Science.gov

Sample records for scan detects quantitative

  1. Whole genome scan to detect quantitative trait loci for bovine milk protein composition.

    PubMed

    Schopen, G C B; Koks, P D; van Arendonk, J A M; Bovenhuis, H; Visker, M H P W

    2009-08-01

    The objective of this study was to perform a whole genome scan to detect quantitative trait loci (QTL) for milk protein composition in 849 Holstein-Friesian cows originating from seven sires. One morning milk sample was analysed for the major milk proteins using capillary zone electrophoresis. A genetic map was constructed with 1341 single nucleotide polymorphisms, covering 2829 centimorgans (cM) and 95% of the cattle genome. The chromosomal regions most significantly related to milk protein composition (P(genome) < 0.05) were found on Bos taurus autosomes (BTA) 6, 11 and 14. The QTL on BTA6 was found at about 80 cM, and affected alpha(S1)-casein, alpha(S2)-casein, beta-casein and kappa-casein. The QTL on BTA11 was found at 124 cM, and affected beta-lactoglobulin, and the QTL on BTA14 was found at 0 cM, and affected protein percentage. The proportion of phenotypic variance explained by the QTL was 3.6% for beta-casein and 7.9% for kappa-casein on BTA6, 28.3% for beta-lactoglobulin on BTA11, and 8.6% for protein percentage on BTA14. The QTL affecting alpha(S2)-casein on BTA6 and 17 showed a significant interaction. We investigated the extent to which the detected QTL affecting milk protein composition could be explained by known polymorphisms in beta-casein, kappa-casein, beta-lactoglobulin and DGAT1 genes. Correction for these polymorphisms decreased the proportion of phenotypic variance explained by the QTL previously found on BTA6, 11 and 14. Thus, several significant QTL affecting milk protein composition were found, of which some QTL could partially be explained by polymorphisms in milk protein genes.

  2. An exploratory method to detect tephras from quantitative XRD scans: Examples from Iceland and east Greenland marine sediments

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.; Kristjansdottir, G.B.

    2006-01-01

    Tephras, mainly from Iceland, are becoming increasingly important in interpreting leads and lags in the Holocene climate system across NW Europe. Here we demonstrate that Quantitative Phase Analysis of x-ray diffractograms of the 150 um fraction and identify these same peaks in XRD scans - two of these correlate geochemically and chronologically with Hekla 1104 and 3. At a distal site to the WNW of Iceland, on the East Greenland margin (core MD99-2317), the weight% of volcanic glass reaches values of 11% at about the time of the Saksunarvatn tephra. The XRD method identifies the presence of volcanic glass but not its elemental composition; hence it will assist in focusing attention on specific sections of sediment cores for subsequent geochemical fingerprinting of tephras. ?? 2006 SAGE Publications.

  3. Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds.

    PubMed

    Sanchez, M P; Govignon-Gion, A; Ferrand, M; Gelé, M; Pourchet, D; Amigues, Y; Fritz, S; Boussaha, M; Capitan, A; Rocha, D; Miranda, G; Martin, P; Brochard, M; Boichard, D

    2016-10-01

    In the context of the PhénoFinLait project, a genome-wide analysis was performed to detect quantitative trait loci (QTL) that affect milk protein composition estimated using mid-infrared spectrometry in the Montbéliarde (MO), Normande (NO), and Holstein (HO) French dairy cattle breeds. The 6 main milk proteins (α-lactalbumin, β-lactoglobulin, and αS1-, αS2-, β-, and κ-caseins) expressed as grams per 100g of milk (% of milk) or as grams per 100g of protein (% of protein) were estimated in 848,068 test-day milk samples from 156,660 cows. Genotyping was performed for 2,773 MO, 2,673 NO, and 2,208 HO cows using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). Individual test-day records were adjusted for environmental effects and then averaged per cow to define the phenotypes analyzed. Quantitative trait loci detection was performed within each breed using a linkage disequilibrium and linkage analysis approach. A total of 39 genomic regions distributed on 20 of the 29 Bos taurus autosomes (BTA) were significantly associated with milk protein composition at a genome-wide level of significance in at least 1 of the 3 breeds. The 9 most significant QTL were located on BTA2 (133 Mbp), BTA6 (38, 47, and 87 Mbp), BTA11 (103 Mbp), BTA14 (1.8 Mbp), BTA20 (32 and 58 Mbp), and BTA29 (8 Mbp). The BTA6 (87 Mbp), BTA11, and BTA20 (58 Mbp) QTL were found in all 3 breeds, and they had highly significant effects on κ-casein, β-lactoglobulin, and α-lactalbumin, expressed as a percentage of protein, respectively. Each of these QTL explained between 13% (BTA14) and 51% (BTA11) of the genetic variance of the trait. Many other QTL regions were also identified in at least one breed. They were located on 14 additional chromosomes (1, 3, 4, 5, 7, 15, 17, 19, 21, 22, 24, 25, 26, and 27), and they explained 2 to 8% of the genetic variance of 1 or more protein composition traits. Concordance analyses, performed between QTL status and sequence-derived polymorphisms from

  4. Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds.

    PubMed

    Sanchez, M P; Govignon-Gion, A; Ferrand, M; Gelé, M; Pourchet, D; Amigues, Y; Fritz, S; Boussaha, M; Capitan, A; Rocha, D; Miranda, G; Martin, P; Brochard, M; Boichard, D

    2016-10-01

    In the context of the PhénoFinLait project, a genome-wide analysis was performed to detect quantitative trait loci (QTL) that affect milk protein composition estimated using mid-infrared spectrometry in the Montbéliarde (MO), Normande (NO), and Holstein (HO) French dairy cattle breeds. The 6 main milk proteins (α-lactalbumin, β-lactoglobulin, and αS1-, αS2-, β-, and κ-caseins) expressed as grams per 100g of milk (% of milk) or as grams per 100g of protein (% of protein) were estimated in 848,068 test-day milk samples from 156,660 cows. Genotyping was performed for 2,773 MO, 2,673 NO, and 2,208 HO cows using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). Individual test-day records were adjusted for environmental effects and then averaged per cow to define the phenotypes analyzed. Quantitative trait loci detection was performed within each breed using a linkage disequilibrium and linkage analysis approach. A total of 39 genomic regions distributed on 20 of the 29 Bos taurus autosomes (BTA) were significantly associated with milk protein composition at a genome-wide level of significance in at least 1 of the 3 breeds. The 9 most significant QTL were located on BTA2 (133 Mbp), BTA6 (38, 47, and 87 Mbp), BTA11 (103 Mbp), BTA14 (1.8 Mbp), BTA20 (32 and 58 Mbp), and BTA29 (8 Mbp). The BTA6 (87 Mbp), BTA11, and BTA20 (58 Mbp) QTL were found in all 3 breeds, and they had highly significant effects on κ-casein, β-lactoglobulin, and α-lactalbumin, expressed as a percentage of protein, respectively. Each of these QTL explained between 13% (BTA14) and 51% (BTA11) of the genetic variance of the trait. Many other QTL regions were also identified in at least one breed. They were located on 14 additional chromosomes (1, 3, 4, 5, 7, 15, 17, 19, 21, 22, 24, 25, 26, and 27), and they explained 2 to 8% of the genetic variance of 1 or more protein composition traits. Concordance analyses, performed between QTL status and sequence-derived polymorphisms from

  5. Sex-specific variability and a 'cage effect' independently mask a neuropathic pain quantitative trait locus detected in a whole genome scan.

    PubMed

    Devor, Marshall; Gilad, Amit; Arbilly, Michal; Nissenbaum, Jonathan; Yakir, Benjamin; Raber, Pnina; Minert, Anne; Pisanté, Anne; Darvasi, Ariel

    2007-08-01

    Sex and environment may dramatically affect genetic studies, and thus should be carefully considered. Beginning with two inbred mouse strains with contrasting phenotype in the neuroma model of neuropathic pain (autotomy), we established a backcross population on which we conducted a genome-wide scan. The backcross population was partially maintained in small social groups and partially in isolation. The genome scan detected one previously reported quantitative trait locus (QTL) on chromosome 15 (pain1), but no additional QTLs were found. Interestingly, group caging introduced phenotypic noise large enough to completely mask the genetic effect of the chromosome 15 QTL. The reason appears to be that group-caging animals from the low-autotomy strain together with animals from the high-autotomy strain dramatically increases autotomy in the otherwise low-autotomy mice (males or females). The converse, suppression of pain behaviour in the high-autotomy strain when caged with the low-autotomy strain was also observed, but only in females. Even in isolated mice, the genetic effect of the chromosome 15 QTL was significant only in females. To determine why, we evaluated autotomy levels of females in 12 different inbred stains of mice and compared them to previously reported levels for males. Strikingly larger environmental variation was observed in males than in females for this pain phenotype. The high baseline variance in males can explain the difficulty in detecting the genetic effect, which was readily seen in females. Our study emphasizes the importance of sex and environment in the genetic analysis of pain.

  6. Quantitative detection of protein arrays.

    PubMed

    Levit-Binnun, Nava; Lindner, Ariel B; Zik, Ory; Eshhar, Zelig; Moses, Elisha

    2003-03-15

    We introduce a quantitative method that utilizes scanning electron microscopy for the analysis of protein chips (SEMPC). SEMPC is based upon counting target-coated gold particles interacting specifically with ligands or proteins arrayed on a derivative microscope glass slide by utilizing backscattering electron detection. As model systems, we quantified the interactions of biotin and streptavidin and of an antibody with its cognate hapten. Our method gives quantitative molecule-counting capabilities with an excellent signal-to-noise ratio and demonstrates a broad dynamic range while retaining easy sample preparation and realistic automation capability. Increased sensitivity and dynamic range are achieved in comparison to currently used array detection methods such as fluorescence, with no signal bleaching, affording high reproducibility and compatibility with miniaturization. Thus, our approach facilitates the determination of the absolute number of molecules bound to the chip rather than their relative amounts, as well as the use of smaller samples.

  7. Quantitative current measurements using scanning magnetoresistance microscopy.

    PubMed

    Takezaki, Taiichi; Sueoka, Kazuhisa

    2008-08-01

    We have demonstrated the capability of scanning magnetoresistance microscope (SMRM) to be used for quantitative current measurements. The SMRM is a magnetic microscope that is based on an atomic force microscope (AFM) and simultaneously measures the localized surface magnetic field distribution and surface topography. The proposed SMRM employs an in-house built AFM cantilever equipped with a miniaturized magnetoresistive (MR) sensor as a magnetic field sensor. In this study, a spin-valve type MR sensor with a width of 1 microm was used to measure the magnetic field distribution induced by a current carrying wire with a width of 5 microm and a spacing of 1.6 microm at room temperature and under ambient conditions. Simultaneous imaging of the magnetic field distribution and the topography was successfully performed in the DC current ranging from 500 microA to 8 mA. The characterized SV sensor, which has a linear response to magnetic fields, offers the quantitative analysis of a magnetic field and current. The measured magnetic field strength was in good agreement with the result simulated using Biot-Savart's law. PMID:18599218

  8. Quantitative optical scanning tests of complex microcircuits

    NASA Technical Reports Server (NTRS)

    Erickson, J. J.

    1980-01-01

    An approach for the development of the optical scanner as a screening inspection instrument for microcircuits involves comparing the quantitative differences in photoresponse images and then correlating them with electrical parameter differences in test devices. The existing optical scanner was modified so that the photoresponse data could be recorded and subsequently digitized. A method was devised for applying digital image processing techniques to the digitized photoresponse data in order to quantitatively compare the data. Electrical tests were performed and photoresponse images were recorded before and following life test intervals on two groups of test devices. Correlations were made between differences or changes in the electrical parameters of the test devices.

  9. Quantitative analysis of CT scans of ceramic candle filters

    SciTech Connect

    Ferer, M.V.; Smith, D.H.

    1996-12-31

    Candle filters are being developed to remove coal ash and other fine particles (<15{mu}m) from hot (ca. 1000 K) gas streams. In the present work, a color scanner was used to digitize hard-copy CT X-ray images of cylindrical SiC filters, and linear regressions converted the scanned (color) data to a filter density for each pixel. These data, with the aid of the density of SiC, gave a filter porosity for each pixel. Radial averages, density-density correlation functions, and other statistical analyses were performed on the density data. The CT images also detected the presence and depth of cracks that developed during usage of the filters. The quantitative data promise to be a very useful addition to the color images.

  10. Genetic analyses and quantitative trait loci detection, using a partial genome scan, for intramuscular fatty acid composition in Scottish Blackface sheep.

    PubMed

    Karamichou, E; Richardson, R I; Nute, G R; Gibson, K P; Bishop, S C

    2006-12-01

    Genetic parameters for LM fatty acid composition were estimated in Scottish Blackface sheep, previously divergently selected for carcass lean content (LEAN and FAT lines). Furthermore, QTL were identified for the same fatty acids. Fatty acid phenotypic measurements were made on 350 male lambs, at approximately 8 mo of age, and 300 of these lambs were genotyped across candidate regions on chromosomes 1, 2, 3, 5, 14, 18, 20, and 21. Fatty acid composition measurements included in total 17 fatty acids of 3 categories: saturated, monounsaturated, and polyunsaturated. Total i.m. fat content was estimated as the sum of the fatty acids. The FAT line had a greater i.m. fat content and more oleic acid, but less linoleic acid (18:2 n-6) and docosapentaenoic acid (22:5 n-3) than did the LEAN line. Saturated fatty acids were moderately heritable, ranging from 0.19 to 0.29, and total SFA were highly heritable (0.90). Monounsaturated fatty acids were moderately to highly heritable, with cis-vaccenic acid (18:1 n-7) being the most heritable (0.67), and total MUFA were highly heritable (0.73). Polyunsaturated fatty acids were also moderately to highly heritable; arachidonic acid (20:4 n-6) and CLA were the most heritable, with values of 0.60 and 0.48, respectively. The total PUFA were moderately heritable (0.40). The QTL analyses were performed using regression interval mapping techniques. In total, 21 chromosome-wide QTL were detected in 6 out of 8 chromosomal regions. The chromosome-wide, significant QTL affected 3 SFA, 5 MUFA, and 13 PUFA. The most significant result was a QTL affecting linolenic acid (18:3 n-3) on chromosome 2. This QTL segregated in 2 of the 9 families and explained 37.6% of the phenotypic variance. Also, 10 significant QTL were identified on chromosome 21, where 8 out of 10 QTL were segregating in the same families and detected at the same position. The results of this study demonstrate that altering carcass fatness will simultaneously change i.m. fat

  11. Optically Detected Scanned Probe Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher; Bhallamudi, Vidya; Wang, Hailong; Du, Chunhui; Manuilov, Sergei; Adur, Rohan; Yang, Fengyuan; Hammel, P. Chris

    2014-03-01

    Magnetic resonance is a powerful tool for studying magnetic properties and dynamics of spin systems. Scanned magnetic probes can induce spatially localized resonance due to the strong magnetic field and gradient near the magnetic tip., Nitrogen vacancy centers (NV) in diamond provide a sensitive means of measuring magnetic fields at the nanoscale. We report preliminary results towards using the high sensitivity of NV detection with a scanned magnetic probe to study local magnetic phenomena. This work is supported by the Center for Emergent Materials at The Ohio State University, a NSF Materials Research Science and Engineering Center (DMR-0820414).

  12. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  13. Object detection in side scan sonar

    NASA Astrophysics Data System (ADS)

    Wang, Wenwu; Cheng, Binbin; Chen, Yao

    2015-12-01

    Automatic target detection is a challenging task as the response from an underwater target may vary greatly depending on its configuration, sonar parameters and the environment. We propose a Z- test algorithm for target detection in side scan sonar image which avoids this problem that covers the variation in the target response. A Z-test is performed on the means of the pixel gray levels within and outside the window area, a detection being called when the value of test statistic feature exceeds a certain threshold. The algorithm is formulated for real-time execution on limited memory commercial-of-the-shelf platforms and is capable of detection objects on the seabed-bottom.

  14. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  15. Circle detection using scan lines and histograms

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Zhang, Feng; Du, Zhenhong; Liu, Renyi

    2013-11-01

    Circle detection is significant in image processing and pattern recognition. We present a new algorithm for detecting circles, which is based on the global geometric symmetry of circles. First, the horizontal and vertical midpoint histograms of the edge image are obtained by using scan lines. Then, we apply the peak-finding algorithm to the midpoint histograms to look for the center of the circle. The normalized radius histogram is finally used to verify the existence of the circle and extract its radius. Synthetic images with different levels of pepper noise and real images containing several circles have been taken to test the performance. Experimental results demonstrate that the proposed algorithm has the advantage of computational efficiency as compared with the randomized Hough transform and some other algorithms.

  16. Effects of instrument imperfections on quantitative scanning transmission electron microscopy.

    PubMed

    Krause, Florian F; Schowalter, Marco; Grieb, Tim; Müller-Caspary, Knut; Mehrtens, Thorsten; Rosenauer, Andreas

    2016-02-01

    Several instrumental imperfections of transmission electron microscopes are characterized and their effects on the results of quantitative scanning electron microscopy (STEM) are investigated and quantified using simulations. Methods to either avoid influences of these imperfections during acquisition or to include them in reference calculations are proposed. Particularly, distortions inflicted on the diffraction pattern by an image-aberration corrector can cause severe errors of more than 20% if not accounted for. A procedure for their measurement is proposed here. Furthermore, afterglow phenomena and nonlinear behavior of the detector itself can lead to incorrect normalization of measured intensities. Single electrons accidentally impinging on the detector are another source of error but can also be exploited for threshold-less calibration of STEM images to absolute dose, incident beam current determination and measurement of the detector sensitivity.

  17. Synchronous scanning luminescence: methods to detect pesticides and explosives

    NASA Astrophysics Data System (ADS)

    Hyfantis, George J., Jr.; Teglas, Matthew S.; Finnegan, Timothy P.; Mulligan, Patrick J.; Watts, Wendi

    1999-12-01

    The Synchronous Scanning Luminoscope (SSL) is a field- portable, synchronous luminescence spectrofluorometer that was developed for on-site analysis of contaminated soil and ground water. The SSL is capable of quantitative analysis of pesticides and explosives using phosphorescence and fluorescence techniques with a high correlation to laboratory data as illustrated by these studies. These techniques allow for rapid field assessments for pesticides and explosives. The Luminoscope is capable of detecting pesticides and explosives to the parts per billion (ppb) range. This paper describes standard field methods for using the SSL and describes the results of field/laboratory testing of explosives and pesticides.

  18. Qualitative and quantitative processing of side-scan sonar data

    SciTech Connect

    Dwan, F.S.; Anderson, A.L.; Hilde, T.W.C. )

    1990-06-01

    Modern side-scan sonar systems allow vast areas of seafloor to be rapidly imaged and quantitatively mapped in detail. The application of remote sensing image processing techniques can be used to correct for various distortions inherent in raw sonography. Corrections are possible for water column, slant-range, aspect ratio, speckle and striping noise, multiple returns, power drop-off, and for georeferencing. The final products reveal seafloor features and patterns that are geometrically correct, georeferenced, and have improved signal/noise ratio. These products can be merged with other georeferenced data bases for further database management and information extraction. In order to compare data collected by different systems from a common area and to ground truth measurements and geoacoustic models, quantitative correction must be made for calibrated sonar system and bathymetry effects. Such data inversion must account for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area, and grazing angle effects. Seafloor classification can then be performed on the calculated back-scattering strength using Lambert's Law and regression analysis. Examples are given using both approaches: image analysis and inversion of data based on the sonar equation.

  19. Factors influencing quantitative liquid (scanning) transmission electron microscopy.

    PubMed

    Abellan, P; Woehl, T J; Parent, L R; Browning, N D; Evans, J E; Arslan, I

    2014-05-18

    One of the experimental challenges in the study of nanomaterials in liquids in the (scanning) transmission electron microscope ((S)TEM) is gaining quantitative information. A successful experiment in the fluid stage will depend upon the ability to plan for sensitive factors such as the electron dose applied, imaging mode, acceleration voltage, beam-induced solution chemistry changes, and the specifics of solution reactivity. In this paper, we make use of a visual approach to show the extent of damage of different instrumental and experimental factors in liquid samples imaged in the (S)TEM. Previous results as well as new insights are presented to create an overview of beam-sample interactions identified for changing imaging and experimental conditions. This work establishes procedures to understand the effect of the electron beam on a solution, provides information to allow for a deliberate choice of the optimal experimental conditions to enable quantification, and identifies the experimental factors that require further analysis for achieving fully quantitative results in the liquid (S)TEM.

  20. Automatic change detection using mobile laser scanning

    NASA Astrophysics Data System (ADS)

    Hebel, M.; Hammer, M.; Gordon, M.; Arens, M.

    2014-10-01

    Automatic change detection in 3D environments requires the comparison of multi-temporal data. By comparing current data with past data of the same area, changes can be automatically detected and identified. Volumetric changes in the scene hint at suspicious activities like the movement of military vehicles, the application of camouflage nets, or the placement of IEDs, etc. In contrast to broad research activities in remote sensing with optical cameras, this paper addresses the topic using 3D data acquired by mobile laser scanning (MLS). We present a framework for immediate comparison of current MLS data to given 3D reference data. Our method extends the concept of occupancy grids known from robot mapping, which incorporates the sensor positions in the processing of the 3D point clouds. This allows extracting the information that is included in the data acquisition geometry. For each single range measurement, it becomes apparent that an object reflects laser pulses in the measured range distance, i.e., space is occupied at that 3D position. In addition, it is obvious that space is empty along the line of sight between sensor and the reflecting object. Everywhere else, the occupancy of space remains unknown. This approach handles occlusions and changes implicitly, such that the latter are identifiable by conflicts of empty space and occupied space. The presented concept of change detection has been successfully validated in experiments with recorded MLS data streams. Results are shown for test sites at which MLS data were acquired at different time intervals.

  1. Optimal handling of dimercaptosuccinic acid for quantitative renal scanning

    SciTech Connect

    Taylor, A. Jr.; Lallone, R.L.; Hagan, P.L.

    1980-12-01

    Methods of optimizing quantitative renal imaging with Tc-99m dimercaptosuccinic acid (DMSA) were investigated. Rats were injected with DMSA (one kit per rat) and sacrificed at 0.5, 2.0, and 24 hr after injection. Fifty percent of the injected dose localized in the kidneys at 0.5, 2, and 24 hr after injection while background activity peaked at 0.5 hr and then declined to give substantially higher kidney-to-background ratios at 24 hr. Delayed scanning should increase the accuracy of clinical studies in patients with low kidney-to-background ratios at 1 to 2 hr. After injection of DMSA, 1 ml of air was introduced into the reaction vials and incubated 20 min. Kidney uptake decreased from 50 to 40% and liver uptake increased from 7.5 to 17%. If multiple doses must be drawn from a single vial, air should not be introduced, and the doses should be drawn together and administered immediately to minimize radiopharmaceutical deterioration.

  2. Cancer detection by quantitative fluorescence image analysis.

    PubMed

    Parry, W L; Hemstreet, G P

    1988-02-01

    Quantitative fluorescence image analysis is a rapidly evolving biophysical cytochemical technology with the potential for multiple clinical and basic research applications. We report the application of this technique for bladder cancer detection and discuss its potential usefulness as an adjunct to methods used currently by urologists for the diagnosis and management of bladder cancer. Quantitative fluorescence image analysis is a cytological method that incorporates 2 diagnostic techniques, quantitation of nuclear deoxyribonucleic acid and morphometric analysis, in a single semiautomated system to facilitate the identification of rare events, that is individual cancer cells. When compared to routine cytopathology for detection of bladder cancer in symptomatic patients, quantitative fluorescence image analysis demonstrated greater sensitivity (76 versus 33 per cent) for the detection of low grade transitional cell carcinoma. The specificity of quantitative fluorescence image analysis in a small control group was 94 per cent and with the manual method for quantitation of absolute nuclear fluorescence intensity in the screening of high risk asymptomatic subjects the specificity was 96.7 per cent. The more familiar flow cytometry is another fluorescence technique for measurement of nuclear deoxyribonucleic acid. However, rather than identifying individual cancer cells, flow cytometry identifies cellular pattern distributions, that is the ratio of normal to abnormal cells. Numerous studies by others have shown that flow cytometry is a sensitive method to monitor patients with diagnosed urological disease. Based upon results in separate quantitative fluorescence image analysis and flow cytometry studies, it appears that these 2 fluorescence techniques may be complementary tools for urological screening, diagnosis and management, and that they also may be useful separately or in combination to elucidate the oncogenic process, determine the biological potential of tumors

  3. Brazilian Amazonia Deforestation Detection Using Spatio-Temporal Scan Statistics

    NASA Astrophysics Data System (ADS)

    Vieira, C. A. O.; Santos, N. T.; Carneiro, A. P. S.; Balieiro, A. A. S.

    2012-07-01

    The spatio-temporal models, developed for analyses of diseases, can also be used for others fields of study, including concerns about forest and deforestation. The aim of this paper is to quantitatively check priority areas in order to combat deforestation on the Amazon forest, using the space-time scan statistic. The study area location is at the south of the Amazonas State and cover around 297.183 kilometre squares, including the municipality of Boca do Acre, Labrea, Canutama, Humaita, Manicore, Novo Aripuana e Apui County on the north region of Brazil. This area has showed a significant change for land cover, which has increased the number of deforestation's alerts. Therefore this situation becomes a concern and gets more investigation, trying to stop factors that increase the number of cases in the area. The methodology includes the location and year that deforestation's alert occurred. These deforestation's alerts are mapped by the DETER (Detection System of Deforestation in Real Time in Amazonia), which is carry out by the Brazilian Space Agency (INPE). The software SatScanTM v7.0 was used in order to define space-time permutation scan statistic for detection of deforestation cases. The outcome of this experiment shows an efficient model to detect space-time clusters of deforestation's alerts. The model was efficient to detect the location, the size, the order and characteristics about activities at the end of the experiments. Two clusters were considered actives and kept actives up to the end of the study. These clusters are located in Canutama and Lábrea County. This quantitative spatial modelling of deforestation warnings allowed: firstly, identifying actives clustering of deforestation, in which the environment government official are able to concentrate their actions; secondly, identifying historic clustering of deforestation, in which the environment government official are able to monitoring in order to avoid them to became actives again; and finally

  4. High-speed line-scanning confocal holographic microscopy for quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Knitter, Sebastian; Cong, Zhilong; Sencan, Ikbal; Cao, Hui; Choma, Michael A.

    2016-03-01

    We present a high speed, phase-sensitive, line-scanning reflectance confocal interference microscope. We achieved rapid confocal imaging using a fast line-scan camera and quantitative phase imaging using off-axis digital holography on a 1D, line-by-line basis. In our prototype system, a He-Ne laser (~1.2 mW) was used to demonstrate the principle of operation. Using a 20 kHz line scan rate (1024 pixels per line scan), we achieved a video-rate frame rate of 20 Hz for 1024x500 pixel en-face confocal images (20 MHz total pixel rate). By using an objective lens of a NA 0.65, we achieved an axial and lateral resolution of ~3.5 micrometers and ~0.8 micrometers, respectively. By z-stack imaging of a custom silicon target with a stepped structure, we confirmed that the axial sectioning of the interference microscope is similar to that of a traditional line-scan confocal microscope (our microscope with the reference arm blocked). The utility of phase-sensitive holographic detection in line-scan confocal was demonstrated in two ways. First, using a custom axial height phantom fabricated using chrome deposition, we demonstrated variations in phase corresponding to heights in the 100 nm range with a contrast-to-noise ratio of ~31 dB. Second, we demonstrate digital refocusing of an out-of-focus holographic image. The mechanism of confocality in our line-scan system is 1D physical pinholing. Our ongoing work aims to add an additional mechanism of confocality by using low spatial coherence sources to impose interferometric pinholing.

  5. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy.

    PubMed

    Landa, B B; López-Díaz, C; Jiménez-Fernández, D; Montes-Borrego, M; Muñoz-Ledesma, F J; Ortiz-Urquiza, A; Quesada-Moraga, E

    2013-10-01

    Beauveria bassiana strain 04/01-Tip obtained from larvae of the opium poppy stem gall Iraella luteipes endophytically colonizes opium poppy plants and protect it against this pest. Development of a specific, rapid and sensitive technique that allows accurately determining the process and factors leading to the establishment of this strain in opium poppy plants would be essential to achieve its efficient control in a large field scale. For that purpose in the present study, species-specific primers that can be used in conventional or quantitative PCR protocols were developed for specifically identification and detection of B. bassiana in plant tissues. The combination of the designed BB.fw/BB.rv primer set with the universal ITS1-F/ITS4 primer set in a two-step nested-PCR approach, has allowed the amplification of up to 10fg of B. bassiana. This represented an increase in sensitivity of 10000- and 1000-fold of detection than when using the BB.fw/BB.rv primers in a single or single-tube semi-nested PCR approaches, respectively. The BB.fw and BB.rv primer set were subsequently optimized to be used in real time quantitative PCR assays and allowed to accurately quantify B. bassiana DNA in different plant DNA backgrounds (leaves and seeds) without losing accuracy and efficiency. The qPCR protocol was used to monitor the endophytic colonization of opium poppy leaves byB. bassiana after inoculation with the strain EABb 04/01-Tip, detecting as low as 26fg of target DNA in leaves and a decrease in fungal biomass over time. PCR quantification data were supported in parallel with CLMS by the monitoring of spatial and temporal patterns of leaf and stem colonization using a GFP-tagged transformant of the B. bassiana EABb 04/01-Tip strain, which enabled to demonstrate that B. bassiana effectively colonizes aerial tissues of opium poppy plants mainly through intercellular spaces and even leaf trichomes. A decline in endophytic colonization was also observed by the last sampling

  6. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  7. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  8. Variation of quantitative emphysema measurements from CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Henschke, Claudia I.; Barr, R. Graham; Yankelevitz, David F.

    2008-03-01

    Emphysema is a lung disease characterized by destruction of the alveolar air sacs and is associated with long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema, and several measures have been introduced for the quantification of the extent of disease. In this paper we compare these measures for repeatability over time. The measures of interest in this study are emphysema index, mean lung density, histogram percentile, and the fractal dimension. To allow for direct comparisons, the measures were normalized to a 0-100 scale. These measures have been computed for a set of 2,027 scan pairs in which the mean interval between scans was 1.15 years (σ: 93 days). These independent pairs were considered with respect to three different scanning conditions (a) 223 pairs where both were scanned with a 5 mm slice thickness protocol, (b) 695 with the first scanned with the 5 mm protocol and the second with a 1.25 mm protocol, and (c) 1109 pairs scanned both times using a 1.25 mm protocol. We found that average normalized emphysema index and histogram percentiles scores increased by 5.9 and 11 points respectively, while the fractal dimension showed stability with a mean difference of 1.2. We also found, a 7 point bias introduced for emphysema index under condition (b), and that the fractal dimension measure is least affected by scanner parameter changes.

  9. Bone scanning in the detection of occult fractures

    SciTech Connect

    Batillas, J.; Vasilas, A.; Pizzi, W.F.; Gokcebay, T.

    1981-07-01

    The potential role of bone scanning in the early detection of occult fractures following acute trauma was investigated. Technetium 99m pyrophosphate bone scans were obtained in patients with major clinical findings and negative or equivocal roentgenograms following trauma. Bone scanning facilitated the prompt diagnosis of occult fractures in the hip, knee, wrist, ribs and costochondral junctions, sternum, vertebrae, sacrum, and coccyx. Several illustrative cases are presented. Roentgenographic confirmation occurred following a delay of days to weeks and, in some instances, the roentgenographic findings were subtle and could be easily overlooked. This study demonstrates bone scanning to be invaluable and definitive in the prompt detection of occult fractures.

  10. Quantitative local photosynthetic flux measurements at isolated chloroplasts and thylakoid membranes using scanning electrochemical microscopy (SECM).

    PubMed

    McKelvey, Kim; Martin, Sophie; Robinson, Colin; Unwin, Patrick R

    2013-07-01

    Scanning electrochemical microscopy (SECM) offers a fast and quantitative method to measure local fluxes within photosynthesis. In particular, we have measured the flux of oxygen and ferrocyanide (Fe(CN)6(4-)), from the artificial electron acceptor ferricyanide (Fe(CN)6(3-)), using a stationary ultramicroelectrode at chloroplasts and thylakoid membranes (sourced from chloroplasts). Oxygen generation at films of chloroplasts and thylakoid membranes was detected directly during photosynthesis, but in the case of thylakoid membranes, this switched to sustained oxygen consumption at longer illumination times. An initial oxygen concentration spike was detected over both chloroplast and thylakoid membrane films, and the kinetics of the oxygen generation were extracted by fitting the experimental data to a finite element method (FEM) simulation. In contrast to previous work, the oxygen generation spike was attributed to the limited size of the plastoquinone pool, a key component in the linear electron transport pathway and a contributing factor in photoinhibition. Finally, the mobile nature of the SECM probe, and its high spatial resolution, also allowed us to detect ferrocyanide produced from a single thylakoid membrane. These results further demonstrate the power of SECM for localized flux measurements in biological processes, in this case photosynthesis, and that the high time resolution, combined with FEM simulations, allows the elucidation of quantitative kinetic information.

  11. Quantitative flaw characterization with scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.; Roth, D. J.

    1986-01-01

    Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. In accuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.

  12. Quantitative flaw characterization with scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.; Roth, D. J.

    1986-01-01

    Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. Inaccuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.

  13. Towards quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current spreading effects

    SciTech Connect

    Arruda, Thomas M; Kumar, Amit; Veith, Gabriel M; Jesse, Stephen; Tselev, Alexander; Baddorf, Arthur P; Balke, Nina; Kalinin, Sergei V

    2013-01-01

    The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.

  14. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    NASA Astrophysics Data System (ADS)

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-02-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results.

  15. Nonlinear ultrasonic scanning to detect material defects

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1998-01-01

    A method and system are provided to detect defects in a material. Waves of known frequency(ies) are mixed at an interaction zone in the material. As a result, at least one of a difference wave and a sum wave are generated in the interaction zone. The difference wave occurs at a difference frequency and the sum wave occurs at a sum frequency. The amplitude of at least one nonlinear signal based on the sum and/or difference waves is then measured. The nonlinear signal is defined as the amplitude of one of the difference wave and sum wave relative to the product of the amplitude of the surface waves. The amplitude of the nonlinear signal is an indication of defects (e.g., dislocation dipole density) in the interaction zone.

  16. Quantitative impedance characterization of sub-10 nm scale capacitors and tunnel junctions with an interferometric scanning microwave microscope.

    PubMed

    Wang, Fei; Clément, Nicolas; Ducatteau, Damien; Troadec, David; Tanbakuchi, Hassan; Legrand, Bernard; Dambrine, Gilles; Théron, Didier

    2014-10-10

    We present a method to characterize sub-10 nm capacitors and tunnel junctions by interferometric scanning microwave microscopy (iSMM) at 7.8 GHz. At such device scaling, the small water meniscus surrounding the iSMM tip should be reduced by proper tip tuning. Quantitative impedance characterization of attofarad range capacitors is achieved using an 'on-chip' calibration kit facing thousands of nanodevices. Nanoscale capacitors and tunnel barriers were detected through variations in the amplitude and phase of the reflected microwave signal, respectively. This study promises quantitative impedance characterization of a wide range of emerging functional nanoscale devices.

  17. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  18. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins.

    PubMed

    Kong, Dezhao; Liu, Liqiang; Song, Shanshan; Suryoprabowo, Steven; Li, Aike; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2016-03-01

    A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg(-1), and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg(-1), respectively. The quantitative results were obtained using a hand-held strip scan reader, with the calculated limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.04-0.17, 0.06-49, 0.15-0.22, 0.056-0.49 and 0.53-1.05 μg kg(-1), respectively. The analytical results of spiked samples were in accordance with the accurate content in the simultaneous detection analysis. This newly developed ICA strip assay is suitable for the on-site detection and rapid initial screening of mycotoxins in cereal samples, facilitating both semi-quantitative and quantitative determination.

  19. [Quantitative detection of Vibrio vulnificus in seafood].

    PubMed

    Hara-Kud, Yukiko; Miwa, Norinaga; Yamasaki, Syougo; Yatsuyanagi, Jun; Iwade, Yoshito; Takahash, Hajime; Miyasaka, Jiro

    2005-12-01

    To quantify the number of Vibrio vulnificus in shellfish, we compared the most probable number (MPN) combined with a culture (MPN-culture) or polymerase-chain reaction (PCR) assay (MPN-PCR) to a quantitative PCR assay. Enrichment in alkaline peptone water by MPN was conducted at 25 and 35 degrees C. Enrichment at 35 degrees C was superior or similar to enrichment at 25 degrees C in over 65% of samples by MPNculture and in more than 75% of samples by MPN-PCR assay. V. vulnificus was more easily isolated on chromogenic agar medium during culture, MPN-PCR assay was superior or similar to MPNculture in over 90% of samples by enrichment at 25 degrees C and to over 88% of samples by enrichment at 35 degrees C. The number of V. vulnificus by quantitative PCR assay was similar to that of MPN-PCR assay in 6 of 8 samples but not from MPNculture. V. vulnificus contamination was frequently detected in samples from Kyushu Island.

  20. Low-dose radioisotope scanning and quantitative analysis in the diagnosis of congenital hypothyroidism.

    PubMed Central

    O'Connor, M K; Freyne, P J; Cullen, M J

    1982-01-01

    Quantitative thyroid scanning using low doses of 99mTc sodium pertechnetate (1.85-3.7 MBq) was performed in 38 cases of congenital hypothyroidism. Of these 38 cases, 29 were scanned at 14 +/- 6 days old, and 9 at 1 year old. The scans show the full range of gland anatomy from athyreotic to normal. All morphologically normal scans had grossly increased uptakes of 99mTc. The incidence of the various thyroid anatomies was different in each age group. The average radiation dose to the thyroid was 2.29 mGy, with at least 70% of patients receiving a dose of 3.0 mGy or less. Such low doses of 99mTc should allow further scanning in later life. Neonatal thyroid scanning reveals the aetiology of congenital hypothyroidism and enables the clinician to assess the short- and long-term needs of the child. Images Fig. 1 PMID:6285837

  1. Fluorescence detection in capillary arrays based on galvanometer step scanning.

    PubMed

    Xue, G; Yeung, E S

    2001-10-01

    A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluoresceins is 3 x 10(-11) M (S/N = 3) for 5 mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  2. Fluorescence detection in capillary arrays based on galvanometer step scanning.

    PubMed

    Xue, G; Yeung, E S

    2001-10-01

    A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluoresceins is 3 x 10(-11) M (S/N = 3) for 5 mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission. PMID:11669531

  3. Quantitative measurement of piezoelectric coefficient of thin film using a scanning evanescent microwave microscope

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenli; Luo, Zhenlin; Liu, Chihui; Wu, Wenbin; Gao, Chen; Lu, Yalin

    2008-06-01

    This article describes a new approach to quantitatively measure the piezoelectric coefficients of thin films at the microscopic level using a scanning evanescent microwave microscope. This technique can resolve 10pm deformation caused by the piezoelectric effect and has the advantages of high scanning speed, large scanning area, submicron spatial resolution, and a simultaneous accessibility to many other related properties. Results from the test measurements on the longitudinal piezoelectric coefficient of PZT thin film agree well with those from other techniques listed in literatures.

  4. PE-CMOS based C-scan ultrasound for foreign object detection in soft tissue.

    PubMed

    Liu, Chu-Chuan; Lo, Shih-Chung Ben; Freedman, Matthew T; Lasser, Marvin E; Kula, John; Sarcone, Anita; Wang, Yue

    2010-01-01

    In this paper, we introduce a C-scan ultrasound prototype and three imaging modalities for the detection of foreign objects inserted in porcine soft tissue. The object materials include bamboo, plastics, glass and aluminum alloys. The images of foreign objects were acquired using the C-scan ultrasound, a portable B-scan ultrasound, film-based radiography, and computerized radiography. The C-scan ultrasound consists of a plane wave transducer, a compound acoustic lens system, and a newly developed ultrasound sensor array based on the complementary metal-oxide semiconductor coated with piezoelectric material (PE-CMOS). The contrast-to-noise ratio (CNR) of the images were analyzed to quantitatively evaluate the detectability using different imaging modalities. The experimental results indicate that the C-scan prototype has better CNR values in 4 out of 7 objects than other modalities. Specifically, the C-scan prototype provides more detail information of the soft tissues without the speckle artifacts that are commonly seen with conventional B-scan ultrasound, and has the same orientation as the standard radiographs but without ionizing radiation.

  5. Optical digital coherent detection technology enabled flexible and ultra-fast quantitative phase imaging.

    PubMed

    Feng, Yuan-Hua; Lu, Xing; Song, Lu; Guo, Xiaojie; Wang, Yawei; Zhu, Linyan; Sui, Qi; Li, Jianping; Shi, Kebin; Li, Zhaohui

    2016-07-25

    Quantitative phase imaging has been an important labeling-free microscopy modality for many biomedical and material science applications. In which, ultra-fast quantitative phase imaging is indispensable for dynamic or transient characteristics analysis. Conventional wide field optical interferometry is a common scheme for quantitative phase imaging, while its data acquisition rate is usually hindered by the frame rate of arrayed detector. By utilizing novel balanced-photo-detector based digital optics coherent detection techniques, we report on a method of constructing ultra-fast quantitative phase microscopy at the line-scan rate of 100 MHz with ~2 μm spatial resolution. PMID:27464166

  6. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  7. Detecting damage in vibrating structures with a scanning LDV

    NASA Astrophysics Data System (ADS)

    Khan, A. Z.; Stanbridge, A. B.; Ewins, D. J.

    1999-12-01

    It has been demonstrated, through experiments on laboratory-scale structures, that structural defects such as cracks can be detected and located using a continuously scanning laser Doppler vibrometer (LDV) if vibration sufficient to flex the defect can be induced and if the defects are such as to produce localised mode shape discontinuities. This paper describes such a method of defect detection using a short linear scan at the crack location. Through-cracks are easily detected in thin metal plates whereas narrow slots in a solid cantilever beam have no easily identifiable effect unless they extend more than half-way through the thickness. Cracks in a reinforced-concrete beam introduced marked and identifiable discontinuities in mode shapes. Speckle noise affects the measurements, sometimes seriously. A simple low-pass filter may improve the signal quality.

  8. A genome scan for quantitative trait loci affecting resistance to Trichostrongylus colubriformis in sheep.

    PubMed

    Beh, K J; Hulme, D J; Callaghan, M J; Leish, Z; Lenane, I; Windon, R G; Maddox, J F

    2002-04-01

    A genome linkage scan was carried out using a resource flock of 1029 sheep in six half-sib families. The families were offspring of sires derived by crossing divergent lines of sheep selected for response to challenge with the intestinal parasitic nematode Trichostrongylus colubriformis. All animals in the resource flock were phenotypically assessed for worm resistance soon after weaning using a vaccination/challenge regime. After correcting for fixed effects using a least squares linear model the faecal egg count data obtained following the first challenge and the faecal egg count data obtained after the second challenge were designated Trait 1 and Trait 2, respectively. A total of 472 lambs drawn from the phenotypic extremes of the Trait 2 faecal egg count distribution were genotyped with a panel of 133 microsatellite markers covering all 26 sheep autosomes. Detection of quantitative trait loci (QTL) for each of the faecal egg count traits was determined using interval analysis with the Animap program with recombination rates between markers derived from an existing marker map. No chromosomal regions attained genome-wide significance for QTL influencing either of the traits. However, one region attained chromosome-wide significance and five other regions attained point-wise significance for the presence of QTL affecting parasite resistance.

  9. Colitis detection on abdominal CT scans by rich feature hierarchies

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Lay, Nathan; Wei, Zhuoshi; Lu, Le; Kim, Lauren; Turkbey, Evrim; Summers, Ronald M.

    2016-03-01

    Colitis is inflammation of the colon due to neutropenia, inflammatory bowel disease (such as Crohn disease), infection and immune compromise. Colitis is often associated with thickening of the colon wall. The wall of a colon afflicted with colitis is much thicker than normal. For example, the mean wall thickness in Crohn disease is 11-13 mm compared to the wall of the normal colon that should measure less than 3 mm. Colitis can be debilitating or life threatening, and early detection is essential to initiate proper treatment. In this work, we apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals to detect potential colitis on CT scans. Our method first generates around 3000 category-independent region proposals for each slice of the input CT scan using selective search. Then, a fixed-length feature vector is extracted from each region proposal using a CNN. Finally, each region proposal is classified and assigned a confidence score with linear SVMs. We applied the detection method to 260 images from 26 CT scans of patients with colitis for evaluation. The detection system can achieve 0.85 sensitivity at 1 false positive per image.

  10. Improved detection of differentially expressed genes in microarray experiments through multiple scanning and image integration

    PubMed Central

    Romualdi, Chiara; Trevisan, Silvia; Celegato, Barbara; Costa, Germano; Lanfranchi, Gerolamo

    2003-01-01

    The variability of results in microarray technology is in part due to the fact that independent scans of a single hybridised microarray give spot images that are not quite the same. To solve this problem and turn it to our advantage, we introduced the approach of multiple scanning and of image integration of microarrays. To this end, we have developed specific software that creates a virtual image that statistically summarises a series of consecutive scans of a microarray. We provide evidence that the use of multiple imaging (i) enhances the detection of differentially expressed genes; (ii) increases the image homogeneity; and (iii) reveals false-positive results such as differentially expressed genes that are detected by a single scan but not confirmed by successive scanning replicates. The increase in the final number of differentially expressed genes detected in a microarray experiment with this approach is remarkable; 50% more for microarrays hybridised with targets labelled by reverse transcriptase, and 200% more for microarrays developed with the tyramide signal amplification (TSA) technique. The results have been confirmed by semi-quantitative RT–PCR tests. PMID:14627839

  11. Computer-aided quantitative bone scan assessment of prostate cancer treatment response

    PubMed Central

    Brown, Matthew S.; Chu, Gregory H.; Kim, Hyun J.; Allen-Auerbach, Martin; Poon, Cheryce; Bridges, Juliette; Vidovic, Adria; Ramakrishna, Bharath; Ho, Judy; Morris, Michael J.; Larson, Steven M.; Scher, Howard I.; Goldin, Jonathan G.

    2012-01-01

    Objective The development and evaluation of a computer-aided bone scan analysis technique to quantify changes in tumor burden and assess treatment effects in prostate cancer clinical trials. Methods We have developed and report on a commercial fully automated computer-aided detection system. Using this system, scan images were intensity normalized, then lesions identified and segmented by anatomic region-specific intensity thresholding. Detected lesions were compared against expert markings to assess the accuracy of the computer-aided detection system. The metrics Bone Scan Lesion Area, Bone Scan Lesion Intensity, and Bone Scan Lesion Count were calculated from identified lesions, and their utility in assessing treatment effects was evaluated by analyzing before and after scans from metastatic castration-resistant prostate cancer patients: 10 treated and 10 untreated. In this study, patients were treated with cabozantinib, a MET/VEGF inhibitor resulting in high rates of resolution of bone scan abnormalities. Results Our automated computer-aided detection system identified bone lesion pixels with 94% sensitivity, 89% specificity, and 89% accuracy. Significant differences in changes from baseline were found between treated and untreated groups in all assessed measurements derived by our system. The most significant measure, Bone Scan Lesion Area, showed a median (interquartile range) change from baseline at week 6 of 7.13% (27.61) in the untreated group compared with −73.76% (45.38) in the cabozantinib-treated group (P = 0.0003). Conclusions Our system accurately and objectively identified and quantified metastases in bone scans, allowing for interpatient and intrapatient comparison. It demonstrates potential as an objective measurement of treatment effects, laying the foundation for validation against other clinically relevant outcome measures. PMID:22367858

  12. Quantitative gallium 67 lung scan to assess the inflammatory activity in the pneumoconioses

    SciTech Connect

    Bisson, G.; Lamoureux, G.; Begin, R.

    1987-01-01

    Gallium 67 lung scan has recently become increasingly used to evaluate the biological activity of alveolitis of interstitial lung diseases and to stage the disease process. In order to have a more precise and objective indicator of the inflammatory activity in the lung, we and others have developed computer-based quantitative techniques to process the /sup 67/Ga scan. In this report, we compare the results of three such computer-based methods of analysis of the scans of 38 normal humans and 60 patients suspected to have pneumoconiosis. Results of previous investigations on the mechanisms of /sup 67/Ga uptake in interstitial lung disease are reviewed. These data strengthen the view that quantitative /sup 67/Ga lung scan has become a standard technique to assess inflammatory activity in the interstitial lung diseases and that computer-based method of analysis of the scan provides an index of inflammatory activity of the lung disease that correlates with lung lavage and biopsy indices of inflammation in the lung tissue. 51 references.

  13. Street environment change detection from mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Xiao, Wen; Vallet, Bruno; Brédif, Mathieu; Paparoditis, Nicolas

    2015-09-01

    Mobile laser scanning (MLS) has become a popular technique for road inventory, building modelling, infrastructure management, mobility assessment, etc. Meanwhile, due to the high mobility of MLS systems, it is easy to revisit interested areas. However, change detection using MLS data of street environment has seldom been studied. In this paper, an approach that combines occupancy grids and a distance-based method for change detection from MLS point clouds is proposed. Unlike conventional occupancy grids, our occupancy-based method models space based on scanning rays and local point distributions in 3D without voxelization. A local cylindrical reference frame is presented for the interpolation of occupancy between rays according to the scanning geometry. The Dempster-Shafer theory (DST) is utilized for both intra-data evidence fusion and inter-data consistency assessment. Occupancy of reference point cloud is fused at the location of target points and then the consistency is evaluated directly on the points. A point-to-triangle (PTT) distance-based method is combined to improve the occupancy-based method. Because it is robust to penetrable objects, e.g. vegetation, which cause self-conflicts when modelling occupancy. The combined method tackles irregular point density and occlusion problems, also eliminates false detections on penetrable objects.

  14. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins

    NASA Astrophysics Data System (ADS)

    Kong, Dezhao; Liu, Liqiang; Song, Shanshan; Suryoprabowo, Steven; Li, Aike; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2016-02-01

    A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan reader, with the calculated limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.04-0.17, 0.06-49, 0.15-0.22, 0.056-0.49 and 0.53-1.05 μg kg-1, respectively. The analytical results of spiked samples were in accordance with the accurate content in the simultaneous detection analysis. This newly developed ICA strip assay is suitable for the on-site detection and rapid initial screening of mycotoxins in cereal samples, facilitating both semi-quantitative and quantitative determination.A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan

  15. Fast and Accurate Detection of Multiple Quantitative Trait Loci

    PubMed Central

    Nettelblad, Carl; Holmgren, Sverker

    2013-01-01

    Abstract We present a new computational scheme that enables efficient and reliable quantitative trait loci (QTL) scans for experimental populations. Using a standard brute-force exhaustive search effectively prohibits accurate QTL scans involving more than two loci to be performed in practice, at least if permutation testing is used to determine significance. Some more elaborate global optimization approaches, for example, DIRECT have been adopted earlier to QTL search problems. Dramatic speedups have been reported for high-dimensional scans. However, since a heuristic termination criterion must be used in these types of algorithms, the accuracy of the optimization process cannot be guaranteed. Indeed, earlier results show that a small bias in the significance thresholds is sometimes introduced. Our new optimization scheme, PruneDIRECT, is based on an analysis leading to a computable (Lipschitz) bound on the slope of a transformed objective function. The bound is derived for both infinite- and finite-size populations. Introducing a Lipschitz bound in DIRECT leads to an algorithm related to classical Lipschitz optimization. Regions in the search space can be permanently excluded (pruned) during the optimization process. Heuristic termination criteria can thus be avoided. Hence, PruneDIRECT has a well-defined error bound and can in practice be guaranteed to be equivalent to a corresponding exhaustive search. We present simulation results that show that for simultaneous mapping of three QTLS using permutation testing, PruneDIRECT is typically more than 50 times faster than exhaustive search. The speedup is higher for stronger QTL. This could be used to quickly detect strong candidate eQTL networks. PMID:23919387

  16. X-Ray Scan Detection for Cargo Integrity

    SciTech Connect

    Valencia, Juan D.; Miller, Steven D.

    2011-04-18

    ABSTRACT The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL’s prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels. Keywords: Radiation, Scan, X-ray, Gamma, Detection, Cargo, Container, Wireless, RF

  17. Detection of windthrown trees using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Nyström, Mattias; Holmgren, Johan; Fransson, Johan E. S.; Olsson, Håkan

    2014-08-01

    In this study, a method has been developed for the detection of windthrown trees under a forest canopy, using the difference between two elevation models created from the same high density (65 points/m2) airborne laser scanning data. The difference image showing objects near the ground was created by subtracting a standard digital elevation model (DEM) from a more detailed DEM created using an active surface algorithm. Template matching was used to automatically detect windthrown trees in the difference image. The 54 ha study area is located in hemi-boreal forest in southern Sweden (Lat. 58°29‧ N, Long. 13°38‧ E) and is dominated by Norway spruce (Picea abies) with 3.5% deciduous species (mostly birch) and 1.7% Scots pine (Pinus sylvestris). The result was evaluated using 651 field measured windthrown trees. At individual tree level, the detection rate was 38% with a commission error of 36%. Much higher detection rates were obtained for taller trees; 89% of the trees taller than 27 m were detected. For pine the individual tree detection rate was 82%, most likely due to the more easily visible stem and lack of branches. When aggregating the results to 40 m square grid cells, at least one tree was detected in 77% of the grid cells which according to the field measurements contained one or more windthrown trees.

  18. Quantitative imaging of tissue sections using infrared scanning technology.

    PubMed

    Eaton, Samantha L; Cumyn, Elizabeth; King, Declan; Kline, Rachel A; Carpanini, Sarah M; Del-Pozo, Jorge; Barron, Rona; Wishart, Thomas M

    2016-01-01

    Quantification of immunohistochemically (IHC) labelled tissue sections typically yields semi-quantitative results. Visualising infrared (IR) 'tags', with an appropriate scanner, provides an alternative system where the linear nature of the IR fluorophore emittance enables realistic quantitative fluorescence IHC (QFIHC). Importantly, this new technology enables entire tissue sections to be scanned, allowing accurate area and protein abundance measurements to be calculated from rapidly acquired images. Here, some of the potential benefits of using IR-based tissue imaging are examined, and the following are demonstrated. Firstly, image capture and analysis using IR-based scanning technology yields comparable area-based quantification to those obtained from a modern high-resolution digital slide scanner. Secondly, IR-based dual target visualisation and expression-based quantification is rapid and simple. Thirdly, IR-based relative protein abundance QIHC measurements are an accurate reflection of tissue sample protein abundance, as demonstrated by comparison with quantitative fluorescent Western blotting data. In summary, it is proposed that IR-based QFIHC provides an alternative method of rapid whole-tissue section low-resolution imaging for the production of reliable and accurate quantitative data.

  19. Minimum Detectable Activity for Tomographic Gamma Scanning System

    SciTech Connect

    Venkataraman, Ram; Smith, Susan; Kirkpatrick, J. M.; Croft, Stephen

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographic Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose activities

  20. Improved Detection Sensitivity of Line-Scanning Optical Coherence Microscopy.

    PubMed

    Chen, Yu; Huang, Shu-Wei; Zhou, Chao; Potsaid, Benjamin; Fujimoto, James G

    2012-05-01

    Optical coherence microscopy (OCM) is a promising technology for high-resolution cellular-level imaging in human tissues. Line-scanning OCM is a new form of OCM that utilizes line-field illumination for parallel detection. In this study, we demonstrate improved detection sensitivity by using an achromatic design for line-field generation. This system operates at 830-nm wavelength with 82-nm bandwidth. The measured axial resolution is 3.9 μm in air (corresponding to ~2.9 μm in tissue), and the transverse resolutions are 2.1 μm along the line-field illumination direction and 1.7 μm perpendicular to line illumination direction. The measured sensitivity is 98 dB with 25 line averages, resulting in an imaging speed of ~2 frames/s (516 lines/s). Real-time, cellular-level imaging of scattering tissues is demonstrated using human-colon specimens.

  1. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  2. Quantitative permeability magnetic resonance imaging in acute ischemic stroke: how long do we need to scan?

    PubMed

    Vidarsson, Logi; Thornhill, Rebecca E; Liu, Fang; Mikulis, David J; Kassner, Andrea

    2009-11-01

    Blood-brain barrier (BBB) permeability estimation with dynamic contrast-enhanced MRI (DCE-MRI) has shown significant potential for predicting hemorrhagic transformation (HT) in patients presenting with acute ischemic stroke (AIS). In this work, the effects of scan duration on quantitative BBB permeability estimates (KPS) were investigated. Data from eight patients (three with HT) aged 37-93 years old were retrospectively studied by directly calculating the standard deviation of KPS as a function of scan time. The uncertainty in KPS was reduced only slightly for a scan time of 3 min and 30 s (4% reduction in P value from .047 to .045). When more than 3 min and 30 s of data were used, quantitative permeability MRI was able to separate those patients who proceeded to HT from those who did not (P value <.05). Our findings indicate that reducing permeability acquisition times is feasible in keeping with the need to maintain time-efficient MR protocols in the setting of AIS.

  3. Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics atomic force microscopy using etched scanning probes.

    PubMed

    Chlanda, Adrian; Rebis, Janusz; Kijeńska, Ewa; Wozniak, Michal J; Rozniatowski, Krzysztof; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof J

    2015-05-01

    Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail.

  4. Quantitative spectroscopic imaging for noninvasive early cancer detection

    PubMed Central

    Yu, Chung-Chieh; Lau, Condon; O’Donoghue, Geoff; Mirkovic, Jelena; McGee, Sasha; Galindo, Luis; Elackattu, Alphi; Stier, Elizabeth; Grillone, Gregory; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2008-01-01

    We report a fully quantitative spectroscopy imaging instrument for wide area detection of early cancer (dysplasia). This instrument provides quantitative maps of tissue biochemistry and morphology, making it a potentially powerful surveillance tool for objective early cancer detection. We describe the design, construction, calibration, and first clinical application of this new system. We demonstrate its accuracy using physical tissue models. We validate its diagnostic ability on a resected colon adenoma, and demonstrate feasibility of in vivo imaging in the oral cavity. PMID:18825262

  5. Quantitative analysis of pulmonary ventilation scans with N-13 nitrogen gas and positron computed tomography

    SciTech Connect

    Senda, M.; Murata, K.; Itoh, H.; Yonekura, Y.; Saji, H.; Torizuka, K.

