'-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements

  12. Imaging Dissimilatory Iron Reduction with Hydrogeophysical Tools: Scaling up From the Beaker to the Field

    NASA Astrophysics Data System (ADS)

    Regberg, A. B.; Brantley, S.; Kamini, S.; Tien, M.

    2006-12-01

    As organic contaminants are introduced into aquifers as pollution, biologic reactions create zones of anoxia in which dissimilatory iron reduction (DIR) is possible. The region of DIR often roughly defines the boundary between contaminated and uncontaminated waters. While there are numerous geochemical and hydrological techniques available for monitoring contaminant plumes, many of these techniques are costly, provide a limited amount of data, and cannot yield time course information. Geophysical techniques may provide a cost effective way to expand these small data sets. Recently, electrical resistivity, induced polarization, and self potential have been used to map the spatial extent of contaminant plumes containing anything from landfill leachate to petroleum products. We demonstrate that geochemical and biogeochemical effects like redox changes, variations in total dissolved solids, and bacterial activity can be quantifiably linked to an electrical geophysical response. For example, abiotic iron reduction with ascorbic acid produces a quantifiable and theoretically predictable change in electrical resistivity at the bench scale. The resistivity of a solution of ferrihydrite and water at pH 5.8 remains unchanged unless mineral acid or ascorbic acid is added, and each effect is theoretically predictable. In batch experiments, during abiotic iron reduction, cumulative 20-40% increases in measured resistivity (~300μS/cm) can be attributed to a decrease in conductivity from increasing pH (ΔpH = 3.25 - 5.07, -201 μS/cm) and an increase in dissolved Fe(II) (Δ[Fe] = 2.2 - 3.3 mM, 400 - 700 μS/cm). In order to effectively calculate the resistivity of this simple system it is necessary to measure pH and Fe(II) concentrations. We are also quantifying the resistivity response associated with abiotic iron reduction in the presence of iron-reducing enzymes from Shewanella oneidensis MR-1 (in vitro DIR) in batch and column experiments. We intend to apply the information

  13. Scaling up the global nursing health workforce: contributions of an international organization.

    PubMed

    Rukholm, Ellen E; Stamler, Lynnette Leeseberg; Talbot, Lise R; Bednash, Geraldine; Raines, Fay; Potempa, Kathleen; Nugent, Pauline; Clark, Dame Jill Macleod; Bernhauser, Sue; Parfitt, Barbara

    2009-01-01

    In this paper key highlights of the scholarly work presented at the Toronto 2008 Global Alliance for Nursing Education & Scholarship (GANES) conference are summarized, challenges opportunities and issues facing nursing education globally arising from the conference discourse are outlined and initial steps are suggested as a way forward to a shared global view of baccalaureate and graduate nursing education and scholarship. This shared view arises from beginning understandings of the issues and opportunities we face globally starting with and building upon the lessons learned from the literature and from the experiences of nursing educators and nursing education organization locally, regionally, nationally and internationally. The theme of the groundbreaking GANES Toronto conference was "Educating the future nursing and health workforce: A global challenge". One hundred seventy delegates from 17 countries attended the event, with over 80 papers presented. A primary focus of GANES is the contribution of a strategic alliance of national nursing education organizations to contribute to nursing education leading practices and policy that address the scaling up of global nursing and health workforce. The founding members of GANES see a clear link between a strong educational infrastructure and strong scholarship activities in nursing and the ability of a society to be healthy and prosperous. Evidence presented at the recent GANES conference supports that belief. Through the strength of partnerships and other capacity-building efforts, member countries can support each other to address the global nursing education and health challenges while respecting the local issues. PMID:19388426

  14. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  15. Interconnected, microporous hollow fibers for tissue engineering: commercially relevant, industry standard scale-up manufacturing.

    PubMed

    Tuin, Stephen A; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2014-09-01

    Significant progress has been achieved in the field of tissue engineering to create functional tissue using biomimetic three-dimensional scaffolds that support cell growth, proliferation, and extracellular matrix production. However, many of these constructs are severely limited by poor nutrient diffusion throughout the tissue-engineered construct, resulting in cell death and tissue necrosis at the core. Nutrient transport can be improved by creation and use of scaffolds with hollow and microporous fibers, significantly improving permeability and nutrient diffusion. The purpose of this review is to highlight current technological advances in the fabrication of hollow fibers with interconnected pores throughout the fiber walls, with specific emphasis on developing hollow porous nonwoven fabrics for use as tissue engineering constructs via industry standard processing technologies: Spunbond processing and polymer melt extrusion. We outline current methodologies to create hollow and microporous scaffolds with the aim of translating that knowledge to the production of such fibers into nonwoven tissue engineering scaffolds via spunbond technology, a commercially relevant and viable melt extrusion manufacturing approach that allows for facile scale-up.

  16. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    SciTech Connect

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; /Fermilab

    2007-06-01

    Fermilab is working on the development of Nb{sub 3}Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb{sub 3}Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models.

  17. Optimization and Scale-up of Inulin Extraction from Taraxacum kok-saghyz roots.

    PubMed

    Hahn, Thomas; Klemm, Andrea; Ziesse, Patrick; Harms, Karsten; Wach, Wolfgang; Rupp, Steffen; Hirth, Thomas; Zibek, Susanne

    2016-05-01

    The optimization and scale-up of inulin extraction from Taraxacum kok-saghyz Rodin was successfully performed. Evaluating solubility investigations, the extraction temperature was fixed at 85 degrees C. The inulin stability regarding degradation or hydrolysis could be confirmed by extraction in the presence of model inulin. Confirming stability at the given conditions the isolation procedure was transferred from a 1 L- to a 1 m3-reactor. The Reynolds number was selected as the relevant dimensionless number that has to remain constant in both scales. The stirrer speed in the large scale was adjusted to 3.25 rpm regarding a 300 rpm stirrer speed in the 1 L-scale and relevant physical and process engineering parameters. Assumptions were confirmed by approximately homologous extraction kinetics in both scales. Since T. kok-saghyz is in the focus of research due to its rubber content side-product isolation from residual biomass it is of great economic interest. Inulin is one of these additional side-products that can be isolated in high quantity (- 35% of dry mass) and with a high average degree of polymerization (15.5) in large scale with a purity of 77%. PMID:27319152

  18. Scaling up interventions to achieve global tuberculosis control: progress and new developments.

    PubMed

    Raviglione, Mario; Marais, Ben; Floyd, Katherine; Lönnroth, Knut; Getahun, Haileyesus; Migliori, Giovanni B; Harries, Anthony D; Nunn, Paul; Lienhardt, Christian; Graham, Steve; Chakaya, Jeremiah; Weyer, Karin; Cole, Stewart; Kaufmann, Stefan H E; Zumla, Alimuddin

    2012-05-19

    Tuberculosis is still one of the most important causes of death worldwide. The 2010 Lancet tuberculosis series provided a comprehensive overview of global control efforts and challenges. In this update we review recent progress. With improved control efforts, the world and most regions are on track to achieve the Millennium Development Goal of decreasing tuberculosis incidence by 2015, and the Stop TB Partnership target of halving 1990 mortality rates by 2015; the exception is Africa. Despite these advances, full scale-up of tuberculosis and HIV collaborative activities remains challenging and emerging drug-resistant tuberculosis is a major threat. Recognition of the effect that non-communicable diseases--such as smoking-related lung disease, diet-related diabetes mellitus, and alcohol and drug misuse--have on individual vulnerability, as well as the contribution of poor living conditions to community vulnerability, shows the need for multidisciplinary approaches. Several new diagnostic tests are being introduced in endemic countries and for the first time in 40 years a coordinated portfolio of promising new tuberculosis drugs exists. However, none of these advances offer easy solutions. Achievement of international tuberculosis control targets and maintenance of these gains needs optimum national health policies and services, with ongoing investment into new approaches and strategies. Despite growing funding in recent years, a serious shortfall persists. International and national financial uncertainty places gains at serious risk. Perseverance and renewed commitment are needed to achieve global control of tuberculosis, and ultimately, its elimination. PMID:22608339

  19. Reactive compatibilizer-tracer: A powerful tool for designing, scaling up and optimizing reactive blending processes

    NASA Astrophysics Data System (ADS)

    Ji, Wei-Yun; Feng, Lian-Fang; Zhang, Cai-Liang; Hu, Guo-Hua

    2015-05-01

    A concept of reactive compatibilizer-tracer is developed to study reactive polymer blending processes in a twin screw extruder. It is summarized as follows. Fluorescent moieties such as anthracene are attached to a reactive compatibilizer so that the latter can be served both as a compatibilizer and a tracer. When evaluating its compatibilizing efficiency for a polymer blending system, unlike the polymer components of the blend which are continuously fed to the extruder, the reactive compatibilizer-tracer is added as a pulse. The concentration of the reactive compatibilizer-tracer in the polymer blend at the die exit is measured, in-line and in real time, using probes capable of detecting the signal of the emission of fluorescent moieties of the reactive compatibilizer-tracer. In the meantime, the corresponding size of the dispersed phase domains of the blend is determined off-line. These two pieces of information allow assessing the compatibilizing efficiency of a reactive compatibilizer in a much easier manner and using a much smaller amount of compatibilizer. Consequently, the concept of reactive compatibilizer-tracer can help select most appropriate compatibilizers under real industrial polymer blending conditions as well as scaling up and/or optimizing them.

  20. Transforming Global Health by Improving the Science of Scale-Up.

    PubMed

    Kruk, Margaret E; Yamey, Gavin; Angell, Sonia Y; Beith, Alix; Cotlear, Daniel; Guanais, Frederico; Jacobs, Lisa; Saxenian, Helen; Victora, Cesar; Goosby, Eric

    2016-03-01

    In its report Global Health 2035, the Commission on Investing in Health proposed that health investments can reduce mortality in nearly all low- and middle-income countries to very low levels, thereby averting 10 million deaths per year from 2035 onward. Many of these gains could be achieved through scale-up of existing technologies and health services. A key instrument to close this gap is policy and implementation research (PIR) that aims to produce generalizable evidence on what works to implement successful interventions at scale. Rigorously designed PIR promotes global learning and local accountability. Much greater national and global investments in PIR capacity will be required to enable the scaling of effective approaches and to prevent the recycling of failed ideas. Sample questions for the PIR research agenda include how to close the gap in the delivery of essential services to the poor, which population interventions for non-communicable diseases are most applicable in different contexts, and how to engage non-state actors in equitable provision of health services in the context of universal health coverage. PMID:26934704

  1. Optimization and Scale-up of Inulin Extraction from Taraxacum kok-saghyz roots.

    PubMed

    Hahn, Thomas; Klemm, Andrea; Ziesse, Patrick; Harms, Karsten; Wach, Wolfgang; Rupp, Steffen; Hirth, Thomas; Zibek, Susanne

    2016-05-01

    The optimization and scale-up of inulin extraction from Taraxacum kok-saghyz Rodin was successfully performed. Evaluating solubility investigations, the extraction temperature was fixed at 85 degrees C. The inulin stability regarding degradation or hydrolysis could be confirmed by extraction in the presence of model inulin. Confirming stability at the given conditions the isolation procedure was transferred from a 1 L- to a 1 m3-reactor. The Reynolds number was selected as the relevant dimensionless number that has to remain constant in both scales. The stirrer speed in the large scale was adjusted to 3.25 rpm regarding a 300 rpm stirrer speed in the 1 L-scale and relevant physical and process engineering parameters. Assumptions were confirmed by approximately homologous extraction kinetics in both scales. Since T. kok-saghyz is in the focus of research due to its rubber content side-product isolation from residual biomass it is of great economic interest. Inulin is one of these additional side-products that can be isolated in high quantity (- 35% of dry mass) and with a high average degree of polymerization (15.5) in large scale with a purity of 77%.

  2. Magnetic properties and scale-up of nanostructured cobalt carbide permanent magnetic powders

    SciTech Connect

    Zamanpour, Mehdi Bennett, Steven; Taheri, Parisa; Chen, Yajie; Harris, Vincent G.

    2014-05-07

    Co{sub x}C magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 45 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of surfactants, reaction temperature, and reaction duration on the crystallographic structure and magnetic properties of Co{sub x}C, while tetraethylene glycol was employed as a reducing agent. The role of the ratios of Co{sub 2}C and Co{sub 3}C phases in the admixture magnetic properties is discussed. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  3. Public-private interactions on health in South Africa: opportunities for scaling up.

    PubMed

    Kula, Nothemba; Fryatt, Robert J

    2014-08-01

    South Africa has long recognized partnerships between the public and private sectors as a policy objective in health, but experience is still limited and poorly documented. The objectives of this article are to understand the factors that increase the likelihood of success of public-private interactions in South Africa, and identify and discuss opportunities for them to be scaled up. There is a strong legislative framework and a number of guidelines and tools that have been developed by the Treasury for managing partnerships. The review of literature confirmed the need for the state to have effective regulations in order to oversee quality and standards and to provide stewardship and oversight. The public sector requires sufficient capacity not only to manage relationships with the private sector but also to enable innovation and experimentation. Evaluation is an integral part of all interactions not only to learn from successes but also to identify any perverse incentives that may lead to unintended consequences. Four case studies show that the private for-profit sector is already engaged in a number of projects that are closely aligned to current health system reform priorities. Factors that increase the likelihood of interactions being successful include: increasing the government's capacity to manage public-private relationships; choosing public-private interactions that are strategically important to national goals; building a knowledge base on what works, where and why; moving from pilots to large scale initiatives; harnessing the contracting expertise in private providers; and encouraging innovation and learning. PMID:23962441

  4. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    SciTech Connect

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

  5. Accelerated reforms in healthcare financing: the need to scale up private sector participation in Nigeria

    PubMed Central

    Ejughemre, Ufuoma John

    2014-01-01

    The health sector, a foremost service sector in Nigeria, faces a number of challenges; primarily, the persistent under-funding of the health sector by the Nigerian government as evidence reveals low allocations to the health sector and poor health system performance which are reflected in key health indices of the country.Notwithstanding, there is evidence that the private sector could be a key player in delivering health services and impacting health outcomes, including those related to healthcare financing. This underscores the need to optimize the role of private sector in complementing the government’s commitment to financing healthcare delivery and strengthening the health system in Nigeria. There are also concerns about uneven quality and affordability of private-driven health systems, which necessitates reforms aimed at regulation. Accordingly, the argument is that the benefits of leveraging the private sector in complementing the national government in healthcare financing outweigh the challenges, particularly in light of lean public resources and finite donor supports. This article, therefore, highlights the potential for the Nigerian government to scale up healthcare financing by leveraging private resources, innovations and expertise, while working to achieve the universal health coverage. PMID:24596895

  6. Scale-up of HIV treatment through PEPFAR: a historic public health achievement.

    PubMed

    El-Sadr, Wafaa M; Holmes, Charles B; Mugyenyi, Peter; Thirumurthy, Harsha; Ellerbrock, Tedd; Ferris, Robert; Sanne, Ian; Asiimwe, Anita; Hirnschall, Gottfried; Nkambule, Rejoice N; Stabinski, Lara; Affrunti, Megan; Teasdale, Chloe; Zulu, Isaac; Whiteside, Alan

