Sample records for scan image sequences

  1. Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karger, A.E.; Weiss, R.; Gesteland, R.F.

    A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less

  2. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display.

    PubMed

    Takahara, Taro; Imai, Yutaka; Yamashita, Tomohiro; Yasuda, Seiei; Nasu, Seiji; Van Cauteren, Marc

    2004-01-01

    To examine a new way of body diffusion weighted imaging (DWI) using the short TI inversion recovery-echo planar imaging (STIR-EPI) sequence and free breathing scanning (diffusion weighted whole body imaging with background body signal suppression; DWIBS) to obtain three-dimensional displays. 1) Apparent contrast-to-noise ratios (AppCNR) between lymph nodes and surrounding fat tissue were compared in three types of DWI with and without breath-holding, with variable lengths of scan time and slice thickness. 2) The STIR-EPI sequence and spin echo-echo planar imaging (SE-EPI) sequence with chemical shift selective (CHESS) pulse were compared in terms of their degree of fat suppression. 3) Eleven patients with neck, chest, and abdominal malignancy were scanned with DWIBS for evaluation of feasibility. Whole body imaging was done in a later stage of the study using the peripheral vascular coil. The AppCNR of 8 mm slice thickness images reconstructed from 4 mm slice thickness source images obtained in a free breathing scan of 430 sec were much better than 9 mm slice thickness breath-hold scans obtained in 25 sec. High resolution multi-planar reformat (MPR) and maximum intensity projection (MIP) images could be made from the data set of 4 mm slice thickness images. Fat suppression was much better in the STIR-EPI sequence than SE-EPI with CHESS pulse. The feasibility of DWIBS was showed in clinical scans of 11 patients. Whole body images were successfully obtained with adequate fat suppression. Three-dimensional DWIBS can be obtained with this technique, which may allow us to screen for malignancies in the whole body.

  3. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

    PubMed

    Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2006-06-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.

  4. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    PubMed Central

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  5. Design and development of the coaxial scanner as a compact high-performance thermal imager

    NASA Astrophysics Data System (ADS)

    Lettington, Alan H.

    1994-09-01

    This paper describes the original requirement of a light weight, high performance, low cost thermal imager which resulted in the design of the novel coaxial scanner. The early form of imager used a dedicated display to match the original cyclic scan sequence. With the advent of fast digital scan converters and the desire to use standard TV monitors the imager was redesigned and new TV compatible scan sequences devised. A version of this scanner is currently being manufactured by GEC Marconi Avionics, UK, and the paper concludes with examples of its application.

  6. Diffusion weighted imaging: a comprehensive evaluation of a fast spin echo DWI sequence with BLADE (PROPELLER) k-space sampling at 3 T, using a 32-channel head coil in acute brain ischemia.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Stemmer, Alto; Williams, Kenneth D; Naul, L Gill; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-10-01

    To evaluate the signal-to-noise ratio (SNR) and diagnostic quality of diffusion weighted imaging (DWI) using a fast spin echo (FSE) sequence with BLADE k-space trajectory at 3 T in combination with a 32-channel head coil. The scan was compared with a standard spin echo (SE) echo-planar imaging (EPI) DWI and a high resolution SE EPI DWI sequence. Fourteen patients with acute brain ischemia were included in this Institutional Review Board approved study. All patients were evaluated with 3 different image sequences, using a 3 T scanner and a 32-channel head coil: (a) a standard SE EPI DWI (matrix size 192 x 192), (b) a high resolution SE EPI DWI (matrix size of 256 x 256) and (c) a FSE DWI BLADE (matrix size 192 x 192). The SNR of the 3 scans was compared in 10 healthy volunteers by a paired student t test. Image quality was evaluated with 4 dedicated questions in a blinded read: (1) The scans were ranked in terms of bulk susceptibility artifact. (2) The scan preference for diagnosis of any diffusion abnormality that might occur and (3) the preference for visualization of the diffusion abnormality actually present was determined. (4) The influence of bulk susceptibility on image evaluation for the diffusion abnormality present was assessed. For visualization of the diffusion abnormality present, BLADE DWI was the scan sequence preferred most by both readers (reader 1: 41.7%, reader 2: 35.7%). For visualization of any diffusion abnormality present, BLADE DWI was the preferred scan in 13 of 14 cases for reader 1 (93%) and in 11 of 14 cases for reader 2 (78.6%). No high resolution SE EPI DWI scan was rated best by reader 1. Reader 2 rated the high resolution SE EPI DWI scan superior in only 1 of 56 judgments. The standard EPI DWI sequence (21.8 +/- 5.3) had in comparison to the high resolution EPI DWI (11.9 +/- 2.6) and the BLADE DWI scans (11.3 +/- 3.8) significantly higher SNR mean values. Our preliminary data demonstrates the feasibility of a FSE EPI DWI scan with radial-like k-space sampling, using a 32-channel coil at 3 T in acute brain ischemia. The BLADE DWI was the preferred scan for the detection of acute diffusion abnormalities because of the lack of bulk susceptibility artifacts.

  7. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

    PubMed Central

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-01-01

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans. PMID:28367906

  8. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils.

    PubMed

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-04-10

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.

  9. SU-E-J-240: Development of a Novel 4D MRI Sequence for Real-Time Liver Tumor Tracking During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, L; Burmeister, J; Ye, Y

    2015-06-15

    Purpose: To develop a Novel 4D MRI Technique that is feasible for realtime liver tumor tracking during radiotherapy. Methods: A volunteer underwent an abdominal 2D fast EPI coronal scan on a 3.0T MRI scanner (Siemens Inc., Germany). An optimal set of parameters was determined based on image quality and scan time. A total of 23 slices were scanned to cover the whole liver in the test scan. For each scan position, the 2D images were retrospectively sorted into multiple phases based on breathing signal extracted from the images. Consequently the 2D slices with same phase numbers were stacked to formmore » one 3D image. Multiple phases of 3D images formed the 4D MRI sequence representing one breathing cycle. Results: The optimal set of scan parameters were: TR= 57ms, TE= 19ms, FOV read= 320mm and flip angle= 30°, which resulted in a total scan time of 14s for 200 frames (FMs) per slice and image resolution of (2.5mm,2.5mm,5.0mm) in three directions. Ten phases of 3D images were generated, each of which had 23 slices. Based on our test scan, only 100FMs were necessary for the phase sorting process which may lower the scan time to 7s/100FMs/slice. For example, only 5 slices/35s are necessary for a 4D MRI scan to cover liver tumor size ≤ 2cm leading to the possibility of tumor trajectory tracking every 35s during treatment. Conclusion: The novel 4D MRI technique we developed can reconstruct a 4D liver MRI sequence representing one breathing cycle (7s/ slice) without an external monitor. This technique can potentially be used for real-time liver tumor tracking during radiotherapy.« less

  10. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, Andrew M.; Dawson, John

    1993-01-01

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source.

  11. Effect of pulse sequence parameter selection on signal strength in positive-contrast MRI markers for MRI-based prostate postimplant assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Tze Yee

    Purpose: For postimplant dosimetric assessment, computed tomography (CT) is commonly used to identify prostate brachytherapy seeds, at the expense of accurate anatomical contouring. Magnetic resonance imaging (MRI) is superior to CT for anatomical delineation, but identification of the negative-contrast seeds is challenging. Positive-contrast MRI markers were proposed to replace spacers to assist seed localization on MRI images. Visualization of these markers under varying scan parameters was investigated. Methods: To simulate a clinical scenario, a prostate phantom was implanted with 66 markers and 86 seeds, and imaged on a 3.0T MRI scanner using a 3D fast radiofrequency-spoiled gradient recalled echo acquisitionmore » with various combinations of scan parameters. Scan parameters, including flip angle, number of excitations, bandwidth, field-of-view, slice thickness, and encoding steps were systematically varied to study their effects on signal, noise, scan time, image resolution, and artifacts. Results: The effects of pulse sequence parameter selection on the marker signal strength and image noise were characterized. The authors also examined the tradeoff between signal-to-noise ratio, scan time, and image artifacts, such as the wraparound artifact, susceptibility artifact, chemical shift artifact, and partial volume averaging artifact. Given reasonable scan time and managable artifacts, the authors recommended scan parameter combinations that can provide robust visualization of the MRI markers. Conclusions: The recommended MRI pulse sequence protocol allows for consistent visualization of the markers to assist seed localization, potentially enabling MRI-only prostate postimplant dosimetry.« less

  12. Rapid-sequence MRI for long-term surveillance for paraganglioma and phaeochromocytoma in patients with succinate dehydrogenase mutations.

    PubMed

    Daniel, Eleni; Jones, Robert; Bull, Matthew; Newell-Price, John

    2016-12-01

    Patients with SDHx mutations need long-term radiological surveillance for the development of paragangliomas and phaeochromocytomas, but no longitudinal data exist. The aim of the study was to assess the performance of rapid-sequence non-contrast magnetic resonance imaging (MRI) in the long-term monitoring of patients with SDHx mutations. Retrospective study between 2005 and 2015 at a University Hospital and regional endocrine genetics referral centre. Clinical and imaging data of 47 patients with SDHx mutations (SDHB (36), SDHC (6) and SDHD (5)) who had surveillance for detection of paragangliomas by rapid-sequence non-contrast MRI (base of skull to pubic symphysis) were collected. Twelve index cases (nine SDHB, one SDHC and two SDHD) and 35 mutation-positive relatives were monitored for a mean of 6.4 years (range 3.1-10.0 years). Mean age at the end of the study: SDHB 46.9 ± 17.6 years; SDHC 42.3 ± 24.4 years; SDHD 54.9 ± 10.6 years. On excluding imaging at initial diagnosis of index cases, 42 patients underwent 116 rapid-sequence MRI scans: 83 scans were negative and 31 scans were positive for sPGL/HNPGL in 13 patients. Most patients had multiple scans (n = number of patients (number of rapid-sequence MRI scans during screening)): n = 9 (2), n = 20 (3), n = 6 (4), n = 1 (6). Nine patients (three index) were diagnosed with new paragangliomas during surveillance and non-operated tumour size was monitored in nine patients. There were two false-positive scans (1.6%). Scans were repeated every 27 ± 9 months. Biannual rapid-sequence non-contrast MRI is effective to monitor patients with SDHx mutations for detection of new tumours and monitoring of known tumours. © 2016 European Society of Endocrinology.

  13. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, A.M.; Dawson, J.

    1993-12-14

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source. 6 figures.

  14. Image quality assessment of silent T2 PROPELLER sequence for brain imaging in infants.

    PubMed

    Kim, Hyun Gi; Choi, Jin Wook; Yoon, Soo Han; Lee, Sieun

    2018-02-01

    Infants are vulnerable to high acoustic noise. Acoustic noise generated by MR scanning can be reduced by a silent sequence. The purpose of this study is to compare the image quality of the conventional and silent T2 PROPELLER sequences for brain imaging in infants. A total of 36 scans were acquired from 24 infants using a 3 T MR scanner. Each patient underwent both conventional and silent T2 PROPELLER sequences. Acoustic noise level was measured. Quantitative and qualitative assessments were performed with the images taken with each sequence. The sound pressure level of the conventional T2 PROPELLER imaging sequence was 92.1 dB and that of the silent T2 PROPELLER imaging sequence was 73.3 dB (reduction of 20%). On quantitative assessment, the two sequences (conventional vs silent T2 PROPELLER) did not show significant difference in relative contrast (0.069 vs 0.068, p value = 0.536) and signal-to-noise ratio (75.4 vs 114.8, p value = 0.098). Qualitative assessment of overall image quality (p value = 0.572), grey-white differentiation (p value = 0.986), shunt-related artefact (p value > 0.999), motion artefact (p value = 0.801) and myelination degree in different brain regions (p values ≥ 0.092) did not show significant difference between the two sequences. The silent T2 PROPELLER sequence reduces acoustic noise and generated comparable image quality to that of the conventional sequence. Advances in knowledge: This is the first report to compare silent T2 PROPELLER images with that of conventional T2 PROPELLER images in children.

  15. LCC demons with divergence term for liver MRI motion correction

    NASA Astrophysics Data System (ADS)

    Oh, Jihun; Martin, Diego; Skrinjar, Oskar

    2010-03-01

    Contrast-enhanced liver MR image sequences acquired at multiple times before and after contrast administration have been shown to be critically important for the diagnosis and monitoring of liver tumors and may be used for the quantification of liver inflammation and fibrosis. However, over multiple acquisitions, the liver moves and deforms due to patient and respiratory motion. In order to analyze contrast agent uptake one first needs to correct for liver motion. In this paper we present a method for the motion correction of dynamic contrastenhanced liver MR images. For this purpose we use a modified version of the Local Correlation Coefficient (LCC) Demons non-rigid registration method. Since the liver is nearly incompressible its displacement field has small divergence. For this reason we add a divergence term to the energy that is minimized in the LCC Demons method. We applied the method to four sequences of contrast-enhanced liver MR images. Each sequence had a pre-contrast scan and seven post-contrast scans. For each post-contrast scan we corrected for the liver motion relative to the pre-contrast scan. Quantitative evaluation showed that the proposed method improved the liver alignment relative to the non-corrected and translation-corrected scans and visual inspection showed no visible misalignment of the motion corrected contrast-enhanced scans and pre-contrast scan.

  16. Evaluation of an accelerated 3D SPACE sequence with compressed sensing and free-stop scan mode for imaging of the knee.

    PubMed

    Henninger, B; Raithel, E; Kranewitter, C; Steurer, M; Jaschke, W; Kremser, C

    2018-05-01

    To prospectively evaluate a prototypical 3D turbo-spin-echo proton-density-weighted sequence with compressed sensing and free-stop scan mode for preventing motion artefacts (3D-PD-CS-SPACE free-stop) for knee imaging in a clinical setting. 80 patients underwent 3T magnetic resonance imaging (MRI) of the knee with our 2D routine protocol and with 3D-PD-CS-SPACE free-stop. In case of a scan-stop caused by motion (images are calculated nevertheless) the sequence was repeated without free-stop mode. All scans were evaluated by 2 radiologists concerning image quality of the 3D-PD-CS-SPACE (with and without free-stop). Important knee structures were further assessed in a lesion based analysis and compared to our reference 2D-PD-fs sequences. Image quality of the 3D-PD-CS-SPACE free-stop was found optimal in 47/80, slightly compromised in 21/80, moderately in 10/80 and severely in 2/80. In 29/80, the free-stop scan mode stopped the 3D-PD-CS-SPACE due to subject motion with a slight increase of image quality at longer effective acquisition times. Compared to the 3D-PD-CS-SPACE with free-stop, the image quality of the acquired 3D-PD-CS-SPACE without free-stop was found equal in 6/29, slightly improved in 13/29, improved with equal contours in 8/29, and improved with sharper contours in 2/29. The lesion based analysis showed a high agreement between the results from the 3D-PD-CS-SPACE free-stop and our 2D-PD-fs routine protocol (overall agreement 96.25%-100%, Cohen's Kappa 0.883-1, p < 0.001). 3D-PD-CS-SPACE free-stop is a reliable alternative for standard 2D-PD-fs protocols with acceptable acquisition times. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Further exploration of MRI techniques for liver T1rho quantification.

    PubMed

    Zhao, Feng; Yuan, Jing; Deng, Min; Lu, Pu-Xuan; Ahuja, Anil T; Wang, Yi-Xiang J

    2013-12-01

    With biliary duct ligation and CCl4 induced rat liver fibrosis models, recent studies showed that MR T1rho imaging is able to detect liver fibrosis, and the degree of fibrosis is correlated with the degree of elevation of the T1rho measurements, suggesting liver T1rho quantification may play an important role for liver fibrosis early detection and grading. It has also been reported it is feasible to obtain consistent liver T1rho measurement for human subjects at 3 Tesla (3 T), and preliminary clinical data suggest liver T1rho is increased in patients with cirrhosis. In these previous studies, T1rho imaging was used with the rotary-echo spin-lock pulse for T1rho preparation, and number of signal averaging (NSA) was 2. Due to the presence of inhomogeneous B0 field, artifacts may occur in the acquired T1rho-weighted images. The method described by Dixon et al. (Magn Reson Med 1996;36:90-4), which is a hard RF pulse with 135° flip angle and same RF phase as the spin-locking RF pulse is inserted right before and after the spin-locking RF pulse, has been proposed to reduce sensitivity to B0 field inhomogeneity in T1rho imaging. In this study, we compared the images scanned by rotary-echo spin-lock pulse method (sequence 1) and the pulse modified according to Dixon method (sequence 2). When the artifacts occurred in T1rho images, we repeated the same scan until satisfactory. We accepted images if artifact in liver was less than 10% of liver area by visual estimation. When NSA =2, the breath-holding duration for data acquisition of one slice scanning was 8 sec due to a delay time of 6,000 ms for magnetization restoration. If NSA =1, the duration was shortened to be 2 sec. In previous studies, manual region of interest (ROI) analysis of T1rho map was used. In this current study, histogram analysis was also applied to evaluate liver T1rho value on T1rho maps. MRI data acquisition was performed on a 3 T clinical scanner. There were 29 subjects with 61 examinations obtained. Liver T1rho values obtained by sequence 1 (NSA =2) and sequence 2 (NSA =2) showed similar values, i.e., 43.1±2.1 ms (range: 38.6-48.0 ms, n=40 scans) vs. 43.5±2.5 ms (range: 39.0-47.7 ms, 
n=12 scans, P=0.74) respectively. For the six volunteers scanned with both sequences in one session, the intraclass correlation coefficient (ICC) was 0.939. Overall, the success rate of obtaining satisfactory images per acquisition was slightly over 50% for both sequence 1 and sequence 2. Satisfactory images can usually be obtained by asking the volunteer subjects to better hold their breath. However, sequence 2 did not increase the scan success rate. For the nine subjects scanned by sequence 2 with both NSA =2 and NSA =1 during one session, the ICC was 0.274, demonstrated poor agreement. T1rho measurement by ROI method and histogram had an ICC of 0.901 (P>0.05), demonstrated very good agreement. We conclude that by including 135° flip angle before and after the spin-locking RF pulse, the rate of artifacts occurring did not decrease. On the other hand, sequence 1 and sequence 2 measured similar T1rho value in healthy liver. While reducing the breath-holding duration significantly, NSA =1 did not offer satisfactory signal-to-noise ratio. Histogram measurement can be adopted for future studies.

  18. Magnetic Resonance Imaging at 1.5 Tesla With a Cochlear Implant Magnet in Place: Image Quality and Usability.

    PubMed

    Sharon, Jeffrey D; Northcutt, Benjamin G; Aygun, Nafi; Francis, Howard W

    2016-10-01

    To study the quality and usability of magnetic resonance imaging (MRI) obtained with a cochlear implant magnet in situ. Retrospective chart review. Tertiary care center. All patients who underwent brain MRI with a cochlear implant magnet in situ from 2007 to 2016. None. Grade of view of the ipsilateral internal auditory canal (IAC) and cerebellopontine angle (CPA). Inclusion criteria were met by 765 image sequences in 57 MRI brain scans. For the ipsilateral IAC, significant predictors of a grade 1 (normal) view included: absence of fat saturation algorithm (p = 0.001), nonaxial plane of imaging (p = 0.01), and contrast administration (p = 0.001). For the ipsilateral CPA, significant predictors of a grade 1 view included: absence of fat saturation algorithm (p = 0.001), high-resolution images (p = 0.001), and nonaxial plane of imaging (p = 0.001). Overall, coronal T1 high-resolution images produced the highest percentage of grade 1 views (89%). Fat saturation also caused a secondary ring-shaped distortion artifact, which impaired the view of the contralateral CPA 52.7% of the time, and the contralateral IAC 42.8% of the time. MRI scans without any usable (grade 1) sequences had fewer overall sequences (N = 4.3) than scans with at least one usable sequence (N = 7.1, p = 0.001). MRI image quality with a cochlear implant magnet in situ depends on several factors, which can be modified to maximize image quality in this unique patient population.

  19. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    PubMed

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  20. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences.

    PubMed

    Taron, Jana; Martirosian, Petros; Erb, Michael; Kuestner, Thomas; Schwenzer, Nina F; Schmidt, Holger; Honndorf, Valerie S; Weiβ, Jakob; Notohamiprodjo, Mike; Nikolaou, Konstantin; Schraml, Christina

    2016-10-01

    To systematically evaluate image characteristics of simultaneous-multislice (SMS)-accelerated diffusion-weighted imaging (DWI) of the liver using different breathing schemes in comparison to standard sequences. DWI of the liver was performed in 10 healthy volunteers and 12 patients at 1.5T using an SMS-accelerated echo planar imaging sequence performed with respiratory-triggering and free breathing (SMS-RT, SMS-FB). Standard DWI sequences served as reference (STD-RT, STD-FB). Reduction of scan time by SMS-acceleration was measured. Image characteristics of SMS-DWI and STD-DWI with both breathing schemes were analyzed quantitatively (apparent diffusion coefficient [ADC], signal-to-noise ratio [SNR]) and qualitatively (5-point Likert scale, 5 = excellent). Qualitative and quantitative parameters were compared using Friedman test and Dunn-Bonferroni post-hoc method with P-values < 0.05 considered statistically significant. SMS-DWI provided diagnostic image quality in volunteers and patients both with RT and FB with a reduction of scan time of 70% (0:56 vs. 3:20 min in FB). Overall image quality did not significantly differ between FB and RT acquisition in both STD and SMS sequences (median STD-RT 5.0, STD-FB 4.5, SMS-RT: 4.75; SMS-FB: 4.5; P = 0.294). SNR in the right hepatic lobe was comparable between the four tested sequences. ADC values were significantly lower in SMS-DWI compared to STD-DWI irrespective of the breathing scheme (1.2 ± 0.2 × 10(-3) mm(2) /s vs. 1.0 ± 0.2 × 10(-3) mm(2) /s; P < 0.001). SMS-acceleration provides considerable scan time reduction for hepatic DWI with equivalent image quality compared to the STD technique both using RT and FB. Discrepancies in ADC between STD-DWI and SMS-DWI need to be considered when transferring the SMS technique to clinical routine reading. J. MAGN. RESON. IMAGING 2016;44:865-879. © 2016 International Society for Magnetic Resonance in Medicine.

  1. High-resolution ultrashort echo time (UTE) imaging on human knee with AWSOS sequence at 3.0 T.

    PubMed

    Qian, Yongxian; Williams, Ashley A; Chu, Constance R; Boada, Fernando E

    2012-01-01

    To demonstrate the technical feasibility of high-resolution (0.28-0.14 mm) ultrashort echo time (UTE) imaging on human knee at 3T with the acquisition-weighted stack of spirals (AWSOS) sequence. Nine human subjects were scanned on a 3T MRI scanner with an 8-channel knee coil using the AWSOS sequence and isocenter positioning plus manual shimming. High-resolution UTE images were obtained on the subject knees at TE = 0.6 msec with total acquisition time of 5.12 minutes for 60 slices at an in-plane resolution of 0.28 mm and 10.24 minutes for 40 slices at an in-plane resolution of 0.14 mm. Isocenter positioning, manual shimming, and the 8-channel array coil helped minimize image distortion and achieve high signal-to-noise ratio (SNR). It is technically feasible on a clinical 3T MRI scanner to perform UTE imaging on human knee at very high spatial resolutions (0.28-0.14 mm) within reasonable scan time (5-10 min) using the AWSOS sequence. Copyright © 2011 Wiley Periodicals, Inc.

  2. A 1-minute full brain MR exam using a multicontrast EPI sequence.

    PubMed

    Skare, Stefan; Sprenger, Tim; Norbeck, Ola; Rydén, Henric; Blomberg, Lars; Avventi, Enrico; Engström, Mathias

    2018-06-01

    A new multicontrast echo-planar imaging (EPI)-based sequence is proposed for brain MRI, which can directly generate six MR contrasts (T 1 -FLAIR, T 2 -w, diffusion-weighted (DWI), apparent diffusion coefficient (ADC), T2*-w, T 2 -FLAIR) in 1 min with full brain coverage. This could enable clinical MR clinical screening in similar time as a conventional CT exam but with more soft-tissue information. Eleven sequence modules were created as dynamic building blocks for the sequence. Two EPI readout modules were reused throughout the sequence and were prepended by other modules to form the desired MR contrasts. Two scan protocols were optimized with scan times of 55-75 s. Motion experiments were carried out on two volunteers to investigate the robustness against head motion. Scans on patients were carried out and compared to conventional clinical images. The pulse sequence is found to be robust against motion given its single-shot nature of each contrast. For excessive out-of-plane head motion, the T 1 -FLAIR and T 2 -FLAIR contrasts suffer from incomplete inversion. Despite lower signal-to-noise ratio (SNR) and resolution, the 1-min multicontrast EPI data show promising correspondence with conventional diagnostic scans on patients. A 1 min multicontrast brain MRI scan based on EPI readouts has been presented in this feasibility study. Preliminary data show potential for clinical brain MRI use with minimal bore time for the patient. Such short examination time could be useful (e.g., for screening and acute stroke). The sequence may also help planning conventional brain MRI scans if run at the beginning of an examination. Magn Reson Med 79:3045-3054, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Long-term reproducibility of phantom signal intensities in nonuniformity corrected STIR-MRI examinations of skeletal muscle.

    PubMed

    Viddeleer, Alain R; Sijens, Paul E; van Ooijen, Peter M A; Kuypers, Paul D L; Hovius, Steven E R; Oudkerk, Matthijs

    2009-08-01

    Nerve regeneration could be monitored by comparing MRI image intensities in time, as denervated muscles display increased signal intensity in STIR sequences. In this study long-term reproducibility of STIR image intensity was assessed under clinical conditions and the required image intensity nonuniformity correction was improved by using phantom scans obtained at multiple positions. Three-dimensional image intensity nonuniformity was investigated in phantom scans. Next, over a three-year period, 190 clinical STIR hand scans were obtained using a standardized acquisition protocol, and corrected for intensity nonuniformity by using the results of phantom scanning. The results of correction with 1, 3, and 11 phantom scans were compared. The image intensities in calibration tubes close to the hands were measured every time to determine the reproducibility of our method. With calibration, the reproducibility of STIR image intensity improved from 7.8 to 6.4%. Image intensity nonuniformity correction with 11 phantom scans gave significantly better results than correction with 1 or 3 scans. The image intensities in clinical STIR images acquired at different times can be compared directly, provided that the acquisition protocol is standardized and that nonuniformity correction is applied. Nonuniformity correction is preferably based on multiple phantom scans.

  4. Contrast-enhanced T1-weighted fluid-attenuated inversion-recovery BLADE magnetic resonance imaging of the brain: an alternative to spin-echo technique for detection of brain lesions in the unsedated pediatric patient?

    PubMed

    Alibek, Sedat; Adamietz, Boris; Cavallaro, Alexander; Stemmer, Alto; Anders, Katharina; Kramer, Manuel; Bautz, Werner; Staatz, Gundula

    2008-08-01

    We compared contrast-enhanced T1-weighted magnetic resonance (MR) imaging of the brain using different types of data acquisition techniques: periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) imaging versus standard k-space sampling (conventional spin-echo pulse sequence) in the unsedated pediatric patient with focus on artifact reduction, overall image quality, and lesion detectability. Forty-eight pediatric patients (aged 3 months to 18 years) were scanned with a clinical 1.5-T whole body MR scanner. Cross-sectional contrast-enhanced T1-weighted spin-echo sequence was compared to a T1-weighted dark-fluid fluid-attenuated inversion-recovery (FLAIR) BLADE sequence for qualitative and quantitative criteria (image artifacts, image quality, lesion detectability) by two experienced radiologists. Imaging protocols were matched for imaging parameters. Reader agreement was assessed using the exact Bowker test. BLADE images showed significantly less pulsation and motion artifacts than the standard T1-weighted spin-echo sequence scan. BLADE images showed statistically significant lower signal-to-noise ratio but higher contrast-to-noise ratios with superior gray-white matter contrast. All lesions were demonstrated on FLAIR BLADE imaging, and one false-positive lesion was visible in spin-echo sequence images. BLADE MR imaging at 1.5 T is applicable for central nervous system imaging of the unsedated pediatric patient, reduces motion and pulsation artifacts, and minimizes the need for sedation or general anesthesia without loss of relevant diagnostic information.

  5. Single-Breath-Hold Whole-heart Unenhanced Coronary MRA Using Multi-shot Gradient Echo EPI at 3T: Comparison with Free-breathing Turbo-field-echo Coronary MRA on Healthy Volunteers.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Nagayama, Yasunori; Oda, Seitaro; Utsunomiya, Daisuke; Kidoh, Masafumi; Yuki, Hideaki; Hirata, Kenichiro; Namimoto, Tomohiro; Kitajima, Mika; Morita, Kosuke; Funama, Yoshinori; Takemura, Atsushi; Okuaki, Tomoyuki; Yamashita, Yasuyuki

    2018-04-10

    We investigated the feasibility of single breath hold unenhanced coronary MRA using multi-shot gradient echo planar imaging (MSG-EPI) on a 3T-scanner. Fourteen volunteers underwent single breath hold coronary MRA with a MSG-EPI and free-breathing turbo field echo (TFE) coronary MRA at 3T. The acquisition time, signal to noise ratio (SNR), and the contrast of the sequences were compared with the paired t-test. Readers evaluated the image contrast, noise, sharpness, artifacts, and the overall image quality. The acquisition time was 88.1% shorter for MSG-EPI than TFE (24.7 ± 2.5 vs 206.4 ± 23.1 sec, P < 0.01). The SNR was significantly higher on MSG-EPI than TFE scans (P < 0.01). There was no significant difference in the contrast on MSG-EPI and TFE scans (1.8 ± 0.3 vs 1.9 ± 0.3, P = 0.24). There was no significant difference in image contrast, image sharpness, and overall image quality between two scan techniques. The score of image noise and artifact were significantly higher on MSG-EPI than TFE scans (P < 0.05). The single breath hold MSG-EPI sequence is a promising technique for shortening the scan time and for preserving the image quality of unenhanced whole heart coronary MRA on a 3T scanner.

  6. gr-MRI: A software package for magnetic resonance imaging using software defined radios

    NASA Astrophysics Data System (ADS)

    Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.

  7. The effects of the use of piezoelectric motors in a 1.5-Tesla high-field magnetic resonance imaging system (MRI).

    PubMed

    Wendt, O; Oellinger, J; Lüth, T C; Felix, R; Boenick, U

    2000-01-01

    This paper presents the results of an experimental investigation with two different rotatory piezomotors in a closed 1.5 Tesla high-field MRI. The focus of the investigation was on testing the functionality of these motors within the MRI and to determining the image interference they caused. To obtain a differentiated estimate of the interference the motors were tested in both the passive (turned off, i.e. without current flow) and active (turned on, i.e. with current flow) state during MRI scanning. Three different types of sequences were used for the test: Spin-Echo (SE), Gradient-Echo (GE) and Echo-Planar Imaging (EPI). A plastic container filled with a gadolinium-manganese solution was used for representation of the artefacts. The motors investigated were placed parallel to the container at predetermined distances during the experiment. The results show that the motors investigated suffered no functional limitations in the magnetic field of the MRI but, depending on the type of motor, the measurement distance and the state of the motor, the motors had different effects on the sequence images. A motor in the off-state placed immediately next to the object to be measured mainly causes artefacts because of its material properties. If, on the other hand, the piezomotor is in the on-state images with strong noise result when the motor is immediately next to the object being measured. The images regain their normal quality when the motor is approximately at a distance of 1 m from the object being investigated. Driving the motor inside the MRI, therefore, is only to be recommended during the pauses in scanning: this delivers artefact-free images if minimal, motor-specific distances are kept to. With regard to the three different types of sequences it was determined that the SE sequence was the least sensitive and the EPI sequence the most sensitive to disturbance. The GE sequence showed only minimal differences to the SE sequence with regard to signal-to-noise ratios. Since it requires considerably shorter scan-times it can be considered to be the most effective type of sequence under these conditions.

  8. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    NASA Astrophysics Data System (ADS)

    Rasmussen, Joachim H.; Hemmsen, Martin C.; Madsen, Signe S.; Hansen, Peter M.; Nielsen, Michael B.; Jensen, Jørgen A.

    2013-03-01

    A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequen- tial beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imag- ing (DRF-THI) in clinical scans. The scan sequence that was implemented on the UltraView system acquires both SASB-THI and DRF-THI simultaneously. Twenty-four simultaneously acquired video sequences of in-vivo abdominal SASB-THI and DRF-THI scans on 3 volunteers of 4 different sections of liver and kidney tissues were created. Videos of the in-vivo scans were presented in double blinded studies to two radiologists for image quality performance scoring. Limitations to the systems transmit stage prevented user defined transmit apodization to be applied. Field II simulations showed that side lobes in SASB could be improved by using Hanning transmit apodization. Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.

  9. Comparison of the quality of different magnetic resonance image sequences of multiple myeloma.

    PubMed

    Sun, Zhao-yong; Zhang, Hai-bo; Li, Shuo; Wang, Yun; Xue, Hua-dan; Jin, Zheng-yu

    2015-02-01

    To compare the image quality of T1WI fat phase,T1WI water phase, short time inversion recovery (STIR) sequence, and diffusion weighted imaging (DWI) sequence in the evaluation of multiple myeloma (MM). Totally 20MM patients were enrolled in this study. All patients underwent scanning at coronal T1WI fat phase, coronal T1WI water phase, coronal STIR sequence, and axial DWI sequence. The image quality of the four different sequences was evaluated. The image was divided into seven sections(head and neck, chest, abdomen, pelvis, thigh, leg, and foot), and the signal-to-noise ratio (SNR) of each section was measured at 7 segments (skull, spine, pelvis, humerus, femur, tibia and fibula and ribs) were measured. In addition, 20 active MM lesions were selected, and the contrast-to-noise ratio (CNR) of each scan sequence was calculated. The average image quality scores of T1WI fat phase,T1WI water phase, STIR sequence, and DWI sequence were 4.19 ± 0.70,4.16 ± 0.73,3.89 ± 0.70, and 3.76 ± 0.68, respectively. The image quality at T1-fat phase and T1-water phase were significantly higher than those at STIR (P=0.000 and P=0.001) and DWI sequence (both P=0.000); however, there was no significant difference between T1-fat and T1-water phase (P=0.723)and between STIR and DWI sequence (P=0.167). The SNR of T1WI fat phase was significantly higher than those of the other three sequences (all P=0.000), and there was no significant difference among the other three sequences (all P>0.05). Although the CNR of DWI sequences was slightly higher than those of the other three sequences,there was no significant difference among all of them (all P>0.05). Imaging at T1WI fat phase,T1WI water phase, STIR sequence, and DWI sequence has certain advantages,and they should be combined in the diagnosis of MM.

  10. Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients.

    PubMed

    Vos, Sjoerd B; Micallef, Caroline; Barkhof, Frederik; Hill, Andrea; Winston, Gavin P; Ourselin, Sebastien; Duncan, John S

    2018-03-02

    T2-FLAIR is the single most sensitive MRI contrast to detect lesions underlying focal epilepsies but 3D sequences used to obtain isotropic high-resolution images are susceptible to motion artefacts. Prospective motion correction (PMC) - demonstrated to improve 3D-T1 image quality in a pediatric population - was applied to high-resolution 3D-T2-FLAIR scans in adult epilepsy patients to evaluate its clinical benefit. Coronal 3D-T2-FLAIR scans were acquired with a 1mm isotropic resolution on a 3T MRI scanner. Two expert neuroradiologists reviewed 40 scans without PMC and 40 with navigator-based PMC. Visual assessment addressed six criteria of image quality (resolution, SNR, WM-GM contrast, intensity homogeneity, lesion conspicuity, diagnostic confidence) on a seven-point Likert scale (from non-diagnostic to outstanding). SNR was also objectively quantified within the white matter. PMC scans had near-identical scores on the criteria of image quality to non-PMC scans, with the notable exception that intensity homogeneity was generally worse. Using PMC, the percentage of scans with bad image quality was substantially lower than without PMC (3.25% vs. 12.5%) on the other five criteria. Quantitative SNR estimates revealed that PMC and non-PMC had no significant difference in SNR (P=0.07). Application of prospective motion correction to 3D-T2-FLAIR sequences decreased the percentage of low-quality scans, reducing the number of scans that need to be repeated to obtain clinically useful data. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  11. Suitability of holographic beam scanning in high resolution applications

    NASA Astrophysics Data System (ADS)

    Kalita, Ranjan; Goutam Buddha, S. S.; Boruah, Bosanta R.

    2018-02-01

    The high resolution applications of a laser scanning imaging system very much demand the accurate positioning of the illumination beam. The galvanometer scanner based beam scanning imaging systems, on the other hand, suffer from both short term and long term beam instability issues. Fortunately Computer generated holography based beam scanning offers extremely accurate beam steering, which can be very useful for imaging in high-resolution applications in confocal microscopy. The holographic beam scanning can be achieved by writing a sequence of holograms onto a spatial light modulator and utilizing one of the diffracted orders as the illumination beam. This paper highlights relative advantages of such a holographic beam scanning based confocal system and presents some of preliminary experimental results.

  12. In vitro evaluation of the imaging accuracy of C-arm conebeam CT in cerebral perfusion imaging

    PubMed Central

    Ganguly, A.; Fieselmann, A.; Boese, J.; Rohkohl, C.; Hornegger, J.; Fahrig, R.

    2012-01-01

    Purpose: The authors have developed a method to enable cerebral perfusion CT imaging using C-arm based conebeam CT (CBCT). This allows intraprocedural monitoring of brain perfusion during treatment of stroke. Briefly, the technique consists of acquiring multiple scans (each scan comprised of six sweeps) acquired at different time delays with respect to the start of the x-ray contrast agent injection. The projections are then reconstructed into angular blocks and interpolated at desired time points. The authors have previously demonstrated its feasibility in vivo using an animal model. In this paper, the authors describe an in vitro technique to evaluate the accuracy of their method for measuring the relevant temporal signals. Methods: The authors’ evaluation method is based on the concept that any temporal signal can be represented by a Fourier series of weighted sinusoids. A sinusoidal phantom was developed by varying the concentration of iodine as successive steps of a sine wave. Each step corresponding to a different dilution of iodine contrast solution contained in partitions along a cylinder. By translating the phantom along the axis at different velocities, sinusoidal signals at different frequencies were generated. Using their image acquisition and reconstruction algorithm, these sinusoidal signals were imaged with a C-arm system and the 3D volumes were reconstructed. The average value in a slice was plotted as a function of time. The phantom was also imaged using a clinical CT system with 0.5 s rotation. C-arm CBCT results using 6, 3, 2, and 1 scan sequences were compared to those obtained using CT. Data were compared for linear velocities of the phantom ranging from 0.6 to 1 cm/s. This covers the temporal frequencies up to 0.16 Hz corresponding to a frequency range within which 99% of the spectral energy for all temporal signals in cerebral perfusion imaging is contained. Results: The errors in measurement of temporal frequencies are mostly below 2% for all multiscan sequences. For single scan sequences, the errors increase sharply beyond 0.10 Hz. The amplitude errors increase with frequency and with decrease in the number of scans used. Conclusions: Our multiscan perfusion CT approach allows low errors in signal frequency measurement. Increasing the number of scans reduces the amplitude errors. A two-scan sequence appears to offer the best compromise between accuracy and the associated total x-ray and iodine dose. PMID:23127059

  13. A Spiral Spin-Echo MR Imaging Technique for Improved Flow Artifact Suppression in T1-Weighted Postcontrast Brain Imaging: A Comparison with Cartesian Turbo Spin-Echo.

    PubMed

    Li, Z; Hu, H H; Miller, J H; Karis, J P; Cornejo, P; Wang, D; Pipe, J G

    2016-04-01

    A challenge with the T1-weighted postcontrast Cartesian spin-echo and turbo spin-echo brain MR imaging is the presence of flow artifacts. Our aim was to develop a rapid 2D spiral spin-echo sequence for T1-weighted MR imaging with minimal flow artifacts and to compare it with a conventional Cartesian 2D turbo spin-echo sequence. T1-weighted brain imaging was performed in 24 pediatric patients. After the administration of intravenous gadolinium contrast agent, a reference Cartesian TSE sequence with a scanning time of 2 minutes 30 seconds was performed, followed by the proposed spiral spin-echo sequence with a scanning time of 1 minutes 18 seconds, with similar spatial resolution and volumetric coverage. The results were reviewed independently and blindly by 3 neuroradiologists. Scores from a 3-point scale were assigned in 3 categories: flow artifact reduction, subjective preference, and lesion conspicuity, if any. The Wilcoxon signed rank test was performed to evaluate the reviewer scores. The t test was used to evaluate the SNR. The Fleiss κ coefficient was calculated to examine interreader agreement. In 23 cases, spiral spin-echo was scored over Cartesian TSE in flow artifact reduction (P < .001). In 21 cases, spiral spin-echo was rated superior in subjective preference (P < .001). Ten patients were identified with lesions, and no statistically significant difference in lesion conspicuity was observed between the 2 sequences. There was no statistically significant difference in SNR between the 2 techniques. The Fleiss κ coefficient was 0.79 (95% confidence interval, 0.65-0.93). The proposed spiral spin-echo pulse sequence provides postcontrast images with minimal flow artifacts at a faster scanning time than its Cartesian TSE counterpart. © 2016 by American Journal of Neuroradiology.

  14. Noninvasive Localization of Prostate Cancer via Diffusion Sensitive MRI

    DTIC Science & Technology

    2008-03-01

    sequence, Haker et al and Roebuck et al using a line-scan diffusion sequence, and Vigneron et al using a fast spin-echo diffusion sequence (33,35-37...Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany CM. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted...36. Haker SJ, Szot Barnes A, Maier SE, Tempany CM, Mulkern RV. Diffusion Tensor Imaging for Prostate Cancer Detection: Preliminary Results from a

  15. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lingzhi, E-mail: hlingzhi@gmail.com, E-mail: raymond.muzic@case.edu; Traughber, Melanie; Su, Kuan-Hao

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstratingmore » the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2{sup ∗} = 1/T2{sup ∗}, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2{sup ∗} of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2{sup ∗} of human skull was measured as 0.2–0.3 ms{sup −1} depending on the specific region, which is more than ten times greater than the R2{sup ∗} of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone-enhanced images can be generated using a reduced sampled UTE sequence with no visible compromise in image quality and they preserved bone-to-air contrast with as low as a 25% sampling rate. Conclusions: This UTE strategy with angular undersampling preserves the image quality and contrast of cortical bone, while reducing the total scanning time by as much as 75%. The quantitative results of R2{sup ∗} and the water fraction of skull based on Dixon analysis of UTE images acquired at multiple echo times provide guidance for the clinical adoption and further parameter optimization of the UTE sequence when used for radiation therapy and MR-based PET attenuation correction.« less

  16. A new security solution to JPEG using hyper-chaotic system and modified zigzag scan coding

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-yong; Bai, Sen; Guo, Yu; Guo, Hui

    2015-05-01

    Though JPEG is an excellent compression standard of images, it does not provide any security performance. Thus, a security solution to JPEG was proposed in Zhang et al. (2014). But there are some flaws in Zhang's scheme and in this paper we propose a new scheme based on discrete hyper-chaotic system and modified zigzag scan coding. By shuffling the identifiers of zigzag scan encoded sequence with hyper-chaotic sequence and accurately encrypting the certain coefficients which have little relationship with the correlation of the plain image in zigzag scan encoded domain, we achieve high compression performance and robust security simultaneously. Meanwhile we present and analyze the flaws in Zhang's scheme through theoretical analysis and experimental verification, and give the comparisons between our scheme and Zhang's. Simulation results verify that our method has better performance in security and efficiency.

  17. Location of core diagnostic information across various sequences in brain MRI and implications for efficiency of MRI scanner utilization.