    1985-05-01

    The authors developed a quantitative method for the analysis of pulmonary ventilation studies using N-13 labeled nitrogen gas and positron computed tomography (PCT). The subject inhales N-13 nitrogen gas diluted with oxygen gas in a closed circuit. When the count rate comes up to the equilibrium in 2 or 4 minutes, the equilibrium phase scan (EQ) is performed for 3 min. Then the radioactive gas is washed out by the room air, during which the washout phase scan (WO) is performed for 5 min. Because nitrogen gas is almost insoluble in blood or tissue, the activity of the alveolus can be described with single compartment model if the dead space is ignored. The authors integrated the equation during the scanning period of EQ or WO, expressed the pixel count in each scan with V and T, and solved the equations simultaneously to obtain V and T. In clinical studies, poorly ventilated regions, which had decreased counts in EQ images, showed normal value in V images. Fibrotic regions showed normal T and decreased V. The authors method yields not only the distribution of alveolar volume which they cannot evaluate in EQ images, but also more accurate regional T values than Stewart-Hamilton method. Thus it is useful for the evaluation of regional pulmonary ventilatory function.

  6. Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.

  7. X-ray scan detection for cargo integrity

    NASA Astrophysics Data System (ADS)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  8. Quantitative thermal imaging of single-walled carbon nanotube devices by scanning Joule expansion microscopy.

    PubMed

    Xie, Xu; Grosse, Kyle L; Song, Jizhou; Lu, Chaofeng; Dunham, Simon; Du, Frank; Islam, Ahmad E; Li, Yuhang; Zhang, Yihui; Pop, Eric; Huang, Yonggang; King, William P; Rogers, John A

    2012-11-27

    Electrical generation of heat in single-walled carbon nanotubes (SWNTs) and subsequent thermal transport into the surroundings can critically affect the design, operation, and reliability of electronic and optoelectronic devices based on these materials. Here we investigate such heat generation and transport characteristics in perfectly aligned, horizontal arrays of SWNTs integrated into transistor structures. We present quantitative assessments of local thermometry at individual SWNTs in these arrays, evaluated using scanning Joule expansion microscopy. Measurements at different applied voltages reveal electronic behaviors, including metallic and semiconducting responses, spatial variations in diameter or chirality, and localized defect sites. Analytical models, validated by measurements performed on different device structures at various conditions, enable accurate, quantitative extraction of temperature distributions at the level of individual SWNTs. Using current equipment, the spatial resolution and temperature precision are as good as ∼100 nm and ∼0.7 K, respectively.

  9. Quantitative determination of local potential values in inhomogeneously doped semiconductors by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Weidlich, P. H.; Dunin-Borkowski, R. E.; Ebert, Ph.

    2011-08-01

    Local potential changes arising from nanoscale three-dimensional spatial fluctuations in the dopant distribution in Zn-doped GaAs were investigated quantitatively by scanning tunneling microscopy and spectroscopy at (110) cleavage surfaces. Tunneling spectra measured in areas with different local doping concentration show apparent shifts of the valence band edge and apparent changes of the band gap. A quantitative analysis, combined with band bending and tunnel current simulations, demonstrates that these effects arise from tip-induced band bending that modulates the real potential changes. It is illustrated how exact potential changes between locally high and low doped areas can be determined. It is found that the local potential fluctuations in three-dimensionally doped semiconductors are approximately one order of magnitude smaller that those observed in two-dimensionally doped semiconductors.

  10. Detecting submerged bodies: controlled research using side-scan sonar to detect submerged proxy cadavers.

    PubMed

    Healy, Carrie A; Schultz, John J; Parker, Kenneth; Lowers, Bim

    2015-05-01

    Forensic investigators routinely deploy side-scan sonar for submerged body searches. This study adds to the limited body of literature by undertaking a controlled project to understand how variables affect detection of submerged bodies using side-scan sonar. Research consisted of two phases using small and medium-sized pig (Sus scrofa) carcasses as proxies for human bodies to investigate the effects of terrain, body size, frequency, swath width, and state of decomposition. Results demonstrated that a clear, flat, sandy pond floor terrain was optimal for detection of the target as irregular terrain and/or vegetation are major limitations that can obscure the target. A higher frequency towfish was preferred for small bodies, and a 20 m swath width allowed greater visibility and easier maneuverability of the boat in this environment. Also, the medium-sized carcasses were discernable throughout the 81-day study period, indicating that it is possible to detect bodies undergoing decomposition with side-scan sonar.

  11. Pedestrian Detection by Laser Scanning and Depth Imagery

    NASA Astrophysics Data System (ADS)

    Barsi, A.; Lovas, T.; Molnar, B.; Somogyi, A.; Igazvolgyi, Z.

    2016-06-01

    Pedestrian flow is much less regulated and controlled compared to vehicle traffic. Estimating flow parameters would support many safety, security or commercial applications. Current paper discusses a method that enables acquiring information on pedestrian movements without disturbing and changing their motion. Profile laser scanner and depth camera have been applied to capture the geometry of the moving people as time series. Procedures have been developed to derive complex flow parameters, such as count, volume, walking direction and velocity from laser scanned point clouds. Since no images are captured from the faces of pedestrians, no privacy issues raised. The paper includes accuracy analysis of the estimated parameters based on video footage as reference. Due to the dense point clouds, detailed geometry analysis has been conducted to obtain the height and shoulder width of pedestrians and to detect whether luggage has been carried or not. The derived parameters support safety (e.g. detecting critical pedestrian density in mass events), security (e.g. detecting prohibited baggage in endangered areas) and commercial applications (e.g. counting pedestrians at all entrances/exits of a shopping mall).

  12. The detection and quantitation of protein oligomerization.

    PubMed

    Gell, David A; Grant, Richard P; Mackay, Joel P

    2012-01-01

    There are many different techniques available to biologists and biochemists that can be used to detect and characterize the self-association of proteins. Each technique has strengths and weaknesses and it is often useful to combine several approaches to maximize the former and minimize the latter. Here we review a range of methodologies that identify protein self-association and/or allow the stoichiometry and affinity of the interaction to be determined, placing an emphasis on what type of information can be obtained and outlining the advantages and disadvantages involved. In general, in vitro biophysical techniques, such as size exclusion chromatography, analytical ultracentrifugation, scattering techniques, NMR spectroscopy, isothermal titration calorimetry, fluorescence anisotropy and mass spectrometry, provide information on stoichiometry and/or binding affinities. Other approaches such as cross-linking, fluorescence methods (e.g., fluorescence correlation spectroscopy, FCS; Förster resonance energy transfer, FRET; fluorescence recovery after photobleaching, FRAP; and proximity imaging, PRIM) and complementation approaches (e.g., yeast two hybrid assays and bimolecular fluorescence complementation, BiFC) can be used to detect protein self-association in a cellular context.

  13. SCAN+

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  14. High-Precision Pinpointing of Luminescent Targets in Encoder-Assisted Scanning Microscopy Allowing High-Speed Quantitative Analysis.

    PubMed

    Zheng, Xianlin; Lu, Yiqing; Zhao, Jiangbo; Zhang, Yuhai; Ren, Wei; Liu, Deming; Lu, Jie; Piper, James A; Leif, Robert C; Liu, Xiaogang; Jin, Dayong

    2016-01-19

    Compared with routine microscopy imaging of a few analytes at a time, rapid scanning through the whole sample area of a microscope slide to locate every single target object offers many advantages in terms of simplicity, speed, throughput, and potential for robust quantitative analysis. Existing techniques that accommodate solid-phase samples incorporating individual micrometer-sized targets generally rely on digital microscopy and image analysis, with intrinsically low throughput and reliability. Here, we report an advanced on-the-fly stage scanning method to achieve high-precision target location across the whole slide. By integrating X- and Y-axis linear encoders to a motorized stage as the virtual "grids" that provide real-time positional references, we demonstrate an orthogonal scanning automated microscopy (OSAM) technique which can search a coverslip area of 50 × 24 mm(2) in just 5.3 min and locate individual 15 μm lanthanide luminescent microspheres with standard deviations of 1.38 and 1.75 μm in X and Y directions. Alongside implementation of an autofocus unit that compensates the tilt of a slide in the Z-axis in real time, we increase the luminescence detection efficiency by 35% with an improved coefficient of variation. We demonstrate the capability of advanced OSAM for robust quantification of luminescence intensities and lifetimes for a variety of micrometer-scale luminescent targets, specifically single down-shifting and upconversion microspheres, crystalline microplates, and color-barcoded microrods, as well as quantitative suspension array assays of biotinylated-DNA functionalized upconversion nanoparticles. PMID:26669618

  15. [Quantitative Detection of Chinese Cabbage Clubroot Based on FTIR Spectroscopy].

    PubMed

    Wang, Wei-ping; Chai, A-li; Shi, Yan-xia; Xie, Xue-wen; Li, Bao-ju

    2015-05-01

    Clubroot, caused by Plasmodiophora brassicae, is considered the most devastating soilborne disease in Brassica crops. It has emerged as a serious disease threatening the cruciferous crop production industry in China. Nowadays, the detection techniques for P. brassicae are laborious, time-consuming and low sensitivity. Rapid and effective detection methods are needed. The objective of this study is to develop a Fourier transform infrared spectrometer (FTIR) technique for detection of P. brassicae effectively and accurately. FTIR and Real-time PCR techniques were applied in quantitative detection of P. brassicae. Chinese cabbages were inoculated with P. brassicae. By analyzing the FTIR spectra of P. brassicae, infected clubroots and healthy roots, three specific bands 1 105, 1 145 and 1 228 cm-1 were selected. According to the correlation between the peak areas at these sensitive bands and Real-time PCR Ct value, quantitative evaluation model of P. brassicae was established based on FTIR y=34. 17 +12. 24x - 9. 81x2 - 6. 05x3, r=0. 98 (p<0. 05). To validate accuracy of the model, 10 clubroot samples were selected randomly from field, and detected by FTIR spectrum model, the results showed that the average error is 1. 60%. This demonstrated that the FTIR technology is an available one for the quantitative detection of P. brassicae in clubroot, and it provides a new method for quantitative and quickly detection of Chinese cabbage clubroot.

  16. Improved Detection Sensitivity of Line-Scanning Optical Coherence Microscopy

    PubMed Central

    Chen, Yu; Huang, Shu-Wei; Zhou, Chao; Potsaid, Benjamin; Fujimoto, James G.

    2012-01-01

    Optical coherence microscopy (OCM) is a promising technology for high-resolution cellular-level imaging in human tissues. Line-scanning OCM is a new form of OCM that utilizes line-field illumination for parallel detection. In this study, we demonstrate improved detection sensitivity by using an achromatic design for line-field generation. This system operates at 830-nm wavelength with 82-nm bandwidth. The measured axial resolution is 3.9 μm in air (corresponding to ~2.9 μm in tissue), and the transverse resolutions are 2.1 μm along the line-field illumination direction and 1.7 μm perpendicular to line illumination direction. The measured sensitivity is 98 dB with 25 line averages, resulting in an imaging speed of ~2 frames/s (516 lines/s). Real-time, cellular-level imaging of scattering tissues is demonstrated using human-colon specimens. PMID:22685379

  17. Scanning probe microscopy beyond imaging: a general tool for quantitative analysis.

    PubMed

    Liscio, Andrea

    2013-04-15

    A simple, fast and general approach for quantitative analysis of scanning probe microscopy (SPM) images is reported. As a proof of concept it is used to determine with a high degree of precision the value of observables such as 1) the height, 2) the flowing current and 3) the corresponding surface potential (SP) of flat nanostructures such as gold electrodes, organic semiconductor architectures and graphenic sheets. Despite histogram analysis, or frequency count (Fc), being the most common mathematical tool used to analyse SPM images, the analytical approach is still lacking. By using the mathematical relationship between Fc and the collected data, the proposed method allows quantitative information on observable values close to the noise level to be gained. For instance, the thickness of nanostructures deposited on very rough substrates can be quantified, and this makes it possible to distinguish the contribution of an adsorbed nanostructure from that of the underlying substrate. Being non-numerical, this versatile analytical approach is a useful and general tool for quantitative analysis of the Fc that enables all signals acquired and recorded by an SPM data array to be studied with high precision.

  18. High-Speed Edge-Detecting Line Scan Smart Camera

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  19. Fast automatic algorithm for bifurcation detection in vascular CTA scans

    NASA Astrophysics Data System (ADS)

    Brozio, Matthias; Gorbunova, Vladlena; Godenschwager, Christian; Beck, Thomas; Bernhardt, Dominik

    2012-02-01

    Endovascular imaging aims at identifying vessels and their branches. Automatic vessel segmentation and bifurcation detection eases both clinical research and routine work. In this article a state of the art bifurcation detection algorithm is developed and applied on vascular computed tomography angiography (CTA) scans to mark the common iliac artery and its branches, the internal and external iliacs. In contrast to other methods our algorithm does not rely on a complete segmentation of a vessel in the 3D volume, but evaluates the cross-sections of the vessel slice by slice. Candidates for vessels are obtained by thresholding, following by 2D connected component labeling and prefiltering by size and position. The remaining candidates are connected in a squared distanced weighted graph. With Dijkstra algorithm the graph is traversed to get candidates for the arteries. We use another set of features considering length and shape of the paths to determine the best candidate and detect the bifurcation. The method was tested on 119 datasets acquired with different CT scanners and varying protocols. Both easy to evaluate datasets with high resolution and no apparent clinical diseases and difficult ones with low resolution, major calcifications, stents or poor contrast between the vessel and surrounding tissue were included. The presented results are promising, in 75.7% of the cases the bifurcation was labeled correctly, and in 82.7% the common artery and one of its branches were assigned correctly. The computation time was on average 0.49 s +/- 0.28 s, close to human interaction time, which makes the algorithm applicable for time-critical applications.

  20. Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy.

    PubMed

    Ievlev, Anton V; Jesse, Stephen; Cochell, Thomas J; Unocic, Raymond R; Protopopescu, Vladimir A; Kalinin, Sergei V

    2015-12-22

    Recent advances in liquid cell (scanning) transmission electron microscopy (S)TEM has enabled in situ nanoscale investigations of controlled nanocrystal growth mechanisms. Here, we experimentally and quantitatively investigated the nucleation and growth mechanisms of Pt nanostructures from an aqueous solution of K2PtCl6. Averaged statistical, network, and local approaches have been used for the data analysis and the description of both collective particles dynamics and local growth features. In particular, interaction between neighboring particles has been revealed and attributed to reduction of the platinum concentration in the vicinity of the particle boundary. The local approach for solving the inverse problem showed that particles dynamics can be simulated by a stationary diffusional model. The obtained results are important for understanding nanocrystal formation and growth processes and for optimization of synthesis conditions.

  1. Quantitative scanning electron microscopic autoradiography of inhaled /sup 239/PuO/sub 2/

    SciTech Connect

    Sanders, C.L.; Lauhala, K.E.; McDonald, K.E.

    1989-03-01

    We have applied the scanning electron microscope (SEM) to obtain autoradiographs of particles of /sup 239/PuO/sub 2/ deposited in rat lung. The technique was used to obtain quantitative information on the clearance rates of particles from the alveoli, bronchioles and trachea up to 240 d after exposure. At all times, the concentration of particles on the surface of the bronchioles was an order of magnitude greater than on the tracheal surface. The clearance of Pu from both regions followed a biphasic pattern, similar to that obtained by radiometric analysis of the whole lung. Most of the radiation dose to the bronchiolar epithelium originated from Pu particles in peribronchiolar alveoli in which they were preferentially retained, compared to other alveolar regions. The prolonged retention of particles in the peribronchiolar alveoli may be a significant factor in the induction of lung carcinomas.

  2. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement.

    PubMed

    Karbassi, A; Ruf, D; Bettermann, A D; Paulson, C A; van der Weide, Daniel W; Tanbakuchi, H; Stancliff, R

    2008-09-01

    We combine a scanning near-field microwave microscope with an atomic force microscope for use in localized thin film dielectric constant measurement, and demonstrate the capabilities of our system through simultaneous surface topography and microwave reflection measurements on a variety of thin films grown on low resistivity silicon substrates. Reflection measurements clearly discriminate the interface between approximately 38 nm silicon nitride and dioxide thin films at 1.788 GHz. Finite element simulation was used to extract the dielectric constants showing the dielectric sensitivity to be Deltaepsilon(r)=0.1 at epsilon(r)=6.2, for the case of silicon nitride. These results illustrate the capability of our instrument for quantitative dielectric constant measurement at microwave frequencies.

  3. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement

    SciTech Connect

    Karbassi, A.; Ruf, D.; Bettermann, A. D.; Paulson, C. A.; Weide, Daniel W. van der; Tanbakuchi, H.; Stancliff, R.

    2008-09-15

    We combine a scanning near-field microwave microscope with an atomic force microscope for use in localized thin film dielectric constant measurement, and demonstrate the capabilities of our system through simultaneous surface topography and microwave reflection measurements on a variety of thin films grown on low resistivity silicon substrates. Reflection measurements clearly discriminate the interface between {approx}38 nm silicon nitride and dioxide thin films at 1.788 GHz. Finite element simulation was used to extract the dielectric constants showing the dielectric sensitivity to be {delta}{epsilon}{sub r}=0.1 at {epsilon}{sub r}=6.2, for the case of silicon nitride. These results illustrate the capability of our instrument for quantitative dielectric constant measurement at microwave frequencies.

  4. Quantitative analysis of scanning tunneling microscopy images of mixed-ligand-functionalized nanoparticles.

    PubMed

    Biscarini, Fabio; Ong, Quy Khac; Albonetti, Cristiano; Liscio, Fabiola; Longobardi, Maria; Mali, Kunal S; Ciesielski, Artur; Reguera, Javier; Renner, Christoph; De Feyter, Steven; Samorì, Paolo; Stellacci, Francesco

    2013-11-12

    Ligand-protected gold nanoparticles exhibit large local curvatures, features rapidly varying over small scales, and chemical heterogeneity. Their imaging by scanning tunneling microscopy (STM) can, in principle, provide direct information on the architecture of their ligand shell, yet STM images require laborious analysis and are challenging to interpret. Here, we report a straightforward, robust, and rigorous method for the quantitative analysis of the multiscale features contained in STM images of samples consisting of functionalized Au nanoparticles deposited onto Au/mica. The method relies on the analysis of the topographical power spectral density (PSD) and allows us to extract the characteristic length scales of the features exhibited by nanoparticles in STM images. For the mixed-ligand-protected Au nanoparticles analyzed here, the characteristic length scale is 1.2 ± 0.1 nm, whereas for the homoligand Au NPs this scale is 0.75 ± 0.05 nm. These length scales represent spatial correlations independent of scanning parameters, and hence the features in the PSD can be ascribed to a fingerprint of the STM contrast of ligand-protected nanoparticles. PSD spectra from images recorded at different laboratories using different microscopes and operators can be overlapped across most of the frequency range, proving that the features in the STM images of nanoparticles can be compared and reproduced.

  5. Faults and foibles of quantitative scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS)

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2012-06-01

    Scanning electron microscopy with energy dispersive x-ray spectrometry (SEM/EDS) is a powerful and flexible elemental analysis method that can identify and quantify elements with atomic numbers > 4 (Be) present as major constituents (where the concentration C > 0.1 mass fraction, or 10 weight percent), minor (0.01<= C <= 0.1) and trace (C < 0.01, with a minimum detectable limit of ~+/- 0.0005 - 0.001 under routine measurement conditions, a level which is analyte and matrix dependent ). SEM/EDS can select specimen volumes with linear dimensions from ~ 500 nm to 5 μm depending on composition (masses ranging from ~ 10 pg to 100 pg) and can provide compositional maps that depict lateral elemental distributions. Despite the maturity of SEM/EDS, which has a history of more than 40 years, and the sophistication of modern analytical software, the method is vulnerable to serious shortcomings that can lead to incorrect elemental identifications and quantification errors that significantly exceed reasonable expectations. This paper will describe shortcomings in peak identification procedures, limitations on the accuracy of quantitative analysis due to specimen topography or failures in physical models for matrix corrections, and quantitative artifacts encountered in xray elemental mapping. Effective solutions to these problems are based on understanding the causes and then establishing appropriate measurement science protocols. NIST DTSA II and Lispix are open source analytical software available free at www.nist.gov that can aid the analyst in overcoming significant limitations to SEM/EDS.

  6. Quantitation and detection of vanadium in biologic and pollution materials

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1974-01-01

    A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.

  7. Accounting for Imperfect Detection in Ecology: A Quantitative Review

    PubMed Central

    Kellner, Kenneth F.; Swihart, Robert K.

    2014-01-01

    Detection in studies of species abundance and distribution is often imperfect. Assuming perfect detection introduces bias into estimation that can weaken inference upon which understanding and policy are based. Despite availability of numerous methods designed to address this assumption, many refereed papers in ecology fail to account for non-detection error. We conducted a quantitative literature review of 537 ecological articles to measure the degree to which studies of different taxa, at various scales, and over time have accounted for imperfect detection. Overall, just 23% of articles accounted for imperfect detection. The probability that an article incorporated imperfect detection increased with time and varied among taxa studied; studies of vertebrates were more likely to incorporate imperfect detection. Among articles that reported detection probability, 70% contained per-survey estimates of detection that were less than 0.5. For articles in which constancy of detection was tested, 86% reported significant variation. We hope that our findings prompt more ecologists to consider carefully the detection process when designing studies and analyzing results, especially for sub-disciplines where incorporation of imperfect detection in study design and analysis so far has been lacking. PMID:25356904

  8. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.

    PubMed

    Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-05-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.

  9. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images

    PubMed Central

    Cunefare, David; Cooper, Robert F.; Higgins, Brian; Katz, David F.; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-01-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images. PMID:27231641

  10. Street-side vehicle detection, classification and change detection using mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Xiao, Wen; Vallet, Bruno; Schindler, Konrad; Paparoditis, Nicolas

    2016-04-01

    Statistics on street-side car parks, e.g. occupancy rates, parked vehicle types, parking durations, are of great importance for urban planning and policy making. Related studies, e.g. vehicle detection and classification, mostly focus on static images or video. Whereas mobile laser scanning (MLS) systems are increasingly utilized for urban street environment perception due to their direct 3D information acquisition, high accuracy and movability. In this paper, we design a complete system for car park monitoring, including vehicle recognition, localization, classification and change detection, from laser scanning point clouds. The experimental data are acquired by an MLS system using high frequency laser scanner which scans the streets vertically along the system's moving trajectory. The point clouds are firstly classified as ground, building façade, and street objects which are then segmented using state-of-the-art methods. Each segment is treated as an object hypothesis, and its geometric features are extracted. Moreover, a deformable vehicle model is fitted to each object. By fitting an explicit model to the vehicle points, detailed information, such as precise position and orientation, can be obtained. The model parameters are also treated as vehicle features. Together with the geometric features, they are applied to a supervised learning procedure for vehicle or non-vehicle recognition. The classes of detected vehicles are also investigated. Whether vehicles have changed across two datasets acquired at different times is detected to estimate the durations. Here, vehicles are trained pair-wisely. Two same or different vehicles are paired up as training samples. As a result, the vehicle recognition, classification and change detection accuracies are 95.9%, 86.0% and 98.7%, respectively. Vehicle modelling improves not only the recognition rate, but also the localization precision compared to bounding boxes.

  11. A genome-wide quantitative trait loci scan of neurocognitive performances in families with schizophrenia.

    PubMed

    Lien, Y-J; Liu, C-M; Faraone, S V; Tsuang, M T; Hwu, H-G; Hsiao, P-C; Chen, W J

    2010-10-01

    Patients with schizophrenia frequently display neurocognitive dysfunction, and genetic studies suggest it to be an endophenotype for schizophrenia. Genetic studies of such traits may thus help elucidate the biological pathways underlying genetic susceptibility to schizophrenia. This study aimed to identify loci influencing neurocognitive performance in schizophrenia. The sample comprised of 1207 affected individuals and 1035 unaffected individuals of Han Chinese ethnicity from 557 sib-pair families co-affected with DSM-IV (Diagnostic and Statistical Manual, Fourth Edition) schizophrenia. Subjects completed a face-to-face semi-structured interview, the continuous performance test (CPT) and the Wisconsin card sorting test (WCST), and were genotyped with 386 microsatellite markers across the genome. A series of autosomal genome-wide multipoint nonparametric quantitative trait loci (QTL) linkage analysis were performed in affected individuals only. Determination of genome-wide empirical significance was performed using 1000 simulated genome scans. One linkage peak attaining genome-wide significance was identified: 12q24.32 for undegraded CPT hit rate [nonparametric linkage z (NPL-Z) scores = 3.32, genome-wide empirical P = 0.03]. This result was higher than the peak linkage signal obtained in the previous genome-wide scan using a dichotomous diagnosis of schizophrenia. The identification of 12q24.32 as a QTL has not been consistently implicated in previous linkage studies on schizophrenia, which suggests that the analysis of endophenotypes provides additional information from what is seen in analyses that rely on diagnoses. This region with linkage to a particular neurocognitive feature may inform functional hypotheses for further genetic studies for schizophrenia.

  12. Reproducibility and quantitation of amplicon sequencing-based detection.

    PubMed

    Zhou, Jizhong; Wu, Liyou; Deng, Ye; Zhi, Xiaoyang; Jiang, Yi-Huei; Tu, Qichao; Xie, Jianping; Van Nostrand, Joy D; He, Zhili; Yang, Yunfeng

    2011-08-01

    To determine the reproducibility and quantitation of the amplicon sequencing-based detection approach for analyzing microbial community structure, a total of 24 microbial communities from a long-term global change experimental site were examined. Genomic DNA obtained from each community was used to amplify 16S rRNA genes with two or three barcode tags as technical replicates in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella oneidensis MR-1 as the control. The technical reproducibility of the amplicon sequencing-based detection approach is quite low, with an average operational taxonomic unit (OTU) overlap of 17.2%±2.3% between two technical replicates, and 8.2%±2.3% among three technical replicates, which is most likely due to problems associated with random sampling processes. Such variations in technical replicates could have substantial effects on estimating β-diversity but less on α-diversity. A high variation was also observed in the control across different samples (for example, 66.7-fold for the forward primer), suggesting that the amplicon sequencing-based detection approach could not be quantitative. In addition, various strategies were examined to improve the comparability of amplicon sequencing data, such as increasing biological replicates, and removing singleton sequences and less-representative OTUs across biological replicates. Finally, as expected, various statistical analyses with preprocessed experimental data revealed clear differences in the composition and structure of microbial communities between warming and non-warming, or between clipping and non-clipping. Taken together, these results suggest that amplicon sequencing-based detection is useful in analyzing microbial community structure even though it is not reproducible and quantitative. However, great caution should be taken in experimental design and data interpretation when the amplicon sequencing-based detection approach is used for quantitative

  13. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs.

    PubMed

    Schlamp, Florencia; van der Made, Julian; Stambler, Rebecca; Chesebrough, Lewis; Boyko, Adam R; Messer, Philipp W

    2016-01-01

    Selective breeding of dogs has resulted in repeated artificial selection on breed-specific morphological phenotypes. A number of quantitative trait loci associated with these phenotypes have been identified in genetic mapping studies. We analysed the population genomic signatures observed around the causal mutations for 12 of these loci in 25 dog breeds, for which we genotyped 25 individuals in each breed. By measuring the population frequencies of the causal mutations in each breed, we identified those breeds in which specific mutations most likely experienced positive selection. These instances were then used as positive controls for assessing the performance of popular statistics to detect selection from population genomic data. We found that artificial selection during dog domestication has left characteristic signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can be detected in the genotype data from a single population sample. However, the sensitivity and accuracy at which such signatures were detected varied widely between loci, the particular statistic used and the choice of analysis parameters. We observed examples of both hard and soft selective sweeps and detected strong selective events that removed genetic diversity almost entirely over regions >10 Mbp. Our study demonstrates the power and limitations of selection scans in populations with high levels of linkage disequilibrium due to severe founder effects and recent population bottlenecks.

  14. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs.

    PubMed

    Schlamp, Florencia; van der Made, Julian; Stambler, Rebecca; Chesebrough, Lewis; Boyko, Adam R; Messer, Philipp W

    2016-01-01

    Selective breeding of dogs has resulted in repeated artificial selection on breed-specific morphological phenotypes. A number of quantitative trait loci associated with these phenotypes have been identified in genetic mapping studies. We analysed the population genomic signatures observed around the causal mutations for 12 of these loci in 25 dog breeds, for which we genotyped 25 individuals in each breed. By measuring the population frequencies of the causal mutations in each breed, we identified those breeds in which specific mutations most likely experienced positive selection. These instances were then used as positive controls for assessing the performance of popular statistics to detect selection from population genomic data. We found that artificial selection during dog domestication has left characteristic signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can be detected in the genotype data from a single population sample. However, the sensitivity and accuracy at which such signatures were detected varied widely between loci, the particular statistic used and the choice of analysis parameters. We observed examples of both hard and soft selective sweeps and detected strong selective events that removed genetic diversity almost entirely over regions >10 Mbp. Our study demonstrates the power and limitations of selection scans in populations with high levels of linkage disequilibrium due to severe founder effects and recent population bottlenecks. PMID:26589239

  15. Optical detection of metastatic cancer cells using a scanned laser pico-projection system

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Ling; Chiu, Wen-Tai; Lo, Yu-Lung; Chuang, Chin-Ho; Chen, Yu-Bin; Chang, Shu-Jing; Ke, Tung-Ting; Cheng, Hung-Chi; Wu, Hua-Lin

    2015-03-01

    Metastasis is responsible for 90% of all cancer-related deaths in humans. As a result, reliable techniques for detecting metastatic cells are urgently required. Although various techniques have been proposed for metastasis detection, they are generally capable of detecting metastatic cells only once migration has already occurred. Accordingly, the present study proposes an optical method for physical characterization of metastatic cancer cells using a scanned laser pico-projection system (SLPP). The validity of the proposed method is demonstrated using five pairs of cancer cell lines and two pairs of non-cancer cell lines treated by IPTG induction in order to mimic normal cells with an overexpression of oncogene. The results show that for all of the considered cell lines, the SLPP speckle contrast of the high-metastatic cells is significantly higher than that of the low-metastatic cells. As a result, the speckle contrast measurement provides a reliable means of distinguishing quantitatively between low- and high-metastatic cells of the same origin. Compared to existing metastasis detection methods, the proposed SLPP approach has many advantages, including a higher throughput, a lower cost, a larger sample size and a more reliable diagnostic performance. As a result, it provides a highly promising solution for physical characterization of metastatic cancer cells in vitro.

  16. Three-dimensional visualization and quantitation of fibrin in solid tumors by confocal laser scanning microscopy.

    PubMed

    Biggerstaff, J; Amirkhosravi, A; Francis, J L

    1997-10-01

    Fibrin forms part of the stroma essential for growth of solid tumors. Anticoagulants reduce primary tumor growth and tumor metastasis in murine and some human tumors. These effects may be partly mediated by reduction of intra-tumor fibrin, although there are no quantitative data to support this hypothesis. We therefore evaluated the effect of warfarin on fibrin deposition in a subcutaneously (s.c.) implanted murine tumor using confocal laser scanning microscopy (CLSM). AJ mice received no treatment (n = 6) or sodium warfarin (3.5 mg/L in drinking water, n = 5). All animals received 2 x 10(6) syngeneic Neuro2a neuroblastoma cells s.c. After 14 days, primary tumors were excised and placed in liquid nitrogen. Warfarin treatment resulted in a small, but significant (P < 0.05), decrease in wet tumor weight. Frozen sections (20 microns) were incubated with goat anti-mouse fibrin(ogen) or normal goat serum (isotypic control) and stained with FITC-conjugated rabbit anti-goat antibody. Using a Multiprobe 2001 CLSM (Molecular Dynamics, Sunnyvale, CA), 20 serial optical sections were taken from five, randomly chosen, high power fields (60x objective) for each slide. A threshold excluded all fluorescence except that from structural components within the tumor stroma (fibrin). The volume of fibrin in each section series was determined, and the percentage of tumor volume occupied by fibrin calculated. Intra- and inter-assay variation were assessed on serial frozen tumor sections from an untreated animal. The percentage fibrin volume was not significantly different among or within experiments, indicating that the procedure was reproducible. In controls, the median (range) volume occupied by fibrin was 8.1% (2.4-22.3%), whereas in anticoagulated animals, this was reduced to 3.7% (0.4-14.0%; P < 0.001). This is the first quantitative demonstration that warfarin reduces fibrin deposition in solid tumors. We conclude that three-dimensional CLSM is useful for the quantitation of

  17. Three-dimensional visualization and quantitation of fibrin in solid tumors by confocal laser scanning microscopy.

    PubMed

    Biggerstaff, J; Amirkhosravi, A; Francis, J L

    1997-10-01

    Fibrin forms part of the stroma essential for growth of solid tumors. Anticoagulants reduce primary tumor growth and tumor metastasis in murine and some human tumors. These effects may be partly mediated by reduction of intra-tumor fibrin, although there are no quantitative data to support this hypothesis. We therefore evaluated the effect of warfarin on fibrin deposition in a subcutaneously (s.c.) implanted murine tumor using confocal laser scanning microscopy (CLSM). AJ mice received no treatment (n = 6) or sodium warfarin (3.5 mg/L in drinking water, n = 5). All animals received 2 x 10(6) syngeneic Neuro2a neuroblastoma cells s.c. After 14 days, primary tumors were excised and placed in liquid nitrogen. Warfarin treatment resulted in a small, but significant (P < 0.05), decrease in wet tumor weight. Frozen sections (20 microns) were incubated with goat anti-mouse fibrin(ogen) or normal goat serum (isotypic control) and stained with FITC-conjugated rabbit anti-goat antibody. Using a Multiprobe 2001 CLSM (Molecular Dynamics, Sunnyvale, CA), 20 serial optical sections were taken from five, randomly chosen, high power fields (60x objective) for each slide. A threshold excluded all fluorescence except that from structural components within the tumor stroma (fibrin). The volume of fibrin in each section series was determined, and the percentage of tumor volume occupied by fibrin calculated. Intra- and inter-assay variation were assessed on serial frozen tumor sections from an untreated animal. The percentage fibrin volume was not significantly different among or within experiments, indicating that the procedure was reproducible. In controls, the median (range) volume occupied by fibrin was 8.1% (2.4-22.3%), whereas in anticoagulated animals, this was reduced to 3.7% (0.4-14.0%; P < 0.001). This is the first quantitative demonstration that warfarin reduces fibrin deposition in solid tumors. We conclude that three-dimensional CLSM is useful for the quantitation of

  18. Rapid and quantitative detection of hepatitis B virus

    PubMed Central

    Liu, Yue-Ping; Yao, Chun-Yan

    2015-01-01

    Despite availability of a universal vaccine, hepatitis B virus (HBV) infection has a huge impact on public health worldwide. Accurate and timely diagnosis of HBV infection is needed. Rapid developments have been made in the diagnostic and monitoring methods for HBV infection, including serological and molecular assays. In clinical practice, qualitative hepatitis B surface antigen (HBsAg) testing has long served as a diagnostic marker for individuals infected with HBV. More recently, HBsAg level has been used to predict treatment outcome when determined early during treatment or at baseline. However, identification of HBV DNA positive cases that do not have detectable HBsAg has encouraged the application of molecular tests. Hence, combination of quantitative detection of HBV DNA and HBsAg can be used to discriminate patients during the course of HBV infection and to monitor therapy. This article reviews the most commonly used quantitative methods for HBsAg and HBV DNA. PMID:26576084

  19. Quantitative characterization of the surface topography of rolled sheets by laser scanning microscopy and fourier transformation

    NASA Astrophysics Data System (ADS)

    Gjønnes, Liv

    1996-08-01

    The surface of twin-roll cast aluminum sheets undergoes dramatic changes during cold rolling. This is mainly due to variables in the roll gap, topography of the rolls, lubrication, material properties, and in particular the initial structure and topography of the cast sheet. Therefore, it is important to have means to quantitatively describe the changes in the surface structure of each pass and from pass to pass in order to optimize the desired final surface structure. To achieve this, the laser scanning microscope (LSM) with its confocal technique has been employed to image the three-dimensional (3-D) topography and to digitize the image for further computer analysis. The digitization of the image is primarily motivated by the need to introduce a Fourier transformation of the surface topography. The method is effective in describing qualitative periodic trends in the surface features. Information is gained on the shape and periodicities as well as roughness directionality. For instance, grooves and cross hatches and their remnants can be followed from one pass to the other. Important characteristics of the surface topography such as rolling ridges and shingles can also easily be characterized.

  20. Noninvasive determination of bone stiffness for distraction osteogenesis by quantitative computed tomography scans.

    PubMed

    Harp, J H; Aronson, J; Hollis, M

    1994-04-01

    Apparent density of canine tibial specimens was correlated to measured quantitative computed tomography (QCT) numbers, and a conversion equation was derived. Finite element analysis models of canine tibiae were constructed using spatial coordinates of converted QCT data. Two QCT-derived finite elemental analysis models were constructed for a pair of matched tibiae: one lengthened 15% by distraction osteogenesis and one contralateral control. Two equations relating the modulus of elasticity to apparent density were used. These models were then verified mechanically by measuring strains of the two specimens under applied load. Equation I correlated best with measured strains in the less-dense regenerate bone of the distracted tibia (R2 = 0.914, p = 0.0028, n = 6); Equation II performed best in the denser control tibia (R2 = 0.820, p = 0.0129, n = 6). These results demonstrate that the stiffness of tubular bones, including cortical and heterogenous cancellous structure, can be accurately predicted by a noninvasive QCT scan.

  1. A new quantitative method to measure activity of ice structuring proteins using differential scanning calorimetry.

    PubMed

    Hassa-Roudsari, Majid; Goff, H Douglas

    2012-01-01

    There are very few quantitative assays to measure the activity of antifreeze proteins (AFPs, or Ice Structuring Proteins, ISPs) and these can be prone to various inaccuracies and inconsistencies. Some methods rely only on unassisted visual assessment. When microscopy is used to measure ice crystal size, it is critical that standardized procedures be adopted, especially when image analysis software is used to quantify sizes. Differential Scanning Calorimetry (DSC) has been used to measure the thermal hysteresis activity (TH) of AFPs. In this study, DSC was used isothermally to measure enthalpic changes associated with structural rearrangements as a function of time. Differences in slopes of isothermal heat flow vs. time between winter wheat ISP or AFP type I containing samples, and those without ISP or AFP type I were demonstrated. ISP or AFP type I containing samples had significantly higher slopes compared to those without ISP or AFP type I. Samples with higher concentration of ISP or AFP type I showed higher slope values during the first hour and took up to 3 hr to attain equilibrium. Differences were attributed to activity of the proteins at the ice interface. Proteinaceous activity of ISPs or AFP type I was confirmed by loss of activity after treatment with protease.

  2. Does the truth come out in the writing? Scan as a lie detection tool.

    PubMed

    Nahari, Galit; Vrij, Aldert; Fisher, Ronald P

    2012-02-01

    We tested the accuracy of Scientific Content Analysis (SCAN), a verbal lie detection tool that is used world-wide by federal law enforcement and military agencies. Sixty-one participants were requested to write down the truth, an outright lie or a concealment lie about activities they had just completed. The statements were coded with SCAN and with another verbal lie detection tool, Reality Monitoring (RM). RM discriminated significantly between truth tellers and outright liars and between truth tellers and concealment liars, whereas SCAN did not discriminate between truth tellers and either kind of liar. Implications of the findings for the suitability of SCAN as a lie detection tool are discussed.

  3. Benign Brenner tumor of the ovary detected on Tc-99m methylene diphosphonate bone scan

    SciTech Connect

    Renner, J.B.; McCartney, W.H.

    1984-11-01

    Many disease states, including neoplasia, have been detected by bone scanning. Among the neoplastic processes detected by bone imaging agents are ovarian tumors, both benign and malignant. This report is concerned with the visualization of a benign Brenner tumor during routine Tc-99m MDP bone scanning.

  4. Driving With Hemianopia: IV. Head Scanning and Detection at Intersections in a Simulator

    PubMed Central

    Bowers, Alex R.; Ananyev, Egor; Mandel, Aaron J.; Goldstein, Robert B.; Peli, Eli

    2014-01-01

    Purpose. Using a driving simulator, we examined the effects of homonymous hemianopia (HH) on head scanning behaviors at intersections and evaluated the role of inadequate head scanning in detection failures. Methods. Fourteen people with complete HH and without cognitive decline or visual neglect and 12 normally sighted (NV) current drivers participated. They drove in an urban environment following predetermined routes, which included multiple intersections. Head scanning behaviors were quantified at T-intersections (n = 32) with a stop or yield sign. Participants also performed a pedestrian detection task. The relationship between head scanning and detection was examined at 10 intersections. Results. For HH drivers, the first scan was more likely to be toward the blind than the seeing hemifield. They also made a greater proportion of head scans overall to the blind side than did the NV drivers to the corresponding side (P = 0.003). However, head scan magnitudes of HH drivers were smaller than those of the NV group (P < 0.001). Drivers with HH had impaired detection of blind-side pedestrians due either to not scanning in the direction of the pedestrian or to an insufficient scan magnitude (left HH detected only 46% and right HH 8% at the extreme left and right of the intersection, respectively). Conclusions. Drivers with HH demonstrated compensatory head scan patterns, but not scan magnitudes. Inadequate scanning resulted in blind-side detection failures, which might place HH drivers at increased risk for collisions at intersections. Scanning training tailored to specific problem areas identified in this study might be beneficial. PMID:24474265

  5. Quantitative scanning thermal microscopy of graphene devices on flexible polyimide substrates

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mir Mohammad; Park, Saungeun; Huang, Yu; Akinwande, Deji; Yao, Zhen; Murthy, Jayathi; Shi, Li

    2016-06-01

    A triple-scan scanning thermal microscopy (SThM) method and a zero-heat flux laser-heated SThM technique are investigated for quantitative thermal imaging of flexible graphene devices. A similar local tip-sample thermal resistance is observed on both the graphene and metal areas of the sample, and is attributed to the presence of a polymer residue layer on the sample surface and a liquid meniscus at the tip-sample junction. In addition, it is found that the tip-sample thermal resistance is insensitive to the temperature until it begins to increase as the temperature increases to 80 °C and exhibits an abrupt increase at 110 °C because of evaporation of the liquid meniscus at the tip-sample junction. Moreover, the variation in the tip-sample thermal resistance due to surface roughness is within the experimental tolerance except at areas with roughness height exceeding tens of nanometers. Because of the low thermal conductivity of the flexible polyimide substrate, the SThM measurements have found that the temperature rise in flexible graphene devices is more than one order of magnitude higher than those reported for graphene devices fabricated on a silicon substrate with comparable dimensions and power density. Unlike a graphene device on a silicon substrate where the majority of the electrical heating in the graphene device is conducted vertically through the thin silicon dioxide dielectric layer to the high-thermal conductivity silicon substrate, lateral heat spreading is important in the flexible graphene devices, as shown by the observed decrease in the average temperature rise normalized by the power density with decreasing graphene channel length from about 30 μm to 10 μm. However, it is shown by numerical heat transfer analysis that this trend is mainly caused by the size scaling of the thermal spreading resistance of the polymer substrate instead of lateral heat spreading by the graphene. In addition, thermoelectric effects are found to be negligible

  6. Prediction of postoperative loss of lung function in patients with malignant lung mass. Quantitative regional ventilation-perfusion scanning

    SciTech Connect

    Ryo, U.Y. )

    1990-05-01

    The quantitative measurement of regional ventilation and perfusion distribution is simply and reliably accomplished by using routinely available radioactive gas and perfusion lung scanning agents, and a large field-of-view gamma camera with an on-line computer. The preoperative prediction of postsurgical loss in lung function can be made accurately by using the quantitative ventilation-perfusion lung scan technique. Either a regional ventilation study or perfusion study may be used for the prediction, but analysis of regional ventilation distribution appears to be a better parameter than that of perfusion distribution for the prediction of postoperative loss of FEV1. In the rare case of a patient with a marked ventilation-perfusion deficit, quantitative distribution of both ventilation and perfusion may be needed for an accurate assessment of postsurgical lung function. 18 references.

  7. Quantitative and qualitative image quality analysis of super resolution images from a low cost scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Murillo, Sergio; Echegaray, Sebastian; Zamora, Gilberto; Soliz, Peter; Bauman, Wendall

    2011-03-01

    The lurking epidemic of eye diseases caused by diabetes and aging will put more than 130 million Americans at risk of blindness by 2020. Screening has been touted as a means to prevent blindness by identifying those individuals at risk. However, the cost of most of today's commercial retinal imaging devices makes their use economically impractical for mass screening. Thus, low cost devices are needed. With these devices, low cost often comes at the expense of image quality with high levels of noise and distortion hindering the clinical evaluation of those retinas. A software-based super resolution (SR) reconstruction methodology that produces images with improved resolution and quality from multiple low resolution (LR) observations is introduced. The LR images are taken with a low-cost Scanning Laser Ophthalmoscope (SLO). The non-redundant information of these LR images is combined to produce a single image in an implementation that also removes noise and imaging distortions while preserving fine blood vessels and small lesions. The feasibility of using the resulting SR images for screening of eye diseases was tested using quantitative and qualitative assessments. Qualitatively, expert image readers evaluated their ability of detecting clinically significant features on the SR images and compared their findings with those obtained from matching images of the same eyes taken with commercially available high-end cameras. Quantitatively, measures of image quality were calculated from SR images and compared to subject-matched images from a commercial fundus imager. Our results show that the SR images have indeed enough quality and spatial detail for screening purposes.

  8. Quantitative rotor damage detection based on piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Tao, Yi; Mao, Yongfang; Tang, Baoping

    2015-12-01

    To realize the quantitative damage detection of a rotor, firstly an impedance analytic model is built. Then the change of bending stiffness is introduced as the damage index. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used. The electro-mechanical (E/M) coupled impedance expression of an undamaged rotor is derived with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection algorithm is proposed. In this paper, a preset damage configuration is used for the numerical simulation and experiment validation. The detection results have shown that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  9. A genome scan for quantitative trait loci affecting body conformation traits in Spanish Churra dairy sheep.

    PubMed

    Gutiérrez-Gil, B; Alvarez, L; de la Fuente, L F; Sanchez, J P; San Primitivo, F; Arranz, J J

    2011-08-01

    A genome scan for chromosomal regions influencing body conformation traits was conducted for a population of Spanish Churra dairy sheep following a daughter design. A total of 739 ewes from 11 half-sib sire families were included in the study. The ewes were scored for the 5 linear traits used in the breeding scheme of the Churra breed to assess body conformation: stature, rear legs-rear view, foot angle, rump width, and general appearance. All the animals, including the 11 sires, were genotyped for 181 microsatellite markers evenly distributed across the 26 sheep autosomes. Using the yield deviations of the raw scores adjusted for fixed factors as phenotypic measurements, a quantitative trait loci (QTL) analysis was performed on the basis of a multi-marker regression method. Seven suggestive QTL were identified on chromosomes Ovis aries (OAR)2, OAR5, OAR16, OAR23, and OAR26, but none reached a genome-wise significance level. Putative QTL were identified for all of the traits analyzed, except for general appearance score. The suggestive QTL showing the highest test statistic influenced rear legs-rear view and was localized on OAR16, close to the growth hormone receptor coding gene, GHR. Some of the putative linkage associations reported here are consistent with previously reported QTL in cattle for similar traits. To the best of our knowledge, this study provides the first report of QTL for body conformation traits in dairy sheep; further studies will be needed to confirm and redefine the linkage associations reported herein. It is expected that future genome-wide association analyses of larger families will help identify genes underlying these putative genetic effects and provide useful markers for marker-assisted selection of such functional traits.

  10. Comparison of the scanning linear estimator (SLE) and ROI methods for quantitative SPECT imaging

    NASA Astrophysics Data System (ADS)

    Könik, Arda; Kupinski, Meredith; Hendrik Pretorius, P.; King, Michael A.; Barrett, Harrison H.

    2015-08-01

    In quantitative emission tomography, tumor activity is typically estimated from calculations on a region of interest (ROI) identified in the reconstructed slices. In these calculations, unpredictable bias arising from the null functions of the imaging system affects ROI estimates. The magnitude of this bias depends upon the tumor size and location. In prior work it has been shown that the scanning linear estimator (SLE), which operates on the raw projection data, is an unbiased estimator of activity when the size and location of the tumor are known. In this work, we performed analytic simulation of SPECT imaging with a parallel-hole medium-energy collimator. Distance-dependent system spatial resolution and non-uniform attenuation were included in the imaging simulation. We compared the task of activity estimation by the ROI and SLE methods for a range of tumor sizes (diameter: 1-3 cm) and activities (contrast ratio: 1-10) added to uniform and non-uniform liver backgrounds. Using the correct value for the tumor shape and location is an idealized approximation to how task estimation would occur clinically. Thus we determined how perturbing this idealized prior knowledge impacted the performance of both techniques. To implement the SLE for the non-uniform background, we used a novel iterative algorithm for pre-whitening stationary noise within a compact region. Estimation task performance was compared using the ensemble mean-squared error (EMSE) as the criterion. The SLE method performed substantially better than the ROI method (i.e. EMSE(SLE) was 23-174 times lower) when the background is uniform and tumor location and size are known accurately. The variance of the SLE increased when a non-uniform liver texture was introduced but the EMSE(SLE) continued to be 5-20 times lower than the ROI method. In summary, SLE outperformed ROI under almost all conditions that we tested.

  11. Detection of varicocele by radionuclide blood-pool scanning

    SciTech Connect

    Freund, J.; Handelsman, D.J.; Bautovich, G.J.; Conway, A.J.; Morris, J.G.

    1980-10-01

    Varicocele is a common and treatable cause of male subfertility. The authors describe a new technique for varicocele detection using radionuclide blood-pool imaging of the scrotum. The results indicate that this technique detects unilateral varicoceles with high sensitivity, including some which are subclinical. There may be significant implications for treatment of infertility.

  12. Quantitative optical imaging for the detection of early cancer

    NASA Astrophysics Data System (ADS)

    Wu, Tao

    The objectives of this thesis are to provide insight of fundamental mechanisms of acetowhitening effect, upon which the colposcopic diagnosis of human cervical cancer is based and to develop novel quantitative optical imaging technologies supplementing colposcopy to improve its performance in detecting early cancer. Firstly, the temporal characteristics of acetowhitening process are studied on monolayer cell cultures. It is found that the dynamic acetowhitening processes in normal and cancerous cells are significantly different. Secondly, the changes in light scattering induced by acetic acid in intact cells and isolated cellular fractions are investigated by using confocal microscopy and light scattering spectroscopy. The results provide evidence that the small-sized components in the cytoplasm are the major contributors to the acetowhitening effect. Thirdly, a unified Mie and fractal model is proposed to interpret light scattering by biological cells. It is found that light scattering in forward directions is dominated by Mie scattering by bare cells and nuclei, whereas light scattering at large angles is determined by fractal scattering by subcellular structures. Fourthly, an optical imaging system based on active stereo vision and motion tracking is built to measure the 3-D surface topology of cervix and track the motion of patient. The information of motion tracking is used to register the time-sequenced images of cervix recorded during colposcopic examination. The imaging system is evaluated by tracking the movements of cervix models. The results demonstrate that the imaging technique holds the promise to enable the quantitative mapping of the acetowhitening kinetics over cervical surface for more accurate diagnosis of cervical cancer. At last, a calibrated autofluorescence imaging system is instrumented for detecting neoplasia in vivo. It is found that the calibrated autofluorescence signals from neoplasia are generally lower than signals from normal

  13. Cluster detection of diseases in heterogeneous populations: an alternative to scan methods.

    PubMed

    Ramis, Rebeca; Gómez-Barroso, Diana; López-Abente, Gonzalo

    2014-05-01

    Cluster detection has become an important part of the agenda of epidemiologists and public health authorities, the identification of high- and low-risk areas is fundamental in the definition of public health strategies and in the suggestion of potential risks factors. Currently, there are different cluster detection techniques available, the most popular being those using windows to scan the areas within the studied region. However, when these areas are heterogeneous in populations' sizes, scan window methods can lead to inaccurate conclusions. In order to perform cluster detection over heterogeneously populated areas, we developed a method not based on scanning windows but instead on standard mortality ratios (SMR) using irregular spatial aggregation (ISA). Its extension, i.e. irregular spatial aggregation with covariates (ISAC), includes covariates with residuals from Poisson regression. We compared the performance of the method with the flexible shaped spatial scan statistic (FlexScan) using mortality data for stomach and bladder cancer for 8,098 Spanish towns. The results show a collection of clusters for stomach and bladder cancer similar to that detected by ISA and FlexScan. However, in general, clusters detected by FlexScan were bigger and include towns with SMR, which were not statistically significant. For bladder cancer, clusters detected by ISAC differed from those detected by ISA and FlexScan in shape and location. The ISA and ISAC methods could be an alternative to the traditional scan window methods for cluster detection over aggregated data when the areas under study are heterogeneous in terms of population. The simplicity and flexibility of the methods make them more attractive than methods based on more complicated algorithms. PMID:24893029

  14. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.

    PubMed

    Tango, Toshiro; Takahashi, Kunihiko

    2012-12-30

    Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan.

  15. Hyperspectral imaging and quantitative analysis for prostate cancer detection

    PubMed Central

    Akbari, Hamed; Halig, Luma V.; Schuster, David M.; Osunkoya, Adeboye; Master, Viraj; Nieh, Peter T.; Chen, Georgia Z.

    2012-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate cancer detection. The spectral signatures were extracted and evaluated in both cancerous and normal tissue. Least squares support vector machines were developed and evaluated for classifying hyperspectral data in order to enhance the detection of cancer tissue. This method was used to detect prostate cancer in tumor-bearing mice and on pathology slides. Spatially resolved images were created to highlight the differences of the reflectance properties of cancer versus those of normal tissue. Preliminary results with 11 mice showed that the sensitivity and specificity of the hyperspectral image classification method are 92.8% to 2.0% and 96.9% to 1.3%, respectively. Therefore, this imaging method may be able to help physicians to dissect malignant regions with a safe margin and to evaluate the tumor bed after resection. This pilot study may lead to advances in the optical diagnosis of prostate cancer using HSI technology. PMID:22894488

  16. Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.

    PubMed

    Zhang, Pingye; Lewinger, Juan Pablo; Conti, David; Morrison, John L; Gauderman, W James

    2016-07-01

    A genome-wide association study (GWAS) typically is focused on detecting marginal genetic effects. However, many complex traits are likely to be the result of the interplay of genes and environmental factors. These SNPs may have a weak marginal effect and thus unlikely to be detected from a scan of marginal effects, but may be detectable in a gene-environment (G × E) interaction analysis. However, a genome-wide interaction scan (GWIS) using a standard test of G × E interaction is known to have low power, particularly when one corrects for testing multiple SNPs. Two 2-step methods for GWIS have been previously proposed, aimed at improving efficiency by prioritizing SNPs most likely to be involved in a G × E interaction using a screening step. For a quantitative trait, these include a method that screens on marginal effects [Kooperberg and Leblanc, 2008] and a method that screens on variance heterogeneity by genotype [Paré et al., 2010] In this paper, we show that the Paré et al. approach has an inflated false-positive rate in the presence of an environmental marginal effect, and we propose an alternative that remains valid. We also propose a novel 2-step approach that combines the two screening approaches, and provide simulations demonstrating that the new method can outperform other GWIS approaches. Application of this method to a G × Hispanic-ethnicity scan for childhood lung function reveals a SNP near the MARCO locus that was not identified by previous marginal-effect scans. PMID:27230133

  17. Comparison of envelope detection techniques in coherence scanning interferometry.

    PubMed

    Gianto, G; Salzenstein, F; Montgomery, P

    2016-08-20

    The aim of this work is to make a comparison of the most current signal processing techniques used to analyze the fringe signal in coherence scanning interferometry (CSI), a major technique for optical surface roughness measurements. We focus here on classical AM-FM signal-processing algorithms such as the Hilbert transform (HT), the five-sample adaptive (FSA), and the continuous wavelet transform (CWT). We have recently also introduced a new family of compact and robust algorithms using the Teager-Kaiser energy operator (TKEO). We propose an improved version of TKEO using a combination of different techniques of pre-filtering and demodulation processing to remove the noise and offset component and to retrieve the fringe envelope to either determine the surface height information or to separate adjacent transparent layers. In particular, as a pre-filtering approach, we have focused on empirical mode decomposition in combination with the Savitzky-Golay filter. An added Gaussian post-filtering is helpful for a precise peak extraction. The experimental results show that TKEO performs better than CWT in terms of computation time and provides a better surface extraction than HT and FSA. Results have been obtained on synthetic and real data taken from a layer of resin on a silicon substrate. PMID:27557001

  18. CW THz scanning transmission imaging for concealed object detection

    NASA Astrophysics Data System (ADS)

    Li, Qi; Yao, Rui; Yin, Qiguo; Ding, Shenghui; Wang, Qi

    2009-07-01

    In the paper, the two-dimensional THz imaging methods are described. The SIFIR-50 FPL Far-Infrared Laser is used as the THz source. The output frequency is 2.5THz in the experiment, because the THz laser operates steadily at this frequency. The P4-42 detector works at room temperature and offers relatively high sensitivity. The software of THz imaging system is self-designed, and it plays a crucial role in this imaging system because it controls nearly all the operations of this system, including the two-dimensional scanning, image data collection, image data storage, image display and image processing. Utilizing this setup, THz transmission images of concealed objects are obtained. In the experiment, a bottle cap and a plastic board covered by reflective materials are chosen as the imaging objects; paper and Teflon are placed before the object to test the transmission imaging effect. The experimental results show that this imaging system can generate clear images.

  19. Comparison of qualitative and quantitative analysis of T2-weighted MRI scans in chronic-progressive multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Adams, Hans-Peter; Wagner, Simone; Koziol, James A.

    1998-06-01

    Magnetic resonance imaging (MRI) is routinely used for the diagnosis of multiple sclerosis (MS), and for objective assessment of the extent of disease as a marker of treatment efficacy in MS clinical trials. The purpose of this study is to compare the evaluation of T2-weighted MRI scans in MS patients using a semi-automated quantitative technique with an independent assessment by a neurologist. Baseline, 6- month, and 12-month T2-weighted MRI scans from 41 chronic progressive MS patients were examined. The lesion volume ranged from 0.50 to 51.56 cm2 (mean: 8.08 cm2). Reproducibility of the quantitative technique was assessed by the re-evaluation of a random subset of 20 scans, the coefficient of variation of the replicate determinations was 8.2%. The reproducibility of the neurologist evaluations was assessed by the re-evaluation of a random subset of 10 patients. The rank correlation between the results of the two methods was 0.097, which did not significantly differ from zero. Disease-related activity in T2-weighted MRI scans is a multi-dimensional construct, and is not adequately summarized solely by determination of lesion volume. In this setting, image analysis software should not only support storage and retrieval as sets of pixels, but should also support links to an anatomical dictionary.