    2012-08-15

    Since its inception in 2003, the US President's Emergency Plan for AIDS Relief (PEPFAR) has been an important driving force behind the global scale-up of HIV care and treatment services, particularly in expansion of access to antiretroviral therapy. Despite initial concerns about cost and feasibility, PEPFAR overcame challenges by leveraging and coordinating with other funders, by working in partnership with the most affected countries, by supporting local ownership, by using a public health approach, by supporting task-shifting strategies, and by paying attention to health systems strengthening. As of September 2011, PEPFAR directly supported initiation of antiretroviral therapy for 3.9 million people and provided care and support for nearly 13 million people. Benefits in terms of prevention of morbidity and mortality have been reaped by those receiving the services, with evidence of societal benefits beyond the anticipated clinical benefits. However, much remains to be accomplished to achieve universal access, to enhance the quality of programs, to ensure retention of patients in care, and to continue to strengthen health systems. PMID:22797746

  7. Scaling-up essential neuropsychiatric services in Ethiopia: a cost-effectiveness analysis

    PubMed Central

    Strand, Kirsten Bjerkreim; Chisholm, Dan; Fekadu, Abebaw; Johansson, Kjell Arne

    2016-01-01

    Introduction There is an immense need for scaling-up neuropsychiatric care in low-income countries. Contextualized cost-effectiveness analyses (CEAs) provide relevant information for local policies. The aim of this study is to perform a contextualized CEA of neuropsychiatric interventions in Ethiopia and to illustrate expected population health and budget impacts across neuropsychiatric disorders. Methods A mathematical population model (PopMod) was used to estimate intervention costs and effectiveness. Existing variables from a previous WHO-CHOICE regional CEA model were substantially revised. Treatments for depression, schizophrenia, bipolar disorder and epilepsy were analysed. The best available local data on epidemiology, intervention efficacy, current and target coverage, resource prices and salaries were used. Data were obtained from expert opinion, local hospital information systems, the Ministry of Health and literature reviews. Results Treatment of epilepsy with a first generation antiepileptic drug is the most cost-effective treatment (US$ 321 per DALY adverted). Treatments for depression have mid-range values compared with other interventions (US$ 457–1026 per DALY adverted). Treatments for schizophrenia and bipolar disorders are least cost-effective (US$ 1168–3739 per DALY adverted). Conclusion This analysis gives the Ethiopian government a comprehensive overview of the expected costs, effectiveness and cost-effectiveness of introducing basic neuropsychiatric interventions. PMID:26491060

  8. Scale-up of HIV treatment through PEPFAR: a historic public health achievement.

    PubMed

    El-Sadr, Wafaa M; Holmes, Charles B; Mugyenyi, Peter; Thirumurthy, Harsha; Ellerbrock, Tedd; Ferris, Robert; Sanne, Ian; Asiimwe, Anita; Hirnschall, Gottfried; Nkambule, Rejoice N; Stabinski, Lara; Affrunti, Megan; Teasdale, Chloe; Zulu, Isaac; Whiteside, Alan

    2012-08-15

    Since its inception in 2003, the US President's Emergency Plan for AIDS Relief (PEPFAR) has been an important driving force behind the global scale-up of HIV care and treatment services, particularly in expansion of access to antiretroviral therapy. Despite initial concerns about cost and feasibility, PEPFAR overcame challenges by leveraging and coordinating with other funders, by working in partnership with the most affected countries, by supporting local ownership, by using a public health approach, by supporting task-shifting strategies, and by paying attention to health systems strengthening. As of September 2011, PEPFAR directly supported initiation of antiretroviral therapy for 3.9 million people and provided care and support for nearly 13 million people. Benefits in terms of prevention of morbidity and mortality have been reaped by those receiving the services, with evidence of societal benefits beyond the anticipated clinical benefits. However, much remains to be accomplished to achieve universal access, to enhance the quality of programs, to ensure retention of patients in care, and to continue to strengthen health systems.

  9. PEPFAR support for the scaling up of collaborative TB/HIV activities.

    PubMed

    Howard, Andrea A; Gasana, Michel; Getahun, Haileyesus; Harries, Anthony; Lawn, Stephen D; Miller, Bess; Nelson, Lisa; Sitienei, Joseph; Coggin, William L

    2012-08-15

    The US President's Emergency Plan for AIDS Relief (PEPFAR) has supported a comprehensive package of care in which interventions to address HIV-related tuberculosis (TB) have received increased funding and support in recent years. PEPFAR's TB/HIV programming is based on the World Health Organization's 12-point policy for collaborative TB/HIV activities, which are integrated into PEPFAR annual guidance. PEPFAR implementing partners have provided crucial support to TB/HIV collaboration, and as a result, PEPFAR-supported countries in sub-Saharan Africa have made significant gains in HIV testing and counseling of TB patients and linkages to HIV care and treatment, intensified TB case finding, and TB infection control. PEPFAR's support of TB/HIV integration has also included significant investment in health systems, including improved laboratory services and educating and enlarging the workforce. The scale-up of antiretroviral therapy along with support of programs to increase HIV counseling and testing and improve linkage and retention in HIV care may have considerable impact on TB morbidity and mortality, if used synergistically with isoniazid preventive therapy, intensified case finding, and infection control. Issues to be addressed by future programming include accelerating implementation of isoniazid preventive therapy, increasing access and ensuring appropriate use of new TB diagnostics, supporting early initiation of antiretroviral therapy for HIV-infected TB patients, and strengthening systems to monitor and evaluate program implementation.

  10. Carbon honeycomb grids for advanced lead-acid batteries. Part III: Technology scale-up

    NASA Astrophysics Data System (ADS)

    Kirchev, A.; Serra, L.; Dumenil, S.; Brichard, G.; Alias, M.; Jammet, B.; Vinit, L.

    2015-12-01

    The carbon honeycomb grid technology employs new carbon/carbon composites with ordered 3D structure instead of the classic lead-acid battery current collectors. The technology is laboratory scaled up from small size grids corresponding to electrodes with a capacity of 3 Ah to current collectors suitable for assembly of lead-acid batteries covering the majority of the typical lead-acid battery applications. Two series of 150 grids each (one positive and one negative) are manufactured using low-cost lab-scale equipment. They are further subjected to pasting with active materials and the resulting battery plates are assembled in 12 V AGM-VLRA battery mono-blocks for laboratory testing and outdoor demonstration in electric scooter replacing its original VRLAB pack. The obtained results demonstrate that the technology can replace successfully the state of the art negative grids with considerable benefits. The use of the carbon honeycomb grids as positive plate current collectors is limited by the anodic corrosion of the entire structure attacking both the carbon/carbon composite part and the electroplated lead-tin alloy coating.

  11. Transforming Global Health by Improving the Science of Scale-Up

    PubMed Central

    Kruk, Margaret E.; Yamey, Gavin; Angell, Sonia Y.; Beith, Alix; Cotlear, Daniel; Guanais, Frederico; Jacobs, Lisa; Saxenian, Helen; Victora, Cesar; Goosby, Eric

    2016-01-01

    In its report Global Health 2035, the Commission on Investing in Health proposed that health investments can reduce mortality in nearly all low- and middle-income countries to very low levels, thereby averting 10 million deaths per year from 2035 onward. Many of these gains could be achieved through scale-up of existing technologies and health services. A key instrument to close this gap is policy and implementation research (PIR) that aims to produce generalizable evidence on what works to implement successful interventions at scale. Rigorously designed PIR promotes global learning and local accountability. Much greater national and global investments in PIR capacity will be required to enable the scaling of effective approaches and to prevent the recycling of failed ideas. Sample questions for the PIR research agenda include how to close the gap in the delivery of essential services to the poor, which population interventions for non-communicable diseases are most applicable in different contexts, and how to engage non-state actors in equitable provision of health services in the context of universal health coverage. PMID:26934704

  12. Transforming Global Health by Improving the Science of Scale-Up.

    PubMed

    Kruk, Margaret E; Yamey, Gavin; Angell, Sonia Y; Beith, Alix; Cotlear, Daniel; Guanais, Frederico; Jacobs, Lisa; Saxenian, Helen; Victora, Cesar; Goosby, Eric

    2016-03-01

    In its report Global Health 2035, the Commission on Investing in Health proposed that health investments can reduce mortality in nearly all low- and middle-income countries to very low levels, thereby averting 10 million deaths per year from 2035 onward. Many of these gains could be achieved through scale-up of existing technologies and health services. A key instrument to close this gap is policy and implementation research (PIR) that aims to produce generalizable evidence on what works to implement successful interventions at scale. Rigorously designed PIR promotes global learning and local accountability. Much greater national and global investments in PIR capacity will be required to enable the scaling of effective approaches and to prevent the recycling of failed ideas. Sample questions for the PIR research agenda include how to close the gap in the delivery of essential services to the poor, which population interventions for non-communicable diseases are most applicable in different contexts, and how to engage non-state actors in equitable provision of health services in the context of universal health coverage.

  13. Scaling Up the Production of Recombinant Antimicrobial Plantaricin E from a Heterologous Host, Escherichia coli.

    PubMed

    Pal, Gargi; Srivastava, Sheela

    2015-09-01

    Enhanced production of heterologously expressed plantaricin (plnE) from Escherichia coli BL21 (DE3) was achieved from a small- to large-scale batch culture. Starting from a 15-ml shake-flask culture grown in Luria-Bertani (LB) broth, the protein expression could be scaled up using 50 ml, 100 ml, 1 l, and 2 l batch culture. Using similar condition, plantaricin E (PlnE) was successfully expressed in a 30-l stirred fermenter. The protein was expressed as TRX-(His)6-fusion protein and separated by Ni(2+) affinity chromatography. Growth in two complex media, LB and Terrific broth (TB), was optimized and compared for the production of PlnE, which was higher in LB in comparison with that of TB. In the fermenter, 140 and 180 mg of PlnE could be produced from 12 l of culture volume at 30 and 25 °C, respectively. The yield of heterologously purified PlnE was found to be 1.2-1.5%, which was much higher in comparison with the plantaricins produced from the native strain of Lactobacillus plantarum (0.3-0.7%). Overproduction of PlnE with the help of heterologous expression can overcome the constraint of the low yield from producer strain and provides an easy and low-cost strategy for large-scale production.

  14. Accelerated reforms in healthcare financing: the need to scale up private sector participation in Nigeria.

    PubMed

    Ejughemre, Ufuoma John

    2014-01-01

    The health sector, a foremost service sector in Nigeria, faces a number of challenges; primarily, the persistent under-funding of the health sector by the Nigerian government as evidence reveals low allocations to the health sector and poor health system performance which are reflected in key health indices of the country.Notwithstanding, there is evidence that the private sector could be a key player in delivering health services and impacting health outcomes, including those related to healthcare financing. This underscores the need to optimize the role of private sector in complementing the government's commitment to financing healthcare delivery and strengthening the health system in Nigeria. There are also concerns about uneven quality and affordability of private-driven health systems, which necessitates reforms aimed at regulation. Accordingly, the argument is that the benefits of leveraging the private sector in complementing the national government in healthcare financing outweigh the challenges, particularly in light of lean public resources and finite donor supports. This article, therefore, highlights the potential for the Nigerian government to scale up healthcare financing by leveraging private resources, innovations and expertise, while working to achieve the universal health coverage.

  15. National malaria control and scaling up for impact: the Zambia experience through 2006.

    PubMed

    Steketee, Richard W; Sipilanyambe, Naawa; Chimumbwa, John; Banda, James J; Mohamed, Abdirahman; Miller, John; Basu, Suprotik; Miti, Simon K; Campbell, Carlos C

    2008-07-01

    With its 2006-2011 National Malaria Strategic Plan, Zambia committed to control malaria at a national scale. This scale-up for impact approach was facilitated by sound business planning and financing in 2006 of approximately US$35 million. Compared with surveys in 2001 and 2004, a 2006 national survey of 14,681 persons in 2,999 households at the end of the transmission season showed substantial coverage increases for preventive interventions. Ownership and use rates of insecticide-treated mosquito nets (ITNs) among vulnerable groups doubled, with 44% of households owning ITNs and 23% of children less than five years of age and 24% of pregnant women using them. Roll Back Malaria Abuja targets for intermittent preventive treatment in pregnancy (IPTp) were exceeded, with 62% of pregnant women receiving at least two doses of IPTp. As of 2006, Zambia is demonstrating substantial progress toward the national targets (80% population coverage rates for the interventions) and aspires to show that malaria need not be its leading health problem, and that malaria control is a sound national investment.

  16. Scaling up the global nursing health workforce: contributions of an international organization.

    PubMed

    Rukholm, Ellen E; Stamler, Lynnette Leeseberg; Talbot, Lise R; Bednash, Geraldine; Raines, Fay; Potempa, Kathleen; Nugent, Pauline; Clark, Dame Jill Macleod; Bernhauser, Sue; Parfitt, Barbara

    2009-01-01

    In this paper key highlights of the scholarly work presented at the Toronto 2008 Global Alliance for Nursing Education & Scholarship (GANES) conference are summarized, challenges opportunities and issues facing nursing education globally arising from the conference discourse are outlined and initial steps are suggested as a way forward to a shared global view of baccalaureate and graduate nursing education and scholarship. This shared view arises from beginning understandings of the issues and opportunities we face globally starting with and building upon the lessons learned from the literature and from the experiences of nursing educators and nursing education organization locally, regionally, nationally and internationally. The theme of the groundbreaking GANES Toronto conference was "Educating the future nursing and health workforce: A global challenge". One hundred seventy delegates from 17 countries attended the event, with over 80 papers presented. A primary focus of GANES is the contribution of a strategic alliance of national nursing education organizations to contribute to nursing education leading practices and policy that address the scaling up of global nursing and health workforce. The founding members of GANES see a clear link between a strong educational infrastructure and strong scholarship activities in nursing and the ability of a society to be healthy and prosperous. Evidence presented at the recent GANES conference supports that belief. Through the strength of partnerships and other capacity-building efforts, member countries can support each other to address the global nursing education and health challenges while respecting the local issues.

  17. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    PubMed Central

    Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  18. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole.

    PubMed

    Nagy, Zsombor K; Balogh, Attila; Démuth, Balázs; Pataki, Hajnalka; Vigh, Tamás; Szabó, Bence; Molnár, Kolos; Schmidt, Bence T; Horák, Péter; Marosi, György; Verreck, Geert; Van Assche, Ivo; Brewster, Marcus E

    2015-03-01

    High speed electrospinning (HSES), compatible with pharmaceutical industry, was used to demonstrate the viability of the preparation of drug-loaded polymer nanofibers with radically higher productivity than the known single-needle electrospinning (SNES) setup. Poorly water-soluble itraconazole (ITRA) was formulated with PVPVA64 matrix polymer using four different solvent-based methods such as HSES, SNES, spray drying (SD) and film casting (FC). The formulations were assessed in terms of improvement in the dissolution rate of ITRA (using a "tapped basket" dissolution configuration) and analysed by SEM, DSC and XRPD. Despite the significantly increased productivity of HSES, the obtained morphology was very similar to the SNES nanofibrous material. ITRA transformed into an amorphous form, according to the DSC and XRPD results, in most cases except the FC samples. The limited dissolution of crystalline ITRA could be highly improved: fast dissolution occurred (>90% within 10min) in the cases of both (the scaled-up and the single-needle) types of electrospun fibers, while the improvement in the dissolution rate of the spray-dried microspheres was significantly lower. Production of amorphous solid dispersions (ASDs) with the HSES system proved to be flexibly scalable and easy to integrate into a continuous pharmaceutical manufacturing line, which opens new routes for the development of industrially relevant nanopharmaceuticals.