    PubMed

    Sharma, Aseem; Chatterjee, Arindam; Goyal, Manu; Parsons, Matthew S; Bartel, Seth

    2015-04-01

    Targeting redundancy within MRI can improve its cost-effective utilization. We sought to quantify potential redundancy in our brain MRI protocols. In this retrospective review, we aggregated 207 consecutive adults who underwent brain MRI and reviewed their medical records to document clinical indication, core diagnostic information provided by MRI, and its clinical impact. Contributory imaging abnormalities constituted positive core diagnostic information whereas absence of imaging abnormalities constituted negative core diagnostic information. The senior author selected core sequences deemed sufficient for extraction of core diagnostic information. For validating core sequences selection, four readers assessed the relative ease of extracting core diagnostic information from the core sequences. Potential redundancy was calculated by comparing the average number of core sequences to the average number of sequences obtained. Scanning had been performed using 9.4±2.8 sequences over 37.3±12.3 minutes. Core diagnostic information was deemed extractable from 2.1±1.1 core sequences, with an assumed scanning time of 8.6±4.8 minutes, reflecting a potential redundancy of 74.5%±19.1%. Potential redundancy was least in scans obtained for treatment planning (14.9%±25.7%) and highest in scans obtained for follow-up of benign diseases (81.4%±12.6%). In 97.4% of cases, all four readers considered core diagnostic information to be either easily extractable from core sequences or the ease to be equivalent to that from the entire study. With only one MRI lacking clinical impact (0.48%), overutilization did not seem to contribute to potential redundancy. High potential redundancy that can be targeted for more efficient scanner utilization exists in brain MRI protocols.

  18. gr-MRI: A software package for magnetic resonance imaging using software defined radios.

    PubMed

    Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright © 2016. Published by Elsevier Inc.

  19. Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features

    NASA Astrophysics Data System (ADS)

    Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen

    2018-02-01

    Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.

  20. A standardized evaluation of artefacts from metallic compounds during fast MR imaging

    PubMed Central

    Murakami, Shumei; Kataoka, Miyoshi; Kakimoto, Naoya; Shimamoto, Hiroaki; Kreiborg, Sven

    2016-01-01

    Objectives: Metallic compounds present in the oral and maxillofacial regions (OMRs) cause large artefacts during MR scanning. We quantitatively assessed these artefacts embedded within a phantom according to standards set by the American Society for Testing and Materials (ASTM). Methods: Seven metallic dental materials (each of which was a 10-mm3 cube embedded within a phantom) were scanned [i.e. aluminium (Al), silver alloy (Ag), type IV gold alloy (Au), gold–palladium–silver alloy (Au-Pd-Ag), titanium (Ti), nickel–chromium alloy (NC) and cobalt–chromium alloy (CC)] and compared with a reference image. Sequences included gradient echo (GRE), fast spin echo (FSE), gradient recalled acquisition in steady state (GRASS), a spoiled GRASS (SPGR), a fast SPGR (FSPGR), fast imaging employing steady state (FIESTA) and echo planar imaging (EPI; axial/sagittal planes). Artefact areas were determined according to the ASTM-F2119 standard, and artefact volumes were assessed using OsiriX MD software (Pixmeo, Geneva, Switzerland). Results: Tukey–Kramer post hoc tests were used for statistical comparisons. For most materials, scanning sequences eliciting artefact volumes in the following (ascending) order FSE-T1/FSE-T2 < FSPGR/SPGR < GRASS/GRE < FIESTA < EPI. For all scanning sequences, artefact volumes containing Au, Al, Ag and Au-Pd-Ag were significantly smaller than other materials (in which artefact volume size increased, respectively, from Ti < NC < CC). The artefact-specific shape (elicited by the cubic sample) depended on the scanning plane (i.e. a circular pattern for the axial plane and a “clover-like” pattern for the sagittal plane). Conclusions: The availability of standardized information on artefact size and configuration during MRI will enhance diagnosis when faced with metallic compounds in the OMR. PMID:27459058

  1. [Imaging characteristics of PROPELLER T2-weighted imaging].

    PubMed

    Goto, Masami; Aoki, Shigeki; Hayashi, Naoto; Mori, Harushi; Watanabe, Yasushi; Ino, Kenji; Satake, Yoshirou; Nishida, Katuji; Sato, Haruo; Iida, Kyouhito; Mima, Kazuo; Ohtomo, Kuni

    2004-11-01

    As the PROPELLER sequence is a combination of the radial scan and fast-spin-echo (FSE) sequence, it can be considered an FSE sequence with a motion correlation. However, there are some differences between PROPELLER and FSE owing to differences in k-space trajectory. We clarified the imaging characteristics of PROPELLER T2-weighted imaging (T2WI) for different parameters in comparison with usual FSE T2WI. When the same parameters were used, PROPELLER T2WI showed a higher signal-to-noise ratio (SNR) and lower spatial resolution than usual FSE. Effective echo time (TE) changed with different echo train lengths (ETL) or different bandwidths on PROPELLER, and imaging contrast changed accordingly to be more effective.

  2. Diffusion-weighted imaging in patients with acute brain ischemia at 3 T: current possibilities and future perspectives comparing conventional echoplanar diffusion-weighted imaging and fast spin echo diffusion-weighted imaging sequences using BLADE (PROPELLER).

    PubMed

    Fries, Peter; Runge, Val M; Kirchin, Miles A; Stemmer, Alto; Naul, L Gill; Wiliams, Kenneth D; Reith, Wolfgang; Bücker, Arno; Schneider, Günther

    2009-06-01

    To compare diffusion-weighted imaging (DWI) based on a fast spin echo (FSE) sequence using BLADE (PROPELLER) with conventional DWI-echoplanar imaging (EPI) techniques at 3 T and to demonstrate the influence of hardware developments on signal-to-noise ratio (SNR) with these techniques using 12- and 32-channel head coils. Fourteen patients with brain ischemia were evaluated with DWI using EPI and FSE BLADE sequences, with a 12-channel head coil, in the axial plane and 1 additional plane (either sagittal or coronal). SNR and CNR were calculated from region-of-interest measurements. Scans were evaluated in a blinded fashion by 2 experienced neuroradiologists. SNR of both DWI techniques was evaluated in 12 healthy volunteers using different parallel imaging (PI) factors (for the EPI sequence) and both the 12- and 32-channel coils. DWI-BLADE sequences acquired with the 12-channel coil revealed a significant reduction in SNR (mean +/- SD) of ischemic lesions (SNR(lesion) [5.0 +/- 2.5]), normal brain (SNR(brain) [3.0 +/- 1.9]), and subsequently in CNR (3.0 +/- 1.8) as compared with the DWI-EPI sequence (SNR(lesion) [9.3 +/- 5.2], SNR(brain) [7.7 +/- 3.5], CNR [6.1 +/- 2.8], P < 0.001). Despite this reduction in SNR and CNR, the blinded read revealed a marked preference for the DWI-BLADE sequence, or equality between the sequences, in the majority of patients because lesion detection was degraded by susceptibility artifacts on axial DWI-EPI scans in 14% to 43% of cases (but in no instance with the DWI-BLADE sequence). In particular, preference for the DWI-BLADE sequence or equality between the 2 techniques for lesion detection in the brainstem and cerebellum was observed. On some DWI-BLADE scans, in the additional plane, radial-like artifacts degraded lesion detection.In volunteers, SNR was significantly improved using the 32-channel coil, irrespective of scan technique. Comparing DWI-EPI acquired with the 12-channel coil (iPAT = 2) to DWI-BLADE acquired with the 32-channel coil, comparable SNR values were obtained. The 32-channel coil also makes feasible, with DWI-EPI, an increase in the PI factor to 4, which allows for a further reduction of bulk susceptibility artifacts. However, still DWI-BLADE sequences performed better because of absence of bulk susceptibility artifacts at comparable SNR values. Despite lower SNR at comparable PI factors, DWI-BLADE sequences acquired using the 12-channel coil are preferable in most instances, as compared with DWI-EPI sequences, because of the absence of susceptibility artifacts and subsequently improved depiction of ischemic lesions in the brainstem and cerebellum. With the 32-channel coil, recently FDA approved, DWI-BLADE acquired with an iPAT = 2 provides comparable SNR without bulk susceptibility artifacts as compared with the DWI-EPI sequences acquired for clinical routine to date and has the potential to replace the standard DWI technique for special indications like DWI of the cerebellum and the brainstem or in presence of metallic implants or hemorrhage.

  3. Investigation into the quantitative and qualitative characteristics of choroidal melanoma through magnetic resonance imaging and B-scan ultrasound

    PubMed Central

    Papayiannis, Vassilis; Tsaousis, Konstantinos T; Kouskouras, Constantinos A; Haritanti, Afroditi; Diakonis, Vasilios F; Tsinopoulos, Ioannis T

    2017-01-01

    Objective To investigate the homogeneity and vascularity of choroidal melanoma through magnetic resonance imaging (MRI) and brightness modulation (B-mode) ultrasound scan and their correlation with dimensions of tumor, as well as to measure the sensitivity of both modalities in retinal detachment (RD) detection. Materials and methods This retrospective chart review included patients diagnosed with choroidal melanoma. All these patients underwent MRI scans using T2-weighted (T2-WI) and T1-weighted (T1-WI) sequences, before and after an intravenous injection of paramagnetic contrast material. The patients were also examined using a B-mode ultrasound scan, and the results from both modalities were compared (tumor homogeneity, tumor height, tumor base diameter, and tumor vascularity). Results Forty-two patients (mean age=65.33±12.51 years) with choroidal melanoma were included in the study. Homogeneity was confirmed in 16 patients through ultrasound scan, in 19 patients through T1-WI sequence, in 21 patients through T2-WI sequence, and in 25 patients through T1-WI sequence + contrast (gadolinium). Patients with homogenous tumors presented with lower (P=0.0045) mean height than that of those with nonhomogenous tumors, whereas no statistically significant difference was found for base diameter measurements (P=0.056). Patients with tumors of high vascularity presented with greater mean height (P=0.000638) and greater mean base diameter compared with those with tumors of low vascularity (P=0.019543). RD was detected in 26 patients through T1-WI sequence, in 13 patients through T2-WI sequence, in 26 patients through T1-WI sequence + contrast, and in 32 patients through ultrasound scan, which proved to be the most sensitive modality. Conclusion The height of choroidal melanoma was positively correlated with tumor’s homogeneity. Melanomas of greater height were found to be less homogenous, due to increased degeneration and higher occurrence of intratumoral hemorrhage. In addition, choroidal melanoma’s height was also positively correlated with the level of its vascularity. Finally, ultrasound scan was found to be more sensitive than MRI in the detection of RD. PMID:28860706

  4. No scanning depth imaging system based on TOF

    NASA Astrophysics Data System (ADS)

    Sun, Rongchun; Piao, Yan; Wang, Yu; Liu, Shuo

    2016-03-01

    To quickly obtain a 3D model of real world objects, multi-point ranging is very important. However, the traditional measuring method usually adopts the principle of point by point or line by line measurement, which is too slow and of poor efficiency. In the paper, a no scanning depth imaging system based on TOF (time of flight) was proposed. The system is composed of light source circuit, special infrared image sensor module, processor and controller of image data, data cache circuit, communication circuit, and so on. According to the working principle of the TOF measurement, image sequence was collected by the high-speed CMOS sensor, and the distance information was obtained by identifying phase difference, and the amplitude image was also calculated. Experiments were conducted and the experimental results show that the depth imaging system can achieve no scanning depth imaging function with good performance.

  5. Image fusion pitfalls for cranial radiosurgery.

    PubMed

    Jonker, Benjamin P

    2013-01-01

    Stereotactic radiosurgery requires imaging to define both the stereotactic space in which the treatment is delivered and the target itself. Image fusion is the process of using rotation and translation to bring a second image set into alignment with the first image set. This allows the potential concurrent use of multiple image sets to define the target and stereotactic space. While a single magnetic resonance imaging (MRI) sequence alone can be used for delineation of the target and fiducials, there may be significant advantages to using additional imaging sets including other MRI sequences, computed tomography (CT) scans, and advanced imaging sets such as catheter-based angiography, diffusor tension imaging-based fiber tracking and positon emission tomography in order to more accurately define the target and surrounding critical structures. Stereotactic space is usually defined by detection of fiducials on the stereotactic head frame or mask system. Unfortunately MRI sequences are susceptible to geometric distortion, whereas CT scans do not face this problem (although they have poorer resolution of the target in most cases). Thus image fusion can allow the definition of stereotactic space to proceed from the geometrically accurate CT images at the same time as using MRI to define the target. The use of image fusion is associated with risk of error introduced by inaccuracies of the fusion process, as well as workflow changes that if not properly accounted for can mislead the treating clinician. The purpose of this review is to describe the uses of image fusion in stereotactic radiosurgery as well as its potential pitfalls.

  6. Novel automatic detection of pleura and B-lines (comet-tail artifacts) on in vivo lung ultrasound scans

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Hansen, Kristoffer Lindskov; Møller Sørensen, Hasse; Hemmsen, Martin Christian; Ewertsen, Caroline; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents a novel automatic method for detection of B-lines (comet-tail artifacts) in lung ultrasound scans. B-lines are the most commonly used artifacts for analyzing the pulmonary edema. They appear as laser-like vertical beams, which arise from the pleural line and spread down without fading to the edge of the screen. An increase in their number is associated with presence of edema. All the scans used in this study were acquired using a BK3000 ultrasound scanner (BK Ultrasound, Denmark) driving a 192-element 5:5 MHz wide linear transducer (10L2W, BK Ultrasound). The dynamic received focus technique was employed to generate the sequences. Six subjects, among those three patients after major surgery and three normal subjects, were scanned once and Six ultrasound sequences each containing 50 frames were acquired. The proposed algorithm was applied to all 300 in-vivo lung ultrasound images. The pleural line is first segmented on each image and then the B-line artifacts spreading down from the pleural line are detected and overlayed on the image. The resulting 300 images showed that the mean lateral distance between B-lines detected on images acquired from patients decreased by 20% in compare with that of normal subjects. Therefore, the method can be used as the basis of a method of automatically and qualitatively characterizing the distribution of B-lines.

  7. Extra projection data identification method for fast-continuous-rotation industrial cone-beam CT.

    PubMed

    Yang, Min; Duan, Shengling; Duan, Jinghui; Wang, Xiaolong; Li, Xingdong; Meng, Fanyong; Zhang, Jianhai

    2013-01-01

    Fast-continuous-rotation is an effective measure to improve the scanning speed and decrease the radiation dose for cone-beam CT. However, because of acceleration and deceleration of the motor, as well as the response lag of the scanning control terminals to the host PC, uneven-distributed and redundant projections are inevitably created, which seriously decrease the quality of the reconstruction images. In this paper, we first analyzed the aspects of the theoretical sequence chart of the fast-continuous-rotation mode. Then, an optimized sequence chart was proposed by extending the rotation angle span to ensure the effective 2π-span projections were situated in the stable rotation stage. In order to match the rotation angle with the projection image accurately, structure similarity (SSIM) index was used as a control parameter for extraction of the effective projection sequence which was exactly the complete projection data for image reconstruction. The experimental results showed that SSIM based method had a high accuracy of projection view locating and was easy to realize.

  8. Real-time chirp-coded imaging with a programmable ultrasound biomicroscope.

    PubMed

    Bosisio, Mattéo R; Hasquenoph, Jean-Michel; Sandrin, Laurent; Laugier, Pascal; Bridal, S Lori; Yon, Sylvain

    2010-03-01

    Ultrasound biomicroscopy (UBM) of mice can provide a testing ground for new imaging strategies. The UBM system presented in this paper facilitates the development of imaging and measurement methods with programmable design, arbitrary waveform coding, broad bandwidth (2-80 MHz), digital filtering, programmable processing, RF data acquisition, multithread/multicore real-time display, and rapid mechanical scanning (

  9. Comparison between multi-shot gradient echo EPI and balanced SSFP in unenhanced 3T MRA of thoracic aorta in healthy volunteers.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Nagayama, Yasunori; Oda, Seitaro; Utsunomiya, Daisuke; Kidoh, Masafumi; Yuki, Hideaki; Hirata, Kenichiro; Namimoto, Tomohiro; Kitajima, Mika; Morita, Kosuke; Funama, Yoshinori; Takemura, Atsushi; Tokuyasu, Shinichi; Okuaki, Tomoyuki; Yamashita, Yasuyuki

    2017-11-01

    The purpose of this study was to compare scan time and image quality between magnetic resonance angiography (MRA) of the thoracic aorta using a multi-shot gradient echo planar imaging (MSG-EPI) and MRA using balanced steady-state free precession (b-SSFP). Healthy volunteers (n=17) underwent unenhanced thoracic aorta MRA using balanced steady-state free precession (b-SSFP) and MSG-EPI sequences on a 3T MRI. The acquisition time, total scan time, signal-to-noise ratio (SNR) of the thoracic aorta, and the coefficient of variation (CV) of thoracic aorta were compared with paired t-tests. Two radiologists independently recorded the images' contrast, noise, sharpness, artifacts, and overall quality on a 4-point scale. The acquisition time was 36.2% shorter for MSG-EPI than b-SSFP (115.5±14.4 vs 181.0±14.9s, p<0.01). The total scan time was 40.4% shorter for MSG-EPI than b-SSFP (272±78 vs 456±144s, p<0.01). There was no significant difference in mean SNR between MSG-EPI and b-SSFP scans (17.3±3.6 vs 15.2±4.3, p=0.08). The CV was significantly lower for MSG-EPI than b-SSFP (0.2±0.1 vs. 0.5±0.2, p<0.01). All qualitative scores except for image noise were significantly higher in MSG-EPI than b-SSFP scans (p<0.05). The MSG-EPI sequence is a promising technique for shortening scan time and yielding more homogenous image quality in MRA of thoracic aorta on 3T scanners compared with the b-SSFP. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods

    PubMed Central

    de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C. W.; Petersen, Esben T.; De Vis, Jill B.

    2018-01-01

    Objective In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Materials and methods Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). Results The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson’s correlation coefficients >0.83, R2 .67–.97). The results from the downsampled data and the high-resolution data were similar. Conclusion Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which segmentation with established methods is performed. PMID:29672584

  11. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods.

    PubMed

    van der Kleij, Lisa A; de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C W; Petersen, Esben T; De Vis, Jill B

    2018-01-01

    In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson's correlation coefficients >0.83, R2 .67-.97). The results from the downsampled data and the high-resolution data were similar. Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which segmentation with established methods is performed.

  12. T2-weighted MRI of the upper abdomen: comparison of four fat-suppressed T2-weighted sequences including PROPELLER (BLADE) technique.

    PubMed

    Bayramoglu, Sibel; Kilickesmez, Ozgür; Cimilli, Tan; Kayhan, Arda; Yirik, Gülseren; Islim, Filiz; Alibek, Sedat

    2010-03-01

    The aim of this study was to compare four different fat-suppressed T2-weighted sequences with different techniques with regard to image quality and lesion detection in upper abdominal magnetic resonance imaging (MRI) scans. Thirty-two consecutive patients referred for upper abdominal MRI for the evaluation of various suspected pathologies were included in this study. Different T2-weighted sequences (free-breathing navigator-triggered turbo spin-echo [TSE], free-breathing navigator-triggered TSE with restore pulse (RP), breath-hold TSE with RP, and free-breathing navigator-triggered TSE with RP using the periodically rotated overlapping parallel lines with enhanced reconstruction technique [using BLADE, a Siemens implementation of this technique]) were used on all patients. All images were assessed independently by two radiologists. Assessments of motion artifacts; the edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were performed qualitatively. Quantitative analysis was performed by calculation of the signal-to-noise ratios for liver tissue and gallbladder as well as contrast-to-noise ratios of liver to spleen. Liver and gallbladder signal-to-noise ratios as well as liver to spleen contrast-to-noise ratios were significantly higher (P < .05) for the BLADE technique compared to all other sequences. In qualitative analysis, the severity of motion artifacts was significantly lower with T2-weighted free-breathing navigator-triggered BLADE sequences compared to other sequences (P < .01). The edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were significantly better with the BLADE sequence (P < .05). The T2-weighted free-breathing navigator-triggered TSE sequence with the BLADE technique is a promising approach for reducing motion artifacts and improving image quality in upper abdominal MRI scans.

  13. SAR and scan-time optimized 3D whole-brain double inversion recovery imaging at 7T.

    PubMed

    Pracht, Eberhard D; Feiweier, Thorsten; Ehses, Philipp; Brenner, Daniel; Roebroeck, Alard; Weber, Bernd; Stöcker, Tony

    2018-05-01

    The aim of this project was to implement an ultra-high field (UHF) optimized double inversion recovery (DIR) sequence for gray matter (GM) imaging, enabling whole brain coverage in short acquisition times ( ≈5 min, image resolution 1 mm 3 ). A 3D variable flip angle DIR turbo spin echo (TSE) sequence was optimized for UHF application. We implemented an improved, fast, and specific absorption rate (SAR) efficient TSE imaging module, utilizing improved reordering. The DIR preparation was tailored to UHF application. Additionally, fat artifacts were minimized by employing water excitation instead of fat saturation. GM images, covering the whole brain, were acquired in 7 min scan time at 1 mm isotropic resolution. SAR issues were overcome by using a dedicated flip angle calculation considering SAR and SNR efficiency. Furthermore, UHF related artifacts were minimized. The suggested sequence is suitable to generate GM images with whole-brain coverage at UHF. Due to the short total acquisition times and overall robustness, this approach can potentially enable DIR application in a routine setting and enhance lesion detection in neurological diseases. Magn Reson Med 79:2620-2628, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Motion Artifact Reduction in Pediatric Diffusion Tensor Imaging Using Fast Prospective Correction

    PubMed Central

    Alhamud, A.; Taylor, Paul A.; Laughton, Barbara; van der Kouwe, André J.W.; Meintjes, Ernesta M.

    2014-01-01

    Purpose To evaluate the patterns of head motion in scans of young children and to examine the influence of corrective techniques, both qualitatively and quantitatively. We investigate changes that both retrospective (with and without diffusion table reorientation) and prospective (implemented with a short navigator sequence) motion correction induce in the resulting diffusion tensor measures. Materials and Methods Eighteen pediatric subjects (aged 5–6 years) were scanned using 1) a twice-refocused, 2D diffusion pulse sequence, 2) a prospectively motion-corrected, navigated diffusion sequence with reacquisition of a maximum of five corrupted diffusion volumes, and 3) a T1-weighted structural image. Mean fractional anisotropy (FA) values in white and gray matter regions, as well as tractography in the brainstem and projection fibers, were evaluated to assess differences arising from retrospective (via FLIRT in FSL) and prospective motion correction. In addition to human scans, a stationary phantom was also used for further evaluation. Results In several white and gray matter regions retrospective correction led to significantly (P < 0.05) reduced FA means and altered distributions compared to the navigated sequence. Spurious tractographic changes in the retrospectively corrected data were also observed in subject data, as well as in phantom and simulated data. Conclusion Due to the heterogeneity of brain structures and the comparatively low resolution (~2 mm) of diffusion data using 2D single shot sequencing, retrospective motion correction is susceptible to distortion from partial voluming. These changes often negatively bias diffusion tensor imaging parameters. Prospective motion correction was shown to produce smaller changes. PMID:24935904

  15. Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction.

    PubMed

    Alhamud, A; Taylor, Paul A; Laughton, Barbara; van der Kouwe, André J W; Meintjes, Ernesta M

    2015-05-01

    To evaluate the patterns of head motion in scans of young children and to examine the influence of corrective techniques, both qualitatively and quantitatively. We investigate changes that both retrospective (with and without diffusion table reorientation) and prospective (implemented with a short navigator sequence) motion correction induce in the resulting diffusion tensor measures. Eighteen pediatric subjects (aged 5-6 years) were scanned using 1) a twice-refocused, 2D diffusion pulse sequence, 2) a prospectively motion-corrected, navigated diffusion sequence with reacquisition of a maximum of five corrupted diffusion volumes, and 3) a T1 -weighted structural image. Mean fractional anisotropy (FA) values in white and gray matter regions, as well as tractography in the brainstem and projection fibers, were evaluated to assess differences arising from retrospective (via FLIRT in FSL) and prospective motion correction. In addition to human scans, a stationary phantom was also used for further evaluation. In several white and gray matter regions retrospective correction led to significantly (P < 0.05) reduced FA means and altered distributions compared to the navigated sequence. Spurious tractographic changes in the retrospectively corrected data were also observed in subject data, as well as in phantom and simulated data. Due to the heterogeneity of brain structures and the comparatively low resolution (∼2 mm) of diffusion data using 2D single shot sequencing, retrospective motion correction is susceptible to distortion from partial voluming. These changes often negatively bias diffusion tensor imaging parameters. Prospective motion correction was shown to produce smaller changes. © 2014 Wiley Periodicals, Inc.

  16. Denoising time-resolved microscopy image sequences with singular value thresholding.

    PubMed

    Furnival, Tom; Leary, Rowan K; Midgley, Paul A

    2017-07-01

    Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic processes in both the physical and life sciences. However, the image sequences are often corrupted by noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample. Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the issue of how much thresholding to apply in a robust and automated manner. The performance of the technique is demonstrated using simulated image sequences, as well as experimental scanning transmission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics are recovered at rates of up to 32 frames per second. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Multimodal Registration of White Matter Brain Data via Optimal Mass Transport.

    PubMed

    Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L; Kikinis, Ron; Tannenbaum, Allen

    2008-09-01

    The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A . Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets.

  18. Multimodal Registration of White Matter Brain Data via Optimal Mass Transport

    PubMed Central

    Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M.; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L.; Kikinis, Ron; Tannenbaum, Allen

    2017-01-01

    The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets. PMID:28626844

  19. Evaluation of MRI sequences for quantitative T1 brain mapping

    NASA Astrophysics Data System (ADS)

    Tsialios, P.; Thrippleton, M.; Glatz, A.; Pernet, C.

    2017-11-01

    T1 mapping constitutes a quantitative MRI technique finding significant application in brain imaging. It allows evaluation of contrast uptake, blood perfusion, volume, providing a more specific biomarker of disease progression compared to conventional T1-weighted images. While there are many techniques for T1-mapping there is a wide range of reported T1-values in tissues, raising the issue of protocols reproducibility and standardization. The gold standard for obtaining T1-maps is based on acquiring IR-SE sequence. Widely used alternative sequences are IR-SE-EPI, VFA (DESPOT), DESPOT-HIFI and MP2RAGE that speed up scanning and fitting procedures. A custom MRI phantom was used to assess the reproducibility and accuracy of the different methods. All scans were performed using a 3T Siemens Prisma scanner. The acquired data processed using two different codes. The main difference was observed for VFA (DESPOT) which grossly overestimated T1 relaxation time by 214 ms [126 270] compared to the IR-SE sequence. MP2RAGE and DESPOT-HIFI sequences gave slightly shorter time than IR-SE (~20 to 30ms) and can be considered as alternative and time-efficient methods for acquiring accurate T1 maps of the human brain, while IR-SE-EPI gave identical result, at a cost of a lower image quality.

  20. Image fusion pitfalls for cranial radiosurgery

    PubMed Central

    Jonker, Benjamin P.

    2013-01-01

    Stereotactic radiosurgery requires imaging to define both the stereotactic space in which the treatment is delivered and the target itself. Image fusion is the process of using rotation and translation to bring a second image set into alignment with the first image set. This allows the potential concurrent use of multiple image sets to define the target and stereotactic space. While a single magnetic resonance imaging (MRI) sequence alone can be used for delineation of the target and fiducials, there may be significant advantages to using additional imaging sets including other MRI sequences, computed tomography (CT) scans, and advanced imaging sets such as catheter-based angiography, diffusor tension imaging-based fiber tracking and positon emission tomography in order to more accurately define the target and surrounding critical structures. Stereotactic space is usually defined by detection of fiducials on the stereotactic head frame or mask system. Unfortunately MRI sequences are susceptible to geometric distortion, whereas CT scans do not face this problem (although they have poorer resolution of the target in most cases). Thus image fusion can allow the definition of stereotactic space to proceed from the geometrically accurate CT images at the same time as using MRI to define the target. The use of image fusion is associated with risk of error introduced by inaccuracies of the fusion process, as well as workflow changes that if not properly accounted for can mislead the treating clinician. The purpose of this review is to describe the uses of image fusion in stereotactic radiosurgery as well as its potential pitfalls. PMID:23682338

  1. Improving resolution of MR images with an adversarial network incorporating images with different contrast.

    PubMed

    Kim, Ki Hwan; Do, Won-Joon; Park, Sung-Hong

    2018-05-04

    The routine MRI scan protocol consists of multiple pulse sequences that acquire images of varying contrast. Since high frequency contents such as edges are not significantly affected by image contrast, down-sampled images in one contrast may be improved by high resolution (HR) images acquired in another contrast, reducing the total scan time. In this study, we propose a new deep learning framework that uses HR MR images in one contrast to generate HR MR images from highly down-sampled MR images in another contrast. The proposed convolutional neural network (CNN) framework consists of two CNNs: (a) a reconstruction CNN for generating HR images from the down-sampled images using HR images acquired with a different MRI sequence and (b) a discriminator CNN for improving the perceptual quality of the generated HR images. The proposed method was evaluated using a public brain tumor database and in vivo datasets. The performance of the proposed method was assessed in tumor and no-tumor cases separately, with perceptual image quality being judged by a radiologist. To overcome the challenge of training the network with a small number of available in vivo datasets, the network was pretrained using the public database and then fine-tuned using the small number of in vivo datasets. The performance of the proposed method was also compared to that of several compressed sensing (CS) algorithms. Incorporating HR images of another contrast improved the quantitative assessments of the generated HR image in reference to ground truth. Also, incorporating a discriminator CNN yielded perceptually higher image quality. These results were verified in regions of normal tissue as well as tumors for various MRI sequences from pseudo k-space data generated from the public database. The combination of pretraining with the public database and fine-tuning with the small number of real k-space datasets enhanced the performance of CNNs in in vivo application compared to training CNNs from scratch. The proposed method outperformed the compressed sensing methods. The proposed method can be a good strategy for accelerating routine MRI scanning. © 2018 American Association of Physicists in Medicine.

  2. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  3. Minor head injury in children.

    PubMed

    Klig, Jean E; Kaplan, Carl P

    2010-06-01

    This review will examine mild closed head injury (CHI) and the current evidence on head computed tomography (CT) imaging risks in children, prediction rules to guide decisions on CT scan use, and issues of concussion after initial evaluation. The current literature offers preliminary evidence on the risks of radiation exposure from CT scans in children. A recent study introduces a validated prediction rule for use in mild CHI, to limit the number of CT scans performed. Concurrent with this progress, fast (or short sequence) MRI represents an emerging technology that may prove to be a viable alternative to CT scan use in certain cases of mild CHI where imaging is desired. The initial emergency department evaluation for mild CHI is the start point for a sequence of follow-up to assure that postconcussive symptoms fully resolve. The literature on sports-related concussion offers some information that may be used for patients with non-sports-related concussion. It is clear that CT scan use should be as safe and limited in scope as possible for children. Common decisions on the use of CT imaging for mild head injury can now be guided by a prediction rule for clinically important traumatic brain injury. Parameters for the follow-up care of patients with mild CHI after emergency department discharge are needed in the future to assure that postconcussive symptoms are adequately screened for full resolution.

  4. Fast carotid artery MR angiography with compressed sensing based three-dimensional time-of-flight sequence.

    PubMed

    Li, Bo; Li, Hao; Dong, Li; Huang, Guofu

    2017-11-01

    In this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF). A pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one. There were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P>0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2× to 5× exhibit the comparable lumen definition to the corresponding images at 1×. By combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol. Copyright © 2017. Published by Elsevier Inc.

  5. Fast simultaneous noncontrast angiography and intraplaque hemorrhage (fSNAP) sequence for carotid artery imaging.

    PubMed

    Chen, Shuo; Ning, Jia; Zhao, Xihai; Wang, Jinnan; Zhou, Zechen; Yuan, Chun; Chen, Huijun

    2017-02-01

    To propose a fast simultaneous noncontrast angiography and intraplaque hemorrhage (fSNAP) sequence for carotid artery imaging. The proposed fSNAP sequence uses a low-resolution reference acquisition for phase-sensitive reconstruction to speed up the scan, and an inversion recovery acquisition with arbitrary k-space filling order to generate similar contrast to conventional SNAP. Four healthy volunteers and eight patients were recruited to test the performance of fSNAP in vivo. The lumen area quantification, muscle-blood CNR, IPH-blood CNR, lumen SNR, and standard deviation and intraplaque hemorrhage (IPH) detection accuracy were compared between fSNAP and SNAP. By using a low-resolution reference acquisition with 1/4 matrix size of the full-resolution reference scan, the scan time of fSNAP was 37.5% less than that of SNAP. A high agreement of lumen area measurement (ICC = 0.97, 95% CI: 0.96-0.99) and IPH detection (Kappa = 1) were found between fSNAP and SNAP. Also, no significant difference was found for muscle-blood CNR (P = 0.25), IPH-blood CNR (P = 0.35), lumen SNR (P = 0.60), and standard deviation (P = 0.46) between the two techniques. The feasibility of fSNAP was validated. fSNAP can improve the imaging efficiency with similar performance to SNAP on carotid artery imaging. Magn Reson Med 77:753-758, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Review and comparison of geometric distortion correction schemes in MR images used in stereotactic radiosurgery applications

    NASA Astrophysics Data System (ADS)

    Pappas, E. P.; Dellios, D.; Seimenis, I.; Moutsatsos, A.; Georgiou, E.; Karaiskos, P.

    2017-11-01

    In Stereotactic Radiosurgery (SRS), MR-images are widely used for target localization and delineation in order to take advantage of the superior soft tissue contrast they exhibit. However, spatial dose delivery accuracy may be deteriorated due to geometric distortions which are partly attributed to static magnetic field inhomogeneity and patient/object-induced chemical shift and susceptibility related artifacts, known as sequence-dependent distortions. Several post-imaging sequence-dependent distortion correction schemes have been proposed which mainly employ the reversal of read gradient polarity. The scope of this work is to review, evaluate and compare the efficacy of two proposed correction approaches. A specially designed phantom which incorporates 947 control points (CPs) for distortion detection was utilized. The phantom was MR scanned at 1.5T using the head coil and the clinically employed pulse sequence for SRS treatment planning. An additional scan was performed with identical imaging parameters except for reversal of read gradient polarity. In-house MATLAB routines were developed for implementation of the signal integration and average-image distortion correction techniques. The mean CP locations of the two MR scans were regarded as the reference CP distribution. Residual distortion was assessed by comparing the corrected CP locations with corresponding reference positions. Mean absolute distortion on frequency encoding direction was reduced from 0.34mm (original images) to 0.15mm and 0.14mm following application of signal integration and average-image methods, respectively. However, a maximum residual distortion of 0.7mm was still observed for both techniques. The signal integration method relies on the accuracy of edge detection and requires 3-4 hours of post-imaging computational time. The average-image technique is a more efficient (processing time of the order of seconds) and easier to implement method to improve geometric accuracy in such applications.

  7. Ultrafast Brain MRI: Clinical Deployment and Comparison to Conventional Brain MRI at 3T.

    PubMed

    Prakkamakul, Supada; Witzel, Thomas; Huang, Susie; Boulter, Daniel; Borja, Maria J; Schaefer, Pamela; Rosen, Bruce; Heberlein, Keith; Ratai, Eva; Gonzalez, Gilberto; Rapalino, Otto

    2016-09-01

    To compare an ultrafast brain magnetic resonance imaging (MRI) protocol to the conventional protocol in motion-prone inpatient clinical settings. This retrospective study was HIPAA compliant and approved by the Institutional Review Board with waived inform consent. Fifty-nine inpatients (30 males, 29 females; mean age 55.1, range 23-93 years)who underwent 3-Tesla brain MRI using ultrafast and conventional protocols, both including five sequences, were included in the study. The total scan time for five ultrafast sequences was 4 minutes 59 seconds. The ideal conventional acquisition time was 10 minutes 32 seconds but the actual acquisition took 15-20 minutes. The average scan times for ultrafast localizers, T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted, T2*-weighted sequences were 14, 41, 62, 96, 80, 6 seconds, respectively. Two blinded neuroradiologists independently assessed three aspects: (1) image quality, (2) gray-white matter (GM-WM) differentiation, and (3) diagnostic concordance for the detection of six clinically relevant imaging findings. Wilcoxon signed-rank test was used to compare image quality and GM-WM scores. Interobserver reproducibility was calculated. The ultrafast T1-weighted sequence demonstrated significantly better image quality (P = .005) and GM-WM differentiation (P < .001) compared to the conventional sequence. There was high agreement (>85%) between both protocols for the detection of mass-like lesion, hemorrhage, diffusion restriction, WM FLAIR hyperintensities, subarachnoid FLAIR hyperintensities, and hydrocephalus. The ultrafast protocol achieved at least comparable image quality and high diagnostic concordance compared to the conventional protocol. This fast protocol can be a viable option to replace the conventional protocol in motion-prone inpatient clinical settings. Copyright © 2016 by the American Society of Neuroimaging.

  8. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE).

    PubMed

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-04-01

    To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the gravitational direction. Repeatability for three volunteers was within 0.7% for T1 and 1.9% for T2*. 3D T1 and T2* maps of the entire lung can be obtained in a single scan of ∼10 min with a resolution of 2.5 × 2.5 × 6 mm 3 . 2 J. Magn. Reson. Imaging 2017;45:1097-1104. 2016 International Society for Magnetic Resonance in Medicine.

  9. Magnetic resonance imaging of third molars: developing a protocol suitable for forensic age estimation.

    PubMed

    De Tobel, Jannick; Hillewig, Elke; Bogaert, Stephanie; Deblaere, Karel; Verstraete, Koenraad

    2017-03-01

    Established dental age estimation methods in sub-adults study the development of third molar root apices on radiographs. In living individuals, however, avoiding ionising radiation is expedient. Studying dental development with magnetic resonance imaging complies with this requirement, adding the advantage of imaging in three dimensions. To elaborate the development of an MRI protocol to visualise all third molars for forensic age estimation, with particular attention to the development of the root apex. Ex vivo scans of porcine jaws and in vivo scans of 10 volunteers aged 17-25 years were performed to select adequate sequences. Studied parameters were T1 vs T2 weighting, ultrashort echo time (UTE), fat suppression, in plane resolution, slice thickness, 3D imaging, signal-to-noise ratio, and acquisition time. A bilateral four-channel flexible surface coil was used. Two observers evaluated the suitability of the images. T2-weighted images were preferred to T1-weighted images. To clearly distinguish root apices in (almost) fully developed third molars an in plane resolution of 0.33 × 0.33 mm 2 was deemed necessary. Taking acquisition time limits into account, only a T2 FSE sequence with slice thickness of 2 mm generated images with sufficient resolution and contrast. UTE, thinner slice T2 FSE and T2 3D FSE sequences could not generate the desired resolution within 6.5 minutes. Three Tesla MRI of the third molars is a feasible technique for forensic age estimation, in which a T2 FSE sequence can provide the desired in plane resolution within a clinically acceptable acquisition time.

  10. PET Imaging Stability Measurements During Simultaneous Pulsing of Aggressive MR Sequences on the SIGNA PET/MR System.

    PubMed

    Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H

    2018-01-01

    The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  12. Non-Cartesian Balanced SSFP Pulse Sequences for Real-Time Cardiac MRI

    PubMed Central

    Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.

    2015-01-01

    Purpose To develop a new spiral-in/out balanced steady-state free precession (bSSFP) pulse sequence for real-time cardiac MRI and compare it with radial and spiral-out techniques. Methods Non-Cartesian sampling strategies are efficient and robust to motion and thus have important advantages for real-time bSSFP cine imaging. This study describes a new symmetric spiral-in/out sequence with intrinsic gradient moment compensation and SSFP refocusing at TE=TR/2. In-vivo real-time cardiac imaging studies were performed to compare radial, spiral-out, and spiral-in/out bSSFP pulse sequences. Furthermore, phase-based fat-water separation taking advantage of the refocusing mechanism of the spiral-in/out bSSFP sequence was also studied. Results The image quality of the spiral-out and spiral-in/out bSSFP sequences was improved with off-resonance and k-space trajectory correction. The spiral-in/out bSSFP sequence had the highest SNR, CNR, and image quality ratings, with spiral-out bSSFP sequence second in each category and the radial bSSFP sequence third. The spiral-in/out bSSFP sequence provides separated fat and water images with no additional scan time. Conclusions In this work a new spiral-in/out bSSFP sequence was developed and tested. The superiority of spiral bSSFP sequences over the radial bSSFP sequence in terms of SNR and reduced artifacts was demonstrated in real-time MRI of cardiac function without image acceleration. PMID:25960254

  13. A simple acquisition strategy to avoid off-resonance blurring in spiral imaging with redundant spiral-in/out k-space trajectories

    PubMed Central

    Fielden, Samuel W.; Meyer, Craig H.

    2014-01-01

    Purpose The major hurdle to widespread adoption of spiral trajectories has been their poor off-resonance performance. Here we present a self-correcting spiral k-space trajectory that avoids much of the well-known spiral blurring during data acquisition. Theory and Methods In comparison with a traditional spiral-out trajectory, the spiral-in/out trajectory has improved off-resonance performance. By combining two spiral-in/out acquisitions, one rotated 180° in k-space compared to the other, multi-shot spiral-in/out artifacts are eliminated. A phantom was scanned with the center frequency manually tuned 20, 40, 80, and 160 Hz off-resonance with both a spiral-out gradient echo sequence and the redundant spiral-in/out sequence. The phantom was also imaged in an oblique orientation in order to demonstrate improved concomitant gradient field performance of the sequence, and was additionally incorporated into a spiral turbo spin echo sequence for brain imaging. Results Phantom studies with manually-tuned off-resonance agree well with theoretical calculations, showing that moderate off-resonance is well-corrected by this acquisition scheme. Blur due to concomitant fields is reduced, and good results are obtained in vivo. Conclusion The redundant spiral-in/out trajectory results in less image blur for a given readout length than a traditional spiral-out scan, reducing the need for complex off-resonance correction algorithms. PMID:24604539

  14. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T.

    PubMed

    Uwano, Ikuko; Kudo, Kohsuke; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Ito, Kenji; Harada, Taisuke; Ogawa, Akira; Sasaki, Makoto

    2014-02-01

    To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the "New Segment" module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.

  15. A simple acquisition strategy to avoid off-resonance blurring in spiral imaging with redundant spiral-in/out k-space trajectories.

    PubMed

    Fielden, Samuel W; Meyer, Craig H

    2015-02-01

    The major hurdle to widespread adoption of spiral trajectories has been their poor off-resonance performance. Here we present a self-correcting spiral k-space trajectory that avoids much of the well-known spiral blurring during data acquisition. In comparison with a traditional spiral-out trajectory, the spiral-in/out trajectory has improved off-resonance performance. By combining two spiral-in/out acquisitions, one rotated 180° in k-space compared with the other, multishot spiral-in/out artifacts are eliminated. A phantom was scanned with the center frequency manually tuned 20, 40, 80, and 160 Hz off-resonance with both a spiral-out gradient echo sequence and the redundant spiral-in/out sequence. The phantom was also imaged in an oblique orientation in order to demonstrate improved concomitant gradient field performance of the sequence. Additionally, the trajectory was incorporated into a spiral turbo spin echo sequence for brain imaging. Phantom studies with manually tuned off-resonance agree well with theoretical calculations, showing that moderate off-resonance is well-corrected by this acquisition scheme. Blur due to concomitant fields is reduced, and good results are obtained in vivo. The redundant spiral-in/out trajectory results in less image blur for a given readout length than a traditional spiral-out scan, reducing the need for complex off-resonance correction algorithms. © 2014 Wiley Periodicals, Inc.

  16. SU-E-J-90: MRI-Based Treatment Simulation and Patient Setup for Radiation Therapy of Brain Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y; Cao, M; Han, F

    2014-06-01

    Purpose: Traditional radiation therapy of cancer is heavily dependent on CT. CT provides excellent depiction of the bones but lacks good soft tissue contrast, which makes contouring difficult. Often, MRIs are fused with CT to take advantage of its superior soft tissue contrast. Such an approach has drawbacks. It is desirable to perform treatment simulation entirely based on MRI. To achieve MR-based simulation for radiation therapy, bone imaging is an important challenge because of the low MR signal intensity from bone due to its ultra-short T2 and T1, which presents difficulty for both dose calculation and patient setup in termsmore » of digitally reconstructed radiograph (DRR) generation. Current solutions will either require manual bone contouring or multiple MR scans. We present a technique to generate DRR using MRI with an Ultra Short Echo Time (UTE) sequence which is applicable to both OBI and ExacTrac 2D patient setup. Methods: Seven brain cancer patients were scanned at 1.5 Tesla using a radial UTE sequence. The sequence acquires two images at two different echo times. The two images were processed using in-house software. The resultant bone images were subsequently loaded into commercial systems to generate DRRs. Simulation and patient clinical on-board images were used to evaluate 2D patient setup with MRI-DRRs. Results: The majority bones are well visualized in all patients. The fused image of patient CT with the MR bone image demonstrates the accuracy of automatic bone identification using our technique. The generated DRR is of good quality. Accuracy of 2D patient setup by using MRI-DRR is comparable to CT-based 2D patient setup. Conclusion: This study shows the potential of DRR generation with single MR sequence. Further work will be needed on MR sequence development and post-processing procedure to achieve robust MR bone imaging for other human sites in addition to brain.« less

  17. Multiple-mouse MRI with multiple arrays of receive coils.

    PubMed

    Ramirez, Marc S; Esparza-Coss, Emilio; Bankson, James A

    2010-03-01

    Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a 3-fold acceleration was achieved with signal-to-noise ratio in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. (c) 2010 Wiley-Liss, Inc.