  20. Quantitative description of photoexcited scanning tunneling spectroscopy and its application to the GaAs(110) surface

    NASA Astrophysics Data System (ADS)

    Schnedler, M.; Portz, V.; Weidlich, P. H.; Dunin-Borkowski, R. E.; Ebert, Ph.

    2015-06-01

    A quantitative description of photoexcited scanning tunneling spectra is developed and applied to photoexcited spectra measured on p -doped nonpolar GaAs(110) surfaces. Under illumination, the experimental spectra exhibit an increase of the tunnel current at negative sample voltages only. In order to analyze the experimental data quantitatively, the potential and charge-carrier distributions of the photoexcited tip-vacuum-semiconductor system are calculated by solving the Poisson as well as the hole and electron continuity equations by a finite-difference algorithm. On this basis, the different contributions to the tunnel current are calculated using an extension of the model of Feenstra and Stroscio to include the light-excited carrier concentrations. The best fit of the calculated tunnel currents to the experimental data is obtained for a tip-induced band bending, which is limited by the partial occupation of the C3 surface state by light-excited electrons. The tunnel current at negative voltages is then composed of a valence band contribution and a photoinduced tunnel current of excited electrons in the conduction band. The quantitative description of the tunnel current developed here is generally applicable and provides a solid foundation for the quantitative interpretation of photoexcited scanning tunneling spectroscopy.

  1. Migratory birds use head scans to detect the direction of the earth's magnetic field.

    PubMed

    Mouritsen, Henrik; Feenders, Gesa; Liedvogel, Miriam; Kropp, Wiebke

    2004-11-01

    Night-migratory songbirds are known to use a magnetic compass , but how do they detect the reference direction provided by the geomagnetic field, and where is the sensory organ located? The most prominent characteristic of geomagnetic sensory input, whether based on visual patterns or magnetite-mediated forces , is the predicted symmetry around the north-south or east-west magnetic axis. Here, we show that caged migratory garden warblers perform head-scanning behavior well suited to detect this magnetic symmetry plane. In the natural geomagnetic field, birds move toward their migratory direction after head scanning. In a zero-magnetic field , where no symmetry plane exists, the birds almost triple their head-scanning frequency, and the movement direction after a head scan becomes random. Thus, the magnetic sensory organ is located in the bird's head, and head scans are used to locate the reference direction provided by the geomagnetic field. PMID:15530397

  2. Fast detection of deletion breakpoints using quantitative PCR

    PubMed Central

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    Abstract The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  3. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  4. Detection of musculoskeletal infection with the indium-III leukocyte scan

    SciTech Connect

    Prchal, C.L.; Kahen, H.L.; Blend, M.J.; Barmada, R.

    1987-09-01

    Indium-111-labeled leukocyte scans were performed on 39 patients with suspected musculoskeletal infections to assess the usefulness of this study in detecting bone and joint infections. Results of these scans, as well as results of technetium-99m bone scans, were correlated with the patients' final diagnoses. The indium scan had an overall sensitivity of 77%, a specificity of 69%, and an accuracy of 72%. In 10 patients with a duration of symptoms of six weeks or less, the sensitivity was 100% and the specificity was 75%. In 29 patients with symptoms of greater than six weeks, the sensitivity and specificity were lower at 50% and 71% respectively. Technetium-99m bone scans were performed on 23 patients; sensitivity for infection was 100% while specificity was 60%. Our results suggest that the indium-111 leukocyte scan is a useful adjunct in the diagnosis of acute musculoskeletal infections, but may be inconclusive in chronic infections.

  5. Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images

    SciTech Connect

    Gonnissen, J.; De Backer, A.; Martinez, G. T.; Van Aert, S.; Dekker, A. J. den; Rosenauer, A.; Sijbers, J.

    2014-08-11

    We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.

  6. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  7. Quantitative scanning probe microscope topographies by charge linearization of the vertical actuator.

    PubMed

    Fleming, Andrew J

    2010-10-01

    Many forms of scanning probe microscopy require a piezoelectric actuator to vary the probe-sample distance. Examples include constant-force atomic force microscopy and constant-current scanning tunneling microscopy. In such modes, the topography of the sample is reconstructed from the voltage applied to the vertical piezoelectric actuator. However, piezoelectric actuators exhibit significant hysteresis which can produce up to 14% uncertainty in the reproduced topography. In this work, a charge drive is used to linearize the vertical piezoelectric actuator which reduces the error from 14% to 0.65%.

  8. Use of Rapid-Scan EPR to Improve Detection Sensitivity for Spin-Trapped Radicals

    PubMed Central

    Mitchell, Deborah G.; Rosen, Gerald M.; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S.; Eaton, Gareth R.

    2013-01-01

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1–6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. PMID:23870255

  9. AB021. Validation of real-world, non-research thoracic CT scans for quantitative analysis of COPD

    PubMed Central

    Dandurand, Ronald J.; Dandurand, Myriam; San José Estépar, Raúl; Bourbeau, Jean; Eidelman, David H.

    2016-01-01

    Background Quantitative CT (QCT) imaging plays an important role in phenotyping COPD and uses the voxel density histogram to measure total lung volume (TLV) and emphysema surrogates: low attenuation area (LAA) and lung density (LD). LD is often volume corrected using the predicted total lung capacity (TLC) to compensate for submaximal inspiration prior to image acquisition. QCT is carried out with careful attention to quality control including scanner make/model, calibration frequency, lung volume, acquisition protocol, and the use of contrast, and bears a financial and radiation cost. We wished to determine if: (I) thoracic CT scans acquired for clinical indications on a variety of scanners from different centres with varying calibration frequency, acquisition protocols and only simple breath holding instructions could yield reproducible data; (II) volume correcting LAA and LD using the pulmonary function test (PFT) measured TLC would compensate for submaximal inspiration better than using the predicted TLC; and (III) contrast infusion causes predictable changes in the QCT metrics TLV, LAA and LD. Methods A total of 82 subjects (67 COPD, 15 non-COPD) from a community respirology practice had at least 2 CT scans judged free of significant infiltrates, performed on 10 different models of scanner in 7 different community hospitals or radiology centres for clinical indications within a 13-month period and had pulmonary function tests performed respecting ATS criteria within 14 months of at least 1 CT scan. Images were analysed with Airway Inspector in ITALIC FONT (airwayinspector.acil-bwh.org) for LAA [<-950 Hounsfield Unit (HU)], LD (at 15th percentile + 1,000 HU) and TLV. 46 paired non-contrast scans (NC/NC) and 42 paired contrast/non-contrast scans (C/NC, 23 CT angio with early infusion, 19 routine contrast with late infusion) were used to construct identity plots for TLV, LAA, LD, and LAA and LD corrected for both predicted TLC and PFT measured TLC. LAA was volume

  10. The use of selection experiments for detecting quantitative trait loci.

    PubMed

    Ollivier, L; Messer, L A; Rothschild, M F; Legault, C

    1997-06-01

    Gene frequency changes following selection may reveal the existence of gene effects on the trait selected. Loci for the selected quantitative trait (SQTL) may thus be detected. Additionally, one can estimate the average effect (alpha) of a marker allele associated with an SQTL from the allele frequency change (delta q) due to selection of given intensity (i). In a sample of unrelated individuals, it is optimal to select the upper and lower 27% for generating delta q in order to estimate alpha. For a given number of individuals genotyped, this estimator is 0.25i2 times more efficient than the classical estimator of alpha, based on the regression of the trait on the genotype at the marker locus. The method is extended to selection criteria using information from relatives, showing that combined selection considerably increases the efficiency of estimation for traits of low heritability. The method has been applied to the detection of SQTL in a selection experiment in which the trait selected was pig litter size averaged over the first four parities, with i = 3. Results for four genes are provided, one of which yielded a highly significant effect. The conditions required for valid application of the method are discussed, including selection experiments over several generations. Additional advantages of the method can be anticipated from determining gene frequencies on pooled samples of blood or DNA.

  11. Quantitative Multi-color Detection Strategies for Bioorthogonally Labeled GPCRs.

    PubMed

    Park, Minyoung; Tian, He; Naganathan, Saranga; Sakmar, Thomas P; Huber, Thomas

    2015-01-01

    We describe multiple bioorthogonal approaches to label G protein-coupled receptors (GPCRs) heterologously expressed in mammalian cells. The use of genetically encoded unnatural amino acids as bioorthogonal tags results in receptors that are expressed at lower levels than even their low abundance wild-type counterparts. Therefore, reproducible and sensitive quantification of the labeled GPCRs is extremely important and conventional methods are simply not sufficiently accurate and precise. Silver stains lack reproducibility, spectroscopic methods using fluorescent ligands are limited to quantifying only functional receptor molecules, and immunoassays using epitope tags derived from rhodopsin are particularly variable for low-abundance GPCRs. To avoid these shortcomings, we employ near infrared (NIR) imaging-based methods that enable simultaneous multi-color detection of two different antigens, thus facilitating the ratiometric analysis of bioorthogonally modified GPCRs. We anticipate that these multi-color detection strategies will provide new tools for quantitatively assessing stoichiometrically labeled GPCRs for studies of signalosomes and for structure-function relationships at a single molecule level.

  12. Quantitative PCR detection for abalone shriveling syndrome-associated virus.

    PubMed

    Jiang, Jing-Zhe; Zhu, Zhen-Ni; Zhang, Han; Liang, Ya-Yu; Guo, Zhi-Xun; Liu, Guang-Feng; Su, You-Lu; Wang, Jiang-Yong

    2012-09-01

    Haliotis diversicolor (small abalone) is an important seafood found along the southern coast of China. Since 1999, the yields of cultured abalone in China have been severely affected by an epidemic of continuous outbreaks of a fatal disease. A novel double-stranded DNA virus, abalone shriveling syndrome-associated virus (AbSV), was proven to be one of the main causative agent. Although the pathogenicity and genome of AbSV has been ascertained, the epidemiology of AbSV remains to be investigated. In this study, four pairs of AbSV-specific primers were designed on the basis of the AbSV genome, and were tested for their specificities and sensitivities in quantitative real-time PCRs (qPCRs) after optimization of the annealing temperature. The 3F3/3B3 primer pair was finally chosen with a good specificity and high efficiency of amplification, with a detection limit of about 10 copies of recombinant plasmid containing AbSV genes in a 20-μL reaction mixture. In the detection of AbSV in abalone samples along the southern coast of China, most of the diseased samples had more than 80 virus copies in 1ng host genome DNA. AbSV was also demonstrated in mature hybrid (LY) and juvenile (JH) abalones from assays of healthy animals collected in recent years.

  13. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy.

    PubMed

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  14. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    PubMed Central

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  15. Object detection and discrimination in side-scan sonar by means of intensity contouring

    NASA Astrophysics Data System (ADS)

    Slater, Richard R.; Robinson, C.; Lingsch, Stephen

    1999-08-01

    A method of automatically locating mine-like objects in side scan sonar images has been used for building data bases which contain clutter density estimates as a function of geographic location. Such data bases are useful for both operations planning and for subsequent analysis of later side scan surveys of the same area. Since traditional side scan sonar object detection is focused on individual objects rather than a more general description of collections of objects, it is not immediately useful for the problem addressed here. For that reason, we have developed an approach that uses intensity contouring, followed by a simple geometric analysis of the contours, to find clutter. Discrimination is based upon object shape, area, and the presence of nearby shadows. We describe the incorporation of such an algorithm into a processing package known as the Unified Sonar Image Processing System, and we give examples of dummy mine detection and of clutter estimation in a number of side scan sonar images.

  16. High-resolution mass spectrometry method for the detection, characterization and quantitation of pharmaceuticals in water.

    PubMed

    Pinhancos, Rebeca; Maass, Sara; Ramanathan, Dil M

    2011-11-01

    The presence of pharmaceuticals in drinking water is an emerging environmental concern. In most environmental testing laboratories, LC-MS/MS assays based on selected reaction monitoring are used as part of a battery of tests used to assure water quality. Although LC-MS/MS continues to be the best tool for detecting pharmaceuticals in water, the combined use of hybrid high-resolution mass spectrometry (HRMS) and ultrahigh pressure liquid chromatography (UHPLC) is starting to become a practical tool to study emerging environmental contaminants. The hybrid LTQ-orbitrap mass spectrometer is suitable for integrated quantitative and qualitative bioanalysis because of the following reasons: (1) the ability to collect full-scan HRMS spectra with scan speeds suitable for UHPLC separations, (2) routine measurement of mass with less than 5 ppm mass accuracy, (3) high mass resolving power, and (4) ability to perform on-the-fly polarity switching in the linear ion trap (LTQ). In the present work, we provide data demonstrating the application of UHPLC-LTQ-orbitrap for the detection, characterization and quantification of pharmaceuticals and their metabolites in drinking water.

  17. Field demonstration of a scanning lidar and detection algorithm for spatially mapping honeybees for biological detection of land mines.

    PubMed

    Carlsten, Erik S; Wicks, Geoffrey R; Repasky, Kevin S; Carlsten, John L; Bromenshenk, Jerry J; Henderson, Colin B

    2011-05-10

    A biological detection scheme based on the natural foraging behavior of conditioned honeybees for detecting chemical vapor plumes associated with unexploded ordnance devices utilizes a scanning lidar instrument to provide spatial mapping of honeybee densities. The scanning light detection and ranging (lidar) instrument uses a frequency doubled Nd:YAG microchip laser to send out a series of pulses at a pulse repetition rate of 6.853 kHz. The scattered light is monitored to produce a discrete time series for each range. This discrete time series is then processed using an efficient algorithm that is able to isolate and identify the return signal from a honeybee in a cluttered environment, producing spatially mapped honeybee densities. Two field experiments were performed with the scanning lidar instrument that demonstrate good correlation between the honeybee density maps and the target locations. PMID:21556112

  18. Association Between a Quantitative CT Scan Measure of Brain Edema and Outcome After Cardiac Arrest

    PubMed Central

    Metter, Robert B.; Rittenberger, Jon C.; Guyette, Francis X.; Callaway, Clifton W.

    2011-01-01

    Background Cerebral edema is one physical change associated with brain injury and decreased survival after cardiac arrest. Edema appears on computed tomography (CT) scan of the brain as decreased x-ray attenuation by gray matter. This study tested whether the gray matter attenuation to white matter attenuation ratio (GWR) was associated with survival and functional recovery. Methods Subjects were patients hospitalized after cardiac arrest at a single institution between 1/1/2005 and 7/30/2010. Subjects were included if they had non-traumatic cardiac arrest and a non-contrast CT scan within 24 hours after cardiac arrest. Attenuation (Hounsfield Units) was measured in gray matter (caudate nucleus, putamen, thalamus, and cortex) and in white matter (internal capsule, corpus callosum and centrum semiovale). The GWR was calculated for basal ganglia and cerebrum. Outcomes included survival and functional status at hospital discharge. Results For 680 patients, 258 CT scans were available, but 18 were excluded because of hemorrhage (10), intravenous contrast (3) or technical artifact (5), leaving 240 CT scans for analysis. Lower GWR values were associated with lower initial Glasgow Coma Scale motor score. Overall survival was 36%, but decreased with decreasing GWR. The average of basal ganglia and cerebrum GWR provided the best discrimination. Only 2/58 subjects with average GWR<1.20 survived and both were treated with hypothermia. The association of GWR with functional outcome was completely explained by mortality when GWR<1.20. Conclusions Subjects with severe cerebral edema, defined by GWR<1.20, have very low survival with conventional care, including hypothermia. GWR estimates pre-treatment likelihood of survival after cardiac arrest. PMID:21592642

  19. Scanning image detection (SID) system for conventional transmission electron microscope (CTEM) images.

    PubMed

    Tanji, T; Tomita, M; Kobayashi, H

    1990-08-01

    A new image detection system has been developed to display transmission electron microscope (TEM) images on a CRT without a video camera system. Deflection coils placed in both the upper space of an objective lens and in the lower space of the first intermediate lens scan a small electron probe simultaneously. The electrical signal acquired through an improved scintillator and a photomultiplier is synchronized with the scanning signal and displayed in a similar fashion to a conventional scanning TEM (STEM) instrument. A preliminary system using a 100 kV conventional TEM (CTEM) equipped with a hairpin-type electron gun, produced an image with a spatial resolution of 1 nm.

  20. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting.

    PubMed

    De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S

    2015-04-01

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations.

  1. An international collaborative family-based whole genome quantitative trait linkage scan for myopic refractive error

    PubMed Central

    Abbott, Diana; Li, Yi-Ju; Guggenheim, Jeremy A.; Metlapally, Ravikanth; Malecaze, Francois; Calvas, Patrick; Rosenberg, Thomas; Paget, Sandrine; Zayats, Tetyana; Mackey, David A.; Feng, Sheng

    2012-01-01

    Purpose To investigate quantitative trait loci linked to refractive error, we performed a genome-wide quantitative trait linkage analysis using single nucleotide polymorphism markers and family data from five international sites. Methods Genomic DNA samples from 254 families were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel IVb. Quantitative trait linkage analysis was performed on 225 Caucasian families and 4,656 markers after accounting for linkage disequilibrium and quality control exclusions. Two refractive quantitative phenotypes, sphere (SPH) and spherical equivalent (SE), were analyzed. The SOLAR program was used to estimate identity by descent probabilities and to conduct two-point and multipoint quantitative trait linkage analyses. Results We found 29 markers and 11 linkage regions reaching peak two-point and multipoint logarithms of the odds (LODs)>1.5. Four linkage regions revealed at least one LOD score greater than 2: chromosome 6q13–6q16.1 (LOD=1.96 for SPH, 2.18 for SE), chromosome 5q35.1–35.2 (LOD=2.05 for SPH, 1.80 for SE), chromosome 7q11.23–7q21.2 (LOD=1.19 for SPH, 2.03 for SE), and chromosome 3q29 (LOD=1.07 for SPH, 2.05 for SE). Among these, the chromosome 6 and chromosome 5 regions showed the most consistent results between SPH and SEM. Four linkage regions with multipoint scores above 1.5 are near or within the known myopia (MYP) loci of MYP3, MYP12, MYP14, and MYP16. Overall, we observed consistent linkage signals across the SPH and SEM phenotypes, although scores were generally higher for the SEM phenotype. Conclusions Our quantitative trait linkage analyses of a large myopia family cohort provided additional evidence for several known MYP loci, and identified two additional potential loci at chromosome 6q13–16.1 and chromosome 5q35.1–35.2 for myopia. These results will benefit the efforts toward determining genes for myopic refractive error. PMID:22509102

  2. Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: observer performance study

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Shi, Jiazheng; Cascade, Philip N.; Kazerooni, Ella A.; Zhou, Chuan; Wei, Jun; Chughtai, Aamer R.; Poopat, Chad; Song, Thomas; Nojkova, Jadranka S.; Frank, Luba; Attili, Anil

    2007-03-01

    The purpose of this study was to evaluate the effect of computer-aided diagnosis (CAD) on radiologists' performance for the detection of lung nodules on thoracic CT scans. Our computer system was designed using an independent training set of 94 CT scans in our laboratory. The data set for the observer performance study consisted of 48 CT scans. Twenty scans were collected from patient files at the University of Michigan, and 28 scans by the Lung Imaging Database Consortium (LIDC). All scans were read by multiple experienced thoracic radiologists to determine the true nodule locations, defined as any region identified by one or more expert radiologists as containing a nodule larger than 3 mm in diameter. Eighteen CT examinations were nodule-free, while the remaining 30 CT examinations contained a total of 73 nodules having a median size of 5.5 mm (range 3.0-36.4 mm). Four other study radiologists read the CT scans first without and then with CAD, and provided likelihood of nodule ratings for suspicious regions. Two of the study radiologists were fellowship trained in cardiothoracic radiology, and two were cardiothoracic radiology fellows. Freeresponse receiver-operating characteristic (FROC) curves were used to compare the two reading conditions. The computer system had a sensitivity of 79% (58/73) with an average of 4.9 marks per normal scan (88/18). Jackknife alternative FROC (JAFROC) analysis indicated that the improvement with CAD was statistically significant (p=0.03).

  3. Innovative Gamma Ray Spectrometer Detection Systems for Conducting Scanning Surveys on Challenging Terrain - 13583

    SciTech Connect

    Palladino, Carl; Mason, Bryan; Engle, Matt; LeVangie, James; Dempsey, Gregg; Klemovich, Ron

    2013-07-01

    The Santa Susana Field Laboratory located near Simi Valley, California was investigated to determine the nature and extent of gamma radiation anomalies. The primary objective was to conduct gamma scanning surveys over 100 percent of the approximately 1,906,000 square meters (471 acre) project site with the most sensitive detection system possible. The site had challenging topography that was not conducive to traditional gamma scanning detection systems. Terrain slope varied from horizontal to 48 degrees and the ground surface ranged from flat, grassy meadows to steep, rocky hillsides. In addition, the site was home to many protected endangered plant and animal species, and archaeologically significant sites that required minimal to no disturbance of the ground surface. Therefore, four innovative and unique gamma ray spectrometer detection systems were designed and constructed to successfully conduct gamma scanning surveys of approximately 1,076,000 square meters (266 acres) of the site. (authors)

  4. Detection of Saccharopolyspora rectivirgula by quantitative real-time PCR.

    PubMed

    Schäfer, Jenny; Kämpfer, Peter; Jäckel, Udo

    2011-07-01

    The thermophilic actinomycete species Saccharopolyspora rectivirgula has been associated with the exogen allergic alveolitis (EAA). EAA is caused by the inhalation of high amounts of airborne spores that can be found for example in environments of agricultural production, compost facilities, mushroom cultivation rooms, or rooms with technical air moistening. Because of the medical relevance of S. rectivirgula, a reliable detection system is needed. Therefore, a quantitative real-time polymerase chain reaction (qPCR) primer system was designed, targeting the 16S rRNA gene of the type strain S. rectivirgula DSM 43747(T) and six other S. rectivirgula reference strains. Our investigation showed that S. rectivirgula presumably own four operons of the 16S rRNA gene, which has to be considered for estimation of cell equivalents. Furthermore, the DNA recovery efficiency from these strains was tested in combination with bioaerosol or material sample as well as the influence of non-target DNA to the recovery rate. Results showed a recovery DNA efficiency of 7-55%. The recovery rate of DNA in a mixture with non-target DNA resulted in ∼87%. In summary, a high amplification efficiency using real-time PCR was found, for which estimated concentrations revealed cell numbers of 2.7 × 10(5) cells m(-3) in bioaerosol and 2.8 × 10(6) cells g(-1) fw(-1) in material samples from a duck house. The specificity of the new developed quantification system was shown by generation of two clone libraries from bioarosol samples, from a duck house, and from a composting plant. Totally, the results clearly show the specificity and practicability of the established qPCR assay for detection of S. rectivirgula.

  5. Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis

    SciTech Connect

    Goldman, D.; Merril, C.R.

    1983-09-01

    A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of /sup 14/C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses.

  6. Quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM) for ultrafast quantitative phase imaging flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lau, Andy K. S.; Tang, Anson H. L.; Chung, Bob M. F.; Tsang, Kwok Yeung; Chan, Antony C. S.; Wei, Xiaoming; Wong, Kenneth K.; Lam, Edmund Y.; Cheah, Kathryn S. E.; Shum, Anderson H. C.; Tsia, Kevin K.

    2016-03-01

    Based on the interferometric or holographic approaches, recent QPM techniques provide quantitative-phase information, e.g cell volume, dry mass and optical scattering properties for label-free cellular physical phenotyping. These approaches generally rely on iterative phase-retrieval algorithms to obtain quantitative-phase information, which are computationally intensive. Moreover, current QPM techniques can only offer limited image acquisition rate by using CMOS/CCD image sensors, these two limitations hinder QPM for high-throughput quantitative image-based single-cell analysis in real-time. To this end, we demonstrate an interferometry-free quantitative phase microscopy developed on a new generation of time-stretch microscopy, asymmetric-detection time-stretch optical microscopy (ATOM), which is coined quantitative ATOM (Q-ATOM) - featuring an unprecedented cell measurement throughput together with the assorted intrinsic optical phenotypes (e.g. angular light scattering profile) and the derived physical properties of the cells (e.g. cell size, dry mass density etc.). Based on a similar concept to Schlieren imaging, Q-ATOM retrieves quantitative-phase information through multiple off-axis light-beam detection at a line-scan rate of <10 MHz - a speed unachievable by any existing QPM techniques. Phase retrieval in Q-ATOM relies on a non-iterative method, significantly reducing the computational complexity of the technique. It is a particularly important feature which facilitates real-time continuous label-free single-cell analysis in Q-ATOM. With the use of a non-interferometric configuration, we demonstrate ultrafast Q-ATOM of mouse chondrocytes and hypertrophic chondrocytes in ultrafast microfluidic flow with sub-cellular resolution at an imaging throughput equivalent to ~100,000 cells/sec without image blur. This technique shows a great potential for ultrahigh throughput label-free image-based single-cell biophysical phentotyping.

  7. Acquisition of quantitative physiological data and computerized image reconstruction using a single scan TV system

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1975-01-01

    Single scan operation of television X-ray fluoroscopic systems allow both analog and digital reconstruction of tomographic sections from single plan images. This type of system combined with a minimum of statistical processing showed excellent capabilities for delineating small changes in differential X-ray attenuation. Patient dose reduction is significant when compared to normal operation or film recording. Flat screen, low light level systems were both rugged and light in weight, making them applicable for a variety of special purposes. Three dimensional information was available from the tomographic methods and the recorded data was sufficient when used with appropriate computer display devices to give representative 3D images.

  8. Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar systems

    NASA Astrophysics Data System (ADS)

    Vuorenkoski, Anni K.; Dalgleish, Fraser R.; Twardowski, Michael S.; Ouyang, Bing; Trees, Charles C.

    2015-05-01

    A fine structure underwater imaging LiDAR (FSUIL) has recently been developed and initial field trials have been conducted. The instrument, which rapidly scans an array of closely spaced, narrow, collimated laser pulses into the water column produces two-dimensional arrays of backscatter profiles, with fine spatial and temporal resolution. In this paper a novel method to derive attenuation profiles is introduced. This approach is particularly attractive in applications where primary on-board processing is required, and other applications where conventional model-based approaches are not feasible due to a limited computational capacity or lack of a priori knowledge of model input parameters. The paper also includes design details regarding the new FSUIL instrument are given, with field results taken in clear to moderately turbid water being presented to illustrate the various effects and considerations in the analysis of the system data. LiDAR waveforms and LiDAR derived attenuation coefficients are analyzed and compared to calibrated beam attenuation, particulate scattering and absorption coefficients. The system was field tested during the NATO Ligurian Sea LIDAR & Optical Measurements Experiment (LLOMEx) cruise in March 2013, during the spring bloom conditions. Throughout a wide range of environmental conditions, the FSUIL was deployed on an in situ profiler obtaining thousands of three-dimensional LiDAR scans from the near surface down to the lower thermocline. Deployed concurrent to the FSUIL was a range of commercially available off-the-shelf instruments providing side-by-side in-situ attenuation measurement.

  9. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  10. Quantitative analysis of annealed scanning probe tips using energy dispersive x-ray spectroscopy

    SciTech Connect

    Cobley, R. J.; Brown, R. A.; Barnett, C. J.; Maffeis, T. G. G.; Penny, M. W.

    2013-01-14

    A quantitative method to measure the reduction in oxide species on the surface of electrochemically etched tungsten tips during direct current annealing is developed using energy dispersive x-ray spectroscopy. Oxide species are found to decrease with annealing current, with the trend repeatable over many tips and along the length of the tip apex. A linear resistivity approximation finds significant oxide sublimation occurs at 1714 K, but surface melting and tip broadening at 2215 K. This method can be applied to calibrate any similar annealing stage, and to identify the tradeoff regime between required morphological and chemical properties.

  11. Feasibility for detection of autofluorescent signatures in rat organs using a novel excitation-scanning hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Deal, Joshua A.; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2016-04-01

    The natural fluorescence (autofluorescence) of tissues has been noted as a biomarker for cancer for several decades. Autofluorescence contrast between tumors and healthy tissues has been of significant interest in endoscopy, leading to development of autofluorescence endoscopes capable of visualizing 2-3 fluorescence emission wavelengths to achieve maximal contrast. However, tumor detection with autofluorescence endoscopes is hindered by low fluorescence signal and limited quantitative information, resulting in prolonged endoscopic procedures, prohibitive acquisition times, and reduced specificity of detection. Our lab has designed a novel excitation-scanning hyperspectral imaging system with high fluorescence signal detection, low acquisition time, and enhanced spectral discrimination. In this study, we surveyed a comprehensive set of excised tissues to assess the feasibility of detecting tissue-specific pathologies using excitation-scanning. Fresh, untreated tissue specimens were imaged from 360 to 550 nm on an inverted fluorescence microscope equipped with a set of thin-film tunable filters (Semrock, A Unit of IDEX). Images were subdivided into training and test sets. Automated endmember extraction (ENVI 5.1, Exelis) with PCA identified endmembers within training images of autofluorescence. A spectral library was created from 9 endmembers. The library was used for identification of endmembers in test images. Our results suggest (1) spectral differentiation of multiple tissue types is possible using excitation scanning; (2) shared spectra between tissue types; and (3) the ability to identify unique morphological features in disparate tissues from shared autofluorescent components. Future work will focus on isolating specific molecular signatures present in tissue spectra, and elucidating the contribution of these signatures in pathologies.

  12. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  13. Quantitative discrimination of water and hydrocarbons in porous media by magnetization prepared centric-scan SPRITE.

    PubMed

    Li, Linqing; Marica, Florin; Chen, Quan; MacMillan, Bryce; Balcom, Bruce J

    2007-06-01

    MRI has considerable potential as a non-destructive probe of porous media, offering the possibility of rapid quantification of local oil and water content. This potential has not yet, however, been completely realized. In this paper, we explore a general magnetization preparation approach to the discrimination of water and oil in a model, representative, porous medium. These measurements have, as a common element, a centric scan pure phase encode readout based on the SPRITE methodology. Magnetization preparation permits facile T1, T2 and diffusion coefficient mapping as the basis for oil and water discrimination. Diffusion coefficient mapping proved to be the most robust approach to discrimination of oil and water. These methods are illustrated through static experiments and a dynamic immiscible fluid displacement experiment. PMID:17428712

  14. Prehistorical Pediculus humanus capitis infestation: quantitative data and low vacuum scanning microscopy.

    PubMed

    Dutra, Juliana M F; Alves, Arthur Daniel; Pessanha, Thaila; Rachid, Rachel; Souza, Wanderley de; Linardi, Pedro Marcos; Ferreira, Luiz Fernando; Souza, Sheila Mendonça de; Araujo, Adauto

    2014-01-01

    A pre-Columbian Peruvian scalp was examined decades ago by a researcher from the Oswaldo Cruz Foundation. Professor Olympio da Fonseca Filho described nits and adult lice attached to hair shafts and commented about the origin of head lice infestations on mankind. This same scalp was sent to our laboratory and is the subject of the present paper. Analysis showed a massive infestation with nine eggs/cm2 and an impressive number of very well preserved adult lice. The infestation age was roughly estimated as nine months before death based on the distance of nits from the hair root and the medium rate of hair growth. A small traditional textile was associated with the scalp, possibly part of the funerary belongings. Other morphological aspects visualized by low-vacuum scanning electron microscopy are also presented here for adults and nits. PMID:24626412

  15. Acquisition of quantitative physiological data and computerized image reconstruction using a single scan TV system

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1976-01-01

    A single-scan radiography system has been interfaced to a minicomputer, and the combined system has been used with a variety of fluoroscopic systems and image intensifiers available in clinical facilities. The system's response range is analyzed, and several applications are described. These include determination of the gray scale for typical X-ray-fluoroscopic-television chains, measurement of gallstone volume in patients, localization of markers or other small anatomical features, determinations of organ areas and volumes, computer reconstruction of tomographic sections of organs in motion, and computer reconstruction of transverse axial body sections from fluoroscopic images. It is concluded that this type of system combined with a minimum of statistical processing shows excellent capabilities for delineating small changes in differential X-ray attenuation.

  16. PREHISTORICAL Pediculus humanus capitis INFESTATION: QUANTITATIVE DATA AND LOW VACUUM SCANNING MICROSCOPY

    PubMed Central

    Dutra, Juliana M.F.; Alves, Arthur Daniel; Pessanha, Thaila; Rachid, Rachel; de Souza, Wanderley; Linardi, Pedro Marcos; Ferreira, Luiz Fernando; de Souza, Sheila Mendonça; Araujo, Adauto

    2014-01-01

    A pre-Columbian Peruvian scalp was examined decades ago by a researcher from the Oswaldo Cruz Foundation. Professor Olympio da Fonseca Filho described nits and adult lice attached to hair shafts and commented about the origin of head lice infestations on mankind. This same scalp was sent to our laboratory and is the subject of the present paper. Analysis showed a massive infestation with nine eggs/cm2 and an impressive number of very well preserved adult lice. The infestation age was roughly estimated as nine months before death based on the distance of nits from the hair root and the medium rate of hair growth. A small traditional textile was associated with the scalp, possibly part of the funerary belongings. Other morphological aspects visualized by low-vacuum scanning electron microscopy are also presented here for adults and nits. PMID:24626412

  17. Detection of acute synthetic vascular graft infection with In-labeled leukocyte scanning: an animal study

    SciTech Connect

    Dries, D.J.; Alazraki, N.; Lawrence, P.F.; Murphy, K.M.; Kercher, J.; Datz, F.L.; Christian, P.; Taylor, A. Jr.

    1985-11-01

    Synthetic vascular graft infection is characterized by late diagnosis due to indolent and nonspecific symptoms. Indium- -labeled leukocyte imaging holds promise as a diagnostic tool to identify vascular graft infection, but reported data on its accuracy are somewhat sparse and conflicting. In this study, 13 mongrel dogs received Dacron aortic interposition grafts. Seven grafts were contaminated at the time of surgery by topical ATCC Staphylococcus aureus concentrated at 10(8) organisms/ml. Six control animals received no graft contamination. All infected animals were sacrificed on the second postoperative day after In leukocyte scanning. The results showed a sensitivity of 71%, specificity of 100%, and accuracy of 85% for the 111In leukocyte study in detecting early graft infections; false-positive leukocyte scans in the early postoperative period were not a problem as has been reported by others. These data indicate that leukocyte scanning for graft infection detection is likely to be clinically valuable.

  18. Quantitative measurement of adhesion of ink on plastic films with a Nano Indenter and a Scanning Probe Microscope

    NASA Astrophysics Data System (ADS)

    Shen, Weidian

    2005-03-01

    Plastic film packaging is widely used these days, especially in the convenience food industry due to its flexibility, boilability, and microwavability. Almost every package is printed with ink. The adhesion of ink on plastic films merits increasing attention to ensure quality packaging. However, inks and plastic films are polymeric materials with complicated molecular structures. The thickness of the jelly-like ink is only 500nm or less, and the thickness of the soft and flexible film is no more than 50μm, which make the quantitative measurement of their adhesion very challenging. Up to now, no scientific quantitative measurement method for the adhesion of ink on plastic films has been documented. We have tried a technique, in which a Nano-Indenter and a Scanning Probe Microscope were used to evaluate the adhesion strength of ink deposited on plastic films, quantitatively, as well as examine the configurations of adhesion failure. It was helpful in better understanding the adhesion mechanism, thus giving direction as to how to improve the adhesion.

  19. Dark-Field Scanning Transmission Ion Microscopy via Direct Detection of Transmitted Helium Ions with a Multichannel Plate

    NASA Astrophysics Data System (ADS)

    Woehl, Taylor; White, Ryan; Keller, Robert

    A multichannel plate was used as an ion sensitive transmission detector in a commercial helium ion microscope for annular dark-field imaging of nanomaterials, i.e. scanning transmission ion microscopy. In contrast to previous transmission helium ion microscopy approaches that used secondary electron conversion holders, our new approach directly detects transmitted helium ions on an annular detector. Monte Carlo simulations are used to predict detector collection angles at which annular dark-field images with atomic number contrast are obtained. We demonstrate atomic number contrast imaging via scanning transmission ion imaging of silica-coated gold nanoparticles and magnetite nanoparticles. While the resolution of this transmission technique is limited by beam broadening in the substrate, we image magnetite nanoparticles with high contrast on a relatively thick silicon nitride substrate. We expect this new approach to annular dark-field scanning transmission ion microscopy will open avenues for more quantitative ion imaging techniques, such as direct mass-thickness determination, and advance fundamental understanding of underlying ion scattering mechanisms leading to image formation.

  20. Dynamic occlusion detection and inpainting of in situ captured terrestrial laser scanning point clouds sequence

    NASA Astrophysics Data System (ADS)

    Chen, Chi; Yang, Bisheng

    2016-09-01

    Laser point clouds captured using terrestrial laser scanning (TLS) in an uncontrollable urban outdoor or indoor scene suffer from irregular shaped data blanks caused by dynamic occlusion that temporarily exists, i.e., moving objects, such as pedestrians or cars, resulting in integrality and quality losses of the scene data. This paper proposes a novel automatic dynamic occlusion detection and inpainting method for sequential TLS point clouds captured from one scan position. In situ collected laser point clouds sequences are indexed by establishing a novel panoramic space partition that assigns a three dimensional voxel to each laser point according to the scanning setups. Then two stationary background models are constructed at the ray voxel level using the laser reflectance intensity and geometrical attributes of the point set inside each voxel across the TLS sequence. Finally, the background models are combined to detect the points on the dynamic object, and the ray voxels of the detected dynamic points are tracked for further inpainting by replacing the ray voxels with the corresponding background voxels from another scan. The resulting scene is free of dynamic occlusions. Experiments validated the effectiveness of the proposed method for indoor and outdoor TLS point clouds captured by a commercial terrestrial scanner. The proposed method achieves high precision and recall rate for dynamic occlusion detection and produces clean inpainted point clouds for further processing.

  1. Establishment and assessment of two methods for quantitative detection of serum duck hepatitis B virus DNA

    PubMed Central

    Chen, Ya-Xi; Huang, Ai-Long; Qi, Zhen-Yuan; Guo, Shu-Hua

    2004-01-01

    AIM: To establish and assess the methods for quantitative detection of serum duck hepatitis B virus (DHBV) DNA by quantitative membrane hybridization using DHBV DNA probe labeled directly with alkaline phosphatase and fluorescence quantitative PCR (qPCR). METHODS: Probes of DHBV DNA labeled directly with alkaline phosphatase and chemiluminescent substrate CDP-star were used in this assay. DHBV DNA was detected by autoradiography, and then scanned by DNA dot-blot. In addition, three primers derived from DHBV DNA S gene were designed. Semi-nested primer was labeled by AmpliSensor. Standard curve of the positive standards of DHBV DNA was established after asymmetric preamplification, semi-nested amplification and on-line detection. Results from 100 samples detected separately by alkaline phosphatase direct-labeled DHBV DNA probe with dot-blot hybridization and digoxigenin-labeled DHBV DNA probe hybridization. Seventy samples of duck serum were tested by fluorescent qPCR and digoxigenin-labeled DHBV DNA probe in dot-blot hybridization assay and the correlation of results was analysed. RESULTS: Sensitivity of alkaline phosphatase direct-labeled DHBV DNA probe was 10 pg. The coincidence was 100% compared with digoxigenin-labeled DHBV DNA probe assay. After 30 cycles, amplification products showed two bands of about 180 bp and 70 bp by 20 g/L agarose gel electrophoresis. Concentration of amplification products was in direct proportion to the initial concentration of positive standards. The detection index was in direct proportion to the quantity of amplification products accumulated in the current cycle. The initial concentration of positive standards was in inverse proportion to the number of cycles needed for enough quantities of amplification products. Correlation coefficient of the results was (0.97, P < 0.01) between fluorescent qPCR and dot-blot hybridization. CONCLUSION: Alkaline phosphatase direct-labeled DHBV DNA probe in dot-blot hybridization and fluorescent q

  2. Quantitative materials contrast at high spatial resolution with a novel near-field scanning microwave microscope

    NASA Astrophysics Data System (ADS)

    Imtiaz, Atif

    A novel Near-Field Scanning Microwave Microscope (NSMM) has been developed where a Scanning Tunneling Microscope (STM) is used for tip-to-sample distance control. The technique is non-contact and non-destructive. The same tip is used for both STM and NSMM, and STM helps maintain the tip-to-sample distance at a nominal height of 1 nm. Due to this very small tip-to-sample separation, the contribution to the microwave signals due to evanescent (non-propagating) waves cannot be ignored. I describe different evanescent wave models developed so far to understand the complex tip-to-sample interaction at microwave frequencies. Propagating wave models are also discussed, since they are still required to understand some aspects of the tip-to-sample interaction. Numerical modeling is also discussed for these problems. I demonstrate the sensitivity of this novel microscope to materials property contrast. The materials contrast is shown in spatial variations on the surface of metal thin films, Boron-doped Semiconductor and Colossal Magneto-Resistive (CMR) thin films. The height dependence of the contrast shows sensitivity to nano-meter sized features when the tip-to-sample separation is below 100 nm. By adding a cone of height 4 nm to the tip, I am able to explain a 300 kHz deviation observed in the frequency shift signal, when tip-to-sample separation is less than 10 nm. In the absence of the cone, the frequency shift signal should continue to show the logarithmic behavior as a function of height. I demonstrate sub-micron spatial resolution with this novel microscope, both in tip-to-sample capacitance Cx and materials contrast in sheet resistance Rx. The spatial resolution in Cx is demonstrated to be at-least 2.5 nm on CMR thin films. The spatial resolution in Rx is shown to be sub-micron by measuring a variably Boron-doped Silicon sample which was prepared using the Focus Ion Beam (FIB) technique.

  3. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers.

    PubMed

    Sanjay, Sharma T; Dou, Maowei; Sun, Jianjun; Li, XiuJun

    2016-01-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings. PMID:27456979

  4. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    PubMed Central

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, XiuJun

    2016-01-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings. PMID:27456979

  5. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    NASA Astrophysics Data System (ADS)

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, Xiujun

    2016-07-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings.

  6. Quantitative scanning thermal microscopy based on determination of thermal probe dynamic resistance.

    PubMed

    Bodzenta, J; Juszczyk, J; Chirtoc, M

    2013-09-01

    Resistive thermal probes used in scanning thermal microscopy provide high spatial resolution of measurement accompanied with high sensitivity to temperature changes. At the same time their sensitivity to variations of thermal conductivity of a sample is relatively low. In typical dc operation mode the static resistance of the thermal probe is measured. It is shown both analytically and experimentally that the sensitivity of measurement can be improved by a factor of three by measuring the dynamic resistance of a dc biased probe superimposed with small ac current. The dynamic resistance can be treated as a complex value. Its amplitude represents the slope of the static voltage-current U-I characteristic for a given I while its phase describes the delay between the measured ac voltage and applied ac current component in the probe. The phase signal also reveals dependence on the sample thermal conductivity. Signal changes are relatively small but very repeatable. In contrast, the difference between dynamic and static resistance has higher sensitivity (the same maximum value as that of the 2nd and 3rd harmonics), and also much higher amplitude than higher harmonics. The proposed dc + ac excitation scheme combines the benefits of dc excitation (mechanical stability of probe-sample contact, average temperature control) with those of ac excitation (base-line stability, rejection of ambient temperature influence, high sensitivity, lock-in signal processing), when the experimental conditions prohibit large ac excitation.

  7. Quantitative mapping of pore fraction variations in silicon nitride using an ultrasonic contact scan technique

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.

    1993-01-01

    An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.

  8. Quantitative Imaging of Microwave Electric Fields through Near-Field Scanning Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Thanawalla, A.; Feenstra, B. J.; Wellstood, F. C.; Anlage, Steven M.; Newman, H. S.

    1998-03-01

    The ability to non-destructively image electric field patterns generated by operating microwave devices (e.g. filters, antennas, circulators, etc.) would greatly aid in the design and testing of these structures. Such detailed information can be used to reconcile discrepancies between simulated behavior and experimental data (such as scattering parameters). The near-field scanning microwave microscope we present uses a coaxial probe to provide a simple, broadband method of imaging electric fields.(S. M. Anlage, et al.) IEEE Trans. Appl. Supercond. 7, 3686 (1997).^,(See http://www.csr.umd.edu/research/hifreq/micr_microscopy.html) The signal that is measured is related to the incident electric flux normal to the face of the center conductor of the probe, allowing different components of the field to be measured by orienting the probe appropriately. By using a simple model of the system, we can also convert raw data to absolute electric field. Detailed images of standing waves on copper microstrip will be shown and compared to theory.

  9. A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus).

    PubMed Central

    Slate, J; Visscher, P M; MacGregor, S; Stevens, D; Tate, M L; Pemberton, J M

    2002-01-01

    Recent empirical evidence indicates that although fitness and fitness components tend to have low heritability in natural populations, they may nonetheless have relatively large components of additive genetic variance. The molecular basis of additive genetic variation has been investigated in model organisms but never in the wild. In this article we describe an attempt to map quantitative trait loci (QTL) for birth weight (a trait positively associated with overall fitness) in an unmanipulated, wild population of red deer (Cervus elaphus). Two approaches were used: interval mapping by linear regression within half-sib families and a variance components analysis of a six-generation pedigree of >350 animals. Evidence for segregating QTL was found on three linkage groups, one of which was significant at the genome-wide suggestive linkage threshold. To our knowledge this is the first time that a QTL for any trait has been mapped in a wild mammal population. It is hoped that this study will stimulate further investigations of the genetic architecture of fitness traits in the wild. PMID:12524355

  10. Autoblocker: a system for detecting and blocking of network scanning based on analysis of netflow data

    SciTech Connect

    Bobyshev, A.; Lamore, D.; Demar, P.; /Fermilab

    2004-12-01

    In a large campus network, such at Fermilab, with tens of thousands of nodes, scanning initiated from either outside of or within the campus network raises security concerns. This scanning may have very serious impact on network performance, and even disrupt normal operation of many services. In this paper we introduce a system for detecting and automatic blocking excessive traffic of different kinds of scanning, DoS attacks, virus infected computers. The system, called AutoBlocker, is a distributed computing system based on quasi-real time analysis of network flow data collected from the border router and core switches. AutoBlocker also has an interface to accept alerts from IDS systems (e.g. BRO, SNORT) that are based on other technologies. The system has multiple configurable alert levels for the detection of anomalous behavior and configurable trigger criteria for automated blocking of scans at the core or border routers. It has been in use at Fermilab for about 2 years, and has become a very valuable tool to curtail scan activity within the Fermilab campus network.

  11. A quantitative cryo-scanning X-ray microanalysis protocol for the examination of the eye.

    PubMed

    Wadley, Robert; Junghans, Barbara; Dickson, Mel; Liang, Helena

    2002-01-01

    Analysis of elements present in fluids contained in small, poorly accessible sections of biological tissue is challenging. The choroid of the eye, which is a vascular tissue approximately 100 microm thick, surrounds the retina for the purposes of nutrient supply and metabolite removal, and which in the chick shows dramatic volumetric change in response to visual experiences. Because fluid homeostasis is critical to good vision, a complete understanding of the ionic changes driving large shifts in ocular fluids is required. However, the structure of the choroid and retina make extraction of pure fluids for analysis extremely difficult. Elemental x-ray analysis on a transverse chorioretinal specimen was performed after rapid freezing of a whole chick eye in liquid nitrogen, and mechanically fracturing the frozen globe. Using a Polaron Cryotrans System on a Cambridge S-360 scanning electron microscope and a Kevex Quantum detector, spectra were obtained for blood vessels, lymphatic vessels and vitreous that were readily visible at 265x. Analysis was performed on a frozen control solution of the elements found in the vessels. The elements and their concentrations found in blood vessels by x-ray analysis compared well with those from whole blood as established by conventional means. The analysis for lymph yielded results compatible with expectations; no other published data for small lymphatics enable a direct comparison. In conclusion, x-ray analysis can be used to acquire information that is otherwise unobtainable from tissue in situ. The same bulk-frozen elemental microanalysis protocol would have application to other organs and tissues when access to the site would destroy the integrity of the tissue under investigation. PMID:11866343

  12. Effect of Intrafraction Prostate Motion on Proton Pencil Beam Scanning Delivery: A Quantitative Assessment

    SciTech Connect

    Tang, Shikui; Deville, Curtiland; McDonough, James; Tochner, Zelig; Wang, Ken Kang-Hsin; Vapiwala, Neha; Both, Stefan

    2013-10-01

    Purpose: To assess the dosimetric impact caused by the interplay between intrafraction prostate motion and the intermittent delivery of proton pencil beam scanning (PBS). Methods and Materials: A cohort of 10 prostate patients was treated with PBS using a bilateral single-field uniform dose (SFUD) modality. Bilateral intensity-modulated proton therapy (IMPT) plans were generated for comparison. Because beam-on time in PBS was intermittent, the actual beam-on time was determined from treatment logs. Prostate motion was generalized according to real-time Calypso tracking data from our previously reported prospective photon trial. We investigated potential dose deviations by considering the interplay effect resulting from the worst-case scenario motion and the PBS delivery sequence. Results: For both bilateral-field SFUD and IMPT plans, clinical target volume (CTV) D{sub 99}% coverage was degraded <2% owing to prostate intrafraction motion when averaged over the course of treatment, but was >10% for the worst fraction. The standard deviation of CTV D{sub 99}% distribution was approximately 1.2%. The CTV coverage of individual fields in SFUD plans degraded as time elapsed after the initial alignment, owing to prostate drift. Intensity-modulated proton therapy and SFUD demonstrated comparable results when bilateral opposed fields were used. Single-field SFUD plans that were repainted twice, which could reduce half of the treatment time, resulted in similar CTV coverage as bilateral-field plans. Conclusions: Intrafraction prostate motion affects the actual delivered dose to CTV; however, when averaged over the course of treatment, CTV D{sub 99}% coverage degraded only approximately 2% even for the worst-case scenario. The IMPT plan results are comparable to those of the SFUD plan, and similar coverage can be achieved if treated by SFUD 1 lateral field per day when rescanning the field twice to shorten the treatment time and mitigate intrafraction motion.

  13. Quantitative high-angle annular dark field scanning transmission electron microscopy for materials science

    NASA Astrophysics Data System (ADS)

    Petrova, Rumyana V.

    Scanning transmission electron microscopy (STEM) has been widely used for characterization of materials; to identify micro- and nano-structures within a sample and to analyze crystal and defect structures. High-angle annular dark field (HAADF) STEM imaging using atomic number (Z) contrast has proven capable of resolving atomic structures with better than 2 A lateral resolution. In this work, the HAADF STEM imaging mode is used in combination with multislice simulations. This combination is applied to the investigation of the temperature dependence of the intensity collected by the HAADF detector in silicon, and to convergent beam electron diffraction (CBED) to measure the degree of chemical order in intermetallic nanoparticles. The experimental and simulation results on the high-angle scattering of 300 keV electrons in crystalline silicon provide a new contribution to the understanding of the temperature dependence of the HAADF intensity. In the case of 300 keV, the average high-angle scattered intensity slightly decreases as the temperature increases from 100 K to 300 K, and this is different from the temperature dependence at 100 keV and 200 keV where HAADF intensity increases with temperature, as had been previously reported by other workers. The L10 class of hard magnetic materials has attracted continuous attention as a candidate for high-density magnetic recording media, as this phase is known to have large magnetocrystalline anisotropy, with magnetocrystalline anisotropy constant, Ku, strongly dependent on the long-range chemical order parameter, S. A new method is developed to assess the degree of chemical order in small FePt L1 0 nanoparticles by implementing a CBED diffraction technique. Unexpectedly, the degree of order of individual particles is highly variable and not a simple function of particle size or sample composition. The particle-to-particle variability observed is an important new aspect to the understanding of phase transformations in

  14. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    NASA Astrophysics Data System (ADS)

    Walker, Bennett N.; James, Robert H.; Calogero, Don; Ilev, Ilko K.

    2015-09-01

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  15. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    SciTech Connect

    Walker, Bennett N.; James, Robert H.; Ilev, Ilko K.; Calogero, Don

    2015-09-15

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  16. Correlative fractography: combining scanning electron microscopy and light microscopes for qualitative and quantitative analysis of fracture surfaces.

    PubMed

    Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato

    2013-04-01

    Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface.

  17. Quantitative detection of settled dust over green canopy

    NASA Astrophysics Data System (ADS)

    Brook, Anna

    2016-04-01

    NMF (SS-NMF), 6) Alternating Least-Square (ALS), and 2) Lin's Projected Gradient (LPG). The performance is evaluated on real hyperspectral imagery data via detailed experimental assessment. The study showed that in certain compression tasks content-adapted sparse representation is provided by state-of-the-art solutions. The NMF algorithm estimates endmembers that are used to remove spurious information. If computationally feasible, it should include interaction terms to make the model more flexible. The optimal NMF algorithms, such as ALS and LPG, are assumed to be the simplest methods that achieve the minimum error on the test set. In summary, this work shows that sediment dust can be assessed using airborne HSI data, making it a potentially powerful tool for environmental studies. References Keshava, N., Mustard, J. (2002). Spectral unmixing. IEEE Signal Process. Mag., 19(1), 44-57. Chudnovsky, A., & Ben-Dor, E. (2009). Reflectance spectroscopy as a tool for settled dust monitoring in office environment. International Journal of Environment and Waste Management, 4(1), 32-49. Brook, A. (2014). Quantitative Detection of Settled dust over Green Canopy using Sparse Unmixing of Airborne Hyperspectral Data. IEEE-Whispers 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2014, Switzerland, 4-8. Keshava, N., Mustard, J. (2002). Spectral unmixing. IEEE Signal Process. Mag., 19(1), 44-57. Bioucas-Dias et al. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354 -379.

  18. Tunable PIE and synchronized gating detections by FastFLIM for quantitative microscopy measurements of fast dynamics of single molecules

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Coskun, Ulas; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2016-03-01

    The crosstalk between two fluorescent species causes problems in fluorescence microscopy imaging, especially for quantitative measurements such as co-localization, Förster resonance energy transfer (FRET), fluorescence cross correlation spectroscopy (FCCS). In laser scanning confocal microscopy, the lasers can be switched on and off by acousto-optic tunable filters (AOTF) in the microsecond scale for alternative line scanning in order to avoid the crosstalk while minimizing the time delay between two lasers on the same pixel location. In contrast, the pulsed interleaved excitation (PIE) technique synchronizes two pulsed lasers of different wavelengths in the nanosecond scale to enable measuring superfast dynamics of two fluorescent species simultaneously and yet quantitatively without the crosstalk contamination. This feature is critical for many cell biology applications, e.g. accurate determination of stoichiometry in FRET measurements for studying protein-protein interactions or cell signal events, detection of weaker bindings in FCCS by eliminating the false cross correlation due to the crosstalk. The PIE has been used with the time correlated single photon counting (TCSPC) electronics. Here, we describe a novel PIE development using the digital frequency domain (DFD) technique -- FastFLIM, which provides tunable PIE setups and synchronized gating detections, tailored and optimized to specific applications. A few PIE setups by FastFLIM and measurement examples are described. Combined with the sensitivity of Alba and Q2 systems, the PIE allowed us to quantitatively measure the fast dynamics of single molecules.

  19. Heel Ultrasound Scan in Detecting Osteoporosis in Low Trauma Fracture Patients.

    PubMed

    Hashmi, Faiz R; Elfandi, Khaled O

    2016-06-27

    Osteoporosis is the most common metabolic disease with significant impact on the morbidity and mortality of affected patients. Osteoporosis has a significant impact on the economy worldwide. The aim of this study was to find out whether heel ultrasound is as good as central bone densitometry scanning in diagnosing osteoporosis in patients who are at high risk of osteoporosis. This was a prospective study of patients comparing heel ultrasound to central bone densitometry scanning (dual X-ray absorptiometry, DEXA) in patients. The recruited patients attended for a DEXA scan of the left hip and lumbar spine. All subjects had an ultrasound of the left heel using the quantitative heel ultrasound machine. The results of DEXA scan were blinded from the results of ultrasound and vice versa. There were 59 patients who took part in the study, 12 men and 47 women. The mean age was 66 years (SD 11.9) and mean weight was 62.5 kg (SD 10.7). The sensitivity and specificity of the ultrasound heel test to predict osteoporosis were 53% (95%CI: 29-77) and 86% (95%CI: 75-96) respectively. Specificity for predicting bone mineral density (BMD)-defined osteoporosis was high (86%), but sensitivity was low (53%). A heel ultrasound result in the osteoporotic range was highly predictive of BMD-defined osteoporosis. A positive ultrasound heel test in high risk patients is more useful in ruling in osteoporosis than a negative test to rule out osteoporosis. PMID:27433300

  20. Heel Ultrasound Scan in Detecting Osteoporosis in Low Trauma Fracture Patients

    PubMed Central

    Hashmi, Faiz R.; Elfandi, Khaled O.

    2016-01-01

    Osteoporosis is the most common metabolic disease with significant impact on the morbidity and mortality of affected patients. Osteoporosis has a significant impact on the economy worldwide. The aim of this study was to find out whether heel ultrasound is as good as central bone densitometry scanning in diagnosing osteoporosis in patients who are at high risk of osteoporosis. This was a prospective study of patients comparing heel ultrasound to central bone densitometry scanning (dual X-ray absorptiometry, DEXA) in patients. The recruited patients attended for a DEXA scan of the left hip and lumbar spine. All subjects had an ultrasound of the left heel using the quantitative heel ultrasound machine. The results of DEXA scan were blinded from the results of ultrasound and vice versa. There were 59 patients who took part in the study, 12 men and 47 women. The mean age was 66 years (SD 11.9) and mean weight was 62.5 kg (SD 10.7). The sensitivity and specificity of the ultrasound heel test to predict osteoporosis were 53% (95%CI: 29-77) and 86% (95%CI: 75-96) respectively. Specificity for predicting bone mineral density (BMD)-defined osteoporosis was high (86%), but sensitivity was low (53%). A heel ultrasound result in the osteoporotic range was highly predictive of BMD-defined osteoporosis. A positive ultrasound heel test in high risk patients is more useful in ruling in osteoporosis than a negative test to rule out osteoporosis. PMID:27433300

  1. Integrated scanning laser ophthalmoscopy and optical coherence tomography for quantitative multimodal imaging of retinal degeneration and autofluorescence

    NASA Astrophysics Data System (ADS)

    Issaei, Ali; Szczygiel, Lukasz; Hossein-Javaheri, Nima; Young, Mei; Molday, L. L.; Molday, R. S.; Sarunic, M. V.