  19. Scaling up the national methadone maintenance treatment program in China: achievements and challenges

    PubMed Central

    Yin, Wenyuan; Hao, Yang; Sun, Xinhua; Gong, Xiuli; Li, Fang; Li, Jianhua; Rou, Keming; Sullivan, Sheena G; Wang, Changhe; Cao, Xiaobin; Luo, Wei; Wu, Zunyou

    2010-01-01

    China’s methadone maintenance treatment program was initiated in 2004 as a small pilot project in just eight sites. It has since expanded into a nationwide program encompassing more than 680 clinics covering 27 provinces and serving some 242 000 heroin users by the end of 2009. The agencies that were tasked with the program’s expansion have been confronted with many challenges, including high drop-out rates, poor cooperation between local governing authorities and poor service quality at the counter. In spite of these difficulties, ongoing evaluation has suggested reductions in heroin use, risky injection practices and, importantly, criminal behaviours among clients, which has thus provided the impetus for further expansion. Clinic services have been extended to offer clients a range of ancillary services, including HIV, syphilis and hepatitis C testing, information, education and communication, psychosocial support services and referrals for treatment of HIV, tuberculosis and sexually transmitted diseases. Cooperation between health and public security officials has improved through regular meetings and dialogue. However, institutional capacity building is still needed to deliver sustainable and standardized services that will ultimately improve retention rates. This article documents the steps China made in overcoming the many barriers to success of its methadone program. These lessons might be useful for other countries in the region that are scaling-up their methadone programs. PMID:21113034

  20. Completing Pre-Pilot Tasks To Scale Up Biomass Fractionation Pretreatment Apparatus From Batch To Continuous

    SciTech Connect

    Dick Wingerson

    2004-12-15

    PureVision Technology, Inc. (PureVision) was the recipient of a $200,000 Invention and Innovations (I&I) grant from the U. S. Department of Energy (DOE) to complete prepilot tasks in order to scale up its patented biomass fractionation pretreatment apparatus from batch to continuous processing. The initial goal of the I&I program, as detailed in PureVision's original application to the DOE, was to develop the design criteria to build a small continuous biomass fractionation pilot apparatus utilizing a retrofitted extruder with a novel screw configuration to create multiple reaction zones, separated by dynamic plugs within the reaction chamber that support the continuous counter-flow of liquids and solids at elevated temperature and pressure. Although the ultimate results of this 27-month I&I program exceeded the initial expectations, some of the originally planned tasks were not completed due to a modification of direction in the program. PureVision achieved its primary milestone by establishing the design criteria for a continuous process development unit (PDU). In addition, PureVision was able to complete the procurement, assembly, and initiate shake down of the PDU at Western Research Institute (WRI) in Laramie, WY during August 2003 to February 2004. During the month of March 2004, PureVision and WRI performed initial testing of the continuous PDU at WRI.

  1. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor.

    PubMed

    Ogbonna, J C; Mashima, H; Tanaka, H

    2001-01-01

    Production of fuel ethanol from sugar beet juice, using cells immobilized on loofa sponge was investigated. Based on ethanol productivity and ease of cell immobilization, a flocculating yeast strain, Saccharomyces cerevisiae IR2 was selected for ethanol production from sugar beet juice. It was found that raw sugar beet juice was an optimal substrate for ethanol production, requiring neither pH adjustment nor nitrogen source supplement. When compared with a 2 l bubble column bioreactor, mixing was not sufficient in an 8 l bioreactor containing a bed of sliced loofa sponges and consequently, the immobilized cells were not uniformly distributed within the bed. Most of the cells were immobilized in the lower part of the bed and this resulted in decreased ethanol productivity. By using an external loop bioreactor, constructing the fixed bed with cylindrical loofa sponges, dividing the bed into upper, middle and lower sections with approximately 1 cm spaces between them and circulating the broth through the loop during the immobilization, uniform cell distribution within the bed was achieved. Using this method, the system was scaled up to 50 l and when compared with the 2 l bubble column bioreactor, there were no significant differences (P > 0.05) in ethanol productivity and yield. By using external loop bioreactor to immobilize the cells uniformly on the loofa sponge beds, efficient large scale ethanol production systems can be constructed.

  2. Applied Protein and Molecular Techniques for Characterization of B Cell Neoplasms in Horses

    PubMed Central

    Badial, Peres R.; Tallmadge, Rebecca L.; Miller, Steven; Stokol, Tracy; Richards, Kristy; Borges, Alexandre S.

    2015-01-01

    Mature B cell neoplasms cover a spectrum of diseases involving lymphoid tissues (lymphoma) or blood (leukemia), with an overlap between these two presentations. Previous studies describing equine lymphoid neoplasias have not included analyses of clonality using molecular techniques. The objective of this study was to use molecular techniques to advance the classification of B cell lymphoproliferative diseases in five adult equine patients with a rare condition of monoclonal gammopathy, B cell leukemia, and concurrent lymphadenopathy (lymphoma/leukemia). The B cell neoplasms were phenotypically characterized by gene and cell surface molecule expression, secreted immunoglobulin (Ig) isotype concentrations, Ig heavy-chain variable (IGHV) region domain sequencing, and spectratyping. All five patients had hyperglobulinemia due to IgG1 or IgG4/7 monoclonal gammopathy. Peripheral blood leukocyte immunophenotyping revealed high proportions of IgG1- or IgG4/7-positive cells and relative T cell lymphopenia. Most leukemic cells lacked the surface B cell markers CD19 and CD21. IGHG1 or IGHG4/7 gene expression was consistent with surface protein expression, and secreted isotype and Ig spectratyping revealed one dominant monoclonal peak. The mRNA expression of the B cell-associated developmental genes EBF1, PAX5, and CD19 was high compared to that of the plasma cell-associated marker CD38. Sequence analysis of the IGHV domain of leukemic cells revealed mutated Igs. In conclusion, the protein and molecular techniques used in this study identified neoplastic cells compatible with a developmental transition between B cell and plasma cell stages, and they can be used for the classification of equine B cell lymphoproliferative disease. PMID:26311245

  3. Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow

    SciTech Connect

    Knoll, D.A.; McHugh, P.R.

    1996-12-31

    We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.

  4. Zero order and signal processing spectrophotometric techniques applied for resolving interference of metronidazole with ciprofloxacin in their pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-02-01

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of metronidazole as interference. The methods under study are area under the curve, simultaneous equation in addition to smart signal processing techniques of manipulating ratio spectra namely Savitsky-Golay filters and continuous wavelet transform. All the methods were validated according to the ICH guidelines where accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can therefore be used for the routine analysis of ciprofloxacin in quality-control laboratories.

  5. Zero order and signal processing spectrophotometric techniques applied for resolving interference of metronidazole with ciprofloxacin in their pharmaceutical dosage form.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2016-02-01

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of metronidazole as interference. The methods under study are area under the curve, simultaneous equation in addition to smart signal processing techniques of manipulating ratio spectra namely Savitsky-Golay filters and continuous wavelet transform. All the methods were validated according to the ICH guidelines where accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can therefore be used for the routine analysis of ciprofloxacin in quality-control laboratories.

  6. In-place recalibration technique applied to a capacitance-type system for measuring rotor blade tip clearance

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1978-01-01

    The rotor blade tip clearance measurement system consists of a capacitance sensing probe with self contained tuning elements, a connecting coaxial cable, and remotely located electronics. Tests show that the accuracy of the system suffers from a strong dependence on probe tip temperature and humidity. A novel inplace recalibration technique was presented which partly overcomes this problem through a simple modification of the electronics that permits a scale factor correction. This technique, when applied to a commercial system significantly reduced errors under varying conditions of humidity and temperature. Equations were also found that characterize the important cable and probe design quantities.

  7. Micro-spectroscopic techniques applied to characterization of varnished archeological findings

    NASA Astrophysics Data System (ADS)

    Barone, G.; Ioppolo, S.; Majolino, D.; Migliardo, P.; Ponterio, R.

    2000-04-01

    This work reports an analysis on terracotta varnished finding recovered in east Sicily area (Messina). We have performed FTIR micro-spectroscopy and electronic microscopy (SEM)measurements in order to recognize the elemental constituents of the varnished surfaces. Furthermore, for all the samples, a study on the bulk has been performed by Fourier Transform Infrared Absorption. The analyzed samples consist of a number of pottery fragments belonging to archaic and classical ages, varnished in black and red colors. The obtained data furnished useful information about composition of decorated surfaces and bulk matrixes, about baking temperature, manufacture techniques and alteration mechanisms of findings due to the long burial.

  8. Evaluation of Bending Strength in Friction Welded Alumina/mild Steel Joints by Applying Factorial Technique

    NASA Astrophysics Data System (ADS)

    Jesudoss Hynes, N. Rajesh; Nagaraj, P.; Vivek Prabhu, M.

    Joining of metal with ceramics has become significant in many applications, because they combine properties like ductility with high hardness and wear resistance. By friction welding technique, alumina can be joined to mild steel with AA1100 sheet of 1mm thickness as interlayer. In the present work, investigation of the effect of friction time on interlayer thickness reduction and bending strength is carried out by factorial design. By using ANOVA, a statistical tool, regression modeling is done. The regression model predicts the bending strength of welded ceramic/metal joints accurately with ± 2% deviation from the experimental values.

  9. Neutron scatter and diffraction techniques applied to nucleosome and chromatin structure.

    PubMed

    Bradbury, E M; Baldwin, J P

    1986-12-01

    Neutron scatter and diffraction techniques have made substantial contributions to our understanding of the structure of the nucleosome, the structure of the 10-nm filament, the "10-nm----30-nm" filament transition, and the structure of the "34-nm" supercoil or solenoid of nucleosomes. Neutron techniques are unique in their properties, which allows for the separation of the spatial arrangements of histones and DNA in nucleosomes and chromatin. They have equally powerful applications in structural studies of any complex two-component biological system. A major success for the application of neutron techniques was the first clear proof that DNA was located on the outside of the histone octamer in the core particle. A full analysis of the neutron-scatter data gave the parameters of Table 3 and the low-resolution structure of the core particle in solution shown in Fig. 6. Initial low-resolution X-ray diffraction studies of core particle crystals gave a model with a lower DNA pitch of 2.7 nm. Higher-resolution X-ray diffraction studies now give a structure with a DNA pitch of 3.0 nm and a hole of 0.8 nm along the axis of the DNA supercoil. The neutron-scatter solution structure and the X-ray crystal structure of the core particle are thus in full agreement within the resolution of the neutron-scatter techniques. The model for the chromatosome is largely based on the structural parameters of the DNA supercoil in the core particle, nuclease digestion results showing protection of a 168-bp DNA length by histone H1 and H1 peptide, and the conformational properties of H1. The path of the DNA outside the chromatosome is not known, and this information is crucial for our understanding of higher chromatin structure. The interactions of the flexible basic and N- and C-terminal regions of H1 within chromatin and how these interactions are modulated by H1 phosphorylation are not known. The N- and C-terminal regions of H1 represent a new type of protein behavior, i.e., extensive

  10. New twist on dating: radiocarbon dating techniques applied to air pollution studies

    SciTech Connect

    Porter, G.

    1981-05-01

    This paper deals with the problem of urban air pollution and to what extent it is caused by the burning of fossil fuels at factories or in cars, and to what extent it is due to the breathing processes of trees or the burning of natural fuels like wood. With the use of radiocarbon dating techniques the distinction between the pollutants can be made. The article describes the design of the gas proportional counter used to measure the extremely small samples of carbon in polluted air. (KRM)

  11. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Helba, Michael J.; Hill, Janeil B.

    1992-01-01

    The purpose of this research is to provide Space Station Freedom protective structures design insight through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. The goals of the research are: (1) to develop a Monte Carlo simulation tool which will provide top level insight for Space Station protective structures designers; (2) to develop advanced shielding concepts relevant to Space Station Freedom using unique multiple bumper approaches; and (3) to investigate projectile shape effects on protective structures design.

  12. Full-field speckle correlation technique as applied to blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Vilensky, M. A.; Agafonov, D. N.; Timoshina, P. A.; Shipovskaya, O. V.; Zimnyakov, D. A.; Tuchin, V. V.; Novikov, P. A.

    2011-03-01

    The results of experimental study of monitoring the microcirculation in tissue superficial layers of the internal organs at gastro-duodenal hemorrhage with the use of laser speckles contrast analysis technique are presented. The microcirculation monitoring was provided in the course of the laparotomy of rat abdominal cavity in the real time. Microscopic hemodynamics was analyzed for small intestine and stomach under different conditions (normal state, provoked ischemia, administration of vasodilative agents such as papaverine, lidocaine). The prospects and problems of internal monitoring of micro-vascular flow in clinical conditions are discussed.

  13. A review of post-modern management techniques as currently applied to Turkish forestry.

    PubMed

    Dölarslan, Emre Sahin

    2009-01-01

    This paper reviews the effects of six post-modern management concepts as applied to Turkish forestry. Up to now, Turkish forestry has been constrained, both in terms of its operations and internal organization, by a highly bureaucratic system. The application of new thinking in forestry management, however, has recently resulted in new organizational and production concepts that promise to address problems specific to this Turkish industry and bring about positive changes. This paper will elucidate these specific issues and demonstrate how post-modern management thinking is influencing the administration and operational capacity of Turkish forestry within its current structure.

  14. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    NASA Technical Reports Server (NTRS)

    Wang, Nanbor; Parameswaran, Kirthika; Kircher, Michael; Schmidt, Douglas

    2003-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and open sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration framework for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of-service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines rejective middleware techniques designed to adaptively (1) select optimal communication mechanisms, (2) manage QoS properties of CORBA components in their contain- ers, and (3) (re)con$gure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of rejective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  15. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    NASA Technical Reports Server (NTRS)

    Wang, Nanbor; Kircher, Michael; Schmidt, Douglas C.

    2000-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of-service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and often sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration frame-work for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines reflective middleware techniques designed to adaptively: (1) select optimal communication mechanisms, (2) man- age QoS properties of CORBA components in their containers, and (3) (re)configure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of reflective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  16. Spectrum shape-analysis techniques applied to the Hanford Tank Farms spectral gamma logs

    SciTech Connect

    Wilson, R.D.

    1997-05-01

    Gamma-ray spectra acquired with high-energy resolution by the spectral gamma logging systems (SGLSs) at the U.S. Department of Energy Hanford Tank Farms, Richland, Washington, are being analyzed for spectral shape characteristics. These spectral shapes, together with a conventional peak-area analysis, enable an analyst not only to identify the gamma-emitting species but also to determine in many instances its spatial distribution around a borehole and to identify the presence of the bremsstrahlung-producing contaminant {sup 90}Sr. The analysis relies primarily on the results of computer simulations of gamma spectra from the predominant radionuclide {sup 137}Cs for various spatial distributions. This log analysis methodology has evolved through an examination of spectral features from spectral logs taken at the SX, BY, and U Tank Farms at the Hanford Site. Initial results determined with this technique show it is possible, in most cases, to distinguish between concentrations of {sup 137}Cs. Work is continuing by experimentally measuring shape factors, incorporating spectrum shape processing in routine log analysis, and extending the techniques to additional radionuclides.