  18. Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data

    DOE PAGES

    Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.

    2016-04-06

    An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less

  19. Fetal brain volumetry through MRI volumetric reconstruction and segmentation

    PubMed Central

    Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.

    2013-01-01

    Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848

  20. Radiofrequency artefacts in echoplanar imaging induced by two 1.5 T MR scanners in close proximity.

    PubMed

    Li, X; Cui, J; Christopasak, S P; Kumar, A; Peng, Z-G

    2014-06-01

    The purpose of this study was to assess radio frequency (RF) artefacts in echoplanar imaging (EPI) induced by two 1.5 T MR scanners in close proximity and to find an effective method to correct them. Based on the intact shielding of rooms, experiments were performed by two MR scanners with similar centre frequencies. Phantom A (PA) was scanned in one scanner by EPI at different bandwidths (BWs). Simultaneously, phantom B was scanned in a fixed sequence for scanning with the other scanner. RF artefact gaps of PA, scanning time and the image signal-noise ratio (SNR) were measured and recorded. Statistical analysis was performed with the repeated-measures analysis of variance test. Based on findings obtained from PA, three healthy volunteers were studied at a conventional BW and a lower BW to observe the artefact variance. EPI RF artefacts were symmetrically situated in both sides of the image following the phase-encoding direction. The gap size of the artefact became larger and the SNR was significantly improved with a narrower BW. RF artefacts with a lower BW in volunteers presented the same characteristic as PA. For EPI RF artefacts produced by two 1.5 T MR scanners with approximately similar centre frequencies, we can reduce BWs in a suitable range to minimize the effect on MRI. MR scanners with the same field strength installed in the same vicinity might produce RF artefacts in the sequence at larger BWs. Reducing BWs properly is effective to control the position of artefacts and improve the image quality.

  1. Mapping Diffusion in a Living Cell via the Phasor Approach

    PubMed Central

    Ranjit, Suman; Lanzano, Luca; Gratton, Enrico

    2014-01-01

    Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145

  2. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE).

    PubMed

    Lee, Young Han; Hahn, Seok; Lim, Daekeon; Suh, Jin-Suck

    2017-02-01

    Background Conventionally, two-dimensional (2D) fast spin-echo (FSE) sequences have been widely used for clinical cartilage imaging as well as gradient (GRE) sequences. Recently, three-dimensional (3D) volumetric magnetic resonance imaging (MRI) has been introduced with one 3D volumetric scan, and this is replacing slice-by-slice 2D MR scans. Purpose To evaluate the image quality and diagnostic performance of two 3D sequences for abnormalities of knee cartilage: fat-suppressed (FS) FSE-based 3D volume isotropic turbo spin-echo acquisition (VISTA) and GRE-based 3D T1 high-resolution isovolumetric examination (THRIVE). Material and Methods The institutional review board approved the protocol of this retrospective review. This study enrolled 40 patients (41 knees) with arthroscopically confirmed abnormalities of cartilage. All patients underwent isovoxel 3D-VISTA and 3D-THRIVE MR sequences on 3T MRI. We assessed the cartilage grade on the two 3D sequences using arthroscopy as a gold standard. Inter-observer agreement for each technique was evaluated with the intraclass correlation coefficient (ICC). Differences in the area under the curve (AUC) were compared between the 3D-THRIVE and 3D-VISTA. Results Although inter-observer agreement for both sequences was excellent, the inter-observer agreement for 3D-VISTA was higher than for 3D-THRIVE for cartilage grading in all regions of the knee. There was no significant difference in the diagnostic performance ( P > 0.05) between the two sequences for detecting cartilage grade. Conclusion FSE-based 3D-VISTA images had good diagnostic performance that was comparable to GRE-based 3D-THRIVE images in the evaluation of knee cartilage, and can be used in routine knee MR protocols for the evaluation of cartilage.

  3. MPI as high temporal resolution imaging technique for in vivo bolus tracking of Ferucarbotran in mouse model

    NASA Astrophysics Data System (ADS)

    Jung, C.; Salamon, J.; Hofmann, M.; Kaul, M. G.; Adam, G.; Ittrich, H.; Knopp, T.

    2016-03-01

    Purpose: The goal of this study was to achieve a real time 3D visualisation of the murine cardiovascular system by intravenously injected superparamagnetic nanoparticles using Magnetic particle imaging (MPI). Material and Methods: MPI scans of FVB mice were performed using a 3D imaging sequence (1T/m gradient strength, 10mT drive-field strength). A dynamic scan with a temporal resolution of 21.5ms per 3D volume acquisition was performed. 50μl ferucarbotran (Resovist®, Bayer Healthcare AG) were injected into the tail vein after baseline MPI measurements. As MPI delivers no anatomic information, MRI scans at a 7T ClinScan (Bruker) were performed using a T2-weighted 2D TSE sequence. The reconstruction of the MPI data was performed on the MPI console (ParaVision 6.0/MPI, Bruker). Image fusion was done using additional image processing software (Imalytics, Philips). The dynamic information was extracted using custom software developed in the Julia programming environment. Results: The combined MRI-MPI measurements were carried out successfully. MPI data clearly demonstrated the passage of the SPIO tracer through the inferior vena cava, the heart and finally the liver. By co-registration with MRI the anatomical regions were identified. Due to the volume frame rate of about 46 volumes per second a signal modulation with the frequency of the heart beat was detectable and a heart beat of 520 beats per minute (bpm) has been assumed. Moreover, the blood flow velocity of approximately 5cm/s in the vena cava has been estimated. Conclusions: The high temporal resolution of MPI allows real-time imaging and bolus tracking of intravenous injected nanoparticles and offers a real time tool to assess blood flow velocity.

  4. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    PubMed

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  5. Comprehensive Cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE

    PubMed Central

    2011-01-01

    Background Quantitative noninvasive imaging of myocardial mechanics in mice enables studies of the roles of individual genes in cardiac function. We sought to develop comprehensive three-dimensional methods for imaging myocardial mechanics in mice. Methods A 3D cine DENSE pulse sequence was implemented on a 7T small-bore scanner. The sequence used three-point phase cycling for artifact suppression and a stack-of-spirals k-space trajectory for efficient data acquisition. A semi-automatic 2D method was adapted for 3D image segmentation, and automated 3D methods to calculate strain, twist, and torsion were employed. A scan protocol that covered the majority of the left ventricle in a scan time of less than 25 minutes was developed, and seven healthy C57Bl/6 mice were studied. Results Using these methods, multiphase normal and shear strains were measured, as were myocardial twist and torsion. Peak end-systolic values for the normal strains at the mid-ventricular level were 0.29 ± 0.17, -0.13 ± 0.03, and -0.18 ± 0.14 for Err, Ecc, and Ell, respectively. Peak end-systolic values for the shear strains were 0.00 ± 0.08, 0.04 ± 0.12, and 0.03 ± 0.07 for Erc, Erl, and Ecl, respectively. The peak end-systolic normalized torsion was 5.6 ± 0.9°. Conclusions Using a 3D cine DENSE sequence tailored for cardiac imaging in mice at 7 T, a comprehensive assessment of 3D myocardial mechanics can be achieved with a scan time of less than 25 minutes and an image analysis time of approximately 1 hour. PMID:22208954

  6. Steer-PROP: a GRASE-PROPELLER sequence with interecho steering gradient pulses.

    PubMed

    Srinivasan, Girish; Rangwala, Novena; Zhou, Xiaohong Joe

    2018-05-01

    This study demonstrates a novel PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) pulse sequence, termed Steer-PROP, based on gradient and spin echo (GRASE), to reduce the imaging times and address phase errors inherent to GRASE. The study also illustrates the feasibility of using Steer-PROP as an alternative to single-shot echo planar imaging (SS-EPI) to produce distortion-free diffusion images in all imaging planes. Steer-PROP uses a series of blip gradient pulses to produce N (N = 3-5) adjacent k-space blades in each repetition time, where N is the number of gradient echoes in a GRASE sequence. This sampling strategy enables a phase correction algorithm to systematically address the GRASE phase errors as well as the motion-induced phase inconsistency. Steer-PROP was evaluated on phantoms and healthy human subjects at both 1.5T and 3.0T for T 2 - and diffusion-weighted imaging. Steer-PROP produced similar image quality as conventional PROPELLER based on fast spin echo (FSE), while taking only a fraction (e.g., 1/3) of the scan time. The robustness against motion in Steer-PROP was comparable to that of FSE-based PROPELLER. Using Steer-PROP, high quality and distortion-free diffusion images were obtained from human subjects in all imaging planes, demonstrating a considerable advantage over SS-EPI. The proposed Steer-PROP sequence can substantially reduce the scan times compared with FSE-based PROPELLER while achieving adequate image quality. The novel k-space sampling strategy in Steer-PROP not only enables an integrated phase correction method that addresses various sources of phase errors, but also minimizes the echo spacing compared with alternative sampling strategies. Steer-PROP can also be a viable alternative to SS-EPI to decrease image distortion in all imaging planes. Magn Reson Med 79:2533-2541, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Free-breathing cardiac MR stress perfusion with real-time slice tracking.

    PubMed

    Basha, Tamer A; Roujol, Sébastien; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza

    2014-09-01

    To develop a free-breathing cardiac MR perfusion sequence with slice tracking for use after physical exercise. We propose to use a leading navigator, placed immediately before each 2D slice acquisition, for tracking the respiratory motion and updating the slice location in real-time. The proposed sequence was used to acquire CMR perfusion datasets in 12 healthy adult subjects and 8 patients. Images were compared with the conventional perfusion (i.e., without slice tracking) results from the same subjects. The location and geometry of the myocardium were quantitatively analyzed, and the perfusion signal curves were calculated from both sequences to show the efficacy of the proposed sequence. The proposed sequence was significantly better compared with the conventional perfusion sequence in terms of qualitative image scores. Changes in the myocardial location and geometry decreased by 50% in the slice tracking sequence. Furthermore, the proposed sequence had signal curves that are smoother and less noisy. The proposed sequence significantly reduces the effect of the respiratory motion on the image acquisition in both rest and stress perfusion scans. Copyright © 2013 Wiley Periodicals, Inc.

  8. Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification

    PubMed Central

    Böker, Sarah M.; Bender, Yvonne Y.; Diederichs, Gerd; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R.

    2017-01-01

    Objectives To determine the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conventional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as a reference standard. Methods 384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT scan of the brain between January 2014 and October 2016 were retrospectively evaluated. 346 patients were included in the analysis, of which 214 showed PGC on CT scans. To assess correlation between imaging modalities, the maximum calcification diameter was used. Sensitivity and specificity and intra- and interobserver reliability were calculated for SWMR and conventional MRI sequences. Results SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95% CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%, p<0.001). Diameter measurements between SWMR and CT showed a close correlation (R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5 mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measurements was excellent on SWMR (ICC = 0.984, p < 0.0001). Conclusions Combining SWMR magnitude and phase information enables the accurate detection of PGC and offers a better diagnostic performance than conventional MRI with CT as a reference standard. PMID:28278291

  9. SU-C-17A-02: Sirius MRI Markers for Prostate Post-Implant Assessment: MR Protocol Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, T; Wang, J; Kudchadker, R

    Purpose: Currently, CT is used to visualize prostate brachytherapy sources, at the expense of accurate structure contouring. MRI is superior to CT for anatomical delineation, but the sources appear as voids on MRI images. Previously we have developed Sirius MRI markers (C4 Imaging) to replace spacers to assist source localization on MRI images. Here we develop an MRI pulse sequence protocol that enhances the signal of these markers to enable MRI-only post-implant prostate dosimetric analysis. Methods: To simulate a clinical scenario, a CIRS multi-modality prostate phantom was implanted with 66 markers and 86 sources. The implanted phantom was imaged onmore » both 1.5T and 3.0T GE scanners under various conditions, different pulse sequences (2D fast spin echo [FSE], 3D balanced steadystate free precession [bSSFP] and 3D fast spoiled gradient echo [FSPGR]), as well as varying amount of padding to simulate various patient sizes and associated signal fall-off from the surface coil elements. Standard FSE sequences from the current clinical protocols were also evaluated. Marker visibility, marker size, intra-marker distance, total scan time and artifacts were evaluated for various combinations of echo time, repetition time, flip angle, number of excitations, bandwidth, slice thickness and spacing, fieldof- view, frequency/phase encoding steps and frequency direction. Results: We have developed a 3D FSPGR pulse sequence that enhances marker signal and ensures the integrity of the marker shape while maintaining reasonable scan time. For patients contraindicated for 3.0T, we have also developed a similar sequence for 1.5T scanners. Signal fall-off with distance from prostate to coil can be compensated mainly by decreasing bandwidth. The markers are not visible using standard FSE sequences. FSPGR sequences are more robust for consistent marker visualization as compared to bSSFP sequences. Conclusion: The developed MRI pulse sequence protocol for Sirius MRI markers assists source localization to enable MRIonly post-implant prostate dosimetric analysis. S.J. Frank is a co-founder of C4 Imaging (manufactures the MRI markers)« less

  10. Magnetic resonance imaging in local staging of endometrial carcinoma: diagnostic performance, pitfalls, and literature review.

    PubMed

    Zandrino, Franco; La Paglia, Ernesto; Musante, Francesco

    2010-01-01

    To assess the diagnostic accuracy of magnetic resonance imaging in local staging of endometrial carcinoma, and to review the results and pitfalls described in the literature. Thirty women with a histological diagnosis of endometrial carcinoma underwent magnetic resonance imaging. Unenhanced T2-weighted and dynamic contrast-enhanced Ti-weighted sequences were obtained. Hysterectomy and salpingo-oophorectomy was performed in all patients. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated for the detection of deep myometrial and cervical infiltration. For deep myometrial infiltration T2-weighted sequences reached a sensitivity of 85%, specificity of 76%, PPV of 73%, NVP of 87%, and accuracy of 80%, while contrast-enhanced scans reached a sensitivity of 90%, specificity of 80%, PPV of 82%, NPV of 89%, and accuracy of 85%. For cervical infiltration T2-weighted sequences reached a sensitivity of 75%, specificity of 88%, PPV of 50%, NPV of 96%, and accuracy of 87%, while contrast-enhanced scans reached a sensitivity of 100%, specificity of 94%, PPV of 75%, NPV of 100%, and accuracy of 95%. Unenhanced and dynamic gadolinium-enhanced magnetic resonance allows accurate assessment of myometrial and cervical infiltration. Information provided by magnetic resonance imaging can define prognosis and management.

  11. Robust temporal alignment of multimodal cardiac sequences

    NASA Astrophysics Data System (ADS)

    Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel

    2015-03-01

    Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.

  12. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils

    PubMed Central

    Boyes, Richard G.; Gunter, Jeff L.; Frost, Chris; Janke, Andrew L.; Yeatman, Thomas; Hill, Derek L.G.; Bernstein, Matt A.; Thompson, Paul M.; Weiner, Michael W.; Schuff, Norbert; Alexander, Gene E.; Killiany, Ronald J.; DeCarli, Charles; Jack, Clifford R.; Fox, Nick C.

    2008-01-01

    Measures of structural brain change based on longitudinal MR imaging are increasingly important but can be degraded by intensity non-uniformity. This non-uniformity can be more pronounced at higher field strengths, or when using multichannel receiver coils. We assessed the ability of the non-parametric non-uniform intensity normalization (N3) technique to correct non-uniformity in 72 volumetric brain MR scans from the preparatory phase of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Normal elderly subjects (n = 18) were scanned on different 3-T scanners with a multichannel phased array receiver coil at baseline, using magnetization prepared rapid gradient echo (MP-RAGE) and spoiled gradient echo (SPGR) pulse sequences, and again 2 weeks later. When applying N3, we used five brain masks of varying accuracy and four spline smoothing distances (d = 50, 100, 150 and 200 mm) to ascertain which combination of parameters optimally reduces the non-uniformity. We used the normalized white matter intensity variance (standard deviation/mean) to ascertain quantitatively the correction for a single scan; we used the variance of the normalized difference image to assess quantitatively the consistency of the correction over time from registered scan pairs. Our results showed statistically significant (p < 0.01) improvement in uniformity for individual scans and reduction in the normalized difference image variance when using masks that identified distinct brain tissue classes, and when using smaller spline smoothing distances (e.g., 50-100 mm) for both MP-RAGE and SPGR pulse sequences. These optimized settings may assist future large-scale studies where 3-T scanners and phased array receiver coils are used, such as ADNI, so that intensity non-uniformity does not influence the power of MR imaging to detect disease progression and the factors that influence it. PMID:18063391

  13. An interleaved sequence for simultaneous magnetic resonance angiography (MRA), susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM).

    PubMed

    Chen, Yongsheng; Liu, Saifeng; Buch, Sagar; Hu, Jiani; Kang, Yan; Haacke, E Mark

    2018-04-01

    To image the entire vasculature of the brain with complete suppression of signal from background tissue using a single 3D excitation interleaved rephased/dephased multi-echo gradient echo sequence. This ensures no loss of signal from fast flow and provides co-registered susceptibility weighted images (SWI) and quantitative susceptibility maps (QSM) from the same scan. The suppression of background tissue was accomplished by subtracting the flow-dephased images from the flow-rephased images with the same echo time of 12.5ms to generate a magnetic resonance angiogram and venogram (MRAV). Further, a 2.5ms flow-compensated echo was added in the rephased portion to provide sufficient signal for major arteries with fast flow. The QSM data from the rephased 12.5ms echo was used to suppress veins on the MRAV to generate an artery-only MRA. The proposed approach was tested on five healthy volunteers at 3T. This three-echo interleaved GRE sequence provided complete background suppression of stationary tissues, while the short echo data gave high signal in the internal carotid and middle cerebral arteries (MCA). The contrast-to-noise ratio (CNR) of the arteries was significantly improved in the M3 territory of the MCA compared to the non-linear subtraction MRA and TOF-MRA. Veins were suppressed successfully utilizing the QSM data. The background tissue can be properly suppressed using the proposed interleaved MRAV sequence. One can obtain whole brain MRAV, MRA, SWI, true-SWI (or tSWI) and QSM data simultaneously from a single scan. Published by Elsevier Inc.

  14. MR CAT scan: a modular approach for hybrid imaging.

    PubMed

    Hillenbrand, C; Hahn, D; Haase, A; Jakob, P M

    2000-07-01

    In this study, a modular concept for NMR hybrid imaging is presented. This concept essentially integrates different imaging modules in a sequential fashion and is therefore called CAT (combined acquisition technique). CAT is not a single specific measurement sequence, but rather a sequence design concept whereby distinct acquisition techniques with varying imaging parameters are employed in rapid succession in order to cover k-space. The power of the CAT approach is that it provides a high flexibility toward the acquisition optimization with respect to the available imaging time and the desired image quality. Important CAT sequence optimization steps include the appropriate choice of the k-space coverage ratio and the application of mixed bandwidth technology. Details of both the CAT methodology and possible CAT acquisition strategies, such as FLASH/EPI-, RARE/EPI- and FLASH/BURST-CAT are provided. Examples from imaging experiments in phantoms and healthy volunteers including mixed bandwidth acquisitions are provided to demonstrate the feasibility of the proposed CAT concept.

  15. Susceptibility weighted imaging of cartilage canals in porcine epiphyseal growth cartilage ex vivo and in vivo.

    PubMed

    Nissi, Mikko J; Toth, Ferenc; Zhang, Jinjin; Schmitter, Sebastian; Benson, Michael; Carlson, Cathy S; Ellermann, Jutta M

    2014-06-01

    High-resolution visualization of cartilage canals has been restricted to histological methods and contrast-enhanced imaging. In this study, the feasibility of non-contrast-enhanced susceptibility weighted imaging (SWI) for visualization of the cartilage canals was investigated ex vivo at 9.4 T, further explored at 7 and 3 T and demonstrated in vivo at 7 T, using a porcine animal model. SWI scans of specimens of distal femur and humerus from 1 to 8 week-old piglets were conducted at 9.4 T using 3D-GRE sequence and SWI post-processing. The stifle joints of a 2-week old piglet were scanned ex vivo at 7 and 3 T. Finally, the same sites of a 3-week-old piglet were scanned, in vivo, at 7 T under general anesthesia using the vendor-provided sequences. High-contrast visualization of the cartilage canals was obtained ex vivo, especially at higher field strengths; the results were confirmed histologically. In vivo feasibility was demonstrated at 7 T and comparison of ex vivo scans at 3 and 7 T indicated feasibility of using SWI at 3 T. High-resolution 3D visualization of cartilage canals was demonstrated using SWI. This demonstration of fully noninvasive visualization opens new avenues to explore skeletal maturation and the role of vascular supply for diseases such as osteochondrosis. Copyright © 2013 Wiley Periodicals, Inc.

  16. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    PubMed

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  17. Ultrashort Echo Time and Zero Echo Time MRI at 7T

    PubMed Central

    Larson, Peder E. Z.; Han, Misung; Krug, Roland; Jakary, Angela; Nelson, Sarah J.; Vigneron, Daniel B.; Henry, Roland G.; McKinnon, Graeme; Kelley, Douglas A. C.

    2016-01-01

    Object Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences at 7T to assess differences between these methods. Materials and Methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the Water- and fat-suppressed solid-state proton projection imaging (WASPI) method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted as well as shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Several key differences are that ZTE is limited to volumetric imaging but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection. PMID:26702940

  18. Automated hierarchical time gain compensation for in-vivo ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Hemmsen, Martin C.; Martins, Bo; Brandt, Andreas H.; Hansen, Kristoffer L.; Nielsen, Michael B.; Jensen, Jørgen A.

    2015-03-01

    Time gain compensation (TGC) is essential to ensure the optimal image quality of the clinical ultrasound scans. When large fluid collections are present within the scan plane, the attenuation distribution is changed drastically and TGC compensation becomes challenging. This paper presents an automated hierarchical TGC (AHTGC) algorithm that accurately adapts to the large attenuation variation between different types of tissues and structures. The algorithm relies on estimates of tissue attenuation, scattering strength, and noise level to gain a more quantitative understanding of the underlying tissue and the ultrasound signal strength. The proposed algorithm was applied to a set of 44 in vivo abdominal movie sequences each containing 15 frames. Matching pairs of in vivo sequences, unprocessed and processed with the proposed AHTGC were visualized side by side and evaluated by two radiologists in terms of image quality. Wilcoxon signed-rank test was used to evaluate whether radiologists preferred the processed sequences or the unprocessed data. The results indicate that the average visual analogue scale (VAS) is positive ( p-value: 2.34 × 10-13) and estimated to be 1.01 (95% CI: 0.85; 1.16) favoring the processed data with the proposed AHTGC algorithm.

  19. Indirect MRI of 17 o-labeled water using steady-state sequences: Signal simulation and preclinical experiment.

    PubMed

    Kudo, Kohsuke; Harada, Taisuke; Kameda, Hiroyuki; Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Yoshioka, Kunihiro; Sasaki, Makoto

    2018-05-01

    Few studies have been reported for T 2 -weighted indirect 17 O imaging. To evaluate the feasibility of steady-state sequences for indirect 17 O brain imaging. Signal simulation, phantom measurements, and prospective animal experiments were performed in accordance with the institutional guidelines for animal experiments. Signal simulations of balanced steady-state free precession (bSSFP) were performed for concentrations of 17 O ranging from 0.037-1.600%. Phantom measurements with concentrations of 17 O water ranging from 0.037-1.566% were also conducted. Six healthy beagle dogs were scanned with intravenous administration of 20% 17 O-labeled water (1 mL/kg). Dynamic 3D-bSSFP scans were performed at 3T MRI. 17 O-labeled water was injected 60 seconds after the scan start, and the total scan duration was 5 minutes. Based on the result of signal simulation and phantom measurement, signal changes in the beagle dogs were measured and converted into 17 O concentrations. The 17 O concentrations were averaged for every 15 seconds, and compared to the baseline (30-45 sec) with Dunnett's multiple comparison tests. Signal simulation revealed that the relationships between 17 O concentration and the natural logarithm of relative signals were linear. The intraclass correlation coefficient between relative signals in phantom measurement and signal simulations was 0.974. In the animal experiments, significant increases in 17 O concentration (P < 0.05) were observed 60 seconds after the injection of 17 O. At the end of scanning, mean respective 17 O concentrations of 0.084 ± 0.026%, 0.117 ± 0.038, 0.082 ± 0.037%, and 0.049 ± 0.004% were noted for the cerebral cortex, cerebellar cortex, cerebral white matter, and ventricle. Dynamic steady-state sequences were feasible for indirect 17 O imaging, and absolute quantification was possible. This method can be applied for the measurement of permeability and blood flow in the brain, and for kinetic analysis of cerebrospinal fluid. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1373-1379. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil.

    PubMed

    Kodama, Nao; Kose, Katsumi

    2016-10-11

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.

  1. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    PubMed

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both sequences are limited by the scan time required. In addition, pTSE-DWI has limitations on the number of slices due to specific absorption rate. Overall, rsEPI-DWI is a favorable imaging sequence, taking into account the SNR and image quality at 7 T.

  2. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: plates and screws.

    PubMed

    Zou, Yue-Fen; Chu, Bin; Wang, Chuan-Bing; Hu, Zhi-Yi

    2015-03-01

    The study was performed to evaluate magnetic resonance (MR) issues for the latest standard brands of plates and screws used in orthopedic surgery at a 1.5-T MR system, including the safety and metallic artifacts. The plates and screws (made of titanium alloy and stainless steel materials, according to the latest standard brands) were assessed for displacement in degrees, MRI-related heating and artifacts at a 1.5-T MR system. The displacement in degrees of the plates and screws was evaluated on an angel-measurement instrument at the entrance of the MR scanner. The MRI-related heating was assessed on a swine leg fixed with a plate by using a "worst-case" pulse sequence. A rectangular water phantom was designed to evaluate metallic artifacts of a screw on different sequences (T1/T2-weighted FSE, STIR, T2-FSE fat saturation, GRE, DWI) and then artifacts were evaluated on T2-weighted FSE sequence by modifying the scanning parameters including field of view (FOV), echo train length (ETL) and bandwidth to identify the influence of parameters on metallic artifacts. 15 volunteers with internal vertebral fixation (titanium alloy materials) were scanned with MR using axial and sagittal T2-FSE, sagittal T2-FSE fat suppression and STIR with conventional and optimized parameters, respectively. Then all images were graded by two experienced radiologists having the experience of more than 7 years under double-blind studies that is neither of them knew which was conventional parameter group and optimized parameter group. The average deflection angle of titanium alloy and stainless steel implants were 4.3° and 7.7°, respectively, (less than 45°) which indicated that the magnetically induced force was less than the weight of the object. The deflection angle of the titanium alloy implants was less than the stainless steel one (t=9.69, P<0.001). The average temperature changes of titanium alloy before and after the scan was 0.48°C and stainless steel implants was 0.74°C, respectively, with the background temperature changes of 0.24°C. The water phantom test indicated that the DWI sequence produced largest artifacts, while FSE pulse sequence produced smallest artifacts. And T2-weighted FSE fat saturation sequence produced larger artifacts than STIR sequence. The influence of the scanning parameters on metallic artifacts was verified that metallic artifacts increased with longer echo train length and bigger FOV, while decreased with larger bandwidth. The interreader agreement was good or excellent for each set of images graded with Cohen's Kappa statistic. Image grading of axial and sagittal T2-FSE with optimized parameters were significantly superior to that with conventional parameters (grade, 3.3±0.5 vs 2.7±0.6, P=0.003; 3.2±0.4 vs 1.9±0.7, P=0.001) and image of STIR sequence received a better grade than T2-FSE FS sequence (grade, 3.4±0.5 vs 1.7±0.6, P<0.001). The latest standard plates and screws used in orthopedic surgery do not pose an additional hazard or risk to patients undergoing MR imaging at 1.5-T or less. Though artifacts caused by them cannot be ignored because of their relatively large size, it is possible to be minimized by choosing appropriate pulse sequences and optimizing scanning parameters, such as FSE and STIR sequence with large bandwidth, small FOV and appropriate echo train length. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. High-field open versus short-bore magnetic resonance imaging of the spine: a randomized controlled comparison of image quality.

    PubMed

    Enders, Judith; Rief, Matthias; Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc

    2013-01-01

    The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34-37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. ClinicalTrials.gov NCT00715806.

  4. High-Field Open versus Short-Bore Magnetic Resonance Imaging of the Spine: A Randomized Controlled Comparison of Image Quality

    PubMed Central

    Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc

    2013-01-01

    Background The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Methods Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. Results The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34–37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). Conclusions In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. Trial Registration ClinicalTrials.gov NCT00715806 PMID:24391767

  5. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J; Son, J; Arun, B

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a singlemore » acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the potential of making breast MRI more widely accessible to and more tolerable by the patients. JMA is the inventor of United States patents that are owned by the University of Texas Board of Regents and currently licensed to GE Healthcare and Siemens Gmbh.« less

  6. Determination of the sequence of intersecting lines using Focused Ion Beam/Scanning Electron Microscope.

    PubMed

    Kim, Jiye; Kim, MinJung; An, JinWook; Kim, Yunje

    2016-05-01

    The aim of this study was to verify that the combination of focused ion beam (FIB) and scanning electron microscope/energy-dispersive X-ray (SEM/EDX) could be applied to determine the sequence of line crossings. The samples were transferred into FIB/SEM for FIB milling and an imaging operation. EDX was able to explore the chemical components and the corresponding elemental distribution in the intersection. The technique was successful in determining the sequence of heterogeneous line intersections produced using gel pens and red sealing ink with highest success rate (100% correctness). These observations show that the FIB/SEM was the appropriate instrument for an overall examination of document. © 2016 American Academy of Forensic Sciences.

  7. Design and simulation of a 800 Mbit/s data link for magnetic resonance imaging wearables.

    PubMed

    Vogt, Christian; Buthe, Lars; Petti, Luisa; Cantarella, Giuseppe; Munzenrieder, Niko; Daus, Alwin; Troster, Gerhard

    2015-08-01

    This paper presents the optimization of electronic circuitry for operation in the harsh electro magnetic (EM) environment during a magnetic resonance imaging (MRI) scan. As demonstrator, a device small enough to be worn during the scan is optimized. Based on finite element method (FEM) simulations, the induced current densities due to magnetic field changes of 200 T s(-1) were reduced from 1 × 10(10) A m(-2) by one order of magnitude, predicting error-free operation of the 1.8V logic employed. The simulations were validated using a bit error rate test, which showed no bit errors during a MRI scan sequence. Therefore, neither the logic, nor the utilized 800 Mbit s(-1) low voltage differential swing (LVDS) data link of the optimized wearable device were significantly influenced by the EM interference. Next, the influence of ferro-magnetic components on the static magnetic field and consequently the image quality was simulated showing a MRI image loss with approximately 2 cm radius around a commercial integrated circuit of 1×1 cm(2). This was successively validated by a conventional MRI scan.

  8. TH-EF-BRA-11: Feasibility of Super-Resolution Time-Resolved 4DMRI for Multi-Breath Volumetric Motion Simulation in Radiotherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G; Zakian, K; Deasy, J

    Purpose: To develop a novel super-resolution time-resolved 4DMRI technique to evaluate multi-breath, irregular and complex organ motion without respiratory surrogate for radiotherapy planning. Methods: The super-resolution time-resolved (TR) 4DMRI approach combines a series of low-resolution 3D cine MRI images acquired during free breathing (FB) with a high-resolution breath-hold (BH) 3DMRI via deformable image registration (DIR). Five volunteers participated in the study under an IRB-approved protocol. The 3D cine images with voxel size of 5×5×5 mm{sup 3} at two volumes per second (2Hz) were acquired coronally using a T1 fast field echo sequence, half-scan (0.8) acceleration, and SENSE (3) parallel imaging.more » Phase-encoding was set in the lateral direction to minimize motion artifacts. The BH image with voxel size of 2×2×2 mm{sup 3} was acquired using the same sequence within 10 seconds. A demons-based DIR program was employed to produce super-resolution 2Hz 4DMRI. Registration quality was visually assessed using difference images between TR 4DMRI and 3D cine and quantitatively assessed using average voxel correlation. The fidelity of the 3D cine images was assessed using a gel phantom and a 1D motion platform by comparing mobile and static images. Results: Owing to voxel intensity similarity using the same MRI scanning sequence, accurate DIR between FB and BH images is achieved. The voxel correlations between 3D cine and TR 4DMRI are greater than 0.92 in all cases and the difference images illustrate minimal residual error with little systematic patterns. The 3D cine images of the mobile gel phantom preserve object geometry with minimal scanning artifacts. Conclusion: The super-resolution time-resolved 4DMRI technique has been achieved via DIR, providing a potential solution for multi-breath motion assessment. Accurate DIR mapping has been achieved to map high-resolution BH images to low-resolution FB images, producing 2Hz volumetric high-resolution 4DMRI. Further validation and improvement are still required prior to clinical applications. This study is in part supported by the NIH (U54CA137788/U54CA132378).« less

  9. Magnetic resonance imaging evaluation of intervertebral test spacers: an experimental comparison of magnesium versus titanium and carbon fiber reinforced polymers as biomaterials.

    PubMed

    Ernstberger, T; Buchhorn, G; Heidrich, G

    2010-03-01

    Intervertebral spacers are made of different materials, which can affect the postfusion magnetic resonance imaging (MRI) scans. Susceptibility artifacts, especially for metallic implants, can decrease the image quality. This study aimed to determine whether magnesium as a lightweight and biocompatible metal is suitable as a biomaterial for spinal implants based on its MRI artifacting behavior. To compare artifacting behaviors, we implanted into one porcine cadaveric spine different test spacers made of magnesium, titanium, and CFRP. All test spacers were scanned using two T1-TSE MRI sequences. The artifact dimensions were traced on all scans and statistically analyzed. The total artifact volume and median artifact area of the titanium spacers were statistically significantly larger than magnesium spacers (P < 0.001), while magnesium and CFRP spacers produced almost identical artifacting behaviors (P > 0.05). Our results suggest that spinal implants made with magnesium alloys will behave more like CFRP devices in MRI scans.

  10. Rapid acquisition of magnetic resonance imaging of the shoulder using three-dimensional fast spin echo sequence with compressed sensing.

    PubMed

    Lee, Seung Hyun; Lee, Young Han; Song, Ho-Taek; Suh, Jin-Suck

    2017-10-01

    To evaluate the feasibility of 3D fast spin-echo (FSE) imaging with compressed sensing (CS) for the assessment of shoulder. Twenty-nine patients who underwent shoulder MRI including image sets of axial 3D-FSE sequence without CS and with CS, using an acceleration factor of 1.5, were included. Quantitative assessment was performed by calculating the root mean square error (RMSE) and structural similarity index (SSIM). Two musculoskeletal radiologists compared image quality of 3D-FSE sequences without CS and with CS, and scored the qualitative agreement between sequences, using a five-point scale. Diagnostic agreement for pathologic shoulder lesions between the two sequences was evaluated. The acquisition time of 3D-FSE MRI was reduced using CS (3min 23s vs. 2min 22s). Quantitative evaluations showed a significant correlation between the two sequences (r=0.872-0.993, p<0.05) and SSIM was in an acceptable range (0.940-0.993; mean±standard deviation, 0.968±0.018). Qualitative image quality showed good to excellent agreement between 3D-FSE images without CS and with CS. Diagnostic agreement for pathologic shoulder lesions between the two sequences was very good (κ=0.915-1). The 3D-FSE sequence with CS is feasible in evaluating the shoulder joint with reduced scan time compared to 3D-FSE without CS. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, B; Yin, F; Cai, J

    Purpose: To determine the variation in tumor contrast between different MRI sequences and between patients for the purpose of MRI-based treatment planning. Methods: Multiple MRI scans of 11 patients with cancer(s) in the liver were included in this IRB-approved study. Imaging sequences consisted of T1W MRI, Contrast-Enhanced T1W MRI, T2W MRI, and T2*/T1W MRI. MRI images were acquired on a 1.5T GE Signa scanner with a four-channel torso coil. We calculated the tumor-to-tissue contrast to noise ratio (CNR) for each MR sequence by contouring the tumor and a region of interest (ROI) in a homogeneous region of the liver usingmore » the Eclipse treatment planning software. CNR was calculated (I-Tum-I-ROI)/SD-ROI, where I-Tum and I-ROI are the mean values of the tumor and the ROI respectively, and SD-ROI is the standard deviation of the ROI. The same tumor and ROI structures were used in all measurements for different MR sequences. Inter-patient Coefficient of variation (CV), and inter-sequence CV was determined. In addition, mean and standard deviation of CNR were calculated and compared between different MR sequences. Results: Our preliminary results showed large inter-patient CV (range: 37.7% to 88%) and inter-sequence CV (range 5.3% to 104.9%) of liver tumor CNR, indicating great variations in tumor CNR between MR sequences and between patients. Tumor CNR was found to be largest in CE-T1W (8.5±7.5), followed by T2W (4.2±2.4), T1W (3.4±2.2), and T2*/T1W (1.7±0.6) MR scans. The inter-patient CV of tumor CNR was also the largest in CE-T1W (88%), followed by T1W (64.3%), T1W (56.2%), and T2*/T1W (37.7) MR scans. Conclusion: Large inter-sequence and inter-patient variations were observed in liver tumor CNR. CE-T1W MR images on average provided the best tumor CNR. Efforts are needed to optimize tumor contrast and its consistency for MRI-based treatment planning of cancer in the liver. This project is supported by NIH grant: 1R21CA165384.« less

  12. Comparison between Conventional MR Arthrograhphy and Abduction and External Rotation MR Arthrography in Revealing Tears of the Antero-Inferior Glenoid Labrum

    PubMed Central

    Choi, Jung-Ah; Suh, Sang-il; Kim, Baek Hyun; Cha, Sang Hoon; Lee, Ki Yeol; Lee, Chang Hee

    2001-01-01

    Objective To compare, in terms of their demonstration of tears of the anterior glenoid labrum, oblique axial MR arthrography obtained with the patient's shoulder in the abduction and external rotation (ABER) position, with conventional axial MR arthrography obtained with the patient's arm in the neutral position. Materials and Methods MR arthrography of the shoulder, including additional oblique axial sequences with the patient in the ABER position, was performed in 30 patients with a clinical history of recurrent anterior shoulder dislocation. The degree of anterior glenoid labral tear or defect was evaluated in both the conventional axial and the ABER position by two radiologists. Decisions were reached by consensus, and a three-point scale was used: grade 1=normal; grade 2=probable tear, diagnosed when subtle increased signal intensity in the labrum was apparent; grade 3=definite tear/defect, when a contrast material-filled gap between the labrum and the glenoid rim or deficient labrum was present. The scores for each imaging sequence were averaged and to compare conventional axial and ABER position scans, Student's t test was performed. Results In 21 (70%) of 30 patients, the same degree of anterior instability was revealed by both imaging sequences. Eight (27%) had a lower grade in the axial position than in the ABER position, while one (3%) had a higher grade in the axial position. Three whose axial scan was grade 1 showed only equivocal evidence of tearing, but their ABER-position scan, in which a contrast material-filled gap between the labrum and the glenoid rim was present, was grade 3. The average grade was 2.5 (SD=0.73) for axial scans and 2.8 (SD=0.46) for the ABER position. The difference between axial and ABER-position scans was statistically significant (p<0.05). Conclusion MR arthrography with the patient's shoulder in the ABER position is more efficient than conventional axial scanning in revealing the degree of tear or defect of the anterior glenoid labrum. When equivocal features are seen at conventional axial MR arthrography, oblique axial imaging in the ABER position is helpful. PMID:11754329

  13. Reconstruction of three-dimensional ultrasound images based on cyclic Savitzky-Golay filters

    NASA Astrophysics Data System (ADS)

    Toonkum, Pollakrit; Suwanwela, Nijasri C.; Chinrungrueng, Chedsada

    2011-01-01

    We present a new algorithm for reconstructing a three-dimensional (3-D) ultrasound image from a series of two-dimensional B-scan ultrasound slices acquired in the mechanical linear scanning framework. Unlike most existing 3-D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the cyclic Savitzky-Golay (CSG) reconstruction filter, is an improvement on the original Savitzky-Golay filter in two respects: First, it is extended to accept a 3-D array of data as the filter input instead of a one-dimensional data sequence. Second, it incorporates the cyclic indicator function in its least-squares objective function so that the CSG algorithm can simultaneously perform both smoothing and interpolating tasks. The performance of the CSG reconstruction filter compared to that of most existing reconstruction algorithms in generating a 3-D synthetic test image and a clinical 3-D carotid artery bifurcation in the mechanical linear scanning framework are also reported.

  14. Low-dose head computed tomography in children: a single institutional experience in pediatric radiation risk reduction: clinical article.

    PubMed

    Morton, Ryan P; Reynolds, Renee M; Ramakrishna, Rohan; Levitt, Michael R; Hopper, Richard A; Lee, Amy; Browd, Samuel R

    2013-10-01

    In this study, the authors describe their experience with a low-dose head CT protocol for a preselected neurosurgical population at a dedicated pediatric hospital (Seattle Children's Hospital), the largest number of patients with this protocol reported to date. All low-dose head CT scans between October 2011 and November 2012 were reviewed. Two different low-dose radiation dosages were used, at one-half or one-quarter the dose of a standard head CT scan, based on patient characteristics agreed upon by the neurosurgery and radiology departments. Patient information was also recorded, including diagnosis and indication for CT scan. Six hundred twenty-four low-dose head CT procedures were performed within the 12-month study period. Although indications for the CT scans varied, the most common reason was to evaluate the ventricles and catheter placement in hydrocephalic patients with shunts (70%), followed by postoperative craniosynostosis imaging (12%). These scans provided adequate diagnostic imaging, and no patient required a follow-up full-dose CT scan as a result of poor image quality on a low-dose CT scan. Overall physician comfort and satisfaction with interpretation of the images was high. An additional 2150 full-dose head CT scans were performed during the same 12-month time period, making the total number of CT scans 2774. This value compares to 3730 full-dose head CT scans obtained during the year prior to the study when low-dose CT and rapid-sequence MRI was not a reliable option at Seattle Children's Hospital. Thus, over a 1-year period, 22% of the total CT scans were able to be converted to low-dose scans, and full-dose CT scans were able to be reduced by 42%. The implementation of a low-dose head CT protocol substantially reduced the amount of ionizing radiation exposure in a preselected population of pediatric neurosurgical patients. Image quality and diagnostic utility were not significantly compromised.

  15. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  16. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    NASA Astrophysics Data System (ADS)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  17. Modeling light

    NASA Astrophysics Data System (ADS)

    Dawson, P.; Gage, J.; Takatsuka, M.; Goyette, S.

    2009-02-01

    To compete with other digital images, holograms must go beyond the current range of source-image types, such as sequences of photographs, laser scans, and 3D computer graphics (CG) scenes made with software designed for other applications. This project develops a set of innovative techniques for creating 3D digital content specifically for digital holograms, with virtual tools which enable the direct hand-crafting of subjects, mark by mark, analogous to Michelangelo's practice in drawing, painting and sculpture. The haptic device, the Phantom Premium 1.5 is used to draw against three-dimensional laser- scan templates of Michelangelo's sculpture placed within the holographic viewing volume.

  18. Quiet echo planar imaging for functional and diffusion MRI

    PubMed Central

    Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.

    2017-01-01

    Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliwal, B; Asprey, W; Yan, Y

    Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less

  20. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil

    PubMed Central

    KODAMA, Nao; KOSE, Katsumi

    2016-01-01

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398

  1. A CT and MRI scan to MCNP input conversion program.

    PubMed

    Van Riper, Kenneth A

    2005-01-01

    We describe a new program to read a sequence of tomographic scans and prepare the geometry and material sections of an MCNP input file. Image processing techniques include contrast controls and mapping of grey scales to colour. The user interface provides several tools with which the user can associate a range of image intensities to an MCNP material. Materials are loaded from a library. A separate material assignment can be made to a pixel intensity or range of intensities when that intensity dominates the image boundaries; this material is assigned to all pixels with that intensity contiguous with the boundary. Material fractions are computed in a user-specified voxel grid overlaying the scans. New materials are defined by mixing the library materials using the fractions. The geometry can be written as an MCNP lattice or as individual cells. A combination algorithm can be used to join neighbouring cells with the same material.