    2011-03-01

    Scanning Laser Ophthalmoscopy (SLO) and Coherence Tomography (OCT) are complimentary retinal imaging modalities. Integration of SLO and OCT allows for both fluorescent detection and depth- resolved structural imaging of the retinal cell layers to be performed in-vivo. System customization is required to image rodents used in medical research by vision scientists. We are investigating multimodal SLO/OCT imaging of a rodent model of Stargardt's Macular Dystrophy which is characterized by retinal degeneration and accumulation of toxic autofluorescent lipofuscin deposits. Our new findings demonstrate the ability to track fundus autofluorescence and retinal degeneration concurrently.

  2. Genome scan for quantitative trait loci influencing HDL levels: evidence for multilocus inheritance in familial combined hyperlipidemia.

    PubMed

    Gagnon, France; Jarvik, Gail P; Badzioch, Michael D; Motulsky, Arno G; Brunzell, John D; Wijsman, Ellen M

    2005-09-01

    Several genome scans in search of high-density lipoprotein (HDL) quantitative trait loci (QTLs) have been performed. However, to date the actual identification of genes implicated in the regulation of common forms of HDL abnormalities remains unsuccessful. This may be due, in part, to the oligogenic and multivariate nature of HDL regulation, and potentially, pleiotropy affecting HDL and other lipid-related traits. Using a Bayesian Markov Chain Monte Carlo (MCMC) approach, we recently provided evidence of linkage of HDL level variation to the APOA1-C3-A4-A5 gene complex, in familial combined hyperlipidemia pedigrees, with an estimated number of two to three large QTLs remaining to be identified. We also presented results consistent with pleiotropy affecting HDL and triglycerides at the APOA1-C3-A4-A5 gene complex. Here we use the same MCMC analytic strategy, which allows for oligogenic trait models, as well as simultaneous incorporation of covariates, in the context of multipoint analysis. We now present results from a genome scan in search for the additional HDL QTLs in these pedigrees. We provide evidence of linkage for additional HDL QTLs on chromosomes 3p14 and 13q32, with results on chromosome 3 further supported by maximum parametric and variance component LOD scores of 3.0 and 2.6, respectively. Weaker evidence of linkage was also obtained for 7q32, 12q12, 14q31-32 and 16q23-24.

  3. Rapid super-resolution line-scanning microscopy through virtually structured detection.

    PubMed

    Zhi, Yanan; Lu, Rongwen; Wang, Benquan; Zhang, Qiuxiang; Yao, Xincheng

    2015-04-15

    Virtually structured detection (VSD) has been demonstrated to break the diffraction limit in scanning laser microscopy (SLM). VSD provides an easy, low-cost, and phase-artifact-free strategy to achieve super-resolution imaging. However, practical application of this method is challenging due to a limited image acquisition speed. We report here the combination of VSD and line-scanning microscopy (LSM) to improve the image acquisition speed. A motorized dove prism was used to achieve automatic control of four-angle (i.e., 0°, 45°, 90°, and 135°) scanning, thus ensuring isotropic resolution improvement. Both an optical resolution target and a living frog eyecup were used to verify resolution enhancement.

  4. Rapid super-resolution line-scanning microscopy through virtually structured detection

    PubMed Central

    Zhi, Yanan; Lu, Rongwen; Wang, Benquan; Zhang, Qiuxiang; Yao, Xincheng

    2015-01-01

    Virtually structured detection (VSD) has been demonstrated to break the diffraction limit in scanning laser microscopy (SLM). VSD provides an easy, low-cost, and phase-artifact-free strategy to achieve super-resolution imaging. However, practical application of this method is challenging due to a limited image acquisition speed. We report here the combination of VSD and line-scanning microscopy (LSM) to improve the image acquisition speed. A motorized dove prism was used to achieve automatic control of four-angle (i.e., 0°, 45°, 90°, and 135°) scanning, thus ensuring isotropic resolution improvement. Both an optical resolution target and a living frog eyecup were used to verify resolution enhancement. PMID:25872047

  5. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues.

    PubMed

    Guo, Juan; Wong, Jessica X H; Cui, Caie; Li, Xiaochun; Yu, Hua-Zhong

    2015-08-21

    In this paper, we present a smartphone-readable barcode assay for the qualitative detection of methyl parathion residues, a toxic organophosphorus pesticide that is popularly used in agriculture worldwide. The detection principle is based on the irreversible inhibition of the enzymatic activity of acetylcholinesterase (AchE) by methyl parathion; AchE catalytically hydrolyzes acetylthiocholine iodine to thiocholine that in turn dissociates dithiobis-nitrobenzoate to produce a yellow product (deprotonated thio-nitrobenzoate). The yellow intensity of the product was confirmed to be inversely dependent on the concentration of the pesticide. We have designed a barcode-formatted assay chip by using a PDMS (polydimethylsiloxane) channel plate (as the reaction reservoir), situated under a printed partial barcode, to complete the whole barcode such that it can be directly read by a barcode scanning app installed on a smartphone. The app is able to qualitatively present the result of the pesticide test; the absence or a low concentration of methyl parathion results in the barcode reading as "-", identifying the test as negative for pesticides. Upon obtaining a positive result (the app reads a "+" character), the captured image can be further analyzed to quantitate the methyl parathion concentration in the sample. Besides the portability and simplicity, this mobile-app based colorimetric barcode assay compares favorably with the standard spectrophotometric method. PMID:26087169

  6. Genome-Wide Linkage Scan for Quantitative Trait Loci Underlying Normal Variation in Heel Bone Ultrasound Measures

    PubMed Central

    Lee, M.; Choh, A.C.; Williams, K.D.; Schroeder, V.; Dyer, T.D.; Blangero, J.; Cole, S.A.; Chumlea, WM.C.; Duren, D.L.; Sherwood, R.J.; Siervogel, R.M.; Towne, B.; Czerwinski, S.A.

    2012-01-01

    Quantitative ultrasound (QUS) traits are correlated with bone mineral density (BMD), but predict risk for future fracture independent of BMD. Only a few studies, however, have sought to identify specific genes influencing calcaneal QUS measures. The aim of this study was to conduct a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing normal variation in QUS traits. QUS measures were collected from a total of 719 individuals (336 males and 383 females) from the Fels Longitudinal Study who have been genotyped and have at least one set of QUS measurements. Participants ranged in age from 18.0 to 96.6 years and were distributed across 110 nuclear and extended families. Using the Sahara ® bone sonometer, broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (QUI) were collected from the right heel. Variance components based linkage analysis was performed on the three traits using 400 polymorphic short tandem repeat (STR) markers spaced approximately 10 cM apart across the autosomes to identify QTL influencing the QUS traits. Age, sex, and other significant covariates were simultaneously adjusted. Heritability estimates (h2) for the QUS traits ranged from 0.42 to 0.57. Significant evidence for a QTL influencing BUA was found on chromosome 11p15 near marker D11S902 (LOD = 3.11). Our results provide additional evidence for a QTL on chromosome 11p that harbors a potential candidate gene(s) related to BUA and bone metabolism. PMID:22237995

  7. Detection of defects in a transparent polymer with high resolution tomography using white light scanning interferometry and noise reduction

    NASA Astrophysics Data System (ADS)

    Leong-Hoï, A.; Claveau, R.; Flury, M.; Uhring, W.; Serio, B.; Anstotz, F.; Montgomery, P. C.

    2015-05-01

    Transparent layers such as polymers are complex and can contain defects which are not detectable with classical optical inspection techniques. With an interference microscope, tomographic analysis can be used to obtain initial structural information over the depth of the sample by scanning the fringes along the Z axis and performing appropriate signal processing to extract the fringe envelope. By observing the resulting XZ section, low contrast, sub-μm sized defects can be lost in the noise which is present in images acquired with a CCD camera. It is possible to reduce temporal and spatial noise from the camera by applying image processing methods such as image averaging, dark frame subtraction or flat field division. In this paper, we present some first results obtained by this means with a white light scanning interferometer on a Mylar polymer, used currently as an insulator in electronics and micro-electronics. We show that sub-μm sized structures contained in the layer, initially lost in noise and barely observable, can be detected by applying a combination of image processing methods to each of the scanned XY images along the Z-axis. In addition, errors from optical imperfections such as dust particles on the lenses or components of the system can be compensated for with this method. We thus demonstrate that XZ section images of a transparent sample can be denoised by improving each of the XY acquisition images. A quantitative study of the noise reduction is presented in order to validate the performance of this technique.

  8. Automated Guided-Wave Scanning Developed to Characterize Materials and Detect Defects

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Gyekenyeski, Andrew L.; Roth, Don J.

    2004-01-01

    The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center has developed a scanning system that uses guided waves to characterize materials and detect defects. The technique uses two ultrasonic transducers to interrogate the condition of a material. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen, and the receiving transducer detects the signal after it has passed through the material. The aim of the method is to correlate certain parameters in both the time and frequency domains of the detected waveform to characteristics of the material between the two transducers. The scanning system is shown. The waveform parameters of interest include the attenuation due to internal damping, waveform shape parameters, and frequency shifts due to material changes. For the most part, guided waves are used to gauge the damage state and defect growth of materials subjected to various mechanical or environmental loads. The technique has been applied to polymer matrix composites, ceramic matrix composites, and metal matrix composites as well as metallic alloys. Historically, guided wave analysis has been a point-by-point, manual technique with waveforms collected at discrete locations and postprocessed. Data collection and analysis of this type limits the amount of detail that can be obtained. Also, the manual movement of the sensors is prone to user error and is time consuming. The development of an automated guided-wave scanning system has allowed the method to be applied to a wide variety of materials in a consistent, repeatable manner. Experimental studies have been conducted to determine the repeatability of the system as well as compare the results obtained using more traditional NDE methods. The following screen capture shows guided-wave scan results for a ceramic matrix composite plate, including images for each of nine calculated parameters. The system can

  9. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1986-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  10. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  11. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    SciTech Connect

    Roth, D.J.; Klima, S.J.; Kiser, J.D.; Baaklini, G.Y.

    1986-05-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics. 20 references.

  12. Modeling of scanning laser polarimetry images of the human retina for progression detection of glaucoma.

    PubMed

    Vermeer, Koen A; Vos, Frans M; Lo, Barrick; Zhou, Qienyuan; Lemij, Hans G; Vossepoel, Albert M; van Vliet, Lucas J

    2006-05-01

    The development of methods to detect slowly progressing diseases is often hampered by the time-consuming acquisition of a sufficiently large data set. In this paper, a method is presented to model the change in images acquired by scanning laser polarimetry, for the detection of glaucomatous progression. The model is based on image series of 23 healthy eyes and incorporates colored noise, incomplete cornea compensation and masking by the retinal blood vessels. Additionally, two methods for detecting progression, taking either one or two follow-up visits into account, are discussed and tested on these simulated images. Both methods are based on Student's t-tests, morphological operations and anisotropic filtering. The images simulated by the model are visually pleasing, show corresponding statistical properties to the real images and are used to optimize the detection methods. The results show that detecting progression based on two follow-up visits greatly improves the sensitivity without adversely affecting the specificity.

  13. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    NASA Technical Reports Server (NTRS)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  14. Pseudo multisensor fusion schemes for mine detection in side-scan sonar images

    NASA Astrophysics Data System (ADS)

    Guo, Weiming; Szymczak, William G.

    1999-08-01

    Most of the fusion algorithms reported operate in a multi- sensor environment. In this paper, we investigate a novel fusion strategy that operates on images obtained from a single sensor. There exists a variety of methods for mien detection in sonar or laser line scan images, but single method can be considered as the best under all circumstances. Targets missed by certain algorithms might be detected by others. It can be shown that, by applying various algorithms to the same mine detection task and fusing the decisions together, one can obtain a superior detector. However, in certain difficult applications, the weaknesses of various classifiers reinforce each other. This may be due to the fact that when most classifiers are developed, the primary goal is always to achieve the highest detection over false alarm ratio. Thus, certain type of targets might be neglected by most of the detection algorithms in favor of many other targets that can be easily detected. This scenario posts challenges to decision level fusion algorithm developers, who have to develop several complementary detection algorithms. The novel fusion strategy we described in this paper applies different image enhancement algorithms to the same image before the classification stage. Since image enhancement algorithms are more diversified than detection algorithms, they tend to highlight complementary features of the mien targets in the same data set, thus producing a pseudo multi-sensor environment. These detection decisions on multiple looks of the same image are then fused together to create a superior detection scheme.

  15. Ultrasonic enrichment of microspheres for ultrasensitive biomedical analysis in confocal laser-scanning fluorescence detection

    NASA Astrophysics Data System (ADS)

    Wiklund, M.; Toivonen, J.; Tirri, M.; Hänninen, P.; Hertz, H. M.

    2004-07-01

    An ultrasonic particle concentrator based on a standing-wave hemispherical resonator is combined with confocal laser-scanning fluorescence detection. The goal is to perform ultrasensitive biomedical analysis by concentration of biologically active microspheres. The standing-wave resonator consists of a 4 MHz focusing ultrasonic transducer combined with the optically transparent plastic bottom of a disposable 96-well microplate platform. The ultrasonic particle concentrator collects suspended microspheres into dense, single-layer aggregates at well-defined positions in the sample vessel of the microplate, and the fluorescence from the aggregates is detected by the confocal laser-scanning system. The biochemical properties of the system are investigated using a microsphere-based human thyroid stimulating hormone assay.

  16. [Research progress of real-time quantitative PCR method for group A rotavirus detection].

    PubMed

    Guo, Yan-Qing; Li, Dan-Di; Duan, Zhao-Jun

    2013-11-01

    Group A rotavirus is one of the most significant etiological agents which causes acute gastroenteritis among infants and young children worldwide. So far, several method which includes electron microscopy (EM), enzyme immunoassay (EIA), reverse transcription-polymerase chain reaction (RT-PCR)and Real-time Quantitative PCR has been established for the detection of rotavirus. Compared with other methods, Real-time quantitative PCR have advantages in specificity, sensitivity, genotyping and quantitative accuracy. This article shows a overview of the application of real-time quantitative PCR technique to detecte group A rotavirus.

  17. Detection of Fatigue Damage Prior to Crack Initiation withScanning SQUID Microscopy

    SciTech Connect

    Lee, Tae-Kyu; Morris Jr., J.W.; Lee, Seungkyun; Clarke, John

    2005-11-07

    The remanence fields of fatigued ferritic steel specimens were measured using a scanning microscope based on a high transition temperature Superconducting Quantum Interference Device (SQUID). The results show an overall increase of remanence until dislocation density saturates and an additional local remanence increase after saturation during cyclic loading. Because of the combined magnetic and spatial resolution of the SQUID microscope, these local changes of dislocation structures can be detected before a crack actually initiates, and identify the sites where crack nucleation will occur.

  18. Scanning ferromagnetic resonance microscopy and resonant heating of magnetite nanoparticles: Demonstration of thermally detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Sakran, F.; Copty, A.; Golosovsky, M.; Davidov, D.; Monod, P.

    2004-05-01

    We report a 9 GHz microwave scanning probe based on a slit aperture for spatially resolved magnetic resonance detection. We use patterned layers of dispersed magnetite Fe3O4 nanoparticles and demonstrate low-field ferromagnetic resonance images with a spatial resolution of 15 μm. We also demonstrate localized heating of magnetite nanoparticles via ferromagnetic resonance absorption which can be controlled by an external dc magnetic field. Using our microwave probe as a transmitter and a temperature sensor (thermocouple or infrared detector), we show thermally detected magnetic resonance at room temperature.

  19. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices.

    PubMed

    Brewer, R L; Dunn, W L; Heider, S; Matthew, C; Yang, X

    2012-07-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of "signatures" obtained from a test target to a collection of "templates", sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8L and larger.

  20. [Rapid quantitative detection of sulfate reducing bacteria in oil field].

    PubMed

    Wei, Li; Ma, Fang; Wang, Ji-Hua; Zhao, Li-Jun

    2007-02-01

    It take long time and high cost to measure sulfate reducing bacteria (SRB) in wastewater of oil field. A rapid quantitative method was developed by combining polymerase chain reaction(PCR) and most probable number (MPN) to measure sulfate reducing bacteria (SRB) in wastewater of oil field. The bacterium solution was directly prepared from wastewater for PCR amplification, which ensured quantitative accuracy. Reaction system and amplification condition were designed using universal primers DSR1F and DSR5R of dissimilatory sulfite reductase in SRB. The result show that the accuracy of this method is two magnitude higher than that of MPN. The whole measuring process take 3 - 4 hours and the reproducibility of this method is extremely stable, being fit to practical process.

  1. Quantitative visualization of molecular transport through porous membranes: enhanced resolution and contrast using intermittent contact-scanning electrochemical microscopy.

    PubMed

    McKelvey, Kim; Snowden, Michael E; Peruffo, Massimo; Unwin, Patrick R

    2011-09-01

    The use of intermittent contact-scanning electrochemical microscopy (IC-SECM) in diffusion-limited amperometric mode to visualize and quantify mass transport through multiporous membranes is described using dentin as a model example. The IC mode of SECM employs the damping of a vertically modulated ultramicroelectrode (UME) to achieve positioning close to the receptor side of a membrane. In this way the UME can detect electroactive species close to the pore exit. A key aspect of IC-SECM is that in addition to the direct current (dc) from the diffusion-limited detection of the analyte, an alternating current (ac) also develops due to the motion of the probe. It demonstrates that this ac signal enhances the spatial resolution of SECM detection and allows the hydrodynamic flow of species to be detected from individual closely spaced pores. The experimental deductions are supported by three-dimensional finite element modeling which allows IC-SECM current maps to be analyzed to reveal transport rates through individual pores. The method described should be widely applicable to multiporous membrane transport.

  2. A scanning method for detecting clustering pattern of both attribute and structure in social networks

    NASA Astrophysics Data System (ADS)

    Wang, Tai-Chi; Phoa, Frederick Kin Hing

    2016-03-01

    Community/cluster is one of the most important features in social networks. Many cluster detection methods were proposed to identify such an important pattern, but few were able to identify the statistical significance of the clusters by considering the likelihood of network structure and its attributes. Based on the definition of clustering, we propose a scanning method, originated from analyzing spatial data, for identifying clusters in social networks. Since the properties of network data are more complicated than those of spatial data, we verify our method's feasibility via simulation studies. The results show that the detection powers are affected by cluster sizes and connection probabilities. According to our simulation results, the detection accuracy of structure clusters and both structure and attribute clusters detected by our proposed method is better than that of other methods in most of our simulation cases. In addition, we apply our proposed method to some empirical data to identify statistically significant clusters.

  3. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.

    PubMed

    Woehl, Taylor J; White, Ryan M; Keller, Robert R

    2016-06-01

    A microchannel plate was used as an ion sensitive detector in a commercial helium ion microscope (HIM) for dark-field transmission imaging of nanomaterials, i.e. scanning transmission ion microscopy (STIM). In contrast to previous transmission HIM approaches that used secondary electron conversion holders, our new approach detects forward-scattered helium ions on a dedicated annular shaped ion sensitive detector. Minimum collection angles between 125 mrad and 325 mrad were obtained by varying the distance of the sample from the microchannel plate detector during imaging. Monte Carlo simulations were used to predict detector angular ranges at which dark-field images with atomic number contrast could be obtained. We demonstrate atomic number contrast imaging via scanning transmission ion imaging of silica-coated gold nanoparticles and magnetite nanoparticles. Although the resolution of STIM is known to be degraded by beam broadening in the substrate, we imaged magnetite nanoparticles with high contrast on a relatively thick silicon nitride substrate. We expect this new approach to annular dark-field STIM will open avenues for more quantitative ion imaging techniques and advance fundamental understanding of underlying ion scattering mechanisms leading to image formation.

  4. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.

    PubMed

    Woehl, Taylor J; White, Ryan M; Keller, Robert R

    2016-06-01

    A microchannel plate was used as an ion sensitive detector in a commercial helium ion microscope (HIM) for dark-field transmission imaging of nanomaterials, i.e. scanning transmission ion microscopy (STIM). In contrast to previous transmission HIM approaches that used secondary electron conversion holders, our new approach detects forward-scattered helium ions on a dedicated annular shaped ion sensitive detector. Minimum collection angles between 125 mrad and 325 mrad were obtained by varying the distance of the sample from the microchannel plate detector during imaging. Monte Carlo simulations were used to predict detector angular ranges at which dark-field images with atomic number contrast could be obtained. We demonstrate atomic number contrast imaging via scanning transmission ion imaging of silica-coated gold nanoparticles and magnetite nanoparticles. Although the resolution of STIM is known to be degraded by beam broadening in the substrate, we imaged magnetite nanoparticles with high contrast on a relatively thick silicon nitride substrate. We expect this new approach to annular dark-field STIM will open avenues for more quantitative ion imaging techniques and advance fundamental understanding of underlying ion scattering mechanisms leading to image formation. PMID:27153003

  5. Detection of quantitative trait loci for growth and carcass composition in cattle.

    PubMed

    Casas, E; Shackelford, S D; Keele, J W; Koohmaraie, M; Smith, T P L; Stone, R T

    2003-12-01

    The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives < 0.05) were observed for birth weight and longissimus area on chromosome 5, for longissimus area on chromosome 6, for retail product yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives < 1) the presence of QTL was detected for several traits. Putative QTL for birth weight were detected on chromosomes 1, 2, and 3, and for weaning weight on chromosome 29. For hot carcass weight, QTL were detected on chromosomes 10, 18, and 29. Four QTL for yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat

  6. Detection of quantitative trait loci for growth and carcass composition in cattle.

    PubMed

    Casas, E; Shackelford, S D; Keele, J W; Koohmaraie, M; Smith, T P L; Stone, R T

    2003-12-01

    The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives < 0.05) were observed for birth weight and longissimus area on chromosome 5, for longissimus area on chromosome 6, for retail product yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives < 1) the presence of QTL was detected for several traits. Putative QTL for birth weight were detected on chromosomes 1, 2, and 3, and for weaning weight on chromosome 29. For hot carcass weight, QTL were detected on chromosomes 10, 18, and 29. Four QTL for yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat

  7. Lateral resolution improvement of laser-scanning imaging for nano defects detection

    NASA Astrophysics Data System (ADS)

    Yokozeki, Hiroki; Kudo, Ryota; Takahashi, Satoru; Takamasu, Kiyoshi

    2014-08-01

    Demand for higher efficiency in the semiconductor manufacturing industry is continually increasing. In particular, nano defects measurement on patterned or bare Si semiconductor wafer surfaces is an important quality control factor for realizing high productivity and reliability of semiconductor device fabrication. Optical methods and electron beam methods are conventionally used for the inspection of semiconductor wafers. Because they are nondestructive and suitable for high-throughput inspection, optical methods are preferable to electron beam methods such as scanning electron microscopy, transmission electron microscopy, and so on. However, optical methods generally have an essential disadvantage about lateral spatial resolution than electron beam methods, because of the diffraction limit depending on the optical wavelength. In this research, we aim to develop a novel laser-scanning imaging method that can be applied to nano-/micro manufacturing processes such as semiconductor wafer surface inspection to allow lateral spatial super-resolution imaging with resolution beyond the diffraction limit. In our proposed method, instead of detecting the light intensity value from the beam spot on the inspection surface, the light intensity distribution, which is formed with infinity corrected optical system, coming from the beam spot on the inspection surface is detected. In addition, nano scale shifts in the beam spot are applied for laser spot scanning using a conventional laser-scanning method in which the spots are shifted at about a 100 nm pitch. By detecting multiple light intensity distributions due to the nano scale shifts, a super-resolution image reconstruction with resolution beyond the diffraction limit can be expected. In order to verify the feasibility of the proposed method, several numerical simulations were carried out.

  8. Robust morphological detection of sea mines in side-scan sonar images

    NASA Astrophysics Data System (ADS)

    Batman, Sinan; Goutsias, John I.

    2001-10-01

    The automated detection of sea mines remains an increasingly important humanitarian and military task. In recent years, research efforts have been concentrated on developing algorithms that detect mines in complicated littoral environments. Acquired high-resolution side-looking sonar images are often heavily infested with artifacts from natural and man-made clutter. As a consequence, automated detection algorithms, designed for high probability of detection, suffer from a large number of false alarms. To remedy this situation, sophisticated feature extraction and pattern classification techniques are commonly used after detection. In this paper, we propose a nonlinear detection algorithm, based on mathematical morphology, for the robust detection of sea mines. The proposed algorithm is fast and performs well under a variety of sonar modalities and operating conditions. Our approach is based on enhancing potential mine signatures by extracting highlight peaks of appropriate shape and size and by boosting the amplitude of the peaks associated with a potential shadow prior to detection. Signal amplitudes over highlight peaks are extracted using a flat morphological top-hat by reconstruction operator. The contribution of a potential shadow to the detection image is incorporated by increasing the associated highlight amplitude by an amount proportional to the relative contrast between highlight and shadow signatures. The detection image is then thresholded at mid-gray level. The largest p targets from the resulting binary image are then labelled as potential targets. The number of false alarms in the detection image is subsequently reduced to an acceptable level by a feature extraction and classification module. The detection algorithm is tested on two side-scan sonar databases provided by the Coastal Systems Station, Panama City, Florida: SONAR-0 and SONAR-3.

  9. Detection accuracy of condylar defects in cone beam CT images scanned with different resolutions and units

    PubMed Central

    Zhang, Z-l; Shi, X-q; Ma, X-c

    2014-01-01

    Objectives: To assess the impact of spatial resolution and cone beam CT (CBCT) unit on CBCT images for the detection accuracy of condylar defects. Methods: 42 temporomandibular joints were scanned, respectively, with the CBCT units ProMax® 3D (Planmeca Oy, Helsinki, Finland) and DCT PRO (Vatech, Co., Ltd., Yongin-Si, Republic of Korea) at normal and high resolutions. Seven dentists evaluated all the test images with respect to the presence or the absence of condylar defects. Receiver operating characteristic curve analysis was employed to define the detection accuracy. Two-way analysis of variance was used to analyse the values under the receiver operating characteristic curves for the differences among imaging groups and observers. Intraobserver variation was analysed using the Wilcoxon test. Results: Macroscopic anatomy examination revealed that, of the 42 temporomandibular joint condylar surfaces, 18 were normal and 24 had defects on the surface of condyles. No significant differences were found between the images scanned with normal and high resolutions for both CBCT units ProMax 3D (p = 0.119) and DCT PRO (p = 0.740). Significant differences exist between image groups of DCT PRO and ProMax 3D (p < 0.05). Neither the inter- nor the intraobserver variability were significant. Conclusions: The spatial resolution per se did not have an impact on the detection accuracy of condylar defects. The detection accuracy of condylar defects highly depends on the CBCT unit used for examination. PMID:24408818

  10. Spatial scanning for anomaly detection in acoustic emission testing of an aerospace structure

    NASA Astrophysics Data System (ADS)

    Hensman, James; Worden, Keith; Eaton, Mark; Pullin, Rhys; Holford, Karen; Evans, Sam

    2011-10-01

    Acoustic emission (AE) monitoring of engineering structures potentially provides a convenient, cost-effective means of performing structural health monitoring. Networks of AE sensors can be easily and unobtrusively installed upon structures, giving the ability to detect and locate damage-related strain releases ('events') in the structure. Use of the technique is not widespread due to the lack of a simple and effective method for detecting abnormal activity levels: the sensitivity of AE sensor networks is such that events unrelated to damage are prevalent in most applications. In this publication, we propose to monitor AE activity in a structure using a spatial scanning statistic, developed and used effectively in the field of epidemiology. The technique is demonstrated on an aerospace structure - an Airbus A320 main landing gear fitting - undergoing fatigue loading, and the method is compared to existing techniques. Despite its simplicity, the scanning statistic proves to be an extremely effective tool in detecting the onset of damage in the structure: it requires little to no user intervention or expertise, is inexpensive to compute and has an easily interpretable output. Furthermore, the generic nature of the method allows the technique to be used in a variety of monitoring scenarios, to detect damage in a wide range of structures.

  11. Adaptive filter for mine detection and classification in side-scan sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Antoni, Diana; Fernandez, Manuel F.; Dobeck, Gerald J.

    1995-06-01

    A need exists to develop robust automatic techniques for discriminating between minelike target and clutter returns in sonar imagery. To address this need, an adaptive clutter suppression linear FIR filtering technique has been developed and applied to side scan sonar imagery data. The adaptive filtering procedure consists of four stages. First, a normalized average target signature (shape) within the filter window is computed using training set data. Second, the background clutter covariance matrix is computed by scanning the filter window over the data. Third, following substitutions of the average target signature and covariance expressions into a set of normal equations, an adaptive filter is computed which simultaneously suppresses the background clutter while preserving the peak of the average target signature. Finally, the data is filtered using the 2D adaptive range-crossrange filter. The overall mine detection processing string includes automatic gain control, data decimation, adaptive clutter filtering (ACF), 2D normalization, thresholding, exceedance clustering, limiting the number of exceedances and secondary thresholding processing blocks. The utility of the ACF processing string was demonstrated with three side scan sonar datasets. The ACF algorithm provided average probability of detection and false alarm rate performance similar to that obtained when utilizing an expert sonar operator.

  12. Quantitative imaging of sheet resistance, permittivity, and ferroelectric critical phenomena with a near-field scanning microwave microscope

    NASA Astrophysics Data System (ADS)

    Steinhauer, David Ethan

    I describe the design and use of a near-field scanning microwave microscope to make quantitative measurements of sample properties, such as sheet resistance and permittivity. The system consists of a resonator contained in a coaxial cable, terminated at one end with an open-ended coaxial probe. When a sample is brought near the probe tip, the resonant frequency and quality factor are perturbed depending on the local properties of the sample. The spatial resolution depends on the diameter of the probe's center conductor, which can be in the range 1-500 μm. This versatile technique is nondestructive, and has broadband (0.1-50 GHz) capability. Quantitative imaging of the sheet resistance of conducting thin films can be achieved through a thin-film calibration sample. To reinforce our understanding of the physical mechanisms of the measurement, I use a physical model for the system based on microwave transmission line theory. I demonstrate the technique at 7.5 GHz by imaging the sheet resistance of a variable-thickness YBa2Cu3O7-δ thin film on a sapphire substrate at room temperature. Using a probe with a sharp, protruding center conductor held in contact with the sample, high-resolution (1 μm) imaging can be accomplished. I use a finite element calculation of the electric field near the probe tip, combined with perturbation theory, to make quantitative linear and nonlinear dielectric measurements of thin films and crystals. I demonstrate this capability by imaging the dielectric permittivity and nonlinearity of a (Ba,Sr)TiO3 thin film. The microscope can also be used to image domains in ferroelectric crystals such as lithium niobate, barium titanate, and deuterated triglycine sulfate (DTGS). Critical phenomena can be investigated by varying the temperature of the sample. I measured the permittivity, dielectric nonlinearity, and domain relaxation time of DTGS as a function of temperature near the ferroelectric transition. For permittivity measurements, I found

  13. An electrochemical immunosensor for quantitative detection of ficolin-3

    NASA Astrophysics Data System (ADS)

    San, Lili; Zeng, Dongdong; Song, Shiping; Zuo, Xiaolei; Zhang, Huan; Wang, Chenguang; Wu, Jiarui; Mi, Xianqiang

    2016-06-01

    Diabetes mellitus (DM) is one of the most common metabolic disorders in the world, of which more than 90% is type-2 diabetes mellitus (T2DM). There is a rather urgent need for reliable, sensitive and quick detection techniques in clinical application of T2DM. Ficolin-3 is a potential biomarker of T2DM, because serum ficolin-3 levels are associated with insulin resistance and predict the incidence of T2DM. Herein, a sandwich-type electrochemical immunosensor was developed for the detection of ficolin-3 in human serum. Cyclic voltammetry and the amperometric current versus time were used to characterize the performance of the immunosensor. Under optimal conditions, the detection limitation of ficolin-3 was 100 ng ml–1 and the linear dynamic range was between 2 and 50 μg ml–1. The method has ideal accuracy, excellent stability and selectivity and has wide application prospects in clinical research.

  14. An electrochemical immunosensor for quantitative detection of ficolin-3

    NASA Astrophysics Data System (ADS)

    San, Lili; Zeng, Dongdong; Song, Shiping; Zuo, Xiaolei; Zhang, Huan; Wang, Chenguang; Wu, Jiarui; Mi, Xianqiang

    2016-06-01

    Diabetes mellitus (DM) is one of the most common metabolic disorders in the world, of which more than 90% is type-2 diabetes mellitus (T2DM). There is a rather urgent need for reliable, sensitive and quick detection techniques in clinical application of T2DM. Ficolin-3 is a potential biomarker of T2DM, because serum ficolin-3 levels are associated with insulin resistance and predict the incidence of T2DM. Herein, a sandwich-type electrochemical immunosensor was developed for the detection of ficolin-3 in human serum. Cyclic voltammetry and the amperometric current versus time were used to characterize the performance of the immunosensor. Under optimal conditions, the detection limitation of ficolin-3 was 100 ng ml-1 and the linear dynamic range was between 2 and 50 μg ml-1. The method has ideal accuracy, excellent stability and selectivity and has wide application prospects in clinical research.

  15. A quantitative study of 3D-scanning frequency and Δd of tracking points on the tooth surface

    PubMed Central

    Li, Hong; Lyu, Peijun; Sun, Yuchun; Wang, Yong; Liang, Xiaoyue

    2015-01-01

    Micro-movement of human jaws in the resting state might influence the accuracy of direct three-dimensional (3D) measurement. Providing a reference for sampling frequency settings of intraoral scanning systems to overcome this influence is important. In this study, we measured micro-movement, or change in distance (∆d), as the change in position of a single tracking point from one sampling time point to another in five human subjects. ∆d of tracking points on incisors at 7 sampling frequencies was judged against the clinical accuracy requirement to select proper sampling frequency settings. The curve equation was then fit quantitatively between ∆d median and the sampling frequency to predict the trend of ∆d with increasing f. The difference of ∆d among the subjects and the difference between upper and lower incisor feature points of the same subject were analyzed by a non-parametric test (α = 0.05). Significant differences of incisor feature points were noted among different subjects and between upper and lower jaws of the same subject (P < 0.01). Overall, ∆d decreased with increasing frequency. When the frequency was 60 Hz, ∆d nearly reached the clinical accuracy requirement. Frequencies higher than 60 Hz did not significantly decrease Δd further. PMID:26400112

  16. Quantitative analysis of arterial flow properties for detection of non-calcified plaques in ECG-gated coronary CT angiography

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Agarwal, Prachi; Kuriakose, Jean; Hadjiiski, Lubomir; Patel, Smita; Kazerooni, Ella

    2015-03-01

    We are developing a computer-aided detection system to assist radiologists in detection of non-calcified plaques (NCPs) in coronary CT angiograms (cCTA). In this study, we performed quantitative analysis of arterial flow properties in each vessel branch and extracted flow information to differentiate the presence and absence of stenosis in a vessel segment. Under rest conditions, blood flow in a single vessel branch was assumed to follow Poiseuille's law. For a uniform pressure distribution, two quantitative flow features, the normalized arterial compliance per unit length (Cu) and the normalized volumetric flow (Q) along the vessel centerline, were calculated based on the parabolic Poiseuille solution. The flow features were evaluated for a two-class classification task to differentiate NCP candidates obtained by prescreening as true NCPs and false positives (FPs) in cCTA. For evaluation, a data set of 83 cCTA scans was retrospectively collected from 83 patient files with IRB approval. A total of 118 NCPs were identified by experienced cardiothoracic radiologists. The correlation between the two flow features was 0.32. The discriminatory ability of the flow features evaluated as the area under the ROC curve (AUC) was 0.65 for Cu and 0.63 for Q in comparison with AUCs of 0.56-0.69 from our previous luminal features. With stepwise LDA feature selection, volumetric flow (Q) was selected in addition to three other luminal features. With FROC analysis, the test results indicated a reduction of the FP rates to 3.14, 1.98, and 1.32 FPs/scan at sensitivities of 90%, 80%, and 70%, respectively. The study indicated that quantitative blood flow analysis has the potential to provide useful features for the detection of NCPs in cCTA.

  17. Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease

    SciTech Connect

    Isgum, Ivana; Rutten, Annemarieke; Prokop, Mathias; Ginneken, Bram van

    2007-04-15

    A fully automated method for coronary calcification detection from non-contrast-enhanced, ECG-gated multi-slice computed tomography (CT) data is presented. Candidates for coronary calcifications are extracted by thresholding and component labeling. These candidates include coronary calcifications, calcifications in the aorta and in the heart, and other high-density structures such as noise and bone. A dedicated set of 64 features is calculated for each candidate object. They characterize the object's spatial position relative to the heart and the aorta, for which an automatic segmentation scheme was developed, its size and shape, and its appearance, which is described by a set of approximated Gaussian derivatives for which an efficient computational scheme is presented. Three classification strategies were designed. The first one tested direct classification without feature selection. The second approach also utilized direct classification, but with feature selection. Finally, the third scheme employed two-stage classification. In a computationally inexpensive first stage, the most easily recognizable false positives were discarded. The second stage discriminated between more difficult to separate coronary calcium and other candidates. Performance of linear, quadratic, nearest neighbor, and support vector machine classifiers was compared. The method was tested on 76 scans containing 275 calcifications in the coronary arteries and 335 calcifications in the heart and aorta. The best performance was obtained employing a two-stage classification system with a k-nearest neighbor (k-NN) classifier and a feature selection scheme. The method detected 73.8% of coronary calcifications at the expense of on average 0.1 false positives per scan. A calcium score was computed for each scan and subjects were assigned one of four risk categories based on this score. The method assigned the correct risk category to 93.4% of all scans.

  18. Development of a c-scan photoacoutsic imaging probe for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Valluru, Keerthi S.; Chinni, Bhargava K.; Rao, Navalgund A.; Bhatt, Shweta; Dogra, Vikram S.

    2011-03-01

    Prostate cancer is the second leading cause of death in American men after lung cancer. The current screening procedures include Digital Rectal Exam (DRE) and Prostate Specific Antigen (PSA) test, along with Transrectal Ultrasound (TRUS). All suffer from low sensitivity and specificity in detecting prostate cancer in early stages. There is a desperate need for a new imaging modality. We are developing a prototype transrectal photoacoustic imaging probe to detect prostate malignancies in vivo that promises high sensitivity and specificity. To generate photoacoustic (PA) signals, the probe utilizes a high energy 1064 nm laser that delivers light pulses onto the prostate at 10Hz with 10ns duration through a fiber optic cable. The designed system will generate focused C-scan planar images using acoustic lens technology. A 5 MHz custom fabricated ultrasound sensor array located in the image plane acquires the focused PA signals, eliminating the need for any synthetic aperture focusing. The lens and sensor array design was optimized towards this objective. For fast acquisition times, a custom built 16 channel simultaneous backend electronics PCB has been developed. It consists of a low-noise variable gain amplifier and a 16 channel ADC. Due to the unavailability of 2d ultrasound arrays, in the current implementation several B-scan (depth-resolved) data is first acquired by scanning a 1d array, which is then processed to reconstruct either 3d volumetric images or several C-scan planar images. Experimental results on excised tissue using a in-vitro prototype of this technology are presented to demonstrate the system capability in terms of resolution and sensitivity.

  19. Automated kidney detection for 3D ultrasound using scan line searching

    NASA Astrophysics Data System (ADS)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan

    2016-04-01

    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  20. Detection of enteroviruses in shellfish by fluorogenic polymerase chain reaction integrated with 96-well microplate scanning.

    PubMed

    Shieh, Y Carol; Baric, Ralph S

    2002-01-01

    A one-step procedure was developed to confirm viral targets by using a fluorometric 96-well microplate scanner following polymerase chain reaction (PCR). The fluorogenic PCR, integrated with fluorometric scanning, measured the end point fluorescence of viral PCR amplicon/probe hybrids and permitted the use of nonfluorogenic PCR conditions with addition of a Cy3 fluorophore-labeled linear probe for viruses. This linear probe generated higher ratios of viral signal-to-noise than a comparative beacon probe. Detection efficiency with a Cy3/quencher linear probe was comparable with Southern analysis at the level > or = 0.27 plaque-forming units (PFU) of poliovirus/PCR. For the reaction containing < 0.27 PFU, the fluorometric measurements of the first-round PCR viral amplicon were not as sensitive as Southern analysis; however, equivalent sensitivities were achieved with fluorogenic nested PCR. Concentrates of 11 oyster samples exposed to municipal sewage were tested for enteroviruses; the fluorogenic detection correlated 100% with Southern analysis. This method using fluorometric scanning of viral amplicon is simple; it requires neither continuously monitoring equipment nor redesigning PCR primers; and it accurately detects enteroviruses in oyster sample concentrates in less time than classic spectrophotometry or Southern analysis.

  1. Simultaneous Detection and Tracking of Pedestrian from Panoramic Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Xiao, Wen; Vallet, Bruno; Schindler, Konrad; Paparoditis, Nicolas

    2016-06-01

    Pedestrian traffic flow estimation is essential for public place design and construction planning. Traditional data collection by human investigation is tedious, inefficient and expensive. Panoramic laser scanners, e.g. Velodyne HDL-64E, which scan surroundings repetitively at a high frequency, have been increasingly used for 3D object tracking. In this paper, a simultaneous detection and tracking (SDAT) method is proposed for precise and automatic pedestrian trajectory recovery. First, the dynamic environment is detected using two different methods, Nearest-point and Max-distance. Then, all the points on moving objects are transferred into a space-time (x, y, t) coordinate system. The pedestrian detection and tracking amounts to assign the points belonging to pedestrians into continuous trajectories in space-time. We formulate the point assignment task as an energy function which incorporates the point evidence, trajectory number, pedestrian shape and motion. A low energy trajectory will well explain the point observations, and have plausible trajectory trend and length. The method inherently filters out points from other moving objects and false detections. The energy function is solved by a two-step optimization process: tracklet detection in a short temporal window; and global tracklet association through the whole time span. Results demonstrate that the proposed method can automatically recover the pedestrians trajectories with accurate positions and low false detections and mismatches.

  2. Terrestrial laser scanning for detection of landfill gas: a pilot study

    NASA Astrophysics Data System (ADS)

    Reshetyuk, Yuriy; Mårtensson, Stig-Göran

    2014-04-01

    Methane built up in landfills as a result of breaking down of organic materials can be a renewable energy source if it is taken advantage of. The aim of research presented in this paper is to detect landfill gas (that contains methane) by means of terrestrial laser scanning. The hypothesis is that where no surface leakage has been reported, the landfill gas will expand or migrate. Therefore, it is possible to detect it through repeated scanning of the same area and comparison of Digital Terrain Models (DTMs) generated from the point clouds. Only the most significant movements, i.e. vertical, are of interest in this case. During September-November 2011, a small area at Forsbacka landfill in the vicinity of Gävle was scanned 10 times. Epoch-to-epoch comparisons of the resulting DTMs have shown two significant changes (-27 and +19 mm) in elevation of the surface, and it is not impossible that they are caused by migrating landfill gas. The method tested in this study is deemed to be rigorous and accurate for detecting small-scale swell-shrink behaviour of the ground surface (in our case a landfill surface). However, both data processing and interpretation of the results have been considerably complicated by presence of low vegetation (weeds) on the study site, which was dificult to filter away completely from the data. Based on our pilot study, we recommend that a larger area and a longer period of time are chosen to give basis for more grounded conclusions about presence of landfill gas.

  3. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  4. Optimization of Quantitative PCR Methods for Enteropathogen Detection.

    PubMed

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen's extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  5. Quantitative corrosion monitoring and detection using ultrasonic Lamb waves

    NASA Astrophysics Data System (ADS)

    Gordon, Grant A.; Braunling, Russ

    2005-05-01

    Corrosion is a major problem for airframe operators. For the aircraft industry in general, the direct costs of corrosion are estimated at $2.2 billion. As part of their strategy to control corrosion, airframe operators constantly seek to improve their ability to anticipate, manage and identify corrosion activity. Motivated by the need for an on-line real-time corrosion-monitoring tool for industry and aircraft a prototype system and analysis approach is presented. The tool employs ultrasonic Lamb waves along with a dispersion compensated synthetic aperture focusing technique (SAFT) to detect emerging pitting damage. In order to develop an automated detection approach the noise sources of the SAFT processed defect maps were examined and modeled. The random noise was found to be neither stationary nor normally distributed. Locally varying Weibull distribution parameters are used to characterize the image noise. An algorithm is developed to quantify the uncertainty in the corrosion detection and to allow assignment of a constant false alarm probability to any region of the monitored area.

  6. Optimization of Quantitative PCR Methods for Enteropathogen Detection

    PubMed Central

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M.; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R.

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen’s extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  7. Magnetic detection of cracks by fatigue in mild steels using a scanning Hall-sensor microscope

    NASA Astrophysics Data System (ADS)

    Oota, A.; Ito, T.; Kawano, K.; Sugiyama, D.; Aoki, H.

    1999-01-01

    We fabricated a scanning Hall-sensor microscope with an active area 50 μm×50 μm that can be served as a simple and conventional tool for nondestructive evaluation of magnetic materials. Using this, we succeeded in magnetic detection of small cracks (˜10 mm long and ˜0.1 mm wide) in mild steels with a yield point of 29 kgf/mm2, caused by a plane-bending fatigue test at a stress amplitude of 28 kgf/mm2 and a frequency of 29.2 Hz.

  8. Detection of cardiomyopathy in an animal model using quantitative autoradiography

    SciTech Connect

    Kubota, K.; Som, P.; Oster, Z.H.; Brill, A.B.; Goodman, M.M.; Knapp, F.F. Jr.; Atkins, H.L.; Sole, M.J.

    1988-10-01

    A fatty acid analog (15-p-iodophenyl)-3,3 dimethyl-pentadecanoic acid (DMIPP) was studied in cardiomyopathic (CM) and normal age-matched Syrian hamsters. Dual tracer quantitative wholebody autoradiography (QARG) with DMIPP and 2-(/sup 14/C(U))-2-deoxy-2-fluoro-D-glucose (FDG) or with FDG and /sup 201/Tl enabled comparison of the uptake of a fatty acid and a glucose analog with the blood flow. These comparisons were carried out at the onset and mid-stage of the disease before congestive failure developed. Groups of CM and normal animals were treated with verapamil from the age of 26 days, before the onset of the disease for 41 days. In CM hearts, areas of decreased DMIPP uptake were seen. These areas were much larger than the decrease in uptake of FDG or /sup 201/Tl. In early CM only minimal changes in FDG or /sup 201/Tl uptake were observed as compared to controls. Treatment of CM-prone animals with verapamil prevented any changes in DMIPP, FDG, or /sup 201/Tl uptake. DMIPP seems to be a more sensitive indicator of early cardiomyopathic changes as compared to /sup 201/Tl or FDG. The trial of DMIPP and SPECT in the diagnosis of human disease, as well as for monitoring the effects of drugs which may prevent it seems to be warranted.

  9. Quantitative Laughter Detection, Measurement, and Classification-A Critical Survey.

    PubMed

    Cosentino, Sarah; Sessa, Salvatore; Takanishi, Atsuo

    2016-01-01

    The study of human nonverbal social behaviors has taken a more quantitative and computational approach in recent years due to the development of smart interfaces and virtual agents or robots able to interact socially. One of the most interesting nonverbal social behaviors, producing a characteristic vocal signal, is laughing. Laughter is produced in several different situations: in response to external physical, cognitive, or emotional stimuli; to negotiate social interactions; and also, pathologically, as a consequence of neural damage. For this reason, laughter has attracted researchers from many disciplines. A consequence of this multidisciplinarity is the absence of a holistic vision of this complex behavior: the methods of analysis and classification of laughter, as well as the terminology used, are heterogeneous; the findings sometimes contradictory and poorly documented. This survey aims at collecting and presenting objective measurement methods and results from a variety of different studies in different fields, to contribute to build a unified model and taxonomy of laughter. This could be successfully used for advances in several fields, from artificial intelligence and human-robot interaction to medicine and psychiatry. PMID:26887012

  10. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications.

    PubMed

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations. PMID:26724038

  11. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    SciTech Connect

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  12. Dual-detection confocal microscopy: high-speed surface profiling without depth scanning

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ryoung; Gweon, Dae-Gab; Yoo, Hongki

    2016-03-01

    We propose a new method for three-dimensional (3-D) imaging without depth scanning that we refer to as the dual-detection confocal microscopy (DDCM). Compared to conventional confocal microscopy, DDCM utilizes two pinholes of different sizes. DDCM generates two axial response curves which have different stiffness according to the pinhole diameters. The two axial response curves can draw the characteristics curve of the system which shows the relationship between the axial position of the sample and the intensity ratio. Utilizing the characteristic curve, the DDCM reconstructs a 3-D surface profile with a single 2-D scanning. The height of each pixel is calculated by the intensity ratio of the pixel and the intensity ratio curve. Since the height information can be obtained directly from the characteristic curve without depth scanning, a major advantage of DDCM over the conventional confocal microscopy is a speed. The 3-D surface profiling time is dramatically reduced. Furthermore, DDCM can measure 3-D images without the influence of the sample condition since the intensity ratio is independent of the quantum yield and reflectance. We present two types of DDCM, such as a fluorescence microscopy and a reflectance microscopy. In addition, we extend the measurement range axially by varying the pupil function. Here, we demonstrate the working principle of DDCM and the feasibility of the proposed methods.

  13. Quantitative detection of settled dust over green canopy

    NASA Astrophysics Data System (ADS)

    Brook, Anna

    2016-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing hyperspectral unmixing in order to retrieve accurate quantitative information latent in hyperspectral imagery data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem of hyperspectral imagery in semi-supervised fashion. This paper suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Atmospheric dust transports a variety of chemicals, some of which pose a risk to the ecosystem and human health (Kaskaoutis, et al., 2008). Many studies deal with the impact of dust on particulate matter (PM) and atmospheric pollution. Considering the potential impact of industrial pollutants, one of the most important considerations is the fact that suspended PM can have both a physical and a chemical impact on plants, soils, and water bodies. Not only can the particles covering surfaces cause physical distortion, but particles of diverse origin and different chemistries can also serve as chemical stressors and cause irreversible damage. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and

  14. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes.

    PubMed

    Lee, Sang-Hee; Ahn, Ji-Young; Lee, Kyeong-Ah; Um, Hyun-Ju; Sekhon, Simranjeet Singh; Sun Park, Tae; Min, Jiho; Kim, Yang-Hoon

    2015-06-15

    As a major human pathogen in the Listeria genus, Listeria monocytogenes causes the bacterial disease listeriosis, which is a serious infection caused by eating food contaminated with the bacteria. We have developed an aptamer-based sandwich assay (ABSA) platform that demonstrates a promising potential for use in pathogen detection using aptamers as analytical bioconjugates. The whole-bacteria SELEX (WB-SELEX) strategy was adopted to generate aptamers with high affinity and specificity against live L. monocytogenes. Of the 35 aptamer candidates tested, LMCA2 and LMCA26 reacted to L. monocytogenes with high binding, and were consequently chosen as sensing probes. The ABSA platform can significantly enhance the sensitivity by employing a very specific aptamer pair for the sandwich complex. The ABSA platform exhibited a linear response over a wide concentration range of L. monocytogenes from 20 to 2×10(6) CFU per mL and was closely correlated with the following relationship: y=9533.3x+1542.3 (R(2)=0.99). Our proposed ABSA platform also provided excellent specificity for the tests to distinguish L. monocytogenes from other Listeria species and other bacterial genera (3 Listeria spp., 4 Salmonella spp., 2 Vibrio spp., 3 Escherichia coli and 3 Shigella spp.). Improvements in the sensitivity and specificity have not only facilitated the reliable detection of L. monocytogenes at extremely low concentrations, but also allowed for the development of a 96-well plate-based routine assay platform for multivalent diagnostics.

  15. a Feasibility Study on Use of Generic Mobile Laser Scanning System for Detecting Asphalt Pavement Cracks

    NASA Astrophysics Data System (ADS)

    Chen, Xinqu; Li, Jonathan

    2016-06-01

    This study aims to automatically detect pavement cracks on urban roads by employing the 3D point clouds acquired by a mobile laser scanning (MLS) system. Our method consists of four steps: ground point filtering, high-pass convolution, matched filtering, and noise removal. First, a voxel-based upward growing method is applied to construct Digital Terrain Model (DTM) of the road surface. Then, a high-pass filter convolutes the DTM to detect local elevation changes that may embed cracking information. Next, a two-step matched filter is applied to extract crack features. Lastly, a noise removal process is conducted to refine the results. Instead of using MLS intensity, this study takes advantages of the MLS elevation information to perform automated crack detection from large-volume, mixed-density, unstructured MLS point clouds. Four types of cracks including longitudinal, transvers, random, and alligator cracks are detected. Our results demonstrated that the proposed method works well with the RIEGL VMX-450 point clouds and can detect cracks in moderate-to-severe severity (13 - 25 mm) within a 200 m by 30 m urban road segment located in Kingston, Ontario, at one time. Due to the resolution capability, small cracks with slight severity remain unclear in the MLS point cloud.

  16. SkinScan©: A PORTABLE LIBRARY FOR MELANOMA DETECTION ON HANDHELD DEVICES.

    PubMed

    Wadhawan, Tarun; Situ, Ning; Lancaster, Keith; Yuan, Xiaojing; Zouridakis, George

    2011-03-30

    We have developed a portable library for automated detection of melanoma termed SkinScan© that can be used on smartphones and other handheld devices. Compared to desktop computers, embedded processors have limited processing speed, memory, and power, but they have the advantage of portability and low cost. In this study we explored the feasibility of running a sophisticated application for automated skin cancer detection on an Apple iPhone 4. Our results demonstrate that the proposed library with the advanced image processing and analysis algorithms has excellent performance on handheld and desktop computers. Therefore, deployment of smartphones as screening devices for skin cancer and other skin diseases can have a significant impact on health care delivery in underserved and remote areas. PMID:21892382

  17. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection

    PubMed Central

    Irsch, Kristina; Gramatikov, Boris; Wu, Yi-Kai; Guyton, David

    2011-01-01

    Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates (“wave-plate-enhanced RBS”) that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia. PMID:21750772

  18. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    PubMed

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  19. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection.

    PubMed

    Irsch, Kristina; Gramatikov, Boris; Wu, Yi-Kai; Guyton, David

    2011-07-01

    Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates ("wave-plate-enhanced RBS") that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia.

  20. Methodology of protistan discovery: from rRNA detection to quality scanning electron microscope images.

    PubMed

    Stoeck, Thorsten; Fowle, William H; Epstein, Slava S

    2003-11-01

    Each year, thousands of new protistan 18S rRNA sequences are detected in environmental samples. Many of these sequences are molecular signatures of new protistan species, classes, and/or kingdoms that have never been seen before. The main goal of this study was to enable visualization of these novel organisms and to conduct quality ultrastructural examination. We achieved this goal by modifying standard procedures for cell fixation, fluorescence in situ hybridization, and scanning electron microscopy (SEM) and by making these methodologies work in concert. As a result, the same individual cell can now be detected by 18S rRNA-targeted fluorochrome-labeled probes and then viewed by SEM to reveal its diagnostic morphological characteristics. The method was successfully tested on a wide range of protists (alveolates, stramenopiles, kinetoplastids, and cryptomonads). The new methodology thus opens a way for fine microscopy studies of many organisms previously known exclusively by their 18S rRNA sequences.

  1. Scanning magneto-optical Kerr microscope with auto-balanced detection scheme.

    PubMed

    Halahovets, Y; Siffalovic, P; Jergel, M; Senderak, R; Majkova, E; Luby, S; Kostic, I; Szymanski, B; Stobiecki, F

    2011-08-01

    We have developed a scanning magneto-optical Kerr microscope dedicated to localization and measurement of the in-plane magnetization of ultra-thin layered magnetic nanostructures with high sensitivity and signal-to-noise ratio. The novel light detection scheme is based on a differential photodetector with automatic common mode noise rejection system with a high noise suppression up to 50 dB. The sensitivity of the developed detection scheme was tested by measurement of a single Co layer and a giant magnetoresistance (GMR) multilayer stack. The spatial resolution of the Kerr microscope was demonstrated by mapping an isolated 5×5 μm spin-valve pillar. PMID:21895250

  2. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  3. Enhanced ratio of signals enables digital mutation scanning for rare allele detection.

    PubMed

    Castellanos-Rizaldos, Elena; Paweletz, Cloud; Song, Chen; Oxnard, Geoffrey R; Mamon, Harvey; Jänne, Pasi A; Makrigiorgos, G Mike

    2015-05-01

    The use of droplet digital PCR (ddPCR) for low-level DNA mutation detection in cancer, prenatal diagnosis, and infectious diseases is growing rapidly. However, although ddPCR has been implemented successfully for detection of rare mutations at pre-determined positions, no ddPCR adaptation for mutation scanning exists. Yet, frequently, clinically relevant mutations reside on multiple sequence positions in tumor suppressor genes or complex hotspot mutations in oncogenes. Here, we describe a combination of coamplification at lower denaturation temperature PCR (COLD-PCR) with ddPCR that enables digital mutation scanning within approximately 50-bp sections of a target amplicon. Two FAM/HEX-labeled hydrolysis probes matching the wild-type sequence are used during ddPCR. The ratio of FAM/HEX-positive droplets is constant when wild-type amplicons are amplified but deviates when mutations anywhere under the FAM or HEX probes are present. To enhance the change in FAM/HEX ratio, we employed COLD-PCR cycling conditions that enrich mutation-containing amplicons anywhere on the sequence. We validated COLD-ddPCR on multiple mutations in TP53 and in EGFR using serial mutation dilutions and cell-free circulating DNA samples, and demonstrate detection down to approximately 0.2% to 1.2% mutation abundance. COLD-ddPCR enables a simple, rapid, and robust two-fluorophore detection method for the identification of multiple mutations during ddPCR and potentially can identify unknown DNA variants present in the target sequence.