  17. New seismic reflection techniques applied to gas recognition in the Rharb Basin, Morocco

    SciTech Connect

    Jabour, H.; Dakki, M. )

    1994-07-01

    The Rharb basin in Morocco is a Tertiary foreland filled by clastic series during the Miocene and Pliocene. This terrigenous influx, derived from the prerif to the northeast and the Meseta to the south, is characterized by a sandy episode during much of the Messinian and the Tortonian. The sand deposits were probably related to the uplift and major erosion of a part of the prerif during the sliding of an olistostrome (prerif nappe). Although most of the wells drilled in the basin have encountered biogenic gas accumulations, the problem still facing exploration in the area is seismic resolution and thin-bed tuning analysis. Recent studies using high seismic resolution techniques have permitted the authors to gain a deep insight into the stratigraphy and depositional environment of the thin sand reservoirs and their fluid content. AVO stratigraphy, inversion of seismic traces into acoustic impedance traces and seismic attributes calculation, and computing provide a remarkable example of the possibilities of depicting the lateral and vertical evolution of reservoir facies and localizing biogenic gas accumulations. Out of five recent exploratory wells drilled based on this new technique, three encountered gas-bearing sands with economic potential. Fifty-three amplitude anomalies have been identified and await processing.

  18. Random sets technique for information fusion applied to estimation of brain functional images

    NASA Astrophysics Data System (ADS)

    Smith, Therese M.; Kelly, Patrick A.

    1999-05-01

    A new mathematical technique for information fusion based on random sets, developed and described by Goodman, Mahler and Nguyen (The Mathematics of Data Fusion, Kluwer, 1997) can be useful for estimation of functional brian images. Many image estimation algorithms employ prior models that incorporate general knowledge about sizes, shapes and locations of brain regions. Recently, algorithms have been proposed using specific prior knowledge obtained from other imaging modalities (for example, Bowsher, et al., IEEE Trans. Medical Imaging, 1996). However, there is more relevant information than is presently used. A technique that permits use of additional prior information about activity levels would improve the quality of prior models, and hence, of the resulting image estimate. The use of random sets provides this capability because it allows seemingly non-statistical (or ambiguous) information such as that contained in inference rules to be represented and combined with observations in a single statistical model, corresponding to a global joint density. This paper illustrates the use of this approach by constructing an example global joint density function for brain functional activity from measurements of functional activity, anatomical information, clinical observations and inference rules. The estimation procedure is tested on a data phantom with Poisson noise.

  19. Therapeutic techniques applied in the heavy-ion therapy at IMP

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Sihver, Lembit

    2011-04-01

    Superficially-placed tumors have been treated with carbon ions at the Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), since November 2006. Up to now, 103 patients have been irradiated in the therapy terminal of the heavy ion research facility in Lanzhou (HIRFL) at IMP, where carbon-ion beams with energies up to 100 MeV/u can be supplied and a passive beam delivery system has been developed and commissioned. A number of therapeutic and clinical experiences concerning heavy-ion therapy have been acquired at IMP. To extend the heavy-ion therapy project to deep-seated tumor treatment, a horizontal beam line dedicated to this has been constructed in the cooling storage ring (CSR), which is a synchrotron connected to the HIRFL as an injector, and is now in operation. Therapeutic high-energy carbon-ion beams, extracted from the HIRFL-CSR through slow extraction techniques, have been supplied in the deep-seated tumor therapy terminal. After the beam delivery, shaping and monitoring devices installed in the therapy terminal at HIRFL-CSR were validated through therapeutic beam tests, deep-seated tumor treatment with high-energy carbon ions started in March 2009. The therapeutic techniques in terms of beam delivery system, conformal irradiation method and treatment planning used at IMP are introduced in this paper.

  20. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1998-01-01

    An overall goal of this research has been to enhance our understanding of the scientific principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative characterization of advanced composite structures. To this end, we have investigated a thin woven composite (5-harness biaxial weave). We have studied the effects that variations of the physical parameters of the experimental setup can have on the ultrasonic determination of the material properties for this thin composite. In particular, we have considered the variation of the nominal center frequency and the f-number of the transmitting transducer which in turn address issues such as focusing and beam spread of ultrasonic fields. This study has employed a planar, two-dimensional, receiving pseudo-array that has permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic field due to the spatial anisotropy of the thin composite has prompted investigation of the phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have performed phase-sensitive and phase-insensitive analyses to provide a measure of the amount of phase cancellation at the face of a finite-aperture, piezoelectric receiver. The pursuit of robust measurements of received energy (i.e., those not susceptible to phase cancellation at the face of a finite-aperture, piezoelectric receiver) supports the development of robust techniques to determine material properties from measure ultrasonic parameters.

  1. Hyphenated GC-FTIR and GC-MS techniques applied in the analysis of bioactive compounds

    NASA Astrophysics Data System (ADS)

    Gosav, Steluta; Paduraru, Nicoleta; Praisler, Mirela

    2014-08-01

    The drugs of abuse, which affect human nature and cause numerous crimes, have become a serious problem throughout the world. There are hundreds of amphetamine analogues on the black market. They consist of various alterations of the basic amphetamine molecular structure, which are yet not yet included in the lists of forbidden compounds although they retain or slightly modify the hallucinogenic effects of their parent compound. It is their important variety that makes their identification quite a challenge. A number of analytical procedures for the identification of amphetamines and their analogues have recently been reported. We are presenting the profile of the main hallucinogenic amphetamines obtained with the hyphenated techniques that are recommended for the identification of illicit amphetamines, i. e. gas chromatography combined with mass spectrometry (GC-MS) and gas chromatography coupled with Fourier transform infrared spectrometry (GC-FTIR). The infrared spectra of the analyzed hallucinogenic amphetamines present some absorption bands (1490 cm-1, 1440 cm-1, 1245 cm-1, 1050 cm-1 and 940 cm-1) that are very stable as position and shape, while their intensity depends of the side-chain substitution. The specific ionic fragment of the studied hallucinogenic compounds is the 3,4-methylenedioxybenzyl cation (m/e = 135) which has a small relative abundance (lesser than 20%). The complementarity of the above mentioned techniques for the identification of hallucinogenic compounds is discussed.

  2. Mass Movement Hazards in the Mediterranean; A review on applied techniques and methodologies

    NASA Astrophysics Data System (ADS)

    Ziade, R.; Abdallah, C.; Baghdadi, N.

    2012-04-01

    Emergent population and expansions of settlements and life-lines over hazardous areas in the Mediterranean region have largely increased the impact of Mass Movements (MM) both in industrialized and developing countries. This trend is expected to continue in the next decades due to increased urbanization and development, continued deforestation and increased regional precipitation in MM-prone areas due to changing climatic patterns. Consequently, and over the past few years, monitoring of MM has acquired great importance from the scientific community as well as the civilian one. This article begins with a discussion of the MM classification, and the different topographic, geologic, hydrologic and environmental impacting factors. The intrinsic (preconditioning) variables determine the susceptibility of MM and extrinsic factors (triggering) can induce the probability of MM occurrence. The evolution of slope instability studies is charted from geodetic or observational techniques, to geotechnical field-based origins to recent higher levels of data acquisition through Remote Sensing (RS) and Geographic Information System (GIS) techniques. Since MM detection and zoning is difficult in remote areas, RS and GIS have enabled regional studies to predominate over site-based ones where they provide multi-temporal images hence facilitate greatly MM monitoring. The unusual extent of the spectrum of MM makes it difficult to define a single methodology to establish MM hazard. Since the probability of occurrence of MM is one of the key components in making rational decisions for management of MM risk, scientists and engineers have developed physical parameters, equations and environmental process models that can be used as assessment tools for management, education, planning and legislative purposes. Assessment of MM is attained through various modeling approaches mainly divided into three main sections: quantitative/Heuristic (1:2.000-1:10.000), semi-quantitative/Statistical (1

  3. A comparison of new, old and future densiometic techniques as applied to volcanologic study.

    NASA Astrophysics Data System (ADS)

    Pankhurst, Matthew; Moreland, William; Dobson, Kate; Þórðarson, Þorvaldur; Fitton, Godfrey; Lee, Peter

    2015-04-01

    The density of any material imposes a primary control upon its potential or actual physical behaviour in relation to its surrounds. It follows that a thorough understanding of the physical behaviour of dynamic, multi-component systems, such as active volcanoes, requires knowledge of the density of each component. If we are to accurately predict the physical behaviour of synthesized or natural volcanic systems, quantitative densiometric measurements are vital. The theoretical density of melt, crystals and bubble phases may be calculated using composition, structure, temperature and pressure inputs. However, measuring the density of natural, non-ideal, poly-phase materials remains problematic, especially if phase specific measurement is important. Here we compare three methods; Archimedes principle, He-displacement pycnometry and X-ray micro computed tomography (XMT) and discuss the utility and drawbacks of each in the context of modern volcanologic study. We have measured tephra, ash and lava from the 934 AD Eldgjá eruption (Iceland), and the 2010 AD Eyjafjallajökull eruption (Iceland), using each technique. These samples exhibit a range of particle sizes, phases and textures. We find that while the Archimedes method remains a useful, low-cost technique to generate whole-rock density data, relative precision is problematic at small particles sizes. Pycnometry offers a more precise whole-rock density value, at a comparable cost-per-sample. However, this technique is based upon the assumption pore spaces within the sample are equally available for gas exchange, which may or may not be the case. XMT produces 3D images, at resolutions from nm to tens of µm per voxel where X-ray attenuation is a qualitative measure of relative electron density, expressed as greyscale number/brightness (usually 16-bit). Phases and individual particles can be digitally segmented according to their greyscale and other characteristics. This represents a distinct advantage over both

  4. A Comparative Analysis of the 'Green' Techniques Applied for Polyphenols Extraction from Bioresources.

    PubMed

    Talmaciu, Adina Iulia; Volf, Irina; Popa, Valentin I

    2015-11-01

    From all the valuable biomass extractives, polyphenols are a widespread group of secondary metabolites found in all plants, representing the most desirable phytochemicals due to their potential to be used as additives in food industry, cosmetics, medicine, and others fields. At present, there is an increased interest to recover them from plant of spontaneous flora, cultivated plant, and wastes resulted in agricultural and food industry. That is why many efforts have been made to provide a highly sensitive, efficiently, and eco-friendly methods, for the extraction of polyphenols, according to the green chemistry and sustainable development concepts. Many extraction procedures are known with advantages and disadvantages. From these reasons, the aim of this article is to provide a comparative analysis regarding technical and economical aspects related to the most innovative extraction techniques studied in the last time: microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), and ultrasound-assisted extraction (UAE). PMID:26567943

  5. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1991-01-01

    Spacecraft designers have always been concerned about the effects of meteoroid impacts on mission safety. The engineering solution to this problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. The most complete way to determine the characteristics of an analytic impact predictor is through optimization of the protective structures design problem formulated with the predictor of interest. Space Station Freedom protective structures design insight is provided through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major results are presented.

  6. Mass estimating techniques for earth-to-orbit transports with various configuration factors and technologies applied

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Macconochie, I. O.

    1979-01-01

    A study of an array of advanced earth-to-orbit space transportation systems with a focus on mass properties and technology requirements is presented. Methods of estimating weights of these vehicles differ from those used for commercial and military aircraft; the new techniques emphasizing winged horizontal and vertical takeoff advanced systems are described utilizing the space shuttle subsystem data base for the weight estimating equations. The weight equations require information on mission profile, the structural materials, the thermal protection system, and the ascent propulsion system, allowing for the type of construction and various propellant tank shapes. The overall system weights are calculated using this information and incorporated into the Systems Engineering Mass Properties Computer Program.

  7. A study of universal modulation techniques applied to satellite data collection

    NASA Astrophysics Data System (ADS)

    1980-12-01

    A universal modulation and frequency control system for use with data collection platform (DCP) transmitters is examined. The final design discussed can, under software/firmwave control, generate all of the specific digital data modulation formats currently used in the NASA satellite data collection service and can simultaneously synthesize the proper RF carrier frequencies employed. A novel technique for DCP time and frequency control is presented. The emissions of NBS radio station WWV/WWVH are received, detected, and finally decoded in microcomputer software to generate a highly accurate time base for the platform; with the assistance of external hardware, the microcomputer also directs the recalibration of all DCP oscillators to achieve very high frequency accuracies and low drift rates versus temperature, supply voltage, and time. The final programmable DCP design also employs direct microcomputer control of data reduction, formatting, transmitter switching, and system power management.

  8. Spectroscopic techniques applied to the characterization of decorated potteries from Caltagirone (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Barilaro, D.; Barone, G.; Crupi, V.; Donato, M. G.; Majolino, D.; Messina, G.; Ponterio, R.

    2005-06-01

    The aim of the present work is the characterization of decorated pottery samples from Caltagirone (Sicily, Italy), a renowned production centre of this kind of artwork. These fragments were found during archaeological excavations and were attributed to historical periods extremely far in time from each other (from XVIII century b.C. to XVI a.C.). Therefore, we expect that the manufacture techniques result rather different over so long time. The measurements, performed by Fourier Transform-InfraRed (FT-IR) absorbance and micro-Raman scattering, allowed us a non-destructive study of so precious artefacts. Some pigments were identified, various elements of ceramic paste and glazed layer were characterized.

  9. Polymer Aging Techniques Applied to Degradation of a Polyurethane Propellant Binder

    SciTech Connect

    Assink, R.A.; Celina, M.; Graham, A.C.; Minier, L.M.

    1999-07-27

    The oxidative thermal aging of a crosslinked hydroxy-terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) polyurethane rubber, commonly used as the polymeric binder matrix in solid rocket propellants, was studied at temperatures of RT to 125 C. We investigate changes in tensile elongation, mechanical hardening, polymer network properties, density, O{sub 2} permeation and molecular chain dynamics using a range of techniques including solvent swelling, detailed modulus profiling and NMR relaxation measurements. Using extensive data superposition and highly sensitive oxygen consumption measurements, we critically evaluate the Arrhenius methodology, which normally assumes a linear extrapolation of high temperature aging data. Significant curvature in the Arrhenius diagram of these oxidation rates was observed similar to previous results found for other rubber materials. Preliminary gel/network properties suggest that crosslinking is the dominant process at higher temperatures. We also assess the importance of other constituents such as ammonium perchlorate or aluminum powder in the propellant formulation.

  10. A study of universal modulation techniques applied to satellite data collection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A universal modulation and frequency control system for use with data collection platform (DCP) transmitters is examined. The final design discussed can, under software/firmwave control, generate all of the specific digital data modulation formats currently used in the NASA satellite data collection service and can simultaneously synthesize the proper RF carrier frequencies employed. A novel technique for DCP time and frequency control is presented. The emissions of NBS radio station WWV/WWVH are received, detected, and finally decoded in microcomputer software to generate a highly accurate time base for the platform; with the assistance of external hardware, the microcomputer also directs the recalibration of all DCP oscillators to achieve very high frequency accuracies and low drift rates versus temperature, supply voltage, and time. The final programmable DCP design also employs direct microcomputer control of data reduction, formatting, transmitter switching, and system power management.

  11. Combinatorial ion implantation - a smart technique applied to synthesize CdSe-nanocrystals

    NASA Astrophysics Data System (ADS)

    Großhans, I.; Karl, H.; Stritzker, B.