  2. “Lucky Averaging”: Quality improvement on Adaptive Optics Scanning Laser Ophthalmoscope Images

    PubMed Central

    Huang, Gang; Zhong, Zhangyi; Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    Adaptive optics(AO) has greatly improved retinal image resolution. However, even with AO, temporal and spatial variations in image quality still occur due to wavefront fluctuations, intra-frame focus shifts and other factors. As a result, aligning and averaging images can produce a mean image that has lower resolution or contrast than the best images within a sequence. To address this, we propose an image post-processing scheme called “lucky averaging”, analogous to lucky imaging (Fried, 1978) based on computing the best local contrast over time. Results from eye data demonstrate improvements in image quality. PMID:21964097

  3. Application safety evaluation of the radio frequency identification tag under magnetic resonance imaging.

    PubMed

    Fei, Xiaolu; Li, Shanshan; Gao, Shan; Wei, Lan; Wang, Lihong

    2014-09-04

    Radio Frequency Identification(RFID) has been widely used in healthcare facilities, but it has been paid little attention whether RFID applications are safe enough under healthcare environment. The purpose of this study is to assess the effects of RFID tags on Magnetic Resonance (MR) imaging in a typical electromagnetic environment in hospitals, and to evaluate the safety of their applications. A Magphan phantom was used to simulate the imaging objects, while active RFID tags were placed at different distances (0, 4, 8, 10 cm) from the phantom border. The phantom was scanned by using three typical sequences including spin-echo (SE) sequence, gradient-echo (GRE) sequence and inversion-recovery (IR) sequence. The quality of the image was quantitatively evaluated by using signal-to-noise ratio (SNR), uniformity, high-contrast resolution, and geometric distortion. RFID tags were read by an RFID reader to calculate their usable rate. RFID tags can be read properly after being placed in high magnetic field for up to 30 minutes. SNR: There were no differences between the group with RFID tags and the group without RFID tags using SE and IR sequence, but it was lower when using GRE sequence.Uniformity: There was a significant difference between the group with RFID tags and the group without RFID tags using SE and GRE sequence. Geometric distortion and high-contrast resolution: There were no obvious differences found. Active RFID tags can affect MR imaging quality, especially using the GRE sequence. Increasing the distance from the RFID tags to the imaging objects can reduce that influence. When the distance was longer than 8 cm, MR imaging quality were almost unaffected. However, the Gradient Echo related sequence is not recommended when patients wear a RFID wristband.

  4. Reduction of display artifacts by random sampling

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J., Jr.; Nagel, D. C.; Watson, A. B.; Yellott, J. I., Jr.

    1983-01-01

    The application of random-sampling techniques to remove visible artifacts (such as flicker, moire patterns, and paradoxical motion) introduced in TV-type displays by discrete sequential scanning is discussed and demonstrated. Sequential-scanning artifacts are described; the window of visibility defined in spatiotemporal frequency space by Watson and Ahumada (1982 and 1983) and Watson et al. (1983) is explained; the basic principles of random sampling are reviewed and illustrated by the case of the human retina; and it is proposed that the sampling artifacts can be replaced by random noise, which can then be shifted to frequency-space regions outside the window of visibility. Vertical sequential, single-random-sequence, and continuously renewed random-sequence plotting displays generating 128 points at update rates up to 130 Hz are applied to images of stationary and moving lines, and best results are obtained with the single random sequence for the stationary lines and with the renewed random sequence for the moving lines.

  5. PROPELLER technique to improve image quality of MRI of the shoulder.

    PubMed

    Dietrich, Tobias J; Ulbrich, Erika J; Zanetti, Marco; Fucentese, Sandro F; Pfirrmann, Christian W A

    2011-12-01

    The purpose of this article is to evaluate the use of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for artifact reduction and overall image quality improvement for intermediate-weighted and T2-weighted MRI of the shoulder. One hundred eleven patients undergoing MR arthrography of the shoulder were included. A coronal oblique intermediate-weighted turbo spin-echo (TSE) sequence with fat suppression and a sagittal oblique T2-weighted TSE sequence with fat suppression were obtained without (standard) and with the PROPELLER technique. Scanning time increased from 3 minutes 17 seconds to 4 minutes 17 seconds (coronal oblique plane) and from 2 minutes 52 seconds to 4 minutes 10 seconds (sagittal oblique) using PROPELLER. Two radiologists graded image artifacts, overall image quality, and delineation of several anatomic structures on a 5-point scale (5, no artifact, optimal diagnostic quality; and 1, severe artifacts, diagnostically not usable). The Wilcoxon signed rank test was used to compare the data of the standard and PROPELLER images. Motion artifacts were significantly reduced in PROPELLER images (p < 0.001). Observer 1 rated motion artifacts with diagnostic impairment in one patient on coronal oblique PROPELLER images compared with 33 patients on standard images. Ratings for the sequences with PROPELLER were significantly better for overall image quality (p < 0.001). Observer 1 noted an overall image quality with diagnostic impairment in nine patients on sagittal oblique PROPELLER images compared with 23 patients on standard MRI. The PROPELLER technique for MRI of the shoulder reduces the number of sequences with diagnostic impairment as a result of motion artifacts and increases image quality compared with standard TSE sequences. PROPELLER sequences increase the acquisition time.

  6. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    PubMed Central

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836

  7. Magnetic resonance imaging investigation of the bone conduction implant - a pilot study at 1.5 Tesla.

    PubMed

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.

  8. Combined use of high-definition and volumetric optical coherence tomography for the segmentation of neural canal opening in cases of optic nerve edema

    NASA Astrophysics Data System (ADS)

    Wang, Jui-Kai; Kardon, Randy H.; Garvin, Mona K.

    2015-03-01

    In cases of optic-nerve-head edema, the presence of the swelling reduces the visibility of the underlying neural canal opening (NCO) within spectral-domain optical coherence tomography (SD-OCT) volumes. Consequently, traditional SD-OCT-based NCO segmentation methods often overestimate the size of the NCO. The visibility of the NCO can be improved using high-definition 2D raster scans, but such scans do not provide 3D contextual image information. In this work, we present a semi-automated approach for the segmentation of the NCO in cases of optic disc edema by combining image information from volumetric and high-definition raster SD-OCT image sequences. In particular, for each subject, five high-definition OCT B-scans and the OCT volume are first separately segmented, and then the five high-definition B-scans are automatically registered to the OCT volume. Next, six NCO points are placed (manually, in this work) in the central three high-definition OCT B-scans (two points for each central B-scans) and are automatically transferred into the OCT volume. Utilizing a combination of these mapped points and the 3D image information from the volumetric scans, a graph-based approach is used to identify the complete NCO on the OCT en-face image. The segmented NCO points using the new approach were significantly closer to expert-marked points than the segmented NCO points using a traditional approach (root mean square differences in pixels: 5.34 vs. 21.71, p < 0.001).

  9. Accelerated Slice Encoding for Metal Artifact Correction

    PubMed Central

    Hargreaves, Brian A.; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T.; Gold, Garry E.; Brau, Anja C. S.; Pauly, John M.; Pauly, Kim Butts

    2010-01-01

    Purpose To demonstrate accelerated imaging with artifact reduction near metallic implants and different contrast mechanisms. Materials and Methods Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The SNR effects of all reconstructions were quantified in one subject. 10 subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. Results The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. Conclusion SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. PMID:20373445

  10. Accelerated slice encoding for metal artifact correction.

    PubMed

    Hargreaves, Brian A; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T; Gold, Garry E; Brau, Anja C S; Pauly, John M; Pauly, Kim Butts

    2010-04-01

    To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants. Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal-to-noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. (c) 2010 Wiley-Liss, Inc.

  11. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.

    PubMed

    Qin, Jiang-Bo; Liu, Zhenyu; Zhang, Hui; Shen, Chen; Wang, Xiao-Chun; Tan, Yan; Wang, Shuo; Wu, Xiao-Feng; Tian, Jie

    2017-05-07

    BACKGROUND Gliomas are the most common primary brain neoplasms. Misdiagnosis occurs in glioma grading due to an overlap in conventional MRI manifestations. The aim of the present study was to evaluate the power of radiomic features based on multiple MRI sequences - T2-Weighted-Imaging-FLAIR (FLAIR), T1-Weighted-Imaging-Contrast-Enhanced (T1-CE), and Apparent Diffusion Coefficient (ADC) map - in glioma grading, and to improve the power of glioma grading by combining features. MATERIAL AND METHODS Sixty-six patients with histopathologically proven gliomas underwent T2-FLAIR and T1WI-CE sequence scanning with some patients (n=63) also undergoing DWI scanning. A total of 114 radiomic features were derived with radiomic methods by using in-house software. All radiomic features were compared between high-grade gliomas (HGGs) and low-grade gliomas (LGGs). Features with significant statistical differences were selected for receiver operating characteristic (ROC) curve analysis. The relationships between significantly different radiomic features and glial fibrillary acidic protein (GFAP) expression were evaluated. RESULTS A total of 8 radiomic features from 3 MRI sequences displayed significant differences between LGGs and HGGs. FLAIR GLCM Cluster Shade, T1-CE GLCM Entropy, and ADC GLCM Homogeneity were the best features to use in differentiating LGGs and HGGs in each MRI sequence. The combined feature was best able to differentiate LGGs and HGGs, which improved the accuracy of glioma grading compared to the above features in each MRI sequence. A significant correlation was found between GFAP and T1-CE GLCM Entropy, as well as between GFAP and ADC GLCM Homogeneity. CONCLUSIONS The combined radiomic feature had the highest efficacy in distinguishing LGGs from HGGs.

  12. [Laparoscopic and general surgery guided by open interventional magnetic resonance].

    PubMed

    Lauro, A; Gould, S W T; Cirocchi, R; Giustozzi, G; Darzi, A

    2004-10-01

    Interventional magnetic resonance (IMR) machines have produced unique opportunity for image-guided surgery. The open configuration design and fast pulse sequence allow virtual real time intraoperative scanning to monitor the progress of a procedure, with new images produced every 1.5 sec. This may give greater appreciation of anatomy, especially deep to the 2-dimensional laparoscopic image, and hence increase safety, reduce procedure magnitude and increase confidence in tumour resection surgery. The aim of this paper was to investigate the feasibility of performing IMR-image-guided general surgery, especially in neoplastic and laparoscopic field, reporting a single center -- St. Mary's Hospital (London, UK) -- experience. Procedures were carried out in a Signa 0.5 T General Elettric SP10 Interventional MR (General Electric Medical Systems, Milwaukee, WI, USA) with magnet-compatible instruments (titanium alloy instruments, plastic retractors and ultrasonic driven scalpel) and under general anesthesia. There were performed 10 excision biopsies of palpable benign breast tumors (on female patients), 3 excisions of skin sarcoma (dermatofibrosarcoma protuberans), 1 right hemicolectomy and 2 laparoscopic cholecystectomies. The breast lesions were localized with pre- and postcontrast (intravenous gadolinium DPTA) sagittal and axial fast multiplanar spoiled gradient recalled conventional Signa sequences; preoperative real time fast gradient recalled sequences were also obtained using the flashpoint tracking device. During right hemicolectomy intraoperative single shot fast spin echo (SSFSE) and fast spoiled gradient recalled (FSPGR) imaging of right colon were performed after installation of 150 cc of water or 1% gadolinium solution, respectively, through a Foley catheter; imaging was also obtained in an attempt to identify mesenteric lymph nodes intraoperatively. Concerning laparoscopic procedures, magnetic devices (insufflator, light source) were positioned outside scan room, the tubing and light head being passed through penetration panels. Intraoperative MR-cholangiography was performed using fast spin echo (SSFSE) techniques with minimal intensity projection 3-dimensional reconstruction. About skin sarcomas, 2 of them were skin recurrences of previously surgically treated sarcomas (all of them received preoperative biopsy) and the extent of the lesion was then determined using short tau inversion recovery (STIR) sequence. The skin was closed in each case without need for any plastic reconstruction. The breast lesions were visualized with both Signa and real-time imaging and all enhanced with contrast: 2 (20%) were visualized only after contrast enhancement; intraoperative real time imaging clearly demonstrated a resection margin in all cases. Maximum dimensions of breast specimens (range 8-50 mm, median 24.5 mm) were not significantly different from those measured by Signa (p>0.17, Student's paired t-test) or real time images (p>0.4): also there was no significant difference in lesion size between Signa and real time images (p>0.25). All postprocedure scans clearly demonstrated complete excision. The extent of the tumor at MR imaging was greater in each case than suggested by clinical examination. Adequate resection margins were planned using STIR sequences. Histological examination confirmed clear surgical margins of at least 1 cm in each case. During right hemicolectomy, both intraoperative SSFSE and FSPGR contrast imaging revealed the lesion and details of the colonic surface; imaging of the lymph node draining right colon was only partially successful, due to movement artifact. Concerning laparoscopic procedures, both FSE and SSFSE techniques produced reasonable images of the gallbladder and intrahepatic ducts, but the FSE imaging was of poor quality due to respiration artifact; however, SSFSE allowed visualization of the gallbladder and part of the common bile duct. About skin sarcomas, the extent of the tumor at MR imaging was greater in each case than suggested by clinical examination and in each case the complete tumor excision was confirmed. Histological examination confirmed clear surgical margins of at least 1 cm in each case. Intraoperative MR scanning reliably identifies palpable breast tumours and skin sarcomas and is sufficiently accurate to guide their surgical excision. Further work may be done to develop laparoscopic and open abdominal surgery as well.

  13. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity

    NASA Astrophysics Data System (ADS)

    He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan

    2017-07-01

    While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.

  14. Implant detectibility of intervertebral disc spacers in post fusion MRI: evaluation of the MRI scan quality by using a scoring system--an in vitro study.

    PubMed

    Ernstberger, Thorsten; Heidrich, Gabert; Schultz, Wolfgang; Grabbe, Eckhardt

    2007-02-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium and cobalt chromium alloys and carbon fiber-reinforced polymers. Implant-related susceptibility artifacts can decrease the quality of MRI scans. The aim of this cadaveric study was to demonstrate the extent that implant-related MRI artifacting affects the postfusion differentiation of determined regions of interest (ROIs). In six cadaveric porcine spines, we evaluated the postimplantation MRI scans of a titanium, cobalt-chromium and carbon spacer that differed in shape and surface qualities. A spacer made of human cortical bone was used as a control. A defined evaluation unit was divided into ROIs to characterize the spinal canal as well as the intervertebral disc space. Considering 15 different MRI sequences read independently by an interobserver-validated team of specialists the artifact-affected image quality of the median MRI slice was rated on a score of 0-3. A maximum score of 18 points (100%) for the determined ROIs was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. For the determined ROI maximum scores for the cobalt-chromium, titanium and carbon spacers were 24%, 32% and 84%, respectively. By using favored T1 TSE sequences the carbon spacer showed a clear advantage in postfusion spinal imaging. Independent of artifact dimensions, the scoring system used allowed us to create an implant-related ranking of MRI scan quality in reference to the bone control.

  15. Study of spin-scan imaging for outer planets missions. [imaging techniques for Jupiter orbiter missions

    NASA Technical Reports Server (NTRS)

    Russell, E. E.; Chandos, R. A.; Kodak, J. C.; Pellicori, S. F.; Tomasko, M. G.

    1974-01-01

    The constraints that are imposed on the Outer Planet Missions (OPM) imager design are of critical importance. Imager system modeling analyses define important parameters and systematic means for trade-offs applied to specific Jupiter orbiter missions. Possible image sequence plans for Jupiter missions are discussed in detail. Considered is a series of orbits that allow repeated near encounters with three of the Jovian satellites. The data handling involved in the image processing is discussed, and it is shown that only minimal processing is required for the majority of images for a Jupiter orbiter mission.

  16. Noncontrast Peripheral MRA with Spiral Echo Train Imaging

    PubMed Central

    Fielden, Samuel W.; Mugler, John P.; Hagspiel, Klaus D.; Norton, Patrick T.; Kramer, Christopher M.; Meyer, Craig H.

    2015-01-01

    Purpose To develop a spin echo train sequence with spiral readout gradients with improved artery–vein contrast for noncontrast angiography. Theory Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Methods Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. Results In vivo, artery–vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery–vein contrast, better spatial resolution (1.2 mm2 versus 1.5 mm2), and was acquired in less time (1.4 min versus 7.5 min). Conclusion The spiral spin echo train sequence can be used for flow-independent angiography to generate threedimensional angiograms of the periphery quickly and without the use of contrast agents. PMID:24753164

  17. Noncontrast peripheral MRA with spiral echo train imaging.

    PubMed

    Fielden, Samuel W; Mugler, John P; Hagspiel, Klaus D; Norton, Patrick T; Kramer, Christopher M; Meyer, Craig H

    2015-03-01

    To develop a spin echo train sequence with spiral readout gradients with improved artery-vein contrast for noncontrast angiography. Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. In vivo, artery-vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery-vein contrast, better spatial resolution (1.2 mm(2) versus 1.5 mm(2) ), and was acquired in less time (1.4 min versus 7.5 min). The spiral spin echo train sequence can be used for flow-independent angiography to generate three-dimensional angiograms of the periphery quickly and without the use of contrast agents. © 2014 Wiley Periodicals, Inc.

  18. Concrete thawing studied by single-point ramped imaging.

    PubMed

    Prado, P J; Balcom, B J; Beyea, S D; Armstrong, R L; Bremner, T W

    1997-12-01

    A series of two-dimensional images of proton distribution in a hardened concrete sample has been obtained during the thawing process (from -50 degrees C up to 11 degrees C). The SPRITE sequence is optimal for this study given the characteristic short relaxation times of water in this porous media (T2* < 200 micros and T1 < 3.6 ms). The relaxation parameters of the sample were determined in order to optimize the time efficiency of the sequence, permitting a 4-scan 64 x 64 acquisition in under 3 min. The image acquisition is fast on the time scale of the temperature evolution of the specimen. The frozen water distribution is quantified through a position based study of the image contrast. A multiple point acquisition method is presented and the signal sensitivity improvement is discussed.

  19. Water and fat separation in real-time MRI of joint movement with phase-sensitive bSSFP.

    PubMed

    Mazzoli, Valentina; Nederveen, Aart J; Oudeman, Jos; Sprengers, Andre; Nicolay, Klaas; Strijkers, Gustav J; Verdonschot, Nico

    2017-07-01

    To introduce a method for obtaining fat-suppressed images in real-time MRI of moving joints at 3 Tesla (T) using a bSSFP sequence with phase detection to enhance visualization of soft tissue structures during motion. The wrist and knee of nine volunteers were imaged with a real-time bSSFP sequence while performing dynamic tasks. For appropriate choice of sequence timing parameters, water and fat pixels showed an out-of-phase behavior, which was exploited to reconstruct water and fat images. Additionally, a 2-point Dixon sequence was used for dynamic imaging of the joints, and resulting water and fat images were compared with our proposed method. The joints could be visualized with good water-fat separation and signal-to-noise ratio (SNR), while maintaining a relatively high temporal resolution (5 fps in knee imaging and 10 fps in wrist imaging). The proposed method produced images of moving joints with higher SNR and higher image quality when compared with the Dixon method. Water-fat separation is feasible in real-time MRI of moving knee and wrist at 3 T. PS-bSSFP offers movies with higher SNR and higher diagnostic quality when compared with Dixon scans. Magn Reson Med 78:58-68, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Space Radar Image of West Texas - SAR Scan

    NASA Image and Video Library

    1999-04-15

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by "scanning" the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the forthcoming Canadian RADARSAT satellite. http://photojournal.jpl.nasa.gov/catalog/PIA01787

  1. Assessing Exposures to Magnetic Resonance Imaging's Complex Mixture of Magnetic Fields for In Vivo, In Vitro, and Epidemiologic Studies of Health Effects for Staff and Patients.

    PubMed

    Frankel, Jennifer; Wilén, Jonna; Hansson Mild, Kjell

    2018-01-01

    A complex mixture of electromagnetic fields is used in magnetic resonance imaging (MRI): static, low-frequency, and radio frequency magnetic fields. Commonly, the static magnetic field ranges from one to three Tesla. The low-frequency field can reach several millitesla and with a time derivative of the order of some Tesla per second. The radiofrequency (RF) field has a magnitude in the microtesla range giving rise to specific absorption rate values of a few Watts per kilogram. Very little attention has been paid to the case where there is a combined exposure to several different fields at the same time. Some studies have shown genotoxic effects in cells after exposure to an MRI scan while others have not demonstrated any effects. A typical MRI exam includes muliple imaging sequences of varying length and intensity, to produce different types of images. Each sequence is designed with a particular purpose in mind, so one sequence can, for example, be optimized for clearly showing fat water contrast, while another is optimized for high-resolution detail. It is of the utmost importance that future experimental studies give a thorough description of the exposure they are using, and not just a statement such as "An ordinary MRI sequence was used." Even if the sequence is specified, it can differ substantially between manufacturers on, e.g., RF pulse height, width, and duty cycle. In the latest SCENIHR opinion, it is stated that there is very little information regarding the health effects of occupational exposure to MRI fields, and long-term prospective or retrospective cohort studies on workers are recommended as a high priority. They also state that MRI is increasingly used in pediatric diagnostic imaging, and a cohort study into the effects of MRI exposure on children is recommended as a high priority. For the exposure assessment in epidemiological studies, there is a clear difference between patients and staff and further work is needed on this. Studies that explore the possible differences between MRI scan sequences and compare them in terms of exposure level are warranted.

  2. Positive contrast high-resolution 3D-cine imaging of the cardiovascular system in small animals using a UTE sequence and iron nanoparticles at 4.7, 7 and 9.4 T.

    PubMed

    Trotier, Aurélien J; Lefrançois, William; Van Renterghem, Kris; Franconi, Jean-Michel; Thiaudière, Eric; Miraux, Sylvain

    2015-07-07

    To show that 3D sequences with ultra-short echo times (UTEs) can generate a positive contrast whatever the magnetic field (4.7, 7 or 9.4 T) and whatever Ultra Small Particles of Iron Oxide (USPIO) concentration injected and to use it for 3D time-resolved imaging of the murine cardiovascular system with high spatial and temporal resolutions. Three different concentrations (50, 200 and 500 μmol Fe/kg) of USPIO were injected in mice and static images of the middle part of the animals were acquired at 4.7, 7 and 9.4 T pre and post-contrast with UTE (TE/TR = 0.05/4.5 ms) sequences. Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) of blood and static tissus were evaluated before and after contrast agent injection. 3D-cine images (TE/TR = 0.05/3.5 ms, scan time < 12 min) at 156 μm isotropic resolution of the mouse cardiopulmonary system were acquired prospectively with the UTE sequence for the three magnetic fields and with an USPIO dose of 200 μmol Fe/kg. SNR, CNR and signal homogeneity of blood were measured. High spatial (104 μm) or temporal (3.5 ms) resolution 3D-cine imaging (scan time < 35 min) isotropic resolution were also performed at 7 T with a new sequence encoding scheme. UTE imaging generated positive contrast and higher SNR and CNR whatever the magnetic field and the USPIO concentration used compared to pre-contrast images. Time-resolved 3D acquisition enables high blood SNR (66.6 ± 4.5 at 7 T) and CNR (33.2 ± 4.2 at 7 T) without flow or motion artefact. Coronary arteries and aortic valve were visible on images acquired at 104 μm resolution. We have demonstrated that by combining the injection of iron nanoparticles with 3D-cine UTE sequences, it was possible to generate a strong positive contrast between blood and surrounding tissues. These properties were exploited to produce images of the cardiovascular system in small animals at high magnetic fields with a high spatial and temporal resolution. This approach might be useful to measure the functional cardiac parameters or to assess anatomical modifications to the blood vessels in cardio-vascular disease models.

  3. The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing.

    PubMed

    van Eijnatten, Maureen; Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan

    2016-01-01

    Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a "gold standard". All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings.

  4. Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes

    PubMed Central

    Atalar, Ergin; McVeigh, Elliot R.

    2007-01-01

    With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900

  5. Sparsity-Based Super Resolution for SEM Images.

    PubMed

    Tsiper, Shahar; Dicker, Or; Kaizerman, Idan; Zohar, Zeev; Segev, Mordechai; Eldar, Yonina C

    2017-09-13

    The scanning electron microscope (SEM) is an electron microscope that produces an image of a sample by scanning it with a focused beam of electrons. The electrons interact with the atoms in the sample, which emit secondary electrons that contain information about the surface topography and composition. The sample is scanned by the electron beam point by point, until an image of the surface is formed. Since its invention in 1942, the capabilities of SEMs have become paramount in the discovery and understanding of the nanometer world, and today it is extensively used for both research and in industry. In principle, SEMs can achieve resolution better than one nanometer. However, for many applications, working at subnanometer resolution implies an exceedingly large number of scanning points. For exactly this reason, the SEM diagnostics of microelectronic chips is performed either at high resolution (HR) over a small area or at low resolution (LR) while capturing a larger portion of the chip. Here, we employ sparse coding and dictionary learning to algorithmically enhance low-resolution SEM images of microelectronic chips-up to the level of the HR images acquired by slow SEM scans, while considerably reducing the noise. Our methodology consists of two steps: an offline stage of learning a joint dictionary from a sequence of LR and HR images of the same region in the chip, followed by a fast-online super-resolution step where the resolution of a new LR image is enhanced. We provide several examples with typical chips used in the microelectronics industry, as well as a statistical study on arbitrary images with characteristic structural features. Conceptually, our method works well when the images have similar characteristics, as microelectronics chips do. This work demonstrates that employing sparsity concepts can greatly improve the performance of SEM, thereby considerably increasing the scanning throughput without compromising on analysis quality and resolution.

  6. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    PubMed

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Multi-modal and targeted imaging improves automated mid-brain segmentation

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; D'Haese, Pierre F.; Pallavaram, Srivatsan; Newton, Allen T.; Claassen, Daniel O.; Dawant, Benoit M.; Landman, Bennett A.

    2017-02-01

    The basal ganglia and limbic system, particularly the thalamus, putamen, internal and external globus pallidus, substantia nigra, and sub-thalamic nucleus, comprise a clinically relevant signal network for Parkinson's disease. In order to manually trace these structures, a combination of high-resolution and specialized sequences at 7T are used, but it is not feasible to scan clinical patients in those scanners. Targeted imaging sequences at 3T such as F-GATIR, and other optimized inversion recovery sequences, have been presented which enhance contrast in a select group of these structures. In this work, we show that a series of atlases generated at 7T can be used to accurately segment these structures at 3T using a combination of standard and optimized imaging sequences, though no one approach provided the best result across all structures. In the thalamus and putamen, a median Dice coefficient over 0.88 and a mean surface distance less than 1.0mm was achieved using a combination of T1 and an optimized inversion recovery imaging sequences. In the internal and external globus pallidus a Dice over 0.75 and a mean surface distance less than 1.2mm was achieved using a combination of T1 and FGATIR imaging sequences. In the substantia nigra and sub-thalamic nucleus a Dice coefficient of over 0.6 and a mean surface distance of less than 1.0mm was achieved using the optimized inversion recovery imaging sequence. On average, using T1 and optimized inversion recovery together produced significantly improved segmentation results than any individual modality (p<0.05 wilcox sign-rank test).

  8. SU-E-J-231: Comparison of Delineation Variability of Soft Tissue Volume and Position in Head-And-Neck Between Two T1-Weighted Pulse Sequences Using An MR-Simulator with Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, O; Lo, G; Yuan, J

    Purpose: There is growing interests in applying MR-simulator(MR-sim) in radiotherapy but MR images subject to hardware, patient and pulse sequence dependent geometric distortion that may potentially influence target definition. This study aimed to evaluate the influence on head-and-neck tissue delineation, in terms of positional and volumetric variability, of two T1-weighted(T1w) MR sequences on a 1.5T MR-sim Methods: Four healthy volunteers were scanned (4 scans for each on different days) using both spin-echo (3DCUBE, TR/TE=500/14ms, TA=183s) and gradient-echo sequences (3DFSPGR, TE/TR=7/4ms, TA=173s) with identical coverage, voxel-size(0.8×0.8×1.0mm3), receiver-bandwidth(62.5kHz/pix) and geometric correction on a 1.5T MR-sim immobilized with personalized thermoplastic cast and head-rest.more » Under this setting, similar T1w contrast and signal-to-noise ratio were obtained, and factors other than sequence that might bias image distortion and tissue delineation were minimized. VOIs of parotid gland(PGR, PGL), pituitary gland(PIT) and eyeballs(EyeL, EyeR) were carefully drawn, and inter-scan coefficient-of-variation(CV) of VOI centroid position and volume were calculated for each subject. Mean and standard deviation(SD) of the CVs for four subjects were compared between sequences using Wilcoxon ranksum test. Results: The mean positional(<4%) and volumetric(<7%) CVs varied between tissues, majorly dependent on tissue inherent properties like volume, location, mobility and deformability. Smaller mean volumetric CV was found in 3DCUBE, probably due to its less proneness to tissue susceptibility, but only PGL showed significant difference(P<0.05). Positional CVs had no significant differences for all VOIs(P>0.05) between sequences, suggesting volumetric variation might be more sensitive to sequence-dependent delineation difference. Conclusion: Although 3DCUBE is considered less prone to tissue susceptibility-induced artifact and distortion, our preliminary data showed that both sequences had insignificant differences on positional and volumetric CV in most head-and-neck tissues except for PGL. This study is majorly limited in its small sample size. Influences of image contrasts(T1w v.s. T2w) and inter-observer difference have to be further investigated.« less

  9. Retrospective comparison of three-dimensional imaging sequences in the visualization of posterior fossa cranial nerves.

    PubMed

    Ors, Suna; Inci, Ercan; Turkay, Rustu; Kokurcan, Atilla; Hocaoglu, Elif

    2017-12-01

    To compare efficancy of three-dimentional SPACE (sampling perfection with application-optimized contrasts using different flip-angle evolutions) and CISS (constructive interference in steady state) sequences in the imaging of the cisternal segments of cranial nerves V-XII. Temporal MRI scans from 50 patients (F:M ratio, 27:23; mean age, 44.5±15.9 years) admitted to our hospital with vertigo, tinnitus, and hearing loss were retrospectively analyzed. All patients had both CISS and SPACE sequences. Quantitative analysis of SPACE and CISS sequences was performed by measuring the ventricle-to-parenchyma contrast-to-noise ratio (CNR). Qualitative analysis of differences in visualization capability, image quality, and severity of artifacts was also conducted. A score ranging 'no artefact' to 'severe artefacts and unreadable' was used for the assessment of artifacts and from 'not visualized' to 'completely visualized' for the assesment of image quality, respectively. The distribution of variables was controlled by the Kolmogorov-Smirnov test. Samples t-test and McNemar's test were used to determine statistical significance. Rates of visualization of posterior fossa cranial nerves in cases of complete visualization were as follows: nerve V (100% for both sequences), nerve VI (94% in SPACE, 86% in CISS sequences), nerves VII-VIII (100% for both sequences), IX-XI nerve complex (96%, 88%); nerve XII (58%, 46%) (p<0.05). SPACE sequences showed fewer artifacts than CISS sequences (p<0.002). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Time-resolved fluorescence imaging of slab gels for lifetime base-calling in DNA sequencing applications.

    PubMed

    Lassiter, S J; Stryjewski, W; Legendre, B L; Erdmann, R; Wahl, M; Wurm, J; Peterson, R; Middendorf, L; Soper, S A

    2000-11-01

    A compact time-resolved near-IR fluorescence imager was constructed to obtain lifetime and intensity images of DNA sequencing slab gels. The scanner consisted of a microscope body with f/1.2 relay optics onto which was mounted a pulsed diode laser (repetition rate 80 MHz, lasing wavelength 680 nm, average power 5 mW), filtering optics, and a large photoactive area (diameter 500 microns) single-photon avalanche diode that was actively quenched to provide a large dynamic operating range. The time-resolved data were processed using electronics configured in a conventional time-correlated single-photon-counting format with all of the counting hardware situated on a PC card resident on the computer bus. The microscope head produced a timing response of 450 ps (fwhm) in a scanning mode, allowing the measurement of subnano-second lifetimes. The time-resolved microscope head was placed in an automated DNA sequencer and translated across a 21-cm-wide gel plate in approximately 6 s (scan rate 3.5 cm/s) with an accumulation time per pixel of 10 ms. The sampling frequency was 0.17 Hz (duty cycle 0.0017), sufficient to prevent signal aliasing during the electrophoresis separation. Software (written in Visual Basic) allowed acquisition of both the intensity image and lifetime analysis of DNA bands migrating through the gel in real time. Using a dual-labeling (IRD700 and Cy5.5 labeling dyes)/two-lane sequencing strategy, we successfully read 670 bases of a control M13mp18 ssDNA template using lifetime identification. Comparison of the reconstructed sequence with the known sequence of the phage indicated the number of miscalls was only 2, producing an error rate of approximately 0.3% (identification accuracy 99.7%). The lifetimes were calculated using maximum likelihood estimators and allowed on-line determinations with high precision, even when short integration times were used to construct the decay profiles. Comparison of the lifetime base calling to a single-dye/four-lane sequencing strategy indicated similar results in terms of miscalls, but reduced insertion and deletion errors using lifetime identification methods, improving the overall read accuracy.

  11. Fast detection of diffuse axonal damage in severe traumatic brain injury: comparison of gradient-recalled echo and turbo proton echo-planar spectroscopic imaging MRI sequences.

    PubMed

    Giugni, Elisabetta; Sabatini, Umberto; Hagberg, Gisela E; Formisano, Rita; Castriota-Scanderbeg, Alessandro

    2005-05-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury (TBI), and is frequently accompanied by tissue tear hemorrhage. T2-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of hemorrhage. The purpose of this study is to compare turbo Proton Echo Planar Spectroscopic Imaging (t-PEPSI), an extremely fast sequence, with GRE sequence in the detection of DAI. Twenty-one patients (mean age 26.8 years) with severe TBI occurred at least 3 months earlier, underwent a brain MR Imaging study on a 1.5-T scanner. A qualitative evaluation of the t-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and t-PEPSI images, and divided according to their anatomic location as lobar and/or deep brain. There was no significant difference between GRE and t-PEPSI sequences in the detection of the total number of DAI lesions (291 vs. 230, respectively). GRE sequence delineated a higher number of DAI in the temporal lobe compared to the t-PEPSI sequence (74 vs. 37, P < .004), while no differences were found for the other regions. The SI CR was significantly lower with the t-PEPSI than the GRE sequence (P < .00001). Owing to its very short scan time and high sensitivity to the hemorrhage foci, the t-PEPSI sequence may be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  12. Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Cai, Yun-Fang; Xu, Zhi; Chen, Yu-Chao; Xu, Jun; Li, Zheng-Gang; Fu, Yu; Ji, Kai-Fan

    2018-04-01

    In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3″ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.

  13. Comparison of Silent and Conventional MR Imaging for the Evaluation of Myelination in Children

    PubMed Central

    Matsuo-Hagiyama, Chisato; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Arisawa, Atsuko; Yoshioka, Eri; Nabatame, Shin; Nakano, Sayaka; Tomiyama, Noriyuki

    2017-01-01

    Purpose: Silent magnetic resonance imaging (MRI) scans produce reduced acoustic noise and are considered more gentle for sedated children. The aim of this study was to compare the validity of T1- (T1W) and T2-weighted (T2W) silent sequences for myelination assessment in children with conventional spin-echo sequences. Materials and Methods: A total of 30 children (21 boys, 9 girls; age range: 1–83 months, mean age: 35.5 months, median age: 28.5 months) were examined using both silent and spin-echo sequences. Acoustic noise levels were analyzed and compared. The degree of myelination was qualitatively assessed via consensus, and T1W and T2W signal intensities were quantitatively measured by percent contrast. Results: Acoustic noise levels were significantly lower during silent sequences than during conventional sequences (P < 0.0001 for both T1W and T2W). Inter-method comparison indicated overall good to excellent agreement (T1W and T2W images, κ = 0.76 and 0.80, respectively); however, agreement was poor for cerebellar myelination on T1W images (κ = 0.14). The percent contrast of silent and conventional MRI sequences had a strong correlation (T1W, correlation coefficient [CC] = 0.76; T1W excluding the middle cerebellar peduncle, CC = 0.82; T2W, CC = 0.91). Conclusions: For brain MRI, silent sequences significantly reduced acoustic noise and provided diagnostic image quality for myelination evaluations; however, the two methods differed with respect to cerebellar delineation on T1W sequences. PMID:27795484

  14. Simultaneous Myocardial Strain and Dark-Blood Perfusion Imaging Using a Displacement-Encoded MRI Pulse Sequence

    PubMed Central

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E.; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd’Hotel, Christophe; Lorenz, Christine H.; Croisille, Pierre; Wen, Han

    2010-01-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in 2–3 myocardial slices were repeatedly acquired using a single shot pulse sequence for 3 to 4 minutes, which covers a bolus infusion of Gd. The magnitudes of the images were T1 weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n=9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R2 = 0.765, Bland-Altman standard deviation = 0.15 ml/min/g). In a group of ST-elevation myocardial infarction(STEMI) patients (n=11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R2=0.72), and the pixel-wise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  15. Maia Mapper: high definition XRF imaging in the lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.

    Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less

  16. Maia Mapper: high definition XRF imaging in the lab

    DOE PAGES

    Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.; ...

    2018-03-13

    Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less

  17. Maia Mapper: high definition XRF imaging in the lab

    NASA Astrophysics Data System (ADS)

    Ryan, C. G.; Kirkham, R.; Moorhead, G. F.; Parry, D.; Jensen, M.; Faulks, A.; Hogan, S.; Dunn, P. A.; Dodanwela, R.; Fisher, L. A.; Pearce, M.; Siddons, D. P.; Kuczewski, A.; Lundström, U.; Trolliet, A.; Gao, N.

    2018-03-01

    Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keV into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.

  18. Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Charpiat, Guillaume; Brucker, Ludovic; Menze, Bjoern H.

    2014-01-01

    We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures.

  19. UTE imaging with simultaneous water and fat signal suppression using a time-efficient multispoke inversion recovery pulse sequence.

    PubMed

    Carl, Michael; Bydder, Graeme M; Du, Jiang

    2016-08-01

    The long repetition time and inversion time with inversion recovery preparation ultrashort echo time (UTE) often causes prohibitively long scan times. We present an optimized method for long T2 signal suppression in which several k-space spokes are acquired after each inversion preparation. Using Bloch equations the sequence parameters such as TI and flip angle were optimized to suppress the long T2 water and fat signals and to maximize short T2 contrast. Volunteer imaging was performed on a healthy male volunteer. Inversion recovery preparation was performed using a Silver-Hoult adiabatic inversion pulse together with a three-dimensional (3D) UTE (3D Cones) acquisition. The theoretical signal curves generally agreed with the experimentally measured region of interest curves. The multispoke inversion recovery method showed good muscle and fatty bone marrow suppression, and highlighted short T2 signals such as these from the femoral and tibial cortex. Inversion recovery 3D UTE imaging with multiple spoke acquisitions can be used to effectively suppress long T2 signals and highlight short T2 signals within clinical scan times. Theoretical modeling can be used to determine sequence parameters to optimize long T2 signal suppression and maximize short T2 signals. Experimental results on a volunteer confirmed the theoretical predictions. Magn Reson Med 76:577-582, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less

  1. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    DOE PAGES

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; ...

    2016-10-19

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less

  2. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    PubMed Central

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Schloegl, R.; Willinger, Marc-Georg

    2016-01-01

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene–graphene and graphene–substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite. PMID:27759024

  3. Real-time myocardium segmentation for the assessment of cardiac function variation

    NASA Astrophysics Data System (ADS)

    Zoehrer, Fabian; Huellebrand, Markus; Chitiboi, Teodora; Oechtering, Thekla; Sieren, Malte; Frahm, Jens; Hahn, Horst K.; Hennemuth, Anja

    2017-03-01

    Recent developments in MRI enable the acquisition of image sequences with high spatio-temporal resolution. Cardiac motion can be captured without gating and triggering. Image size and contrast relations differ from conventional cardiac MRI cine sequences requiring new adapted analysis methods. We suggest a novel segmentation approach utilizing contrast invariant polar scanning techniques. It has been tested with 20 datasets of arrhythmia patients. The results do not differ significantly more between automatic and manual segmentations than between observers. This indicates that the presented solution could enable clinical applications of real-time MRI for the examination of arrhythmic cardiac motion in the future.

  4. Magnetic resonance imaging in cadaver dogs with metallic vertebral implants at 3 Tesla: evaluation of the WARP-turbo spin echo sequence.

    PubMed

    Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C

    2013-11-15

    Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (<8 kg) cadaver dogs using stainless steel screws and polymethylmethacrylate. Axial and sagittal T2-weighted and short tau inversion recovery MRI was performed using conventional pulse sequences and WARP-TSE sequences at 3 T. Images were assessed qualitatively and quantitatively. Images made with the WARP-TSE sequence had smaller susceptibility artifacts and superior spinal cord margin depiction. WARP-TSE sequences reduced the length over which susceptibility artifacts caused spinal cord margin depiction interference by 24.9% to 71.5% with scan times of approximately 12 to 16 minutes. The WARP-TSE sequence is a viable option for evaluating the vertebral column after implantation with stainless steel implants. N/A.

  5. Whole brain inhomogeneous magnetization transfer (ihMT) imaging: Sensitivity enhancement within a steady-state gradient echo sequence.

    PubMed

    Mchinda, Samira; Varma, Gopal; Prevost, Valentin H; Le Troter, Arnaud; Rapacchi, Stanislas; Guye, Maxime; Pelletier, Jean; Ranjeva, Jean-Philippe; Alsop, David C; Duhamel, Guillaume; Girard, Olivier M

    2018-05-01

    To implement, characterize, and optimize an interleaved inhomogeneous magnetization transfer (ihMT) gradient echo sequence allowing for whole-brain imaging within a clinically compatible scan time. A general framework for ihMT modelling was developed based on the Provotorov theory of radiofrequency saturation, which accounts for the dipolar order underpinning the ihMT effect. Experimental studies and numerical simulations were performed to characterize and optimize the ihMT-gradient echo dependency with sequence timings, saturation power, and offset frequency. The protocol was optimized in terms of maximum signal intensity and the reproducibility assessed for a nominal resolution of 1.5 mm isotropic. All experiments were performed on healthy volunteers at 1.5T. An important mechanism driving signal optimization and leading to strong ihMT signal enhancement that relies on the dynamics of radiofrequency energy deposition has been identified. By taking advantage of the delay allowed for readout between ihMT pulse bursts, it was possible to boost the ihMT signal by almost 2-fold compared to previous implementation. Reproducibility of the optimal protocol was very good, with an intra-individual error < 2%. The proposed sensitivity-boosted and time-efficient steady-state ihMT-gradient echo sequence, implemented and optimized at 1.5T, allowed robust high-resolution 3D ihMT imaging of the whole brain within a clinically compatible scan time. Magn Reson Med 79:2607-2619, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Simultaneous electroencephalography-functional MRI at 3 T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place.

    PubMed

    Nöth, Ulrike; Laufs, Helmut; Stoermer, Robert; Deichmann, Ralf

    2012-03-01

    To describe heating effects to be expected in simultaneous electroencephalography (EEG) and magnetic resonance imaging (MRI) when deviating from the EEG manufacturer's instructions; to test which anatomical MRI sequences have a sufficiently low specific absorption rate (SAR) to be performed with the EEG equipment in place; and to suggest precautions to reduce the risk of heating. Heating was determined in vivo below eight EEG electrodes, using both head and body coil transmission and sequences covering the whole range of SAR values. Head transmit coil: temperature increases were below 2.2°C for low SAR sequences, but reached 4.6°C (one subject, clavicle) for high SAR sequences; the equilibrium temperature T(eq) remained below 39°C. Body transmit coil: temperature increases were higher and more frequent over subjects and electrodes, with values below 2.6°C for low SAR sequences, reaching 6.9°C for high SAR sequences (T8 electrode) with T(eq) exceeding a critical level of 40°C. Anatomical imaging should be based on T1-weighted sequences (FLASH, MPRAGE, MDEFT) with an SAR below values for functional MRI sequences based on gradient echo planar imaging. Anatomical sequences with a high SAR can pose a significant risk, which is reduced by using head coil transmission. Copyright © 2011 Wiley-Liss, Inc.