  4. New quantitative detection of pathogens in heterogeneous environmental samples

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Wang, Xiaofang; Mitchell, Kristi; Chae, Seon-Ha; Son, Ahjeong

    2015-04-01

    Quantum dots and magnetic beads based genomic assay (NanoGene assay) has been developed for sensitive and inhibition resistant gene quantification to achieve in-situ bacteria monitoring in environmental samples. In this study, eaeA gene of pathogenic E. coli O157:H7 was quantified. The result demonstrated the excellent sensitivity (i.e., limit of detection: 87 gene copies for dsDNA and 890 zeptomolar for ssDNA) in the presence of nonspecific microbial populations (Kim et al., 2010; 2011a). The feasibility of the developed gene quantification for non-laboratory environment usage (in-situ use) was investigated. Therefore, DNA hybridization was achieved at ambient temperature and minimum agitation, and the analysis was completed within hours. Most importantly, the NanoGene assay demonstrated the resistance to the presence of naturally occurring inhibitors (humic acids, cations) and residual reagents (surfactants, alcohols) from DNA extraction (Kim et al., 2011b). The assay was also applied to humic acids laden soils (7 types of soils with various amount of organic matters) and successfully quantified 105 to 108 CFU of E. coli O157:H7 per gram soil (R2 = 0.99). The results indicate that the presented NanoGene assay is suitable for further development as an in-situ bacteria monitoring method for working with heterogeneous environmental samples (Wang et al., 2013). Another aspect of the method is to transform the NanoGene assay into a portable device that can be used as a pathogenic bacteria detector in environment. The project consisted of the first inline fluidic components development and characterization as well as the first integration effort on a briefcase platform for the in-situ pathogen detection system (IPDS) (Mitchell et al., 2014). Our long term vision is to further miniaturize the briefcase platform implementation of the IPDS and to commercialize the handheld version of the IPDS.

  5. Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes.

    PubMed

    Austwick, Martin R; Clark, Benjamin; Mosse, Charles A; Johnson, Kristie; Chicken, D Wayne; Somasundaram, Santosh K; Calabro, Katherine W; Zhu, Ying; Falzon, Mary; Kocjan, Gabrijela; Fearn, Tom; Bown, Stephen G; Bigio, Irving J; Keshtgar, Mohammed R S

    2010-01-01

    A novel method for rapidly detecting metastatic breast cancer within excised sentinel lymph node(s) of the axilla is presented. Elastic scattering spectroscopy (ESS) is a point-contact technique that collects broadband optical spectra sensitive to absorption and scattering within the tissue. A statistical discrimination algorithm was generated from a training set of nearly 3000 clinical spectra and used to test clinical spectra collected from an independent set of nodes. Freshly excised nodes were bivalved and mounted under a fiber-optic plate. Stepper motors raster-scanned a fiber-optic probe over the plate to interrogate the node's cut surface, creating a 20x20 grid of spectra. These spectra were analyzed to create a map of cancer risk across the node surface. Rules were developed to convert these maps to a prediction for the presence of cancer in the node. Using these analyses, a leave-one-out cross-validation to optimize discrimination parameters on 128 scanned nodes gave a sensitivity of 69% for detection of clinically relevant metastases (71% for macrometastases) and a specificity of 96%, comparable to literature results for touch imprint cytology, a standard technique for intraoperative diagnosis. ESS has the advantage of not requiring a pathologist to review the tissue sample. PMID:20799832

  6. Quantitative detection of Aspergillus spp. by real-time nucleic acid sequence-based amplification.

    PubMed

    Zhao, Yanan; Perlin, David S

    2013-01-01

    Rapid and quantitative detection of Aspergillus from clinical samples may facilitate an early diagnosis of invasive pulmonary aspergillosis (IPA). As nucleic acid-based detection is a viable option, we demonstrate that Aspergillus burdens can be rapidly and accurately detected by a novel real-time nucleic acid assay other than qPCR by using the combination of nucleic acid sequence-based amplification (NASBA) and the molecular beacon (MB) technology. Here, we detail a real-time NASBA assay to determine quantitative Aspergillus burdens in lungs and bronchoalveolar lavage (BAL) fluids of rats with experimental IPA.

  7. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri

    PubMed Central

    Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  8. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri.

    PubMed

    Zhao, Yun; Xia, Qingyan; Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  9. Impact of number of repeated scans on model observer performance for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Vrieze, Thomas; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2015-03-01

    In previous investigations on CT image quality, channelized Hotelling observer (CHO) models have been shown to well represent human observer performance in several phantom-based detection/discrimination tasks. In these studies, a large number of independent images was necessary to estimate the expectation images and covariance matrices for each test condition. The purpose of this study is to investigate how the number of repeated scans affects the precision and accuracy of the CHO's performance in a signal-known-exactly detection task. A phantom containing 21 low-contrast objects (3 contrast levels and 7 sizes) was scanned with a 128-slice CT scanner at three dose levels. For each dose level, 100 independent images were acquired for each test condition. All images were reconstructed using filtered-backprojection (FBP) and a commercial iterative reconstruction algorithm. For each combination of dose level and reconstruction method, the low-contrast detectability, quantified with the area under receiver operating characteristic curve (Az), was calculated using a previously validated CHO model. To determine the dependency of CHO performance on the number of repeated scans, the Az value was calculated for different number of channel filters, for each object size and contrast, and for different dose/reconstruction settings using all 100 repeated scans. The Az values were also calculated using randomly selected subsets of the scans (from 10 to 90 scans with an increment of 10 scans). Using the Az from the 100 scans as the reference, the accuracy of Az values calculated from a fewer number of scans was determined and the minimal number of scans was subsequently derived. For the studied signal-known-exactly detection task, results demonstrated that, the minimal number of scans depends on dose level, object size and contrast level, and channel filters.

  10. Increased Detection of Colorectal Polyps in Screening Colonoscopy Using High Definition i-SCAN Compared with Standard White Light

    PubMed Central

    Kim, Woo Jung; Park, Sang Young; Park, Iksoo; Lee, Wook Jin; Park, Jaechan; Chon, Nuri; Oh, Tak Geun; Kim, Kwang Hyun

    2016-01-01

    Background/Aims: The aim of this study was to evaluate the efficacy of high definition (HD) i-SCAN for colorectal polyp detection in screening colonoscopy. Methods: We retrospectively analyzed the records of 501 patients who had undergone screening colonoscopy performed by three endoscopists with either HD i-SCAN (n=149) or standard white light (n=352) from January 2, 2014 through June 30, 2014. Patient information and inter-endoscopist variation as well as polyp number, endoscopic findings, and pathologic characteristics were reviewed. Results: The detection rates of colorectal and neoplastic polyps were significantly higher using HD i-SCAN than standard white light colonoscopy (52% vs. 38.1%, p=0.004 for colorectal polyps; and 37.2% vs. 27.9%, p=0.041 for neoplastic polyps). Analysis of endoscopic findings revealed no difference in detected polyp size between HD i-SCAN and standard white light colonoscopy (4.59±2.35 mm vs. 4.82±2.81 mm, p=0.739), but non-protruding polyps were more commonly detected by i-SCAN than by standard white light colonoscopy (24.6% vs. 13.5%, p=0.007). Conclusions: Colonoscopy using HD i-SCAN had a significantly higher detection rate of colorectal polyps, including neoplastic polyps, because of improved sensitivity for detecting non-protruding lesions. PMID:26855927

  11. Quantitative evaluation of ultrasonic C-scan image in acoustically homogeneous and layered anisotropic materials using three dimensional ray tracing method.

    PubMed

    Kolkoori, Sanjeevareddy; Hoehne, Christian; Prager, Jens; Rethmeier, Michael; Kreutzbruck, Marc

    2014-02-01

    Quantitative evaluation of ultrasonic C-scan images in homogeneous and layered anisotropic austenitic materials is of general importance for understanding the influence of anisotropy on wave fields during ultrasonic non-destructive testing and evaluation of these materials. In this contribution, a three dimensional ray tracing method is presented for evaluating ultrasonic C-scan images quantitatively in general homogeneous and layered anisotropic austenitic materials. The directivity of the ultrasonic ray source in general homogeneous columnar grained anisotropic austenitic steel material (including layback orientation) is obtained in three dimensions based on Lamb's reciprocity theorem. As a prerequisite for ray tracing model, the problem of ultrasonic ray energy reflection and transmission coefficients at an interface between (a) isotropic base material and anisotropic austenitic weld material (including layback orientation), (b) two adjacent anisotropic weld metals and (c) anisotropic weld metal and isotropic base material is solved in three dimensions. The influence of columnar grain orientation and layback orientation on ultrasonic C-scan image is quantitatively analyzed in the context of ultrasonic testing of homogeneous and layered austenitic steel materials. The presented quantitative results provide valuable information during ultrasonic characterization of homogeneous and layered anisotropic austenitic steel materials.

  12. Comparison of computed tomography and radionuclide scanning for detection of brain metastases in small cell lung cancer

    SciTech Connect

    Crane, J.M.; Nelson, M.J.; Ihde, D.C.; Makuch, R.W.; Glatstein, E.; Zabell, A.; Johnston-Early, A.; Bates, H.R.; Saini, N.; Cohen, M.H.

    1984-09-01

    Neurologic history and examination, radionuclide brain scans (RN), and computed tomographic brain scans (CT) were performed at diagnosis and sequentially in 153 consecutive patients with small cell lung cancer (SCLC) to assess the sensitivity and accuracy of these screening methods and to determine whether the early detection of brain metastases influences survival. CT scans (sensitivity, 98%; positive predictive accuracy, 98%) were superior to RN scans (sensitivity, 71%; positive predictive accuracy, 86%) in patients with or without neurologic signs or symptoms. However, CT scans were positive in only 6% of asymptomatic patients at diagnosis and 13% of asymptomatic patients after systemic therapy. Brain metastases detected by CT scan were the sole site of extensive-stage disease in 6% of patients at diagnosis. Despite the enhanced ability of CT scans to detect asymptomatic lesions, survival after therapeutic cranial irradiation was similar for asymptomatic and symptomatic patients. The results suggest that CT brain scans should be used routinely in SCLC patients with neurologic signs or symptoms, at diagnosis (when treatment decisions are based on stage), and at six-month intervals in patients with prior brain metastases and in whom erratic follow-up is likely.

  13. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  14. Clinical experience with the radioisotope varicocele scan as a screening method for the detection of subclinical varicoceles

    SciTech Connect

    Wheatley, J.K.; Fajman, W.A.; Witten, F.R.

    1982-07-01

    The association of varicoceles and subfertility has been well documented. Although varicoceles remain the most common surgically correctable cause of male infertility the diagnosis of small varicoceles remains a challenge. We evaluated 40 men with an isotope blood pooling scan. Seven volunteers served as either positive or negative controls. Complete correlation between physical findings and the isotope scan was found. The 6 patients with obvious clinical varicoceles and a stress pattern on semen analysis all had positive scans. The 18 patients with a stress pattern and who were clinically suspected of having a varicocele all had positive scans. Of 9 patients evaluated for infertility with a stress pattern but no clinical evidence of varicocele 6 had positive scans. We believe that the isotope scan will prove to be a useful procedure in the detection of nonpalpable varicoceles in selected subfertile men.

  15. N-Scan®: New Vibro-Modulation System for Crack Detection, Monitoring and Characterization

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei; Donskoy, Dimitri; Lottiaux, Jean-Louis

    2004-02-01

    In recent years, an innovative vibro-modulation technique has been introduced for the detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies the contact area of the interface, modulating a passing ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for the detection and differentiation of the contact-type defects from other structural and material inhomogeneities. The vibro-modulation technique has been implemented in the N-SCAN® damage detection system providing a cost effective solution for the complex NDT problems. N-SCAN® proved to be very effective for damage detection and characterization in structures and structural components of simple and complex geometries made of steel, aluminum, composites, and other materials. Examples include 24 foot-long gun barrels, stainless steel pipes used in nuclear power plants, aluminum automotive parts, steel train couplers, etc. This paper describes the basic principles of the nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction, and justification of signal processing algorithms. The laboratory experiment is presented for a set of specimens with the calibrated cracks and the quantitative characterization of fatigue damage is given in terms of a modulation index. The paper also discusses examples of practical implementation and application of the technique.

  16. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.

    PubMed

    Chiu, Chi-Shun; Gwo, Shangjr

    2008-05-01

    The immobilization scheme of monodispersed gold nanoparticles (10-nm diameter) on piezoelectric substrate surfaces using organosilane molecules as cross-linkers has been developed for lithium niobate (LiNbO3) and silicon oxide (SiO2)/gold-covered lithium tantalate (LiTaO3) of Rayleigh and guided shear horizontal- (guided SH) surface acoustic wave (SAW) sensors. In this study, comparative measurements of gold nanoparticle adsorption kinetics using high-resolution field-emission scanning electron microscopy and SAW sensors allow the frequency responses of SAW sensors to be quantitatively correlated with surface densities of adsorbed nanoparticles. Using this approach, gold nanoparticles are used as the "nanosized mass standards" to scale the mass loading in a wide dynamical range. Rayleigh-SAW and guided SH-SAW sensors are employed here to monitor the surface mass changes on the device surfaces in gas and liquid phases, respectively. The mass sensitivity ( approximately 20 Hz.cm2/ng) of Rayleigh-SAW device (fundamental oscillation frequency of 113.3 MHz in air) is more than 2 orders of magnitude higher than that of conventional 9-MHz quartz crystal microbalance sensors. Furthermore, in situ (aqueous solutions), real-time measurements of adsorption kinetics for both citrate-stabilized gold nanoparticles and DNA-gold nanoparticle conjugates are also demonstrated by guided SH-SAW (fundamental oscillation frequency of 121.3 MHz). By comparing frequency shifts between the adsorption cases of gold nanoparticles and DNA-gold nanoparticle conjugates, the average number of bound oligonucleotides per gold nanoparticle can also be determined. The high mass sensitivity ( approximately 6 Hz.cm2/ng) of guided SH-SAW sensors and successful detection of DNA-gold nanoparticle conjugates paves the way for real-time biosensing in liquids using nanoparticle-enhanced SAW devices. PMID:18363384

  17. Detection of quantitative trait loci for meat quality traits in cattle.

    PubMed

    Gutiérrez-Gil, B; Wiener, P; Nute, G R; Burton, D; Gill, J L; Wood, J D; Williams, J L

    2008-02-01

    A whole-genome scan was carried out to detect quantitative trait loci (QTL) affecting sensory, organoleptic, physical and chemical properties of meat. The study used phenotypic data from 235 second-generation cross-bred bull calves of a Charolais x Holstein experimental population. Loin muscle samples were evaluated for yield force, intramuscular fat and nitrogen contents, myofibrillar fragmentation index, haem pigment concentration, moisture content and pH at 24 h postmortem. A sensory assessment was performed on grilled loin and roasted silverside joints by trained panellists. A linear regression analysis based on 165 markers revealed 35 QTL at the 5% chromosome-wide significance level (20 for sensory traits and 15 for physical and chemical traits), five of which were highly significant (F-value: > or =9). The most significant QTL was located on chromosome 6 (with the best likely position at 39 cM) and affected haem pigment concentration. The Holstein allele for this QTL was associated with an increase of 0.53 SD in the haem scores. A QTL for pH(24h) was identified on chromosome 14 (at 40 cM) and a QTL for moisture content was identified on chromosome 22 (at 21 cM). Two highly significant QTL were identified for sensory panel-assessed traits: beef odour intensity (grilled sample) on chromosome 10 (at 119 cM), and juiciness (roast sample) on chromosome 16 (at 70 cM). The proportion of phenotypic variance explained by the significant QTL ranged from 3.6% (for nitrogen content on chromosome 10) to 9.5% (for juiciness, roast sample on chromosome 16). PMID:18254735

  18. Detection of quantitative trait loci for meat quality traits in cattle.

    PubMed

    Gutiérrez-Gil, B; Wiener, P; Nute, G R; Burton, D; Gill, J L; Wood, J D; Williams, J L

    2008-02-01

    A whole-genome scan was carried out to detect quantitative trait loci (QTL) affecting sensory, organoleptic, physical and chemical properties of meat. The study used phenotypic data from 235 second-generation cross-bred bull calves of a Charolais x Holstein experimental population. Loin muscle samples were evaluated for yield force, intramuscular fat and nitrogen contents, myofibrillar fragmentation index, haem pigment concentration, moisture content and pH at 24 h postmortem. A sensory assessment was performed on grilled loin and roasted silverside joints by trained panellists. A linear regression analysis based on 165 markers revealed 35 QTL at the 5% chromosome-wide significance level (20 for sensory traits and 15 for physical and chemical traits), five of which were highly significant (F-value: > or =9). The most significant QTL was located on chromosome 6 (with the best likely position at 39 cM) and affected haem pigment concentration. The Holstein allele for this QTL was associated with an increase of 0.53 SD in the haem scores. A QTL for pH(24h) was identified on chromosome 14 (at 40 cM) and a QTL for moisture content was identified on chromosome 22 (at 21 cM). Two highly significant QTL were identified for sensory panel-assessed traits: beef odour intensity (grilled sample) on chromosome 10 (at 119 cM), and juiciness (roast sample) on chromosome 16 (at 70 cM). The proportion of phenotypic variance explained by the significant QTL ranged from 3.6% (for nitrogen content on chromosome 10) to 9.5% (for juiciness, roast sample on chromosome 16).

  19. Effect of genetic cross on the detection of quantitative trait loci and a novel approach to mapping QTLs.

    PubMed

    Hitzemann, R; Demarest, K; Koyner, J; Cipp, L; Patel, N; Rasmussen, E; McCaughran, J

    2000-12-01

    A genome-wide scan was conducted in two F(2) intercrosses, C57BL/6J (B6)xDBA/2J (D2) and BALB/cJ (C)xLP/J (LP), for three different phenotypes: basal locomotor activity, ethanol-induced locomotor activity, and haloperidol-induced catalepsy. For basal activity, significant quantitative trait loci (QTLs, LOD> or =4.3) were detected on chromosomes 9 and 19 for the CxLP intercross and chromosome 1 for the B6xD2 intercross. Significant QTLs for ethanol-induced activation were detected on chromosome 6 for the CxLP intercross, and on chromosomes 1 and 2 for the B6xD2 intercross. For haloperidol-induced catalepsy, significant QTLs were detected on chromosome 14 (two different QTLs) in the CxLP intercross, and chromosomes 1 and 9 in the B6xD2 intercross. These data illustrate the importance of the genetic cross for QTL detection. Finally, the data reported here, and elsewhere, are also used to demonstrate a novel approach to QTL detection and localization.

  20. Quantitative proteomics: assessing the spectrum of in-gel protein detection methods

    PubMed Central

    Gauci, Victoria J.; Wright, Elise P.

    2010-01-01

    Proteomics research relies heavily on visualization methods for detection of proteins separated by polyacrylamide gel electrophoresis. Commonly used staining approaches involve colorimetric dyes such as Coomassie Brilliant Blue, fluorescent dyes including Sypro Ruby, newly developed reactive fluorophores, as well as a plethora of others. The most desired characteristic in selecting one stain over another is sensitivity, but this is far from the only important parameter. This review evaluates protein detection methods in terms of their quantitative attributes, including limit of detection (i.e., sensitivity), linear dynamic range, inter-protein variability, capacity for spot detection after 2D gel electrophoresis, and compatibility with subsequent mass spectrometric analyses. Unfortunately, many of these quantitative criteria are not routinely or consistently addressed by most of the studies published to date. We would urge more rigorous routine characterization of stains and detection methodologies as a critical approach to systematically improving these critically important tools for quantitative proteomics. In addition, substantial improvements in detection technology, particularly over the last decade or so, emphasize the need to consider renewed characterization of existing stains; the quantitative stains we need, or at least the chemistries required for their future development, may well already exist. PMID:21686332

  1. Detecting shallow mixing heights in two coastal locations with a scanning Doppler lidar

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; O'Connor, Ewan J.; Nisantzi, Argyro; Mamouri, Rodanthi E.; Hadjimitsis, Diofantos Gl.

    2015-04-01

    Turbulent mixing is one of the most important processes in the lower troposphere for climate, weather and air quality. A key parameter describing turbulent mixing in atmosphere is mixing height, i.e. the height of the layer that is constantly in contact with the surface. Doppler lidar offers a way to observe the vertical wind velocity profile with a high enough time resolution to retrieve information on turbulent mixing. However, Doppler lidars cannot retrieve wind velocity measurements below an instrument-specific threshold, typically 100 - 200 metres. Here, we introduce a method for identifying mixing heights below the vertical minimum range of a scanning Doppler lidar. The new method for detecting shallow mixing height is based on velocity variance in low elevation angle conical scanning, i.e. vertical azimuth display (VAD) scanning, which provides simultaneously the horizontal wind profile. This method is applied to measurements in two very different coastal environments: Limassol, Cyprus during summer; and Loviisa, Finland during winter. At Limassol the measurements were carried out from 22 August to 15 October 2013 at the Cyprus University of Technology campus, 600 metres NE from the Mediterranean Sea shoreline. At Loviisa, the measurement campaign took place from 10 December 2013 to 17 March 2014 on a 2000 m long, 500 m wide island in the Baltic Sea archipelago. At both locations, the new method agrees well with mixing heights derived from turbulent kinetic energy dissipation rate profiles obtained from vertically-pointing Doppler lidar measurements. Furthermore, when the vertically pointing measurements indicated the mixing height to be below the Doppler lidar minimum range, the VADs indicated a shallow mixing height on 87 % of the time at Loviisa and on 58 % of the time at Limassol. At Limassol such low mixing heights occurred only during the night; at Loviisa very low mixing heights were also common during the day.

  2. A genomic scan of porcine reproductive traits reveals possible quantitative trait loci (QTLs) for number of corpora lutea.

    PubMed

    Wilkie, P J; Paszek, A A; Beattie, C W; Alexander, L J; Wheeler, M B; Schook, L B

    1999-06-01

    Reproductive traits have low heritabilities, are expressed in only one sex, and are not measurable until sexual maturity (Avalos and Smith, Anim Prod 44:153, 1987). Using traditional methods, selection for reproductive traits is relatively less effective than selecting for growth or carcass traits. Traits most affected by a small number of genes with major effects rather than many genes with small effects are most amenable to MAS. As part of our porcine genome scan to identify quantitative trait loci (QTLs) of economic importance in marker-assisted selective (MAS) breeding programs, we examined 8 reproductive and farrowing traits in the University of Illinois (UI) Meishan x Yorkshire Resource Family. Gilts were genotyped with 119 microsatellite markers (MS) with intervals averaging 24 cM over all 18 porcine autosomes. F-ratios supporting QTL location were calculated by the least squares regression method. Results suggestive of linkage at the 5% genome-wide level were observed for the number of stillborn piglets on Chromosome (Chr) 4 (SSC4) (p-value = 0.0001), corpora lutea on SSC8 (p-value = 0.00027), and gestation length on SSC9 (p-value = 0.00019). Results for additional loci relevant to litter size, number of corpora lutea on SSC15 and 7 (p-value = 0.0029 and 0.0028 at 107 and 150 cM, respectively), gestation length on SSC15 and 1 (p-value = 0.0017 and 0.0069 at 96 and 166 cM, respectively), uterine length on SSC7 and 5 (p-value = 0.0044 and 0.0075 at 148 and 1 cM, respectively) and piglets born per litter on SSC6 (p-value = 0.0075 at 102 cM), were not statistically significant at the 5% genome-wide level. Thus, the use of a linked marker to facilitate selection for reproductive traits has considerable potential. By using linked markers, selection can be applied to both sexes before sexual maturity, making genetic selection considerably more efficient and less costly.

  3. Prospective prediction of post-radiation therapy lung function using quantitative lung scans and pulmonary function testing

    SciTech Connect

    Rubenstein, J.H.; Richter, M.P.; Moldofsky, P.J.; Solin, L.J.

    1988-07-01

    Surgeons have made use of quantitative perfusion lung scanning (QS) and forced expiratory volume in one second (FEV1) to predict a patient's ability to tolerate lung resection. In this study QS and FEV1 were used to predict prospectively pulmonary function following lung irradiation (XRT). Twenty-two patients have had QS and FEV1 determined before XRT and at planned intervals post-XRT. Serial determination of lung function post-XRT allows comment on the temporal nature of the XRT effect on lung function. Seventeen patients had QS and FEV1 determined at an interval of 2-6 months post-irradiation with a drop in the groups mean FEV1 from 1.91 to 1.87L. or 2% during that interval. In the interval from 6-12 months post-XRT, 13 patients had studies with the groups mean FEV1 dropping from 1.79 to 1.58L or 12% of the original. In the interval from 12-18 months, 6 patients had a decline in mean FEV1 from 1.73 to 1.56L. or 10% of the original. In 22 patients a predicted final FEV1 was compared with a measured value at an interval from XRT. Fourteen of these determinations were at intervals greater than 6 months from the start of XRT and 6 at intervals of greater than 1 year. FEV1 was seen to drop during the follow-up intervals toward the predicted value. In only 2 patients did the final FEV1 drop below the predicted FEV1 and never by more than 0.12L. (6%). In summary, a method for predicting post-XRT pulmonary function using QS and FEV1 is described. Serial follow-up revealed a latent period followed by a late phase where FEV1 fell toward, but not significantly below, the predicted value. Such a determination can be of value in formulating a treatment plan for patients with significantly diminished pulmonary function.

  4. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect

    Tittmann, B. R.; Xi, X.

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  5. The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans

    NASA Astrophysics Data System (ADS)

    Pueschel, Pyare; Newnham, Glenn; Rock, Gilles; Udelhoven, Thomas; Werner, Willy; Hill, Joachim

    2013-03-01

    Terrestrial laser scanning (TLS) has been used to estimate a number of biophysical and structural vegetation parameters. Of these stem diameter is a primary input to traditional forest inventory. While many experimental studies have confirmed the potential for TLS to successfully extract stem diameter, the estimation accuracies differ strongly for these studies - due to differences in experimental design, data processing and test plot characteristics. In order to provide consistency and maximize estimation accuracy, a systematic study into the impact of these variables is required. To contribute to such an approach, 12 scans were acquired with a FARO photon 120 at two test plots (Beech, Douglas fir) to assess the effects of scan mode and circle fitting on the extraction of stem diameter and volume. An automated tree stem detection algorithm based on the range images of single scans was developed and applied to the data. Extraction of stem diameter was achieved by slicing the point cloud and fitting circles to the slices using three different algorithms (Lemen, Pratt and Taubin), resulting in diameter profiles for each detected tree. Diameter at breast height (DBH) was determined using both the single value for the diameter fitted at the nominal breast height and by a linear fit of the stem diameter vertical profile. The latter is intended to reduce the influence of outliers and errors in the ground level determination. TLS-extracted DBH was compared to tape-measured DBH. Results show that tree stems with an unobstructed view to the scanner can be successfully extracted automatically from range images of the TLS data with detection rates of 94% for Beech and 96% for Douglas fir. If occlusion of trees is accounted for stem detection rates decrease to 85% (Beech) and 84% (Douglas fir). As far as the DBH estimation is concerned, both DBH extraction methods yield estimates which agree with reference measurements, however, the linear fit based approach proved to be more

  6. Streamed Vertical Rectangle Detection in Terrestrial Laser Scans for Facade Database Production

    NASA Astrophysics Data System (ADS)

    Demantké, J.; Vallet, B.; Paparoditis, N.

    2012-07-01

    A reliable and accurate facade database would be a major asset in applications such as localization of autonomous vehicles, registration and fine building modeling. Mobile mapping devices now provide the data required to create such a database, but efficient methods should be designed in order to tackle the enormous amount of data collected by such means (a million point per second for hours of acquisition). Another important limitation is the presence of numerous objects in urban scenes of many different types. This paper proposes a method that overcomes these two issues: - The facade detection algorithm is streamed: the data is processed in the order it was acquired. More precisely, the input data is split into overlapping blocks which are analysed in turn to extract facade parts. Close overlapping parts are then merged in order to recover the full facade rectangle. - The geometry of the neighborhood of each point is analysed to define a probability that the point belongs to a vertical planar patch. This probability is then injected in a RANdom SAmple Consensus (RANSAC) algorithm both in the sampling step and in the hypothesis validation, in order to favour the most reliable candidates. This ensures much more robustness against outliers during the facade detection. This way, the main vertical rectangles are detected without any prior knowledge about the data. The only assumptions are that the facades are roughly planar and vertical. The method has been successfully tested on a large dataset in Paris. The facades are detected despite the presence of trees occluding large areas of some facades. The robustness and accuracy of the detected facade rectangles makes them useful for localization applications and for registration of other scans of the same city or of entire city models.

  7. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    NASA Astrophysics Data System (ADS)

    Corte-León, H.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Manzin, A.; Schumacher, H. W.; Antonov, V.; Kazakova, O.

    2016-05-01

    Hybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ˜1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  8. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection

    PubMed Central

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2016-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461

  9. Hyperspectral imaging fluorescence excitation scanning for detecting colorectal cancer: pilot study

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas J.; Wheeler, Mikayla; Lopez, Carmen; Baker, Thomas; Favreau, Peter F.; Rich, Thomas C.; Rider, Paul F.; Boudreaux, Carole W.

    2016-03-01

    Optical spectroscopy and hyperspectral imaging have shown the theoretical potential to discriminate between cancerous and non-cancerous tissue with high sensitivity and specificity. To date, these techniques have not been able to be effectively translated to endoscope platforms. Hyperspectral imaging of the fluorescence excitation spectrum represents a new technology that may be well-suited for endoscopic implementation. However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence excitation-scanning hyperspectral imaging has not been evaluated. The objective of this pilot study was to evaluate the changes in the fluorescence excitation spectrum of resected specimen pairs of colorectal adenocarcinoma and normal colorectal mucosa. Patients being treated for colorectal adenocarcinoma were enrolled. Representative adenocarcinoma and normal colonic mucosa specimens were collected from each case. Specimens were flash frozen in liquid nitrogen. Adenocarcinoma was confirmed by histologic evaluation of H&E permanent sections. Hyperspectral image data of the fluorescence excitation of adenocarcinoma and surrounding normal tissue were acquired using a custom microscope configuration previously developed in our lab. Results demonstrated consistent spectral differences between normal and cancerous tissues over the fluorescence excitation spectral range of 390-450 nm. We conclude that fluorescence excitation-scanning hyperspectral imaging may offer an alternative approach for differentiating adenocarcinoma and surrounding normal mucosa of the colon. Future work will focus on expanding the number of specimen pairs analyzed and will utilize fresh tissues where possible, as flash freezing and reconstituting tissues may have altered the autofluorescence properties.

  10. Multiresolution neural networks for mine detection in side scan sonar images

    NASA Astrophysics Data System (ADS)

    Guo, Weiming; Szymczak, William G.

    1998-09-01

    Statistical and neural network algorithms are used to separate mine targets from clutter in side scan sonar images. In these images, a typical target usually contains in excess of 100 pixels filled with salt and pepper noise. This translates into a problem of classifying in a complicated high dimensional space, which is very difficult if not impossible to solve. Therefore, a typical mine detection algorithm contains three stages preceding the classification algorithm: noise reduction, clutter rejection, and feature extraction. These pre-processing steps would reduce the dimension of the feature space by an order of magnitude. Side scan sonar images are known to be contaminated with noise and mine like clutter. The major challenge is to select and measure the features of the potential targets. This is frequently done by fractal and/or Fourier analysis. Recently, wavelet analysis has also been used successfully as a tool for feature extraction. However, there are few analytical rules to guide the selection of features. In this paper, we investigate a new integrated feature extraction and classification algorithm that first enhances a potential target using variational based algorithms, and then transforms the enhanced image into a set of wavelet channels. We use the multichannel information as inputs to a feed-forward neural network. This new classifier has the advantage of extracting not only the local features but also the background features through higher scale wavelet channels. Results are compared for different network designs.

  11. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

    PubMed

    Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R

    2014-12-01

    When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine. PMID:25173605

  12. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

    PubMed

    Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R

    2014-12-01

    When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine.

  13. Automated urban change detection using scanned cartographic and satellite image data

    USGS Publications Warehouse

    Spooner, Jeffrey D.

    1991-01-01

    The objective of this study was to develop a digital procedure to measure the amount of urban change that has occurred in an area since the publication of its corresponding 1:24,000-scale topographic map. Traditional change detection techniques are dependent upon the visual comparison of high-altitude aerial photographs or, more recently, satellite image data to a corresponding map. Analytical change detection techniques typically involve the digital comparison of satellite images to one another. As a result of this investigation, a new technique has been developed that analytically compares the most recently published map to a corresponding digital satellite image. Scanned cartographic and satellite image data are combined in a single file with a structural component derived from the satellite image. This investigation determined that with this combination of data the spectral characteristics of urban change are predictable. A supervised classification was used to detect and delimit urban change. Although it was not intended to identify the specific nature of any change, this procedure does provide a means of differentiating between areas that have or have not experienced urbanization to determine appropriate map revision strategies.

  14. Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy

    NASA Astrophysics Data System (ADS)

    Joshi, Bishnu P.; Miller, Sharon J.; Lee, Cameron; Gustad, Adam; Seibel, Eric J.; Wang, Thomas D.

    2012-02-01

    We demonstrate a multi-spectral scanning fiber endoscope (SFE) that collects fluorescence images in vivo from three target peptides that bind specifically to murine colonic adenomas. This ultrathin endoscope was demonstrated in a genetically engineered mouse model of spontaneous colorectal adenomas based on somatic Apc (adenomatous polyposis coli) gene inactivation. The SFE delivers excitation at 440, 532, 635 nm with <2 mW per channel. The target 7-mer peptides were conjugated to visible organic dyes, including 7-Diethylaminocoumarin-3-carboxylic acid (DEAC) (λex=432 nm, λem=472 nm), 5-Carboxytetramethylrhodamine (5-TAMRA) (λex=535 nm, λem=568 nm), and CF-633 (λex=633 nm, λem=650 nm). Target peptides were first validated using techniques of pfu counting, flow cytometry and previously established methods of fluorescence endoscopy. Peptides were applied individually or in combination and detected with fluorescence imaging. The ability to image multiple channels of fluorescence concurrently was successful for all three channels in vitro, while two channels were resolved simultaneously in vivo. Selective binding of the peptide was evident to adenomas and not to adjacent normal-appearing mucosa. Multispectral wide-field fluorescence detection using the SFE is achievable, and this technology has potential to advance early cancer detection and image-guided therapy in human patients by simultaneously visualizing multiple over expressed molecular targets unique to dysplasia.

  15. Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence.

    PubMed

    Irsch, Kristina; Gramatikov, Boris I; Wu, Yi-Kai; Guyton, David L

    2014-04-01

    We present an improved method for remote eye-fixation detection, using a polarization-modulated approach to retinal birefringence scanning (RBS), without the need for individual calibration or separate background measurements and essentially independent of corneal birefringence. Polarization-modulated RBS detects polarization changes generated in modulated polarized light passing through a unique pattern of nerve fibers identifying and defining the retinal region where fixation occurs (the fovea). A proof-of-concept demonstration in human eyes suggests that polarization-modulated RBS has the potential to reliably detect true foveal fixation on a specified point with an accuracy of at least ± 0.75°, and that it can be applied to the general population, including individuals with sub-optimal eyes and young children, where early diagnosis of visual problems can be critical. As could be employed in an eye-controlled display or in other devices, polarization-modulated RBS also enables and paves the way for new and reliable eye-fixation-evoked human-machine interfaces.

  16. Detecting Distributed Scans Using High-Performance Query-DrivenVisualization

    SciTech Connect

    Stockinger, Kurt; Bethel, E. Wes; Campbell, Scott; Dart, Eli; Wu,Kesheng

    2006-09-01

    Modern forensic analytics applications, like network trafficanalysis, perform high-performance hypothesis testing, knowledgediscovery and data mining on very large datasets. One essential strategyto reduce the time required for these operations is to select only themost relevant data records for a given computation. In this paper, wepresent a set of parallel algorithms that demonstrate how an efficientselection mechanism -- bitmap indexing -- significantly speeds up acommon analysist ask, namely, computing conditional histogram on verylarge datasets. We present a thorough study of the performancecharacteristics of the parallel conditional histogram algorithms. Asacase study, we compute conditional histograms for detecting distributedscans hidden in a dataset consisting of approximately 2.5 billion networkconnection records. We show that these conditional histograms can becomputed on interactive timescale (i.e., in seconds). We also show how toprogressively modify the selection criteria to narrow the analysis andfind the sources of the distributed scans.

  17. Development and Evaluation of Roadside/Obstacle Detection Method Using 3D Scanned Data Processing

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroshi; Ishii, Yoshinori; Yamazaki, Katsuyuki

    In this paper, we have reported the development of a snowblower support system which can safely navigate snowblowers, even during a whiteout, with the combination of a very accurate GPS system, so called RTK-GPS, and a unique and highly accurate map of roadsides and obstacles on roads. Particularly emphasized new techniques in this paper are ways to detect accurate geographical positions of roadsides and obstacles by utilizing and analyzing 3D laser scanned data, whose data has become available in recent days. The experiment has shown that the map created by the methods and RTK-GPS can sufficiently navigate snowblowers, whereby a secure and pleasant social environment can be archived in snow areas of Japan. In addition, proposed methods are expected to be useful for other systems such as a quick development of a highly accurate road map, a safely navigation of a wheeled chair, and so on.

  18. Liquid crystal-based sensors for selective and quantitative detection of nitrogen dioxide

    PubMed Central

    Sen, Avijit; Kupcho, Kurt A.; Grinwald, Bart A.; VanTreeck, Heidi J.; Acharya, Bharat R.

    2013-01-01

    A highly sensitive nitrogen dioxide (NO2) sensor based on orientational transition of a thin film of liquid crystal (LC) supported on a gold surface is reported. Transport of NO2 molecules through the LC film to the LC-gold interface induces an orientation transition in the LC film. The dynamic behavior of the sensor response exhibits a concentration-dependent response rate that is employed to generate an algorithm for quantitative determination of unknown concentrations. Sensitive, selective and reversible detection with minimal effects of environmental fluctuations suggest that these sensors can be used for quantitative NO2 detection for a number of applications. PMID:23526230

  19. Liquid crystal-based sensors for selective and quantitative detection of nitrogen dioxide.

    PubMed

    Sen, Avijit; Kupcho, Kurt A; Grinwald, Bart A; Vantreeck, Heidi J; Acharya, Bharat R

    2013-03-01

    A highly sensitive nitrogen dioxide (NO2) sensor based on orientational transition of a thin film of liquid crystal (LC) supported on a gold surface is reported. Transport of NO2 molecules through the LC film to the LC-gold interface induces an orientation transition in the LC film. The dynamic behavior of the sensor response exhibits a concentration-dependent response rate that is employed to generate an algorithm for quantitative determination of unknown concentrations. Sensitive, selective and reversible detection with minimal effects of environmental fluctuations suggest that these sensors can be used for quantitative NO2 detection for a number of applications. PMID:23526230

  20. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  1. [Quantitative Approach to Melamine Detection in Egg White with Surface-Enhanced Raman Spectroscopy].

    PubMed

    Wang, Qiao-hua; Liu, Ya-li; Ma, Mei-hu; Wang, Hong

    2015-04-01

    Due to the harmfulness of melamine to human, the quantitative detection of melamine in egg is very necessary. In the present study, the surface enhanced Raman spectra technology combined with chemometric analysis method was used to conduct melamine quantitative detection in egg white. Firstly, the melamine egg sample could be got by the method of artificial feeding hens usingdifferent feeding formulation. Then the surface enhanced Raman spectra of egg white was determined using portable Raman spectroscopy (Opto Trace RamTracer-200) and Raman enhancement reagents, and the melamine content within the white eggs was measured with gas chromatography mass spectrometry technology. The software of Raman Analyzer was used for baseline correction of Raman spectra. The correlation coefficient method was used to choose 320 spectral variables from the surface enhanced Raman spectroscopy as input variables to establish partial least squares quantitative calibration model . And the peaks-decomposition method was used to establish peaks-decomposition quantitative calibration model. Both models selected 90 and 44 samples respectively as calibration sets and validation sets during model establishment, and both models achieved good prediction effect. The determination coefficient between predicted values of partial least squares quantitative calibration model and measured values of gas chromatography mass spectrometry was 0.856, and root mean square error of prediction was 1.547. The determination coefficient was 0.947 and RMSEP was 0.893 for the peaks-decomposition quantitative calibration model. This study demonstrated that the method can effectively quantitatively detect melamine in eggs. Testing a sample only takes 15 minutes, which can provide a new way for the melamine egg detection. PMID:26197575

  2. Quantitative weaknesses of the Marcus-Hush theory of electrode kinetics revealed by Reverse Scan Square Wave Voltammetry: The reduction of 2-methyl-2-nitropropane at mercury microelectrodes

    NASA Astrophysics Data System (ADS)

    Laborda, Eduardo; Wang, Yijun; Henstridge, Martin C.; Martínez-Ortiz, Francisco; Molina, Angela; Compton, Richard G.

    2011-08-01

    The Marcus-Hush and Butler-Volmer kinetic electrode models are compared experimentally by studying the reduction of 2-methyl-2-nitropropane in acetonitrile at mercury microelectrodes using Reverse Scan Square Wave Voltammetry. This technique is found to be very sensitive to the electrode kinetics and to permit critical comparison of the two models. The Butler-Volmer model satisfactorily fits the experimental data whereas Marcus-Hush does not quantitatively describe this redox system.

  3. Quantitation of virus using laser-based scanning of near-infrared fluorophores replaces manual plate reading in a virus titration assay.

    PubMed

    Weldon, Sally K; Mischnick, Shawn L; Urlacher, Teresa M; Ambroz, Kristi L H

    2010-09-01

    A method was developed for quantitation of a virus titration assay for minimally cytopathic and noncytopathic viruses that utilizes laser-based scanning of near-infrared (NIR) fluorophores. This automated method bypasses the need for manual plate reading thus eliminating human bias and error. The image data is translated by LI-COR's Odyssey software into numerical data which is used directly in the virus titer calculations.

  4. Quantitation of virus using laser-based scanning of near-infrared fluorophores replaces manual plate reading in a virus titration assay.

    PubMed

    Weldon, Sally K; Mischnick, Shawn L; Urlacher, Teresa M; Ambroz, Kristi L H

    2010-09-01

    A method was developed for quantitation of a virus titration assay for minimally cytopathic and noncytopathic viruses that utilizes laser-based scanning of near-infrared (NIR) fluorophores. This automated method bypasses the need for manual plate reading thus eliminating human bias and error. The image data is translated by LI-COR's Odyssey software into numerical data which is used directly in the virus titer calculations. PMID:20438762

  5. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis. PMID:27087003

  6. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  7. Structural damage detection using higher-order finite elements and a scanning laser vibrometer

    NASA Astrophysics Data System (ADS)

    Jin, Si

    In contrast to conventional non-destructive evaluation methods, dynamics-based damage detection methods are capable of rapid integrity evaluation of large structures and have received considerable attention from aerospace, mechanical, and civil engineering communities in recent years. However, the identifiable damage size using dynamics-based methods is determined by the number of sensors used, level of measurement noise, accuracy of structural models, and signal processing techniques. In this thesis we study dynamics of structures with damage and then derive and experimentally verify new model-independent structural damage detection methods that can locate small damage to structures. To find sensitive damage detection parameters we develop a higher-order beam element that enforces the continuity of displacements, slopes, bending moments, and shear forces at all nodes, and a higher-order rectangular plate element that enforces the continuity of displacements, slopes, and bending and twisting moments at all nodes. These two elements are used to study the dynamics of beams and plates. Results show that high-order spatial derivatives of high-frequency modes are important sensitive parameters that can locate small structural damage. Unfortunately the most powerful and popular structural modeling technique, the finite element method, is not accurate in predicting high-frequency responses. Hence, a model-independent method using dynamic responses obtained from high density measurements is concluded to be the best approach. To increase measurement density and reduce noise a Polytec PI PSV-200 scanning laser vibrometer is used to provide non-contact, dense, and accurate measurements of structural vibration velocities. To avoid the use of structural models and to extract sensitive detection parameters from experimental data, a brand-new structural damage detection method named BED (Boundary-Effect Detection) is developed for pinpointing damage locations using Operational

  8. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  9. A novel approach to automatic threat detection in MMW imagery of people scanned in portals

    NASA Astrophysics Data System (ADS)

    Vaidya, Nitin M.; Williams, Thomas

    2008-04-01

    We have developed a novel approach to performing automatic detection of concealed threat objects in passive MMW imagery of people scanned in a portal setting. It is applicable to the significant class of imaging scanners that use the protocol of having the subject rotate in front of the camera in order to image them from several closely spaced directions. Customary methods of dealing with MMW sequences rely on the analysis of the spatial images in a frame-by-frame manner, with information extracted from separate frames combined by some subsequent technique of data association and tracking over time. We contend that the pooling of information over time in traditional methods is not as direct as can be and potentially less efficient in distinguishing threats from clutter. We have formulated a more direct approach to extracting information about the scene as it evolves over time. We propose an atypical spatio-temporal arrangement of the MMW image data - to which we give the descriptive name Row Evolution Image (REI) sequence. This representation exploits the singular aspect of having the subject rotate in front of the camera. We point out which features in REIs are most relevant to detecting threats, and describe the algorithms we have developed to extract them. We demonstrate results of successful automatic detection of threats, including ones whose faint image contrast renders their disambiguation from clutter very challenging. We highlight the ease afforded by the REI approach in permitting specialization of the detection algorithms to different parts of the subject body. Finally, we describe the execution efficiency advantages of our approach, given its natural fit to parallel processing. mage

  10. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES

    PubMed Central

    STAGGEMEIER, Rodrigo; BORTOLUZZI, Marina; HECK, Tatiana Moraes da Silva; SPILKI, Fernando Rosado; ALMEIDA, Sabrina Esteves de Matos

    2015-01-01

    SUMMARY Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively. PMID:26422153

  11. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES.

    PubMed

    Staggemeier, Rodrigo; Bortoluzzi, Marina; Heck, Tatiana Moraes da Silva; Spilki, Fernando Rosado; Almeida, Sabrina Esteves de Matos

    2015-01-01

    Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively.

  12. Power and sample size estimation for epigenome-wide association scans to detect differential DNA methylation

    PubMed Central

    Tsai, Pei-Chien; Bell, Jordana T

    2015-01-01

    Background: Epigenome-wide association scans (EWAS) are under way for many complex human traits, but EWAS power has not been fully assessed. We investigate power of EWAS to detect differential methylation using case-control and disease-discordant monozygotic (MZ) twin designs with genome-wide DNA methylation arrays. Methods and Results: We performed simulations to estimate power under the case-control and discordant MZ twin EWAS study designs, under a range of epigenetic risk effect sizes and conditions. For example, to detect a 10% mean methylation difference between affected and unaffected subjects at a genome-wide significance threshold of P = 1 × 10−6, 98 MZ twin pairs were required to reach 80% EWAS power, and 112 cases and 112 controls pairs were needed in the case-control design. We also estimated the minimum sample size required to reach 80% EWAS power under both study designs. Our analyses highlighted several factors that significantly influenced EWAS power, including sample size, epigenetic risk effect size, the variance of DNA methylation at the locus of interest and the correlation in DNA methylation patterns within the twin sample. Conclusions: We provide power estimates for array-based DNA methylation EWAS under case-control and disease-discordant MZ twin designs, and explore multiple factors that impact on EWAS power. Our results can help guide EWAS experimental design and interpretation for future epigenetic studies. PMID:25972603

  13. Fluorescent nanoscale detection of biotin streptavidin interaction using near-field scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Park, Hyun Kyu; Gokarna, Anisha; Hulme, John P.; Park, Hyun Gyu; Chung, Bong Hyun

    2008-06-01

    We describe a nanoscale strategy for detecting biotin-streptavidin binding using near-field scanning optical microscopy (NSOM) that exploits the fluorescence properties of single polydiacetylene (PDA) liposomes. NSOM is more useful to observe nanomaterials having optical properties with the help of topological information. We synthesized amine-terminated 10,12-pentacosadiynoic acid (PCDA) monomer (PCDA-NH2) and used this derivatized monomer to prepare PCDA liposomes. PCDA-NH2 liposomes were immobilized on an aldehyde-functionalized glass surface followed by photopolymerization by using a 254 nm light source. To measure the biotin-streptavidin binding, we conjugated photoactivatable biotin to immobilized PCDA-NH2 liposomes by UV irradiation (365 nm) and subsequently allowed them to interact with streptavidin. We analyzed the fluorescence using a fluorescence scanner and observed single liposomes using NSOM. The average height and NSOM signal observed in a single liposome after binding were ~31.3 to 8.5 ± 0.5 nm and 0.37 to 0.16 ± 0.6 kHz, respectively. This approach, which has the advantage of not requiring a fluorescent label, could prove highly beneficial for single molecule detection technology.

  14. Development of Parallel Image Detection System Using Annular Pupils for Scanning Transmission Electron Microscope

    SciTech Connect

    Matsutani, Takaomi; Taya, Masaki; Ikuta, Takashi; Tanaka, Takeo; Kimura, Yoshihide; Takai, Yoshizo; Kawasaki, Tadahiro; Ichihashi, Mikio

    2010-10-13

    A parallel image detection system using an annular pupil for electron optics were developed to realize an increase in the depth of focus, aberration-free imaging and separation of amplitude and phase images under scanning transmission electron microscopy (STEM). Apertures for annular pupils able to suppress high-energy electron scattering were developed using a focused ion beam (FIB) technique. The annular apertures were designed with outer diameter of oe 40 {mu}m and inner diameter of oe32 {mu}m. A taper angle varying from 20 deg. to 1 deg. was applied to the slits of the annular apertures to suppress the influence of high-energy electron scattering. Each azimuth angle image on scintillator was detected by a multi-anode photomultiplier tube assembly through 40 optical fibers bundled in a ring shape. To focus the image appearing on the scintillator on optical fibers, an optical lens relay system attached with CCD camera was developed. The system enables the taking of 40 images simultaneously from different scattered directions.

  15. Automatic Detection and Quantification of Tree-in-Bud (TIB) Opacities From CT Scans

    PubMed Central

    Yao, Jianhua; Wu, Albert; Caban, Jesus; Palmore, Tara N.; Suffredini, Anthony F.; Aras, Omer; Mollura, Daniel J.

    2012-01-01

    This study presents a novel computer-assisted detection (CAD) system for automatically detecting and precisely quantifying abnormal nodular branching opacities in chest computed tomography (CT), termed tree-in-bud (TIB) opacities by radiology literature. The developed CAD system in this study is based on 1) fast localization of candidate imaging patterns using local scale information of the images, and 2) Möobius invariant feature extraction method based on learned local shape and texture properties of TIB patterns. For fast localization of candidate imaging patterns, we use ball-scale filtering and, based on the observation of the pattern of interest, a suitable scale selection is used to retain only small size patterns. Once candidate abnormality patterns are identified, we extract proposed shape features from regions where at least one candidate pattern occupies. The comparative evaluation of the proposed method with commonly used CAD methods is presented with a dataset of 60 chest CTs (laboratory confirmed 39 viral bronchiolitis human parainfluenza CTs and 21 normal chest CTs). The quantitative results are presented as the area under the receiver operator characteristics curves and a computer score (volume affected by TIB) provided as an output of the CAD system. In addition, a visual grading scheme is applied to the patient data by three well-trained radiologists. Inter-observer and observer–computer agreements are obtained by the relevant statistical methods over different lung zones. Experimental results demonstrate that the proposed CAD system can achieve high detection rates with an overall accuracy of 90.96%.Moreover, correlations of observer–observer (R2 = 0.8848,p <0.01) and observer–CAD agreements (R2 = 0.824,p <0.01) validate the feasibility of the use of the proposed CAD system in detecting and quantifying TIB patterns. PMID:22434795

  16. Non-invasive and high-sensitivity scanning detection of magnetic nanoparticles in animals using high-Tc scanning superconducting-quantum-interference-device biosusceptometry.

    PubMed

    Chieh, J J; Hong, C Y

    2011-08-01

    Although magnetic nanoparticles (MNPs) have been widely applied to animals in biomedicine, MNPs within animals should be examined in real time, in vivo, and without bio-damaged possibility to evaluate whether the bio-function of MNPs is valid or to further controls the biomedicinal process because of accompanying complex problems such as MNPs distribution and MNPs biodegradation. The non-invasive and high-sensitivity scanning detection of MNPs in animals using ac susceptometry based on a high-T(c) superconducting quantum interference device (SQUID) is presented. The non-invasive results and biopsy results show good agreement, and two gold-standard biomedicine methods, Prussian blue stain and inductively coupled plasma, prove the magnetic results. This confirms that the future clinical diagnosis of bio-functional MNPs could be operated by using scanning SQUID biosusceptometry as conveniently as an ultrasonic probe.

  17. Bone scanning.

    PubMed

    Greenfield, L D; Bennett, L R

    1975-03-01

    Scanning is based on the uptake of a nuclide by the crystal lattice of bone and is related to bone blood flow. Cancer cells do not take up the tracer. Normally, the scan visualizes the highly vascular bones. Scans are useful and are indicated in metastatic bone disease, primary bone tumors, hematologic malignancies and some non-neoplastic diseases. The scan is more sensitive than x-ray in the detection of malignant diseases of the skeleton. PMID:1054210

  18. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    EPA Science Inventory

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  19. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  20. Quantitative detection of Listeria monocytogenes in biofilms by real-time PCR.

    PubMed

    Guilbaud, Morgan; de Coppet, Pierre; Bourion, Fabrice; Rachman, Cinta; Prévost, Hervé; Dousset, Xavier

    2005-04-01

    A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 x 10(2) CFU/cm2.

  1. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    EPA Science Inventory

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  2. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  3. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  4. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  5. A novel high-throughput scanning microscope for label-free detection of protein and small-molecule chemical microarrays

    PubMed Central

    Fei, Y.Y.; Landry, J.P.; Sun, Y.S.; Luo, J.T.; Wang, X.B.; Lam, K.S; Zhu, X.D.

    2009-01-01

    We describe a novel scanning optical microscope based on a polarization-modulated nulling ellipsometry. The new microscope employs a combination of scanning mirror and sample translation and thus enables high-throughput label-free detection of biomolecular microarrays with more than 10,000 protein or small molecule targets. For illustration, we show the image of a 2760-spot protein microarray on a functionalized glass slide obtained with such a microscope. The new scanning microscope is also capable of determining, in parallel, the real-time binding kinetics of multiple molecular species under aqueous conditions. PMID:18248040

  6. Highly sensitive qualitative and quantitative detection of reverse transcriptase activity: optimization, validation, and comparative analysis with other detection systems.

    PubMed

    Yamamoto, S; Folks, T M; Heneine, W

    1996-09-01

    An ultra-sensitive assay for reverse transcriptase (RT) activity called Amp-RT has been developed. An in vitro transcribed heteropolymeric RNA sequence was used as a template, and polymerase chain reaction (PCR) amplification with Southern-blot hybridization served as a detection system for the cDNA product of the reaction. Titration of Mg2+ and Mn2+ concentrations using the human immunodeficiency virus type 1 (HIV-1) and the human T lymphotropic virus type 1 (HTLV-I), respectively, showed optimal assay reactivity for both viruses at 2-20 mM of Mg2+. Analysis of density banded HIV-1 showed that the peak RT activity of the assay was associated with the fractions consistent with retrovirus particles. The sensitivity of Amp-RT was also compared with that of three conventional RT assays by using seven different retroviruses including HIV-1, simian immunodeficiency virus (SIV), caprine arthritis-encephalitis virus (CAEV), HTLV-I and HTLV-II, simian retrovirus type 2 (SRV-2), and gibbon ape leukemia virus (GALV). HTLV-I, HTLV-II, and GALV could not be detected by the three conventional RT assays. Amp-RT was able to detect all these viruses in 10(1)-10(3)-fold dilutions. Similarly, Amp-RT was found to be 10(3)-10(6)-fold more sensitive than the other RT assays in detecting HIV-1, SIV< or CAEV. Culture supernatants from uninfected cell lines were all Amp-RT negative. A quantitative Amp-RT assay was also developed by using recombinant HIV-1 RT and signal quantitation. The assay was found to have a 5 log linear range, and therefore, provides a useful tool for quantitating RT and retroviruses. Amp-RT offers a sensitive generic tool for the qualitative and quantitative detection of known and unknown retroviruses.

  7. Real-Time Detection and Tracking of Multiple People in Laser Scan Frames

    NASA Astrophysics Data System (ADS)

    Cui, J.; Song, X.; Zhao, H.; Zha, H.; Shibasaki, R.

    This chapter presents an approach to detect and track multiple people ro bustly in real time using laser scan frames. The detection and tracking of people in real time is a problem that arises in a variety of different contexts. Examples in clude intelligent surveillance for security purposes, scene analysis for service robot, and crowd behavior analysis for human behavior study. Over the last several years, an increasing number of laser-based people-tracking systems have been developed in both mobile robotics platforms and fixed platforms using one or multiple laser scanners. It has been proved that processing on laser scanner data makes the tracker much faster and more robust than a vision-only based one in complex situations. In this chapter, we present a novel robust tracker to detect and track multiple people in a crowded and open area in real time. First, raw data are obtained that measures two legs for each people at a height of 16 cm from horizontal ground with multiple registered laser scanners. A stable feature is extracted using accumulated distribu tion of successive laser frames. In this way, the noise that generates split and merged measurements is smoothed well, and the pattern of rhythmic swinging legs is uti lized to extract each leg. Second, a probabilistic tracking model is presented, and then a sequential inference process using a Bayesian rule is described. A sequential inference process is difficult to compute analytically, so two strategies are presented to simplify the computation. In the case of independent tracking, the Kalman fil ter is used with a more efficient measurement likelihood model based on a region coherency property. Finally, to deal with trajectory fragments we present a concise approach to fuse just a little visual information from synchronized video camera to laser data. Evaluation with real data shows that the proposed method is robust and effective. It achieves a significant improvement compared with existing laser

  8. Application of quantitative PCR for the detection of microorganisms in water.

    PubMed

    Botes, Marelize; de Kwaadsteniet, Michéle; Cloete, Thomas Eugene

    2013-01-01

    The occurrence of microorganisms in water due to contamination is a health risk and control thereof is a necessity. Conventional detection methods may be misleading and do not provide rapid results allowing for immediate action. The quantitative polymerase chain reaction (qPCR) method has proven to be an effective tool to detect and quantify microorganisms in water within a few hours. Quantitative PCR assays have recently been developed for the detection of specific adeno- and polyomaviruses, bacteria and protozoa in different water sources. The technique is highly sensitive and able to detect low numbers of microorganisms. Quantitative PCR can be applied for microbial source tracking in water sources, to determine the efficiency of water and wastewater treatment plants and act as a tool for risk assessment. Different qPCR assays exist depending on whether an internal control is used or whether measurements are taken at the end of the PCR reaction (end-point qPCR) or in the exponential phase (real-time qPCR). Fluorescent probes are used in the PCR reaction to hybridise within the target sequence to generate a signal and, together with specialised systems, quantify the amount of PCR product. Quantitative reverse transcription polymerase chain reaction (q-RT-PCR) is a more sensitive technique that detects low copy number RNA and can be applied to detect, e.g. enteric viruses and viable microorganisms in water, and measure specific gene expression. There is, however, a need to standardise qPCR protocols if this technique is to be used as an analytical diagnostic tool for routine monitoring. This review focuses on the application of qPCR in the detection of microorganisms in water.