    2004-02-01

    The understanding, discovery and optimization of new complex functional materials requires combinatorial synthesis techniques and suitable fast screening and analysis methods. This approach to catch the wide field of possible parameter combinations is state of the art in various sectors of science. To introduce this concept into the field of ion implantation, we developed an implanter target end station, equipped with two computer controlled apertures, to synthesise on a 4 inch wafer a rectangular pattern of distinct dose and stoichiometry combinations of the components of the optically active II-IV compound semiconductor CdSe. An automated photoluminescence (PL) measurement setup is used to perform fast screening of the optical properties. The two elements Cd and Se are implanted into thermally grown silicon dioxide on silicon. Afterwards the wafers are annealed at 1000 °C in argon atmosphere for different times in a rapid thermal processor. As a result a layer of CdSe nanocrystals in the implanted surface near region is formed. Already after only 30 s annealing, large particles with a diameter of 100 nm, surrounded by smaller (<10 nm) ones were found. Longer annealing times are accompanied by a loss of the implanted material. This loss and the PL properties depend strongly on the variation of the Cd:Se ratio and dose (e.g. an excess of Cd results in a single narrow PL peak: 8 meV at 10 K, whereas a lack of Cd results in bulk like, broad spectra). These findings demonstrate, that new materials systems can be found and optimized in the field of ion implantation techniques by an combinatorial materials synthesis and screening approach.

  12. Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors

    SciTech Connect

    Avila, C.; Lopez, J.; Sanabria, J. C.; Baldazzi, G.; Bollini, D.; Gombia, M.; Cabal, A.E.; Ceballos, C.; Diaz Garcia, A.; Gambaccini, M.; Taibi, A.; Sarnelli, A.; Tuffanelli, A.; Giubellino, P.; Marzari-Chiesa, A.; Prino, F.; Tomassi, E.; Grybos, P.; Idzik, M.; Swientek, K.

    2005-12-15

    Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.

  13. Inverting travel times with a triplication. [spline fitting technique applied to lunar seismic data reduction

    NASA Technical Reports Server (NTRS)

    Jarosch, H. S.

    1982-01-01

    A method based on the use of constrained spline fits is used to overcome the difficulties arising when body-wave data in the form of T-delta are reduced to the tau-p form in the presence of cusps. In comparison with unconstrained spline fits, the method proposed here tends to produce much smoother models which lie approximately in the middle of the bounds produced by the extremal method. The method is noniterative and, therefore, computationally efficient. The method is applied to the lunar seismic data, where at least one triplication is presumed to occur in the P-wave travel-time curve. It is shown, however, that because of an insufficient number of data points for events close to the antipode of the center of the lunar network, the present analysis is not accurate enough to resolve the problem of a possible lunar core.

  14. Center-of-Mass Reference Frame Technique applied to Conservation of Energy for Ideal Inelastic Collisions

    NASA Astrophysics Data System (ADS)

    Dowdye, Edward, Jr.

    2010-02-01

    Findings show that the law of conservation of kinetic energy directly applies to inelastic collisions as well as to elastic collisions. The kinetic energy transfer is consistent with the law of conservation of energy which states that energy can neither be created nor annihilated. In an ideal inelastic collision, two colliding masses, M1 and M2, will move jointly at their center-of-mass velocity, VCM=M1V1+M2V2 M1+M2. As a consequence, the equation 1 2M1V1^2+1 2M2V2^2-1 2M1( V1-VCM )^2-1 2M2( V2-VCM )^2=1 2( M1+M2 )VCM^2 applies to the ideal inelastic collision. The quantities 1 2M1V1^2 and 1 2M2V2^2 are the initial kinetic energies of the masses M1 and M2, respectively, that would be available in the rest frame if the two masses were to come to a complete stop, V1 = 0 and V2 = 0. The negative terms, -1 2M1( V1-VCM )^2 and -1 2M2( V2-VCM )^2, are the kinetic energies transferred into the center-of-mass frame as M1 and M2 go from velocities, V1 and V2 , respectively, to the velocity VCM. The kinetic equation leads directly to the valid conservation of momentum equation M1V1+M2V2=( M1+M2 )VCM , a mathematical proof that the kinetic energy is totally conserved for the ideal inelastic collision. For details: http://www.extinctionshift.com/SignificantFindingsInelastic.htm )

  15. Center-of-Mass Technique applied to the Ideal Inelastic Collisions Case

    NASA Astrophysics Data System (ADS)

    Dowdye, Edward, Jr.

    2009-10-01

    Findings show that the law of conservation of kinetic energy directly applies to inelastic collisions as well as to elastic collisions. The kinetic energy transfer is consistent with the law of conservation of energy which states that energy can neither be created nor annihilated. In an ideal inelastic collision, two colliding masses, M1 and M2, will move jointly at their center-of-mass velocity, VCM=M1V1+M2V2 M1+M2. As a consequence, the equation 1 2M1V1^2+1 2M2V2^2-1 2M1( V1-VCM )^2-1 2M2( V2-VCM )^2=1 2( M1+M2 )VCM^2 applies to the ideal inelastic collision. The quantities 1 2M1V1^2 and 1 2M2V2^2 are the initial kinetic energies of the masses M1 and M2, respectively, that would be available in the rest frame if the two masses were to come to a complete stop, V1 = 0 and V2 = 0. The negative terms, -1 2M1( V1-VCM )^2 and -1 2M2( V2-VCM )^2, are the kinetic energies transferred into the center-of-mass frame as M1 and M2 go from velocities, V1 and V2 , respectively, to the velocity VCM. The kinetic equation leads directly to the valid conservation of momentum equation M1V1+M2V2=( M1+M2 )VCM , a mathematical proof that the kinetic energy is totally conserved for the ideal inelastic collision. For details: http://www.extinctionshift.com/SignificantFindingsInelastic.htm

  16. Act local, think global: how the Malawi experience of scaling up antiretroviral treatment has informed global policy.

    PubMed

    Harries, Anthony D; Ford, Nathan; Jahn, Andreas; Schouten, Erik J; Libamba, Edwin; Chimbwandira, Frank; Maher, Dermot

    2016-01-01

    The scale-up of antiretroviral therapy (ART) in Malawi was based on a public health approach adapted to its resource-poor setting, with principles and practices borrowed from the successful tuberculosis control framework. From 2004 to 2015, the number of new patients started on ART increased from about 3000 to over 820,000. Despite being a small country, Malawi has made a significant contribution to the 15 million people globally on ART and has also contributed policy and service delivery innovations that have supported international guidelines and scale up in other countries. The first set of global guidelines for scaling up ART released by the World Health Organization (WHO) in 2002 focused on providing clinical guidance. In Malawi, the ART guidelines adopted from the outset a more operational and programmatic approach with recommendations on health systems and services that were needed to deliver HIV treatment to affected populations. Seven years after the start of national scale-up, Malawi launched a new strategy offering all HIV-infected pregnant women lifelong ART regardless of the CD4-cell count, named Option B+. This strategy was subsequently incorporated into a WHO programmatic guide in 2012 and WHO ART guidelines in 2013, and has since then been adopted by the majority of countries worldwide. In conclusion, the Malawi experience of ART scale-up has become a blueprint for a public health response to HIV and has informed international efforts to end the AIDS epidemic by 2030. PMID:27600800

  17. Act local, think global: how the Malawi experience of scaling up antiretroviral treatment has informed global policy.

    PubMed

    Harries, Anthony D; Ford, Nathan; Jahn, Andreas; Schouten, Erik J; Libamba, Edwin; Chimbwandira, Frank; Maher, Dermot

    2016-01-01

    The scale-up of antiretroviral therapy (ART) in Malawi was based on a public health approach adapted to its resource-poor setting, with principles and practices borrowed from the successful tuberculosis control framework. From 2004 to 2015, the number of new patients started on ART increased from about 3000 to over 820,000. Despite being a small country, Malawi has made a significant contribution to the 15 million people globally on ART and has also contributed policy and service delivery innovations that have supported international guidelines and scale up in other countries. The first set of global guidelines for scaling up ART released by the World Health Organization (WHO) in 2002 focused on providing clinical guidance. In Malawi, the ART guidelines adopted from the outset a more operational and programmatic approach with recommendations on health systems and services that were needed to deliver HIV treatment to affected populations. Seven years after the start of national scale-up, Malawi launched a new strategy offering all HIV-infected pregnant women lifelong ART regardless of the CD4-cell count, named Option B+. This strategy was subsequently incorporated into a WHO programmatic guide in 2012 and WHO ART guidelines in 2013, and has since then been adopted by the majority of countries worldwide. In conclusion, the Malawi experience of ART scale-up has become a blueprint for a public health response to HIV and has informed international efforts to end the AIDS epidemic by 2030.

  18. Comparison of a Traditional Teaching Model to the Scale-Up Teaching Model in Undergraduate Biology: A Mixed Method Study

    NASA Astrophysics Data System (ADS)

    Mears, Samantha

    This project compared a SCALE-UP teaching model to a traditional teaching model. Traditional teaching is now considered a poor motivator for student performance and interests, and the SCALE-UP model was proposed to combat these problems. SCALE-UP classrooms are designed to encourage cooperative learning as well as other active learning methods. The study looked at teacher and student opinions of the two models to determine which one they preferred and why. The study also compared the students' grades between the two classes to see if there was a difference between test scores, as well as learning gains for pre-test to post-test. Student and teacher behaviors were also quantified based on categories of engagement in class. The purpose of this study was to support the literature on the idea of a viable and better option to traditional lecture in the form of the SCALE-UP model. Based on the results, students prefer and enjoy a SCALE-UP classroom more than a traditional lecture. The students also performed better and learn more when compared to the traditional lecture class.

  19. Excellence in Physics Education Award: SCALE-UP, Student Centered Active Learning Environment with Upside-down Pedagogies

    NASA Astrophysics Data System (ADS)

    Beichner, Robert

    2016-03-01

    The Student-Centered Active Learning Environment with Upside-down Pedagogies (SCALE-UP) Project combines curricula and a specially-designed instructional space to enhance learning. SCALE-UP students practice communication and teamwork skills while performing activities that enhance their conceptual understanding and problem solving skills. This can be done with small or large classes and has been implemented at more than 250 institutions. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. SCALE-UP classtime is spent primarily on ``tangibles'' and ``ponderables''--hands-on measurements/observations and interesting questions. There are also computer simulations (called ``visibles'') and hypothesis-driven labs. Students sit at tables designed to facilitate group interactions. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Impressive learning gains have been measured at institutions across the US and internationally. This talk describes today's students, how lecturing got started, what happens in a SCALE-UP classroom, and how the approach has spread. The SCALE-UP project has greatly benefitted from numerous Grants made by NSF and FIPSE to NCSU and other institutions.

  20. Radio-isotope production scale-up at the University of Wisconsin

    SciTech Connect

    Nickles, Robert Jerome

    2014-06-19

    Our intent has been to scale up our production capacity for a subset of the NSAC-I list of radioisotopes in jeopardy, so as to make a significant impact on the projected national needs for Cu-64, Zr-89, Y-86, Ga-66, Br-76, I-124 and other radioisotopes that offer promise as PET synthons. The work-flow and milestones in this project have been compressed into a single year (Aug 1, 2012- July 31, 2013). The grant budget was virtually dominated by the purchase of a pair of dual-mini-cells that have made the scale-up possible, now permitting the Curie-level processing of Cu-64 and Zr-89 with greatly reduced radiation exposure. Mile stones: 1. We doubled our production of Cu-64 and Zr-89 during the grant period, both for local use and out-bound distribution to ≈ 30 labs nationwide. This involved the dove-tailing of beam schedules of both our PETtrace and legacy RDS cyclotron. 2. Implemented improved chemical separation of Zr-89, Ga-66, Y-86 and Sc-44, with remote, semi-automated dissolution, trap-and-release separation under LabView control in the two dual-mini-cells provided by this DOE grant. A key advance was to fit the chemical stream with miniature radiation detectors to confirm the transfer operations. 3. Implemented improved shipping of radioisotopes (Cu-64, Zr-89, Tc-95m, and Ho-163) with approved DOT 7A boxes, with a much-improved FedEx shipping success compared to our previous steel drums. 4. Implemented broad range quantitative trace metal analysis, employing a new microwave plasma atomic emission spectrometer (Agilent 4200) capable of ppb sensitivity across the periodic table. This new instrument will prove essential in bringing our radiometals into FDA compliance needing CoA’s for translational research in clinical trials. 5. Expanded our capabilities in target fabrication, with the purchase of a programmable 1600 oC inert gas tube furnace for the smelting of binary alloy target materials. A similar effort makes use of our RF induction furnace, allowing

  1. Evaluating Ecotypes as a means of Scaling-up Permafrost Thermal Measurements in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Cable, William; Romanovsky, Vladimir

    2015-04-01

    In many regions, permafrost temperatures are increasing due to climate change and in some cases permafrost is thawing and degrading. In areas where degradation has already occurred the effects can be dramatic, resulting in changing ecosystems, carbon release, and damage to infrastructure. Yet in many areas we lack baseline data, such as subsurface temperatures, needed to assess future changes and potential risk areas. Besides climate, the physical properties of the vegetation cover and subsurface material have a major influence on the thermal state of permafrost. These properties are often directly related to the type of ecosystem overlaying permafrost. Thus, classifying the landscape into general ecotypes might be an effective way to scale up permafrost thermal data. To evaluate using ecotypes as a way of scaling-up permafrost thermal data within a region we selected an area in Western Alaska, the Selawik National Wildlife Refuge, which is on the boundary between continuous and discontinuous permafrost. This region was selected because previously an ecological land classification had been conducted and a very high-resolution ecotype map was generated. Using this information we selected 18 spatially distributed sites covering the most abundant ecotypes, where we are collecting low vertical resolution soil temperature data to a depth of 1.5 meters at most sites. At three additional core sites, we are collecting air temperature, snow depth, and high vertical resolution soil temperature to a depth of 3 meters. The sites were installed in the summers of 2011 and 2012; consequently, we have at least two years of data from all sites. Mean monthly and mean annual air temperature and snow depth for all three core sites are similar within the 2012-2014 period. Additionally, the average air temperature and snow depth from our three cores sites compares well with that of a nearby meteorological station for which long-term data is available. During the study period snow depth

  2. Scale-up of mouse embryonic stem cell expansion in stirred bioreactors.

    PubMed

    Fernandes-Platzgummer, Ana; Diogo, Maria M; Baptista, Ricardo P; da Silva, Cláudia Lobato; Cabral, Joaquim M S

    2011-01-01

    The aim of this study was to develop a robust, quality controlled and reproducible large-scale culture system using serum-free (SF) medium to obtain vast numbers of embryonic stem (ES) cells as a starting source for potential applications in tissue regeneration, as well as for drug screening studies. Mouse ES (mES) cells were firstly cultured on microcarriers in spinner flasks to investigate the effect of different parameters such as the agitation rate and the feeding regimen. Cells were successfully expanded at agitation rates up to 60 rpm using the SF medium and no significant differences in terms of growth kinetics or metabolic profiles were found between the two feeding regimens evaluated: 50% medium renewal every 24 h or 25% every 12 h. Overall, cells reached maximum concentrations of (4.2 ± 0.4) and (5.6 ± 0.8) ×10(6) cells/mL at Day 8 for cells fed once or twice per day; which corresponds to an increase in total cell number of 85 ± 7 and 108 ± 16, respectively. To have a more precise control over culture conditions and to yield a higher number of cells, the scale-up of the spinner flask culture system was successfully accomplished by using a fully controlled stirred tank bioreactor. In this case, the concentration of mES cells cultured on microcarriers increased 85 ± 15-fold over 11 days. Importantly, mES cells expanded under stirred conditions, in both spinner flask and fully controlled stirred tank bioreactor, using SF medium, retained the expression of pluripotency markers such as Oct-4, Nanog, and SSEA-1 and their differentiation potential into cells of the three embryonic germ layers.