  7. T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization.

    PubMed

    Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-06-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by transmit B(1) heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T(1) contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio.

  8. T1 weighted Brain Images at 7 Tesla Unbiased for Proton Density, T2* contrast and RF Coil Receive B1 Sensitivity with Simultaneous Vessel Visualization

    PubMed Central

    Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-01-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by Transmit B1 heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T1 contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio. PMID:19233292

  9. The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing

    PubMed Central

    Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan

    2016-01-01

    Objectives: Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Methods: Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a “gold standard”. All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Results: Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. Conclusions: This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings. PMID:26943179

  10. Contrast-enhanced 3-dimensional SPACE versus MP-RAGE for the detection of brain metastases: considerations with a 32-channel head coil.

    PubMed

    Reichert, Miriam; Morelli, John N; Runge, Val M; Tao, Ai; von Ritschl, Ruediger; von Ritschl, Andreas; Padua, Abraham; Dix, James E; Marra, Michael J; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-01-01

    The aim of this study was to compare the detection of brain metastases at 3 T using a 32-channel head coil with 2 different 3-dimensional (3D) contrast-enhanced sequences, a T1-weighted fast spin-echo-based (SPACE; sampling perfection with application-optimized contrasts using different flip angle evolutions) sequence and a conventional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence. Seventeen patients with 161 brain metastases were examined prospectively using both SPACE and MP-RAGE sequences on a 3-T magnetic resonance system. Eight healthy volunteers were similarly examined for determination of signal-to-noise ratio (SNR) values. Parameters were adjusted to equalize acquisition times between the sequences (3 minutes and 30 seconds). The order in which sequences were performed was randomized. Two blinded board-certified neuroradiologists evaluated the number of detectable metastatic lesions with each sequence relative to a criterion standard reading conducted at the Gamma Knife facility by a neuroradiologist with access to all clinical and imaging data. In the volunteer assessment with SPACE and MP-RAGE, SNR (10.3 ± 0.8 vs 7.7 ± 0.7) and contrast-to-noise ratio (0.8 ± 0.2 vs 0.5 ± 0.1) were statistically significantly greater with the SPACE sequence (P < 0.05). Overall, lesion detection was markedly improved with the SPACE sequence (99.1% of lesions for reader 1 and 96.3% of lesions for reader 2) compared with the MP-RAGE sequence (73.6% of lesions for reader 1 and 68.5% of lesions for reader 2; P < 0.01). A 3D T1-weighted fast spin echo sequence (SPACE) improves detection of metastatic lesions relative to 3D T1-weighted gradient-echo-based scan (MP-RAGE) imaging when implemented with a 32-channel head coil at identical scan acquisition times (3 minutes and 30 seconds).

  11. Vision based obstacle detection and grouping for helicopter guidance

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano

    1993-01-01

    Electro-optical sensors can be used to compute range to objects in the flight path of a helicopter. The computation is based on the optical flow/motion at different points in the image. The motion algorithms provide a sparse set of ranges to discrete features in the image sequence as a function of azimuth and elevation. For obstacle avoidance guidance and display purposes, these discrete set of ranges, varying from a few hundreds to several thousands, need to be grouped into sets which correspond to objects in the real world. This paper presents a new method for object segmentation based on clustering the sparse range information provided by motion algorithms together with the spatial relation provided by the static image. The range values are initially grouped into clusters based on depth. Subsequently, the clusters are modified by using the K-means algorithm in the inertial horizontal plane and the minimum spanning tree algorithms in the image plane. The object grouping allows interpolation within a group and enables the creation of dense range maps. Researchers in robotics have used densely scanned sequence of laser range images to build three-dimensional representation of the outside world. Thus, modeling techniques developed for dense range images can be extended to sparse range images. The paper presents object segmentation results for a sequence of flight images.

  12. TOPPE: A framework for rapid prototyping of MR pulse sequences.

    PubMed

    Nielsen, Jon-Fredrik; Noll, Douglas C

    2018-06-01

    To introduce a framework for rapid prototyping of MR pulse sequences. We propose a simple file format, called "TOPPE", for specifying all details of an MR imaging experiment, such as gradient and radiofrequency waveforms and the complete scan loop. In addition, we provide a TOPPE file "interpreter" for GE scanners, which is a binary executable that loads TOPPE files and executes the sequence on the scanner. We also provide MATLAB scripts for reading and writing TOPPE files and previewing the sequence prior to hardware execution. With this setup, the task of the pulse sequence programmer is reduced to creating TOPPE files, eliminating the need for hardware-specific programming. No sequence-specific compilation is necessary; the interpreter only needs to be compiled once (for every scanner software upgrade). We demonstrate TOPPE in three different applications: k-space mapping, non-Cartesian PRESTO whole-brain dynamic imaging, and myelin mapping in the brain using inhomogeneous magnetization transfer. We successfully implemented and executed the three example sequences. By simply changing the various TOPPE sequence files, a single binary executable (interpreter) was used to execute several different sequences. The TOPPE file format is a complete specification of an MR imaging experiment, based on arbitrary sequences of a (typically small) number of unique modules. Along with the GE interpreter, TOPPE comprises a modular and flexible platform for rapid prototyping of new pulse sequences. Magn Reson Med 79:3128-3134, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Ultrahigh-resolution imaging of the human brain with phase-cycled balanced steady-state free precession at 7 T.

    PubMed

    Zeineh, Michael M; Parekh, Mansi B; Zaharchuk, Greg; Su, Jason H; Rosenberg, Jarrett; Fischbein, Nancy J; Rutt, Brian K

    2014-05-01

    The objectives of this study were to acquire ultra-high resolution images of the brain using balanced steady-state free precession (bSSFP) at 7 T and to identify the potential utility of this sequence. Eight volunteers participated in this study after providing informed consent. Each volunteer was scanned with 8 phase cycles of bSSFP at 0.4-mm isotropic resolution using 0.5 number of excitations and 2-dimensional parallel acceleration of 1.75 × 1.75. Each phase cycle required 5 minutes of scanning, with pauses between the phase cycles allowing short periods of rest. The individual phase cycles were aligned and then averaged. The same volunteers underwent scanning using 3-dimensional (3D) multiecho gradient recalled echo at 0.8-mm isotropic resolution, 3D Cube T2 at 0.7-mm isotropic resolution, and thin-section coronal oblique T2-weighted fast spin echo at 0.22 × 0.22 × 2.0-mm resolution for comparison. Two neuroradiologists assessed image quality and potential research and clinical utility. The volunteers generally tolerated the scan sessions well, and composite high-resolution bSSFP images were produced for each volunteer. Rater analysis demonstrated that bSSFP had a superior 3D visualization of the microarchitecture of the hippocampus, very good contrast to delineate the borders of the subthalamic nucleus, and relatively good B1 homogeneity throughout. In addition to an excellent visualization of the cerebellum, subtle details of the brain and skull base anatomy were also easier to identify on the bSSFP images, including the line of Gennari, membrane of Liliequist, and cranial nerves. Balanced steady-state free precession had a strong iron contrast similar to or better than the comparison sequences. However, cortical gray-white contrast was significantly better with Cube T2 and T2-weighted fast spin echo. Balanced steady-state free precession can facilitate ultrahigh-resolution imaging of the brain. Although total imaging times are long, the individually short phase cycles can be acquired separately, improving examination tolerability. These images may be beneficial for studies of the hippocampus, iron-containing structures such as the subthalamic nucleus and line of Gennari, and the basal cisterns and their contents.

  14. Quantification of left ventricular functional parameter values using 3D spiral bSSFP and through-time non-Cartesian GRAPPA.

    PubMed

    Barkauskas, Kestutis J; Rajiah, Prabhakar; Ashwath, Ravi; Hamilton, Jesse I; Chen, Yong; Ma, Dan; Wright, Katherine L; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole

    2014-09-11

    The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.

  15. SU-F-J-159: Influence of the Elevated Posterior Position by Using the Customized Vacuum-Bag On the Abdominal MR Image Quality: A Quantitative Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, O; Yuan, J; Law, M

    Purpose: Signal-to-noise ratio(SNR) of MR abdominal imaging in diagnostic radiology is maximized by minimizing the coil-to-patient distance. However, for radiotherapy applications, customized vacuum-bag is needed for abdominal immobilization at the cost of the increasing distance to the posterior spine coil. This sub-optimized coil setting for RT applications may compromise image quality, such as SNR and homogeneity, thus potentially affect tissue delineation. In this study, we quantitatively evaluate the effect of the vertical position change on SNR and image quality change using an ACR MR phantom. Methods: An ACR MR phantom was placed on the flat couch top. Images were acquiredmore » using an 18-channel body array coil and spine coil on a dedicated 1.5T MR-simulator. The scan was repeated three times with the ACR phantom elevated up to 7.5cm from the couch top, with a step size of 2.5cm. All images were acquired using standard ACR test sequence protocol of 2D spin-echo T1-weighted(TR/TE=500/200ms) and T2-weighted(TR/TE1/TE2=2000/20/80) sequences. For all scans, pre-scan normalization was turned on, and the distance between the phantom and the anterior 18-channel body array coil was kept constant. SNR was calculated using the slice with a large water-only region of the phantom. Percent intensity uniformity(PIU) and low contrast object detectability(LCD) were assessed by following ACR test guidelines. Results: The decrease in image SNR(from 335.8 to 169.3) and LCD(T1: from 31 to 19 spokes, T2: 26 to 16 spokes) were observed with increasing vertical distance. After elevating the phantom by 2.5cm(approximately the thickness of standard vacuum-bag), SNR change(from 335.8 to 275.5) and LCD(T1: 31 to 26 spokes, T2: 26 to 21 spokes) change were noted. However, similar PIU was obtained for all choices of vertical distance (T1: 94.5%–95.0%, T2: 94.4%–96.8%). Conclusion: After elevating the scan object, reduction in SNR level and contrast detectability but no change in image homogeneity was observed.« less

  16. Automatic slice-alignment method in cardiac magnetic resonance imaging for evaluation of the right ventricle in patients with pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kenichi; Nitta, Shuhei; Kuhara, Shigehide; Ishimura, Rieko; Kariyasu, Toshiya; Imai, Masamichi; Nitatori, Toshiaki; Takeguchi, Tomoyuki; Shiodera, Taichiro

    2015-09-01

    We propose a new automatic slice-alignment method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, to simplify right ventricular cardiac scan planning and assess its accuracy and the clinical acceptability of the acquired imaging planes in the evaluation of patients with pulmonary hypertension. Steady-state free precession (SSFP) sequences covering the whole heart in the end-diastolic phase with ECG gating were used to acquire 2D axial multislice images. To realize right ventricular scan planning, two morphological feature points are added to be detected and a total of eight morphological features of the heart were extracted from these series of images, and six left ventricular planes and four right ventricular planes were calculated simultaneously based on the extracted features. The subjects were 33 patients (25 with chronic thromboembolic pulmonary hypertension and 8 with idiopathic pulmonary arterial hypertension). The four right ventricular reference planes including right ventricular short-axis, 4-chamber, 2-chamber, and 3-chamber images were evaluated. The acceptability of the acquired imaging planes was visually evaluated using a 4-point scale, and the angular differences between the results obtained by this method and by conventional manual annotation were measured for each view. The average visual scores were 3.9±0.4 for short-axis images, 3.8±0.4 for 4-chamber images, 3.8±0.4 for 2-chamber images, and 3.5±0.6 for 3-chamber images. The average angular differences were 8.7±5.3, 8.3±4.9, 8.1±4.8, and 7.9±5.3 degrees, respectively. The processing time was less than 2.5 seconds in all subjects. The proposed method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, can provide clinically acceptable planes in a short time and is useful because special proficiency in performing cardiac MR for patients with right ventricles of various sizes and shapes is not required.

  17. Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Hatzigeorgiou, Vasiliki; Roka, Violeta; Arikidis, Nikos; Oikonomou, Georgia; Andrianopoulos, Konstantinos; Notaras, Ioannis

    2012-10-01

    The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Spotting L3 slice in CT scans using deep convolutional network and transfer learning.

    PubMed

    Belharbi, Soufiane; Chatelain, Clément; Hérault, Romain; Adam, Sébastien; Thureau, Sébastien; Chastan, Mathieu; Modzelewski, Romain

    2017-08-01

    In this article, we present a complete automated system for spotting a particular slice in a complete 3D Computed Tomography exam (CT scan). Our approach does not require any assumptions on which part of the patient's body is covered by the scan. It relies on an original machine learning regression approach. Our models are learned using the transfer learning trick by exploiting deep architectures that have been pre-trained on imageNet database, and therefore it requires very little annotation for its training. The whole pipeline consists of three steps: i) conversion of the CT scans into Maximum Intensity Projection (MIP) images, ii) prediction from a Convolutional Neural Network (CNN) applied in a sliding window fashion over the MIP image, and iii) robust analysis of the prediction sequence to predict the height of the desired slice within the whole CT scan. Our approach is applied to the detection of the third lumbar vertebra (L3) slice that has been found to be representative to the whole body composition. Our system is evaluated on a database collected in our clinical center, containing 642 CT scans from different patients. We obtained an average localization error of 1.91±2.69 slices (less than 5 mm) in an average time of less than 2.5 s/CT scan, allowing integration of the proposed system into daily clinical routines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: Correlation with gestational age.

    PubMed

    Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K

    2016-12-01

    To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Magnetic flux density measurement with balanced steady state free precession pulse sequence for MREIT: a simulation study.

    PubMed

    Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol

    2009-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.

  1. Random oligonucleotide mutagenesis: application to a large protein coding sequence of a major histocompatibility complex class I gene, H-2DP.

    PubMed Central

    Murray, R; Pederson, K; Prosser, H; Muller, D; Hutchison, C A; Frelinger, J A

    1988-01-01

    We have used random oligonucleotide mutagenesis (or saturation mutagenesis) to create a library of point mutations in the alpha 1 protein domain of a Major Histocompatibility Complex (MHC) molecule. This protein domain is critical for T cell and B cell recognition. We altered the MHC class I H-2DP gene sequence such that synthetic mutant alpha 1 exons (270 bp of coding sequence), which contain mutations identified by sequence analysis, can replace the wild type alpha 1 exon. The synthetic exons were constructed from twelve overlapping oligonucleotides which contained an average of 1.3 random point mutations per intact exon. DNA sequence analysis of mutant alpha 1 exons has shown a point mutant distribution that fits a Poisson distribution, and thus emphasizes the utility of this mutagenesis technique to "scan" a large protein sequence for important mutations. We report our use of saturation mutagenesis to scan an entire exon of the H-2DP gene, a cassette strategy to replace the wild type alpha 1 exon with individual mutant alpha 1 exons, and analysis of mutant molecules expressed on the surface of transfected mouse L cells. Images PMID:2903482

  2. Scanning electron microscopy (SEM) evaluation of sealing ability of MTA and EndoSequence as root-end filling materials with chitosan and carboxymethyl chitosan (CMC) as retrograde smear layer removing agents.

    PubMed

    Nagesh, Bolla; Jeevani, Eppala; Sujana, Varri; Damaraju, Bharagavi; Sreeha, Kaluvakolanu; Ramesh, Penumaka

    2016-01-01

    The purpose of this study was to evaluate the sealing ability of mineral trioxide aggregate (MTA) and EndoSequence with chitosan and carboxymethyl chitosan (CMC) as retrograde smear layer removing agents using scanning electron microscopy (SEM). Forty human single rooted teeth were taken. Crowns were decoronated and canals were obturated. Apically roots were resected and retrograde cavities were done. Based on the type of retrograde material placed and the type of smear layer removal agent used for retrograde cavities, they were divided into four groups (N = 10): Group I chitosan with EndoSequence, group II chitosan with MTA, group III CMC with EndoSequence, and Group IV CMC with MTA. All the samples were longitudinally sectioned, and the SEM analysis was done for marginal adaptation. Kruskal-Wallis and Mann-Witney analysis tests. SEM images showed the presence of less gaps in group III, i.e., CMC with EndoSequence when compared to other groups with statistically significant difference. Within the limited scope of this study, it was concluded that EndoSequence as retrograde material showed better marginal sealing ability.

  3. A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy.

    PubMed

    Kirkby, Paul A; Srinivas Nadella, K M Naga; Silver, R Angus

    2010-06-21

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 mum; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space.

  4. Cartilage magnetic resonance imaging techniques at 3 T: current status and future directions.

    PubMed

    Thakkar, Rashmi S; Subhawong, Ty; Carrino, John A; Chhabra, Avneesh

    2011-04-01

    Magnetic resonance imaging (MRI) remains the imaging modality of choice for morphological and compositional evaluation of the articular cartilage. Accurate detection and characterization of cartilage lesions are necessary to guide the medical and surgical therapy and are also critical for longitudinal studies of the cartilage. Recent work using 3.0-T MRI systems shows promise in improving detection and characterization of the cartilage lesions, particularly with increasing use of high-resolution and high-contrast 3-dimensional sequences, which allow detailed morphological assessment of cartilage in arbitrary imaging planes. In addition, implementation of biochemical sequences in clinically feasible scan times has a potential in the early detection of cartilage lesions before they become morphologically apparent. This article discusses relative advantages and disadvantages of various commonly used as well as experimental MRI techniques to directly assess the morphology and indirectly evaluate the biochemical composition of the articular cartilage.

  5. Plexus structure imaging with thin slab MR neurography: rotating frames, fly-throughs, and composite projections

    NASA Astrophysics Data System (ADS)

    Raphael, David T.; McIntee, Diane; Tsuruda, Jay S.; Colletti, Patrick; Tatevossian, Raymond; Frazier, James

    2006-03-01

    We explored multiple image processing approaches by which to display the segmented adult brachial plexus in a three-dimensional manner. Magnetic resonance neurography (MRN) 1.5-Tesla scans with STIR sequences, which preferentially highlight nerves, were performed in adult volunteers to generate high-resolution raw images. Using multiple software programs, the raw MRN images were then manipulated so as to achieve segmentation of plexus neurovascular structures, which were incorporated into three different visualization schemes: rotating upper thoracic girdle skeletal frames, dynamic fly-throughs parallel to the clavicle, and thin slab volume-rendered composite projections.

  6. Breast MRI at Very Short TE (minTE): Image Analysis of minTE Sequences on Non-Fat-Saturated, Subtracted T1-Weighted Images.

    PubMed

    Wenkel, Evelyn; Janka, Rolf; Geppert, Christian; Kaemmerer, Nadine; Hartmann, Arndt; Uder, Michael; Hammon, Matthias; Brand, Michael

    2017-02-01

    Purpose  The aim was to evaluate a minimum echo time (minTE) protocol for breast magnetic resonance imaging (MRI) in patients with breast lesions compared to a standard TE (nTE) time protocol. Methods  Breasts of 144 women were examined with a 1.5 Tesla MRI scanner. Additionally to the standard gradient-echo sequence with nTE (4.8 ms), a variant with minimum TE (1.2 ms) was used in an interleaved fashion which leads to a better temporal resolution and should reduce the scan time by approximately 50 %. Lesion sizes were measured and the signal-to-noise ratio (SNR) as well as the contrast-to-noise ratio (CNR) were calculated. Subjective confidence was evaluated using a 3-point scale before looking at the nTE sequences (1 = very sure that I can identify a lesion and classify it, 2 = quite sure that I can identify a lesion and classify it, 3 = definitely want to see nTE for final assessment) and the subjective image quality of all examinations was evaluated using a four-grade scale (1 = sharp, 2 = slight blur, 3 = moderate blur and 4 = severe blur/not evaluable) for lesion and skin sharpness. Lesion morphology and contrast enhancement were also evaluated. Results  With minTE sequences, no lesion was rated with "definitely want to see nTE sequences for final assessment". The difference of the longitudinal and transverse diameter did not differ significantly (p > 0.05). With minTE, lesions and skin were rated to be significantly more blurry (p < 0.01 for lesions and p < 0.05 for skin). There was no difference between both sequences with respect to SNR, CNR, lesion morphology, contrast enhancement and detection of multifocal disease. Conclusion  Dynamic breast MRI with a minTE protocol is feasible without a major loss of information (SNR, CNR, lesion morphology, contrast enhancement and lesion sizes) and the temporal resolution can be increased by a factor of 2 using minTE sequences. Key points   · Increase of temporal resolution for a better in-flow curve.. · Dynamic breast MRI with a shorter TE time is possible without relevant loss of information.. · Possible decrease of the overall scan time.. Citation Format · Wenkel E, Janka R, Geppert C et al. Breast MRI at Very Short TE (minTE): Image Analysis of minTE Sequences on Non-Fat-Saturated, Subtracted T1-Weighted Images. Fortschr Röntgenstr 2017; 189: 137 - 145. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  8. Atomic-scale imaging of DNA using scanning tunnelling microscopy.

    PubMed

    Driscoll, R J; Youngquist, M G; Baldeschwieler, J D

    1990-07-19

    The scanning tunnelling microscope (STM) has been used to visualize DNA under water, under oil and in air. Images of single-stranded DNA have shown that submolecular resolution is possible. Here we describe atomic-resolution imaging of duplex DNA. Topographic STM images of uncoated duplex DNA on a graphite substrate obtained in ultra-high vacuum are presented that show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles show excellent correlation with atomic contours of the van der Waals surface of A-form DNA derived from X-ray crystallography. A comparison of variations in the barrier to quantum mechanical tunnelling (barrier-height) with atomic-scale topography shows correlation over the phosphate-sugar backbone but anticorrelation over the base pairs. This relationship may be due to the different chemical characteristics of parts of the molecule. Further investigation of this phenomenon should lead to a better understanding of the physics of imaging adsorbates with the STM and may prove useful in sequencing DNA. The improved resolution compared with previously published STM images of DNA may be attributable to ultra-high vacuum, high data-pixel density, slow scan rate, a fortuitously clean and sharp tip and/or a relatively dilute and extremely clean sample solution. This work demonstrates the potential of the STM for characterization of large biomolecular structures, but additional development will be required to make such high resolution imaging of DNA and other large molecules routine.

  9. Application of phase consistency to improve time efficiency and image quality in dual echo black-blood carotid angiography.

    PubMed

    Kholmovski, Eugene G; Parker, Dennis L

    2005-07-01

    There is a considerable similarity between proton density-weighted (PDw) and T2-weighted (T2w) images acquired by dual echo fast spin-echo (FSE) sequences. The similarity manifests itself not only in image space as correspondence between intensities of PDw and T2w images, but also in phase space as consistency between phases of PDw and T2w images. Methods for improving the imaging efficiency and image quality of dual echo FSE sequences based on this feature have been developed. The total scan time of dual echo FSE acquisition may be reduced by as much as 25% by incorporating an estimate of the image phase from a fully sampled PDw image when reconstructing partially sampled T2w images. The quality of T2w images acquired using phased array coils may be significantly improved by using the developed noise reduction reconstruction scheme, which is based on the correspondence between the PDw and T2w image intensities and the consistency between the PDw and T2w image phases. Studies of phantom and human subject MRI data were performed to evaluate the effectiveness of the techniques.

  10. Thin isotropic FLAIR MR images at 1.5T increase the yield of focal cortical dysplasia transmantle sign detection in frontal lobe epilepsy.

    PubMed

    Kokkinos, Vasileios; Kallifatidis, Alexandros; Kapsalaki, Eftychia Z; Papanikolaou, Nikolaos; Garganis, Kyriakos

    2017-05-01

    The transmantle sign is a distinctive imaging marker of focal cortical dysplasia (FCD) type II in frontal lobe epilepsy (FLE), which is revealed predominantly by fluid-attenuation inversion recovery (FLAIR) sequences. Although the transmantle sign detection yield is high by routine imaging protocols for epilepsy at 3T, most centers around the world have access to 1.5T MR technology and FLE patients often receive negative imaging reports. This study investigates the optimization of transmantle detection yield at 1.5T by introducing a 3D thin-slice isotropic FLAIR sequence in the epilepsy imaging protocol. Twenty FLE patients underwent diagnostic imaging for epilepsy with typical 2D thick-slice (3.0mm) coronal FLAIR sequences and a 3D thin-slice (1.0mm) isotropic FLAIR sequences at 1.5T, and transmantle sign detection yields and thickness measurements were derived. The 2D thick-slice FLAIR detected a transmantle sign in seven (35.0%) patients. The 3D isotropic thin-slice FLAIR detected a transmantle sign in eleven (55.0%) patients, thereby increasing the transmantle sign detection yield by 57.4%. The mean transmantle sign thickness by thick images was 12.3mm, by thin images was 8.9mm, and in the patients undetected by thick FLAIR was 3.5mm. This study showed that the extratemporal transmantle sign in FLE patients can be thin enough to be missed by thick-slice FLAIR sequences at 1.5T. By introducing 3D thin-slice isotropic FLAIR, false-negative reports can be reduced without reference for higher MR field structural scanning or other modalities, and more FLE patients can benefit from epilepsy surgery candidacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si

    2015-01-01

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  12. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging.

    PubMed

    Deng, Junjing; Nashed, Youssef S G; Chen, Si; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J

    2015-03-09

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in which the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.

  13. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  14. Quantitative Susceptibility Mapping as a Possible Tool to Radiographically Diagnose Sentinel Headache Associated with Intracranial Aneurysm: Case Report.

    PubMed

    Nakagawa, Daichi; Cushing, Cameron; Nagahama, Yasunori; Allan, Lauren; Hasan, David

    2017-07-01

    Sentinel headache (SH) occurs before aneurysm rupture in an estimated 15%-60% of cases of aneurysmal subarachnoid hemorrhage (aSAH). By definition, noncontrast computed tomography (CT) scan of the brain and lumbar puncture are both negative in patients presenting with SH. One of the theories explaining this phenomenon is that microhemorrhage (MH) from the aneurysm wall contribute to iron deposition in the interface between the aneurysm wall and brain parenchyma. Quantitative susceptibility mapping (QSM) is a recently introduced magnetic resonance imaging (MRI) technique that has proven capable of localizing the deposition of paramagnetic metals, particularly ferric iron. Thus, the QSM sequence may be able to detect iron deposition secondary to MH. A 76-year-old male presented with the "worst headache of my life." Noncontrast head CT scan and lumbar puncture were negative. Magnetic resonance angiography (MRA) of the brain revealed an anterior communicating artery (A-com) aneurysm measuring 7 mm with a large bleb. T1-weighted imaging (WI), T2-WI, MRA, T2 star-weighted angiography (SWAN), and QSM sequences were obtained. T2-WI, SWAN, and QSM revealed isointense, hypointense, and hyperintense signals, respectively, at the interface of the aneurysm wall and brain tissue. These findings were consistent with deposition of ferric iron at this interface. The A-com aneurysm was treated with coil embolization, and the patient exhibited no postoperative deficits. The MRI QSM sequence can localize iron deposition resulting from MH within an aneurysmal wall. This sequence may be a promising imaging tool for screening patients presenting with SH. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Clinical validation of free breathing respiratory triggered retrospectively cardiac gated cine balanced steady-state free precession cardiovascular magnetic resonance in sedated children.

    PubMed

    Krishnamurthy, Rajesh; Pednekar, Amol; Atweh, Lamya A; Vogelius, Esben; Chu, Zili David; Zhang, Wei; Maskatia, Shiraz; Masand, Prakash; Morris, Shaine A; Krishnamurthy, Ramkumar; Muthupillai, Raja

    2015-01-14

    Cine balanced steady-state free precession (SSFP), the preferred sequence for ventricular function, demands uninterrupted radio frequency (RF) excitation to maintain the steady-state during suspended respiration. This is difficult to accomplish in sedated children. In this work, we validate a respiratory triggered (RT) SSFP sequence that drives the magnetization to steady-state before commencing retrospectively cardiac gated cine acquisition in a sedated pediatric population. This prospective study was performed on 20 sedated children with congenital heart disease (8.6 ± 4 yrs). Identical imaging parameters were used for multiple number of signal averages (MN) and RT cine SSFP sequences covering both the ventricles in short-axis (SA) orientation. Image quality assessment and quantitative volumetric analysis was performed on the datasets by two blinded observers. One-sided Wilcoxon signed rank test and Box plot analysis were performed to compare the clinical scores. Bland-Altman (BA) analysis was performed on LV and RV volumes. Scan duration for SA stack using RT-SSFP (3.9 ± 0.8 min) was slightly shorter than MN-SSFP (4.6 ± 0.9 min) acquisitions. The endocardial edge definition was significantly better for RT than MN, blood to myocardial contrast was better for RT than MN without reaching statistical significance, and inter slice alignment was comparable. BA analysis indicates that the variability of volumetric indices between RT and MN is comparable to inter and intra-observer variability reported in the literature. The free breathing RT-SSFP sequence allows diagnostic images in sedated children with significantly better edge definition when compared to MN-SSFP, without any penalty for total scan time.

  16. Alleviating artifacts in 1H MRI thermometry by single scan spatiotemporal encoding.

    PubMed

    Schmidt, Rita; Frydman, Lucio

    2013-10-01

    Recent years have seen an increased interest in combining MRI thermometry with devices capable of destroying malignancies by heat ablation. Expected from the MR protocols are accurate and fast thermal characterizations, providing real time feedback on restricted tissue volumes and/or rapidly moving organs like liver. This article explores the potential advantages of relying on spatiotemporally encoded (SPEN) sequences for retrieving real-time thermometric images based on the water's proton resonance frequency (PRF) shifts. Hybrid spatiotemporal/k-space encoding single-scan MRI experiments were implemented on animal and human scanners, and their abilities to deliver single- and multi-slice real-time thermometric measurements based on PRF-derived phase maps in phantoms and in vivo, were compared against echo planar imaging (EPI) and gradient-echo counterparts. Under comparable acquisition conditions, SPEN exhibited advantages vis-à-vis EPI in terms of dealing with inhomogeneous magnetic field distortions, with shifts arising due to changes in the central frequency offsets, with PRF distributions, and for zooming into restricted fields-of-view without special pulse sequence provisions. This work confirms the ability of SPEN sequences, particularly when implemented under fully-refocused conditions, to exploit their built-in robustness to shift- and field-derived inhomogeneities for monitoring thermal changes in real-time under in vitro and in vivo conditions.

  17. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Duckhoe; Sahin, Ozgur

    2015-03-01

    Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.

  18. Adaptive online self-gating (ADIOS) for free-breathing noncontrast renal MR angiography.

    PubMed

    Xie, Yibin; Fan, Zhaoyang; Saouaf, Rola; Natsuaki, Yutaka; Laub, Gerhard; Li, Debiao

    2015-01-01

    To develop a respiratory self-gating method, adaptive online self-gating (ADIOS), for noncontrast MR angiography (NC MRA) of renal arteries to overcome some limitations of current free-breathing methods. A NC MRA pulse sequence for online respiratory self-gating was developed based on three-dimensional balanced steady-state free precession (bSSFP) and slab-selective inversion-recovery. Motion information was derived directly from the slab being imaged for online gating. Scan efficiency was maintained by an automatic adaptive online algorithm. Qualitative and quantitative assessments of image quality were performed and results were compared with conventional diaphragm navigator (NAV). NC MRA imaging was successfully completed in all subjects (n = 15). Similarly good image quality was observed in the proximal-middle renal arteries with ADIOS compared with NAV. Superior image quality was observed in the middle-distal renal arteries in the right kidneys with no NAV-induced artifacts. Maximal visible artery length was significantly longer with ADIOS versus NAV in the right kidneys. NAV setup was completely eliminated and scan time was significantly shorter with ADIOS on average compared with NAV. The proposed ADIOS technique for noncontrast MRA provides high-quality visualization of renal arteries with no diaphragm navigator-induced artifacts, simplified setup, and shorter scan time. © 2014 Wiley Periodicals, Inc.

  19. Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI.

    PubMed

    Groeschel, Samuel; Hagberg, Gisela E; Schultz, Thomas; Balla, Dávid Z; Klose, Uwe; Hauser, Till-Karsten; Nägele, Thomas; Bieri, Oliver; Prasloski, Thomas; MacKay, Alex L; Krägeloh-Mann, Ingeborg; Scheffler, Klaus

    2016-01-01

    We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation. We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas. Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders.

  20. Feasibility of Respiratory Triggering for MR-Guided Microwave Ablation of Liver Tumors Under General Anesthesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morikawa, Shigehiro, E-mail: morikawa@belle.shiga-med.ac.jp; Inubushi, Toshiro; Kurumi, Yoshimasa

    2004-08-15

    We obtained clear and reproducible MR fluoroscopic images and temperature maps for MR image-guided microwave ablation of liver tumors under general anesthesia without suspending the artificial ventilation. Respiratory information was directly obtained from air-way pressure without a sensor on the chest wall. The trigger signal started scanning of one whole image with a spoiled gradient echo sequence. The delay time before the start of scanning was adjusted to acquire the data corresponding to the k-space center at the maximal expiratory phase. The triggered images were apparently clearer than the nontriggered ones and the location of the liver was consistent, whichmore » made targeting of the tumor easy. MR temperature images, which were highly susceptible to the movement of the liver, during microwave ablation using a proton resonance frequency method, could be obtained without suspending the artificial ventilation. Respiratory triggering technique was found to be useful for MR fluoroscopic images and MR temperature monitoring in MR-guided microwave ablation of liver tumors under general anesthesia.« less

  1. Image quality stability of whole-body diffusion weighted imaging.

    PubMed

    Chen, Yun-bin; Hu, Chun-miao; Zhong, Jing; Sun, Fei

    2009-06-01

    To assess the reproducibility of whole-body diffusion weighted imaging (WB-DWI) technique in healthy volunteers under normal breathing with background body signal suppression. WB-DWI was performed on 32 healthy volunteers twice within two-week period using short TI inversion-recovery diffusion-weighted echo-planar imaging sequence and built-in body coil. The volunteers were scanned across six stations continuously covering the entire body from the head to the feet under normal breathing. The bone apparent diffusion coefficient (ADC) and exponential ADC (eADC) of regions of interest (ROIs) were measured. We analyzed correlation of the results using paired-t-test to assess the reproducibility of the WB-DWI technique. We were successful in collecting and analyzing data of 64 WB-DWI images. There was no significant difference in bone ADC and eADC of 824 ROIs between the paired observers and paired scans (P>0.05). Most of the images from all stations were of diagnostic quality. The measurements of bone ADC and eADC have good reproducibility. WB-DWI technique under normal breathing with background body signal suppression is adequate.

  2. Does Vesta Have Moons?: Dawn's Search for Satellites

    NASA Technical Reports Server (NTRS)

    McFadden, L. A.; Sykes, M. V.; Tricarico, P.; Carsenty, U.; Gutierrez-Marques, P.; Jacobson, R. A.; Joy, S.; Keller, H. U.; Li, J.-Y.; McLean, B.; hide

    2011-01-01

    Upon approach to asteroid 4 Vesta, the Dawn mission included a dedicated satellite search observation of the operational sphere of the spacecraft around Vesta. Discovery of moons of Vesta would constrain theories of satellite f()rmation. The sequence using the framing camera and clear filter includes three mosaics of six stations acquired on July 9-10. 2011. Each station consists of four sets with three different exposures, 1.5,20 and 270 s. We also processed and scanned the optical navigation sequences until Vesta filled the field of view. Analysis of images involves looking for moving objects in the mosaics and identifying catalogued stars, subtracting them from the image and examining residual objects for evidence of bodies in orbit around Vesta. Celestial coordinates were determined using Astrometry.net, an astrometry calibration service (http://astrometry.net/use.html). We processed the images by subtracting dark and bias fields and dividing by a Hatfield. Images were further filtered subtracting a box car filter (9x9 average) to remove effects of scattered light from Vesta itself. Images were scanned by eye for evidence of motion in directions different from the background stars. All objects were compared with Hubble Space Telescope's Guide Star Catalogue and US Naval Observatory's UCAC3 catalog. We report findings from these observations and analysis, including limits of magnitude, size and motion of objects in orbit around Vesta. We gratefully acknowledge modifications made to Astrometrica http://www.astrometrica.at/ for purposes of this effort.

  3. Identification of peripheral vessels in oral and maxillofacial regions on magnetic resonance angiography obtained using a balanced steady-state free-precession sequence with a time-spatial labeling inversion pulse and using fresh blood imaging.

    PubMed

    Oda, Masafumi; Tanaka, Tatsurou; Yamashita, Yoshihiro; Kito, Shinji; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Nishimura, Shun; Habu, Manabu; Kodama, Masaaki; Uehara, Masataka; Kaneuji, Tsuyoshi; Kokuryo, Shinya; Miyamoto, Ikuya; Yoshiga, Daigo; Seta, Yuji; Tominaga, Kazuhiro; Yoshioka, Izumi; Morimoto, Yasuhiro

    2013-12-01

    To elucidate the characteristics of visualizing thin main peripheral vessels in oral and maxillofacial regions of 3-dimensional magnetic resonance angiography (MRA) using a balanced steady-state free-precession (SSFP) sequence with a time-spatial labeling inversion pulse (time-SLIP) and using fresh blood imaging (FBI). The conspicuity of blood vessels and the characteristics on MRA using SSFP with a time-SLIP was compared with those on MRA using FBI in 20 healthy participants. The conspicuity of the main peripheral arteries was significantly higher on MRA using SSFP with a time-SLIP than on MRA using FBI. MRA scans using SSFP were obtained in all participants, and scans using FBI were obtained in 16 of 20 participants. An electrocardiogram was unnecessary when using SSFP but was necessary when using FBI. MRA obtained using SSFP with a time-SLIP is a useful technique to visualize thin main peripheral arteries in the oral and maxillofacial regions without contrast medium. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

    PubMed Central

    Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus

    2010-01-01

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506

  5. Operational calibration of Geostationary Operational Environmental Satellite-8 and-9 imagers and sounders.

    PubMed

    Weinreb, M; Jamieson, M; Fulton, N; Chen, Y; Johnson, J X; Bremer, J; Smith, C; Baucom, J

    1997-09-20

    We describe the operational in-orbit calibration of the Geostationary Operational Environmental Satellite (GOES)-8 and-9 imagers and sounders. In the infrared channels the calibration is based on observations of space and an onboard blackbody. The calibration equation expresses radiance as a quadratic in instrument output. To suppress noise in the blackbody sequences, we filter the calibration slopes. The calibration equation also accounts for an unwanted variation of the reflectances of the instruments' scan mirrors with east-west scan position, which was not discovered until the instruments were in orbit. The visible channels are not calibrated, but the observations are provided relative to the level of space and are normalized to minimize east-west striping in the images. Users receive scaled radiances in a GOES variable format (GVAR) data stream. We describe the procedure users can apply to transform GVAR counts into radiances, temperatures, and mode-A counts.

  6. Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: feasibility for image-guided procedures.

    PubMed

    Busse, Harald; Trampel, Robert; Gründer, Wilfried; Moche, Michael; Kahn, Thomas

    2007-10-01

    To evaluate the feasibility and accuracy of an automated method to determine the 3D position of MR-visible markers. Inductively coupled RF coils were imaged in a whole-body 1.5T scanner using the body coil and two conventional gradient echo sequences (FLASH and TrueFISP) and large imaging volumes up to (300 mm(3)). To minimize background signals, a flip angle of approximately 1 degrees was used. Morphological 2D image processing in orthogonal scan planes was used to determine the 3D positions of a configuration of three fiducial markers (FMC). The accuracies of the marker positions and of the orientation of the plane defined by the FMC were evaluated at various distances r(M) from the isocenter. Fiducial marker detection with conventional equipment (pulse sequences, imaging coils) was very reliable and highly reproducible over a wide range of experimental conditions. For r(M)

  7. Laser scanning endoscope for diagnostic medicine

    NASA Astrophysics Data System (ADS)

    Ouimette, Donald R.; Nudelman, Sol; Spackman, Thomas; Zaccheo, Scott

    1990-07-01

    A new type of endoscope is being developed which utilizes an optical raster scanning system for imaging through an endoscope. The optical raster scanner utilizes a high speed, multifaceted, rotating polygon mirror system for horizontal deflection, and a slower speed galvanometer driven mirror as the vertical deflection system. When used in combination, the optical raster scanner traces out a raster similar to an electron beam raster used in television systems. This flying spot of light can then be detected by various types of photosensitive detectors to generate a video image of the surface or scene being illuminated by the scanning beam. The optical raster scanner has been coupled to an endoscope. The raster is projected down the endoscope, thereby illuminating the object to be imaged at the distal end of the endoscope. Elemental photodetectors are placed at the distal or proximal end of the endoscope to detect the reflected illumination from the flying spot of light. This time sequenced signal is captured by an image processor for display and processing. This technique offers the possibility for very small diameter endoscopes since illumination channel requirements are eliminated. Using various lasers, very specific spectral selectivity can be achieved to optimum contrast of specific lesions of interest. Using several laser lines, or a white light source, with detectors of specific spectral response, multiple spectrally selected images can be acquired simultaneously. The potential for co-linear therapy delivery while imaging is also possible.

  8. High temporal and spatial resolution studies of bone cells using real-time confocal reflection microscopy.

    PubMed

    Boyde, A; Vesely, P; Gray, C; Jones, S J

    1994-01-01

    Chick and rat bone-derived cells were mounted in sealed coverslip-covered chambers; individual osteoclasts (but also osteoblasts) were selected and studied at 37 degrees C using three different types of high-speed scanning confocal microscopes: (1) A Noran Tandem Scanning Microscope (TSM) was used with a low light level, cooled CCD camera for image transfer to a Noran TN8502 frame store-based image analysing computer to make time lapse movie sequences using 0.1 s exposure periods, thus losing some of the advantage of the high frame rate of the TSM. Rapid focus adjustment using computer controlled piezo drivers permitted two or more focus planes to be imaged sequentially: thus (with additional light-source shuttering) the reflection confocal image could be alternated with the phase contrast image at a different focus. Individual cells were followed for up to 5 days, suggesting no significant irradiation problem. (2) Exceptional temporal and spatial resolution is available in video rate laser confocal scanning microscopes (VRCSLMs). We used the Noran Odyssey unitary beam VRCSLM with an argon ion laser at 488 nm and acousto-optic deflection (AOD) on the line axis: this instrument is truly and adjustably confocal in the reflection mode. (3) We also used the Lasertec 1LM11 line scan instrument, with an He-Ne laser at 633 nm, and AOD for the frame scan. We discuss the technical problems and merits of the different approaches. The VRCSLMs documented rapid, real-time oscillatory motion: all the methods used show rapid net movement of organelles within bone cells. The interference reflection mode gives particularly strong contrasts in confocal instruments. Phase contrast and other interference methods used in the microscopy of living cells can be used simultaneously in the TSM.

  9. [The imaging diagnosis of hepatic focal nodular hyperplasia].

    PubMed

    Bazzocchi, M; Macorig, D; Cecconi, P; Gozzi, G

    1991-12-01

    Focal nodular hyperplasia (FNH) is a rare benign hepatocellular tumor occurring in noncirrhotic patients, mostly females, 20-50 years of age. It is usually asymptomatic. The authors took the lead from 5 cases of FNH studied over last year to analyze the different patterns exhibited by the condition on the various imaging techniques currently available. At scintigraphy with 99mTc DISIDA or with TcSC, FNH can be hyper, normal, or hypocaptating. On US scans, the lesion is often homogeneous and isoechoic, but it can also be hyper/hypoechoic. With Doppler US, high-flow signals can be observed. On unenhanced CT scans the lesion is solid, well-demarcated, isodense or slightly hyperdense; sometimes it shows a central hypodense area corresponding to fibrovascular scar. On postcontrast scans it appears hyper/isodense. At dynamic CT the lesion density, which is high during the arterial phase, decreases quickly in the parenchymal and the venous phases and reaches equal/inferior values to surrounding liver parenchyma. On liver angio-CT it is sometimes possible to visualize the bile ducts in the central scar. At angiography, FNH is hypervascular and homogeneous. On MR scans, in T1-weighted SE sequences, the condition is isointense or slightly hypointense, whereas on T2-weighted pulse sequences it is slightly hyperintense; the central scar is hypointense on T1, and hyperintense on T2, weighted scans. As we have no pathognomonic patterns but only orientative ones, a reliable differential diagnosis with hepatocellular adenoma (HA) and fibrolamellar hepatocellular carcinoma (FL-HCC) must be based on biopsy or cytology or, even better, histology. The differential diagnosis is nevertheless necessary because, while FNH does not usually require a surgical approach but only a radiological follow-up, both HA (due to possible bleeding and degeneration) and FL-HCC require surgery.