  9. Surface scanning inspection system particle detection dependence on aluminum film morphology

    NASA Astrophysics Data System (ADS)

    Prater, Walter; Tran, Natalie; McGarvey, Steve

    2012-03-01

    Physical vapor deposition (PVD) aluminum films present unique challenges when detecting particulate defects with a Surface Scanning Inspection System (SSIS). Aluminum (Al) films 4500Å thick were deposited on 300mm particle grade bare Si wafers at two temperatures using a Novellus Systems INOVA® NExT,.. Film surface roughness and morphology measurements were performed using a Veeco Vx310® atomic force microscope (AFM). AFM characterization found the high deposition temperature (TD) Al roughness (Root Mean Square 16.5 nm) to be five-times rougher than the low-TD Al roughness (rms 3.7 nm). High-TD Al had grooves at the grain boundaries that were measured to be 20 to 80 nm deep. Scanning electron microscopy (SEM) examination, with a Hitachi RS6000 defect review SEM, confirmed the presence of pronounced grain grooves. SEM images established that the low-TD filmed wafers have fine grains (0.1 to 0.3 um diameter) and the high-TD film wafers have fifty-times larger equiaxed plateletshape grains (5 to 15 um diameter). Calibrated Poly-Styrene Latex (PSL) spheres ranging in size from 90 nm to 1 μm were deposited in circular patterns on the wafers using an aerosol deposition chamber. PSL sphere depositions at each spot were controlled to yield 2000 to 5000 counts. A Hitachi LS9100® dark field full wafer SSIS was used to experimentally determine the relationship of the PSL sphere scattered light intensity with S-polarized light, a measure of scattering cross-section, with respect to the calibrated PSL sphere diameter. Comparison of the SSIS scattered light versus PSL spot size calibration curves shows two distinct differences. Scattering cross-section (intensity) of the PSL spheres increased on the low-TD Al film with smooth surface roughness and the low-TD Al film defect detection sensitivity was 126 nm compared to 200 nm for the rougher high- TD Al film. This can be explained by the higher signal to noise attributed to the smooth low-TD Al. Dark field defect detection on

  10. Lock-in-detection-free line-scan stimulated Raman scattering microscopy for near video-rate Raman imaging.

    PubMed

    Wang, Zi; Zheng, Wei; Huang, Zhiwei

    2016-09-01

    We report on the development of a unique lock-in-detection-free line-scan stimulated Raman scattering microscopy technique based on a linear detector with a large full well capacity controlled by a field-programmable gate array (FPGA) for near video-rate Raman imaging. With the use of parallel excitation and detection scheme, the line-scan SRS imaging at 20 frames per second can be acquired with a ∼5-fold lower excitation power density, compared to conventional point-scan SRS imaging. The rapid data communication between the FPGA and the linear detector allows a high line-scanning rate to boost the SRS imaging speed without the need for lock-in detection. We demonstrate this lock-in-detection-free line-scan SRS imaging technique using the 0.5 μm polystyrene and 1.0 μm poly(methyl methacrylate) beads mixed in water, as well as living gastric cancer cells.

  11. Lock-in-detection-free line-scan stimulated Raman scattering microscopy for near video-rate Raman imaging.

    PubMed

    Wang, Zi; Zheng, Wei; Huang, Zhiwei

    2016-09-01

    We report on the development of a unique lock-in-detection-free line-scan stimulated Raman scattering microscopy technique based on a linear detector with a large full well capacity controlled by a field-programmable gate array (FPGA) for near video-rate Raman imaging. With the use of parallel excitation and detection scheme, the line-scan SRS imaging at 20 frames per second can be acquired with a ∼5-fold lower excitation power density, compared to conventional point-scan SRS imaging. The rapid data communication between the FPGA and the linear detector allows a high line-scanning rate to boost the SRS imaging speed without the need for lock-in detection. We demonstrate this lock-in-detection-free line-scan SRS imaging technique using the 0.5 μm polystyrene and 1.0 μm poly(methyl methacrylate) beads mixed in water, as well as living gastric cancer cells. PMID:27607947

  12. Quantitative risk assessment & leak detection criteria for a subsea oil export pipeline

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Yuan; Bai, Yong; Badaruddin, Mohd Fauzi; Tuty, Suhartodjo

    2009-06-01

    A quantitative risk assessment (QRA) based on leak detection criteria (LDC) for the design of a proposed subsea oil export pipeline is presented in this paper. The objective of this QRA/LDC study was to determine if current leak detection methodologies were sufficient, based on QRA results, while excluding the use of statistical leak detection; if not, an appropriate LDC for the leak detection system would need to be established. The famous UK PARLOC database was used for the calculation of pipeline failure rates, and the software POSVCM from MMS was used for oil spill simulations. QRA results revealed that the installation of a statistically based leak detection system (LDS) can significantly reduce time to leak detection, thereby mitigating the consequences of leakage. A sound LDC has been defined based on QRA study results and comments from various LDS vendors to assist the emergency response team (ERT) to quickly identify and locate leakage and employ the most effective measures to contain damage.

  13. Quantitative PCR for detection of DNA damage in mitochondrial DNA of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Senoo, Takanori; Yamanaka, Mayumi; Nakamura, Atori; Terashita, Tomoki; Kawano, Shinji; Ikeda, Shogo

    2016-08-01

    Quantitative polymerase chain reaction (QPCR) has been employed to detect DNA damage and repair in mitochondrial DNA (mtDNA) of human and several model organisms. The assay also permits the quantitation of relative mtDNA copy number in cells. Here, we developed the QPCR assay primers and reaction conditions for the fission yeast Schizosaccharomyces pombe, an important model of eukaryote biology, not previously described. Under these conditions, long targets (approximately 10kb) in mtDNA were quantitatively amplified using 0.1ng of crude DNA templates without isolation of mitochondria and mtDNA. Quantitative detection of oxidative DNA damage in mtDNA was illustrated by using a DNA template irradiated with UVA in the presence of riboflavin. The damage to mtDNA in S. pombe cells treated with hydrogen peroxide and paraquat was also quantitatively measured. Finally, we found that mtDNA copy number in S. pombe cells increased after transition into a stationary phase and that the damage to mtDNA due to endogenous cellular processes accumulated during chronological aging.

  14. Qualitative and quantitative detection of agricultural microorganisms expressing iturin and mop cyclase in soils.

    PubMed

    Kim, Sung Eun; Moon, Jae Sun; Choi, Won Sik; Lee, Eun Na; Lee, Sang Han; Kim, Sung Uk

    2010-12-22

    The environmental release of genetically engineered microorganisms (GEMs) to improve agriculture or remediate environmental hazards has raised concern over the fate of the organisms and their engineered genes. To detect the microorganisms released into the environment at the molecular level, Bacillus subtilis KB producing iturin and Pseudomonas fluorescens MX1 carrying the moc (mannityl opine catabolism) region from the Agrobacterium tumefaciens were employed as model microorganisms. Using specific fusion primers and the TaqMan probes, qualitative and quantitative detections of the model organisms by PCR and real-time PCR were conducted employing a small-scale soil-core device and pots during the six month period. The data indicate that the model bacteria can be easily detected by qualitative and quantitative methods in the test systems employed, and they do not give significant impacts on the other bacteria in soils on the Southern blotting analysis, although long-term observation may be needed.

  15. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    PubMed

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-01

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed. PMID:26928571

  16. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    PubMed

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-01

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.

  17. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection

    PubMed Central

    Lopes, Gil; Ribeiro, A. Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo

    2016-01-01

    This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills—Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels’ image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians. PMID:27104535

  18. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection.

    PubMed

    Lopes, Gil; Ribeiro, A Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo

    2016-04-19

    This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills-Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels' image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.

  19. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection.

    PubMed

    Lopes, Gil; Ribeiro, A Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo

    2016-01-01

    This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills-Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels' image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians. PMID:27104535

  20. Detection of Prostate Cancer: Quantitative Multiparametric MR Imaging Models Developed Using Registered Correlative Histopathology.

    PubMed

    Metzger, Gregory J; Kalavagunta, Chaitanya; Spilseth, Benjamin; Bolan, Patrick J; Li, Xiufeng; Hutter, Diane; Nam, Jung W; Johnson, Andrew D; Henriksen, Jonathan C; Moench, Laura; Konety, Badrinath; Warlick, Christopher A; Schmechel, Stephen C; Koopmeiners, Joseph S

    2016-06-01

    Purpose To develop multiparametric magnetic resonance (MR) imaging models to generate a quantitative, user-independent, voxel-wise composite biomarker score (CBS) for detection of prostate cancer by using coregistered correlative histopathologic results, and to compare performance of CBS-based detection with that of single quantitative MR imaging parameters. Materials and Methods Institutional review board approval and informed consent were obtained. Patients with a diagnosis of prostate cancer underwent multiparametric MR imaging before surgery for treatment. All MR imaging voxels in the prostate were classified as cancer or noncancer on the basis of coregistered histopathologic data. Predictive models were developed by using more than one quantitative MR imaging parameter to generate CBS maps. Model development and evaluation of quantitative MR imaging parameters and CBS were performed separately for the peripheral zone and the whole gland. Model accuracy was evaluated by using the area under the receiver operating characteristic curve (AUC), and confidence intervals were calculated with the bootstrap procedure. The improvement in classification accuracy was evaluated by comparing the AUC for the multiparametric model and the single best-performing quantitative MR imaging parameter at the individual level and in aggregate. Results Quantitative T2, apparent diffusion coefficient (ADC), volume transfer constant (K(trans)), reflux rate constant (kep), and area under the gadolinium concentration curve at 90 seconds (AUGC90) were significantly different between cancer and noncancer voxels (P < .001), with ADC showing the best accuracy (peripheral zone AUC, 0.82; whole gland AUC, 0.74). Four-parameter models demonstrated the best performance in both the peripheral zone (AUC, 0.85; P = .010 vs ADC alone) and whole gland (AUC, 0.77; P = .043 vs ADC alone). Individual-level analysis showed statistically significant improvement in AUC in 82% (23 of 28) and 71% (24 of 34

  1. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans

    SciTech Connect

    Shiraishi, Junji; Li Qiang; Appelbaum, Daniel; Pu Yonglin; Doi, Kunio

    2007-01-15

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 'gold-standard' interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The

  2. Indium 111-labeled leukocyte scanning for detection of prosthetic vascular graft infection

    SciTech Connect

    Lawrence, P.F.; Dries, D.J.; Alazraki, N.; Albo, D. Jr.

    1985-01-01

    Recent animal and human studies have suggested that positive indium 111-labeled leukocyte scans may help establish the diagnosis of vascular graft infection; however, there is little information available about the predictive value of both positive and negative leukocyte scans in larger groups of patients. In this study 31 indium 111 leukocyte scans were performed prior to definitive treatment in 21 patients with suspected vascular graft infections. Patients with more than one leukocyte scan performed had either anatomically distinct sites of infection or rescanning of a potentially infected site after definitive treatment. Scans were performed according to the method of Baker et al., attaching 500 muCi of indium 111 to leukocytes with imaging 24 hours later. All patients with positive scans underwent surgical exploration of the area of leukocyte accumulation, with documentation of purulence and culture of the graft. Patients with negative scans were treated as if scan results were indeterminate and underwent surgical exploration for usual clinical indications; if no exploration was performed, the patient was followed up closely for at least 1 year. Twelve of 12 positive scans showed purulence or culture evidence of infection with three different organisms; in 15 instances of negative scans, two operations were performed with one infection noted, whereas no patient without surgery has had a graft infection at 10 months follow-up. In addition to localizing graft infections, two scans demonstrated a nonvascular site of infection. Positive scans also helped determine the extent of infection along the graft, allowing better planning of the surgical procedure. These results indicate that indium 111-labeled leukocyte scans help document and localize prosthetic vascular graft infections.

  3. Use of differential scanning calorimetry to detect canola oil (Brassica napus L.) adulterated with lard stearin.

    PubMed

    Marikkar, Jalaldeen Mohammed Nazrim; Rana, Sohel

    2014-01-01

    A study was conducted to detect and quantify lard stearin (LS) content in canola oil (CaO) using differential scanning calorimetry (DSC). Authentic samples of CaO were obtained from a reliable supplier and the adulterant LS were obtained through a fractional crystallization procedure as reported previously. Pure CaO samples spiked with LS in levels ranging from 5 to 15% (w/w) were analyzed using DSC to obtain their cooling and heating profiles. The results showed that samples contaminated with LS at 5% (w/w) level can be detected using characteristic contaminant peaks appearing in the higher temperature regions (0 to 70°C) of the cooling and heating curves. Pearson correlation analysis of LS content against individual DSC parameters of the adulterant peak namely peak temperature, peak area, peak onset temperature indicated that there were strong correlations between these with the LS content of the CaO admixtures. When these three parameters were engaged as variables in the execution of the stepwise regression procedure, predictive models for determination of LS content in CaO were obtained. The predictive models obtained with single DSC parameter had relatively lower coefficient of determination (R(2) value) and higher standard error than the models obtained using two DSC parameters in combination. This study concluded that the predictive models obtained with peak area and peak onset temperature of the adulteration peak would be more accurate for prediction of LS content in CaO based on the highest coefficient of determination (R(2) value) and smallest standard error.

  4. Liver Biopsy and FibroScan to Detect Early Histopathological Changes in Chronic HBV Patients Not Candidate for Treatment

    PubMed Central

    Maklad, Sahar; Esmat, Gamal; Hassan, Ehsan; Attalah, Mohamed; Zeid, Alaa Abou

    2014-01-01

    Background We aimed at evaluating liver biopsy and FibroScan (FS) to assess early histopathological changes among chronic hepatitis B virus (HBV) patients not candidates for treatment. Methods One hundred thirty-five chronic hepatitis B naive patients were followed up twice weekly at National Hepatology and Tropical Medicine Research Institute. All patients were not candidates for treatment according to both Egyptian and international guidelines. Pre-enrollment assessment was performed through biochemical, serological and quantitative HBV DNA testing. Liver biopsy was performed to 59 patients based on the guidelines while FS was performed to patients who were not candidates for liver biopsy (102 patients). Twenty-six patients performed both liver biopsy and FS (isolated liver biopsy 33 patients and isolated FS 76 patients). Results At the end of study period, liver biopsy group showed that majority of subjects had grade F1 fibrosis (61.0%). Only 13.6% were F3. FS showed that almost half (47.1%) of subjects had a grade of F0 and 21.6% with grade F1. Only 4.9% of subjects had fibrosis grades of F3 or F4. In each test, nearly two-thirds of patients had evidence of F0/F1 fibrosis and the remaining one-third had more marked fibrosis. The degree of fibrosis as detected by both liver biopsy and FS was directly related to alanine aminotransferase (ALT), aspartate aminotransferase (AST), S. albumin and prothrombin. Patients with advanced fibrosis had significantly higher ALT and AST, while their S. albumin and prothrombin were significantly lower than those with minimal fibrosis. Conclusion FS study requires further validation in HBV but could be confidently used at the present time as a predictor for the degree of hepatic fibrosis in chronic HBV patients. Liver biopsy could be spared for cases that present with elevated liver functions and/or marked impairment of synthetic liver functions.

  5. Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection

    NASA Astrophysics Data System (ADS)

    Sudheendran, Narendran; Qi, Ji; Young, Eric D.; Lazar, Alexander J.; Lev, Dina C.; Pollock, Raphael E.; Larin, Kirill V.; Shih, Wei-Chuan

    2014-10-01

    Current technique for tumor resection requires biopsy of the tumor region and histological confirmation before the surgeon can be certain that the entire tumor has been resected. This confirmation process is time consuming both for the surgeon and the patient and also requires sacrifice of healthy tissue, motivating the development of novel technologies which can enable real-time detection of tumor-healthy tissue boundary for faster and more efficient surgeries. In this study, the potential of combining structural information from optical coherence tomography (OCT) and molecular information from line-scan Raman microscopy (LSRM) for such an application is presented. The results show a clear presence of boundary between myxoid liposarcoma and normal fat which is easily identifiable both from structural and molecular information. In cases where structural images are indistinguishable, for example, in normal fat and well differentiated liposarcoma (WDLS) or gastrointestinal sarcoma tumor (GIST) and myxoma, distinct molecular spectra have been obtained. The results suggest LSRM can effectively complement OCT to tumor boundary demarcation with high specificity.

  6. CHARACTERISING THE EOS SLOT-SCANNING SYSTEM WITH THE EFFECTIVE DETECTIVE QUANTUM EFFICIENCY.

    PubMed

    Clavel, A H; Monnin, P; Létang, J M; Verdun, F R; Darbon, A

    2016-06-01

    As opposed to the standard detective quantum efficiency (DQE), effective DQE (eDQE) is a figure of merit that allows comparing the performances of imaging systems in the presence of scatter rejection devices. The geometry of the EOS™ slot-scanning system is such that the detector is self-collimated and rejects scattered radiation. In this study, the EOS system was characterised using the eDQE in imaging conditions similar to those used in clinical practice: with phantoms of different widths placed in the X-ray beam, for various incident air kerma and tube voltages corresponding to the phantom thickness. Scatter fractions in EOS images were extremely low, around 2 % for all configurations. Maximum eDQE values spanned 9-14.8 % for a large range of air kerma at the detector plane from 0.01 to 1.34 µGy. These figures were obtained with non-optimised EOS setting but still over-performed most of the maximum eDQEs recently assessed for various computed radiology and digital radiology systems with antiscatter grids. PMID:26538617

  7. Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy.

    PubMed

    Somnath, Suhas; Collins, Liam; Matheson, Michael A; Sukumar, Sreenivas R; Kalinin, Sergei V; Jesse, Stephen

    2016-10-14

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip-sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques. PMID:27607339

  8. Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-10-01

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip-sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.

  9. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    DOE PAGES

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify themore » findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.« less

  10. Urban Road Detection in Airbone Laser Scanning Point Cloud Using Random Forest Algorithm

    NASA Astrophysics Data System (ADS)

    Kaczałek, B.; Borkowski, A.

    2016-06-01

    The objective of this research is to detect points that describe a road surface in an unclassified point cloud of the airborne laser scanning (ALS). For this purpose we use the Random Forest learning algorithm. The proposed methodology consists of two stages: preparation of features and supervised point cloud classification. In this approach we consider ALS points, representing only the last echo. For these points RGB, intensity, the normal vectors, their mean values and the standard deviations are provided. Moreover, local and global height variations are taken into account as components of a feature vector. The feature vectors are calculated on a basis of the 3D Delaunay triangulation. The proposed methodology was tested on point clouds with the average point density of 12 pts/m2 that represent large urban scene. The significance level of 15% was set up for a decision tree of the learning algorithm. As a result of the Random Forest classification we received two subsets of ALS points. One of those groups represents points belonging to the road network. After the classification evaluation we achieved from 90% of the overall classification accuracy. Finally, the ALS points representing roads were merged and simplified into road network polylines using morphological operations.

  11. A new total body scanning system for automatic change detection in multiple pigmented skin lesions.

    PubMed

    Korotkov, Konstantin; Quintana, Josep; Puig, Susana; Malvehy, Josep; Garcia, Rafael

    2015-01-01

    The detection of newly appearing and changing pigmented skin lesions (PSLs) is essential for timely diagnosis of cutaneous melanoma. Total body skin examination (TBSE) procedures, currently practiced for this purpose, can be extremely time-consuming for patients with numerous lesions. In addition, these procedures are prone to subjectivity when selecting PSLs for baseline image comparison, increasing the risk of missing a developing cancer. To address this issue, we propose a new photogrammetry-based total body scanning system allowing for skin surface image acquisition using cross-polarized light. Equipped with 21 high-resolution cameras and a turntable, this scanner automatically acquires a set of overlapping images, covering 85%-90% of the patient's skin surface. These images are used for the automated mapping of PSLs and their change estimation between explorations. The maps produced relate images of individual lesions with their locations on the patient's body, solving the body-to-image and image-to-image correspondence problem in TBSEs. Currently, the scanner is limited to patients with sparse body hair and, for a complete skin examination, the scalp, palms, soles and inner arms should be photographed manually. The initial tests of the scanner showed that it can be successfully applied for automated mapping and temporal monitoring of multiple lesions: PSLs relevant for follow-up were repeatedly mapped in several explorations. Moreover, during the baseline image comparison, all lesions with artificially induced changes were correctly identified as "evolved." PMID:25222947

  12. Buried mine detection using fractal geometry analysis to the LWIR successive line scan data image

    NASA Astrophysics Data System (ADS)

    Araki, Kan

    2012-06-01

    We have engaged in research on buried mine/IED detection by remote sensing method using LWIR camera. A IR image of a ground, containing buried objects can be assumed as a superimposed pattern including thermal scattering which may depend on the ground surface roughness, vegetation canopy, and effect of the sun light, and radiation due to various heat interaction caused by differences in specific heat, size, and buried depth of the objects and local temperature of their surrounding environment. In this cumbersome environment, we introduce fractal geometry for analyzing from an IR image. Clutter patterns due to these complex elements have oftentimes low ordered fractal dimension of Hausdorff Dimension. On the other hand, the target patterns have its tendency of obtaining higher ordered fractal dimension in terms of Information Dimension. Random Shuffle Surrogate method or Fourier Transform Surrogate method is used to evaluate fractional statistics by applying shuffle of time sequence data or phase of spectrum. Fractal interpolation to each line scan was also applied to improve the signal processing performance in order to evade zero division and enhance information of data. Some results of target extraction by using relationship between low and high ordered fractal dimension are to be presented.

  13. ScanIndel: a hybrid framework for indel detection via gapped alignment, split reads and de novo assembly.

    PubMed

    Yang, Rendong; Nelson, Andrew C; Henzler, Christine; Thyagarajan, Bharat; Silverstein, Kevin A T

    2015-01-01

    Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation sequencing is challenging due to the relatively short read length inherent in the technology. Different indel calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We present ScanIndel, an integrated framework for detecting indels with multiple heuristics including gapped alignment, split reads and de novo assembly. Using simulation data, we demonstrate ScanIndel's superior sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and indel sizes. ScanIndel yields higher predictive accuracy with lower computational cost compared with existing tools for both targeted resequencing data from tumor specimens and high coverage whole-genome sequencing data from the human NIST standard NA12878. Thus, we anticipate ScanIndel will improve indel analysis in both clinical and research settings. ScanIndel is implemented in Python, and is freely available for academic use at https://github.com/cauyrd/ScanIndel. PMID:26643039

  14. Glucose Oxidase-Catalyzed Growth of Gold Nanoparticles Enables Quantitative Detection of Attomolar Cancer Biomarkers

    PubMed Central

    2015-01-01

    Ultrasensitive and quantitative detection of cancer biomarkers is an unmet challenge because of their ultralow concentrations in clinical samples. Although gold nanoparticle (AuNP)-based immunoassays offer high sensitivity, they were unable to quantitatively detect targets of interest most likely due to their very narrow linear ranges. This article describes a quantitative colorimetric immunoassay based on glucose oxidase (GOx)-catalyzed growth of 5 nm AuNPs that can detect cancer biomarkers from attomolar to picomolar levels. In addition, the limit of detection (LOD) of prostate-specific antigen (PSA) of this approach (93 aM) exceeds that of commercial enzyme-linked immunosorbent assay (ELISA) (6.3 pM) by more than 4 orders of magnitude. The emergence of red or purple color based on enzyme-catalyzed growth of 5 nm AuNPs in the presence of target antigen is particularly suitable for point-of-care (POC) diagnostics in both resource-rich and resource-limited settings. PMID:24896231

  15. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay

    PubMed Central

    Zhang, Pengfei; Bao, Yan; Draz, Mohamed Shehata; Lu, Huiqi; Liu, Chang; Han, Huanxing

    2015-01-01

    Convenient and rapid immunofiltration assays (IFAs) enable on-site “yes” or “no” determination of disease markers. However, traditional IFAs are commonly qualitative or semi-quantitative and are very limited for the efficient testing of samples in field diagnostics. Here, we overcome these limitations by developing a quantum dots (QDs)-based fluorescent IFA for the quantitative detection of C-reactive proteins (CRP). CRP, the well-known diagnostic marker for acute viral and bacterial infections, was used as a model analyte to demonstrate performance and sensitivity of our developed QDs-based IFA. QDs capped with both polyethylene glycol (PEG) and glutathione were used as fluorescent labels for our IFAs. The presence of the surface PEG layer, which reduced the non-specific protein interactions, in conjunction with the inherent optical properties of QDs, resulted in lower background signal, increased sensitivity, and ability to detect CRP down to 0.79 mg/L with only 5 µL serum sample. In addition, the developed assay is simple, fast and can quantitatively detect CRP with a detection limit up to 200 mg/L. Clinical test results of our QD-based IFA are well correlated with the traditional latex enhance immune-agglutination aggregation. The proposed QD-based fluorescent IFA is very promising, and potentially will be adopted for multiplexed immunoassay and in field point-of-care test. PMID:26491289

  16. Broad-spectrum detection and quantitation methods of Soil-borne cereal mosaic virus isolates.

    PubMed

    Vaïanopoulos, Céline; Legrève, Anne; Moreau, Virginie; Bragard, Claude

    2009-08-01

    A broad-spectrum reverse transcription-polymerase chain reaction (RT-PCR) protocol was developed for detecting Soil-borne cereal mosaic virus (SBCMV) isolates, responsible for mosaic diseases in Europe, using primers targeting the highly conserved 3'-untranslated region of RNA-1 and RNA-2 of SBCMV. The 3'-end region is a privileged target for the detection of a wide range of isolates, because of sequence conservation, of the tRNA-like structure, the major role in viral replication and the signal amplification due to the presence of numerous genomic and subgenomic RNAs. The primers were also designed for virus quantitation using real-time RT-PCR with SYBR-Green chemistry. No cross-reaction with Wheat spindle streak mosaic virus, frequently associated with SBCMV, was observed. The use of RT-PCR and real-time quantitative RT-PCR allowed a more sensitive detection and quantitation of SBCMV to be made than was the case with ELISA. The methods enabled European isolates of SBCMV from Belgium, France, Germany, Italy and the UK to be detected and quantified. Real-time RT-PCR represents a new tool for comparing soil inoculum potential as well as cultivar resistance to SBCMV.

  17. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay.

    PubMed

    Zhang, Pengfei; Bao, Yan; Draz, Mohamed Shehata; Lu, Huiqi; Liu, Chang; Han, Huanxing

    2015-01-01

    Convenient and rapid immunofiltration assays (IFAs) enable on-site "yes" or "no" determination of disease markers. However, traditional IFAs are commonly qualitative or semi-quantitative and are very limited for the efficient testing of samples in field diagnostics. Here, we overcome these limitations by developing a quantum dots (QDs)-based fluorescent IFA for the quantitative detection of C-reactive proteins (CRP). CRP, the well-known diagnostic marker for acute viral and bacterial infections, was used as a model analyte to demonstrate performance and sensitivity of our developed QDs-based IFA. QDs capped with both polyethylene glycol (PEG) and glutathione were used as fluorescent labels for our IFAs. The presence of the surface PEG layer, which reduced the non-specific protein interactions, in conjunction with the inherent optical properties of QDs, resulted in lower background signal, increased sensitivity, and ability to detect CRP down to 0.79 mg/L with only 5 µL serum sample. In addition, the developed assay is simple, fast and can quantitatively detect CRP with a detection limit up to 200 mg/L. Clinical test results of our QD-based IFA are well correlated with the traditional latex enhance immune-agglutination aggregation. The proposed QD-based fluorescent IFA is very promising, and potentially will be adopted for multiplexed immunoassay and in field point-of-care test.

  18. A combined algorithm for T-wave alternans qualitative detection and quantitative measurement

    PubMed Central

    2013-01-01

    Background T-wave alternans (TWA) provides a noninvasive and clinically useful marker for the risk of sudden cardiac death (SCD). Current most widely used TWA detection algorithms work in two different domains: time and frequency. The disadvantage of the spectral analytical techniques is that they treat the alternans signal as a stationary wave with a constant amplitude and a phase. They cannot detect non-stationary characteristics of the signal. The temporal domain methods are sensitive to the alignment of the T-waves. In this study, we sought to develop a robust combined algorithm (CA) to assess T-wave alternans, which can qualitatively detect and quantitatively measure TWA in time domain. Methods The T wave sequences were extracted and the total energy of each T wave within the specified time-frequency region was calculated. The rank-sum test was applied to the ranked energy sequences of T waves to detect TWA qualitatively. The ECG containing TWA was quantitatively analyzed with correlation method. Results Simulation test result proved a mean sensitivity of 91.2% in detecting TWA, and for the SNR not less than 30 dB, the accuracy rate of detection achieved 100%. The clinical data experiment showed that the results from this method vs. spectral method had the correlation coefficients of 0.96. Conclusions A novel TWA analysis algorithm utilizing the wavelet transform and correlation technique is presented in this paper. TWAs are not only correctly detected qualitatively in frequency domain by energy value of T waves, but the alternans frequency and amplitude in temporal domain are measured quantitatively. PMID:23311454

  19. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  20. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  1. The development of line-scan image recognition algorithms for the detection of frass on mature tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this research, a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet LED excitation was developed for the detection of frass contamination on mature tomatoes. The algorithm utilized the fluorescence intensities at two wavebands, 664 nm and 690 nm, for co...

  2. Bone Positron Emission Tomography with or without CT Is More Accurate than Bone Scan for Detection of Bone Metastasis

    PubMed Central

    Lee, Soo Jin; Kim, Sang Eun

    2013-01-01

    Objective Na18F bone positron emission tomography (bone PET) is a new imaging modality which is useful for the evaluation of bone diseases. Here, we compared the diagnostic accuracies between bone PET and bone scan for the detection of bone metastasis (BM). Materials and Methods Sixteen cancer patients (M:F = 10:6, mean age = 60 ± 12 years) who underwent both bone PET and bone scan were analyzed. Bone PET was conducted 30 minutes after the injection of 370 MBq Na18F, and a bone scan was performed 3 hours after the injection of 1295 MBq 99mTc-hydroxymethylene diphosphonate. Results In the patient-based analysis (8 patients with BM and 8 without BM), the sensitivities of bone PET (100% = 8/8) and bone scan (87.5% = 7/8) were not significantly different (p > 0.05), whereas the specificity of bone PET (87.5% = 7/8) was significantly greater than that of the bone scan (25% = 2/8) (p < 0.05). In the lesion-based analysis (43 lesions in 14 patients; 31 malignant and 12 benign), the sensitivity of bone PET (100% = 31/31) was significantly greater than that of bone scan (38.7% = 12/31) (p < 0.01), and the specificity of bone PET (75.0% = 9/12) was also significantly higher than that of bone scan (8.3% = 1/12) (p < 0.05). The receiver operating characteristic curve analysis showed that bone PET was significantly more accurate than the bone scan in the patient (p = 0.0306) and lesion (p = 0.0001) based analyses. Conclusion Na18F bone PET is more accurate than bone scan for BM evaluation. PMID:23690722

  3. Detection Of Multilayer Cavities By Employing RC-DTH Air Hammer System And Cavity Auto Scanning Laser System

    NASA Astrophysics Data System (ADS)

    Luo, Yongjiang; Li, Lijia; Peng, Jianming; Yin, Kun; Li, Peng; Gan, Xin; Zhao, Letao; Su, Wei

    2015-12-01

    The subterranean cavities are seriously threatened to construction and mining safety, and it's important to obtain the exact localization and dimensions of subterranean cavities for the planning of geotechnical and mining activities. Geophysical investigation is an alternative method for cavity detection, but it usually failed for the uncertainly solution of information and data obtained by Geophysical methods. Drilling is considered as the most accurate method for cavity detection. However, the conventional drilling methods can only be used for single cavity detection, and there is no effective solution for multilayer cavities detection have been reported. In this paper, a reverse circulation (RC) down-the-hole (DTH) air hammer system with a special structured drill bit is built and a cavity auto scanning laser system based on laser range finding technique was employed to confirm the localization and dimensions of the cavities. This RC-DTH air hammer system allows drilling through the upper cavities and putting the cavity auto scanning laser system into the cavity area through the central passage of the drill tools to protect the detection system from collapsing of borehole wall. The RC-DTH air hammer system was built, and field tests were conducted in Lanxian County Iron Ore District, which is located in Lv Liang city of Shan Xi province, the northwest of china. Field tests show that employing the RC-DTH air hammer system assisted by the cavity auto scanning laser system is an efficiency method to detect multilayer cavities.

  4. Quantitative direct probe method for the detection of parvovirus B19.

    PubMed

    Boggino, H; Payne, D A

    2000-01-01

    Parvovirus B19 infection is associated with anemia and spontaneous abortions. While many qualitative assays are available, a few molecular-based quantitative methods have been described. This study reports the development and optimization of a quantitative direct-probe method for the detection of Parvovirus B19 DNA. Different concentrations of RNA probes were used to identify the optimal conditions for hybridizing to the target DNA. Detection of DNA was linear between concentrations of 2 ng/ml to 200 pg/ml. Because this method requires no enzymatic amplification, it is not susceptible to amplifier contamination or enzymatic inhibitors, and it can be applied to serum samples or paraffin-embedded tissue.

  5. Quantitative surface enhanced Raman scattering detection based on the ``sandwich'' structure substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Junmeng; Qu, Shengchun; Zhang, Lisheng; Tang, Aiwei; Wang, Zhanguo

    2011-08-01

    A sandwich structured substrate was designed for quantitative molecular detection using surface enhanced Raman scattering (SERS), in which the probe molecule was sandwiched between silver nanoparticles (SNPs) and silver nanoarrays. The SNPs was prepared using Lee-Meisel method, and the silver nanoarrays was fabricated on porous anodic aluminum oxide (AAO) using electrodepositing method. The SERS studies show that the sandwich structured substrate exhibits good stability and reproducibility, and the detection sensitivity of Rhodamine 6G (R6G) and Melamine can respectively reach up to 10 -19 M and 10 -9 M, which is improved greatly as compared to other SERS substrates. The improved SERS sensitivity is closely associated with the stronger electromagnetic field enhancement, which stems from localized surface plasmon (LSP) coupling between the two silver nanostructures. Furthermore, the SERS intensity increased almost linearly as the mother concentration increased, which indicates that such a sandwich structure may be used as a good SERS substrate for quantitative analysis.

  6. Quantitative direct probe method for the detection of parvovirus B19.

    PubMed

    Boggino, H; Payne, D A

    2000-01-01

    Parvovirus B19 infection is associated with anemia and spontaneous abortions. While many qualitative assays are available, a few molecular-based quantitative methods have been described. This study reports the development and optimization of a quantitative direct-probe method for the detection of Parvovirus B19 DNA. Different concentrations of RNA probes were used to identify the optimal conditions for hybridizing to the target DNA. Detection of DNA was linear between concentrations of 2 ng/ml to 200 pg/ml. Because this method requires no enzymatic amplification, it is not susceptible to amplifier contamination or enzymatic inhibitors, and it can be applied to serum samples or paraffin-embedded tissue. PMID:10645984

  7. A medium hyperglycosylated podocalyxin enables noninvasive and quantitative detection of tumorigenic human pluripotent stem cells

    PubMed Central

    Tateno, Hiroaki; Onuma, Yasuko; Ito, Yuzuru; Hiemori, Keiko; Aiki, Yasuhiko; Shimizu, Madoka; Higuchi, Kumiko; Fukuda, Masakazu; Warashina, Masaki; Honda, Susumu; Asashima, Makoto; Hirabayashi, Jun

    2014-01-01

    While human pluripotent stem cells are attractive sources for cell-replacement therapies, a major concern remains regarding their tumorigenic potential. Thus, safety assessment of human pluripotent stem cell-based products in terms of tumorigenicity is critical. Previously we have identified a pluripotent stem cell-specific lectin probe rBC2LCN recognizing hyperglycosylated podocalyxin as a cell surface ligand. Here we demonstrate that hyperglycosylated podocalyxin is secreted from human pluripotent stem cells into cell culture supernatants. We establish a sandwich assay system, named the GlycoStem test, targeting the soluble hyperglycosylated podocalyxin using rBC2LCN. The GlycoStem test is sufficiently sensitive and quantitative to detect residual human pluripotent stem cells. This work provides a proof of concept for the noninvasive and quantitative detection of tumorigenic human pluripotent stem cells using cell culture supernatants. The developed method should increase the safety of human pluripotent stem cell-based cell therapies. PMID:24518842

  8. Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology

    NASA Astrophysics Data System (ADS)

    Tang, Qingju; Dai, Jingmin; Liu, Junyan; Liu, Chunsheng; Liu, Yuanlin; Ren, Chunping

    2016-07-01

    Quantitative detection of debonding defects' diameter and depth in TBCs has been carried out using pulsed infrared thermography technology. By combining principal component analysis with neural network theory, the Markov-PCA-BP algorithm was proposed. The principle and realization process of the proposed algorithm was described. In the prediction model, the principal components which can reflect most characteristics of the thermal wave signal were set as the input, and the defect depth and diameter was set as the output. The experimental data from pulsed infrared thermography tests of TBCs with flat bottom hole defects was selected as the training and testing sample. Markov-PCA-BP predictive system was arrived, based on which both the defect depth and diameter were identified accurately, which proved the effectiveness of the proposed method for quantitative detection of debonding defects in TBCs.

  9. Quantitative In Situ Detection of Phosphoproteins in Fixed Tissues Using Quantum Dot Technology

    PubMed Central

    Bodo, Juraj; Durkin, Lisa; Hsi, Eric D.

    2009-01-01

    Detection and quantitation of phosphoproteins (PPs) in fixed tissues will become increasingly important as additional inhibitors of protein kinases enter clinical use and new disease entities are defined by molecular changes affecting PP levels. We characterize fixation conditions suitable for accurate PP quantitation that are achievable in a clinical laboratory and illustrate the utility of in situ quantitation of PPs by quantum dot (QD) nanocrystals in two models: (1) a therapeutic model demonstrating effects of a targeted therapeutic (quantitative reduction of phospho-GSK3β) in xenografts treated with enzastaurin; and (2) a diagnostic model that identifies elevated levels of nuclear phospho-STAT5 in routine bone marrow biopsies from patients with acute myeloid leukemia based on the presence of the activating FLT3-ITD mutation. Finally, we document production of a well-characterized tissue microarray of widely available cell lines as a multilevel calibrator for validating numerous phosphoprotein assays. QD immunofluorescence is an ideal method for in situ quantitation of PPs in fixed samples, providing valuable cell type–specific and subcellular information about pathway activation in primary tissues. (J Histochem Cytochem 57:701–708, 2009) PMID:19332430

  10. Empyema of the gallbladder detected by gallium scan and abdominal ultrasonography

    SciTech Connect

    Garcia, O.M.; Kovac, A.; Plauche, W.E.

    1981-08-01

    A case history of patient with a abnormal gallium uptake and sonogram in the region of the gallbladder is described. The abnormality was interpreted as empyema of the gallbladder and later proven surgically. A liver-spleen scan was normal except for slight prominence of the hilar structures. Gallium citrate Ga-67 scans done at 24 and 48 hours showed a persistent area of increased tracer localization around the gallbladder with a central clear zone in the latter scan. Ultrasonography revealed poor definition and slight thickening of the gallbladder wall. Because of the lack of specificity of gallium scans, the combination of ultrasonic imaging and gallium uptake scans appears much superior in diagnostic efficiency than either of the two alone. The sequence of performing these two examinations does not seem to be critical though it was prefered that the scintigraphy precede the sonography.

  11. Comparison of bone scans and radiography for detecting bone neoplasms in dogs exposed to /sup 238/PuO/sub 2/

    SciTech Connect

    Wolff, R.K.; Merickel, B.S.; Rebar, A.H.; Mewhinney, J.A.

    1980-11-01

    Radioisotopic bone scans and radiography were used to detect bone neoplasms in 144 dogs that inhaled alpha-particle-emitting /sup 238/PuO/sub 2/ particles. Radiography was used routinely to survey the skeleton of the dogs. Nineteen dogs developed bone neoplasms; 17 of these were studied with bone scans and radiography; both methods showed a high degree of success in detecting bone neoplasms. Predominant regions of occurrence have been the lumbar region of the spine and the humerus. The bone scanning method used gamma-camera detection of IV injected 99mTc-labeled methylene diphosphonate. All neoplasms detected radiographically also were identified by bone scans. In addition, 3 lesions confirmed histologically as osteosarcomas were detected by bone scanning, but were missed by radiography. Bone scanning was a more sensitive means for the detection of bone neoplasms than were routine radiographic procedures.

  12. Differential plating medium for quantitative detection of histamine-producing bacteria.

    PubMed Central

    Niven, C F; Jeffrey, M B; Corlett, D A

    1981-01-01

    A histidine-containing agar medium has been devised for quantitative detection of histamine-producing bacteria that are alleged to be associated with scombroid fish poisoning outbreaks. The responsible bacteria produce a marked pH change in the agar, with attendant color change of pH indicator adjacent to the colonies, thus facilitating their recognition. Proteus morganii and Klebsiella pneumoniae were the two most common histidine-decarboxylating species isolated from scombroid fish and mahi mahi. PMID:7013698

  13. DETECTING SELECTION IN NATURAL POPULATIONS: MAKING SENSE OF GENOME SCANS AND TOWARDS ALTERNATIVE SOLUTIONS

    PubMed Central

    Haasl, Ryan J.; Payseur, Bret A.

    2016-01-01

    Genomewide scans for natural selection (GWSS) have become increasingly common over the last 15 years due to increased availability of genome-scale genetic data. Here, we report a representative survey of GWSS from 1999 to present and find that (i) between 1999 and 2009, 35 of 49 (71%) GWSS focused on human, while from 2010 to present, only 38 of 83 (46%) of GWSS focused on human, indicating increased focus on nonmodel organisms; (ii) the large majority of GWSS incorporate interpopulation or interspecific comparisons using, for example FST, cross-population extended haplotype homozygosity or the ratio of nonsynonymous to synonymous substitutions; (iii) most GWSS focus on detection of directional selection rather than other modes such as balancing selection; and (iv) in human GWSS, there is a clear shift after 2004 from microsatellite markers to dense SNP data. A survey of GWSS meant to identify loci positively selected in response to severe hypoxic conditions support an approach to GWSS in which a list of a priori candidate genes based on potential selective pressures are used to filter the list of significant hits a posteriori. We also discuss four frequently ignored determinants of genomic heterogeneity that complicate GWSS: mutation, recombination, selection and the genetic architecture of adaptive traits. We recommend that GWSS methodology should better incorporate aspects of genomewide heterogeneity using empirical estimates of relevant parameters and/or realistic, whole-chromosome simulations to improve interpretation of GWSS results. Finally, we argue that knowledge of potential selective agents improves interpretation of GWSS results and that new methods focused on correlations between environmental variables and genetic variation can help automate this approach. PMID:26224644

  14. Detection of morphological changes in cliff face surrounding a waterfall using terrestrial laser scanning and unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Hayakawa, Yuichi S.; Obanawa, Hiroyuki

    2015-04-01

    Waterfall or bedrock knickpoint appears as an erosional front in bedrock rivers forming deep v-shaped valley downstream. Following the rapid fluvial erosion of waterfall, rockfalls and gravita-tional collapses often occur in surrounding steep cliffs. Although morphological changes of such steep cliffs are sometimes visually observed, quantitative and precise measurements of their spatio-temporal distribution have been limited due to the difficulties in direct access to such cliffs if with classical measurement methods. However, for the clarification of geomorphological processes oc-curring in the cliffs, multi-temporal mapping of the cliff face at a high resolution is necessary. Re-mote sensing approaches are therefore suitable for the topographic measurements and detection of changes in such inaccessible cliffs. To achieve accurate topographic mapping of cliffs around a wa-terfall, here we perform multi-temporal terrestrial laser scanning (TLS), as well as structure-from-motion multi-view stereo (SfM-MVS) photogrammetry based on unmanned aerial system (UAS). The study site is Kegon Falls in central Japan, having a vertical drop of surface water from top of its overhanging cliff, as well as groundwater outflows from its lower portions. The bedrock is composed of alternate layers of andesite lava and conglomerates. Minor rockfalls in the cliffs are often ob-served by local people. The latest major rockfall occurred in 1986, causing ca. 8-m upstream propa-gation of the waterfall lip. This provides a good opportunity to examine the changes in the surround-ing cliffs following the waterfall recession. Multi-time point clouds were obtained by TLS measure-ment over years, and the three-dimensional changes of the rock surface were detected, uncovering the locus of small rockfalls and gully developments. Erosion seems particularly frequent in relatively weak the conglomerates layer, whereas small rockfalls seems to have occurred in the andesite layers. Also, shadows in the

  15. A DNA immunoprecipitation assay used in quantitative detection of in vitro DNA-protein complex binding.

    PubMed

    Kim, Min Young; Chae, Ji Hyung; Oh, Chang-Ho; Kim, Chul Geun

    2013-10-15

    To begin gene transcription, several transcription factors must bind to specific DNA sequences to form a complex via DNA-protein interactions. We established an in vitro method for specific and sensitive analyses of DNA-protein interactions based on a DNA immunoprecipitation (DIP) method. We verified the accuracy and efficiency of the DIP assay in quantitatively measuring DNA-protein binding using transcription factor CP2c as a model. With our DIP assay, we could detect specific interactions within a DNA-CP2c complex, with reproducible and quantitative binding values. In addition, we were able to effectively measure the changes in DNA-CP2c binding by the addition of a small molecule, FQI1 (factor quinolinone inhibitor 1), previously identified as a specific inhibitor of this binding. To identify a new regulator of DNA-CP2c binding, we analyzed several CP2c binding peptides and found that only one class of peptide severely inhibits DNA-CP2c binding. These data show that our DIP assay is very useful in quantitatively detecting the binding dynamics of DNA-protein complex. Because DNA-protein interaction is very dynamic in different cellular environments, our assay can be applied to the detection of active transcription factors, including promoter occupancy in normal and disease conditions. Moreover, it may be used to develop a targeted regulator of specific DNA-protein interaction.

  16. A genome-wide linkage scan for quantitative trait loci influencing the craniofacial complex in humans(Homo sapiens sapiens)

    PubMed Central

    Sherwood, Richard J.; Duren, Dana L.; Mahaney, Michael C.; Blangero, John; Dyer, Thomas D.; Cole, Shelley A.; Czerwinski, Stefan A.; Chumlea, Wm. Cameron; Siervogel, Roger M.; Choh, Audrey C.; Nahhas, Ramzi W.; Lee, Miryoung; Towne, Bradford

    2011-01-01

    The genetic architecture of the craniofacial complex has been the subject of intense scrutiny because of the high frequency of congenital malformations. Numerous animal models have been used to document the early development of the craniofacial complex, but few studies have focused directly on the genetic underpinnings of normal variation in the human craniofacial complex. The current study examines 80 quantitative traits derived from lateral cephalographs of 981 participants in the Fels Longitudinal Study, Wright State University, Dayton, Ohio. Quantitative genetic analyses were conducted using the SOLAR analytic platform, a maximum-likelihood variance components method that incorporates all familial information for parameter estimation. Heritability estimates were significant and of moderate to high magnitude for all craniofacial traits. Additionally, significant quantitative trait loci (QTL) were identified for 10 traits from the three developmental components (basicranium, splanchnocranium, and neurocranium) of the craniofacial complex. These QTL were found on chromosomes 3, 6, 11, 12, and 14. This study of the genetic architecture of the craniofacial complex elucidates fundamental information of the genetic architecture of the craniofacial complex in humans. PMID:21328561

  17. Validation of quantitative and qualitative methods for detecting allergenic ingredients in processed foods in Japan.

    PubMed

    Sakai, Shinobu; Adachi, Reiko; Akiyama, Hiroshi; Teshima, Reiko

    2013-06-19

    A labeling system for food allergenic ingredients was established in Japan in April 2002. To monitor the labeling, the Japanese government announced official methods for detecting allergens in processed foods in November 2002. The official methods consist of quantitative screening tests using enzyme-linked immunosorbent assays (ELISAs) and qualitative confirmation tests using Western blotting or polymerase chain reactions (PCR). In addition, the Japanese government designated 10 μg protein/g food (the corresponding allergenic ingredient soluble protein weight/food weight), determined by ELISA, as the labeling threshold. To standardize the official methods, the criteria for the validation protocol were described in the official guidelines. This paper, which was presented at the Advances in Food Allergen Detection Symposium, ACS National Meeting and Expo, San Diego, CA, Spring 2012, describes the validation protocol outlined in the official Japanese guidelines, the results of interlaboratory studies for the quantitative detection method (ELISA for crustacean proteins) and the qualitative detection method (PCR for shrimp and crab DNAs), and the reliability of the detection methods.

  18. Comparison of standard, quantitative and digital PCR in the detection of enterotoxigenic Bacteroides fragilis

    PubMed Central

    Purcell, Rachel V.; Pearson, John; Frizelle, Frank A.; Keenan, Jacqueline I.

    2016-01-01

    Gut colonization with enterotoxigenic Bacteroides fragilis (ETBF) appears to be associated with the development of colorectal cancer. However, differences in carriage rates are seen with various testing methods and sampling sites. We compared standard PCR, SYBR green and TaqMan quantitative PCR (qPCR) and digital PCR (dPCR) in detecting the B. fragilis toxin (bft) gene from cultured ETBF, and from matched luminal and faecal stool samples from 19 colorectal cancer patients. Bland-Altman analysis found that all three quantitative methods performed comparably in detecting bft from purified bacterial DNA, with the same limits of detection (<1 copy/μl). However, SYBR qPCR under-performed compared to TaqMan qPCR and dPCR in detecting bft in clinical stool samples; 13/38 samples were reported positive by SYBR, compared to 35 and 36 samples by TaqMan and dPCR, respectively. TaqMan qPCR and dPCR gave bft copy numbers that were 48-fold and 75-fold higher for the same samples than SYBR qPCR, respectively (p < 0.001). For samples that were bft-positive in both fecal and luminal stools, there was no difference in relative abundance between the sites, by any method tested. From our findings, we recommend the use of TaqMan qPCR as the preferred method to detect ETBF from clinical stool samples. PMID:27686415

  19. An ECL-PCR method for quantitative detection of point mutation

    NASA Astrophysics Data System (ADS)

    Zhu, Debin; Xing, Da; Shen, Xingyan; Chen, Qun; Liu, Jinfeng

    2005-04-01

    A new method for identification of point mutations was proposed. Polymerase chain reaction (PCR) amplification of a sequence from genomic DNA was followed by digestion with a kind of restriction enzyme, which only cut the wild-type amplicon containing its recognition site. Reaction products were detected by electrochemiluminescence (ECL) assay after adsorption of the resulting DNA duplexes to the solid phase. One strand of PCR products carries biotin to be bound on a streptavidin-coated microbead for sample selection. Another strand carries Ru(bpy)32+ (TBR) to react with tripropylamine (TPA) to emit light for ECL detection. The method was applied to detect a specific point mutation in H-ras oncogene in T24 cell line. The results show that the detection limit for H-ras amplicon is 100 fmol and the linear range is more than 3 orders of magnitude, thus, make quantitative analysis possible. The genotype can be clearly discriminated. Results of the study suggest that ECL-PCR is a feasible quantitative method for safe, sensitive and rapid detection of point mutation in human genes.

  20. DEVELOPMENT OF SEMI-QUANTITATIVE PCR ASSAYS FOR THE DETECTION AND ENUMERATION OF GAMBIERDISCUS SPECIES (GONYAULACALES, DINOPHYCEAE)(1).

    PubMed

    Vandersea, Mark W; Kibler, Steven R; Holland, William C; Tester, Patricia A; Schultz, Thomas F; Faust, Maria A; Holmes, Michael J; Chinain, Mirelle; Wayne Litaker, R

    2012-08-01

    Ciguatera fish poisoning (CFP) is a serious health problem in tropical regions and is caused by the bioaccumulation of lipophilic toxins produced by dinoflagellates in the genus Gambierdiscus. Gambierdiscus species are morphologically similar and are difficult to distinguish from one another even when using scanning electron microscopy. Improved identification and detection methods that are sensitive and rapid are needed to identify toxic species and investigate potential distribution and abundance patterns in relation to incidences of CFP. This study presents the first species-specific, semi-quantitative polymerase chain reaction (qPCR) assays that can be used to address these questions. These assays are specific for five Gambierdiscus species and one undescribed ribotype. The assays utilized a SYBR green format and targeted unique sequences found within the SSU, ITS, and the D1/D3 LSU ribosomal domains. Standard curves were constructed using known concentrations of cultured cells and 10-fold serial dilutions of rDNA PCR amplicons containing the target sequence for each specific assay. Assay sensitivity and accuracy were tested using DNA extracts purified from known concentrations of multiple Gambierdiscus species. The qPCR assays were used to assess Gambierdiscus species diversity and abundance in samples collected from nearshore areas adjacent to Ft. Pierce and Jupiter, Florida USA. The results indicated that the practical limit of detection for each assay was 10 cells per sample. Most interestingly, the qPCR analysis revealed that as many as four species of Gambierdiscus were present in a single macrophyte sample.

  1. Native denaturation differential scanning fluorimetry: Determining the effect of urea using a quantitative real-time thermocycler.

    PubMed

    Childers, Christine L; Green, Stuart R; Dawson, Neal J; Storey, Kenneth B

    2016-09-01

    The effect of protein stability on kinetic function is monitored with many techniques that often require large amounts of expensive substrates and specialized equipment not universally available. We present differential scanning fluorimetry (DSF), a simple high-throughput assay performed in real-time thermocyclers, as a technique for analysis of protein unfolding. Furthermore, we demonstrate a correlation between the half-maximal rate of protein unfolding (Knd), and protein unfolding by urea (I50). This demonstrates that DSF methods can determine the structural stability of an enzyme's active site and can compare the relative structural stability of homologous enzymes with a high degree of sequence similarity.

  2. Rapid and quantitative detection of C-reactive protein using quantum dots and immunochromatographic test strips

    PubMed Central

    Cheng, Xianglin; Pu, Xu; Jun, Pen; Zhu, XiaoBo; Zhu, Di; Chen, Ming

    2014-01-01

    Background Rapid immunochromatographic tests can detect disease markers in 10–15 minutes, which facilitates clinical diagnosis and treatment programs. However, most immunochromatographic tests employ gold nanoparticles as reporters, and these have only moderate sensitivity and act as qualitative methods for analyzing high biomarker concentrations. Methods In this study, we introduce quantum dots (QDs) as fluorescent probes and immunochromatographic strips to develop quantitative fluorescence point-of-care tests (QF-POCT) to analyze C-reactive protein (CRP) levels. Goat anti-rabbit IgG and rabbit IgG were used as control antibodies, and mouse monoclonal CRP antibody pairs were used for disease marker detection. One monoclonal CRP antibody was conjugated with QDs and served as a signal antibody, and the other monoclonal CRP antibody was dispensed onto the nitrocellulose membrane and served as a capturing antibody. In the presence of CRP, the fluorescence intensity of the monoclonal antibody-CRP-monoclonal antibody sandwich complex captured on the nitrocellulose membrane was determined using the fluorescence strip reader. Results QF-POCT assays could quantitatively analyze the concentration of CRP in 15 minutes had a detection limit of 0.25 mg/L, and had a wide detection linearity range (0.5–300 mg/L). The intra-assay and interassay coefficients of variation were 8.95% and 9.86% at 0.5 mg/L, 6.47% and 8.66% at 10 mg/L, and 6.81% and 9.10% at 60 mg/L, respectively. In a comparison between clinical samples, the results of this QD-based assay of CRP levels were significantly correlated with those of an Immulite 2000 assay (R=0.993, P<0.001). Conclusion Our results demonstrated that the QD-based immunochromatographic test is a rapid, sensitive, accurate, and quantitative method for the detection of disease biomarkers. PMID:25506215

  3. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.

    PubMed

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C; Heth, Jason A; Maher, Cormac O; Sanai, Nader; Johnson, Timothy D; Freudiger, Christian W; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A

    2015-10-14

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a nondestructive, label-free optical method, to reveal glioma infiltration in animal models. We show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ = 0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density, and protein/lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density, and protein/lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery.

  4. Validation of a quantitative PCR assay for detection and quantification of 'Candidatus Xenohaliotis californiensis'.

    PubMed

    Friedman, Carolyn S; Wight, Nate; Crosson, Lisa M; White, Samuel J; Strenge, Robyn M

    2014-04-01

    Withering syndrome (WS), a serious disease affecting abalone Haliotis spp., is caused by infection from an intracellular Rickettsia-like organism (WS-RLO). Diagnosis of the disease currently relies on a combination of histological examination and molecular methods (in situ hybridization, standard PCR, and sequence analysis). However, these techniques only provide a semi-quantitative assessment of bacterial load. We created a real-time quantitative PCR (qPCR) assay to specifically identify and enumerate bacterial loads of WS-RLO in abalone tissue, fecal, and seawater samples based on 16S rDNA gene copy numbers. The qPCR assay designed to detect DNA of the WS-RLO was validated according to standards set by the World Organisation for Animal Health. Standard curves derived from purified plasmid dilutions were linear across 7 logs of concentration, and efficiencies ranged from 90.2 to 97.4%. The limit of detection was 3 gene copies per reaction. Diagnostic sensitivity was 100% and specificity was 99.8%. The qPCR assay was robust, as evidenced by its high level of repeatability and reproducibility. This study has shown for the first time that WS-RLO DNA can be detected and quantified in abalone tissue, fecal, and seawater samples. The ability to detect and quantify RLO gene copies in a variety of materials will enable us to better understand transmission dynamics in both farmed and natural environments. PMID:24695238

  5. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy

    PubMed Central

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H.; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C.; Heth, Jason A.; Maher, Cormac O.; Sanai, Nader; Johnson, Timothy D.; Freudiger, Christian W.; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A.

    2016-01-01

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a non-destructive, label-free optical method, to reveal glioma infiltration in animal models. Here we show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ=0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density and protein:lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density and protein:lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Importantly, quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery. PMID:26468325

  6. A novel spherical shell filter for reducing false positives in automatic detection of pulmonary nodules in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    van de Leemput, Sil; Dorssers, Frank; Ehteshami Bejnordi, Babak

    2015-03-01

    Early detection of pulmonary nodules is crucial for improving prognosis of patients with lung cancer. Computer-aided detection of lung nodules in thoracic computed tomography (CT) scans has a great potential to enhance the performance of the radiologist in detecting nodules. In this paper we present a computer-aided lung nodule detection system for computed tomography (CT) scans that works in three steps. The system first segments the lung using thresholding and hole filling. From this segmentation the system extracts candidate nodules using Laplacian of Gaussian. To reject false positives among the detected candidate nodules, multiple established features are calculated. We propose a novel feature based on a spherical shell filter, which is specifically designed to distinguish between vascular structures and nodular structures. The performance of the proposed CAD system was evaluated by partaking in the ANODE09 challenge, which presents a platform for comparing automatic nodule detection programs. The results from the challenge show that our CAD system ranks third among the submitted works, demonstrating the efficacy of our proposed CAD system. The results also show that our proposed spherical shell filter in combination with conventional features can significantly reduce the number of false positives from the detected candidate nodules.