  3. Prelude to rational scale-up of penicillin production: a scale-down study.

    PubMed

    Wang, Guan; Chu, Ju; Noorman, Henk; Xia, Jianye; Tang, Wenjun; Zhuang, Yingping; Zhang, Siliang

    2014-03-01

    Penicillin is one of the best known pharmaceuticals and is also an important member of the β-lactam antibiotics. Over the years, ambitious yields, titers, productivities, and low costs in the production of the β-lactam antibiotics have been stepwise realized through successive rounds of strain improvement and process optimization. Penicillium chrysogenum was proven to be an ideal cell factory for the production of penicillin, and successful approaches were exploited to elevate the production titer. However, the industrial production of penicillin faces the serious challenge that environmental gradients, which are caused by insufficient mixing and mass transfer limitations, exert a considerably negative impact on the ultimate productivity and yield. Scale-down studies regarding diverse environmental gradients have been carried out on bacteria, yeasts, and filamentous fungi as well as animal cells. In accordance, a variety of scale-down devices combined with fast sampling and quenching protocols have been established to acquire the true snapshots of the perturbed cellular conditions. The perturbed metabolome information stemming from scale-down studies contributed to the comprehension of the production process and the identification of improvement approaches. However, little is known about the influence of the flow field and the mechanisms of intracellular metabolism. Consequently, it is still rather difficult to realize a fully rational scale-up. In the future, developing a computer framework to simulate the flow field of the large-scale fermenters is highly recommended. Furthermore, a metabolically structured kinetic model directly related to the production of penicillin will be further coupled to the fluid flow dynamics. A mathematical model including the information from both computational fluid dynamics and chemical reaction dynamics will then be established for the prediction of detailed information over the entire period of the fermentation process and

  4. Scaling-Up of Dental Pulp Stem Cells Isolated from Multiple Niches

    PubMed Central

    Lizier, Nelson F.; Kerkis, Alexandre; Gomes, Cícera M.; Hebling, Josimeri; Oliveira, Camila F.; Caplan, Arnold I.; Kerkis, Irina

    2012-01-01

    Dental pulp (DP) can be extracted from child’s primary teeth (deciduous), whose loss occurs spontaneously by about 5 to 12 years. Thus, DP presents an easy accessible source of stem cells without ethical concerns. Substantial quantities of stem cells of an excellent quality and at early (2–5) passages are necessary for clinical use, which currently is a problem for use of adult stem cells. Herein, DPs were cultured generating stem cells at least during six months through multiple mechanical transfers into a new culture dish every 3–4 days. We compared stem cells isolated from the same DP before (early population, EP) and six months after several mechanical transfers (late population, LP). No changes, in both EP and LP, were observed in morphology, expression of stem cells markers (nestin, vimentin, fibronectin, SH2, SH3 and Oct3/4), chondrogenic and myogenic differentiation potential, even after cryopreservation. Six hours after DP extraction and in vitro plating, rare 5-bromo-2′-deoxyuridine (BrdU) positive cells were observed in pulp central part. After 72 hours, BrdU positive cells increased in number and were found in DP periphery, thus originating a multicellular population of stem cells of high purity. Multiple stem cell niches were identified in different zones of DP, because abundant expression of nestin, vimentin and Oct3/4 proteins was observed, while STRO-1 protein localization was restricted to perivascular niche. Our finding is of importance for the future of stem cell therapies, providing scaling-up of stem cells at early passages with minimum risk of losing their “stemness”. PMID:22768154

  5. Interagency Collaborative Team Model for Capacity Building to Scale-Up Evidence-Based Practice

    PubMed Central

    Hurlburt, Michael; Aarons, Gregory A; Fettes, Danielle; Willging, Cathleen; Gunderson, Lara; Chaffin, Mark J

    2015-01-01

    Background System-wide scale up of evidence-based practice (EBP) is a complex process. Yet, few strategic approaches exist to support EBP implementation and sustainment across a service system. Building on the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework, we developed and are testing the Interagency Collaborative Team (ICT) process model to implement an evidence-based child neglect intervention (i.e., SafeCare®) within a large children’s service system. The ICT model emphasizes the role of local agency collaborations in creating structural supports for successful implementation. Methods We describe the ICT model and present preliminary qualitative results from use of the implementation model in one large scale EBP implementation. Qualitative interviews were conducted to assess challenges in building system, organization, and home visitor collaboration and capacity to implement the EBP. Data collection and analysis centered on EBP implementation issues, as well as the experiences of home visitors under the ICT model. Results Six notable issues relating to implementation process emerged from participant interviews, including: (a) initial commitment and collaboration among stakeholders, (b) leadership, (c) communication, (d) practice fit with local context, (e) ongoing negotiation and problem solving, and (f) early successes. These issues highlight strengths and areas for development in the ICT model. Conclusions Use of the ICT model led to sustained and widespread use of SafeCare in one large county. Although some aspects of the implementation model may benefit from enhancement, qualitative findings suggest that the ICT process generates strong structural supports for implementation and creates conditions in which tensions between EBP structure and local contextual variations can be resolved in ways that support the expansion and maintenance of an EBP while preserving potential for public health benefit. PMID:27512239

  6. Scaling up the evaluation of psychotherapy: evaluating motivational interviewing fidelity via statistical text classification

    PubMed Central

    2014-01-01

    Background Behavioral interventions such as psychotherapy are leading, evidence-based practices for a variety of problems (e.g., substance abuse), but the evaluation of provider fidelity to behavioral interventions is limited by the need for human judgment. The current study evaluated the accuracy of statistical text classification in replicating human-based judgments of provider fidelity in one specific psychotherapy—motivational interviewing (MI). Method Participants (n = 148) came from five previously conducted randomized trials and were either primary care patients at a safety-net hospital or university students. To be eligible for the original studies, participants met criteria for either problematic drug or alcohol use. All participants received a type of brief motivational interview, an evidence-based intervention for alcohol and substance use disorders. The Motivational Interviewing Skills Code is a standard measure of MI provider fidelity based on human ratings that was used to evaluate all therapy sessions. A text classification approach called a labeled topic model was used to learn associations between human-based fidelity ratings and MI session transcripts. It was then used to generate codes for new sessions. The primary comparison was the accuracy of model-based codes with human-based codes. Results Receiver operating characteristic (ROC) analyses of model-based codes showed reasonably strong sensitivity and specificity with those from human raters (range of area under ROC curve (AUC) scores: 0.62 – 0.81; average AUC: 0.72). Agreement with human raters was evaluated based on talk turns as well as code tallies for an entire session. Generated codes had higher reliability with human codes for session tallies and also varied strongly by individual code. Conclusion To scale up the evaluation of behavioral interventions, technological solutions will be required. The current study demonstrated preliminary, encouraging findings regarding the utility

  7. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    PubMed

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture.

  8. Scaling Up Scientific Discovery in Sleep Medicine: The National Sleep Research Resource

    PubMed Central

    Dean, Dennis A.; Goldberger, Ary L.; Mueller, Remo; Kim, Matthew; Rueschman, Michael; Mobley, Daniel; Sahoo, Satya S.; Jayapandian, Catherine P.; Cui, Licong; Morrical, Michael G.; Surovec, Susan; Zhang, Guo-Qiang; Redline, Susan

    2016-01-01

    . Scaling up scientific discovery in sleep medicine: the National Sleep Research Resource. SLEEP 2016;39(5):1151–1164. PMID:27070134

  9. Scale-up studies of the electrosynthesis of dinitrogen pentoxide in nitric acid

    SciTech Connect

    Harrar, J.E.; Quong, R.; Rigdon, L.P.; McGuire, R.R.

    1997-06-01

    The method for the electrosynthesis of N{sub 2}O{sub 5} in nitric acid by anodic oxidation of N{sub 2}O{sub 4} has been scaled up to produce quantities of 15 to 50 kg of solution containing 20 to 30 weight percent. A two- or three-cell, divided, plate-and-frame electrolyzer operated in the bipolar mode was employed to test various combinations of candidate electrode coatings and separators, and to study the electrochemical characteristics of the process. Two sizes of electrolyzers were used, each having single-electrode areas of 0.096 and 0.25 m{sup 2}. The best performing anode/substrate materials were either Pt-Ir on niobium, or IrO{sub 2} on aluminum; the best cathode materials were Pt or Pt-Ir on niobium. The preferred cell separator is a hydrophilic, porous polytetrafluorene-ethylene diaphragm, but an FEP-polymer anion-exchange membrane is also satisfactory. Production of N{sub 2}O{sub 5} was achieved with chemical yields of 80 to 90% and current efficiencies of 50 to 70%. Maximum current densities were in the range of 0.1 to 0.2 A/cm{sup 2}. Cell voltages were 3 to 5 V and specific energies were 1.6 to 1.8 kWh/kg. In the electrolyzer catholyte, N{sub 2}O{sub 4} is generated at nearly theoretical yield, and could be recovered and recycled as an anolyte feedstock. The E{sup o{prime}} of the N{sub 2}O{sub 5}/N{sub 2}O{sub 4} couple in anhydrous nitric acid was estimated to be +1.66 {+-} 0.02 V vs. SHE.

  10. Computational Psychotherapy Research: Scaling up the evaluation of patient-provider interactions

    PubMed Central

    Imel, Zac E.; Steyvers, Mark; Atkins, David C.

    2014-01-01

    In psychotherapy, the patient-provider interaction contains the treatment’s active ingredients. However, the technology for analyzing the content of this interaction has not fundamentally changed in decades, limiting both the scale and specificity of psychotherapy research. New methods are required in order to “scale up” to larger evaluation tasks and “drill down” into the raw linguistic data of patient-therapist interactions. In the current paper we demonstrate the utility of statistical text analysis models called topic models for discovering the underlying linguistic structure in psychotherapy. Topic models identify semantic themes (or topics) in a collection of documents (here, transcripts). We used topic models to summarize and visualize 1,553 psychotherapy and drug therapy (i.e., medication management) transcripts. Results showed that topic models identified clinically relevant content, including affective, content, and intervention related topics. In addition, topic models learned to identify specific types of therapist statements associated with treatment related codes (e.g., different treatment approaches, patient-therapist discussions about the therapeutic relationship). Visualizations of semantic similarity across sessions indicate that topic models identify content that discriminates between broad classes of therapy (e.g., cognitive behavioral therapy vs. psychodynamic therapy). Finally, predictive modeling demonstrated that topic model derived features can classify therapy type with a high degree of accuracy. Computational psychotherapy research has the potential to scale up the study of psychotherapy to thousands of sessions at a time, and we conclude by discussing the implications of computational methods such as topic models for the future of psychotherapy research and practice. PMID:24866972

  11. THE FERMI BUBBLES AS A SCALED-UP VERSION OF SUPERNOVA REMNANTS

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo

    2013-09-20

    In this study, we treat Fermi bubbles as a scaled-up version of supernova remnants (SNRs). The bubbles are created through activities of the super-massive black hole (SMBH) or starbursts at the Galactic center (GC). Cosmic-rays (CRs) are accelerated at the forward shocks of the bubbles like SNRs, which means that we cannot decide whether the bubbles were created by the SMBH or starbursts from the radiation from the CRs. We follow the evolution of CR distribution by solving a diffusion-advection equation, considering the reduction of the diffusion coefficient by CR streaming. In this model, gamma rays are created through hadronic interaction between CR protons and the gas in the Galactic halo. In the GeV band, we can well reproduce the observed flat distribution of gamma-ray surface brightness because some amount of gas is left behind the shock. The edge of the bubbles is fairly sharp owing to the high gas density behind the shock and the reduction of the diffusion coefficient there. The latter also contributes the hard gamma-ray spectrum of the bubbles. We find that the CR acceleration at the shock began when the bubbles were small, and the time scale of the energy injection at the GC was much smaller than the age of the bubbles. We predict that if CRs are accelerated to the TeV regime, the apparent bubble size should be larger in the TeV band, which could be used to discriminate our hadronic model from other leptonic models. We also present neutrino fluxes.

  12. STANFORD IN-SITU HIGH RATE YBCO PROCESS: TRANSFER TO METAL TAPES AND PROCESS SCALE UP

    SciTech Connect

    Malcolm R. Beasley; Robert H.Hammond

    2009-04-14

    Executive Summary The materials science understanding of high rate low cost processes for Coated Conductor will benefit the application to power utilities for low loss energy transportation and power generation as well for DOD applications. The research in this program investigated several materials processing approaches that are new and original, and are not being investigated elsewhere. This work added to the understanding of the material science of high rate PVD growth of HTSC YBCO assisted by a liquid phase. A new process discovered uses amorphous glassy precursors which can be made at high rate under flexible conditions of temperature and oxygen, and later brought to conditions of oxygen partial pressure and temperature for rapid conversion to YBCO superconductor. Good critical current densities were found, but further effort is needed to optimize the vortex pinning using known artificial inclusions. A new discovery of the physics and materials science of vortex pinning in the HTSC system using Sm in place of Y came at growth at unusually low oxygen pressure resulting in clusters of a low or non superconducting phase within the nominal high temperature phase. The driving force for this during growth is new physics, perhaps due to the low oxygen. This has the potential for high current in large magnetic fields at low cost, applicable to motors, generators and transformers. The technical demands of this project were the motivation for the development of instrumentation that could be essential to eventual process scale up. These include atomic absorption based on tunable diode lasers for remote monitoring and control of evaporation sources (developed under DARPA support), and the utility of Fourier Transform Infrared Reflectivity (FTIR) for aid in the synthesis of complex thin film materials (purchased by a DURIP-AFOSR grant).

  13. Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model

    NASA Astrophysics Data System (ADS)

    Savchuk, Oleg P.

    2002-05-01

    A box model has been implemented to understand the large-scale biogeochemical cycles of nitrogen, phosphorus, and silicon in the Gulf of Riga. The large data sets collected within the international Gulf of Riga Project in 1993/1995 were used to validate the model. The comparison to data was useful in scaling up to the gulf-wide level and scrutinizing the conclusions based on short-term field surveys and experimental studies. The simulations indicate that the limiting role was passing from silicon to phosphorus to nitrogen over the seasons of organic production. However, on an annual scale, nutrient limitation was close to the "Redfield equilibrium". Mass balance considerations, based on modeled coupled fluxes, disagree with the conclusions on low sediment denitrification and high phosphorus retention in the pelagic system, which were derived from isolated measurements. Nutrient budgets constructed with the model revealed the high buffer capacity of the Gulf of Riga. The nutrient residence times span a range from 6 years for N to 70 years for Si. The buffering arises from intensive internal recycling in the water body and by the bottom sediments. The budgets indicate that the Gulf retains about two-thirds of external nitrogen and silicon inputs, while phosphorus retention is only 10%. A slow response to external perturbations is demonstrated with numerical experiments run for 15 years under 50% reductions of terrestrial nutrient inputs. These experiments imply that the most effective is the N+P reduction scenario, which resulted in a 20% decrease of primary production after 12 years. A reduction of P resulted in only a 6% decrease of primary production; however, it yielded an 80% drop in the amount of nitrogen fixation.

  14. Nucleation of Laboratory Earthquakes: Observation, Characterization, and Scaling up to the Natural Earthquakes Dimensions

    NASA Astrophysics Data System (ADS)

    Latour, S.; Schubnel, A.; Nielsen, S. B.; Madariaga, R. I.; Vinciguerra, S.