  10. Magnetic resonance cinematography of the fingers: a 3.0 Tesla feasibility study with comparison of incremental and continuous dynamic protocols.

    PubMed

    Bayer, Thomas; Adler, Werner; Janka, Rolf; Uder, Michael; Roemer, Frank

    2017-12-01

    To study the feasibility of magnetic resonance cinematography of the fingers (MRCF) with comparison of image quality of different protocols for depicting the finger anatomy during motion. MRCF was performed during a full flexion and extension movement in 14 healthy volunteers using a finger-gating device. Three real-time sequences (frame rates 17-59 images/min) and one proton density (PD) sequence (3 images/min) were acquired during incremental and continuous motion. Analyses were performed independently by three readers. Qualitative image analysis included Likert-scale grading from 0 (useless) to 5 (excellent) and specific visual analog scale (VAS) grading from 0 (insufficient) to 100 (excellent). Signal-to-noise calculation was performed. Overall percentage agreement and mean absolute disagreement were calculated. Within the real-time sequences a high frame-rate true fast imaging with steady-state free precession (TRUFI) yielded the best image quality with Likert and overall VAS scores of 3.0 ± 0.2 and 60.4 ± 25.3, respectively. The best sequence regarding image quality was an incremental PD with mean values of 4.8 ± 0.2 and 91.2 ± 9.4, respectively. Overall percentage agreement and mean absolute disagreement were 47.9 and 0.7, respectively. No statistically significant SNR differences were found between continuous and incremental motion for the real-time protocols. MRCF is feasible with appropriate image quality during continuous motion using a finger-gating device. Almost perfect image quality is achievable with incremental PD imaging, which represents a compromise for MRCF with the drawback of prolonged scanning time.

  11. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging-Only Radiation Therapy.

    PubMed

    Johnstone, Emily; Wyatt, Jonathan J; Henry, Ann M; Short, Susan C; Sebag-Montefiore, David; Murray, Louise; Kelly, Charles G; McCallum, Hazel M; Speight, Richard

    2018-01-01

    Magnetic resonance imaging (MRI) offers superior soft-tissue contrast as compared with computed tomography (CT), which is conventionally used for radiation therapy treatment planning (RTP) and patient positioning verification, resulting in improved target definition. The 2 modalities are co-registered for RTP; however, this introduces a systematic error. Implementing an MRI-only radiation therapy workflow would be advantageous because this error would be eliminated, the patient pathway simplified, and patient dose reduced. Unlike CT, in MRI there is no direct relationship between signal intensity and electron density; however, various methodologies for MRI-only RTP have been reported. A systematic review of these methods was undertaken. The PRISMA guidelines were followed. Embase and Medline databases were searched (1996 to March, 2017) for studies that generated synthetic CT scans (sCT)s for MRI-only radiation therapy. Sixty-one articles met the inclusion criteria. This review showed that MRI-only RTP techniques could be grouped into 3 categories: (1) bulk density override; (2) atlas-based; and (3) voxel-based techniques, which all produce an sCT scan from MR images. Bulk density override techniques either used a single homogeneous or multiple tissue override. The former produced large dosimetric errors (>2%) in some cases and the latter frequently required manual bone contouring. Atlas-based techniques used both single and multiple atlases and included methods incorporating pattern recognition techniques. Clinically acceptable sCTs were reported, but atypical anatomy led to erroneous results in some cases. Voxel-based techniques included methods using routine and specialized MRI sequences, namely ultra-short echo time imaging. High-quality sCTs were produced; however, use of multiple sequences led to long scanning times increasing the chances of patient movement. Using nonroutine sequences would currently be problematic in most radiation therapy centers. Atlas-based and voxel-based techniques were found to be the most clinically useful methods, with some studies reporting dosimetric differences of <1% between planning on the sCT and CT and <1-mm deviations when using sCTs for positional verification. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. High temporal resolution dynamic contrast-enhanced MRI using compressed sensing-combined sequence in quantitative renal perfusion measurement.

    PubMed

    Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-10-01

    To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The interobserver-validated relevance of intervertebral spacer materials in MRI artifacting

    PubMed Central

    Heidrich, G.; Bruening, T.; Krefft, S.; Buchhorn, G.; Klinger, H.M.

    2006-01-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium, carbon or cobalt-chrome, which can affect the post-fusion MRI scans. Implant-related susceptibility artifacts can decrease the quality of MRI scans, thwarting proper evaluation. This cadaver study aimed to demonstrate the extent that implant-related MRI artifacting affects the post-fusion evaluation of intervertebral spacers. In a cadaveric porcine spine, we evaluated the post-implantation MRI scans of three intervertebral spacers that differed in shape, material, surface qualities and implantation technique. A spacer made of human cortical bone was used as a control. The median sagittal MRI slice was divided into 12 regions of interest (ROI). No significant differences were found on 15 different MRI sequences read independently by an interobserver-validated team of specialists (P>0.05). Artifact-affected image quality was rated on a score of 0-1-2. A maximum score of 24 points (100%) was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. The carbon, titanium and cobalt-chrome spacers scored 83.3, 62.5 and 50%, respectively. Our scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the control that was independent of artifact dimensions. The carbon spacer had the lowest percentage of susceptibility artifacts. Even with turbo spin echo sequences, the susceptibility artifacts produced by the metallic spacers showed a high degree of variability. Despite optimum sequencing, implant design and material are relevant factors in MRI artifacting. PMID:16463200

  14. Music-Based Magnetic Resonance Fingerprinting to Improve Patient Comfort During MRI Exams

    PubMed Central

    Ma, Dan; Pierre, Eric Y.; Jiang, Yun; Schluchter, Mark D.; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A.

    2015-01-01

    Purpose The unpleasant acoustic noise is an important drawback of almost every magnetic resonance imaging scan. Instead of reducing the acoustic noise to improve patient comfort, a method is proposed to mitigate the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. Theory and Methods MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and TRs in both 2D and 3D MRF exam. This new acquisition method named MRF-Music was used to quantify T1, T2 and proton density maps simultaneously while providing pleasing sounds to the patients. Results The MRF-Music scans were shown to significantly improve the patients' comfort during the MRI scans. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. Conclusions MRF-Music sequence provides significant improvement of the patient's comfort as compared to the MRF scan and other fast imaging techniques such as EPI and TSE scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameter simultaneously. PMID:26178439

  15. Value of non-contrast sequences in magnetic resonance angiography of hepatic arterial vasculature.

    PubMed

    Kalra, Vivek B; Gilbert, John W; Krishnamoorthy, Saravanan; Cornfeld, Daniel

    2014-06-01

    To evaluate value of adding non-contrast MR angiographic sequence (In-Flow Inversion Recovery [IFIR]) to standard fat-suppressed T1-weighted postcontrast sequence (3D spoiled gradient echo [3D-GRE]) for evaluating hepatic arterial anatomy. Retrospective evaluation of 30 consecutive patients undergoing multiphase liver MRI. Individual vessels for IFIR/3D-GRE sequences were evaluated by two blinded readers using a four-point scale. Statistical analysis was performed using the Wilcoxon signed-rank test for vessel conspicuity between IFIR/3D-GRE sequences. IFIR alone diagnostically imaged 8.1% of vessels, 3D-GRE alone 25.8%, 55.8% by both 3D-GRE/IFIR, and 10.3% of vessels by neither. Two patients with variant vascular anatomy were visualized with both sequences. Addition of IFIR to 3D-GRE resulted in statistically significant increase in arterial visualization (p<0.001), 10% relative increase in identified vessels, and 3-5 mi increase in acquisition time for total scan time of 30-35 min. IFIR may be a useful adjunct to 3D-GRE in hepatic angiography without adding considerably to scan time. 10% more hepatic arteries were seen when combining information from IFIR/3D-GRE vs. 3D-GRE alone. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Emotions' Impact on Viewing Behavior under Natural Conditions

    PubMed Central

    Kaspar, Kai; Hloucal, Teresa-Maria; Kriz, Jürgen; Canzler, Sonja; Gameiro, Ricardo Ramos; Krapp, Vanessa; König, Peter

    2013-01-01

    Human overt attention under natural conditions is guided by stimulus features as well as by higher cognitive components, such as task and emotional context. In contrast to the considerable progress regarding the former, insight into the interaction of emotions and attention is limited. Here we investigate the influence of the current emotional context on viewing behavior under natural conditions. In two eye-tracking studies participants freely viewed complex scenes embedded in sequences of emotion-laden images. The latter primes constituted specific emotional contexts for neutral target images. Viewing behavior toward target images embedded into sets of primes was affected by the current emotional context, revealing the intensity of the emotional context as a significant moderator. The primes themselves were not scanned in different ways when presented within a block (Study 1), but when presented individually, negative primes were more actively scanned than positive primes (Study 2). These divergent results suggest an interaction between emotional priming and further context factors. Additionally, in most cases primes were scanned more actively than target images. Interestingly, the mere presence of emotion-laden stimuli in a set of images of different categories slowed down viewing activity overall, but the known effect of image category was not affected. Finally, viewing behavior remained largely constant on single images as well as across the targets' post-prime positions (Study 2). We conclude that the emotional context significantly influences the exploration of complex scenes and the emotional context has to be considered in predictions of eye-movement patterns. PMID:23326353

  17. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.

    PubMed

    Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg

    2014-12-01

    The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.

  18. An Observational Study to Assess Brain MRI Change and Disease Progression in Multiple Sclerosis Clinical Practice-The MS-MRIUS Study.

    PubMed

    Zivadinov, Robert; Khan, Nasreen; Medin, Jennie; Christoffersen, Pia; Price, Jennifer; Korn, Jonathan R; Bonzani, Ian; Dwyer, Michael G; Bergsland, Niels; Carl, Ellen; Silva, Diego; Weinstock-Guttman, Bianca

    2017-05-01

    To describe methodology, interim baseline, and longitudinal magnetic resonance imaging (MRI) acquisition parameter characteristics of the multiple sclerosis clinical outcome and MRI in the United States (MS-MRIUS). The MS-MRIUS is an ongoing longitudinal and retrospective study of MS patients on fingolimod. Clinical and brain MRI image scan data were collected from 600 patients across 33 MS centers in the United States. MRI brain outcomes included change in whole-brain volume, lateral ventricle volume, T2- and T1-lesion volumes, and new/enlarging T2 and gadolinium-enhancing lesions. Interim baseline and longitudinal MRI acquisition parameters results are presented for 252 patients. Mean age was 44 years and 81% were female. Forty percent of scans had 3-dimensional (3D) T1 sequence in the preindex period, increasing to 50% in the postindex period. Use of 2-dimensional (2D) T1 sequence decreased over time from 85% in the preindex period to 65% in the postindex. About 95% of the scans with FLAIR and 2D T1-WI were considered acceptable or good quality compared to 99-100% with 3D T1-WI. There were notable changes in MRI hardware, software, and coil (39.5% in preindex to index and 50% in index to postindex). MRI sequence parameters (orientation, thickness, or protocol) differed for 36%, 29%, and 20% of index/postindex scans for FLAIR, 2D T1-WI, and 3D T1-WI, respectively. The MS-MRIUS study linked the clinical and brain MRI outcomes into an integrated database to create a cohort of fingolimod patients in real-world practice. Variability was observed in MRI acquisition protocols overtime. © 2016 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  19. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry for quick detection of sulfur-oxidizing bacteria in environmental water samples

    NASA Astrophysics Data System (ADS)

    Sun, Chengjun; Jiang, Fenghua; Gao, Wei; Li, Xiaoyun; Yu, Yanzhen; Yin, Xiaofei; Wang, Yong; Ding, Haibing

    2017-01-01

    Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry (EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time (within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.

  20. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Jason A., E-mail: jason.dowling@csiro.au; University of Newcastle, Callaghan, New South Wales; Sun, Jidi

    Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1wmore » flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.« less

  1. Length measurement and spatial orientation reconstruction of single nanowires.

    PubMed

    Prestopino, Giuseppe; Orsini, Andrea; Falconi, Christian; Bietti, Sergio; Verona-Rinati, Gianluca; Caselli, Federica; Bisegna, Paolo

    2018-06-27

    The accurate determination of the geometrical features of quasi one-dimensional nanostructures is mandatory for reducing errors and improving repeatability in the estimation of a number of geometry-dependent properties in nanotechnology. In this paper a method for the reconstruction of length and spatial orientation of single nanowires is presented. Those quantities are calculated from a sequence of scanning electron microscope images taken at different tilt angles using a simple 3D geometric model. The proposed method is evaluated on a collection of scanning electron microscope images of single GaAs nanowires. It is validated through the reconstruction of known geometric features of a standard reference calibration pattern. An overall uncertainty of about 1% in the estimated length of the nanowires is achieved. © 2018 IOP Publishing Ltd.

  2. PRO-QUEST: a rapid assessment method based on progressive saturation for quantifying exchange rates using saturation times in CEST.

    PubMed

    Demetriou, Eleni; Tachrount, Mohamed; Zaiss, Moritz; Shmueli, Karin; Golay, Xavier

    2018-03-05

    To develop a new MRI technique to rapidly measure exchange rates in CEST MRI. A novel pulse sequence for measuring chemical exchange rates through a progressive saturation recovery process, called PRO-QUEST (progressive saturation for quantifying exchange rates using saturation times), has been developed. Using this method, the water magnetization is sampled under non-steady-state conditions, and off-resonance saturation is interleaved with the acquisition of images obtained through a Look-Locker type of acquisition. A complete theoretical framework has been set up, and simple equations to obtain the exchange rates have been derived. A reduction of scan time from 58 to 16 minutes has been obtained using PRO-QUEST versus the standard QUEST. Maps of both T 1 of water and B 1 can simply be obtained by repetition of the sequence without off-resonance saturation pulses. Simulations and calculated exchange rates from experimental data using amino acids such as glutamate, glutamine, taurine, and alanine were compared and found to be in good agreement. The PRO-QUEST sequence was also applied on healthy and infarcted rats after 24 hours, and revealed that imaging specificity to ischemic acidification during stroke was substantially increased relative to standard amide proton transfer-weighted imaging. Because of the reduced scan time and insensitivity to nonchemical exchange factors such as direct water saturation, PRO-QUEST can serve as an excellent alternative for researchers and clinicians interested to map pH changes in vivo. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Automated search method for AFM and profilers

    NASA Astrophysics Data System (ADS)

    Ray, Michael; Martin, Yves C.

    2001-08-01

    A new automation software creates a search model as an initial setup and searches for a user-defined target in atomic force microscopes or stylus profilometers used in semiconductor manufacturing. The need for such automation has become critical in manufacturing lines. The new method starts with a survey map of a small area of a chip obtained from a chip-design database or an image of the area. The user interface requires a user to point to and define a precise location to be measured, and to select a macro function for an application such as line width or contact hole. The search algorithm automatically constructs a range of possible scan sequences within the survey, and provides increased speed and functionality compared to the methods used in instruments to date. Each sequence consists in a starting point relative to the target, a scan direction, and a scan length. The search algorithm stops when the location of a target is found and criteria for certainty in positioning is met. With today's capability in high speed processing and signal control, the tool can simultaneously scan and search for a target in a robotic and continuous manner. Examples are given that illustrate the key concepts.

  4. Modern Pacemaker and Implantable Cardioverter/Defibrillator Systems Can Be Magnetic Resonance Imaging Safe

    PubMed Central

    Roguin, Ariel; Zviman, Menekhem M.; Meininger, Glenn R.; Rodrigues, E. Rene; Dickfeld, Timm M.; Bluemke, David A.; Lardo, Albert; Berger, Ronald D.; Calkins, Hugh; Halperin, Henry R.

    2011-01-01

    Background MRI has unparalleled soft-tissue imaging capabilities. The presence of devices such as pacemakers and implantable cardioverter/defibrillators (ICDs), however, is historically considered a contraindication to MRI. These devices are now smaller, with less magnetic material and improved electromagnetic interference protection. Our aim was to determine whether these modern systems can be used in an MR environment. Methods and Results We tested in vitro and in vivo lead heating, device function, force acting on the device, and image distortion at 1.5 T. Clinical MR protocols and in vivo measurements yielded temperature changes <0.5°C. Older (manufactured before 2000) ICDs were damaged by the MR scans. Newer ICD systems and most pacemakers, however, were not. The maximal force acting on newer devices was <100 g. Modern (manufactured after 2000) ICD systems were implanted in dogs (n=18), and after 4 weeks, 3- to 4-hour MR scans were performed (n=15). No device dysfunction occurred. The images were of high quality with distortion dependent on the scan sequence and plane. Pacing threshold and intracardiac electrogram amplitude were unchanged over the 8 weeks, except in 1 animal that, after MRI, had a transient (<12 hours) capture failure. Pathological data of the scanned animals revealed very limited necrosis or fibrosis at the tip of the lead area, which was not different from controls (n=3) not subjected to MRI. Conclusions These data suggest that certain modern pacemaker and ICD systems may indeed be MRI safe. This may have major clinical implications for current imaging practices. PMID:15277324

  5. [Magnetic resonance for the study of osteosarcoma].

    PubMed

    Spina, V; Romagnoli, R; Manfrini, M; Cerofolini, E; Capanna, R; Gaiani, L; Calandra Buonaura, P; Picci, P; Campanacci, M

    1991-01-01

    The authors report their experience with MR imaging in the study of osteosarcoma. Two main elements were evaluated: signal characteristics and loco-regional staging. Seventy-one patients were studied: 65 of them had central long-bone osteosarcoma, and 6 had telangiectatic long-bone osteosarcoma. T1- and T2-weighted spin-echo sequences were employed and all cases were scanned on 3 planes (sagittal, coronal, and axial). In 28 patients MR imaging was performed both before and after preoperative chemotherapy. The obtained data were compared to surgical and pathological findings. With the exception of the typical signal patterns of quite-osteoblastic osteosarcoma (which presents with low signal on both T1- and T2-weighted sequences), no particular signal features were observed which could help distinguish the different types of osteosarcoma. MR imaging is the method of choice in loco-regional staging for, in our series, it allowed a rational and adequate surgical planning. For this purpose, at least a longitudinal T1- and an axial T2-weighted images are required.

  6. High-speed large angle mammography tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Eberhard, Jeffrey W.; Staudinger, Paul; Smolenski, Joe; Ding, Jason; Schmitz, Andrea; McCoy, Julie; Rumsey, Michael; Al-Khalidy, Abdulrahman; Ross, William; Landberg, Cynthia E.; Claus, Bernhard E. H.; Carson, Paul; Goodsitt, Mitchell; Chan, Heang-Ping; Roubidoux, Marilyn; Thomas, Jerry A.; Osland, Jacqueline

    2006-03-01

    A new mammography tomosynthesis prototype system that acquires 21 projection images over a 60 degree angular range in approximately 8 seconds has been developed and characterized. Fast imaging sequences are facilitated by a high power tube and generator for faster delivery of the x-ray exposure and a high speed detector read-out. An enhanced a-Si/CsI flat panel digital detector provides greater DQE at low exposure, enabling tomo image sequence acquisitions at total patient dose levels between 150% and 200% of the dose of a standard mammographic view. For clinical scenarios where a single MLO tomographic acquisition per breast may replace the standard CC and MLO views, total tomosynthesis breast dose is comparable to or below the dose in standard mammography. The system supports co-registered acquisition of x-ray tomosynthesis and 3-D ultrasound data sets by incorporating an ultrasound transducer scanning system that flips into position above the compression paddle for the ultrasound exam. Initial images acquired with the system are presented.

  7. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    PubMed

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements. Copyright (c) 2008 John Wiley & Sons, Ltd.

  8. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes.

    PubMed

    Kushnirsky, Marina; Nguyen, Vinh; Katz, Joel S; Steinklein, Jared; Rosen, Lisa; Warshall, Craig; Schulder, Michael; Knisely, Jonathan P S

    2016-02-01

    Contrast-enhanced MRI is the preeminent diagnostic test for brain metastasis (BM). Detection of BMs for stereotactic radiosurgery (SRS) planning may improve with a time delay following administration of a high-relaxivity agent for 1.5-T and 3-T imaging systems. Metastasis detection with time-delayed MRI was evaluated in this study. Fifty-three volumetric MRI studies from 38 patients undergoing SRS for BMs were evaluated. All studies used 0.1-mmol/kg gadobenate dimeglumine (MultiHance; Bracco Diagnostics) immediately after injection, followed by 2 more axial T1-weighted sequences after 5-minute intervals (final image acquisition commenced 15 minutes after contrast injection). Two studies were motion limited and excluded. Two hundred eighty-seven BMs were identified. The studies were randomized and examined separately by 3 radiologists, who were blinded to the temporal sequence. Each radiologist recorded the number of BMs detected per scan. A Wilcoxon signed-rank test compared BM numbers between scans. One radiologist determined the scan on which BMs were best defined. All confirmed, visible tumors were contoured using iPlan RT treatment planning software on each of the 3 MRI data sets. A linear mixed model was used to analyze volume changes. The interclass correlations for Scans 1, 2, and 3 were 0.7392, 0.7951, and 0.7290, respectively, demonstrating excellent interrater reliability. At least 1 new lesion was detected in the second scan as compared with the first in 35.3% of subjects (95% CI 22.4%-49.9%). The increase in BM numbers between Scans 1 and 2 ranged from 1 to 10. At least 1 new lesion was detected in the third scan as compared with the second in 21.6% of subjects (95% CI 11.3%-35.3%). The increase in BM numbers between Scans 2 and 3 ranged from 1 to 9. Between Scans 1 and 3, additional tumors were seen on 43.1% of scans (increase ranged from 1 to 14). The median increase in tumor number for all comparisons was 1. There was a significant increase in number of BMs detected from Scan 1 to Scan 2 (p < 0.0367) and from Scan 1 to Scan 3 (p < 0.0264). In 34 of the 51 subjects (66.7%), the radiologist selected the third scan as the one providing the clearest tumor definition. There was an average 25.4% increase in BM volume between Scans 1 and 2 (p < 0.0001) and a 9% increase in BM volume between Scans 2 and 3 (p = 0.0001). In patients who are being prepared for SRS of BMs, delayed MRI after contrast injection revealed more targets that needed treatment. In addition, apparent treatment volumes increased with a time delay. To avoid missing tumors that could be treated at the time of planned SRS and resultant "treatment failures," the authors recommend that postcontrast MR images be acquired between 10 and 15 minutes after injection in patients undergoing SRS for treatment of BMs.

  9. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    PubMed

    Gizewski, Elke R; Maderwald, Stefan; Linn, Jennifer; Dassinger, Benjamin; Bochmann, Katja; Forsting, Michael; Ladd, Mark E

    2014-03-01

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures.

  10. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI.

    PubMed

    Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P; Sahin, Mustafa; Warfield, Simon K

    2015-12-01

    To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.

  11. Imaging and Rapid-Scanning Ion Mass Spectrometer (IRM) for the CASSIOPE e-POP Mission

    NASA Astrophysics Data System (ADS)

    Yau, Andrew W.; Howarth, Andrew; White, Andrew; Enno, Greg; Amerl, Peter

    2015-06-01

    The imaging and rapid-scanning ion mass spectrometer (IRM) is part of the Enhanced Polar Outflow Probe (e-POP) instrument suite on the Canadian CASSIOPE small satellite. Designed to measure the composition and detailed velocity distributions of ions in the ˜1-100 eV/q range on a non-spinning spacecraft, the IRM sensor consists of a planar entrance aperture, a pair of electrostatic deflectors, a time-of-flight (TOF) gate, a hemispherical electrostatic analyzer, and a micro-channel plate (MCP) detector. The TOF gate measures the transit time of each detected ion inside the sensor. The hemispherical analyzer disperses incident ions by their energy-per-charge and azimuth in the aperture plane onto the detector. The two electrostatic deflectors may be optionally programmed to step through a sequence of deflector voltages, to deflect ions of different incident elevation out of the aperture plane and energy-per-charge into the sensor aperture for sampling. The position and time of arrival of each detected ion at the detector are measured, to produce an image of 2-dimensional (2D), mass-resolved ion velocity distribution up to 100 times per second, or to construct a composite 3D velocity distribution by combining successive images in a deflector voltage sequence. The measured distributions are then used to investigate ion composition, density, drift velocity and temperature in polar ion outflows and related acceleration and transport processes in the topside ionosphere.

  12. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.

    PubMed

    Obata, Takayuki; Uemura, Koji; Nonaka, Hiroi; Tamura, Mitsuru; Tanada, Shuji; Ikehira, Hiroo

    2006-01-01

    To acquire high-resolution magnetic resonance (MR) images, we developed a new blinking artifact reduced pulse (BARP) sequence with a surface coil specialized for microscopic imaging (47 mm in diameter). To reduce eye movement, we ascertained that the subjects' eyes were kept open and fixated to the target in the 1.5-T MR gantry. To reduce motion artifacts from blinking, we inserted rest periods for blinking (1.5 s within every 5 s) during MR scanning (T2-weighted fast spin echo; repetition time, 5 s; echo time, 100 ms; echo train, 11; matrix, 256 x 128; field of view, 5 cm; 1-mm thickness x 30 slices). Three scans (100 s x 3) were performed for each normal subject, and they were added together after automatic adjustment for location to reduce quality loss caused by head motion. T2-weighted MR images were acquired with a high resolution and a high signal-to-noise ratio. Motion artifacts were reduced with BARP, as compared with those with random blinking. Intraocular structures such as the iris and ciliary muscles were clearly visualized. Because the whole eye can be covered with a 1-mm thickness by this method, three-dimensional maps can easily be generated from the obtained images. The application of BARP with a surface coil of the human eye might become a useful and widely adopted procedure for MR microimaging.

  13. Optimization of magnetic flux density for fast MREIT conductivity imaging using multi-echo interleaved partial fourier acquisitions.

    PubMed

    Chauhan, Munish; Jeong, Woo Chul; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-08-27

    Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive method for visualizing the internal conductivity and/or current density of an electrically conductive object by externally injected currents. The injected current through a pair of surface electrodes induces a magnetic flux density distribution inside the imaging object, which results in additional magnetic flux density. To measure the magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels out the systematic artifacts accumulated in phase signals and also reduces the random noise effect by doubling the measured magnetic flux density signal. For practical applications of in vivo MREIT, it is essential to reduce the scan duration maintaining spatial-resolution and sufficient contrast. In this paper, we optimize the magnetic flux density by using a fast gradient multi-echo MR pulse sequence. To recover the one component of magnetic flux density Bz, we use a coupled partial Fourier acquisitions in the interleaved sense. To prove the proposed algorithm, we performed numerical simulations using a two-dimensional finite-element model. For a real experiment, we designed a phantom filled with a calibrated saline solution and located a rubber balloon inside the phantom. The rubber balloon was inflated by injecting the same saline solution during the MREIT imaging. We used the multi-echo fast low angle shot (FLASH) MR pulse sequence for MRI scan, which allows the reduction of measuring time without a substantial loss in image quality. Under the assumption of a priori phase artifact map from a reference scan, we rigorously investigated the convergence ratio of the proposed method, which was closely related with the number of measured phase encode set and the frequency range of the background field inhomogeneity. In the phantom experiment with a partial Fourier acquisition, the total scan time was less than 6 seconds to measure the magnetic flux density Bz data with 128×128 spacial matrix size, where it required 10.24 seconds to fill the complete k-space region. Numerical simulation and experimental results demonstrated that the proposed method reduces the scanning time and provides the recovered Bz data comparable to what we obtained by measuring complete k-space data.

  14. Cardiac cine imaging at 3 Tesla: initial experience with a 32-element body-array coil.

    PubMed

    Fenchel, Michael; Deshpande, Vibhas S; Nael, Kambiz; Finn, J Paul; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-08-01

    We sought to assess the feasibility of cardiac cine imaging and evaluate image quality at 3 T using a body-array coil with 32 coil elements. Eight healthy volunteers (3 men; median age 29 years) were examined on a 3-T magnetic resonance scanner (Magnetom Trio, Siemens Medical Solutions) using a 32-element phased-array coil (prototype from In vivo Corp.). Gradient-recalled-echo (GRE) cine (GRAPPAx3), GRE cine with tagging lines, steady-state-free-precession (SSFP) cine (GRAPPAx3 and x4), and SSFP cine(TSENSEx4 andx6) images were acquired in short-axis and 4-chamber view. Reference images with identical scan parameters were acquired using the total-imaging-matrix (Tim) coil system with a total of 12 coil elements. Images were assessed by 2 observers in a consensus reading with regard to image quality, noise and presence of artifacts. Furthermore, signal-to-noise values were determined in phantom measurements. In phantom measurements signal-to-noise values were increased by 115-155% for the various cine sequences using the 32-element coil. Scoring of image quality yielded statistically significant increased image quality with the SSFP-GRAPPAx4, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). Similarly, scoring of image noise yielded a statistically significant lower noise rating with the SSFP-GRAPPAx4, GRE-GRAPPAx3, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). This study shows that cardiac cine imaging at 3 T using a 32-element body-array coil is feasible in healthy volunteers. Using a large number of coil elements with a favorable sensitivity profile supports faster image acquisition, with high diagnostic image quality even for high parallel imaging factors.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, J; Place, V; Panda, A

    Purpose: Several institutions have developed MRI guidelines for patients with MR-unsafe or MR-conditional pacemakers. Here we highlight the role of a medical physicist in implementing these guidelines for non-pacemaker dependent patients. Guidelines: Implementing these guidelines requires involvement from several medical specialties and a strong collaboration with the site MRI supervisor to develop a structured workflow. A medical physicist is required to be present during the scan to supervise the MR scanning and to maintain a safety checklist that ensures: 1) uninterrupted patient communication with the technologist, 2) continuous patient physiologic monitoring (e.g. blood pressure and electrocardiography) by a trained nurse,more » 3) redundant patient vitals monitoring (e.g. pulse oximetry) due to the possibility of in vivo electrocardiography reading fluctuations during image acquisition. A radiologist is strongly recommended to be available to review the images before patients are discharged from the scanner. Pacemaker MRI should be restricted to 1.5T field strength. The MRI sequences should be optimized by the physicist with regards to: a) SAR: limited to <1.5 W/Kg for MR-unsafe pacemakers in normal operating mode, b) RF exposure time: <30 min, c) Coils: use T/R coils but not restricted to such, d) Artifacts: further optimization of sequences whenever image quality is compromised due to the pacemaker. In particular, cardiac, breast and left-shoulder MRIs are most susceptible to these artifacts. Possible strategies to lower the SAR include: a) BW reduction, 2) echo-train-length reduction, 3) increase TR, 4) decrease number of averages, 5) decrease flip angle, 6) reduce slices and/or a combination of all the options. Conclusion: A medical physicist in collaboration with the MR supervisor plays an important role in the supervision/implementation of safe MR scanning of pacemaker patients. Developing and establishing a workflow has enabled our institution to scan over 30 patients with pacemakers without complications, including 3 cardiac MR exams.« less

  16. Turbo-Proton Echo Planar Spectroscopic Imaging (t-PEPSI) MR technique in the detection of diffuse axonal damage in brain injury. Comparison with Gradient-Recalled Echo (GRE) sequence.

    PubMed

    Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A

    2005-01-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, p<0.003), while no significant differences were found for the other brain regions. The SI CR was significantly better (i.e. lower) for the turbo-PEPSI than for the GRE sequence (p<0.00001). Owing to its very short scan time and high sensitivity to the haemorrhage foci, the turbo-PEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  17. Regression and statistical shape model based substitute CT generation for MRI alone external beam radiation therapy from standard clinical MRI sequences.

    PubMed

    Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A

    2017-10-27

    In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean  ±  standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.

  18. Regression and statistical shape model based substitute CT generation for MRI alone external beam radiation therapy from standard clinical MRI sequences

    NASA Astrophysics Data System (ADS)

    Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.

    2017-11-01

    In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean  ±  standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.

  19. A novel approach to automatic threat detection in MMW imagery of people scanned in portals

    NASA Astrophysics Data System (ADS)

    Vaidya, Nitin M.; Williams, Thomas

    2008-04-01

    We have developed a novel approach to performing automatic detection of concealed threat objects in passive MMW imagery of people scanned in a portal setting. It is applicable to the significant class of imaging scanners that use the protocol of having the subject rotate in front of the camera in order to image them from several closely spaced directions. Customary methods of dealing with MMW sequences rely on the analysis of the spatial images in a frame-by-frame manner, with information extracted from separate frames combined by some subsequent technique of data association and tracking over time. We contend that the pooling of information over time in traditional methods is not as direct as can be and potentially less efficient in distinguishing threats from clutter. We have formulated a more direct approach to extracting information about the scene as it evolves over time. We propose an atypical spatio-temporal arrangement of the MMW image data - to which we give the descriptive name Row Evolution Image (REI) sequence. This representation exploits the singular aspect of having the subject rotate in front of the camera. We point out which features in REIs are most relevant to detecting threats, and describe the algorithms we have developed to extract them. We demonstrate results of successful automatic detection of threats, including ones whose faint image contrast renders their disambiguation from clutter very challenging. We highlight the ease afforded by the REI approach in permitting specialization of the detection algorithms to different parts of the subject body. Finally, we describe the execution efficiency advantages of our approach, given its natural fit to parallel processing. mage

  20. Functional brain MRI in patients complaining of electrohypersensitivity after long term exposure to electromagnetic fields.

    PubMed

    Heuser, Gunnar; Heuser, Sylvia A

    2017-09-26

    Ten adult patients with electromagnetic hypersensitivity underwent functional magnetic resonance imaging (fMRI) brain scans. All scans were abnormal with abnormalities which were consistent and similar. It is proposed that fMRI brain scans be used as a diagnostic aid for determining whether or not a patient has electromagnetic hypersensitivity. Over the years we have seen an increasing number of patients who had developed multi system complaints after long term repeated exposure to electromagnetic fields (EMFs). These complaints included headaches, intermittent cognitive and memory problems, intermittent disorientation, and also sensitivity to EMF exposure. Regular laboratory tests were within normal limits in these patients. The patients refused to be exposed to radioactivity. This of course ruled out positron emission tomography (PET) and single-photon emission computed tomography (SPECT) brain scanning. This is why we ordered fMRI brain scans on these patients. We hoped that we could document objective abnormalities in these patients who had often been labeled as psychiatric cases. Ten patients first underwent a regular magnetic resonance imaging (MRI) brain scan, using a 3 Tesla Siemens Verio MRI open system. A functional MRI study was then performed in the resting state using the following sequences: A three-dimensional, T1-weighted, gradient-echo (MPRAGE) Resting state network. The echo-planar imaging (EPI) sequences for this resting state blood oxygenation level dependent (BOLD) scan were then post processed on a 3D workstation and the independent component analysis was performed separating out the various networks. Arterial spin labeling. Tractography and fractional anisotropy. All ten patients had abnormal functional MRI brain scans. The abnormality was often described as hyper connectivity of the anterior component of the default mode in the medial orbitofrontal area. Other abnormalities were usually found. Regular MRI studies of the brain were mostly unremarkable in these patients. We propose that functional MRI studies should become a diagnostic aid when evaluating a patient who claims electrohypersensitivity (EHS) and has otherwise normal studies. Interestingly, the differential diagnosis for the abnormalities seen on the fMRI includes head injury. It turns out that many of our patients indeed had a history of head injury which was then followed sometime later by the development of EHS. Many of our patients also had a history of exposure to potentially neurotoxic chemicals, especially mold. Head injury and neurotoxic chemical exposure may make a patient more vulnerable to develop EHS.

  1. The Fast Spiral-SelMQC Technique for In Vivo MR Spectroscopic Imaging of Polyunsaturated Fatty Acids (PUFA) in Human Breast Tissue‡

    PubMed Central

    Zhu, He; Rubin, Denis; He, Qiuhong

    2011-01-01

    The Selective Multiple-Quantum Coherence Transfer (Sel-MQC) method has been applied to image polyunsaturated fatty acids (PUFA) distributions in human breast tissues in vivo for cancer detection, with complete suppression of the unwanted lipid and water signals in a single scan. The Cartesian k-space mapping of PUFA in vivo using the Sel-MQC CSI technique, however, requires excessive MR scan time. In this article, we report a fast Spiral-SelMQC sequence employing a rapid spiral k-space sampling scheme. The Spiral-SelMQC images of PUFA distribution in human breast were acquired using two-interleaved spirals on a 3T GE Signa MRI scanner. Approximately 160-fold reduction of acquisition time was observed as compared to the corresponding Sel-MQC CSI method with an equivalent number of scans, permitting acquisition of high-resolution PUFA images in minutes. The reconstructed Spiral-SelMQC PUFA images of human breast tissues achieved a sub-millimeter resolution of 0.54×0.54 or 0.63×0.63mm2/pixel for FOV = 14 or 16cm, respectively. The Spiral-SelMQC parameters for PUFA detection were optimized in 2D Sel-MQC experiments to suppress monounsaturated fatty acids (MUFA) and other lipid signals. The fast in vivo Spiral-SelMQC imaging method will be applied to study human breast cancer and other human diseases in extracranial organs. PMID:22028250

  2. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation.

    PubMed

    Henningsson, Markus; Prieto, Claudia; Chiribiri, Amedeo; Vaillant, Ghislain; Razavi, Reza; Botnar, René M

    2014-01-01

    Robust motion correction is necessary to minimize respiratory motion artefacts in coronary MR angiography (CMRA). The state-of-the-art method uses a 1D feet-head translational motion correction approach, and data acquisition is limited to a small window in the respiratory cycle, which prolongs the scan by a factor of 2-3. The purpose of this work was to implement 3D affine motion correction for Cartesian whole-heart CMRA using a 3D navigator (3D-NAV) to allow for data acquisition throughout the whole respiratory cycle. 3D affine transformations for different respiratory states (bins) were estimated by using 3D-NAV image acquisitions which were acquired during the startup profiles of a steady-state free precession sequence. The calculated 3D affine transformations were applied to the corresponding high-resolution Cartesian image acquisition which had been similarly binned, to correct for respiratory motion between bins. Quantitative and qualitative comparisons showed no statistical difference between images acquired with the proposed method and the reference method using a diaphragmatic navigator with a narrow gating window. We demonstrate that 3D-NAV and 3D affine correction can be used to acquire Cartesian whole-heart 3D coronary artery images with 100% scan efficiency with similar image quality as with the state-of-the-art gated and corrected method with approximately 50% scan efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  3. [Comparison of magnetic resonance imaging artifacts of five common dental materials].

    PubMed

    Xu, Yisheng; Yu, Risheng

    2015-06-01

    To compare five materials commonly used in dentistry, including three types of metals and two types of ceramics, by using different sequences of three magnetic resonance imaging (MRI) field strengths (0.35, 1.5, and 3.0 T). Three types of metals and two types of ceramics that were fabricated into the same size and thickness as an incisor crown were placed in a plastic tank filled with saline. The crowns were scanned using an magnetic resonance (MR) machine at 0.35, 1.5, and 3.0 T field strengths. The TlWI and T2WI images were obtained. The differences of various materials in different artifacts of field MR scans were determined. The zirconia crown presented no significant artifacts when scanned under the three types of MRI field strengths. The artifacts of casting ceramic were minimal. All dental precious metal alloys, nickel-chromium alloy dental porcelain, and cobalt-chromium ceramic alloy showed varying degrees of artifacts under the three MRI field strengths. Zirconia and casting ceramics present almost no or faint artifacts. By contrast, precious metal alloys, nickel-chromium alloy dental porcelain and cobalt-chromium ceramic alloy display MRI artifacts. The artifact area increase with increasing magnetic field.

  4. Accuracy and Reproducibility of Adipose Tissue Measurements in Young Infants by Whole Body Magnetic Resonance Imaging

    PubMed Central

    Bauer, Jan Stefan; Noël, Peter Benjamin; Vollhardt, Christiane; Much, Daniela; Degirmenci, Saliha; Brunner, Stefanie; Rummeny, Ernst Josef; Hauner, Hans

    2015-01-01

    Purpose MR might be well suited to obtain reproducible and accurate measures of fat tissues in infants. This study evaluates MR-measurements of adipose tissue in young infants in vitro and in vivo. Material and Methods MR images of ten phantoms simulating subcutaneous fat of an infant’s torso were obtained using a 1.5T MR scanner with and without simulated breathing. Scans consisted of a cartesian water-suppression turbo spin echo (wsTSE) sequence, and a PROPELLER wsTSE sequence. Fat volume was quantified directly and by MR imaging using k-means clustering and threshold-based segmentation procedures to calculate accuracy in vitro. Whole body MR was obtained in sleeping young infants (average age 67±30 days). This study was approved by the local review board. All parents gave written informed consent. To obtain reproducibility in vivo, cartesian and PROPELLER wsTSE sequences were repeated in seven and four young infants, respectively. Overall, 21 repetitions were performed for the cartesian sequence and 13 repetitions for the PROPELLER sequence. Results In vitro accuracy errors depended on the chosen segmentation procedure, ranging from 5.4% to 76%, while the sequence showed no significant influence. Artificial breathing increased the minimal accuracy error to 9.1%. In vivo reproducibility errors for total fat volume of the sleeping infants ranged from 2.6% to 3.4%. Neither segmentation nor sequence significantly influenced reproducibility. Conclusion With both cartesian and PROPELLER sequences an accurate and reproducible measure of body fat was achieved. Adequate segmentation was mandatory for high accuracy. PMID:25706876

  5. Accuracy and reproducibility of adipose tissue measurements in young infants by whole body magnetic resonance imaging.

    PubMed

    Bauer, Jan Stefan; Noël, Peter Benjamin; Vollhardt, Christiane; Much, Daniela; Degirmenci, Saliha; Brunner, Stefanie; Rummeny, Ernst Josef; Hauner, Hans

    2015-01-01

    MR might be well suited to obtain reproducible and accurate measures of fat tissues in infants. This study evaluates MR-measurements of adipose tissue in young infants in vitro and in vivo. MR images of ten phantoms simulating subcutaneous fat of an infant's torso were obtained using a 1.5T MR scanner with and without simulated breathing. Scans consisted of a cartesian water-suppression turbo spin echo (wsTSE) sequence, and a PROPELLER wsTSE sequence. Fat volume was quantified directly and by MR imaging using k-means clustering and threshold-based segmentation procedures to calculate accuracy in vitro. Whole body MR was obtained in sleeping young infants (average age 67±30 days). This study was approved by the local review board. All parents gave written informed consent. To obtain reproducibility in vivo, cartesian and PROPELLER wsTSE sequences were repeated in seven and four young infants, respectively. Overall, 21 repetitions were performed for the cartesian sequence and 13 repetitions for the PROPELLER sequence. In vitro accuracy errors depended on the chosen segmentation procedure, ranging from 5.4% to 76%, while the sequence showed no significant influence. Artificial breathing increased the minimal accuracy error to 9.1%. In vivo reproducibility errors for total fat volume of the sleeping infants ranged from 2.6% to 3.4%. Neither segmentation nor sequence significantly influenced reproducibility. With both cartesian and PROPELLER sequences an accurate and reproducible measure of body fat was achieved. Adequate segmentation was mandatory for high accuracy.

  6. T1-weighted brain imaging with a 32-channel coil at 3T using TurboFLASH BLADE compared with standard cartesian k-space sampling.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Williams, Kenneth D; Stemmer, Alto; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-03-01

    Motion artifacts often markedly degrade image quality in clinical scans. The BLADE technique offers an alternative k-space sampling scheme reducing the effect of patient related motion on image quality. The purpose of this study is the comparison of imaging artifacts, signal-to-noise (SNR), and contrast-to-noise ratio (CNR) of a new turboFLASH BLADE k-space trajectory with the standard Cartesian k-space sampling for brain imaging, using a 32-channel coil at 3T. The results from 32 patients included after informed consent are reported. This study was performed with a 32-channel head coil on a 3T scanner. Sagittal and axial T1-weighted FLASH sequences (TR/TE 250/2.46 milliseconds, flip angle 70-degree), acquired with Cartesian k-space sampling and T1-weighted turboFLASH sequences (TR/TE/TIsag/TIax 3200/2.77/1144/1056 milliseconds, flip angle 20-degree), using PROPELLER (BLADE) k-space trajectory, were compared. SNR and CNR were evaluated using a paired student t test. The frequency of motion artifacts was assessed in a blinded read. To analyze the differences between both techniques a McNemar test was performed. A P value <0.05 was considered statistically significant. From the blinded read, the overall preference in terms of diagnostic image quality was statistically significant in favor of the BLADE turboFLASH data sets, compared with standard FLASH for both sagittal (P < 0.0001) and axial (P < 0.0001) planes. The frequency of motion artifacts from the scalp was higher for standard FLASH sequences than for BLADE sequences on both axial (47%, P < 0.0003) and sagittal (69%, P < 0.0001) planes. BLADE was preferred in 100% (sagittal plane) and 80% (axial plane) of in-patient data sets and in 68% (sagittal plane) and 73% (axial plane) of out-patient data sets.The BLADE T1 scan did have lower SNRmean (BLADEax 179 +/- 98, Cartesianax 475 +/- 145, BLADEsag 171 +/- 51, and Cartesiansag 697 +/- 129) with P values indicating accordingly a statistically significant difference (Pax <0.0001, Psag < 0.0001), because of the fundamental difference in imaging approach (FLASH vs. turboFLASH). Differences for CNR were also statistically significant, independent of imaging plane (Pax = 0.001, Psag = 0.02). Results demonstrate that turboFLASH BLADE is applicable at 3T with a 32-channel head coil for T1-weighted imaging, with reduced ghost artifacts. This approach offers the first truly clinically applicable T1-weighted BLADE technique for brain imaging at 3T, with consistent excellent image quality.