  7. Signal Processing and Its Effect on Scanning Efficiencies for a Field Instrument for Detecting Low-energy Radiation.

    PubMed

    Marianno, Craig M

    2015-07-01

    Signal processing within a radiation detector affects detection efficiency. Currently, organizations such as private industry, the U.S. Navy, Army, and Air Force are coupling some detector systems with data collection devices to survey large land areas for radioactive contamination. As detector technology has advanced and analog data collection has turned to digital, signal processing is becoming prevalent in some instruments. Using a NIST traceable (241)Am source, detection efficiency for a field instrument for detecting low-energy radiation (FIDLER) was examined for both a static and scanning mode. Experimental results were compared to Monte Carlo-generated efficiencies. Stationary data compared nicely to the theoretical results. Conversely, scanning detection efficiencies were considerably different from their theoretical counterparts. As speed increased, differences in detection efficiency approached two orders of magnitude. To account for these differences, a quasi time-dependent Monte Carlo simulation was created mimicking the signal processing undertaken by the FIDLER detection system. By including signal processing, experimental results fell within the bounds of the Monte Carlo-generated efficiencies, thus demonstrating the negative effects of such processing on detection efficiencies. PMID:26011500

  8. Signal Processing and Its Effect on Scanning Efficiencies for a Field Instrument for Detecting Low-energy Radiation.

    PubMed

    Marianno, Craig M

    2015-07-01

    Signal processing within a radiation detector affects detection efficiency. Currently, organizations such as private industry, the U.S. Navy, Army, and Air Force are coupling some detector systems with data collection devices to survey large land areas for radioactive contamination. As detector technology has advanced and analog data collection has turned to digital, signal processing is becoming prevalent in some instruments. Using a NIST traceable (241)Am source, detection efficiency for a field instrument for detecting low-energy radiation (FIDLER) was examined for both a static and scanning mode. Experimental results were compared to Monte Carlo-generated efficiencies. Stationary data compared nicely to the theoretical results. Conversely, scanning detection efficiencies were considerably different from their theoretical counterparts. As speed increased, differences in detection efficiency approached two orders of magnitude. To account for these differences, a quasi time-dependent Monte Carlo simulation was created mimicking the signal processing undertaken by the FIDLER detection system. By including signal processing, experimental results fell within the bounds of the Monte Carlo-generated efficiencies, thus demonstrating the negative effects of such processing on detection efficiencies.

  9. Quantitation of HIV-1 by real-time amplification and detection

    NASA Astrophysics Data System (ADS)

    Jung, Paul M.; Yang, Naiquan; Kroeger, Paul E.

    1998-04-01

    A model assay for HIV-1 using a non-competitive internal standard in quantitative RT-PCR was coupled with real-time detection of both analyte and internal standard (IS) signals in a closed system. Real-time detection by the PE-ABI Prism 7700 relied on TaqMan probes specific for HIV and IS. The exogenous, non-competitive IS RNA was added in the same, known amount to a series of HIV RNA standards. The threshold cycle ratio from this internal standard calibration curve was used in the quantitation of HIV. Two configurations of reporter labels were compared. The HEX-HIV:FAM-IS system was the most precise, with nearly half-log discrimination over a range of 102 through 105 copies HIV-1 RNA. The FAM- HIV:HEX-IS system was less precise, but more sensitive and resistant to sample inhibition. The analysis of these signals and their impact on the range and precision of HIV quantitation is discussed. The design and synthesis of the fluorescently-labelled probes is also described.

  10. Calibration-free quantitation in microchip zone electrophoresis with conductivity detection.

    PubMed

    Noblitt, Scott D; Henry, Charles S

    2015-08-01

    The relationship between electrophoretic mobility and molar conductivity has previously led to speculation on achieving quantitation in zone electrophoresis without calibration curves when using conductivity detection. However, little work in this area has been pursued, possibly because of the breakdown of simple sensitivity-mobility relationships when working with partially protonated species. This topic is revisited with the aid of electrophoretic simulation software that produces facile predictions of analyte sensitivity relative to an internal standard. Calibration curve slopes for over 50 analyte/internal standard/BGE combinations were measured with both unbiased and electrokinetically biased injections using microchip electrophoresis with conductivity detection. The results were compared to theoretical expectations as computed with PeakMaster software. Good agreement was observed, with some systems being predicted with quantitative accuracy while others showed significant deviations. Some mechanisms that can lead to deviations from theory are demonstrated, but the causes for some discrepancies are still not understood. Overall, this work exhibits another useful application for simulation software, particularly for disposable devices where device-specific calibration curves cannot be collected. It also serves as quantitative validation for some outputs of PeakMaster simulation software.

  11. Slot immunoblot assay for detection and quantitation of periodontal disease-associated microorganisms in dental plaque.

    PubMed Central

    van Poperin, N; Lopatin, D E

    1991-01-01

    A rapid method for qualitative and quantitative detection of specific oral microorganisms from subgingival dental plaque is described. Plaque samples were suspended in phosphate-buffered saline containing protease inhibitors and 0.5% formaldehyde, briefly sonicated to disperse bacterial aggregates, and applied to nitrocellulose membranes in a slot blot manifold. Subsequent incubations with species-specific rabbit antibody and anti-rabbit antibody-alkaline phosphatase conjugate and development with BCIP-NBT substrate resulted in an easily discernible, permanent stain being deposited at the sample application site. Comparison with known concentrations of pure, cultured microorganisms applied to the same membranes permitted qualitative or semiquantitative plaque characterization by visual inspection. Analysis of the blots with a computer-linked flatbed scanner provided quantitative data on microbial content. The reproducibility of the results (standard error of the mean, less than 10%) obtained with slot immunoblotting greatly exceeded that of the results obtained with immunofluorescence analysis (standard error of the mean, greater than 57%). Because it is versatile, rapid, sensitive, reproducible, permanent, and relatively inexpensive, slot immunoblotting lends itself to use in large-scale investigations for the detection and quantitation of specific microbial species. PMID:1663511

  12. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells.

    PubMed

    Park, Han Sang; Rinehart, Matthew T; Walzer, Katelyn A; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection

  13. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells

    PubMed Central

    Park, Han Sang; Rinehart, Matthew T.; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection

  14. Nanomolar colorimetric quantitative detection of Fe3 + and PPi with high selectivity

    NASA Astrophysics Data System (ADS)

    Li, Zhanxian; Li, Haixia; Shi, Caixia; Yu, Mingming; Wei, Liuhe; Ni, Zhonghai

    2016-04-01

    A novel rhodamine and 8-hydroxyquinoline-based derivative was synthesized, which is shown to act as a colorimetric chemosensor for Fe3 + in aqueous solution with high selectivity over various environmentally and biologically relevant metal ions and anions with a distinct color change from colorless to pink in very fast response time (< 1 min). Fe3 + can be detected quantitatively in the concentration range from 6.7 to 16 μM and the detection limit (LOD) on UV-vis response of the sensor can be as low as 15 nM. The 'in situ' prepared Fe3 + complex (1 ṡ Fe) showed high selectivity toward PPi against many common anions, and sensitivity (the LOD can be as low as 71 nM). In addition, both the chemosensor and the 'in situ' prepared Fe3 + complex are reusable for the detection of Fe3 + and PPi respectively.

  15. Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots

    SciTech Connect

    Xie, Hongzhi; Mukundan, Harshini; Martinez, Jennifer S; Swanson, Basil I; Anderson, Aaron S; Grace, Kevin

    2009-01-01

    The quantitative, simultaneous detection of multiple biomarkers with high sensitivity and specificity is critical for biomedical diagnostics, drug discovery and biomarker characterization [Wilson 2006, Tok 2006, Straub 2005, Joos 2002, Jani 2000]. Detection systems relying on optical signal transduction are, in general, advantageous because they are fast, portable, inexpensive, sensitive, and have the potential for multiplex detection of analytes of interest. However, conventional immunoassays for the detection of biomarkers, such as the Enzyme Linked Immunosorbant Assays (ELISAs) are semi-quantitative, time consuming and insensitive. ELISA assays are also limited by high non-specific binding, especially when used with complex biological samples such as serum and urine (REF). Organic fluorophores that are commonly used in such applications lack photostability and possess a narrow Stoke's shift that makes simultaneous detection of multiple fluorophores with a single excitation source difficult, thereby restricting their use in multiplex assays. The above limitations with traditional assay platforms have resulted in the increased use of nanotechnology-based tools and techniques in the fields of medical imaging [ref], targeted drug delivery [Caruthers 2007, Liu 2007], and sensing [ref]. One such area of increasing interest is the use of semiconductor quantum dots (QDs) for biomedical research and diagnostics [Gao and Cui 2004, Voura 2004, Michalet 2005, Chan 2002, Jaiswal 2004, Gao 2005, Medintz 2005, So 2006 2006, Wu 2003]. Compared to organic dyes, QDs provide several advantages for use in immunoassay platforms, including broad absorption bands with high extinction coefficients, narrow and symmetric emission bands with high quantum yields, high photostablility, and a large Stokes shift [Michalet 2005, Gu 2002]. These features prompted the use of QDs as probes in biodetection [Michalet 2005, Medintz 2005]. For example, Jaiswal et al. reported long term multiple color

  16. Single-Plex Quantitative Assays for the Detection and Quantification of Most Pneumococcal Serotypes

    PubMed Central

    Chochua, Sopio; Satzke, Catherine; Dunne, Eileen M.; Mulholland, Kim; Klugman, Keith P.

    2015-01-01

    Streptococcus pneumoniae globally kills more children than any other infectious disease every year. A prerequisite for pneumococcal disease and transmission is colonization of the nasopharynx. While the introduction of pneumococcal conjugate vaccines has reduced the burden of pneumococcal disease, understanding the impact of vaccination on nasopharyngeal colonization has been hampered by the lack of sensitive quantitative methods for the detection of >90 known S. pneumoniae serotypes. In this work, we developed 27 new quantitative (q)PCR reactions and optimized 26 for a total of 53 qPCR reactions targeting pneumococcal serotypes or serogroups, including all vaccine types. Reactions proved to be target-specific with a limit of detection of 2 genome equivalents per reaction. Given the number of probes required for these assays and their unknown shelf-life, the stability of cryopreserved reagents was evaluated. Our studies demonstrate that two-year cryopreserved probes had similar limit of detection as freshly-diluted probes. Moreover, efficiency and limit of detection of 1-month cryopreserved, ready-to-use, qPCR reaction mixtures were similar to those of freshly prepared mixtures. Using these reactions, our proof-of-concept studies utilizing nasopharyngeal samples (N=30) collected from young children detected samples containing ≥2 serotypes/serogroups. Samples colonized by multiple serotypes/serogroups always had a serotype that contributes at least 50% of the pneumococcal load. In addition, a molecular approach called S6-q(PCR)2 was developed and proven to individually detect and quantify epidemiologically-important serogroup 6 strains including 6A, 6B, 6C and 6D. This technology will be useful for epidemiological studies, diagnostic platforms and to study the pneumobiome. PMID:25798884

  17. Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay

    PubMed Central

    Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto

    2013-01-01

    Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management. PMID:23811499

  18. Single-plex quantitative assays for the detection and quantification of most pneumococcal serotypes.

    PubMed

    Sakai, Fuminori; Chochua, Sopio; Satzke, Catherine; Dunne, Eileen M; Mulholland, Kim; Klugman, Keith P; Vidal, Jorge E

    2015-01-01

    Streptococcus pneumoniae globally kills more children than any other infectious disease every year. A prerequisite for pneumococcal disease and transmission is colonization of the nasopharynx. While the introduction of pneumococcal conjugate vaccines has reduced the burden of pneumococcal disease, understanding the impact of vaccination on nasopharyngeal colonization has been hampered by the lack of sensitive quantitative methods for the detection of >90 known S. pneumoniae serotypes. In this work, we developed 27 new quantitative (q)PCR reactions and optimized 26 for a total of 53 qPCR reactions targeting pneumococcal serotypes or serogroups, including all vaccine types. Reactions proved to be target-specific with a limit of detection of 2 genome equivalents per reaction. Given the number of probes required for these assays and their unknown shelf-life, the stability of cryopreserved reagents was evaluated. Our studies demonstrate that two-year cryopreserved probes had similar limit of detection as freshly-diluted probes. Moreover, efficiency and limit of detection of 1-month cryopreserved, ready-to-use, qPCR reaction mixtures were similar to those of freshly prepared mixtures. Using these reactions, our proof-of-concept studies utilizing nasopharyngeal samples (N=30) collected from young children detected samples containing ≥2 serotypes/serogroups. Samples colonized by multiple serotypes/serogroups always had a serotype that contributes at least 50% of the pneumococcal load. In addition, a molecular approach called S6-q(PCR)2 was developed and proven to individually detect and quantify epidemiologically-important serogroup 6 strains including 6A, 6B, 6C and 6D. This technology will be useful for epidemiological studies, diagnostic platforms and to study the pneumobiome.

  19. Molecular detection of Mikrocytos mackini in Pacific oysters using quantitative PCR.

    PubMed

    Polinski, Mark; Lowe, Geoff; Meyer, Gary; Corbeil, Serge; Colling, Axel; Caraguel, Charles; Abbott, Cathryn L

    2015-01-01

    Mikrocytos mackini is an internationally regulated pathogen and causative agent of Denman Island disease in Pacific oysters Crassostrea gigas. Recent phylogenetic breakthroughs have placed this parasite within a highly divergent and globally distributed eukaryotic lineage that has been designated a new taxonomic order, Mikrocytida. The discovery of this new radiation of parasites is accompanied by a heightened awareness of the many knowledge gaps that exist with respect to the general biology, epizootiology, and potential impact of mikrocytid parasites on hosts, ecosystems, and commercial fisheries. It has also highlighted current shortcomings regarding our ability to detect these organisms. In this study, we developed a species-specific, sensitive, and quantitative method for detecting M. mackini DNA from host tissues using probe-based real-time qPCR technology. A limit of sensitivity between 2 and 5 genome copy equivalents was achieved in a reaction matrix containing ≥ 40 ng/μL host gDNA without inhibition. This detection proved superior to existing methods based on conventional PCR, histology or gross pathology and is the first species-specific diagnostic test for M. mackini. Quantitative assessment of parasite DNA using this assay remained accurate to between 10 and 50 copies identifying that during infection, M. mackini DNA was significantly more prevalent in hemolymph, labial palp, and mid-body cross-sections compared to mantle or adductor muscle. DNA extracted from a mid-body cross-section also provided the highest likelihood for detection during diagnostic screening of infected oysters. Taken together, these findings provide strong analytical evidence for the adoption of qPCR as the new reference standard for detecting M. mackini and give preliminary insight into the distribution of the parasite within host tissues. Standardised operating methodologies for sample collection and qPCR testing are provided to aid in the international regulatory diagnosis of

  20. Rapid simultaneous detection and quantitation of infectious pancreatic necrosis virus (IPNV).

    PubMed

    Espinoza, Juan Carlos; Kuznar, Juan

    2002-08-01

    Infectious pancreatic necrosis virus (IPNV) is a pathogen of great concern in the salmon industry as well as in the environment. Taking advantage of the early immunofluorescent visualization of viral proteins in infected cells, a titration method was developed. At 16 h p.i., fluorescent foci were visualized with a monoclonal antibody against VP3-structural protein of the virus. The counting of each fluorescent cell allows the quantitation of infection foci; titres expressed in fluorescent foci/ml were equivalent to plaque forming units (PFU)/ml. With slight modifications, the same method used to detect the virus in field samples, can be applied to estimate virus contents. Some of the samples used during the assays were obtained from routine screening procedures. The titres recorded from positive samples correlated well with the clinical condition of the fish. With this method, rapid diagnosis and quantitation may simultaneously be performed with the same tissue extract.

  1. Qualitative and Quantitative Assays for Detection and Characterization of Protein Antimicrobials.

    PubMed

    Farris, M Heath; Ford, Kara A; Doyle, Richard C

    2016-01-01

    Initial evaluations of large microbial libraries for potential producers of novel antimicrobial proteins require both qualitative and quantitative methods to screen for target enzymes prior to investing greater research effort and resources. The goal of this protocol is to demonstrate two complementary assays for conducting these initial evaluations. The microslide diffusion assay provides an initial or simple detection screen to enable the qualitative and rapid assessment of proteolytic activity against an array of both viable and heat-killed bacterial target substrates. As a counterpart, the increased sensitivity and reproducibility of the dye-release assay provides a quantitative platform for evaluating and comparing environmental influences affecting the hydrolytic activity of protein antimicrobials. The ability to label specific heat-killed cell culture substrates with Remazol brilliant blue R dye expands this capability to tailor the dye-release assay to characterize enzymatic activity of interest.

  2. Qualitative and Quantitative Assays for Detection and Characterization of Protein Antimicrobials

    PubMed Central

    Farris, M. Heath; Ford, Kara A.; Doyle, Richard C.

    2016-01-01

    Initial evaluations of large microbial libraries for potential producers of novel antimicrobial proteins require both qualitative and quantitative methods to screen for target enzymes prior to investing greater research effort and resources. The goal of this protocol is to demonstrate two complementary assays for conducting these initial evaluations. The microslide diffusion assay provides an initial or simple detection screen to enable the qualitative and rapid assessment of proteolytic activity against an array of both viable and heat-killed bacterial target substrates. As a counterpart, the increased sensitivity and reproducibility of the dye-release assay provides a quantitative platform for evaluating and comparing environmental influences affecting the hydrolytic activity of protein antimicrobials. The ability to label specific heat-killed cell culture substrates with Remazol brilliant blue R dye expands this capability to tailor the dye-release assay to characterize enzymatic activity of interest. PMID:27166738

  3. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    PubMed

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples.

  4. Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data

    DOE PAGES

    Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.

    2016-04-06

    An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less

  5. Genomic resources and their influence on the detection of the signal of positive selection in genome scans.

    PubMed

    Manel, S; Perrier, C; Pratlong, M; Abi-Rached, L; Paganini, J; Pontarotti, P; Aurelle, D

    2016-01-01

    Genome scans represent powerful approaches to investigate the action of natural selection on the genetic variation of natural populations and to better understand local adaptation. This is very useful, for example, in the field of conservation biology and evolutionary biology. Thanks to Next Generation Sequencing, genomic resources are growing exponentially, improving genome scan analyses in non-model species. Thousands of SNPs called using Reduced Representation Sequencing are increasingly used in genome scans. Besides, genome sequences are also becoming increasingly available, allowing better processing of short-read data, offering physical localization of variants, and improving haplotype reconstruction and data imputation. Ultimately, genome sequences are also becoming the raw material for selection inferences. Here, we discuss how the increasing availability of such genomic resources, notably genome sequences, influences the detection of signals of selection. Mainly, increasing data density and having the information of physical linkage data expand genome scans by (i) improving the overall quality of the data, (ii) helping the reconstruction of demographic history for the population studied to decrease false-positive rates and (iii) improving the statistical power of methods to detect the signal of selection. Of particular importance, the availability of a high-quality reference genome can improve the detection of the signal of selection by (i) allowing matching the potential candidate loci to linked coding regions under selection, (ii) rapidly moving the investigation to the gene and function and (iii) ensuring that the highly variable regions of the genomes that include functional genes are also investigated. For all those reasons, using reference genomes in genome scan analyses is highly recommended.

  6. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule.

    PubMed

    Yang, Litao; Guo, Jinchao; Pan, Aihu; Zhang, Haibo; Zhang, Kewei; Wang, Zhengming; Zhang, Dabing

    2007-01-10

    With the development of genetically modified organism (GMO) detection techniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMO detection, and real-time PCR is the most effective and important method for GMO quantification. An event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity. This study establishes the event-specific detection methods for TC1507 and CBH351 maizes. In addition, the event-specific TaqMan real-time PCR detection methods for another seven GM maize events (Bt11, Bt176, GA21, MON810, MON863, NK603, and T25) were systematically optimized and developed. In these PCR assays, the fluorescent quencher, TAMRA, was dyed on the T-base of the probe at the internal position to improve the intensity of the fluorescent signal. To overcome the difficulties in obtaining the certified reference materials of these GM maizes, one novel standard reference molecule containing all nine specific integration junction sequences of these GM maizes and the maize endogenous reference gene, zSSIIb, was constructed and used for quantitative analysis. The limits of detection of these methods were 20 copies for these different GM maizes, the limits of quantitation were about 20 copies, and the dynamic ranges for quantification were from 0.05 to 100% in 100 ng of DNA template. Furthermore, nine groups of the mixed maize samples of these nine GM maize events were quantitatively analyzed to evaluate the accuracy and precision. The accuracy expressed as bias varied from 0.67 to 28.00% for the nine tested groups of GM maize samples, and the precision expressed as relative standard deviations was from 0.83 to 26.20%. All of these indicated that the established event-specific real-time PCR detection systems and the reference molecule in this study are suitable for the identification and quantification of these GM

  7. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule.

    PubMed

    Yang, Litao; Guo, Jinchao; Pan, Aihu; Zhang, Haibo; Zhang, Kewei; Wang, Zhengming; Zhang, Dabing

    2007-01-10

    With the development of genetically modified organism (GMO) detection techniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMO detection, and real-time PCR is the most effective and important method for GMO quantification. An event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity. This study establishes the event-specific detection methods for TC1507 and CBH351 maizes. In addition, the event-specific TaqMan real-time PCR detection methods for another seven GM maize events (Bt11, Bt176, GA21, MON810, MON863, NK603, and T25) were systematically optimized and developed. In these PCR assays, the fluorescent quencher, TAMRA, was dyed on the T-base of the probe at the internal position to improve the intensity of the fluorescent signal. To overcome the difficulties in obtaining the certified reference materials of these GM maizes, one novel standard reference molecule containing all nine specific integration junction sequences of these GM maizes and the maize endogenous reference gene, zSSIIb, was constructed and used for quantitative analysis. The limits of detection of these methods were 20 copies for these different GM maizes, the limits of quantitation were about 20 copies, and the dynamic ranges for quantification were from 0.05 to 100% in 100 ng of DNA template. Furthermore, nine groups of the mixed maize samples of these nine GM maize events were quantitatively analyzed to evaluate the accuracy and precision. The accuracy expressed as bias varied from 0.67 to 28.00% for the nine tested groups of GM maize samples, and the precision expressed as relative standard deviations was from 0.83 to 26.20%. All of these indicated that the established event-specific real-time PCR detection systems and the reference molecule in this study are suitable for the identification and quantification of these GM

  8. Comparison of bone scan and radiograph sensitivity in the detection of steroid-induced ischemic necrosis of bone

    SciTech Connect

    Conklin, J.J.; Alderson, P.O.; Zizic, T.M.; Hungerford, D.S.; Densereaux, J.Y.; Gober, A.; Wagner, H.N.

    1983-04-01

    A prospective study of bone scanning for detection of ischemic necrosis of bone (INB) was performed in 36 patients (97% female, age range 16-36 yrs.) with systemic lupus erythematosis (SLE). Since the hips, knees, and shoulders are usually affected by INB in patients with SLE, 300 K converging collimator images of these joints were obtained on film and in digital format 2 to 3 hours after the injection of 20 mCi (740 MBq) of Tc-99m methylene diphosphonate. All patients underwent radiography of the joints, and 10 had intraosseous pressure determinations in the marrow space of affected joints (n . 31) for independent assessment of INB. Scans showed abnormally increased joint activity in 28 of the 36 patients. A total of 97 joints showed abnormalities, 19% in the hips, 34% in the knees, and 47% in the shoulders. Twenty-four of 27 joints with elevated bone marrow pressure (BMP) had abnormal scans (sensitivity . 89%), and scans were abnormal in 2 of 4 joints with normal pressures (specificity . 50%). The positive predictive value of the scans compared with BMP measurements was 92% (24/26). Eleven of 27 joints with abnormal BMP had abnormal radiographs, a sensitivity of 41%.

  9. Comparison of bone scan and radiograph sensitivity in the detection of steroid-induced ischemic necrosis of bone

    SciTech Connect

    Conklin, J.J.; Alderson, P.O.; Zizic, T.M.; Hungerford, D.S.; Densereaux, J.Y.; Gober, A.; Wagner, H.N.

    1983-04-01

    A prospective study of bone scanning for detection of ischemic necrosis of bone (INB) was performed in 36 patients (97% female, age range 16-36 yrs.) with systemic lupus erythematosis (SLE). Since the hips, knees, and shoulders are usually affected by INB in patients with SLE, 300 K converging collimator images of these joints were obtained on film and in digital format 2 to 3 hours after the injection of 20 mCi (740 MBq) of Tc-99m methylene diphosphonate. All patients underwent radiography of the joints, and 10 had intraosseous pressure determinations in the marrow space of affected joints (n=31) for independent assessment of INB. Scans showed abnormally increased joint activity in 28 of the 36 patients. A total of 97 joints showed abnormalities, 19% in the hips, 34% in the knees, and 47% in the shoulders. Twenty-four of 27 joints with elevated bone marrow pressure (BMP) had abnormal scans (sensitivity = 89%), and scans were abnormal in 2 of 4 joints with normal pressures (specificity = 50%). The positive predicitive value of the scans compared with BMP measurements was 92% (24/26). Eleven of 27 joints with abnormal BMP had abnormal radiographs, a sensitivity of 41%.

  10. Automatic detection of the myocardial boundaries of the right and left ventricles in MR cardio perfusion scans

    NASA Astrophysics Data System (ADS)

    Spreeuwers, Luuk J.; Breeuwer, Marcel M.

    2001-07-01

    Recent advances in Magnetic Resonance Imaging allow fast recording of contrast enhanced myocardial perfusion scans. MR perfusion scans are made by recording, during a period of 20-40 seconds a number of short-axis slices through the myocardium. The scanning is triggered by the patient's ECG typically resulting in one set of slices per heart beat. For the perfusion analysis, the myocardial boundaries must be traced in all images Currently this is done manually, a tedious procedure, prone to inter- and intra-observer variability. In this paper a method for automatic detection of myocardial boundaries is proposed. This results in a considerable time reduction of the analysis and is an important step towards automatic analysis of cardiac MR perfusion scans. The most important consideration in the proposed approach is the use of not only spatial-intensity information, but also intensity-time and shape information to realize a robust segmentation. The procedure was tested on a total of 30 image sequences from 14 different scans. From 26 out of 30 sequences the myocardial boundaries were correctly found. The remaining 4 sequences were of very low quality and would most likely not be used for analysis.

  11. Metallothionein: structure/antigenicity and detection/quantitation in normal physiological fluids.

    PubMed Central

    Garvey, J S

    1984-01-01

    Recent experiments in the application of radioimmunoassay (RIA) in the detection and quantitation of metallothionein (MT) in human sera and urines demonstrate that it is possible to extend the lower limit of practical quantitation from the previous limit of 50-100 pg to 1 pg.RIA of normal sera indicates that the typical range of concentrations of MT is from less than 0.01 ng/mL to about 1 ng/mL, and that concentrations above 2 ng/mL should be considered abnormal. The typical range for normal urines is from less than 1 ng/mL to 10 ng/mL; concentrations above 10 ng/mL should be considered abnormal. A complementary assay, the enzyme-linked immunosorbent assay (ELISA), is under development. The ELISA is a competitive binding assay, detection and quantitation of MT being either by colorimetric or fluorimetric methods. The present useful range for MT quantitation in the ELISA is from about 50-50000 pg (fluorimetric) or 500-5000 pg (colorimetric). Recent experiments using the RIA have identified the principal antigenic determinants of vertebrate MTs as involving the immediate amino terminal residues (-MDPNC-) and the segment including residues 20-25 (-KCKECK- in human MT). Theoretical predictions of secondary structure based on hydrophilicity and sequence analysis indicate that the conformational profile is dominated by tetrapeptide candidates for beta turns (reverse turns) with 2-3 hexapeptide sequences being candidates for helical conformation and 4-5 short sequences (3-5 residues) being candidates for beta chain conformation. The helical candidates are predicted to be unstable and the analysis favors reverse turns for both determinants of vertebrate MT and a sequestered location for the joining region between clusters A and B. PMID:6203731

  12. High sensitivity detection of active botulinum neurotoxin by glyco-quantitative polymerase chain-reaction.

    PubMed

    Kwon, Seok Joon; Jeong, Eun Ji; Yoo, Yung Choon; Cai, Chao; Yang, Gi-Hyeok; Lee, Jae Chul; Dordick, Jonathan S; Linhardt, Robert J; Lee, Kyung Bok

    2014-03-01

    The sensitive detection of highly toxic botulinum neurotoxin (BoNT) from Clostridium botulinum is of critical importance because it causes human illnesses if foodborne or introduced in wounds and as an iatrogenic substance. Moreover, it has been recently considered a possible biological warfare agent. Over the past decade, significant progress has been made in BoNT detection technologies, including mouse lethality assays, enzyme-linked immunosorbent assays, and endopeptidase assays and by mass spectrometry. Critical assay requirements, including rapid assay, active toxin detection, sensitive and accurate detection, still remain challenging. Here, we present a novel method to detect active BoNTs using a Glyco-quantitative polymerase chain-reaction (qPCR) approach. Sialyllactose, which interacts with the binding-domain of BoNTs, is incorporated into a sialyllactose-DNA conjugate as a binding-probe for active BoNT and recovered through BoNT-immunoprecipitation. Glyco-qPCR analysis of the bound sialyllactose-DNA is then used to detect low attomolar concentrations of BoNT and attomolar to femtomolar concentrations of BoNT in honey, the most common foodborne source of infant botulism.

  13. Methods for the Specific Detection and Quantitation of Amyloid-β Oligomers in Cerebrospinal Fluid.

    PubMed

    Schuster, Judith; Funke, Susanne Aileen

    2016-05-01

    Protein misfolding and aggregation are fundamental features of the majority of neurodegenerative diseases, like Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia, and prion diseases. Proteinaceous deposits in the brain of the patient, e.g., amyloid plaques consisting of the amyloid-β (Aβ) peptide and tangles composed of tau protein, are the hallmarks of AD. Soluble oligomers of Aβ and tau play a fundamental role in disease progression, and specific detection and quantification of the respective oligomeric proteins in cerebrospinal fluid may provide presymptomatically detectable biomarkers, paving the way for early diagnosis or even prognosis. Several studies on the development of techniques for the specific detection of Aβ oligomers were published, but some of the existing tools do not yet seem to be satisfactory, and the study results are contradicting. The detection of oligomers is challenging due to their polymorphous and unstable nature, their low concentration, and the presence of competing proteins and Aβ monomers in body fluids. Here, we present an overview of the current state of the development of methods for Aβ oligomer specific detection and quantitation. The methods are divided in the three subgroups: (i) enzyme linked immunosorbent assays (ELISA), (ii) methods for single oligomer detection, and (iii) others, which are mainly biosensor based methods. PMID:27163804

  14. Detection of Thielaviopsis basicola in soil with real-time quantitative PCR assays.

    PubMed

    Huang, Junli; Kang, Zhenhui

    2010-07-20

    Thielaviopsis basicola is a soil-borne fungus with a wide host range and a cosmopolitan distribution. It causes disease on many agricultural crops and in China it is the causal agent of black root rot on tobacco plant. Early diagnosis and detection of the pathogen in soil are critical to control this disease in field. The objective of this study was to develop sensitive and effective methods suitable for large-scale detection and quantification of T. basicola. Based on the nucleotide sequences of the internal transcribed spacer (ITS) regions of rDNA genes of Thielaviopsis spp, primers and TaqMan probe were designed specifically to amplify DNA from T. basicola and real-time, quantitative PCR (qPCR) assays were developed for rapid, specific and sensitive detection and quantification of T. basicola. It was sensitive with the detection limit of 100 fg microl(-1) genomic DNA of T. basicola in qPCR assays. By combining the qPCR assays with the efficient protocol to extract DNA from soil, it was possible to achieve real-time detection of T. basicola in soil in 4-5 h and the detection limit of 3 conidia per reaction in qPCR was recorded. The assays were applied to survey soils from tobacco fields in China for the presence of T. basicola and the analyses of naturally infested soil showed the reliability of the qPCR assays.

  15. Signal Processing Variables for Optimization of Flaw Detection in Composites Using Ultrasonic Guided Wave Scanning

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Teemer, LeTarrie

    2004-01-01

    This study analyzes the effect of signal processing variables on the ability of the ultrasonic guided wave scan method at NASA Glenn Research Center to distinguish various flaw conditions in ceramic matrix composites samples. In the ultrasonic guided wave scan method, several time- and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. The parameters include power spectral density, centroid mean time, total energy (zeroth moment), centroid frequency, and ultrasonic decay rate. A number of signal processing variables are available to the user when calculating these parameters. These signal processing variables include 1) the time portion of the time-domain waveform processed, 2) integration type for the properties requiring integrations, 3) bounded versus unbounded integrations, 4) power spectral density window type, 5) and the number of time segments chosen if using the short-time fourier transform to calculate ultrasonic decay rate. Flaw conditions examined included delamination, cracking, and density variation.

  16. Competitive PCR-ELISA protocols for the quantitative and the standardized detection of viral genomes.

    PubMed

    Musiani, Monica; Gallinella, Giorgio; Venturoli, Simona; Zerbini, Marialuisa

    2007-01-01

    Competitive PCR-ELISA combines competitive PCR with an ELISA to allow quantitative detection of PCR products. It is based on the inclusion of an internal standard competitor molecule that is designed to differ from the target by a short sequence of nucleotides. Once such a competitor molecule has been designed and constructed, target and competitor sequences are concurrently PCR-amplified, before hybridization to two different specific probes and determination of their respective OD values by ELISA. The target can be quantified in relation to a titration curve of different dilutions of the competitor. The competitor can alternatively be used at a unique optimal concentration to allow for standardized detection of the target sequence. PCR-ELISA can be performed in 1 d in laboratories without access to a real-time PCR thermocycler. This technique is applied in diagnostics to monitor the course of infections and drug efficacy. Competitive PCR-ELISA protocols for the quantitative and for the standardized detection of parvovirus B19 are detailed here as an example of the technique.

  17. Simple, Rapid and Inexpensive Quantitative Fluorescent PCR Method for Detection of Microdeletion and Microduplication Syndromes

    PubMed Central

    Stofanko, Martin; Gonçalves-Dornelas, Higgor; Cunha, Pricila Silva; Pena, Heloísa B.; Vianna-Morgante, Angela M.; Pena, Sérgio Danilo Junho

    2013-01-01

    Because of economic limitations, the cost-effective diagnosis of patients affected with rare microdeletion or microduplication syndromes is a challenge in developing countries. Here we report a sensitive, rapid, and affordable detection method that we have called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR). Our procedure is based on the finding of genomic regions with high homology to segments of the critical microdeletion/microduplication region. PCR amplification of both using the same primer pair, establishes competitive kinetics and relative quantification of amplicons, as happens in microsatellite-based Quantitative Fluorescence PCR. We used patients with two common microdeletion syndromes, the Williams-Beuren syndrome (7q11.23 microdeletion) and the 22q11.2 microdeletion syndromes and discovered that MQF-PCR could detect both with 100% sensitivity and 100% specificity. Additionally, we demonstrated that the same principle could be reliably used for detection of microduplication syndromes, by using patients with the Lubs (MECP2 duplication) syndrome and the 17q11.2 microduplication involving the NF1 gene. We propose that MQF-PCR is a useful procedure for laboratory confirmation of the clinical diagnosis of microdeletion/microduplication syndromes, ideally suited for use in developing countries, but having general applicability as well. PMID:23620743

  18. Detection of Luminescent Nanodiamonds Using a Scanning Near-Field Optical Microscope with an Aperture Probe

    NASA Astrophysics Data System (ADS)

    Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Vlasov, I. I.; Konov, V. I.

    2016-09-01

    Scanning near-fi eld optical microscopy (SNOM) with an aperture probe has been used to map the luminescence of isolated submicron diamond crystallites. 532-nm laser light was used to excite luminescence of nitrogen-vacancy (NV) centers. The sizes of the analyzed diamond crystallites were determined with an atomic-force microscope. The optical resolution for the lateral dimensions of the luminescing diamond crystallites was doubled on going from confocal luminescence microscopy to scanning near-fi eld optical microscopy with a 290-nm probe aperture diameter.

  19. Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus)

    PubMed Central

    2010-01-01

    Background In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) × Holstein (Bos taurus) cross. Results Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. Conclusions The experimental F2 population derived from Gyr × Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle. PMID:20433753

  20. Imaging and Mapping of Tissue Constituents at the Single-Cell Level Using MALDI MSI and Quantitative Laser Scanning Cytometry.

    PubMed

    Rawlins, Catherine M; Salisbury, Joseph P; Feldman, Daniel R; Isim, Sinan; Agar, Nathalie Y R; Luther, Ed; Agar, Jeffery N

    2015-01-01

    For nearly a century, histopathology involved the laborious morphological analyses of tissues stained with broad-spectrum dyes (i.e., eosin to label proteins). With the advent of antibody-labeling, immunostaining (fluorescein and rhodamine for fluorescent labeling) and immunohistochemistry (DAB and hematoxylin), it became possible to identify specific immunological targets in cells and tissue preparations. Technical advances, including the development of monoclonal antibody technology, led to an ever-increasing palate of dyes, both fluorescent and chromatic. This provides an incredibly rich menu of molecular entities that can be visualized and quantified in cells-giving rise to the new discipline of Molecular Pathology. We describe the evolution of two analytical techniques, cytometry and mass spectrometry, which complement histopathological visual analysis by providing automated, cellular-resolution constituent maps. For the first time, laser scanning cytometry (LSC) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) are combined for the analysis of tissue sections. The utility of the marriage of these techniques is demonstrated by analyzing mouse brains with neuron-specific, genetically encoded, fluorescent proteins. We present a workflow that: (1) can be used with or without expensive matrix deposition methods, (2) uses LSC images to reveal the diverse landscape of neural tissue as well as the matrix, and (3) uses a tissue fixation method compatible with a DNA stain. The proposed workflow can be adapted for a variety of sample preparation and matrix deposition methods. PMID:26542720

  1. A genome-wide sib-pair scan for quantitative language traits reveals linkage to chromosomes 10 and 13

    PubMed Central

    Evans, P. D.; Mueller, K. L.; Gamazon, E. R.; Cox, N. J.; Tomblin, J. B.

    2016-01-01

    Although there is considerable evidence that individual differences in language development are highly heritable, there have been few genome-wide scans to locate genes associated with the trait. Previous analyses of language impairment have yielded replicable evidence for linkage to regions on chromosomes 16q, 19q, 13q (within lab) and at 13q (between labs). Here we report the first linkage study to screen the continuum of language ability, from normal to disordered, as found in the general population. 383 children from 147 sib-ships (214 sib-pairs) were genotyped on the Illumina® Linkage IVb Marker Panel using three composite language-related phenotypes and a measure of phonological memory (PM). Two regions (10q23.33; 13q33.3) yielded genome-wide significant peaks for linkage with PM. A peak suggestive of linkage was also found at 17q12 for the overall language composite. This study presents two novel genetic loci for the study of language development and disorders, but fails to replicate findings by previous groups. Possible reasons for this are discussed. PMID:25997078

  2. Genome-wide scan for quantitative trait loci influencing LDL size and plasma triglyceride in familial hypertriglyceridemia.

    PubMed

    Austin, Melissa A; Edwards, Karen L; Monks, Stephanie A; Koprowicz, Kent M; Brunzell, John D; Motulsky, Arno G; Mahaney, Michael C; Hixson, James E

    2003-11-01

    Small, dense LDLs and hypertriglyceridemia, two highly correlated and genetically influenced risk factors, are known to predict for risk of coronary heart disease. The objective of this study was to perform a whole-genome scan for linkage to LDL size and triglyceride (TG) levels in 26 kindreds with familial hypertriglyceridemia (FHTG). LDL size was estimated using gradient gel electrophoresis, and genotyping was performed for 355 autosomal markers with an average heterozygosity of 76% and an average spacing of 10.2 centimorgans (cMs). Using variance components linkage analysis, one possible linkage was found for LDL size [logarithm of odds (LOD) = 2.1] on chromosome 6, peak at 140 cM distal to marker F13A1 (closest marker D6S2436). With adjustment for TG and/or HDL cholesterol, the LOD scores were reduced, but remained in exactly the same location. For TG, LOD scores of 2.56 and 2.44 were observed at two locations on chromosome 15, with peaks at 29 and 61 cM distal to marker D15S822 (closest markers D15S643 and D15S211, respectively). These peaks were retained with adjustment for LDL size and/or HDL cholesterol. These findings, if confirmed, suggest that LDL particle size and plasma TG levels could be caused by two different genetic loci in FHTG.

  3. Quantitative Imaging of Surface Resistance and Electric Fields by Scanning Near-Field Microwave Microscopy (SNFiMM)^1

    NASA Astrophysics Data System (ADS)

    Feenstra, B. J.

    1998-03-01

    After a brief survey and an introduction to the field of microwave microscopy, our novel scanning near-field microwave microscope (SNFiMM) based on a resonant coaxial cable will be described. Using this system we have imaged dielectric and conducting properties and electromagnetic fields on length scales far smaller than the free space wavelength of the radiation.(C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, Appl. Phys. Lett. 69), 3272 (1996). Some of the merits of SNFiMM are the simplicity of its construction, the broad frequency coverage, ranging from 0.15 to 50 GHz, and the ability to alternate easily between different modes (reflection, receiving, frequency following etc.). The versatility of the system will be illustrated through images of the absolute sheet resistance and absolute electric fields, measured on a μm length scale.(D. E. Steinhauer, C. P. Vlahacos, S. K. Dutta, F. C. Wellstood, and Steven M. Anlage, Appl. Phys. Lett 71), 1736 (1997). In addition, potential applications will be discussed, including the use of SNFiMM for the diagnostics of active microwave circuits, both at room and cryogenic temperatures.

  4. N-SCAN: new vibromodulation system for detection and monitoring of cracks and other contact-type defects

    NASA Astrophysics Data System (ADS)

    Donskoy, Dmitri; Ekimov, Alexander; Luzzato, Emile; Lottiaux, Jean-Louis; Stoupin, Stanislav; Zagrai, Andrei

    2003-08-01

    In recent years, innovative vibro-modulation technique has been introduced for detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies on the contact area of the interface modulating passing through ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for detection and differentiation of the contact-type defects from other structural and material inhomogeneities. Vibro-modulation technique has been implemented in N-SCAN damage detection system. The system consists of a digital synthesizer, high and low frequency amplifiers, a magnetostrictive shaker, ultrasonic transducers and a PC-based data acquisition/processing station with N-SCAN software. The ability of the system to detect contact-type defects was experimentally verified using specimens of simple and complex geometries made of steel, aluminum, composites and other structural materials. N-SCAN proved to be very effective for nondestructive testing of full-scale structures ranging from 24 foot-long gun barrels to stainless steel pipes used in nuclear power plants. Among advantages of the system are applicability for the wide range of structural materials and for structures with complex geometries, real time data processing, convenient interface for system operation, simplicity of interpretation of results, no need for sensor scanning along structure, onsite inspection of large structures at a fraction of time as compared with conventional techniques. This paper describes the basic principles of nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction and justification of signal processing algorithm. It is also presents examples of practical implementation and

  5. Performance of two real-time PCR assays for hepatitis B virus DNA detection and quantitation.

    PubMed

    Kania, Dramane; Ottomani, Laure; Meda, Nicolas; Peries, Marianne; Dujols, Pierre; Bolloré, Karine; Rénier, Wendy; Viljoen, Johannes; Ducos, Jacques; Van de Perre, Philippe; Tuaillon, Edouard

    2014-06-01

    In-house developed real-time PCR (qPCR) techniques could be useful conjunctives to the management of hepatitis B virus (HBV) infection in resource-limited settings with high prevalence. Two qPCR assays (qPCR1 and qPCR2), based on primers/probes targeting conserved regions of the X and S genes of HBV respectively, were evaluated using clinical samples of varying HBV genotypes, and compared to the commercial Roche Cobas AmpliPrep/Cobas TaqMan HBV Test v2.0. The lower detection limit (LDL) was established at 104 IU/ml for qPCR1, and 91 IU/ml for qPCR2. Good agreement and correlation were obtained between the Roche assay and both qPCR assays (r = 0.834 for qPCR1; and r = 0.870 for qPCR2). Differences in HBV DNA load of > 0.5 Log10 IU/ml between the Roche and the qPCR assays were found in 49/122 samples of qPCR1, and 35/122 samples of qPCR2. qPCR1 tended to underestimate HBV DNA quantity in samples with a low viral load and overestimate HBV DNA concentration in samples with a high viral load when compared to the Roche test. Both molecular tools that were developed, used on an open real-time PCR system, were reliable for HBV DNA detection and quantitation. The qPCR2 performed better than the qPCR1 and had the additional advantage of various HBV genotype detection and quantitation. This low cost quantitative HBV DNA PCR assay may be an alternative solution when implementing national programmes to diagnose, monitor and treat HBV infection in low- to middle-income countries where testing for HBV DNA is not available in governmental health programmes.

  6. Reliability of quantitative real-time PCR for bacterial detection in cystic fibrosis airway specimens.

    PubMed

    Zemanick, Edith T; Wagner, Brandie D; Sagel, Scott D; Stevens, Mark J; Accurso, Frank J; Harris, J Kirk

    2010-11-30

    The cystic fibrosis (CF) airway microbiome is complex; polymicrobial infections are common, and the presence of fastidious bacteria including anaerobes make culture-based diagnosis challenging. Quantitative real-time PCR (qPCR) offers a culture-independent method for bacterial quantification that may improve diagnosis of CF airway infections; however, the reliability of qPCR applied to CF airway specimens is unknown. We sought to determine the reliability of nine specific bacterial qPCR assays (total bacteria, three typical CF pathogens, and five anaerobes) applied to CF airway specimens. Airway and salivary specimens from clinically stable pediatric CF subjects were collected. Quantitative PCR assay repeatability was determined using triplicate reactions. Split-sample measurements were performed to measure variability introduced by DNA extraction. Results from qPCR were compared to standard microbial culture for Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, common pathogens in CF. We obtained 84 sputa, 47 oropharyngeal and 27 salivary specimens from 16 pediatric subjects with CF. Quantitative PCR detected bacterial DNA in over 97% of specimens. All qPCR assays were highly reproducible at quantities≥10(2) rRNA gene copies/reaction with coefficient of variation less than 20% for over 99% of samples. There was also excellent agreement between samples processed in duplicate. Anaerobic bacteria were highly prevalent and were detected in mean quantities similar to that of typical CF pathogens. Compared to a composite gold standard, qPCR and culture had variable sensitivities for detection of P. aeruginosa, S. aureus and H. influenzae from CF airway samples. By reliably quantifying fastidious airway bacteria, qPCR may improve our understanding of polymicrobial CF lung infections, progression of lung disease and ultimately improve antimicrobial treatments.

  7. Reliability of Quantitative Real-Time PCR for Bacterial Detection in Cystic Fibrosis Airway Specimens

    PubMed Central

    Zemanick, Edith T.; Wagner, Brandie D.; Sagel, Scott D.; Stevens, Mark J.; Accurso, Frank J.; Harris, J. Kirk

    2010-01-01

    The cystic fibrosis (CF) airway microbiome is complex; polymicrobial infections are common, and the presence of fastidious bacteria including anaerobes make culture-based diagnosis challenging. Quantitative real-time PCR (qPCR) offers a culture-independent method for bacterial quantification that may improve diagnosis of CF airway infections; however, the reliability of qPCR applied to CF airway specimens is unknown. We sought to determine the reliability of nine specific bacterial qPCR assays (total bacteria, three typical CF pathogens, and five anaerobes) applied to CF airway specimens. Airway and salivary specimens from clinically stable pediatric CF subjects were collected. Quantitative PCR assay repeatability was determined using triplicate reactions. Split-sample measurements were performed to measure variability introduced by DNA extraction. Results from qPCR were compared to standard microbial culture for Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, common pathogens in CF. We obtained 84 sputa, 47 oropharyngeal and 27 salivary specimens from 16 pediatric subjects with CF. Quantitative PCR detected bacterial DNA in over 97% of specimens. All qPCR assays were highly reproducible at quantities ≥102 rRNA gene copies/reaction with coefficient of variation less than 20% for over 99% of samples. There was also excellent agreement between samples processed in duplicate. Anaerobic bacteria were highly prevalent and were detected in mean quantities similar to that of typical CF pathogens. Compared to a composite gold standard, qPCR and culture had variable sensitivities for detection of P. aeruginosa, S. aureus and H. influenzae from CF airway samples. By reliably quantifying fastidious airway bacteria, qPCR may improve our understanding of polymicrobial CF lung infections, progression of lung disease and ultimately improve antimicrobial treatments. PMID:21152087

  8. Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite

    NASA Astrophysics Data System (ADS)

    Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris

    2004-02-01

    Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.

  9. Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Zimmerley, Maxwell; Lin, Chia-Yu; Oertel, David C.; Marsh, Jennifer M.; Ward, Jimmie L.; Potma, Eric Olaf

    2009-07-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is used to determine the distribution and concentration of selected compounds in intact human hair. By generating images based on ratiometric CARS contrast, quantitative concentration maps of both water and externally applied d-glycine are produced in the cortex of human hair fibers. Both water and d-glycine are found to homogeneously distribute throughout the cortical regions of the hair. The ability to selectively detect molecular agents in hair fibers is of direct relevance to understanding the chemical and physical mechanisms that underlie the performance of hair-care products.

  10. Novel automatic detection of pleura and B-lines (comet-tail artifacts) on in vivo lung ultrasound scans

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Hansen, Kristoffer Lindskov; Møller Sørensen, Hasse; Hemmsen, Martin Christian; Ewertsen, Caroline; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents a novel automatic method for detection of B-lines (comet-tail artifacts) in lung ultrasound scans. B-lines are the most commonly used artifacts for analyzing the pulmonary edema. They appear as laser-like vertical beams, which arise from the pleural line and spread down without fading to the edge of the screen. An increase in their number is associated with presence of edema. All the scans used in this study were acquired using a BK3000 ultrasound scanner (BK Ultrasound, Denmark) driving a 192-element 5:5 MHz wide linear transducer (10L2W, BK Ultrasound). The dynamic received focus technique was employed to generate the sequences. Six subjects, among those three patients after major surgery and three normal subjects, were scanned once and Six ultrasound sequences each containing 50 frames were acquired. The proposed algorithm was applied to all 300 in-vivo lung ultrasound images. The pleural line is first segmented on each image and then the B-line artifacts spreading down from the pleural line are detected and overlayed on the image. The resulting 300 images showed that the mean lateral distance between B-lines detected on images acquired from patients decreased by 20% in compare with that of normal subjects. Therefore, the method can be used as the basis of a method of automatically and qualitatively characterizing the distribution of B-lines.

  11. Resistivity of thin gold films on mica induced by electron-surface scattering: Application of quantitative scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Robles, Marcelo E.; Gonzalez-Fuentes, Claudio A.; Henriquez, Ricardo; Kremer, German; Moraga, Luis; Oyarzun, Simón; Suarez, Marco Antonio; Flores, Marcos; Munoz, Raul C.

    2012-02-01

    We report a comparison between the resistivity measured on thin gold films deposited on mica, with predictions based upon classical theories of size effects (Drude's, Sondheimer's and Calecki's), as well as predictions based upon quantum theories of electron-surface scattering (the modified theory of Sheng, Xing and Wang, the theory of Tesanovic, Jaric and Maekawa, and that of Trivedi and Aschroft). From topographic images of the surface recorded with a Scanning Tunneling Microscope, we determined the rms roughness amplitude, δ and the lateral correlation length, ξ corresponding to a Gaussian representation of the average height-height autocorrelation function, describing the roughness of each sample in the scale of length set by the Fermi wave length. Using (δ, ξ) as input data, we present a rigorous comparison between resistivity data and predictions based upon the theory of Calecki as well as quantum theoretical predictions without adjustable parameters. The resistivity was measured on gold films of different thickness evaporated onto mica substrates, between 4 K and 300 K. The resistivity data covers the range 0.1 < x(T) < 6.8, for 4 K < T < 300 K, where x(T) is the ratio between film thickness and electron mean free path in the bulk at temperature T. We experimentally identify electron-surface and electron-phonon scattering as the microscopic electron scattering mechanisms giving rise to the macroscopic resistivity. The different theories are all capable of estimating the thin film resistivity to an accuracy better than 10%; however the mean free path and the resistivity characterizing the bulk turn out to depend on film thickness. Surprisingly, only the Sondheimer theory and its quantum version, the modified theory of Sheng, Xing and Wang, predict and increase in resistivity induced by size effects that seems consistent with published galvanomagnetic phenomena also arising from electron-surface scattering measured at low temperatures.

  12. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    PubMed

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples.

  13. Robust detection of sea mines in side-scan sonar imagery based on advanced gray-scale morphological filters

    NASA Astrophysics Data System (ADS)

    Lange, Holger

    2000-03-01

    Computing Devices Canada, a General Dynamics company, undertakes research in image processing focusing on the automatic recognition of sea mines. This paper presents the use of advanced gray-scale morphological filters for the detection of sea mines in side-scan sonar imagery. Sea mines in side-scan sonar imagery can be characterized by a mine-body and a mine shadow. Mine-bodies consist of bright regions, relative to the background, with a specific shape and size. Mine-shadows consist of dark regions, relative to the background, with a specific shape and size. The shapes and sizes of these regions depend on the mine type, the orientation of the mine, the physical acquisition process of the sonar imagery, and the environment in which the mine is located. Advanced gray-scale morphological filters provide very powerful and robust tools to extract bright and dark regions with low signal to noise ratio in very noisy imagery using geometric constraints such as shape, size and total surface area. For the detection of sea mines we use these morphological filters with the minimum and maximum geometric constraints for the mine-bodies and mine-shadows. The independent detection of mine-bodies and mine-shadows allows the detection of bottom, moored and drifting mines with the same detection algorithm. Consistent mine-body and mine-shadow combinations are resolved into mine like objects.

  14. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water

    USGS Publications Warehouse

    Kirshtein, J.D.; Anderson, C.W.; Wood, J.S.; Longcore, J.E.; Voytek, M.A.

    2007-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease implicated in amphibian declines on 5 continents. Polymerase chain reaction (PCR) primer sets exist with which amphibians can be tested for this disease, and advances in sampling techniques allow non-invasive testing of animals. We developed filtering and PCR based quantitative methods by modifying existing PCR assays to detect Bd DNA in water and sediments, without the need for testing amphibians; we tested the methods at 4 field sites. The SYBR based assay using Boyle primers (SYBR/Boyle assay) and the Taqman based assay using Wood primers performed similarly with samples generated in the laboratory (Bd spiked filters), but the SYBR/Boyle assay detected Bd DNA in more field samples. We detected Bd DNA in water from 3 of 4 sites tested, including one pond historically negative for chytridiomycosis. Zoospore equivalents in sampled water ranged from 19 to 454 l-1 (nominal detection limit is 10 DNA copies, or about 0.06 zoospore). We did not detect DNA of Bd from sediments collected at any sites. Our filtering and amplification methods provide a new tool to investigate critical aspects of Bd in the environment. ?? Inter-Research 2007.

  15. Real-time quantitative PCR detection of Mycobacterium avium subspecies in meat products.

    PubMed

    Klanicova, B; Slana, I; Vondruskova, H; Kaevska, M; Pavlik, I

    2011-04-01

    The aim of this work was to examine various purchased meat products and to find out if any traces of Mycobacterium avium subsp. avium, M. avium subsp. hominissuis, and M. avium subsp. paratuberculosis could be detected in these samples. Analysis of the meat products (raw, cooked, and fermented) was performed using a real-time quantitative PCR (qPCR) method for the detection of specific insertion sequences: duplex qPCR for the detection of IS900 specific for M. avium subsp. paratuberculosis, and triplex qPCR for the detection of IS901 specific for Mycobacterium avium subsp. avium and IS 1245 specific for M. avium subsp. hominissuis. Of the 77 analyzed meat samples, 17 (22%) were found to contain M. avium subsp. paratuberculosis DNA, 4 (5%) samples contained Mycobacterium avium subsp. avium DNA, and in 12 (16%) samples M. avium subsp. hominissuis DNA was detected. The concentration of M. avium subsp. paratuberculosis and M. avium subsp. hominissuis DNA in some meat products exceeded 10(4) genomes per g. Culture examination of these mycobacterial subspecies was negative. By analyzing a range of meat products, we have provided evidence to support the hypothesis that M. avium is present in everyday commodities sold to the general public.

  16. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor.

    PubMed

    Taylor, Allen D; Ladd, Jon; Yu, Qiuming; Chen, Shengfu; Homola, Jirí; Jiang, Shaoyi

    2006-12-15

    We report the quantitative and simultaneous detection of four species of bacteria, Escherichia coli O157:H7, Salmonella choleraesuis serotype typhimurium, Listeria monocytogenes, and Campylobacter jejuni, using an eight-channel surface plasmon resonance (SPR) sensor based on wavelength division multiplexing. Detection curves showing SPR response versus analyte concentration were established for each species of bacteria in buffer at pH 7.4, apple juice at native pH 3.7, and apple juice at an adjusted pH of 7.4, as well as for a mixture containing all four species of bacteria in buffer. Control experiments were performed to show the non-fouling characteristics of the sensor surface as well as the specificity of the amplification antibodies used in this study. The limit of detection (LOD) for each of the four species of bacteria in the tested matrices ranges from 3.4 x 10(3) to 1.2 x 10(5) cfu/ml. Detection curves in buffer of an individual species of bacteria in a mixture of all four species of bacteria correlated well with detection curves of the individual species of bacteria alone. SPR responses were higher for bacteria in apple juice at pH 7.4 than in apple juice at pH 3.7. This difference in sensor response could be partly attributed to the pH dependence of antibody-antigen binding.