    2013-12-01

    In this work we observe the nucleation phase of in-plane ruptures in the laboratory and characterize its dynamics. We use a laboratory toy-model, where mode II shear ruptures are produced on a pre-cut fault in a plate of polycarbonate. The fault is cut at the critical angle that allows a stick-slip behavior under uniaxal loading. The ruptures are thus naturally nucleated. The material is birefringent under stress, so that the rupture propagation can be followed by ultra-rapid elastophotometry. A network of acoustic sensors and accelerometers is disposed on the plate to measure the radiated wavefield and record laboratory near-field accelograms. The far field stress level is also measured using strain gages. We show that the nucleation is composed of two distinct phases, a quasi-static and an acceleration stage, followed by dynamic propagation. We propose an empirical model which describes the rupture length evolution: the quasi-static phase is described by an exponential growth while the acceleration phase is described by an inverse power law of time. The transition from quasistatic to accelerating rupture is related to the critical nucleation length, which scales inversely with normal stress in accordance with theoretical predictions, and to a critical surfacic power, which may be an intrinsic property of the interface. Finally, we discuss these results in the frame of previous studies and propose a scaling up to natural earthquake dimensions. Three spontaneously nucleated laboratory earthquakes at increasingly higher normal pre-stresses, visualized by photo-elasticity. The red curves highlight the position of rupture tips as a function of time. We propose an empirical model that describes the dynamics of rupture nucleation and discuss its scaling with the initial normal stress.

  15. Scaling up nutrition in fragile and conflict-affected states: the pivotal role of governance.

    PubMed

    Taylor, Sebastian A J; Perez-Ferrer, Carolina; Griffiths, Andrew; Brunner, Eric

    2015-02-01

    Acute and chronic undernutrition undermine conditions for health, stability and socioeconomic development across the developing world. Although fragile and conflict-affected states have some of the highest rates of undernutrition globally, their response to the multilateral 'Scaling Up Nutrition' (SUN) initiative in its first two-year period was ambivalent. The purpose of this research was to investigate factors affecting fragile and conflict-affected states' engagement with SUN, and to examine what differentiated those fragile states that joined SUN in its first phase from those that did not. Drawing on global databases (Unicef, World Bank, UNDP), and qualitative country case studies (Afghanistan, the Democratic Republic of Congo, Sierra Leone, Pakistan and Yemen) we used bivariate logistic regressions and principal component analysis to assess social, economic and political factors across 41 fragile states looking for systematic differences between those that had signed up to SUN before March 2013 (n = 16), and those that had not (n = 25). While prevalence of malnutrition, health system functioning and level of citizen empowerment had little or no impact on a fragile state's likelihood of joining SUN, the quality of governance (QOG) strongly predicted accession. SUN-signatory fragile states scored systematically better on the World Bank's Country Policy and Institutional Assessment (CPIA) and the Worldwide Governance Indicators 'effectiveness of government' indices. We conclude that strengthening governance in fragile states may enhance their engagement with initiatives such as SUN, but also (recognising the potential for endogeneity), that the way aid is structured and delivered in fragile states may be an underlying determinant of whether and how governance in such contexts improves. The research demonstrates that more nuanced analysis of conditions within and among countries classed as 'fragile and conflict-affected' is both possible and necessary if aid

  16. Time-reversal imaging techniques applied to tremor waveforms near Cholame, California to locate tectonic tremor

    NASA Astrophysics Data System (ADS)

    Horstmann, T.; Harrington, R. M.; Cochran, E. S.

    2012-12-01

    Frequently, the lack of distinctive phase arrivals makes locating tectonic tremor more challenging than locating earthquakes. Classic location algorithms based on travel times cannot be directly applied because impulsive phase arrivals are often difficult to recognize. Traditional location algorithms are often modified to use phase arrivals identified from stacks of recurring low-frequency events (LFEs) observed within tremor episodes, rather than single events. Stacking the LFE waveforms improves the signal-to-noise ratio for the otherwise non-distinct phase arrivals. In this study, we apply a different method to locate tectonic tremor: a modified time-reversal imaging approach that potentially exploits the information from the entire tremor waveform instead of phase arrivals from individual LFEs. Time reversal imaging uses the waveforms of a given seismic source recorded by multiple seismometers at discrete points on the surface and a 3D velocity model to rebroadcast the waveforms back into the medium to identify the seismic source location. In practice, the method works by reversing the seismograms recorded at each of the stations in time, and back-propagating them from the receiver location individually into the sub-surface as a new source time function. We use a staggered-grid, finite-difference code with 2.5 ms time steps and a grid node spacing of 50 m to compute the rebroadcast wavefield. We calculate the time-dependent curl field at each grid point of the model volume for each back-propagated seismogram. To locate the tremor, we assume that the source time function back-propagated from each individual station produces a similar curl field at the source position. We then cross-correlate the time dependent curl field functions and calculate a median cross-correlation coefficient at each grid point. The highest median cross-correlation coefficient in the model volume is expected to represent the source location. For our analysis, we use the velocity model of

  17. Image restoration techniques as applied to Landsat MSS and TM data

    USGS Publications Warehouse

    Meyer, David

    1987-01-01

    Two factors are primarily responsible for the loss of image sharpness in processing digital Landsat images. The first factor is inherent in the data because the sensor's optics and electronics, along with other sensor elements, blur and smear the data. Digital image restoration can be used to reduce this degradation. The second factor, which further degrades by blurring or aliasing, is the resampling performed during geometric correction. An image restoration procedure, when used in place of typical resampled techniques, reduces sensor degradation without introducing the artifacts associated with resampling. The EROS Data Center (EDC) has implemented the restoration proceed for Landsat multispectral scanner (MSS) and thematic mapper (TM) data. This capability, developed at the University of Arizona by Dr. Robert Schowengerdt and Lynette Wood, combines restoration and resampling in a single step to produce geometrically corrected MSS and TM imagery. As with resampling, restoration demands a tradeoff be made between aliasing, which occurs when attempting to extract maximum sharpness from an image, and blurring, which reduces the aliasing problem but sacrifices image sharpness. The restoration procedure used at EDC minimizes these artifacts by being adaptive, tailoring the tradeoff to be optimal for individual images.

  18. Morphological analysis of the flippers in the Franciscana dolphin, Pontoporia blainvillei, applying X-ray technique.

    PubMed

    Del Castillo, Daniela Laura; Panebianco, María Victoria; Negri, María Fernanda; Cappozzo, Humberto Luis

    2014-07-01

    Pectoral flippers of cetaceans function to provide stability and maneuverability during locomotion. Directional asymmetry (DA) is a common feature among odontocete cetaceans, as well as sexual dimorphism (SD). For the first time DA, allometry, physical maturity, and SD of the flipper skeleton--by X-ray technique--of Pontoporia blainvillei were analyzed. The number of carpals, metacarpals, phalanges, and morphometric characters from the humerus, radius, ulna, and digit two were studied in franciscana dolphins from Buenos Aires, Argentina. The number of visible epiphyses and their degree of fusion at the proximal and distal ends of the humerus, radius, and ulna were also analyzed. The flipper skeleton was symmetrical, showing a negative allometric trend, with similar growth patterns in both sexes with the exception of the width of the radius (P ≤ 0.01). SD was found on the number of phalanges of digit two (P ≤ 0.01), ulna and digit two lengths. Females showed a higher relative ulna length and shorter relative digit two length, and the opposite occurred in males (P ≤ 0.01). Epiphyseal fusion pattern proved to be a tool to determine dolphin's age; franciscana dolphins with a mature flipper were, at least, four years old. This study indicates that the flippers of franciscana dolphins are symmetrical; both sexes show a negative allometric trend; SD is observed in radius, ulna, and digit two; and flipper skeleton allows determine the age class of the dolphins.

  19. A Novel Solution-Technique Applied to a Novel WAAS Architecture

    NASA Technical Reports Server (NTRS)

    Bavuso, J.

    1998-01-01

    The Federal Aviation Administration has embarked on an historic task of modernizing and significantly improving the national air transportation system. One system that uses the Global Positioning System (GPS) to determine aircraft navigational information is called the Wide Area Augmentation System (WAAS). This paper describes a reliability assessment of one candidate system architecture for the WAAS. A unique aspect of this study regards the modeling and solution of a candidate system that allows a novel cold sparing scheme. The cold spare is a WAAS communications satellite that is fabricated and launched after a predetermined number of orbiting satellite failures have occurred and after some stochastic fabrication time transpires. Because these satellites are complex systems with redundant components, they exhibit an increasing failure rate with a Weibull time to failure distribution. Moreover, the cold spare satellite build-time is Weibull and upon launch is considered to be a good-as-new system with an increasing failure rate and a Weibull time to failure distribution as well. The reliability model for this system is non-Markovian because three distinct system clocks are required: the time to failure of the orbiting satellites, the build time for the cold spare, and the time to failure for the launched spare satellite. A powerful dynamic fault tree modeling notation and Monte Carlo simulation technique with importance sampling are shown to arrive at a reliability prediction for a 10 year mission.

  20. Correlation techniques as applied to pose estimation in space station docking

    NASA Astrophysics Data System (ADS)

    Rollins, John M.; Juday, Richard D.; Monroe, Stanley E., Jr.

    2002-08-01

    The telerobotic assembly of space-station components has become the method of choice for the International Space Station (ISS) because it offers a safe alternative to the more hazardous option of space walks. The disadvantage of telerobotic assembly is that it does not necessarily provide for direct arbitrary views of mating interfaces for the teleoperator. Unless cameras are present very close to the interface positions, such views must be generated graphically, based on calculated pose relationships derived from images. To assist in this photogrammetric pose estimation, circular targets, or spots, of high contrast have been affixed on each connecting module at carefully surveyed positions. The appearance of a subset of spots must form a constellation of specific relative positions in the incoming image stream in order for the docking to proceed. Spot positions are expressed in terms of their apparent centroids in an image. The precision of centroid estimation is required to be as fine as 1/20th pixel, in some cases. This paper presents an approach to spot centroid estimation using cross correlation between spot images and synthetic spot models of precise centration. Techniques for obtaining sub-pixel accuracy and for shadow and lighting irregularity compensation are discussed.

  1. Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies

    SciTech Connect

    Smith, Matt K; Castello, Charles C; New, Joshua Ryan

    2013-01-01

    Since commercial and residential buildings account for nearly half of the United States' energy consumption, making them more energy-efficient is a vital part of the nation's overall energy strategy. Sensors play an important role in this research by collecting data needed to analyze performance of components, systems, and whole-buildings. Given this reliance on sensors, ensuring that sensor data are valid is a crucial problem. Solutions being researched are machine learning techniques, namely: artificial neural networks and Bayesian Networks. Types of data investigated in this study are: (1) temperature; (2) humidity; (3) refrigerator energy consumption; (4) heat pump liquid pressure; and (5) water flow. These data are taken from Oak Ridge National Laboratory's (ORNL) ZEBRAlliance research project which is composed of four single-family homes in Oak Ridge, TN. Results show that for the temperature, humidity, pressure, and flow sensors, data can mostly be predicted with root-mean-square error (RMSE) of less than 10% of the respective sensor's mean value. Results for the energy sensor are not as good; RMSE are centered about 100% of the mean value and are often well above 200%. Bayesian networks have RSME of less than 5% of the respective sensor's mean value, but took substantially longer to train.

  2. The simulated hospital environment: a qualitative study applying space industry techniques.

    PubMed

    Ayers, Constance J; Binder, Brenda K; Lyon, Karen C; Montgomery, Diane; Koci, Anne; Foster, William A

    2015-01-01

    Patterned after the integrated simulation approach utilized in the space industry, we report results of an innovative simulation in nursing, a 96-hour continuous simulated hospital environment. Training objectives for our study emphasized the integrative and critical thinking skills needed by new graduate nurses. The purpose of this study was to determine the process for development and the experience of participating in a simulated hospital environment. We sought to (a) translate space industry-integrated simulation techniques into development of a simulated hospital environment and (b) determine the experience of participating in an integrated simulation experience among undergraduate (UG) and graduate nursing students and nursing faculty. We used a qualitative mixed-methods design. Data were collected from participant focus groups, debriefing sessions, research team field notes, and electronic health record documentation. The sample, 72 student focus group participants, consisted of 12 baccalaureate-level soon-to-graduate students and 60 graduate nurse practitioner students as patient actors and providers. Important themes emerged from the project. We were able to design a simulated hospital environment that was true to life. Notably, student knowledge-practice gap was a major theme of the study, consistent with studies of employer concerns of new graduate nurses.

  3. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  4. Applying stereotactic injection technique to study genetic effects on animal behaviors.

    PubMed

    McSweeney, Colleen; Mao, Yingwei

    2015-05-10

    Stereotactic injection is a useful technique to deliver high titer lentiviruses to targeted brain areas in mice. Lentiviruses can either overexpress or knockdown gene expression in a relatively focused region without significant damage to the brain tissue. After recovery, the injected mouse can be tested on various behavioral tasks such as the Open Field Test (OFT) and the Forced Swim Test (FST). The OFT is designed to assess locomotion and the anxious phenotype in mice by measuring the amount of time that a mouse spends in the center of a novel open field. A more anxious mouse will spend significantly less time in the center of the novel field compared to controls. The FST assesses the anti-depressive phenotype by quantifying the amount of time that mice spend immobile when placed into a bucket of water. A mouse with an anti-depressive phenotype will spend significantly less time immobile compared to control animals. The goal of this protocol is to use the stereotactic injection of a lentivirus in conjunction with behavioral tests to assess how genetic factors modulate animal behaviors.

  5. The simulated hospital environment: a qualitative study applying space industry techniques.

    PubMed

    Ayers, Constance J; Binder, Brenda K; Lyon, Karen C; Montgomery, Diane; Koci, Anne; Foster, William A

    2015-01-01

    Patterned after the integrated simulation approach utilized in the space industry, we report results of an innovative simulation in nursing, a 96-hour continuous simulated hospital environment. Training objectives for our study emphasized the integrative and critical thinking skills needed by new graduate nurses. The purpose of this study was to determine the process for development and the experience of participating in a simulated hospital environment. We sought to (a) translate space industry-integrated simulation techniques into development of a simulated hospital environment and (b) determine the experience of participating in an integrated simulation experience among undergraduate (UG) and graduate nursing students and nursing faculty. We used a qualitative mixed-methods design. Data were collected from participant focus groups, debriefing sessions, research team field notes, and electronic health record documentation. The sample, 72 student focus group participants, consisted of 12 baccalaureate-level soon-to-graduate students and 60 graduate nurse practitioner students as patient actors and providers. Important themes emerged from the project. We were able to design a simulated hospital environment that was true to life. Notably, student knowledge-practice gap was a major theme of the study, consistent with studies of employer concerns of new graduate nurses. PMID:25601242

  6. Applied Focused Ion Beam Techniques for Sample Preparation of Astromaterials for Integrated Nano-Analysis

    SciTech Connect

    Graham, G A; Teslich, N E; Kearsley, A T; Stadermann, F J; Stroud, R M; Dai, Z R; Ishii, H A; Hutcheon, I D; Bajt, S; Snead, C J; Weber, P K; Bradley, J P

    2007-02-20

    Sample preparation is always a critical step in study of micrometer sized astromaterials available for study in the laboratory, whether their subsequent analysis is by electron microscopy or secondary ion mass spectrometry. A focused beam of gallium ions has been used to prepare electron transparent sections from an interplanetary dust particle, as part of an integrated analysis protocol to maximize the mineralogical, elemental, isotopic and spectroscopic information extracted from one individual particle. In addition, focused ion beam techniques have been employed to extract cometary residue preserved on the rims and walls of micro-craters in 1100 series aluminum foils that were wrapped around the sample tray assembly on the Stardust cometary sample collector. Non-ideal surface geometries and inconveniently located regions of interest required creative solutions. These include support pillar construction and relocation of a significant portion of sample to access a region of interest. Serial sectioning, in a manner similar to ultramicrotomy, is a significant development and further demonstrates the unique capabilities of focused ion beam microscopy for sample preparation of astromaterials.