  7. Wavelet versus DCT-based spread spectrum watermarking of image databases

    NASA Astrophysics Data System (ADS)

    Mitrea, Mihai P.; Zaharia, Titus B.; Preteux, Francoise J.; Vlad, Adriana

    2004-05-01

    This paper addresses the issue of oblivious robust watermarking, within the framework of colour still image database protection. We present an original method which complies with all the requirements nowadays imposed to watermarking applications: robustness (e.g. low-pass filtering, print & scan, StirMark), transparency (both quality and fidelity), low probability of false alarm, obliviousness and multiple bit recovering. The mark is generated from a 64 bit message (be it a logo, a serial number, etc.) by means of a Spread Spectrum technique and is embedded into DWT (Discrete Wavelet Transform) domain, into certain low frequency coefficients, selected according to the hierarchy of their absolute values. The best results were provided by the (9,7) bi-orthogonal transform. The experiments were carried out on 1200 image sequences, each of them of 32 images. Note that these sequences represented several types of images: natural, synthetic, medical, etc. and each time we obtained the same good results. These results are compared with those we already obtained for the DCT domain, the differences being pointed out and discussed.

  8. RIKEN Integrated Sequence Analysis (RISA) System—384-Format Sequencing Pipeline with 384 Multicapillary Sequencer

    PubMed Central

    Shibata, Kazuhiro; Itoh, Masayoshi; Aizawa, Katsunori; Nagaoka, Sumiharu; Sasaki, Nobuya; Carninci, Piero; Konno, Hideaki; Akiyama, Junichi; Nishi, Katsuo; Kitsunai, Tokuji; Tashiro, Hideo; Itoh, Mari; Sumi, Noriko; Ishii, Yoshiyuki; Nakamura, Shin; Hazama, Makoto; Nishine, Tsutomu; Harada, Akira; Yamamoto, Rintaro; Matsumoto, Hiroyuki; Sakaguchi, Sumito; Ikegami, Takashi; Kashiwagi, Katsuya; Fujiwake, Syuji; Inoue, Kouji; Togawa, Yoshiyuki; Izawa, Masaki; Ohara, Eiji; Watahiki, Masanori; Yoneda, Yuko; Ishikawa, Tomokazu; Ozawa, Kaori; Tanaka, Takumi; Matsuura, Shuji; Kawai, Jun; Okazaki, Yasushi; Muramatsu, Masami; Inoue, Yorinao; Kira, Akira; Hayashizaki, Yoshihide

    2000-01-01

    The RIKEN high-throughput 384-format sequencing pipeline (RISA system) including a 384-multicapillary sequencer (the so-called RISA sequencer) was developed for the RIKEN mouse encyclopedia project. The RISA system consists of colony picking, template preparation, sequencing reaction, and the sequencing process. A novel high-throughput 384-format capillary sequencer system (RISA sequencer system) was developed for the sequencing process. This system consists of a 384-multicapillary auto sequencer (RISA sequencer), a 384-multicapillary array assembler (CAS), and a 384-multicapillary casting device. The RISA sequencer can simultaneously analyze 384 independent sequencing products. The optical system is a scanning system chosen after careful comparison with an image detection system for the simultaneous detection of the 384-capillary array. This scanning system can be used with any fluorescent-labeled sequencing reaction (chain termination reaction), including transcriptional sequencing based on RNA polymerase, which was originally developed by us, and cycle sequencing based on thermostable DNA polymerase. For long-read sequencing, 380 out of 384 sequences (99.2%) were successfully analyzed and the average read length, with more than 99% accuracy, was 654.4 bp. A single RISA sequencer can analyze 216 kb with >99% accuracy in 2.7 h (90 kb/h). For short-read sequencing to cluster the 3′ end and 5′ end sequencing by reading 350 bp, 384 samples can be analyzed in 1.5 h. We have also developed a RISA inoculator, RISA filtrator and densitometer, RISA plasmid preparator which can handle throughput of 40,000 samples in 17.5 h, and a high-throughput RISA thermal cycler which has four 384-well sites. The combination of these technologies allowed us to construct the RISA system consisting of 16 RISA sequencers, which can process 50,000 DNA samples per day. One haploid genome shotgun sequence of a higher organism, such as human, mouse, rat, domestic animals, and plants, can be revealed by seven RISA systems within one month. PMID:11076861

  9. SU-G-IeP4-11: Monitoring Tumor Growth in Subcutaneous Murine Tumor Model in Vivo: A Comparison Between MRI and Small Animal CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B; He, W; Cvetkovic, D

    Purpose: The purpose of the study is to compare the volume measurement of subcutaneous tumors in mice with different imaging platforms, namely a GE MRI and a Sofie-Biosciences small animal CT scanner. Methods: A549 human lung carcinoma cells and FaDu human head and neck squamous cell carcinoma cells were implanted subcutaneously into flanks of nude mice. Three FaDu tumors and three A549 tumors were included in this study. The MRI scans were done with a GE Signa 1.5 Tesla MR scanner using a fast T2-weighted sequence (70mm FOV and 1.2mm slice thickness), while the CT scans were done with themore » CT scanner on a Sofie-Biosciences G8 PET/CT platform dedicated for small animal studies (48mm FOV and 0.2mm slice thickness). Imaging contrast agent was not used in this study. Based on the DICOM images from MRI and CT scans, the tumors were contoured with Philips DICOM Viewer and the tumor volumes were obtained by summing up the contoured area and multiplied by the slice thickness. Results: The volume measurements based on the CT scans agree reasonably with that obtained with MR images for the subcutaneous tumors. The mean difference in the absolute tumor volumes between MRI- and CT-based measurements was found to be −6.2% ± 1.0%, with the difference defined as (VMR – VCT)*100%/VMR. Furthermore, we evaluated the normalized tumor volumes, which were defined for each tumor as V/V{sub 0} where V{sub 0} stands for the volume from the first MR or CT scan. The mean difference in the normalized tumor volumes was found to be 0.10% ± 0.96%. Conclusion: Despite the fact that the difference between normal and abnormal tissues is often less clear on small animal CT images than on MR images, one can still obtain reasonable tumor volume information with the small animal CT scans for subcutaneous murine xenograft models.« less

  10. Quantitative analysis of hepatic iron in patients suspected of coexisting iron overload and steatosis using multi-echo single-voxel magnetic resonance spectroscopy: Comparison with fat-saturated multi-echo gradient echo sequence.

    PubMed

    Lin, Huimin; Fu, Caixia; Kannengiesser, Stephan; Cheng, Shu; Shen, Jun; Dong, Haipeng; Yan, Fuhua

    2018-03-07

    The coexistence of hepatic iron and fat is common in patients with hyperferritinemia, which plays an interactive and aggressive role in the progression of diseases (fibrosis, cirrhosis, and hepatocellular carcinomas). To evaluate a modified high-speed T 2 -corrected multi-echo, single voxel spectroscopy sequence (HISTOV) for liver iron concentration (LIC) quantification in patients with hyperferritinemia, with simultaneous fat fraction (FF) estimation. Retrospective cohort study. Thirty-eight patients with hyperferritinemia were enrolled. HISTOV, a fat-saturated multi-echo gradient echo (GRE) sequence, and a spin echo sequence (FerriScan) were performed at 1.5T. R 2 of the water signal and FF were calculated with HISTOV, and R2* values were derived from the GRE sequence, with R 2 and LIC from FerriScan serving as the references. Linear regression, correlation analyses, receiver operating characteristic analyses, and Bland-Altman analyses were conducted. Abnormal hepatic iron load was detected in 32/38 patients, of whom 10/32 had coexisting steatosis. Strong correlation was found between R2* and FerriScan-LIC (R 2 = 0.861), and between HISTOV-R 2_ water and FerriScan-R 2 (R 2  = 0.889). Furthermore, HISTOV-R 2_ water was not correlated with HISTOV-FF. The area under the curve (AUC) for HISTOV-R 2_ water was 0.974, 0.971, and 1, corresponding to clinical FerriScan-LIC thresholds of 1.8, 3.2, and 7.0 mg/g dw, respectively. No significant difference in the AUC was found between HISTOV-R 2_ water and R2* at any of the LIC thresholds, with P-values of 0.42, 0.37, and 1, respectively. HISTOV-LIC showed excellent agreement with FerriScan-LIC, with a mean bias of 0.00 ± 1.18 mg/g dw, whereas the mean bias between GRE-LIC and FerriScan-LIC was 0.53 ± 1.49 mg/g dw. HISTOV is useful for the quantification and grading of liver iron overload in patients with hyperferritinemia, particularly in cases with coexisting steatosis. HISTOV-LIC showed no systematic bias compared with FerriScan-LIC, making it a promising alternative for iron quantification. 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  11. Multimodal Image-Based Virtual Reality Presurgical Simulation and Evaluation for Trigeminal Neuralgia and Hemifacial Spasm.

    PubMed

    Yao, Shujing; Zhang, Jiashu; Zhao, Yining; Hou, Yuanzheng; Xu, Xinghua; Zhang, Zhizhong; Kikinis, Ron; Chen, Xiaolei

    2018-05-01

    To address the feasibility and predictive value of multimodal image-based virtual reality in detecting and assessing features of neurovascular confliction (NVC), particularly regarding the detection of offending vessels, degree of compression exerted on the nerve root, in patients who underwent microvascular decompression for nonlesional trigeminal neuralgia and hemifacial spasm (HFS). This prospective study includes 42 consecutive patients who underwent microvascular decompression for classic primary trigeminal neuralgia or HFS. All patients underwent preoperative 1.5-T magnetic resonance imaging (MRI) with T2-weighted three-dimensional (3D) sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D time-of-flight magnetic resonance angiography, and 3D T1-weighted gadolinium-enhanced sequences in combination, whereas 2 patients underwent extra experimental preoperative 7.0-T MRI scans with the same imaging protocol. Multimodal MRIs were then coregistered with open-source software 3D Slicer, followed by 3D image reconstruction to generate virtual reality (VR) images for detection of possible NVC in the cerebellopontine angle. Evaluations were performed by 2 reviewers and compared with the intraoperative findings. For detection of NVC, multimodal image-based VR sensitivity was 97.6% (40/41) and specificity was 100% (1/1). Compared with the intraoperative findings, the κ coefficients for predicting the offending vessel and the degree of compression were >0.75 (P < 0.001). The 7.0-T scans have a clearer view of vessels in the cerebellopontine angle, which may have significant impact on detection of small-caliber offending vessels with relatively slow flow speed in cases of HFS. Multimodal image-based VR using 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions in combination with 3D time-of-flight magnetic resonance angiography sequences proved to be reliable in detecting NVC and in predicting the degree of root compression. The VR image-based simulation correlated well with the real surgical view. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Damage analysis of CF/AF hybrid fabric reinforced plastic laminated composites with scanned image microscopy

    NASA Astrophysics Data System (ADS)

    Miyasaka, Chiaki; Kasano, Hideaki; Shull, Peter J.

    2004-07-01

    The article presents an experimental study that has been conducted to evaluate the impact loading damage within hybrid fabric laminates-carbon and Aramid fibers. The experiments have been undertaken on a series of interply hybrid specimens with different preprags stacking sequences. Impact damage was created using an air-gun like impact device propelling spherical steel balls with diameters of 5.0mm and 10.0mm and having velocities of 113m/s and 40m/s respectively. The resulting specimen surface and internal damage (e.g., micro-cracking and debonding) was visualized nondestructively by a scanning acoustic microscope (SAM) while further interrogation of specific internal damage was visualized using a scanning electron microscope (SEM) on cross-sectioned panels.

  13. Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng-Chieh; Mei, Chang-Sheng; Duryea, Jeffrey; Chung, Hsiao-Wen; Chao, Tzu-Cheng; Panych, Lawrence P.; Madore, Bruno

    2016-04-01

    Purpose: To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2∗ and field map information. Methods: Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. Results: Quantitative T2, T2∗ and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R2 = 0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2 = 1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. Conclusion: T2, T2∗ and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.

  14. A novel method for efficient archiving and retrieval of biomedical images using MPEG-7

    NASA Astrophysics Data System (ADS)

    Meyer, Joerg; Pahwa, Ash

    2004-10-01

    Digital archiving and efficient retrieval of radiological scans have become critical steps in contemporary medical diagnostics. Since more and more images and image sequences (single scans or video) from various modalities (CT/MRI/PET/digital X-ray) are now available in digital formats (e.g., DICOM-3), hospitals and radiology clinics need to implement efficient protocols capable of managing the enormous amounts of data generated daily in a typical clinical routine. We present a method that appears to be a viable way to eliminate the tedious step of manually annotating image and video material for database indexing. MPEG-7 is a new framework that standardizes the way images are characterized in terms of color, shape, and other abstract, content-related criteria. A set of standardized descriptors that are automatically generated from an image is used to compare an image to other images in a database, and to compute the distance between two images for a given application domain. Text-based database queries can be replaced with image-based queries using MPEG-7. Consequently, image queries can be conducted without any prior knowledge of the keys that were used as indices in the database. Since the decoding and matching steps are not part of the MPEG-7 standard, this method also enables searches that were not planned by the time the keys were generated.

  15. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.

    PubMed

    Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A

    2016-06-01

    Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Accelerated self-gated UTE MRI of the murine heart

    NASA Astrophysics Data System (ADS)

    Motaal, Abdallah G.; Noorman, Nils; De Graaf, Wolter L.; Florack, Luc J.; Nicolay, Klaas; Strijkers, Gustav J.

    2014-03-01

    We introduce a new protocol to obtain radial Ultra-Short TE (UTE) MRI Cine of the beating mouse heart within reasonable measurement time. The method is based on a self-gated UTE with golden angle radial acquisition and compressed sensing reconstruction. The stochastic nature of the retrospective triggering acquisition scheme produces an under-sampled and random kt-space filling that allows for compressed sensing reconstruction, hence reducing scan time. As a standard, an intragate multislice FLASH sequence with an acquisition time of 4.5 min per slice was used to produce standard Cine movies of 4 mice hearts with 15 frames per cardiac cycle. The proposed self-gated sequence is used to produce Cine movies with short echo time. The total scan time was 11 min per slice. 6 slices were planned to cover the heart from the base to the apex. 2X, 4X and 6X under-sampled k-spaces cine movies were produced from 2, 1 and 0.7 min data acquisitions for each slice. The accelerated cine movies of the mouse hearts were successfully reconstructed with a compressed sensing algorithm. Compared to the FLASH cine images, the UTE images showed much less flow artifacts due to the short echo time. Besides, the accelerated movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters derived from the standard and the accelerated cine movies were nearly identical.

  17. Assessment of alveolar bone marrow fat content using 15 T MRI.

    PubMed

    Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L

    2018-03-01

    Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Quiet PROPELLER MRI techniques match the quality of conventional PROPELLER brain imaging techniques.

    PubMed

    Corcuera-Solano, I; Doshi, A; Pawha, P S; Gui, D; Gaddipati, A; Tanenbaum, L

    2015-06-01

    Switching of magnetic field gradients is the primary source of acoustic noise in MR imaging. Sound pressure levels can run as high as 120 dB, capable of producing physical discomfort and at least temporary hearing loss, mandating hearing protection. New technology has made quieter techniques feasible, which range from as low as 80 dB to nearly silent. The purpose of this study was to evaluate the image quality of new commercially available quiet T2 and quiet FLAIR fast spin-echo PROPELLER acquisitions in comparison with equivalent conventional PROPELLER techniques in current day-to-day practice in imaging of the brain. Thirty-four consecutive patients were prospectively scanned with quiet T2 and quiet T2 FLAIR PROPELLER, in addition to spatial resolution-matched conventional T2 and T2 FLAIR PROPELLER imaging sequences on a clinical 1.5T MR imaging scanner. Measurement of sound pressure levels and qualitative evaluation of relative image quality was performed. Quiet T2 and quiet T2 FLAIR were comparable in image quality with conventional acquisitions, with sound levels of approximately 75 dB, a reduction in average sound pressure levels of up to 28.5 dB, with no significant trade-offs aside from longer scan times. Quiet FSE provides equivalent image quality at comfortable sound pressure levels at the cost of slightly longer scan times. The significant reduction in potentially injurious noise is particularly important in vulnerable populations such as children, the elderly, and the debilitated. Quiet techniques should be considered in these special situations for routine use in clinical practice. © 2015 by American Journal of Neuroradiology.

  19. Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors.

    PubMed

    Yip, Eugene; Yun, Jihyun; Wachowicz, Keith; Gabos, Zsolt; Rathee, Satyapal; Fallone, B G

    2017-01-01

    Hybrid magnetic resonance imaging and radiation therapy devices are capable of imaging in real-time to track intrafractional lung tumor motion during radiotherapy. Highly accelerated magnetic resonance (MR) imaging methods can potentially reduce system delay time and/or improves imaging spatial resolution, and provide flexibility in imaging parameters. Prior Data Assisted Compressed Sensing (PDACS) has previously been proposed as an acceleration method that combines the advantages of 2D compressed sensing and the KEYHOLE view-sharing technique. However, as PDACS relies on prior data acquired at the beginning of a dynamic imaging sequence, decline in image quality occurs for longer duration scans due to drifts in MR signal. Novel sliding window-based techniques for refreshing prior data are proposed as a solution to this problem. MR acceleration is performed by retrospective removal of data from the fully sampled sets. Six patients with lung tumors are scanned with a clinical 3 T MRI using a balanced steady-state free precession (bSSFP) sequence for 3 min at approximately 4 frames per second, for a total of 650 dynamics. A series of distinct pseudo-random patterns of partial k-space acquisition is generated such that, when combined with other dynamics within a sliding window of 100 dynamics, covers the entire k-space. The prior data in the sliding window are continuously refreshed to reduce the impact of MR signal drifts. We intended to demonstrate two different ways to utilize the sliding window data: a simple averaging method and a navigator-based method. These two sliding window methods are quantitatively compared against the original PDACS method using three metrics: artifact power, centroid displacement error, and Dice's coefficient. The study is repeated with pseudo 0.5 T images by adding complex, normally distributed noise with a standard deviation that reduces image SNR, relative to original 3 T images, by a factor of 6. Without sliding window implemented, PDACS-reconstructed dynamic datasets showed progressive increases in image artifact power as the 3 min scan progresses. With sliding windows implemented, this increase in artifact power is eliminated. Near the end of a 3 min scan at 3 T SNR and 5× acceleration, implementation of an averaging (navigator) sliding window method improves our metrics by the following ways: artifact power decreases from 0.065 without sliding window to 0.030 (0.031), centroid error decreases from 2.64 to 1.41 mm (1.28 mm), and Dice coefficient agreement increases from 0.860 to 0.912 (0.915). At pseudo 0.5 T SNR, the improvements in metrics are as follows: artifact power decreases from 0.110 without sliding window to 0.0897 (0.0985), centroid error decreases from 2.92 mm to 1.36 mm (1.32 mm), and Dice coefficient agreements increases from 0.851 to 0.894 (0.896). In this work we demonstrated the negative impact of slow changes in MR signal for longer duration PDACS dynamic scans, namely increases in image artifact power and reductions of tumor tracking accuracy. We have also demonstrated sliding window implementations (i.e., refreshing of prior data) of PDACS are effective solutions to this problem at both 3 T and simulated 0.5 T bSSFP images. © 2016 American Association of Physicists in Medicine.

  20. Super-resolved Parallel MRI by Spatiotemporal Encoding

    PubMed Central

    Schmidt, Rita; Baishya, Bikash; Ben-Eliezer, Noam; Seginer, Amir; Frydman, Lucio

    2016-01-01

    Recent studies described an alternative “ultrafast” scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive acquisition alternative entails exploiting parallel imaging algorithms, without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view; together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. The ensuing approach enables one to reduce both the excitation and acquisition times of ultrafast SPEN acquisitions by the customary acceleration factor R, without compromises in either the ensuing spatial resolution, SAR deposition, or the capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored on phantoms and human volunteers at 3T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces. PMID:24120293

  1. Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy.

    PubMed

    Kim, Yoon-Jun; Tao, Runzhe; Klie, Robert F; Seidman, David N

    2013-01-22

    Imaging the three-dimensional atomic-scale structure of complex interfaces has been the goal of many recent studies, due to its importance to technologically relevant areas. Combining atom-probe tomography and aberration-corrected scanning transmission electron microscopy (STEM), we present an atomic-scale study of ultrathin (~5 nm) native oxide layers on niobium (Nb) and the formation of ordered niobium hydride phases near the oxide/Nb interface. Nb, an elemental type-II superconductor with the highest critical temperature (T(c) = 9.2 K), is the preferred material for superconducting radio frequency (SRF) cavities in next-generation particle accelerators. Nb exhibits high solubilities for oxygen and hydrogen, especially within the RF-field penetration depth, which is believed to result in SRF quality factor losses. STEM imaging and electron energy-loss spectroscopy followed by ultraviolet laser-assisted local-electrode atom-probe tomography on the same needle-like sample reveals the NbO(2), Nb(2)O(5), NbO, Nb stacking sequence; annular bright-field imaging is used to visualize directly hydrogen atoms in bulk β-NbH.

  2. Large area high-speed metrology SPM system.

    PubMed

    Klapetek, P; Valtr, M; Picco, L; Payton, O D; Martinek, J; Yacoot, A; Miles, M

    2015-02-13

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm(2) regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  3. Large area high-speed metrology SPM system

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  4. Carr-Purcell-Meiboom-Gill imaging of prostate cancer: quantitative T2 values for cancer discrimination.

    PubMed

    Roebuck, Joseph R; Haker, Steven J; Mitsouras, Dimitris; Rybicki, Frank J; Tempany, Clare M; Mulkern, Robert V

    2009-05-01

    Quantitative, apparent T(2) values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T(2) values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy-proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 x 1.1 x 4 mm(3) was obtained in 10.7 min, resulting in data sets suitable for generating high-quality images with variable T(2)-weighting and for evaluating quantitative T(2) values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T(1)- and T(2)-weighted signal intensities and available histopathology reports, yielded significantly (P<.0001) longer apparent T(2) values in suspected healthy tissue (193+/-49 ms) vs. suspected cancer (100+/-26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T(2)-weighted fast spin echo (FSE) imaging alone, including quantitative T(2) values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time FSE sequences.

  5. Carr-Purcell-Meiboom-Gill (CPMG) Imaging of Prostate Cancer: Quantitative T2 Values for Cancer Discrimination

    PubMed Central

    Roebuck, Joseph R.; Haker, Steven J.; Mitsouras, Dimitris; Rybicki, Frank J.; Tempany, Clare M.; Mulkern, Robert V.

    2009-01-01

    Quantitative, apparent T2 values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T2 values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 × 1.1 × 4 mm3 was obtained in 10.7 minutes, resulting in data sets suitable for generating high quality images with variable T2-weighting and for evaluating quantitative T2 values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T1- and T2-weighted signal intensities and available histopathology reports, yielded significantly (p < 0.0001) longer apparent T2 values in suspected healthy tissue (193 ± 49 ms) vs. suspected cancer (100 ± 26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T2-weighted fast spin echo imaging alone, including quantitative T2 values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time fast spin echo (FSE) sequences. PMID:18823731

  6. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine.

    PubMed

    Lao, Zhiqiang; Shen, Dinggang; Liu, Dengfeng; Jawad, Abbas F; Melhem, Elias R; Launer, Lenore J; Bryan, R Nick; Davatzikos, Christos

    2008-03-01

    Brain lesions, especially white matter lesions (WMLs), are associated with cardiac and vascular disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more important. In this article, we present a computer-assisted WML segmentation method, based on local features extracted from multiparametric magnetic resonance imaging (MRI) sequences (ie, T1-weighted, T2-weighted, proton density-weighted, and fluid attenuation inversion recovery MRI scans). A support vector machine classifier is first trained on expert-defined WMLs, and is then used to classify new scans. Postprocessing analysis further reduces false positives by using anatomic knowledge and measures of distance from the training set. Cross-validation on a population of 35 patients from three different imaging sites with WMLs of varying sizes, shapes, and locations tests the robustness and accuracy of the proposed segmentation method, compared with the manual segmentation results from two experienced neuroradiologists.

  7. Vessel wall characterization using quantitative MRI: what's in a number?

    PubMed

    Coolen, Bram F; Calcagno, Claudia; van Ooij, Pim; Fayad, Zahi A; Strijkers, Gustav J; Nederveen, Aart J

    2018-02-01

    The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.

  8. Logo2PWM: a tool to convert sequence logo to position weight matrix.

    PubMed

    Gao, Zhen; Liu, Lu; Ruan, Jianhua

    2017-10-03

    position weight matrix (PWM) and sequence logo are the most widely used representations of transcription factor binding site (TFBS) in biological sequences. Sequence logo - a graphical representation of PWM, has been widely used in scientific publications and reports, due to its easiness of human perception, rich information, and simple format. Different from sequence logo, PWM works great as a precise and compact digitalized form, which can be easily used by a variety of motif analysis software. There are a few available tools to generate sequence logos from PWM; however, no tool does the reverse. Such tool to convert sequence logo back to PWM is needed to scan a TFBS represented in logo format in a publication where the PWM is not provided or hard to be acquired. A major difficulty in developing such tool to convert sequence logo to PWM is to deal with the diversity of sequence logo images. We propose logo2PWM for reconstructing PWM from a large variety of sequence logo images. Evaluation results on over one thousand logos from three sources of different logo format show that the correlation between the reconstructed PWMs and the original PWMs are constantly high, where median correlation is greater than 0.97. Because of the high recognition accuracy, the easiness of usage, and, the availability of both web-based service and stand-alone application, we believe that logo2PWM can readily benefit the study of transcription by filling the gap between sequence logo and PWM.

  9. Normal saline as a natural intravascular contrast agent for dynamic perfusion-weighted MRI of the brain: Proof of concept at 1.5T.

    PubMed

    Jara, Hernán; Mian, Asim; Sakai, Osamu; Anderson, Stephan W; Horn, Mitchel J; Norbash, Alexander M; Soto, Jorge A

    2016-12-01

    Gadolinium-based contrast agents have associated risks. Normal saline (NS) is a nontoxic sodium chloride water solution that can significantly increase the magnetic resonance imaging (MRI) relaxation times of blood via transient hemodilution (THD). The purpose of this pilot study was to test in vivo in the head the potential of normal saline as a safer, exogenous perfusion contrast agent. This Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study was approved by the local Institutional Review Board (IRB): 12 patients were scanned with T 1 -weighted inversion recovery turbo spin echo pulse sequence at 1.5T. The dynamic inversion recovery pulse sequence was run before, during, and after the NS injection for up to 5 minutes: 100 ml of NS was power-injected via antecubital veins at 3-4 ml/s. Images were processed to map maximum enhancement area-under-the-curve, time-to-peak, and mean-transit-time. These maps were used to identify the areas showing significant NS injection-related signal and to generate enhancement time curves. Hardware and pulse sequence stability were studied via phantom experimentation. Main features of the time curves were tested against theoretical modeling of THD signal effects using inversion recovery pulse sequences. Pearson correlation coefficient (R) mapping was used to differentiate genuine THD effects from motion confounders and noise. The scans of 8 out of 12 patients showed NS injection-related effects that correlate in magnitude with tissue type (gray matter ∼15% and white matter ∼3%). Motion artifacts prevented ascertaining NS signal effects in the remaining four patients. Positive and negative time curves were observed in vivo and this dual THD signal polarity was also observed in the theoretical simulations. R-histograms that were approximately constant in the range 0.1 < |R| < 0.8 and leading to correlation fractions of F corr (|R| > 0.5) = 0.45 and 0.59 were found to represent scans with genuine THD signal effects. A measurable perfusion effect in brain tissue was demonstrated in vivo using NS as an injectable intravascular contrast agent. J. Magn. Reson. Imaging 2016;44:1580-1591. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yingli; Cao, Minsong; Kaprealian, Tania

    2016-01-15

    Purpose: Radiation therapy simulations solely based on MRI have advantages compared to CT-based approaches. One feature readily available from computed tomography (CT) that would need to be reproduced with MR is the ability to compute digitally reconstructed radiographs (DRRs) for comparison against on-board radiographs commonly used for patient positioning. In this study, the authors generate MR-based bone images using a single ultrashort echo time (UTE) pulse sequence and quantify their 3D and 2D image registration accuracy to CT and radiographic images for treatments in the cranium. Methods: Seven brain cancer patients were scanned at 1.5 T using a radial UTEmore » sequence. The sequence acquired two images at two different echo times. The two images were processed using an in-house software to generate the UTE bone images. The resultant bone images were rigidly registered to simulation CT data and the registration error was determined using manually annotated landmarks as references. DRRs were created based on UTE-MRI and registered to simulated on-board images (OBIs) and actual clinical 2D oblique images from ExacTrac™. Results: UTE-MRI resulted in well visualized cranial, facial, and vertebral bones that quantitatively matched the bones in the CT images with geometric measurement errors of less than 1 mm. The registration error between DRRs generated from 3D UTE-MRI and the simulated 2D OBIs or the clinical oblique x-ray images was also less than 1 mm for all patients. Conclusions: UTE-MRI-based DRRs appear to be promising for daily patient setup of brain cancer radiotherapy with kV on-board imaging.« less

  11. Parallel imaging of knee cartilage at 3 Tesla.

    PubMed

    Zuo, Jin; Li, Xiaojuan; Banerjee, Suchandrima; Han, Eric; Majumdar, Sharmila

    2007-10-01

    To evaluate the feasibility and reproducibility of quantitative cartilage imaging with parallel imaging at 3T and to determine the impact of the acceleration factor (AF) on morphological and relaxation measurements. An eight-channel phased-array knee coil was employed for conventional and parallel imaging on a 3T scanner. The imaging protocol consisted of a T2-weighted fast spin echo (FSE), a 3D-spoiled gradient echo (SPGR), a custom 3D-SPGR T1rho, and a 3D-SPGR T2 sequence. Parallel imaging was performed with an array spatial sensitivity technique (ASSET). The left knees of six healthy volunteers were scanned with both conventional and parallel imaging (AF = 2). Morphological parameters and relaxation maps from parallel imaging methods (AF = 2) showed comparable results with conventional method. The intraclass correlation coefficient (ICC) of the two methods for cartilage volume, mean cartilage thickness, T1rho, and T2 were 0.999, 0.977, 0.964, and 0.969, respectively, while demonstrating excellent reproducibility. No significant measurement differences were found when AF reached 3 despite the low signal-to-noise ratio (SNR). The study demonstrated that parallel imaging can be applied to current knee cartilage quantification at AF = 2 without degrading measurement accuracy with good reproducibility while effectively reducing scan time. Shorter imaging times can be achieved with higher AF at the cost of SNR. (c) 2007 Wiley-Liss, Inc.

  12. Hybrid cardiac imaging with MR-CAT scan: a feasibility study.

    PubMed

    Hillenbrand, C; Sandstede, J; Pabst, T; Hahn, D; Haase, A; Jakob, P M

    2000-06-01

    We demonstrate the feasibility of a new versatile hybrid imaging concept, the combined acquisition technique (CAT), for cardiac imaging. The cardiac CAT approach, which combines new methodology with existing technology, essentially integrates fast low-angle shot (FLASH) and echoplanar imaging (EPI) modules in a sequential fashion, whereby each acquisition module is employed with independently optimized imaging parameters. One important CAT sequence optimization feature is the ability to use different bandwidths for different acquisition modules. Twelve healthy subjects were imaged using three cardiac CAT acquisition strategies: a) CAT was used to reduce breath-hold duration times while maintaining constant spatial resolution; b) CAT was used to increase spatial resolution in a given breath-hold time; and c) single-heart beat CAT imaging was performed. The results obtained demonstrate the feasibility of cardiac imaging using the CAT approach and the potential of this technique to accelerate the imaging process with almost conserved image quality. Copyright 2000 Wiley-Liss, Inc.

  13. Managing multiple image stacks from confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Zerbe, Joerg; Goetze, Christian H.; Zuschratter, Werner

    1999-05-01

    A major goal in neuroanatomy is to obtain precise information about the functional organization of neuronal assemblies and their interconnections. Therefore, the analysis of histological sections frequently requires high resolution images in combination with an overview about the structure. To overcome this conflict we have previously introduced a software for the automatic acquisition of multiple image stacks (3D-MISA) in confocal laser scanning microscopy. Here, we describe a Windows NT based software for fast and easy navigation through the multiple images stacks (MIS-browser), the visualization of individual channels and layers and the selection of user defined subregions. In addition, the MIS browser provides useful tools for the visualization and evaluation of the datavolume, as for instance brightness and contrast corrections of individual layers and channels. Moreover, it includes a maximum intensity projection, panning and zoom in/out functions within selected channels or focal planes (x/y) and tracking along the z-axis. The import module accepts any tiff-format and reconstructs the original image arrangement after the user has defined the sequence of images in x/y and z and the number of channels. The implemented export module allows storage of user defined subregions (new single image stacks) for further 3D-reconstruction and evaluation.

  14. Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality

    PubMed Central

    Chen, Gang; Wang, Feng; Dillenburger, Barbara C.; Friedman, Robert M.; Chen, Li M.; Gore, John C.; Avison, Malcolm J.; Roe, Anna W.

    2011-01-01

    Functional magnetic resonance imaging (fMRI), at high magnetic field strength can suffer from serious degradation of image quality because of motion and physiological noise, as well as spatial distortions and signal losses due to susceptibility effects. Overcoming such limitations is essential for sensitive detection and reliable interpretation of fMRI data. These issues are particularly problematic in studies of awake animals. As part of our initial efforts to study functional brain activations in awake, behaving monkeys using fMRI at 4.7T, we have developed acquisition and analysis procedures to improve image quality with encouraging results. We evaluated the influence of two main variables on image quality. First, we show how important the level of behavioral training is for obtaining good data stability and high temporal signal-to-noise ratios. In initial sessions, our typical scan session lasted 1.5 hours, partitioned into short (<10 minutes) runs. During reward periods and breaks between runs, the monkey exhibited movements resulting in considerable image misregistrations. After a few months of extensive behavioral training, we were able to increase the length of individual runs and the total length of each session. The monkey learned to wait until the end of a block for fluid reward, resulting in longer periods of continuous acquisition. Each additional 60 training sessions extended the duration of each session by 60 minutes, culminating, after about 140 training sessions, in sessions that last about four hours. As a result, the average translational movement decreased from over 500 μm to less than 80 μm, a displacement close to that observed in anesthetized monkeys scanned in a 7 T horizontal scanner. Another major source of distortion at high fields arises from susceptibility variations. To reduce such artifacts, we used segmented gradient-echo echo-planar imaging (EPI) sequences. Increasing the number of segments significantly decreased susceptibility artifacts and image distortion. Comparisons of images from functional runs using four segments with those using a single-shot EPI sequence revealed a roughly two-fold improvement in functional signal-to-noise-ratio and 50% decrease in distortion. These methods enabled reliable detection of neural activation and permitted blood-oxygenation-level-dependent (BOLD) based mapping of early visual areas in monkeys using a volume coil. In summary, both extensive behavioral training of monkeys and application of segmented gradient-echo EPI sequence improved signal-to-noise and image quality. Understanding the effects these factors have is important for the application of high field imaging methods to the detection of sub-millimeter functional structures in the awake monkey brain. PMID:22055855

  15. Towards real-time thermometry using simultaneous multislice MRI

    NASA Astrophysics Data System (ADS)

    Borman, P. T. S.; Bos, C.; de Boorder, T.; Raaymakers, B. W.; Moonen, C. T. W.; Crijns, S. P. M.

    2016-09-01

    MR-guided thermal therapies, such as high-intensity focused ultrasound (MRgHIFU) and laser-induced thermal therapy (MRgLITT) are increasingly being applied in oncology and neurology. MRI is used for guidance since it can measure temperature noninvasively based on the proton resonance frequency shift (PRFS). For therapy guidance using PRFS thermometry, high temporal resolution and large spatial coverage are desirable. We propose to use the parallel imaging technique simultaneous multislice (SMS) in combination with controlled aliasing (CAIPIRINHA) to accelerate the acquisition. We compare this with the sensitivity encoding (SENSE) acceleration technique. Two experiments were performed to validate that SMS can be used to increase the spatial coverage or the temporal resolution. The first was performed in agar gel using LITT heating and a gradient-echo sequence with echo-planar imaging (EPI), and the second was performed in bovine muscle using HIFU heating and a gradient-echo sequence without EPI. In both experiments temperature curves from an unaccelerated scan and from SMS, SENSE, and SENSE/SMS accelerated scans were compared. The precision was quantified by a standard deviation analysis of scans without heating. Both experiments showed a good agreement between the temperature curves obtained from the unaccelerated, and SMS accelerated scans, confirming that accuracy was maintained during SMS acceleration. The standard deviations of the temperature measurements obtained with SMS were significantly smaller than when SENSE was used, implying that SMS allows for higher acceleration. In the LITT and HIFU experiments SMS factors up to 4 and 3 were reached, respectively, with a loss of precision of less than a factor of 3. Based on these results we conclude that SMS acceleration of PRFS thermometry is a valuable addition to SENSE, because it allows for a higher temporal resolution or bigger spatial coverage, with a higher precision.

  16. Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer

    PubMed Central

    Liney, G P; Owen, S C; Beaumont, A K E; Lazar, V R; Manton, D J

    2013-01-01

    Objective: A combination of CT and MRI is recommended for radiotherapy planning of head and neck cancers, and optimal spatial co-registration is achieved by imaging in the treatment position using the necessary immobilisation devices on both occasions, something which requires wide-bore scanners. Quality assurance experiments were carried out to commission a newly installed 1.5-T wide-bore MRI scanner and a dedicated, flexible six-channel phased array head and neck coil. Methods: Signal-to-noise ratio (SNR) and spatial signal uniformity were quantified using a homogeneous aqueous phantom, and geometric distortion was quantified using a phantom with water-filled fiducials in a grid pattern. Volunteer scans were also used to determine the in vivo image quality. Clinically relevant T1 weighted and T2 weighted fat-suppressed sequences were assessed in multiple scan planes (both sequences fast spin echo based). The performance of two online signal uniformity correction schemes, one utilising low-resolution reference scans and the other not utilising low-resolution reference scans, was compared. Results: Geometric distortions, for a ±35-kHz bandwidth, were <1 mm for locations within 10 cm of the isocentre rising to 1.8 mm at 18 cm away. SNR was above 50, and uniformity in the axial plane was 71% and 95% before and after uniformity correction, respectively. Conclusion: The combined performance of the wide-bore scanner and the dedicated coil was adjudged adequate, although superior–inferior spatial coverage was slightly limited in the lower neck. Advances in knowledge: These results will be of interest to the increasing number of oncology centres that are seeking to incorporate MRI into planning practice using dedicated equipment. PMID:23690434

  17. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    PubMed

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  18. Diffusion Tensor Imaging of Lumbar Nerve Roots: Comparison Between Fast Readout-Segmented and Selective-Excitation Acquisitions.

    PubMed

    Manoliu, Andrei; Ho, Michael; Nanz, Daniel; Piccirelli, Marco; Dappa, Evelyn; Klarhöfer, Markus; Del Grande, Filippo; Kuhn, Felix Pierre

    2016-08-01

    The aim of this study was to compare the quality of recently emerged advanced diffusion tensor imaging (DTI) techniques with conventional single-shot echo-planar imaging (EPI) in a functional assessment of lumbar nerve roots. The institutional review board approved the study including 12 healthy volunteers. Diffusion tensor imaging was performed at 3 T (MAGNETOM Skyra; Siemens Healthcare) with b-values of 0 and 700 s/mm and an isotropic spatial resolution for subsequent multiplanar reformatting. The nerve roots L2 to S1 were imaged in coronal orientation with readout-segmented EPI (rs-DTI) and selective-excitation EPI (sTX-DTI) with an acquisition time of 5 minutes each, and in axial orientation with single-shot EPI (ss-DTI) with an acquisition time of 12 minutes (scan parameters as in recent literature). Two independent readers qualitatively and quantitatively assessed image quality. The interobserver reliability ranged from "substantial" to "almost perfect" for all examined parameter and all 3 sequences (κ = 0.70-0.94). Overall image quality was rated higher, and artifact levels were scored lower for rs-DTI and sTX-DTI than for ss-DTI (P = 0.007-0.027), while fractional anisotropy and signal-to-noise ratio values were similar for all sequences (P ≥ 0.306 and P ≥ 0.100, respectively). Contrast-to-noise ratios were significantly higher for rs-DTI and ss-DTI than for sTX-DTI (P = 0.004-0.013). Despite shorter acquisition times, rs-DTI and sTX-DTI produced images of higher quality with smaller geometrical distortions than the current standard of reference, ss-DTI. Thus, DTI acquisitions in the coronal plane, requiring fewer slices for full coverage of exiting nerve roots, may allow for functional neurography in scan times suitable for routine clinical practice.

  19. Feasibility of free-breathing dynamic contrast-enhanced MRI of gastric cancer using a golden-angle radial stack-of-stars VIBE sequence: comparison with the conventional contrast-enhanced breath-hold 3D VIBE sequence.

    PubMed

    Li, Huan-Huan; Zhu, Hui; Yue, Lei; Fu, Yi; Grimm, Robert; Stemmer, Alto; Fu, Cai-Xia; Peng, Wei-Jun

    2018-05-01

    To investigate the feasibility and diagnostic value of free-breathing, radial, stack-of-stars three-dimensional (3D) gradient echo (GRE) sequence ("golden angle") on dynamic contrast-enhanced (DCE) MRI of gastric cancer. Forty-three gastric cancer patients were divided into cooperative and uncooperative groups. Respiratory fluctuation was observed using an abdominal respiratory gating sensor. Those who breath-held for more than 15 s were placed in the cooperative group and the remainder in the uncooperative group. The 3-T MRI scanning protocol included 3D GRE and conventional breath-hold VIBE (volume-interpolated breath-hold examination) sequences, comparing images quantitatively and qualitatively. DCE-MRI parameters from VIBE images of normal gastric wall and malignant lesions were compared. For uncooperative patients, 3D GRE scored higher qualitatively, and had higher SNRs (signal-to-noise ratios) and CNRs (contrast-to-noise ratios) than conventional VIBE quantitatively. Though 3D GRE images scored lower in qualitative parameters compared with conventional VIBE for cooperative patients, it provided images with fewer artefacts. DCE parameters differed significantly between normal gastric wall and lesions, with higher Ve (extracellular volume) and lower Kep (reflux constant) in gastric cancer. The free-breathing, golden-angle, radial stack-of-stars 3D GRE technique is feasible for DCE-MRI of gastric cancer. Dynamic enhanced images can be used for quantitative analysis of this malignancy. • Golden-angle radial stack-of-stars VIBE aids gastric cancer MRI diagnosis. • The 3D GRE technique is suitable for patients unable to suspend respiration. • Method scored higher in the qualitative evaluation for uncooperative patients. • The technique produced images with fewer artefacts than conventional VIBE sequence. • Dynamic enhanced images can be used for quantitative analysis of gastric cancer.

  20. Acoustic-noise-optimized diffusion-weighted imaging.

    PubMed

    Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M

    2015-12-01

    This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.

  1. Comparison of three-dimensional visualization techniques for depicting the scala vestibuli and scala tympani of the cochlea by using high-resolution MR imaging.