  17. A genome-screen experiment to detect quantitative trait loci affecting resistance to facial eczema disease in sheep.

    PubMed

    Phua, S H; Dodds, K G; Morris, C A; Henry, H M; Beattie, A E; Garmonsway, H G; Towers, N R; Crawford, A M

    2009-02-01

    Facial eczema (FE) is a secondary photosensitization disease arising from liver cirrhosis caused by the mycotoxin sporidesmin. The disease affects sheep, cattle, deer and goats, and costs the New Zealand sheep industry alone an estimated NZ$63M annually. A long-term sustainable solution to this century-old FE problem is to breed for disease-resistant animals by marker-assisted selection. As a step towards finding a diagnostic DNA test for FE sensitivity, we have conducted a genome-scan experiment to screen for quantitative trait loci (QTL) affecting this trait in Romney sheep. Four F(1) sires, obtained from reciprocal matings of FE resistant and susceptible selection-line animals, were used to generate four outcross families. The resulting half-sib progeny were artificially challenged with sporidesmin to phenotype their FE traits measured in terms of their serum levels of liver-specific enzymes, namely gamma-glutamyl transferase and glutamate dehydrogenase. In a primary screen using selective genotyping on extreme progeny of each family, a total of 244 DNA markers uniformly distributed over all 26 ovine autosomes (with an autosomal genome coverage of 79-91%) were tested for linkage to the FE traits. Data were analysed using Haley-Knott regression. The primary screen detected one significant and one suggestive QTL on chromosomes 3 and 8 respectively. Both the significant and suggestive QTL were followed up in a secondary screen where all progeny were genotyped and analysed; the QTL on chromosome 3 was significant in this analysis.

  18. Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants.

    PubMed

    Castro, Alfonso; Rey, Alberto; Boveda, Carmen; Arcay, Bernardino; Sanjurjo, Pedro

    2016-01-01

    The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).

  19. Toward quantitative STM: Scanning tunneling microscopy study of structure and dynamics of adsorbates on transition metal surfaces

    SciTech Connect

    Dunphy, J.C.

    1995-05-01

    STM was applied to chemisorbed S layers on Re(000l) and Mo(100) surfaces. As function of coverage on both these surfaces, S orders into several different overlayer structures, which have been studied by dynamic LEED. STM images of all these structures were obtained. Approximate location of S atoms in the structures was determined by inspecting the images, especially the regions containing defects. Results are in agreement with LEED except for the p(2{times}l) overlayer of sulfur on Mo(100). The STM images were compared to calculations made with Electron Scattering Quantum Chemistry (ESQC) theory. Variation of contrast in experimental images is explained as a result of changes in STM tip termination structure. STM image contrast is a result of changes in the interference between different paths for the tunneling electrons. The simplest structure on the Mo(100) surface was used as a model for developing and testing a method of quantitative structure determination with the STM. Experimental STM images acquired under a range of tunneling conditions were compared to theoretical calculations of the images as a function of surface structure to determine the structure which best fit. Results matched within approximately 0.1 Angstroms a LEED structural determination. At lower S coverage, diffusion of S atoms over the Re(0001) surface and the lateral interaction between these atoms were investigated by application of a new image analysis technique. The interaction between the S and a coadsorbed CO layer was also studied, and CO was found to induce compression of the S overlayer. A similar result was found for Au deposited on the sulfur covered Mo(100) surface. The interaction between steps on the Mo surface was found to be influenced by S adsorption and this observation was interpreted with the theory of equilibrium crystal shape. Design of an STM instrument which operates at cryogenic and variable sample temperatures, and its future applications, are described.

  20. A quantitative strategy to detect changes in accessibility of protein regions to chemical modification on heterodimerization.

    PubMed

    Dreger, Mathias; Leung, Bo Wah; Brownlee, George G; Deng, Tao

    2009-07-01

    We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1-PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N-hydroxysuccinimidobiotin (NHS-biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS-biotin when compared with the [PB1-PA] heterodimer. Mutational analysis of residues in two such regions-at K265 and K481 of PB1, which were about three- and twofold, respectively, less accessible to biotinylation in the PB1-PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q-POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein-protein interaction interfaces. The Q-POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs. PMID:19517532

  1. Quantitative analysis of in situ hybridization methods for the detection of actin gene expression.

    PubMed Central

    Lawrence, J B; Singer, R H

    1985-01-01

    We have implemented an efficient, quantitative approach for the optimization of in situ hybridization using double-stranded recombinant DNA probes. The model system studied was actin mRNA expression in chicken embryonic muscle cultures. Actin and control (pBR322) probes were nick-translated with p32 labeled nucleotides, hybridized to cells grown on coverslips, and quantitated in a scintillation counter. Cellular RNA retention was monitored via the incorporation of H3-Uridine into RNA prior to cell fixation. Over a thousand samples were analyzed, and among the technical variables examined were the fixation protocol, proteolytic cell pretreatment, the time course of hybridization, saturation kinetics, hybridization efficiency, and effect of probe size on hybridization and network formation. Results have allowed us to develop a reproducible in situ hybridization methodology which is simpler and less destructive to cellular RNA and morphology than other protocols. Moreover, this technique is highly sensitive and efficient in detection of cellular RNAs. Lastly, the rapid quantitative approach used for this analysis is valuable in itself as a potential alternative to filter or solution hybridizations. Images PMID:3889842

  2. A quantitative strategy to detect changes in accessibility of protein regions to chemical modification on heterodimerization

    PubMed Central

    Dreger, Mathias; Leung, Bo Wah; Brownlee, George G; Deng, Tao

    2009-01-01

    We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1-PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N-hydroxysuccinimidobiotin (NHS-biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS-biotin when compared with the [PB1-PA] heterodimer. Mutational analysis of residues in two such regions—at K265 and K481 of PB1, which were about three- and twofold, respectively, less accessible to biotinylation in the PB1-PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q-POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein–protein interaction interfaces. The Q-POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs. PMID:19517532

  3. Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection.

    PubMed

    Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan

    2011-06-01

    Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O(2) content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids.

  4. Quantitative detection of astaxanthin and cantaxanthin in Atlantic salmon by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2006-02-01

    Two major carotenoids species found in salmonids muscle tissues are astaxanthin and cantaxanthin. They are taken up from fish food and are responsible for the attractive red-orange color of salmon filet. Since carotenoids are powerful antioxidants and biomarkers of nutrient consumption, they are thought to indicate fish health and resistance to diseases in fish farm environments. Therefore, a rapid, accurate, quantitative optical technique for measuring carotenoid content in salmon tissues is of economic interest. We demonstrate the possibility of using fast, selective, quantitative detection of astaxanthin and cantaxanthin in salmon muscle tissues, employing resonance Raman spectroscopy. Analyzing strong Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue laser excitation, we are able to characterize quantitatively the concentrations of carotenoids in salmon muscle tissue. To validate the technique, we compared Raman data with absorption measurements of carotenoid extracts in acetone. A close correspondence was observed in absorption spectra for tissue extract in acetone and a pure astaxanthin solution. Raman results show a linear dependence between Raman and absorption data. The proposed technique holds promise as a method of rapid screening of carotenoid levels in fish muscle tissues and may be attractive for the fish farm industry to assess the dietary status of salmon, risk for infective diseases, and product quality control.

  5. The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images.

    PubMed

    Martinez, G T; De Backer, A; Rosenauer, A; Verbeeck, J; Van Aert, S

    2014-08-01

    Quantitative structural and chemical information can be obtained from high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images when using statistical parameter estimation theory. In this approach, we assume an empirical parameterized imaging model for which the total scattered intensities of the atomic columns are estimated. These intensities can be related to the material structure or composition. Since the experimental probe profile is assumed to be known in the description of the imaging model, we will explore how the uncertainties in the probe profile affect the estimation of the total scattered intensities. Using multislice image simulations, we analyze this effect for Cs corrected and non-Cs corrected microscopes as a function of inaccuracies in cylindrically symmetric aberrations, such as defocus and spherical aberration of third and fifth order, and non-cylindrically symmetric aberrations, such as 2-fold and 3-fold astigmatism and coma.

  6. A CT scan protocol for the detection of radiographic loosening of the glenoid component after total shoulder arthroplasty

    PubMed Central

    2014-01-01

    Background and purpose It is difficult to evaluate glenoid component periprosthetic radiolucencies in total shoulder arthroplasties (TSAs) using plain radiographs. This study was performed to evaluate whether computed tomography (CT) using a specific patient position in the CT scanner provides a better method for assessing radiolucencies in TSA. Methods Following TSA, 11 patients were CT scanned in a lateral decubitus position with maximum forward flexion, which aligns the glenoid orientation with the axis of the CT scanner. Follow-up CT scanning is part of our routine patient care. Glenoid component periprosthetic lucency was assessed according to the Molé score and it was compared to routine plain radiographs by 5 observers. Results The protocol almost completely eliminated metal artifacts in the CT images and allowed accurate assessment of periprosthetic lucency of the glenoid fixation. Positioning of the patient within the CT scanner as described was possible for all 11 patients. A radiolucent line was identified in 54 of the 55 observed CT scans and osteolysis was identified in 25 observations. The average radiolucent line Molé score was 3.4 (SD 2.7) points with plain radiographs and 9.5 (SD 0.8) points with CT scans (p = 0.001). The mean intra-observer variance was lower in the CT scan group than in the plain radiograph group (p = 0.001). Interpretation The CT scan protocol we used is of clinical value in routine assessment of glenoid periprosthetic lucency after TSA. The technique improves the ability to detect and monitor radiolucent lines and, therefore, possibly implant loosening also. PMID:24286563

  7. Detecting Polychlorinated Biphenyls by Ah Receptor and Fluorescence Quantitative PCR with Exonuclease

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoxiang; Zhuang, Huisheng

    2010-11-01

    Tetrachlorobiphenyls as ligands were cultivated with goldfish, Ah receptors were extracted from the liver of goldfish and purified by hydroxyapatite. The complex of TCB ligands-receptors were analyzed by Surface Plasmon Resonance. DNA probes were amplified by PCR using Primers F1 and F2 with the DNA recognition site of responsive enhancer. DNA probes bound to the complex were not digested by exonuclease. The DNA that bound to the complex was quantified by real time PCR. A standard curve with TCB concentration to Ct values was obtained in the range of 10-12mol/L to 10-8 mol/L, according to TCB concentration in samples. The detection limit of the assay was below 10-12mol/L of TCB. Compared with HPLC, this assay is much more sensitive. These results suggest that fluorescence quantitative PCR with exonuclease by Ah receptors fits for detection of trace PCB.

  8. Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.).

    PubMed

    Ragab, Amr S; Van Fleet, Jennifer; Jankowski, Boris; Park, Joon-Hyun; Bobzin, Steven C

    2006-09-20

    Resveratrol is a stilbene phytoalexin well-known for its presence in grape, wine, and peanut. As a result of its antioxidant and chemopreventative properties, it has gained much attention as a functional food ingredient. A gas chromatography-mass spectrometry method for the detection of resveratrol, its 3-glucopyranoside piceid, and the cis isomers of both compounds has been developed and used to quantitate the levels of these compounds in the skin of commercially available tomato fruit (Lycopersicon esculentum Mill.). The resveratrol concentration remains relatively stable during fruit maturation, reaching a maximum concentration in the skin of 18.4 +/- 1.6 microg/g dry weight at 4 weeks postbreaker. No stilbenes were detected in the flesh of tomato fruit. PMID:16968079

  9. Scan direction induced charging dynamics and the application for detection of gate to S/D shorts in logic devices

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Tian, Qing; Wu, Kevin; Zhao, Yan

    2016-03-01

    Gate to source/drain (S/D) short is the most common and detrimental failure mechanism for advanced process technology development in Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) device manufacturing. Especially for sub-1Xnm nodes, MOSFET device is more vulnerable to gate-S/D shorts due to the aggressive scaling. The detection of this kind of electrical short defect is always challenging for in-line electron beam inspection (EBI), especially new shorting mechanisms on atomic scale due to new material/process flow implementation. The second challenge comes from the characterization of the shorts including identification of the exact shorting location. In this paper, we demonstrate unique scan direction induced charging dynamics (SDCD) phenomenon which stems from the transistor level response from EBI scan at post metal contact chemical-mechanical planarization (CMP) layers. We found that SDCD effect is exceptionally useful for gate-S/D short induced voltage contrast (VC) defect detection, especially for identification of shorting locations. The unique SDCD effect signatures of gate-S/D shorts can be used as fingerprint for ground true shorting defect detection. Correlation with other characterization methods on the same defective location from EBI scan shows consistent results from various shorting mechanism. A practical work flow to implement the application of SDCD effect for in-line EBI monitor of critical gate-S/D short defects is also proposed, together with examples of successful application use cases which mostly focus on static random-access memory (SRAM) array regions. Although the capability of gate-S/D short detection as well as expected device response is limited to passing transistors and pull-down transistors due to the design restriction from standard 6-cell SRAM structure, SDCD effect is proven to be very effective for gate-S/D short induced VC defect detection as well as yield learning for advanced technology development.

  10. Specific PCR and real-time PCR assays for detection and quantitation of 'Candidatus Phytoplasma phoenicium'.

    PubMed

    Jawhari, Maan; Abrahamian, Peter; Sater, Ali Abdel; Sobh, Hana; Tawidian, Patil; Abou-Jawdah, Yusuf

    2015-02-01

    Almond witches' broom (AlmWB) is a fast-spreading lethal disease of almond, peach and nectarine associated with 'Candidatus Phytoplasma phoenicium'. The development of PCR and quantitative real-time PCR (qPCR) assays for the sensitive and specific detection of the phytoplasma is of prime importance for early detection of 'Ca. P. phoenicium' and for epidemiological studies. The developed qPCR assay herein uses a TaqMan(®) probe labeled with Black Hole Quencher Plus. The specificity of the PCR and that of the qPCR detection protocols were tested on 17 phytoplasma isolates belonging to 11 phytoplasma 16S rRNA groups, on samples of almond, peach, nectarine, native plants and insects infected or uninfected with the phytoplasma. The developed assays showed high specificity against 'Ca. P. phoenicium' and no cross-reactivity against any other phytoplasma, plant or insect tested. The sensitivity of the developed PCR and qPCR assays was similar to the conventional nested PCR protocol using universal primers. The qPCR assay was further validated by quantitating AlmWB phytoplasma in different hosts, plant parts and potential insect vectors. The highest titers of 'Ca. P. phoenicium' were detected in the phloem tissues of stems and roots of almond and nectarine trees, where they averaged from 10(5) to 10(6) genomic units per nanogram of host DNA (GU/ng of DNA). The newly developed PCR and qPCR protocols are reliable, specific and sensitive methods that are easily applicable to high-throughput diagnosis of AlmWB in plants and insects and can be used for surveys of potential vectors and alternative hosts.

  11. Passive mass transport for direct and quantitative SERS detection using purified silica encapsulated metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Shrestha, Binaya Kumar

    This thesis focuses on understanding implications of nanomaterial quality control and mass transport through internally etched silica coated nanoparticles for direct and quantitative molecular detection using surface enhanced Raman scattering (SERS). Prior to use, bare nanoparticles (partially or uncoated with silica) are removal using column chromatography to improve the quality of these nanomaterials and their SERS reproducibility. Separation of silica coated nanoparticles with two different diameters is achieved using Surfactant-free size exclusion chromatography with modest fractionation. Next, selective molecular transport is modeled and monitored using SERS and evaluated as a function of solution ionic strength, pH, and polarity. Molecular detection is achieved when the analytes first partition through the silica membrane then interact with the metal surface at short distances (i.e., less than 2 nm). The SERS intensities of unique molecular vibrational modes for a given molecule increases as the number of molecules that bind to the metal surface increases and are enhanced via both chemical and electromagnetic enhancement mechanisms as long as the vibrational mode has a component of polarizability tensor along the surface normal. SERS signals increase linearly with molecular concentration until the three-dimensional SERS-active volume is saturated with molecules. Implications of molecular orientation as well as surface selection rules on SERS intensities of molecular vibrational modes are studied to improve quantitative and reproducible SERS detection using internally etched Ag Au SiO2 nanoparticles. Using the unique vibrational modes, SERS intensities for p-aminothiophenol as a function of metal core compositions and plasmonics are studied. By understanding molecular transport mechanisms through internally etched silica matrices coated on metal nanoparticles, important experimental and materials design parameters are learned, which can be subsequently applied

  12. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features

    NASA Astrophysics Data System (ADS)

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis.

  13. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Feature

    PubMed Central

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-01-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. PMID:26508443

  14. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features.

    PubMed

    Kaddi, Chanchala D; Bennett, Rachel V; Paine, Martin R L; Banks, Mitchel D; Weber, Arthur L; Fernández, Facundo M; Wang, May D

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. Graphical Abstract ᅟ.

  15. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features.

    PubMed

    Kaddi, Chanchala D; Bennett, Rachel V; Paine, Martin R L; Banks, Mitchel D; Weber, Arthur L; Fernández, Facundo M; Wang, May D

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. Graphical Abstract ᅟ. PMID:26508443

  16. Genome-wide association scan and phased haplotype construction for quantitative trait loci affecting boar taint in three pig breeds

    PubMed Central

    2012-01-01

    Background Boar taint is the undesirable smell and taste of pork meat derived from some entire male pigs. The main causes of boar taint are the two compounds androstenone and skatole (3-methyl-indole). The steroid androstenone is a sex pheromone produced in the testis of the boars. Skatole is produced from tryptophan by bacteria in the intestine of the pigs. In many countries pigs are castrated as piglets to avoid boar taint, however, this is undesirable for animal welfare reasons. Genetic variations affecting the level of boar taint have previously been demonstrated in many breeds. In the study presented in this paper, markers and haplotypes, which can be applied to DNA-based selection schemes in order to reduce or eliminate the boar taint problem, are identified. Results Approximately 30,000 SNPs segregating in 923 boars from three Danish breeds; Duroc, Landrace, and Yorkshire, were used to conduct genome wide association studies of boar taint compounds. At 46 suggestive quantitative trait loci (QTL), 25 haplotypes and three single markers with effects were identified. Furthermore, 40% of the haplotypes mapped to previously identified regions. Haplotypes were also analysed for effects of slaughter weight and meat content. The most promising haplotype was identified on Sus scrofa chromosome 1. The gain in fixed effect of having this haplotype on level of androstenone in Landrace was identified to be high (1.279 μg/g). In addition, this haplotype explained 16.8% of the phenotypic variation within the trait. The haplotype was identified around the gene CYB5A which is known to have an indirect impact on the amount of androstenone. In addition to CYB5A, the genes SRD5A2, LOC100518755, and CYP21A2 are candidate genes for other haplotypes affecting androstenone, whereas, candidate genes for the indolic compounds were identified to be SULT1A1 and CYP2E1. Conclusions Despite the small sample size, a total of 25 haplotypes and three single markers were identified

  17. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    PubMed Central

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-01-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron. PMID:27465206

  18. Surface-enhanced Raman scattering for quantitative detection of ethyl carbamate in alcoholic beverages.

    PubMed

    Yang, Danting; Zhou, Haibo; Ying, Yibin; Niessner, Reinhard; Haisch, Christoph

    2013-11-01

    Ethyl carbamate, a by-product of fermentation and storage with widespread occurrence in fermented food and alcoholic beverages, is a compound potentially toxic to humans. In this work, a new approach for quantitative detection of ethyl carbamate in alcoholic beverages, based on surface-enhanced Raman scattering (SERS), is reported. Individual silver-coated gold nanoparticle colloids are used as SERS amplifiers, yielding high Raman enhancement of ethyl carbamate in three kinds of alcoholic beverages (vodka, Obstler, and white rum). The characteristic band at 1,003 cm(-1), which is the strongest and best reproducible peak in the SERS spectra, was used for quantitative evaluation of ethyl carbamate. The limit of detection, which corresponds to a signal-to-noise ratio of 3, was 9.0 × 10(-9) M (0.8 μg · L(-1)), 1.3 × 10(-7) M (11.6 μg · L(-1)), and 7.8 × 10(-8) M (6.9 μg · L(-1)), respectively. Surface-enhanced Raman spectroscopy offers great practical potential for the in situ assessment and identification of ethyl carbamate in the alcoholic beverage industry.

  19. Immunoelectrophoresis employing avian antisera for the detection and quantitation of Pasteurella multocida antigens.

    PubMed

    McKinney, K L; Rimler, R B

    1981-01-01

    Immunoelectrophoresis with various buffer systems at high and low pH was examined for suitability to detect and quantitate Pasteurella multocida antigens with turkey or chicken anti-P. multocida sera. Counterimmunoelectrophoresis was used to develop a buffer system for one-dimensional, two-dimensional, and rocket immunoelectrophoresis. The effects of pH, buffer, and molarity on resolution of immunoprecipitates were determined; 0.05 M sodium acetate-acetic acid buffer at pH 5.6 was the most suitable buffer. This buffer could be used in counterimmunoelectrophoresis with turkey or chicken sera to detect minute amounts of P. multocida protein antigens (4.3 ng/test) or lipopolysaccharide (3.12 micrograms/test). One-dimensional immunoelectrophoresis with the acetate buffer system required treatment of the gels with a 17% NaCl solution to induce immunoprecipitation of P. multocida lipopolysaccharide. Other techniques using the acetate buffer system did not require the high salt treatment. In two-dimensional immunoelectrophoresis, antisera migrated in the second dimension at pH 8.6, but did not migrate at pH 5.6. Rocket immunoelectrophoresis with the acetate buffer system was effective for quantitating P. multocida antigens.

  20. In-vivo Tumor detection using diffusion reflection measurements of targeted gold nanorods - a quantitative study.

    PubMed

    Ankri, Rinat; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror

    2012-03-01

    The ability to quantitatively and non-invasively detect nanoparticles has important implications on their development as an in-vivo cancer diagnostic tool. The Diffusion Reflection (DR) method is a simple, non-invasive imaging technique which has been proven useful for the investigation of tissue's optical parameters. In this study, Monte Carlo (MC) simulations, tissue-like phantom experiments and in-vivo measurements of the reflected light intensity from tumor bearing mice are presented. Following intravenous injection of antibody conjugated poly (ethylene glycol)-coated (PEGylated) gold nanorods (GNR) to tumor-bearing mice, accumulation of GNR in the tumor was clearly detected by the DR profile of the tumor. The ability of DR measurements to quantitate in-vivo the concentration of the GNR in the tumor was demonstrated and validated with Flame Atomic Absorption spectroscopy results. With GNR as absorbing contrast agents, DR has important potential applications in the image guided therapy of superficial tumors such as head and neck cancer, breast cancer and melanoma. PMID:22234916

  1. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection.

    PubMed

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X; Zhang, Q M

    2016-01-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron. PMID:27465206

  2. Quantitative single-molecule detection of protein based on DNA tetrahedron fluorescent nanolabels.

    PubMed

    Ding, Yongshun; Liu, Xingti; Zhu, Jing; Wang, Lei; Jiang, Wei

    2014-07-01

    A highly sensitive method for single-molecule quantitative detection of human IgG is presented by the employment of a new fluorescent nanolabel. In this method, fluorescent nanolabels were assembled by inserting SYBR Green I into DNA tetrahedron nanostructure. The bio-nanolabels were attached to the streptavidin-antihuman antibody by a specific reaction between biotin and streptavidin. The antibody was combined with the target antigen, human IgG, which was immobilized on the silanized glass subtrate surface. Finally, epi-fluorescence microscopy (EFM) coupled with an electron multiplying charge-coupled device was employed for fluorescence imaging. The fluorescent spots corresponding to single protein molecule on images were counted and further used for the quantitative detection. It was found that the new nanolabel shows good photostability, biocompatiblity and exhibits no blinking compared to traditional labels like fluorescence dyes and quantum dot (QDs). In addition, the number of fluorescence spots on the images has a linear relationship with the concentration of human IgG in the range of 3.0×10(-14) to 1.0×10(-12)mol L(-1). What is more, this method showed an excellent specificity and a low matrix effect.

  3. Detection and Quantitation of Heavy Metal Ions on Bona Fide DVDs Using DNA Molecular Beacon Probes.

    PubMed

    Zhang, Lingling; Wong, Jessica X H; Li, Xiaochun; Li, Yunchao; Yu, Hua-Zhong

    2015-01-01

    A sensitive and cost-effective method for the simultaneous quantitation of trace amounts of Hg(2+) and Pb(2+) in real-world samples has been developed using DNA molecular beacon probes bound to bona fide digital video discs (DVDs). With specially designed T-rich or G-rich loop sequences, the detection is based on the strong T-Hg(2+)-T coordination chemistry of Hg(2+) and the formation of G-quadruplexes induced by Pb(2+), respectively. In particular, the presence of metal cations leads to hairpin opening and exposure of the terminal biotin moiety for binding nanogold-streptavidin conjugates. The recognition signal was subsequently enhanced by gold nanoparticle-promoted silver deposition, which leads to quantifiable digital signals upon reading with a standard computer drive. This method exhibits a wide response range and low detection limits for both Hg(2+) and Pb(2+). In addition, the quantitative determination of heavy metals in food products (e.g., rice samples) has been demonstrated and the method compares favorably with other optical sensors developed recently.

  4. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    SciTech Connect

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-12-27

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm⁻¹ spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and ({25.4±1.3)%, respectively.

  5. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    NASA Astrophysics Data System (ADS)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-07-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron.

  6. Electromechanical Detection in Scanning Probe Microscopy: Tip Models and Materials Contrast

    SciTech Connect

    Eliseev, E. A.; Kalinin, Sergei V; Jesse, Stephen; Bravina, S. L.; Morozovska, A. N.

    2007-01-01

    The rapid development of nanoscience and nanotechnology in the last two decades was stimulated by the emergence of scanning probe microscopy techniques capable of accessing local material properties, including transport, mechanical, and electromechanical behaviors, on the nanoscale. Here, we analyze the general principles of electromechanical probing by piezoresponse force microscopy (PFM), a scanning probe technique applicable to a broad range of piezoelectric and ferroelectric materials. The relationship between vertical and lateral PFM signals and material properties is derived analytically for two cases: transversally isotropic piezoelectric materials in the limit of weak elastic anisotropy, and anisotropic piezoelectric materials in the limit of weak elastic and dielectric anisotropies. The integral representations for PFM response for fully anisotropic material are also obtained. The image formation mechanism for conventional (e.g., sphere and cone) and multipole tips corresponding to emerging shielded and strip-line-type probes is analyzed. Possible applications for orientation imaging on the nanoscale and molecular resolution imaging are discussed.

  7. Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis.

    PubMed

    Luchansky, Matthew S; Bailey, Ryan C

    2010-03-01

    The ability to perform multiple simultaneous protein biomarker measurements in complex media with picomolar sensitivity presents a large challenge to disease diagnostics and fundamental biological studies. Silicon photonic microring resonators represent a promising platform for real-time detection of biomolecules on account of their spectral sensitivity toward surface binding events between a target and antibody-modified microrings. For all refractive index-based sensing schemes, the mass of bound analytes, in combination with other factors such as antibody affinity and surface density, contributes to the observed signal and measurement sensitivity. Therefore, proteins that are simultaneously low in abundance and have a lower molecular weight are often challenging to detect. By employing a more massive secondary antibody to amplify the signal arising from the initial binding event, it is possible to improve both the sensitivity and the specificity of protein assays, allowing for quantitative sensing in complex sample matrices. Herein, a sandwich assay is used to detect the 15.5 kDa human cytokine interleukin-2 (IL-2) at concentrations down to 100 pg/mL (6.5 pM) and to quantitate unknown solution concentrations over a dynamic range spanning 2.5 orders of magnitude. This same sandwich assay is then used to monitor the temporal secretion profile of IL-2 from Jurkat T lymphocytes in serum-containing cell culture media in the presence of the entire Jurkat secretome. The same temporal secretion analysis is performed in parallel using a commercial ELISA, revealing similar IL-2 concentration profiles but superior precision for the microring resonator sensing platform. Furthermore, we demonstrate the generality of the sandwich assay methodology on the microring resonator platform for the analysis of any biomolecular target for which two high-affinity antibodies exist by detecting the approximately 8 kDa cytokine interleukin-8 (IL-8) with a limit of detection and dynamic

  8. Detecting submerged objects: the application of side scan sonar to forensic contexts.

    PubMed

    Schultz, John J; Healy, Carrie A; Parker, Kenneth; Lowers, Bim

    2013-09-10

    Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include geophysical technologies. There are numerous advantages for integrating geophysical technologies, such as side scan sonar and ground penetrating radar (GPR), with more traditional search methods. Overall, these methods decrease the time involved searching, in addition to increasing area searched. However, as with other search methods, there are advantages and disadvantages when using each method. For example, in instances with excessive aquatic vegetation or irregular bottom terrain, it may not be possible to discern a submersed body with side scan sonar. As a result, forensic personnel will have the highest rate of success during searches for submerged objects when integrating multiple search methods, including deploying multiple geophysical technologies. The goal of this paper is to discuss the methodology of various search methods that are employed for submerged objects and how these various methods can be integrated as part of a comprehensive protocol for water searches depending upon the type of underwater terrain. In addition, two successful case studies involving the search and recovery of a submerged human body using side scan sonar are presented to illustrate the successful application of integrating a geophysical technology with divers when searching for a submerged object. PMID:23890654

  9. A comparison of digitally scanned radiographs with conventional film for the detection of small endodontic instruments.

    PubMed

    Fuge, K N; Stuck, A M; Love, R M

    1998-03-01

    The use of computers in dentistry is becoming common as a practice tool for a diverse number of tasks, including the storage and enhancement of intra-oral radiographs. Several systems of digital radiography are available to produce a digital image including irradiation of a charged-couple device and scanning conventional radiographs. This study compared various digital images of scanned periapical radiographs with the original radiographs to determine whether the digitized images offered any advantage when viewing small files at the radiographic apex. Twenty extracted permanent molar teeth were prepared by gaining straight line access to the root canals and a ISO size 06 K-file was introduced into one of the canals until the tip was flush with the apical foramen. Using a standardized technique, radiographs were taken of the teeth using E-speed film. The radiographs were scanned and five digital images: original, enhanced, negative to positive conversion, zoom and zoom of negative to positive were produced. Three evaluators compared each of the images with the radiograph for clarity of the endodontic file in relation to the radiographic apex. Results were analysed using the Wilcoxon signed rank test and the Kappa (kappa) test was used to measure the level of agreement between the three evaluators. The results revealed that all the digital images produced by this scanner were inferior to the radiograph (P < 0.001) and that there was high agreement between evaluators. PMID:9868939

  10. Detecting submerged objects: the application of side scan sonar to forensic contexts.

    PubMed

    Schultz, John J; Healy, Carrie A; Parker, Kenneth; Lowers, Bim

    2013-09-10

    Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include geophysical technologies. There are numerous advantages for integrating geophysical technologies, such as side scan sonar and ground penetrating radar (GPR), with more traditional search methods. Overall, these methods decrease the time involved searching, in addition to increasing area searched. However, as with other search methods, there are advantages and disadvantages when using each method. For example, in instances with excessive aquatic vegetation or irregular bottom terrain, it may not be possible to discern a submersed body with side scan sonar. As a result, forensic personnel will have the highest rate of success during searches for submerged objects when integrating multiple search methods, including deploying multiple geophysical technologies. The goal of this paper is to discuss the methodology of various search methods that are employed for submerged objects and how these various methods can be integrated as part of a comprehensive protocol for water searches depending upon the type of underwater terrain. In addition, two successful case studies involving the search and recovery of a submerged human body using side scan sonar are presented to illustrate the successful application of integrating a geophysical technology with divers when searching for a submerged object.

  11. Feasibility of quantitative lung perfusion by 4D CT imaging by a new dynamic-scanning protocol in an animal model

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Goldin, Jonathan G.; Abtin, Fereidoun G.; Brown, Matt; McNitt-Gray, Mike

    2008-03-01

    The purpose of this study is to test a new dynamic Perfusion-CT imaging protocol in an animal model and investigate the feasibility of quantifying perfusion of lung parenchyma to perform functional analysis from 4D CT image data. A novel perfusion-CT protocol was designed with 25 scanning time points: the first at baseline and 24 scans after a bolus injection of contrast material. Post-contrast CT scanning images were acquired with a high sampling rate before the first blood recirculation and then a relatively low sampling rate until 10 minutes after administrating contrast agent. Lower radiation techniques were used to keep the radiation dose to an acceptable level. 2 Yorkshire swine with pulmonary emboli underwent this perfusion- CT protocol at suspended end inspiration. The software tools were designed to measure the quantitative perfusion parameters (perfusion, permeability, relative blood volume, blood flow, wash-in & wash-out enhancement) of voxel or interesting area of lung. The perfusion values were calculated for further lung functional analysis and presented visually as contrast enhancement maps for the volume being examined. The results show increased CT temporal sampling rate provides the feasibility of quantifying lung function and evaluating the pulmonary emboli. Differences between areas with known perfusion defects and those without perfusion defects were observed. In conclusion, the techniques to calculate the lung perfusion on animal model have potential application in human lung functional analysis such as evaluation of functional effects of pulmonary embolism. With further study, these techniques might be applicable in human lung parenchyma characterization and possibly for lung nodule characterization.

  12. Advanced gray-scale morphological filters for the detection of sea mines in side-scan sonar imagery

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Vincent, Luc M.

    2000-08-01

    Computing Devices Canada, a General Dynamics company, undertakes research in image processing with focus on the automatic recognition of sea mines. This paper present the use of advanced gray-scale morphological filters for this function as applied to side scan sonar imagery. Sea mines in side scan sonar imagery can be characterized by a mine-body and a mine-shadow. Mine-bodies consist of bright regions, relative to the background, with a specific shape and size. Mine-shadows consist of dark regions, relative to the background, with a specific shape and sizes. The shapes and sizes of these regions depend on the mine type, the orientation of the mine, the physical acquisition process of the sonar imagery, and the environment in which the mine is located. Advanced gray-scale morphological filters provide very powerful and robust tools to extract bright and dark regions with low signal to noise ratio in very noisy imagery using geometric constraints such as shape, size and total surface area. For the detection of sea mines we use these morphological filters with the minimum and maximum geometric constraints for the mine-bodies and mine-shadows. The independent detection of mine-bodies and mine-shadows allows the detection of bottom, moored and drifting mines with the same detection algorithm. Consistent mine-body and mine- shadow combinations are resolved into mine like objects.

  13. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    PubMed

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  14. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    NASA Astrophysics Data System (ADS)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  15. Diagnostic agreement of conventional and inverted scanned panoramic radiographs in the detection of the mandibular canal and the mental foramen.

    PubMed

    Sakakura, Celso Eduardo; Loffredo, Leonor de Castro Monteiro; Scaf, Gulnara

    2004-01-01

    The aim of this study was to evaluate the diagnostic agreement of conventional panoramic radiographs and their inverted scanned images in the detection of the mandibular canal and mental foramen. A total of 77 panoramic radiographs obtained from the files of totally edentulous patients were used. Digitization was done by means of a scanner with brightness and contrast adjustment, as well as image inversion. The extension of mandibular canal was divided into anterior, middle, and posterior regions, and the presence of a radiopaque line that characterized the mandibular canal was classified according to a 5-point confidence scale. The mental foramen was classified in 4 types: continuous, separated, diffuse, and unidentified. Both conventional and inverted scanned panoramic radiographs were evaluated by 3 calibrated implantologists at 2 distinct moments with a minimum interval of 10 days between them. Intraexaminer agreement was evaluated by Kappa statistics by point and by 95% confidence interval. Because the intraexaminer level of agreement was low, interexaminer agreements could not be carried out. The results showed a substantial (in 2 situations), moderate (in 16 situations), and fair (in 18 situations) intraexaminer agreement for mandibular canal and a substantial (in 1 situation), fair (in 1 situation), and moderate (in 10 situations) intraeaminer agreement for mental foramen. There were no statistically significant differences in most instances. In conclusion, the diagnostic agreement of conventional and inverted scanned panoramic radiographs for detection of mandibular canal and mental foramen was low. PMID:15008448

  16. The development of a line-scan imaging algorithm for the detection of fecal contamination on leafy geens

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Kim, Moon S.; Chuang, Yung-Kun; Lee, Hoyoung

    2013-05-01

    This paper reports the development of a multispectral algorithm, using the line-scan hyperspectral imaging system, to detect fecal contamination on leafy greens. Fresh bovine feces were applied to the surfaces of washed loose baby spinach leaves. A hyperspectral line-scan imaging system was used to acquire hyperspectral fluorescence images of the contaminated leaves. Hyperspectral image analysis resulted in the selection of the 666 nm and 688 nm wavebands for a multispectral algorithm to rapidly detect feces on leafy greens, by use of the ratio of fluorescence intensities measured at those two wavebands (666 nm over 688 nm). The algorithm successfully distinguished most of the lowly diluted fecal spots (0.05 g feces/ml water and 0.025 g feces/ml water) and some of the highly diluted spots (0.0125 g feces/ml water and 0.00625 g feces/ml water) from the clean spinach leaves. The results showed the potential of the multispectral algorithm with line-scan imaging system for application to automated food processing lines for food safety inspection of leafy green vegetables.

  17. Quantitative determination of selenium and mercury, and an ICP-MS semi-quantitative scan of other elements in samples of eagle tissues collected from the Pacific Northwest--Summer 2011

    USGS Publications Warehouse

    May, Thomas; Walther, Mike; Brumbaugh, William

    2013-01-01

    Eagle tissues from dead eagle carcasses were collected by U.S. Fish and Wildlife Service personnel at various locations in the Pacific Northwest as part of a study to document the occurrence of metal and metalloid contaminants. A group of 182 eagle tissue samples, consisting of liver, kidney, brain, talon, feather, femur, humerus, and stomach contents, were quantitatively analyzed for concentrations of selenium and mercury by atomic absorption techniques, and for other elements by semi-quantitative scan with an inductively coupled plasma-mass spectrometer. For the various tissue matrices analyzed by an ICP-MS semiquantitative scan, some elemental concentrations (micrograms per gram dry weight) were quite variable within a particular matrix; notable observations were as follows: lead concentrations ranged from 0.2 to 31 in femurs, 0.1 to 29 in humeri, 0.1 to 54 in talons, less than (<) 0.05 to 120 in livers, <0.05 to 34 in kidneys, and 0.05 to 8 in brains; copper concentrations ranged from 5 to 9 in feathers, 8 to 47 in livers, 7 to 43 in kidneys, and 7 to 28 in brains; cadmium concentrations ranged from 0.1 to 10 in kidneys. In stomach contents, concentrations of vanadium ranged from 0.08 to 5, chromium 2 to 34, manganese 1 to 57, copper 2 to 69, arsenic <0.05 to 6, rubidium 1 to 13, and barium <0.5 to 18. Selenium concentrations from highest to lowest based on the matrix mean were as follows: kidney, liver, feather, brain, stomach content, talon, femur, and humerus. For mercury, the highest to lowest concentrations were feather, liver, talon, brain, stomach content, femur, and humerus.

  18. Quantitative trait loci detection of Edwardsiella tarda resistance in Japanese flounder Paralichthys olivaceus using bulked segregant analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Xu, Wenteng; Liu, Yang; Wang, Lei; Sun, Hejun; Wang, Lei; Chen, Songlin

    2016-11-01

    In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese flounder ( Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances in the aquaculture of P. olivaceus, the study of E. tarda resistance-related markers has lagged behind, hindering the development of a disease-resistant strain. Thus, a marker-trait association analysis was initiated, combining bulked segregant analysis (BSA) and quantitative trait loci (QTL) mapping. Based on 180 microsatellite loci across all chromosomes, 106 individuals from the F1333 (♀: F0768 ×♂: F0915) (Nomenclature rule: F+year+family number) were used to detect simple sequence repeats (SSRs) and QTLs associated with E. tarda resistance. After a genomic scan, three markers (Scaffold 404-21589, Scaffold 404-21594 and Scaffold 270-13812) from the same linkage group (LG)-1 exhibited a significant difference between DNA, pooled/bulked from the resistant and susceptible groups (P <0.001). Therefore, 106 individuals were genotyped using all the SSR markers in LG1 by single marker analysis. Two different analytical models were then employed to detect SSR markers with different levels of significance in LG1, where 17 and 18 SSR markers were identified, respectively. Each model found three resistance-related QTLs by composite interval mapping (CIM). These six QTLs, designated qE1-6, explained 16.0%-89.5% of the phenotypic variance. Two of the QTLs, qE-2 and qE-4, were located at the 66.7 cM region, which was considered a major candidate region for E. tarda resistance. This study will provide valuable data for further investigations of E. tarda resistance genes and facilitate the selective breeding of disease-resistant Japanese flounder in the future.

  19. Quantitative trait loci detection of Edwardsiella tarda resistance in Japanese flounder Paralichthys olivaceus using bulked segregant analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Xu, Wenteng; Liu, Yang; Wang, Lei; Sun, Hejun; Wang, Lei; Chen, Songlin

    2016-03-01

    In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese flounder (Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances in the aquaculture of P. olivaceus, the study of E. tarda resistance-related markers has lagged behind, hindering the development of a disease-resistant strain. Thus, a marker-trait association analysis was initiated, combining bulked segregant analysis (BSA) and quantitative trait loci (QTL) mapping. Based on 180 microsatellite loci across all chromosomes, 106 individuals from the F1333 (♀: F0768 ×♂: F0915) (Nomenclature rule: F+year+family number) were used to detect simple sequence repeats (SSRs) and QTLs associated with E. tarda resistance. After a genomic scan, three markers (Scaffold 404-21589, Scaffold 404-21594 and Scaffold 270-13812) from the same linkage group (LG)-1 exhibited a significant difference between DNA, pooled/bulked from the resistant and susceptible groups (P <0.001). Therefore, 106 individuals were genotyped using all the SSR markers in LG1 by single marker analysis. Two different analytical models were then employed to detect SSR markers with different levels of significance in LG1, where 17 and 18 SSR markers were identified, respectively. Each model found three resistance-related QTLs by composite interval mapping (CIM). These six QTLs, designated qE1-6, explained 16.0%-89.5% of the phenotypic variance. Two of the QTLs, qE-2 and qE-4, were located at the 66.7 cM region, which was considered a major candidate region for E. tarda resistance. This study will provide valuable data for further investigations of E. tarda resistance genes and facilitate the selective breeding of disease-resistant Japanese flounder in the future.

  20. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses

    PubMed Central

    2013-01-01

    Background The genus Flavivirus includes several pathogenic agents that cause severe illness in humans. Re-emergence of West Nile virus in Europe and continuous spread of certain flaviviruses such as dengue, yellow fever and Japanese encephalitis viruses represent a global danger to public health. Therefore, a rapid and accurate molecular method is required for diagnostics and epidemiological surveillance of flaviviruses. Methods A Pan-Flavi quantitative RT-PCR assay using a Locked-Nucleic Acid probe targeting the flavivirus NS5 gene was developed and optimized to detect a wide range of flaviviruses simultaneously. The specificity and sensitivity of the Pan-Flavi assay were tested using RNA of different flaviviruses and non-flaviviruses. Furthermore, the assay was compared directly to flavivirus species-specific assays for the ability to detect flaviviruses sensitively. Results Two degenerate primers and one Locked-Nucleic Acids probe were designed to amplify most of the flaviviruses. To increase the specificity and fluorescence signal of the Pan-Flavi assay for detection of yellow fever virus and dengue virus 4, additional primers and probes were included. Viral RNA of thirty different flaviviruses was detected, verifying the broad range specificity. The testing of this assay was successful, using standard plasmid and RNA dilutions of yellow fever virus vaccine strain, dengue virus 1 and tick-borne encephalitis virus, with a sensitivity limit of 10–100 genome copies/reaction. Also comparatively good results were achieved for detecting different flaviviruses by the Pan-Flavi assay when compared to the flavivirus species-specific assays. Conclusion The assay is rapid, broad-range flavivirus-specific and highly sensitive making it a valuable tool for rapid detection of flaviviruses in livestock samples, epidemiological studies or as useful complement to single flavivirus-specific assays for clinical diagnosis. PMID:23410000

  1. Glucose encapsulating liposome for signal amplification for quantitative detection of biomarkers with glucometer readout.

    PubMed

    Zhao, Yuting; Du, Dan; Lin, Yuehe

    2015-10-15

    A new technology was developed to quantitatively detect a broad range of disease biomarkers and proven to be portable, economical, and conveniently accessible. Measurements were performed based on releasing encapsulated glucose from antibody-tagged liposomes and subsequently detecting the released glucose using a commercial personal glucose meter (GM). The innovative aspect of this approach lies in the quantification of target biomarkers through the detection of glucose, thus expanding the applicability of the GM by broadening the range of target biomarkers instead of detecting only one analyte, glucose. Because of the bilayer membrane of liposomes, which can accommodate tens of thousands of glucose molecules, the sensitivity was greatly enhanced by using glucose encapsulating liposomes as a signal output and an amplifier. Here, the model analyte, protein 53 phosphorylated on Serine 15 (phospho-p53(15)), was captured by primary antibodies bound on magnetic Fe3O4 nanoparticles and then recognized by reporting antibodies conjugated to glucose encapsulating liposomes. Finally, the target phospho-p53(15) was detected by lysing the bound liposomes to release the encapsulated glucose (4 × 10(5) glucose molecules per liposome), which is detected with the GM. This approach was demonstrated to be a universal technology that can be easily produced to quantify a wide variety of biomarkers in medical diagnostics, food safety, public health, and environmental monitoring. In the near future, it is expected that these sensors, in combination with a portable GM, can be used in many fields such as physicians' laboratories, hospitals and the common household. PMID:26005847

  2. Detection of multivessel disease in patients with sustained myocardial infarction by thallium 201 myocardial scintigraphy: No additional value of quantitative analysis

    SciTech Connect

    Niemeyer, M.G.; Pauwels, E.K.; van der Wall, E.E.; Cramer, M.J.; Verzijlbergen, J.F.; Zwinderman, A.H.; Ascoop, C.A. )

    1989-01-01

    This study was performed to determine the value of visual and quantitative thallium 201 scintigraphy for the detection of multivessel disease in 67 patients with a sustained transmural myocardial infarction. Also the viability of the myocardial regions corresponding to pathologic Q-waves was evaluated. Of the 67 patients, 51 patients had multivessel coronary artery disease (76%). The sensitivity of the exercise test was 53%, of thallium scintigraphy 69%, when interpreted visually, and 67%, when analysed quantitatively. The specificity of these methods was 69%, 56%, and 50%, respectively. Sixty-two infarct-related flow regions were detected by visual analysis of the thallium scans, total redistribution was observed in 11/62 (18%) of patients, partial redistribution in 26/62 (42%), and no redistribution in 25/62 (40%) of patients. The infarct-related areas with total redistribution on the thallium scintigrams were more likely to be associated with normal or hypokinetic wall motion (7/11: 64%) than the areas with a persistent defect (7/25:28%) (P = 0.05), which were more related with akinetic or dyskinetic wall motion. Based on our results, it is concluded that (1) both visual and quantitative analysis of thallium exercise scintigraphy have limited value to predict the presence or absence of multivessel coronary artery disease in patients with sustained myocardial infarction, and (2) exercise-induced thallium redistribution may occur within the infarct zone, suggesting the presence of viable but jeopardized myocardium in presumed fibrotic myocardial areas.

  3. Quantitative detection of TUSC3 promoter methylation -a potential biomarker for prognosis in lung cancer

    PubMed Central

    Duppel, Uta; Woenckhaus, Matthias; Schulz, Christian; Merk, Johannes; Dietmaier, Wolfgang

    2016-01-01

    Aberrant promoter methylation of tumor relevant genes frequently occurs in early steps of carcinogenesis and during tumor progression. Epigenetic alterations could be used as potential biomarkers for early detection and for prediction of prognosis and therapy response in lung cancer. The present study quantitatively analyzed the methylation status of known and potential gatekeeper and tumor suppressor genes [O-6-methylguanine-DNA methyltransferase (MGMT), Ras association domain family member 1A (RASSF1A), Ras protein activator like 1 (RASAL1), programmed cell death 4 (PDCD4), metastasis suppressor 1 (MTSS1) and tumor suppressor candidate 3 (TUSC3)] in 42 lung cancers and in corresponding non-malignant bronchus and lung tissue using bisulfite-conversion independent methylation-quantification of endonuclease-resistant DNA (MethyQESD). Methylation status was associated with clinical and pathological parameters. No methylation was found in the promoter regions of PDCD4 and MTSS1 of either compartment. MGMT, RASSF1A and RASAL1 showed sporadic (up to 26.2%) promoter methylation. The promoter of TUSC3, however, was frequently methylated in the tumor (59.5%), benign bronchus (67.9%) and alveolar lung (31.0%) tissues from each tumor patient. The methylation status of TUSC3 was significantly associated with smaller tumor size (P=0.008) and a longer overall survival (P=0.013). Pooled blood DNA of healthy individuals did not show any methylation of either gene. Therefore, methylation of TUSC3 shows prognostic and pathobiological relevance in lung cancer. Furthermore, quantitative detection of TUSC3 promoter methylation appears to be a promising tool for early detection and prediction of prognosis in lung cancer. However, additional studies are required to confirm this finding. PMID:27698890

  4. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    PubMed

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-01-01

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

  5. Enhanced detection of surface-associated bacteria in indoor environments by quantitative PCR.

    PubMed

    Buttner, M P; Cruz-Perez, P; Stetzenbach, L D

    2001-06-01

    Methods for detecting microorganisms on surfaces are needed to locate biocontamination sources and to relate surface and airborne concentrations. Research was conducted in an experimental room to evaluate surface sampling methods and quantitative PCR (QPCR) for enhanced detection of a target biocontaminant present on flooring materials. QPCR and culture analyses were used to quantitate Bacillus subtilis (Bacillus globigii) endospores on vinyl tile, commercial carpet, and new and soiled residential carpet with samples obtained by four surface sampling methods: a swab kit, a sponge swipe, a cotton swab, and a bulk method. The initial data showed that greater overall sensitivity was obtained with the QPCR than with culture analysis; however, the QPCR results for bulk samples from residential carpet were negative. The swab kit and the sponge swipe methods were then tested with two levels of background biological contamination consisting of Penicillium chrysogenum spores. The B. subtilis values obtained by the QPCR method were greater than those obtained by culture analysis. The differences between the QPCR and culture data were significant for the samples obtained with the swab kit for all flooring materials except soiled residential carpet and with the sponge swipe for commercial carpet. The QPCR data showed that there were no significant differences between the swab kit and sponge swipe sampling methods for any of the flooring materials. Inhibition of QPCR due solely to biological contamination of flooring materials was not evident. However, some degree of inhibition was observed with the soiled residential carpet, which may have been caused by the presence of abiotic contaminants, alone or in combination with biological contaminants. The results of this research demonstrate the ability of QPCR to enhance detection and enumeration of biocontaminants on surface materials and provide information concerning the comparability of currently available surface sampling

  6. Quantitative detection of TUSC3 promoter methylation -a potential biomarker for prognosis in lung cancer

    PubMed Central

    Duppel, Uta; Woenckhaus, Matthias; Schulz, Christian; Merk, Johannes; Dietmaier, Wolfgang

    2016-01-01

    Aberrant promoter methylation of tumor relevant genes frequently occurs in early steps of carcinogenesis and during tumor progression. Epigenetic alterations could be used as potential biomarkers for early detection and for prediction of prognosis and therapy response in lung cancer. The present study quantitatively analyzed the methylation status of known and potential gatekeeper and tumor suppressor genes [O-6-methylguanine-DNA methyltransferase (MGMT), Ras association domain family member 1A (RASSF1A), Ras protein activator like 1 (RASAL1), programmed cell death 4 (PDCD4), metastasis suppressor 1 (MTSS1) and tumor suppressor candidate 3 (TUSC3)] in 42 lung cancers and in corresponding non-malignant bronchus and lung tissue using bisulfite-conversion independent methylation-quantification of endonuclease-resistant DNA (MethyQESD). Methylation status was associated with clinical and pathological parameters. No methylation was found in the promoter regions of PDCD4 and MTSS1 of either compartment. MGMT, RASSF1A and RASAL1 showed sporadic (up to 26.2%) promoter methylation. The promoter of TUSC3, however, was frequently methylated in the tumor (59.5%), benign bronchus (67.9%) and alveolar lung (31.0%) tissues from each tumor patient. The methylation status of TUSC3 was significantly associated with smaller tumor size (P=0.008) and a longer overall survival (P=0.013). Pooled blood DNA of healthy individuals did not show any methylation of either gene. Therefore, methylation of TUSC3 shows prognostic and pathobiological relevance in lung cancer. Furthermore, quantitative detection of TUSC3 promoter methylation appears to be a promising tool for early detection and prediction of prognosis in lung cancer. However, additional studies are required to confirm this finding.

  7. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    PubMed

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-01-01

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples. PMID:27529262

  8. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-01-01

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L−1 (S/N = 3) in lake water samples and ~0.5 μg·L−1 in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10–1000 μg·L−1. Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L−1 gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples. PMID:27529262

  9. A New Narrowbeam, Multi-Frequency Scanning Radiometer and Its Application to In-Flight Icing Detection

    NASA Technical Reports Server (NTRS)

    Serke, David J.; Solheim, Frederick; Ware, Randolph; Politovich, Marcia K.; Brunkow, David; Bowie, Robert

    2010-01-01

    A narrow-beam (1 degree beamwidth), multi-channel (20 to 30 and 89 GHz), polarized (89 vertical and horizontal) radiometer with full azimuth and elevation scanning capabilities has been built with the purpose of improving the detection of in-flight icing hazards to aircraft in the near airport environment. This goal was achieved by co-locating the radiometer with Colorado State University's CHILL polarized Doppler radar and taking advantage of similar beamwidth and volume scan regiments. In this way, the liquid water path and water vapor measurements derived from the radiometer were merged with CHILL's moment fields to provide diagnoses of water phase and microphysics aloft. The radiometer was field tested at Colorado State University's CHILL radar site near Greeley, Colorado, during the summer of 2009. Instrument design, calibration and initial field testing results are discussed in this paper

  10. Digitally tunable, wide-band amplitude, phase, and frequency detection for atomic-resolution scanning force microscopy.

    PubMed

    Khan, Z; Leung, C; Tahir, B A; Hoogenboom, B W

    2010-07-01

    Frequency-modulation atomic force microscopy (FM-AFM) relies on an accurate tracking of the resonance frequency of a scanning probe. It is now used in environments ranging from ultrahigh vacuum to aqueous solutions, for slow and for fast imaging, with probes resonating from a few kilohertz up to several megahertz. Here we present a versatile experimental setup that detects amplitude, phase, and frequency of AFM probes for resonance frequencies up to 15 MHz and with >70 kHz maximum bandwidth for amplitude/phase detection. We provide generic parameter settings for variable-bandwidth frequency detection and test these using our setup. The signal-to-noise ratio of the frequency detector is sufficiently high to record atomic-resolution images of mica by FM-AFM in aqueous solution.

  11. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    PubMed

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  12. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    PubMed

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  13. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry.

    PubMed

    Keithley, Richard B; Wightman, R Mark

    2011-06-01

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586

  14. Development of fast line scanning imaging algorithm for diseased chicken detection

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Chao, Kuanglin; Chen, Yud-Ren; Kim, Moon S.

    2005-11-01

    A hyperspectral line-scan imaging system for automated inspection of wholesome and diseased chickens was developed and demonstrated. The hyperspectral imaging system consisted of an electron-multiplying charge-coupled-device (EMCCD) camera and an imaging spectrograph. The system used a spectrograph to collect spectral measurements across a pixel-wide vertical linear field of view through which moving chicken carcasses passed. After a series of image calibration procedures, the hyperspectral line-scan images were collected for chickens on a laboratory simulated processing line. From spectral analysis, four key wavebands for differentiating between wholesome and systemically diseased chickens were selected: 413 nm, 472 nm, 515 nm, and 546 nm, and a reference waveband, 622 nm. The ratio of relative reflectance between each key wavelength and the reference wavelength was calculated as an image feature. A fuzzy logic-based algorithm utilizing the key wavebands was developed to identify individual pixels on the chicken surface exhibiting symptoms of systemic disease. Two differentiation methods were built to successfully differentiate 72 systemically diseased chickens from 65 wholesome chickens.

  15. Empirical Bayes scan statistics for detecting clusters of disease risk variants in genetic studies.

    PubMed

    McCallum, Kenneth J; Ionita-Laza, Iuliana

    2015-12-01

    Recent developments of high-throughput genomic technologies offer an unprecedented detailed view of the genetic variation in various human populations, and promise to lead to significant progress in understanding the genetic basis of complex diseases. Despite this tremendous advance in data generation, it remains very challenging to analyze and interpret these data due to their sparse and high-dimensional nature. Here, we propose novel applications and new developments of empirical Bayes scan statistics to identify genomic regions significantly enriched with disease risk variants. We show that the proposed empirical Bayes methodology can be substantially more powerful than existing scan statistics methods especially so in the presence of many non-disease risk variants, and in situations when there is a mixture of risk and protective variants. Furthermore, the empirical Bayes approach has greater flexibility to accommodate covariates such as functional prediction scores and additional biomarkers. As proof-of-concept we apply the proposed methods to a whole-exome sequencing study for autism spectrum disorders and identify several promising candidate genes.

  16. Quantitative analysis of electrically detected Ramsey fringes in P-doped Si

    NASA Astrophysics Data System (ADS)

    Greenland, P. T.; Matmon, G.; Villis, B. J.; Bowyer, E. T.; Li, Juerong; Murdin, B. N.; van der Meer, A. F. G.; Redlich, B.; Pidgeon, C. R.; Aeppli, G.

    2015-10-01

    This work describes detection of the laser preparation and subsequent coherent manipulation of the quantum states of orbital levels of donors in doped Si, by measuring the voltage drop across an irradiated Si sample. This electrical signal, which arises from thermal ionization of excited orbital states, and which is detected on a millisecond time scale by a voltmeter, leads to much more sensitive detection than can be had using optical methods, but has not before been quantitatively described from first principles. We present here a unified theory which relates the voltage drop across the sample to the wave function of the excited donors, and compare its predictions to experiments in which pairs of picosecond pulses from the Dutch free-electron laser FELIX are used to resonantly and coherently excite P donors in Si. Although the voltage drop varies on a millisecond time scale we are able to measure Ramsey oscillation of the excitation on a picosecond time scale, thus confirming that the donor wave function, and not just its excited state population, is crucial in determining the electrical signal. We are also able to extract the recombination rate coefficient to the ground state of the donor as well as the photoionization cross section of the excited state and phonon induced thermal ionization rate from the excited state. These quantities, which were previously of limited interest, are here shown to be important in the description of electrical detection, which, in our unoptimized configuration, is sensitive enough to enable us to detect the excitation of ˜107 donors.

  17. Computer-aided CT coronary artery stenosis detection: comparison with human reading and quantitative coronary angiography.

    PubMed

    Rief, Matthias; Kranz, Anisha; Hartmann, Lisa; Roehle, Robert; Laule, Michael; De