  7. Correlation Techniques as Applied to Pose Estimation in Space Station Docking

    NASA Technical Reports Server (NTRS)

    Rollins, J. Michael; Juday, Richard D.; Monroe, Stanley E., Jr.

    2002-01-01

    The telerobotic assembly of space-station components has become the method of choice for the International Space Station (ISS) because it offers a safe alternative to the more hazardous option of space walks. The disadvantage of telerobotic assembly is that it does not provide for direct arbitrary views of mating interfaces for the teleoperator. Unless cameras are present very close to the interface positions, such views must be generated graphically, based on calculated pose relationships derived from images. To assist in this photogrammetric pose estimation, circular targets, or spots, of high contrast have been affixed on each connecting module at carefully surveyed positions. The appearance of a subset of spots essentially must form a constellation of specific relative positions in the incoming digital image stream in order for the docking to proceed. Spot positions are expressed in terms of their apparent centroids in an image. The precision of centroid estimation is required to be as fine as 1I20th pixel, in some cases. This paper presents an approach to spot centroid estimation using cross correlation between spot images and synthetic spot models of precise centration. Techniques for obtaining sub-pixel accuracy and for shadow, obscuration and lighting irregularity compensation are discussed.

  8. Asymptotic approximation of the Wiener-Hopf technique as applied to jet atomisation

    NASA Astrophysics Data System (ADS)

    Chen, X.-N.; Kirchgässner, K.

    An approximate Wiener-Hopf (WH) technique is developed for solving problems involving fine spatial structure. As an example of the application of this method we investigate the atomisation of a liquid jet. The jet exits from a nozzle into an ambient fluid. Short interfacial waves become unstable and break into small particles. This problem is treated as a potential flow under the influence of capillary effects at the interface and the pressure fluctuation at the nozzle wall. Two simultaneous WH equations are obtained. To solve them, the singular parts in each equation are separated from the regular ones, that leads to a linear system of algebraic equations for the residues. The response-wave amplitudes are evaluated numerically and the instability diagram is presented. It is found that resonance occurs at double roots of the dispersion relation. For a given azimuthal number m, the double roots form two curves parametrised by the Weber number β. They merge at a certain critical point, where an even stronger resonance occurs. This finally selects the dominant modes. By gauging one parameter, namely the velocity ratio U, the theoretical prediction agrees quite well with experimental results of the jet atomisation.

  9. Applying satellite remote sensing technique in disastrous rainfall systems around Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Gin-Rong; Chen, Kwan-Ru; Kuo, Tsung-Hua; Liu, Chian-Yi; Lin, Tang-Huang; Chen, Liang-De

    2016-05-01

    Many people in Asia regions have been suffering from disastrous rainfalls year by year. The rainfall from typhoons or tropical cyclones (TCs) is one of their key water supply sources, but from another perspective such TCs may also bring forth unexpected heavy rainfall, thereby causing flash floods, mudslides or other disasters. So far we cannot stop or change a TC route or intensity via present techniques. Instead, however we could significantly mitigate the possible heavy casualties and economic losses if we can earlier know a TC's formation and can estimate its rainfall amount and distribution more accurate before its landfalling. In light of these problems, this short article presents methods to detect a TC's formation as earlier and to delineate its rainfall potential pattern more accurate in advance. For this first part, the satellite-retrieved air-sea parameters are obtained and used to estimate the thermal and dynamic energy fields and variation over open oceans to delineate the high-possibility typhoon occurring ocean areas and cloud clusters. For the second part, an improved tropical rainfall potential (TRaP) model is proposed with better assumptions then the original TRaP for TC rainfall band rotations, rainfall amount estimation, and topographic effect correction, to obtain more accurate TC rainfall distributions, especially for hilly and mountainous areas, such as Taiwan.

  10. Comparative performance evaluation of applying extended PIE technique to accelerate software testability analysis

    NASA Astrophysics Data System (ADS)

    Chang, Jun-Ru; Huang, Chin-Yu; Hsu, Chao-Jung; Tsai, Tsung-Han

    2012-12-01

    The rapid development of technology provides high performance and reliability for the hardware system; based on this, software engineers can focus their developed software on more convenience and ultra-high reliability. To reach this goal, the testing stage of software development life cycle usually takes more time and effort due to the growing complexity of the software. How to build software that can be tested efficiently has become an important topic in addition to enhancing and developing new testing methods. Thus, research on software testability has been conducted and various methods have been developed. In the past, a dynamic technique for estimating program testability was proposed and called propagation, infection and execution (PIE) analysis. Previous research studies have shown that PIE analysis can complement software testing. However, this method requires a lot of computational overhead in estimating the testability of software components. In this article, we propose an extended PIE (EPIE) method to accelerate the conventional PIE analysis, based on generating group testability as a substitute for statement testability. Our proposed method can be systematically separated into three steps: breaking a program into blocks, dividing the blocks into groups and marking target statements. Experiments and evaluations with the Siemens suite, together with cost-effectiveness analysis, clearly show that the number of analysed statements can be effectively decreased, and the calculated values of testability are still acceptable.

  11. Experimental studies of active and passive flow control techniques applied in a twin air-intake.

    PubMed

    Paul, Akshoy Ranjan; Joshi, Shrey; Jindal, Aman; Maurya, Shivam P; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG.

  12. An alternative approach for delineating eco-sensitive zones around a wildlife sanctuary applying geospatial techniques.

    PubMed

    Deb, Shovik; Ahmed, Akram; Datta, Debajit

    2014-04-01

    The dynamics, degradation, and conservation of forest ecosystems are matters of prime concerns worldwide at the present. Proper planning and management of a forest area are essentially needed to protect it from the grasp of burgeoning pressure of urban-industrial sprawl. Establishment of eco-sensitive zones (ESZs), which act as buffer areas around the core forests, is one of the key approaches towards achieving this goal. This paper deals with the applicability of geospatial techniques to identify the ESZ around an Indian wildlife sanctuary following the different rules and acts prescribed by the Government of India. Gumti Wildlife Sanctuary, located in the northeastern state of Tripura in India, has been selected here as a case study. Collected pieces of information on the distribution of biodiversity and human population in the area were also used to make the approach more holistic. As inferred from this study, remote sensing and geographical information systems were found to be easily implementable and time as well as cost-effective tools for this purpose with a distinct advantage of spatial as well as temporal accuracy in identifying the existing land use and land cover patterns in pilot assessments. However, the results indicated that only appropriate hybridization of field-based information on the biodiversity and ecological aspects of the forest as well as patterns of human interferences with the remote sensing and GIS-based data could make this approach more relevant in actual implementations. PMID:24338098

  13. Imaging techniques applied to the study of fluids in porous media

    SciTech Connect

    Tomutsa, L.; Doughty, D.; Mahmood, S.; Brinkmeyer, A.; Madden, M.P.

    1991-01-01

    A detailed understanding of rock structure and its influence on fluid entrapment, storage capacity, and flow behavior can improve the effective utilization and design of methods to increase the recovery of oil and gas from petroleum reservoirs. The dynamics of fluid flow and trapping phenomena in porous media was investigated. Miscible and immiscible displacement experiments in heterogeneous Berea and Shannon sandstone samples were monitored using X-ray computed tomography (CT scanning) to determine the effect of heterogeneities on fluid flow and trapping. The statistical analysis of pore and pore throat sizes in thin sections cut from these sandstone samples enabled the delineation of small-scale spatial distributions of porosity and permeability. Multiphase displacement experiments were conducted with micromodels constructed using thin slabs of the sandstones. The combination of the CT scanning, thin section, and micromodel techniques enables the investigation of how variations in pore characteristics influence fluid front advancement, fluid distributions, and fluid trapping. Plugs cut from the sandstone samples were investigated using high resolution nuclear magnetic resonance imaging permitting the visualization of oil, water or both within individual pores. The application of these insights will aid in the proper interpretation of relative permeability, capillary pressure, and electrical resistivity data obtained from whole core studies. 7 refs., 14 figs., 2 tabs.

  14. Laser ultrasound technique applied in material characterization of thermally sprayed nickel aluminum coatings

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Yang, C. H.; Hsiao, W. T.; Su, C.-Y.

    2012-05-01

    Thermal spraying processing usually uses a nickel-aluminum alloy system as the major powder due to its strong adhesion to substrates. The contents of powder material and the processing parameters used in the spraying process cause material properties of coatings exhibiting a wide variation. This research aims at nondestructive characterization of thermal spraying coatings. A laser-generation/laser-detection laser ultrasound technique (LUT) is used for the measurements of dispersion spectra of surface waves propagating along the coated surfaces. Theoretical model for surface waves propagating along a multi-layered structure with coating and substrate is used to model the sprayed coatings. An inversion algorithm based on Shuffled Complex Evolution (SCE-UA) is used to extract mechanical properties from the measured dispersion spectra cooperating with theoretical model. Three coatings with different sprayed powders and powder processing are investigated. Results indicate that substantial linear scatterings are observed for the inverted properties due to the measured dispersion spectra with limited bandwidth inherited from the relatively high attenuations. The slope of linear scattering can be used to distinguish the coating properties. The ANiBNb sample with ball-milled coating has the best properties based on its highest velocity and least attenuation. This method is potentially useful to characterize the mechanical properties of thermally spraying coating in a nondestructive way.

  15. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.

    2016-01-01

    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  16. Modern Chemistry Techniques Applied to Metal Behavior and Chelation in Medical and Environmental Systems ? Final Report

    SciTech Connect

    Sutton, M; Andresen, B; Burastero, S R; Chiarappa-Zucca, M L; Chinn, S C; Coronado, P R; Gash, A E; Perkins, J; Sawvel, A M; Szechenyi, S C

    2005-02-03

    This report details the research and findings generated over the course of a 3-year research project funded by Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development (LDRD). Originally tasked with studying beryllium chemistry and chelation for the treatment of Chronic Beryllium Disease and environmental remediation of beryllium-contaminated environments, this work has yielded results in beryllium and uranium solubility and speciation associated with toxicology; specific and effective chelation agents for beryllium, capable of lowering beryllium tissue burden and increasing urinary excretion in mice, and dissolution of beryllium contamination at LLNL Site 300; {sup 9}Be NMR studies previously unstudied at LLNL; secondary ionization mass spec (SIMS) imaging of beryllium in spleen and lung tissue; beryllium interactions with aerogel/GAC material for environmental cleanup. The results show that chelator development using modern chemical techniques such as chemical thermodynamic modeling, was successful in identifying and utilizing tried and tested beryllium chelators for use in medical and environmental scenarios. Additionally, a study of uranium speciation in simulated biological fluids identified uranium species present in urine, gastric juice, pancreatic fluid, airway surface fluid, simulated lung fluid, bile, saliva, plasma, interstitial fluid and intracellular fluid.

  17. Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.

    2012-01-01

    Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.

  18. Comparison of motion correction techniques applied to functional near-infrared spectroscopy data from children.

    PubMed

    Hu, Xiao-Su; Arredondo, Maria M; Gomba, Megan; Confer, Nicole; DaSilva, Alexandre F; Johnson, Timothy D; Shalinsky, Mark; Kovelman, Ioulia

    2015-01-01

    Motion artifacts are the most significant sources of noise in the context of pediatric brain imaging designs and data analyses, especially in applications of functional near-infrared spectroscopy (fNIRS), in which it can completely affect the quality of the data acquired. Different methods have been developed to correct motion artifacts in fNIRS data, but the relative effectiveness of these methods for data from child and infant subjects (which is often found to be significantly noisier than adult data) remains largely unexplored. The issue is further complicated by the heterogeneity of fNIRS data artifacts. We compared the efficacy of the six most prevalent motion artifact correction techniques with fNIRS data acquired from children participating in a language acquisition task, including wavelet, spline interpolation, principal component analysis, moving average (MA), correlation-based signal improvement, and combination of wavelet and MA. The evaluation of five predefined metrics suggests that the MA and wavelet methods yield the best outcomes. These findings elucidate the varied nature of fNIRS data artifacts and the efficacy of artifact correction methods with pediatric populations, as well as help inform both the theory and practice of optical brain imaging analysis.

  19. Percutaneous implantation of gastric electrodes - a novel technique applied in animals and in patients.

    PubMed

    Elfvin, A; Andersson, S; Abrahamsson, H; Edebo, A; Simrén, M; Lönroth, H

    2007-02-01

    Temporary electrodes implanted under general anaesthesia, or via an oral or percutaneous endoscopic gastrostomy route have been used for testing of gastric electrical stimulation (GES). We have developed a principle for percutaneous electrode implantation. Leads were constructed so that the tip could be anchored to the gastric submucosa under gastroscopic control. Acute experiments were performed in anaesthetized pigs. Three patients referred for nausea and/or vomiting and non-established indications for GES (chronic intestinal pseudo-obstruction, functional dyspepsia without gastroparesis) were evaluated. Electrode function was tested by recording and stimulation techniques. In the pigs, a slow-wave (SW) rhythm (3 min(-1)) was recorded with decrease in frequency at the end of the experiments. In the patients, implantation time from start of gastroscopy to end of electrode placement was 12-20 min. Electrode distance varied from 12 to 45 mm. Gastric electromyography showed a regular SW rhythm of about 3 min(-1). Antral pressure waves had intervals being multiples of the SW-to-SW time. With temporary GES for 7-9 days, weekly frequency of the referral symptoms decreased >80% in two patients and 33% in one patient. Temporary percutaneous gastric leads can easily be implanted and may be used for testing of GES and study of gastric electrophysiology. PMID:17244164

  20. Hyperspectral imaging techniques applied to the monitoring of wine waste anaerobic digestion process

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Fabbri, Andrea; Bonifazi, Giuseppe

    2012-11-01

    An anaerobic digestion process, finalized to biogas production, is characterized by different steps involving the variation of some chemical and physical parameters related to the presence of specific biomasses as: pH, chemical oxygen demand (COD), volatile solids, nitrate (NO3-) and phosphate (PO3-). A correct process characterization requires a periodical sampling of the organic mixture in the reactor and a further analysis of the samples by traditional chemical-physical methods. Such an approach is discontinuous, time-consuming and expensive. A new analytical approach based on hyperspectral imaging in the NIR field (1000 to 1700 nm) is investigated and critically evaluated, with reference to the monitoring of wine waste anaerobic digestion process. The application of the proposed technique was addressed to identify and demonstrate the correlation existing, in terms of quality and reliability of the results, between "classical" chemical-physical parameters and spectral features of the digestate samples. Good results were obtained, ranging from a R2=0.68 and a RMSECV=12.83 mg/l for nitrate to a R2=0.90 and a RMSECV=5495.16 mg O2/l for COD. The proposed approach seems very useful in setting up innovative control strategies allowing for full, continuous control of the anaerobic digestion process.