    PubMed

    Hans, P; Grant, A J; Laitt, R D; Ramsden, R T; Kassner, A; Jackson, A

    1999-08-01

    Cochlear implantation requires introduction of a stimulating electrode array into the scala vestibuli or scala tympani. Although these structures can be separately identified on many high-resolution scans, it is often difficult to ascertain whether these channels are patent throughout their length. The aim of this study was to determine whether an optimized combination of an imaging protocol and a visualization technique allows routine 3D rendering of the scala vestibuli and scala tympani. A submillimeter T2 fast spin-echo imaging sequence was designed to optimize the performance of 3D visualization methods. The spatial resolution was determined experimentally using primary images and 3D surface and volume renderings from eight healthy subjects. These data were used to develop the imaging sequence and to compare the quality and signal-to-noise dependency of four data visualization algorithms: maximum intensity projection, ray casting with transparent voxels, ray casting with opaque voxels, and isosurface rendering. The ability of these methods to produce 3D renderings of the scala tympani and scala vestibuli was also examined. The imaging technique was used in five patients with sensorineural deafness. Visualization techniques produced optimal results in combination with an isotropic volume imaging sequence. Clinicians preferred the isosurface-rendered images to other 3D visualizations. Both isosurface and ray casting displayed the scala vestibuli and scala tympani throughout their length. Abnormalities were shown in three patients, and in one of these, a focal occlusion of the scala tympani was confirmed at surgery. Three-dimensional images of the scala vestibuli and scala tympani can be routinely produced. The combination of an MR sequence optimized for use with isosurface rendering or ray-casting algorithms can produce 3D images with greater spatial resolution and anatomic detail than has been possible previously.

  2. Seven-Tesla Magnetization Transfer Imaging to Detect Multiple Sclerosis White Matter Lesions.

    PubMed

    Chou, I-Jun; Lim, Su-Yin; Tanasescu, Radu; Al-Radaideh, Ali; Mougin, Olivier E; Tench, Christopher R; Whitehouse, William P; Gowland, Penny A; Constantinescu, Cris S

    2018-03-01

    Fluid-attenuated inversion recovery (FLAIR) imaging at 3 Tesla (T) field strength is the most sensitive modality for detecting white matter lesions in multiple sclerosis. While 7T FLAIR is effective in detecting cortical lesions, it has not been fully optimized for visualization of white matter lesions and thus has not been used for delineating lesions in quantitative magnetic resonance imaging (MRI) studies of the normal appearing white matter in multiple sclerosis. Therefore, we aimed to evaluate the sensitivity of 7T magnetization-transfer-weighted (MT w ) images in the detection of white matter lesions compared with 3T-FLAIR. Fifteen patients with clinically isolated syndrome, 6 with multiple sclerosis, and 10 healthy participants were scanned with 7T 3-dimensional (D) MT w and 3T-2D-FLAIR sequences on the same day. White matter lesions visible on either sequence were delineated. Of 662 lesions identified on 3T-2D-FLAIR images, 652 were detected on 7T-3D-MT w images (sensitivity, 98%; 95% confidence interval, 97% to 99%). The Spearman correlation coefficient between lesion loads estimated by the two sequences was .910. The intrarater and interrater reliability for 7T-3D-MT w images was good with an intraclass correlation coefficient (ICC) of 98.4% and 81.8%, which is similar to that for 3T-2D-FLAIR images (ICC 96.1% and 96.7%). Seven-Tesla MT w sequences detected most of the white matter lesions identified by FLAIR at 3T. This suggests that 7T-MT w imaging is a robust alternative for detecting demyelinating lesions in addition to 3T-FLAIR. Future studies need to compare the roles of optimized 7T-FLAIR and of 7T-MT w imaging. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  3. Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Mickevicius, Nikolai J.; Paulson, Eric S.

    2017-04-01

    The purpose of this work is to investigate the effects of undersampling and reconstruction algorithm on the total processing time and image quality of respiratory phase-resolved 4D MRI data. Specifically, the goal is to obtain quality 4D-MRI data with a combined acquisition and reconstruction time of five minutes or less, which we reasoned would be satisfactory for pre-treatment 4D-MRI in online MRI-gRT. A 3D stack-of-stars, self-navigated, 4D-MRI acquisition was used to scan three healthy volunteers at three image resolutions and two scan durations. The NUFFT, CG-SENSE, SPIRiT, and XD-GRASP reconstruction algorithms were used to reconstruct each dataset on a high performance reconstruction computer. The overall image quality, reconstruction time, artifact prevalence, and motion estimates were compared. The CG-SENSE and XD-GRASP reconstructions provided superior image quality over the other algorithms. The combination of a 3D SoS sequence and parallelized reconstruction algorithms using computing hardware more advanced than those typically seen on product MRI scanners, can result in acquisition and reconstruction of high quality respiratory correlated 4D-MRI images in less than five minutes.

  4. POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): a general algorithm for reducing motion-related artifacts

    PubMed Central

    Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei

    2014-01-01

    Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325

  5. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming

    2014-07-28

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated bymore » a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.« less

  6. Magnetic Resonance–Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Weili; Kim, Joshua P.; Kadbi, Mo

    2015-11-01

    Purpose: To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Methods and Materials: Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessedmore » by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. Results: On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone–air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. Conclusions: A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain.« less

  7. Magnetic Resonance-Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region.

    PubMed

    Zheng, Weili; Kim, Joshua P; Kadbi, Mo; Movsas, Benjamin; Chetty, Indrin J; Glide-Hurst, Carri K

    2015-11-01

    To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone-air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Chemical Exchange Saturation Transfer (CEST) MR Technique for Liver Imaging at 3.0 Tesla: an Evaluation of Different Offset Number and an After-Meal and Over-Night-Fast Comparison.

    PubMed

    Deng, Min; Chen, Shu-Zhong; Yuan, Jing; Chan, Queenie; Zhou, Jinyuan; Wáng, Yì-Xiáng J

    2016-04-01

    This study seeks to explore whether chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can detect liver composition changes between after-meal and over-night-fast statuses. Fifteen healthy volunteers were scanned on a 3.0-T human MRI scanner in the evening 1.5-2 h after dinner and in the morning after over-night (12-h) fasting. Among them, seven volunteers were scanned twice to assess the scan-rescan reproducibility. Images were acquired at offsets (n = 41, increment = 0.25 ppm) from -5 to 5 ppm using a turbo spin echo (TSE) sequence with a continuous rectangular saturation pulse. Amide proton transfer-weighted (APTw) and GlycoCEST signals were quantified with the asymmetric magnetization transfer ratio (MTRasym) at 3.5 ppm and the total MTRasym integrated from 0.5 to 1.5 ppm from the corrected Z-spectrum, respectively. To explore scan time reduction, CEST images were reconstructed using 31 offsets (with 20% time reduction) and 21 offsets (with 40% time reduction), respectively. For reproducibility, GlycoCEST measurements in 41 offsets showed the smallest scan-rescan mean measurements variability, indicated by the lowest mean difference of -0.049% (95% limits of agreement, -0.209 to 0.111%); for APTw, the smallest mean difference was found to be 0.112% (95% limits of agreement, -0.698 to 0.921%) in 41 offsets. Compared with after-meal, both GlycoCEST measurement and APTw measurement under different offset number decreased after 12-h fasting. However, as the offsets number decreased (41 offsets vs. 31 offsets vs. 21 offsets), GlycoCEST map and APTw map became more heterogeneous and noisier. Our results show that CEST liver imaging at 3.0 T has high sensitivity for fasting.

  9. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  10. PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking

    PubMed Central

    White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders

    2010-01-01

    Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635

  11. Visibility of Anterolateral Ligament Tears in Anterior Cruciate Ligament-Deficient Knees With Standard 1.5-Tesla Magnetic Resonance Imaging.

    PubMed

    Hartigan, David E; Carroll, Kevin W; Kosarek, Frank J; Piasecki, Dana P; Fleischli, James F; D'Alessandro, Donald F

    2016-10-01

    To attempt to visualize the ligament with standard 1.5-tesla magnetic resonance imaging (MRI) in the acute anterior cruciate ligament (ACL)-torn knee, and if it is visible, attempt to characterize it as torn or intact at its femoral, meniscal, and tibial attachment sites. This was a retrospective MRI study based on arthroscopic findings of a known ACL tear in 72 patients between the years 2006 and 2010. Patients all had hamstring ACL reconstructions, no concomitant lateral collateral ligament, or posterolateral corner injury based on imaging and physical examination, and had a preoperative 1.5-tesla MRI scan with standard sequences performed within 3 weeks of the injury. Two fellowship-trained musculoskeletal radiologists retrospectively reviewed the preoperative MRI for visualization of the anterolateral ligament (ALL) for concomitant tears. Inter- and intraobserver reliability was calculated. Learning effect was analyzed to determine if radiologists' agreement improved as reads progressed. Both radiologists were able to visualize the ALL in 100% of the scans. Overall, ALL tears were noted in 26% by radiologist 1 and in 62% by radiologist 2. The agreement between the ligament being torn or not had a kappa of 0.54 between radiologists. The agreements in torn or not torn between radiologists in the femoral, meniscal, and tibial sites were 0.14, 0.15, and 0.31. The intraobserver reliability by radiologist 1 for femoral, meniscal, and tibial tears was 0.04, 0.57, and 0.54 respectively. For radiologist 2, they were 0.75, 0.61, and 0.55. There was no learning effect noted. ALL tears are currently unable to be reliably identified as torn or intact on standard 1.5-tesla MRI sequences. Proper imaging sequences are of crucial importance to reliably follow these tears to determine their clinical significance. Level IV, therapeutic case series study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  12. 1981 Image II Conference Proceedings.

    DTIC Science & Technology

    1981-11-01

    rapid motion of terrain detail across the display requires fast display processors. Other difficulties are perceptual: the visual displays must convey...has been a continuing effort by Vought in the last decade. Early systems were restricted by the unavailability of video bulk storage with fast random...each photograph. The calculations aided in the proper sequencing of the scanned scenes on the tape recorder and eventually facilitated fast random

  13. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) ofmore » image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.« less

  14. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    PubMed Central

    Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P.; Sahin, Mustafa; Warfield, Simon K.

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans. PMID:26632048

  15. Acceleration techniques and their impact on arterial input function sampling: Non-accelerated versus view-sharing and compressed sensing sequences.

    PubMed

    Benz, Matthias R; Bongartz, Georg; Froehlich, Johannes M; Winkel, David; Boll, Daniel T; Heye, Tobias

    2018-07-01

    The aim was to investigate the variation of the arterial input function (AIF) within and between various DCE MRI sequences. A dynamic flow-phantom and steady signal reference were scanned on a 3T MRI using fast low angle shot (FLASH) 2d, FLASH3d (parallel imaging factor (P) = P0, P2, P4), volumetric interpolated breath-hold examination (VIBE) (P = P0, P3, P2 × 2, P2 × 3, P3 × 2), golden-angle radial sparse parallel imaging (GRASP), and time-resolved imaging with stochastic trajectories (TWIST). Signal over time curves were normalized and quantitatively analyzed by full width half maximum (FWHM) measurements to assess variation within and between sequences. The coefficient of variation (CV) for the steady signal reference ranged from 0.07-0.8%. The non-accelerated gradient echo FLASH2d, FLASH3d, and VIBE sequences showed low within sequence variation with 2.1%, 1.0%, and 1.6%. The maximum FWHM CV was 3.2% for parallel imaging acceleration (VIBE P2 × 3), 2.7% for GRASP and 9.1% for TWIST. The FWHM CV between sequences ranged from 8.5-14.4% for most non-accelerated/accelerated gradient echo sequences except 6.2% for FLASH3d P0 and 0.3% for FLASH3d P2; GRASP FWHM CV was 9.9% versus 28% for TWIST. MRI acceleration techniques vary in reproducibility and quantification of the AIF. Incomplete coverage of the k-space with TWIST as a representative of view-sharing techniques showed the highest variation within sequences and might be less suited for reproducible quantification of the AIF. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    PubMed

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Substitute CT generation from a single ultra short time echo MRI sequence: preliminary study

    NASA Astrophysics Data System (ADS)

    Ghose, Soumya; Dowling, Jason A.; Rai, Robba; Liney, Gary P.

    2017-04-01

    In MR guided radiation therapy planning both MR and CT images for a patient are acquired and co-registered to obtain a tissue specific HU map. Generation of the HU map directly from the MRI would eliminate the CT acquisition and may improve radiation therapy planning. In this preliminary study of substitute CT (sCT) generation, two porcine leg phantoms were scanned using a 3D ultrashort echo time (PETRA) sequence and co-registered to corresponding CT images to build tissue specific regression models. The model was created from one co-registered CT-PETRA pair to generate the sCT for the other PETRA image. An expectation maximization based clustering was performed on the co-registered PETRA image to identify the soft tissues, dense bone and air class membership probabilities. A tissue specific non linear regression model was built from one registered CT-PETRA pair dataset to predict the sCT of the second PETRA image in a two-fold cross validation schema. A complete substitute CT is generated in 3 min. The mean absolute HU error for air was 0.3 HU, bone was 95 HU, fat was 30 HU and for muscle it was 10 HU. The mean surface reconstruction error for the bone was 1.3 mm. The PETRA sequence enabled a low mean absolute surface distance for the bone and a low HU error for other classes. The sCT generated from a single PETRA sequence shows promise for the generation of fast sCT for MRI based radiation therapy planning.

  18. Scan-rescan precision of subchondral bone curvature maps from routine 3D DESS water excitation sequences: Data from the Osteoarthritis Initiative.

    PubMed

    Farber, Joshua M; Totterman, Saara M S; Martinez-Torteya, Antonio; Tamez-Peña, Jose G

    2016-02-01

    Subchondral bone (SCB) undergoes changes in the shape of the articulating bone surfaces and is currently recognized as a key target in osteoarthritis (OA) treatment. The aim of this study was to present an automated system that determines the curvature of the SCB regions of the knee and to evaluate its cross-sectional and longitudinal scan-rescan precision Six subjects with OA and six control subjects were selected from the Osteoarthritis Initiative (OAI) pilot study database. As per OAI protocol, these subjects underwent 3T MRI at baseline and every twelve months thereafter, including a 3D DESS WE sequence. We analyzed the baseline and twenty-four month images. Each subject was scanned twice at these visits, thus generating scan-rescan information. Images were segmented with an automated multi-atlas framework platform and then 3D renderings of the bone structure were created from the segmentations. Curvature maps were extracted from the 3D renderings and morphed into a reference atlas to determine precision, to generate population statistics, and to visualize cross-sectional and longitudinal curvature changes. The baseline scan-rescan root mean square error values ranged from 0.006mm(-1) to 0.013mm(-1), and from 0.007mm(-1) to 0.018mm(-1) for the SCB of the femur and the tibia, respectively. The standardized response of the mean of the longitudinal changes in curvature in these regions ranged from -0.09 to 0.02 and from -0.016 to 0.015, respectively. The fully automated system produces accurate and precise curvature maps of femoral and tibial SCB, and will provide a valuable tool for the analysis of the curvature changes of articulating bone surfaces during the course of knee OA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging.

    PubMed

    Nunes, Rita G; Ferrazzi, Giulio; Price, Anthony N; Hutter, Jana; Gaspar, Andreia S; Rutherford, Mary A; Hajnal, Joseph V

    2018-07-01

    Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B 0 inhomogeneities within the fetal brain. The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm 3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE

    PubMed Central

    Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; Kim, In Seong; Nickel, Dominik

    2017-01-01

    Objective To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. Materials and Methods We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. Results With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. Conclusion CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality. PMID:28246509

  1. Image domain propeller fast spin echo☆

    PubMed Central

    Skare, Stefan; Holdsworth, Samantha J.; Lilja, Anders; Bammer, Roland

    2013-01-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed –image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ±32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times –without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. PMID:23200683

  2. Image domain propeller fast spin echo.

    PubMed

    Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland

    2013-04-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Intraindividual comparison of image quality in MR urography at 1.5 and 3 tesla in an animal model.

    PubMed

    Regier, M; Nolte-Ernsting, C; Adam, G; Kemper, J

    2008-10-01

    Experimental evaluation of image quality of the upper urinary tract in MR urography (MRU) at 1.5 and 3 Tesla in a porcine model. In this study four healthy domestic pigs, weighing between 71 and 80 kg (mean 73.6 kg), were examined with a standard T1w 3D-GRE and a high-resolution (HR) T1w 3D-GRE sequence at 1.5 and 3 Tesla. Additionally, at 3 Tesla both sequences were performed with parallel imaging (SENSE factor 2). The MR urographic scans were performed after intravenous injection of gadolinium-DTPA (0.1 mmol/kg body weight (bw)) and low-dose furosemide (0.1 mg/kg bw). Image evaluation was performed by two independent radiologists blinded to sequence parameters and field strength. Image analysis included grading of image quality of the segmented collecting system based on a five-point grading scale regarding anatomical depiction and artifacts observed (1: the majority of the segment (>50%) was not depicted or was obscured by major artifacts; 5: the segment was visualized without artifacts and had sharply defined borders). Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined. Statistical analysis included kappa-statistics, Wilcoxon and paired student t-test. The mean scores for MR urographies at 1.5 Tesla were 2.83 for the 3D-GRE and 3.48 for the HR3D-GRE sequence. Significantly higher values were determined using the corresponding sequences at 3 Tesla, averaging 3.19 for the 3D-GRE (p = 0.047) and 3.92 for the HR3D-GRE (p = 0,023) sequence. Delineation of the pelvicaliceal system was rated significantly higher at 3 Tesla compared to 1.5 Tesla (3D-GRE: p = 0.015; HR3D-GRE: p = 0.006). At 3 Tesla the mean SNR and CNR were significantly higher (p < 0.05). A kappa of 0.67 indicated good interobserver agreement. In an experimental setup, MR urography at 3 Tesla allowed for significantly higher image quality and SNR compared to 1.5 Tesla, particularly for the visualization of the pelvicaliceal system.

  4. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Fatemi, A; Sahgal, A

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy.more » The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.« less

  5. Extremely Small Pseudoparamagnetic Iron Oxide Nanoparticle as a Novel Blood Pool T1 Magnetic Resonance Contrast Agent for 3 T Whole-Heart Coronary Angiography in Canines: Comparison With Gadoterate Meglumine.

    PubMed

    Park, Eun-Ah; Lee, Whal; So, Young Ho; Lee, Yun-Sang; Jeon, Bong-Sik; Choi, Kyu Sung; Kim, Eung-Gyu; Myeong, Wan-Jae

    2017-02-01

    The aim of this study was to evaluate an extremely small pseudoparamagnetic iron oxide nanoparticle (ESPIO), KEG3, as a potential blood pool agent in 3 T coronary magnetic resonance angiography (MRA) in canine models and compare its efficacy to that of a gadolinium-based contrast agent. Nine mongrel dogs were subjected to whole-heart coronary MRA in 2 separate sessions at 7-day intervals with a 3 T scanner using the FLASH sequence with either gadoterate meglumine (Gd-DOTA) or the ESPIO (KEG3). Coronary MRA was performed twice at each MR examination: the first scan during the administration of the contrast agent and the subsequent second scan at 15 minutes after contrast injection. Objective measurements of the Gd-DOTA and ESPIO images, including the signal-to-noise ratios (SNRs) for the coronary arteries and cardiac veins, contrast-to-noise ratios (CNRs) between the vessels and fat (CNRfat) and the vessels and the myocardium (CNRmyocardium), and subjective image quality scores on a 4-point scale were evaluated and compared. The mean SNRs and CNRs of all vascular regions in the ESPIO images were similar to those of the corresponding regions in the Gd-DOTA images in the first scan (98.1 ± 32.5 vs 79.1 ± 38.4 for SNR of coronary arteries, P = 0.3; 74.2 ± 30.1 vs 61.4 ± 38.5 for CNR, P = 0.7) and more than 2 times higher than the latter in the second scan (95.2 ± 31.3 vs 32.1 ± 8.1 for SNR of coronary arteries, P = 0.008; 76.1 ± 35.8 vs 17.6 ± 19.2 for CNR, P 0.008). Similarly, the mean values of the subjective measurements of the ESPIO images were similar to those of the Gd-DOTA images (3.9 ± 0.3 vs 3.3 ± 0.8 for coronary arteries, P = 0.1) in the first scan and significantly better than the latter in the second scan (3.9 ± 0.2 vs 2.1 ± 0.6 for coronary arteries, P = 0.007). The experimental blood pool agent KEG3 offers equivalent image quality for whole-heart coronary MRA at 3 T upon contrast administration and persistent better quality in the subsequent scans, compared with a traditional extracellular gadolinium-based contrast agent.

  6. SU-E-I-51: Use of Blade Sequences in Cervical Spine MR Imaging for Eliminating Motion, Truncation and Flow Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavroidis, P; Lavdas, E; Kostopoulos, S

    Purpose: To assess the efficacy of the BLADE technique to eliminate motion, truncation, flow and other artifacts in Cervical Spine MRI compared to the conventional technique. To study the ability of the examined sequences to reduce the indetention and wrap artifacts, which have been reported in BLADE sagittal sequences. Methods: Forty consecutive subjects, who had been routinely scanned for cervical spine examination using four different image acquisition techniques, were analyzed. More specifically, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs. T2 TIRM SAG BLADE. A quantitativemore » analysis was performed using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures. A qualitative analysis was also performed by two radiologists, who graded seven image characteristics on a 5-point scale (0:non-visualization; 1:poor; 2:average; 3:good; 4:excellent). The observers also evaluated the presence of image artifacts (motion, truncation, flow, indentation). Results: Based on the findings of the quantitative analysis, the ReCON values of the CSF (cerebrospinal fluid)/SC (spinal cord) between TIRM SAG and TIRM SAG BLADE were found to present statistical significant differences (p<0.001). Regarding motion and truncation artifacts, the T2 TSE SAG BLADE was superior compared to the T2 TSE SAG and the T2 TIRM SAG BLADE was superior compared to the T2 TIRM SAG. Regarding flow artifacts, T2 TIRM SAG BLADE eliminated more artifacts compared to the T2 TIRM SAG. Conclusion: The use of BLADE sequences in cervical spine MR examinations appears to be capable of potentially eliminating motion, pulsatile flow and trancation artifacts. Furthermore, BLADE sequences are proposed to be used in the standard examination protocols based on the fact that a significantly improved image quality could be achieved.« less

  7. SU-E-J-217: Multiparametric MR Imaging of Cranial Tumors On a Dedicated 1.0T MR Simulator Prior to Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, N; Glide-Hurst, C; Liu, M

    Purpose: Quantitative magnetic resonance imaging (MRI) of cranial lesions prior to stereotactic radiosurgery (SRS) may improve treatment planning and provide potential prognostic value. The practicality and logistics of acquiring advanced multiparametric MRI sequences to measure vascular and cellular properties of cerebral tumors are explored on a 1.0 Tesla MR Simulator. Methods: MR simulation was performed immediately following routine CT simulation on a 1T MR Simulator. MR sequences used were in the order they were performed: T2-Weighted Turbo Spin Echo (T2W-TSE), T2 FLAIR, Diffusion-weighted (DWI, b = 0, 800 to generate an apparent diffusion coefficient (ADC) map), 3D T1-Weighted Fast Fieldmore » Echo (T1W-FFE), Dynamic Contrast Enhanced (DCE) and Post Gadolinium Contrast Enhanced 3D T1W-FFE images. T1 pre-contrast values was generated by acquiring six different flip angles. The arterial input function was derived from arterial pixels in the perfusion images selected manually. The extended Tofts model was used to generate the permeability maps. Routine MRI scans took about 30 minutes to complete; the additional scans added 12 minutes. Results: To date, seven patients with cerebral tumors have been imaged and tumor physiology characterized. For example, on a glioblastoma patient, the volume contoured on T1 Gd images, ADC map and the pharmacokinetic map (Ktrans) were 1.9, 1.4, and 1.5 cc respectively with strong spatial correlation. The mean ADC value of the entire volume was 1141 μm2/s while the value in the white matter was 811 μm2/s. The mean value of Ktrans was 0.02 min-1 in the tumor volume and 0.00 in the normal white matter. Conclusion: Our initial results suggest that multiparametric MRI sequences may provide a more quantitative evaluation of vascular and tumor properties. Implementing functional imaging during MR-SIM may be particularly beneficial in assessing tumor extent, differentiating radiation necrosis from tumor recurrence, and establishing reliable bio-markers for treatment response evaluation. The Department of Radiation Oncology at Henry Ford Health System has research agreement with Varian Medical System and Philips Health Care.« less

  8. Three-dimensional black-blood multi-contrast carotid imaging using compressed sensing: a repeatability study.

    PubMed

    Yuan, Jianmin; Usman, Ammara; Reid, Scott A; King, Kevin F; Patterson, Andrew J; Gillard, Jonathan H; Graves, Martin J

    2018-02-01

    The purpose of this work is to evaluate the repeatability of a compressed sensing (CS) accelerated multi-contrast carotid protocol at 3 T. Twelve volunteers and eight patients with carotid disease were scanned on a 3 T MRI scanner using a CS accelerated 3-D black-blood multi-contrast protocol which comprises T 1 w, T 2 w and PDw without CS, and with a CS factor of 1.5 and 2.0. The volunteers were scanned twice, the lumen/wall area and wall thickness were measured for each scan. Eight patients were scanned once, the inter/intra-observer reproducibility of the measurements was calculated. In the repeated volunteer scans, the interclass correlation coefficient (ICC) for the wall area measurement using a CS factor of 1.5 in PDw, T 1 w and T 2 w were 0.95, 0.81, and 0.97, respectively. The ICC for lumen area measurement using a CS factor of 1.5 in PDw, T 1 w and T 2 w were 0.96, 0.92, and 0.96, respectively. In patients, the ICC for inter/intra-observer measurements of lumen/wall area, and wall thickness were all above 0.81 in all sequences. The results show a CS accelerated 3-D black-blood multi-contrast protocol is a robust and reproducible method for carotid imaging. Future protocol design could use CS to reduce the scanning time.

  9. Flexible real-time magnetic resonance imaging framework.

    PubMed

    Santos, Juan M; Wright, Graham A; Pauly, John M

    2004-01-01

    The extension of MR imaging to new applications has demonstrated the limitations of the architecture of current real-time systems. Traditional real-time implementations provide continuous acquisition of data and modification of basic sequence parameters on the fly. We have extended the concept of real-time MRI by designing a system that drives the examinations from a real-time localizer and then gets reconfigured for different imaging modes. Upon operator request or automatic feedback the system can immediately generate a new pulse sequence or change fundamental aspects of the acquisition such as gradient waveforms excitation pulses and scan planes. This framework has been implemented by connecting a data processing and control workstation to a conventional clinical scanner. Key components on the design of this framework are the data communication and control mechanisms, reconstruction algorithms optimized for real-time and adaptability, flexible user interface and extensible user interaction. In this paper we describe the various components that comprise this system. Some of the applications implemented in this framework include real-time catheter tracking embedded in high frame rate real-time imaging and immediate switching between real-time localizer and high-resolution volume imaging for coronary angiography applications.

  10. Functional Network Development During the First Year: Relative Sequence and Socioeconomic Correlations

    PubMed Central

    Gao, Wei; Alcauter, Sarael; Elton, Amanda; Hernandez-Castillo, Carlos R.; Smith, J. Keith; Ramirez, Juanita; Lin, Weili

    2015-01-01

    The first postnatal year is characterized by the most dramatic functional network development of the human lifespan. Yet, the relative sequence of the maturation of different networks and the impact of socioeconomic status (SES) on their development during this critical period remains poorly characterized. Leveraging a large, normally developing infant sample with multiple longitudinal resting-state functional magnetic resonance imaging scans during the first year (N = 65, scanned every 3 months), we aimed to delineate the relative maturation sequence of 9 key brain functional networks and examine their SES correlations. Our results revealed a maturation sequence from primary sensorimotor/auditory to visual to attention/default-mode, and finally to executive control networks. Network-specific critical growth periods were also identified. Finally, marginally significant positive SES–brain correlations were observed at 6 months of age for both the sensorimotor and default-mode networks, indicating interesting SES effects on functional brain maturation. To the best of our knowledge, this is the first study delineating detailed longitudinal growth trajectories of all major functional networks during the first year of life and their SES correlations. Insights from this study not only improve our understanding of early brain development, but may also inform the critical periods for SES expression during infancy. PMID:24812084

  11. SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Kamrava, M; Yang, Y

    Purpose: To evaluate the accuracy of interstitial catheter reconstruction with 0.35T MRI images for MRI-based HDR prostate brachytherapy. Methods: Recently, a real-time MRI-guided radiotherapy system combining a 0.35T MRI system and three cobalt 60 heads (MRIdian System, ViewRay, Cleveland, OH, USA) was installed in our department. A TrueFISP sequence for MRI acquisition at lower field on Viewray was chosen due to its fast speed and high signal-to-noise efficiency. Interstitial FlexiGuide needles were implanted into a tissue equivalent ultrasound prostate phantom (CIRS, Norfolk, Virginia, USA). After an initial 15s pilot MRI to confirm the location of the phantom, planning MRI wasmore » acquired with a 172s TrueFISP sequence. The pulse sequence parameters included: flip angle = 60 degree, echo time (TE) =1.45 ms, repetition time (TR) = 3.37 ms, slice thickness = 1.5 mm, field of view (FOV) =500 × 450mm. For a reference image, a CT scan was followed. The CT and MR scans were then fused with the MIM Maestro (MIM software Inc., Cleveland, OH, USA) and sent to the Oncentra Brachy planning system (Elekta, Veenendaal, Netherlands). Automatic catheter reconstruction using CT and MR image intensities followed by manual reconstruction was used to digitize catheters. The accuracy of catheter reconstruction was evaluated from the catheter tip location. Results: The average difference between the catheter tip locations reconstructed from the CT and MR in the transverse, anteroposterior, and craniocaudal directions was −0.1 ± 0.1 mm (left), 0.2 ± 0.2 mm (anterior), and −2.3 ± 0.5 mm (cranio). The average distance in 3D was 2.3 mm ± 0.5 mm. Conclusion: This feasibility study proved that interstitial catheters can be reconstructed with 0.35T MRI images. For more accurate catheter reconstruction which can affect final dose distribution, a systematic shift should be applied to the MR based catheter reconstruction in HDR prostate brachytherapy.« less

  12. [Renal arterial spin labeling magnetic resonance imaging in normal adults: a study with a 3.0 T scanner].

    PubMed

    Zhang, Fan; Zhang, Xuelin; Yang, Li; Shen, Jie; Gao, Wei

    2013-10-01

    To analyze the renal relative blood flow value (rBFV) and image quality in normal adults using single-shot fast spin echo, flow sensitive invention recovery (SSFSE-FAIR) magnetic resonance (MR) sequence and echo planar imaging, and flow sensitive invention recovery (EPI-FAIR) MR sequence, and assess its value for clinical application in routine renal examination. Forty volunteers (25 male and 15 female adults, aged 30 to 62 years) with normal renal function were included in this prospective study. All the subjects underwent 3.0 Tesla MR scanning using 3 MR scan modes, namely breath-holding EPI-FAIR, breath-holding SSFSE-FAIR and free breathing SSFSE-FAIR. SSFSE-FAIR without breath-holding was capable of differentiating the renal cortex and medulla with the corresponding rBFVs of 111.48∓9.23 and 94.98∓3.38, respectively. Breath-holding SSFSE-FAIR and EPI-FAIR failed to distinguish the borders of the renal cortex and medulla. The EPI-FAIR rBFV of mixed cortex and medulla value was 178.50∓17.17 (95%CI: 167.59, 189.41). Breath-holding SSFSE-FAIR and EPI-FAIR can not distinguish the renal cortex and medulla due to a poor spatial resolution but can be used for rough evaluation of renal blood perfusion. Free breathing SSFSE-FAIR with an improved spatial resolution allows evaluation of the status of renal perfusion of the cortex and medulla.

  13. A quantitative experimental phantom study on MRI image uniformity.

    PubMed

    Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei

    2018-05-23

    Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method. Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.

  14. Carotid plaque characterization using CT and MRI scans for synergistic image analysis

    NASA Astrophysics Data System (ADS)

    Getzin, Matthew; Xu, Yiqin; Rao, Arhant; Madi, Saaussan; Bahadur, Ali; Lennartz, Michelle R.; Wang, Ge

    2014-09-01

    Noninvasive determination of plaque vulnerability has been a holy grail of medical imaging. Despite advances in tomographic technologies , there is currently no effective way to identify vulnerable atherosclerotic plaques with high sensitivity and specificity. Computed tomography (CT) and magnetic resonance imaging (MRI) are widely used, but neither provides sufficient information of plaque properties. Thus, we are motivated to combine CT and MRI imaging to determine if the composite information can better reflect the histological determination of plaque vulnerability. Two human endarterectomy specimens (1 symptomatic carotid and 1 stable femoral) were imaged using Scanco Medical Viva CT40 and Bruker Pharmascan 16cm 7T Horizontal MRI / MRS systems. μCT scans were done at 55 kVp and tube current of 70 mA. Samples underwent RARE-VTR and MSME pulse sequences to measure T1, T2 values, and proton density. The specimens were processed for histology and scored for vulnerability using the American Heart Association criteria. Single modality-based analyses were performed through segmentation of key imaging biomarkers (i.e. calcification and lumen), image registration, measurement of fibrous capsule, and multi-component T1 and T2 decay modeling. Feature differences were analyzed between the unstable and stable controls, symptomatic carotid and femoral plaque, respectively. By building on the techniques used in this study, synergistic CT+MRI analysis may provide a promising solution for plaque characterization in vivo.

  15. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    PubMed

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  16. CT, MR, and ultrasound image artifacts from prostate brachytherapy seed implants: The impact of seed size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Andrew K. H.; Basran, Parminder S.; Thomas, Steven D.

    Purpose: To investigate the effects of brachytherapy seed size on the quality of x-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) images and seed localization through comparison of the 6711 and 9011 {sup 125}I sources. Methods: For CT images, an acrylic phantom mimicking a clinical implantation plan and embedded with low contrast regions of interest (ROIs) was designed for both the 0.774 mm diameter 6711 (standard) and the 0.508 mm diameter 9011 (thin) seed models (Oncura, Inc., and GE Healthcare, Arlington Heights, IL). Image quality metrics were assessed using the standard deviation of ROIs between the seeds andmore » the contrast to noise ratio (CNR) within the low contrast ROIs. For US images, water phantoms with both single and multiseed arrangements were constructed for both seed sizes. For MR images, both seeds were implanted into a porcine gel and imaged with pelvic imaging protocols. The standard deviation of ROIs and CNR values were used as metrics of artifact quantification. Seed localization within the CT images was assessed using the automated seed finder in a commercial brachytherapy treatment planning system. The number of erroneous seed placements and the average and maximum error in seed placements were recorded as metrics of the localization accuracy. Results: With the thin seeds, CT image noise was reduced from 48.5 {+-} 0.2 to 32.0 {+-} 0.2 HU and CNR improved by a median value of 74% when compared with the standard seeds. Ultrasound image noise was measured at 50.3 {+-} 17.1 dB for the thin seed images and 50.0 {+-} 19.8 dB for the standard seed images, and artifacts directly behind the seeds were smaller and less prominent with the thin seed model. For MR images, CNR of the standard seeds reduced on average 17% when using the thin seeds for all different imaging sequences and seed orientations, but these differences are not appreciable. Automated seed localization required an average ({+-}SD) of 7.0 {+-} 3.5 manual corrections in seed positions for the thin seed scans and 3.0 {+-} 1.2 manual corrections in seed positions for the standard seed scans. The average error in seed placement was 1.2 mm for both seed types and the maximum error in seed placement was 2.1 mm for the thin seed scans and 1.8 mm for the standard seed scans. Conclusions: The 9011 thin seeds yielded significantly improved image quality for CT and US images but no significant differences in MR image quality.« less

  17. In vivo skin moisturizing measurement by high-resolution 3 Tesla magnetic resonance imaging.

    PubMed

    Mesrar, J; Ognard, J; Garetier, M; Chechin, D; Misery, L; Ben Salem, D

    2017-08-01

    Magnetic resonance imaging (MRI) is rarely used for the exploration of skin, even if studies have validated both feasibility of skin MRI and its interest for anatomical, physiological, and biochemical study of the skin. The purpose of this study is to explore moisturizing of the different skin layers using 3-T scan. An MRI of the heel's skin was performed using a 23 mm coil diameter on a 3T scan with a FFE (Fast Field Echo) 3D T1-weighted sequence and a TSE (Turbo Spin Echo) calculation T2-weighted sequence (pixels size of respectively 60 and 70 μm). This study was conducted on 35 healthy volunteers, who were scanned before applying moisturizer topic and 1 h after applying it. Region of interest in the stratum corneum, the epidermis and the dermis were generated on the T2 mapping. The thickness of each layer was measured. The T1 sequence allowed accurate cross-examination repositioning to ensure the comparability of the measurements. Among the 35 cases, two were excluded from the analysis because of movement artifacts. Measurements before and after moisturizer topic application displayed a T2 increase of 48.94% (P < 0.0001) in the stratum corneum and of 5.45% (P < 0.0001) in the epidermis yet without significant difference in the dermis. There was no significant link between the thickness of the stratum corneum and the T2 increase. However, there was a strong correlation between the thickness of the stratum corneum and the thickness of the epidermis (P < 0.001; rhô=0.72). High-resolution MRI allows fine exploration of anatomical and physiological properties of the skin and can further be used to extend the studies of skin hydration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  19. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE PAGES

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; ...

    2015-02-23

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  20. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    PubMed

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  1. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips

    PubMed Central

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L.; Wang, Qianxi X.; Leppinen, David M.; Walmsley, A. Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340

  2. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter; Liney, Gary

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developedmore » for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through-plane direction and an increased blurring of capsule images, resulting in an apparent capsule volume increase by up to 170% in extreme axial FOV regions. Blurring increased with table speed and in the central regions of the phantom, geometric distortion was less for static table acquisitions compared to a table speed of 2 mm/s over the same volume. Overall, the best geometric accuracy was achieved with a table speed of 1.1 mm/s. Conclusions: The phantom designed enables full FOV imaging for distortion assessment for the purposes of RTP. MRI acquisition with a moving table extends the imaging volume in the z direction with reduced distortions which could be useful particularly if considering MR-only planning. If utilizing MR images to provide additional soft tissue information to the planning CT, standard acquisition sequences over a smaller volume would avoid introducing additional blurring or distortions from the through-plane table movement.« less

  3. Printing line/space patterns on nonplanar substrates using a digital micromirror device-based point-array scanning technique

    NASA Astrophysics Data System (ADS)

    Kuo, Hung-Fei; Kao, Guan-Hsuan; Zhu, Liang-Xiu; Hung, Kuo-Shu; Lin, Yu-Hsin

    2018-02-01

    This study used a digital micromirror device (DMD) to produce point-array patterns and employed a self-developed optical system to define line-and-space patterns on nonplanar substrates. First, field tracing was employed to analyze the aerial images of the lithographic system, which comprised an optical system and the DMD. Multiobjective particle swarm optimization was then applied to determine the spot overlapping rate used. The objective functions were set to minimize linewidth and maximize image log slope, through which the dose of the exposure agent could be effectively controlled and the quality of the nonplanar lithography could be enhanced. Laser beams with 405-nm wavelength were employed as the light source. Silicon substrates coated with photoresist were placed on a nonplanar translation stage. The DMD was used to produce lithographic patterns, during which the parameters were analyzed and optimized. The optimal delay time-sequence combinations were used to scan images of the patterns. Finally, an exposure linewidth of less than 10 μm was successfully achieved using the nonplanar lithographic process.

  4. Interleaved EPI based fMRI improved by multiplexed sensitivity encoding (MUSE) and simultaneous multi-band imaging.

    PubMed

    Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.

  5. Adaptive prospective ECG-triggered sequence coronary angiography in dual-source CT without heart rate control: Image quality and diagnostic performance.

    PubMed

    Pan, Chang-Jie; Qian, Nong; Wang, Tao; Tang, Xiao-Qiang; Xue, Yue-Jun

    2013-02-01

    The aim of this study was to evaluate the accuracy of using second generation dual-source CT (DSCT) to obtain high quality images and diagnostic performance and to reduce the radiation dose in adaptive prospective electrocardiography (ECG)-triggered sequence (CorAdSeq) CT coronary angiography (CTCA) without heart rate control. No prescan β-blockers were administered. Un-enhanced CT and CTCA with adaptive prospective CorAdSeq scanning without heart rate control were performed in 683 consecutive patients divided into two body mass index (BMI) groups: BMI <25 kg/m(2) (group A, n=412) and BMI ≥25 kg/m(2) (group B, n=271). The image quality and quantitative stenosis of all coronary segments with a diameter ≥1 mm were assessed. The mean heart rate (MHR), heart rate variability (HRV) and radiation dose values were recorded. In 426 cases, the diagnostic performance was evaluated using quantitative conventional coronary angiography as the reference standard. Diagnostic image quality was obtained in 98.5% of segments in group A and in 98.8% of segments in group B, with no significant differences between the groups. No correlations were observed between the image quality score and MHR or HRV (P=0.492, P=0.564, respectively). The effective radiation doses in groups A and B were 2.57±1.01 mSv and 6.36±1.88 mSv, respectively. The sensitivities and specificities of diagnosing coronary heart disease per patient were 99.6% and 97.8% in group A and 99.5% and 97.5% in group B, respectively (P>0.05). Adaptive prospective CorAdSeq scanning, without heart rate control, by second generation DSCT had a high image quality and diagnostic performance for coronary artery stenosis with lower radiation doses.

  6. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  7. Motion corrected DWI with integrated T2-mapping for simultaneous estimation of ADC, T2-relaxation and perfusion in prostate cancer.

    PubMed

    Skorpil, M; Brynolfsson, P; Engström, M

    2017-06-01

    Multiparametric magnetic resonance imaging (MRI) and PI-RADS (Prostate Imaging - Reporting and Data System) has become the standard to determine a probability score for a lesion being a clinically significant prostate cancer. T2-weighted and diffusion-weighted imaging (DWI) are essential in PI-RADS, depending partly on visual assessment of signal intensity, while dynamic-contrast enhanced imaging is less important. To decrease inter-rater variability and further standardize image evaluation, complementary objective measures are in need. We here demonstrate a sequence enabling simultaneous quantification of apparent diffusion coefficient (ADC) and T2-relaxation, as well as calculation of the perfusion fraction f from low b-value intravoxel incoherent motion data. Expandable wait pulses were added to a FOCUS DW SE-EPI sequence, allowing the effective echo time to change at run time. To calculate both ADC and f, b-values 200s/mm 2 and 600s/mm 2 were chosen, and for T2-estimation 6 echo times between 64.9ms and 114.9ms were used. Three patients with prostate cancer were examined and all had significantly decreased ADC and T2-values, while f was significantly increased in 2 of 3 tumors. T2 maps obtained in phantom measurements and in a healthy volunteer were compared to T2 maps from a SE sequence with consecutive scans, showing good agreement. In addition, a motion correction procedure was implemented to reduce the effects of prostate motion, which improved T2-estimation. This sequence could potentially enable more objective tumor grading, and decrease the inter-rater variability in the PI-RADS classification. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Automatic registration of ICG images using mutual information and perfusion analysis

    NASA Astrophysics Data System (ADS)

    Kim, Namkug; Seo, Jong-Mo; Lee, June-goo; Kim, Jong Hyo; Park, Kwangsuk; Yu, Hyeong-Gon; Yu, Young Suk; Chung, Hum

    2005-04-01

    Introduction: Indocyanin green fundus angiographic images (ICGA) of the eyes is useful method in detecting and characterizing the choroidal neovascularization (CNV), which is the major cause of the blindness over 65 years of age. To investigate the quantitative analysis of the blood flow on ICGA, systematic approach for automatic registration of using mutual information and a quantitative analysis was developed. Methods: Intermittent sequential images of indocyanin green angiography were acquired by Heidelberg retinal angiography that uses the laser scanning system for the image acquisition. Misalignment of the each image generated by the minute eye movement of the patients was corrected by the mutual information method because the distribution of the contrast media on image is changing throughout the time sequences. Several region of interest (ROI) were selected by a physician and the intensities of the selected region were plotted according to the time sequences. Results: The registration of ICGA time sequential images is required not only translate transform but also rotational transform. Signal intensities showed variation based on gamma-variate function depending on ROIs and capillary vessels show more variance of signal intensity than major vessels. CNV showed intermediate variance of signal intensity and prolonged transit time. Conclusion: The resulting registered images can be used not only for quantitative analysis, but also for perfusion analysis. Various investigative approached on CNV using this method will be helpful in the characterization of the lesion and follow-up.

  9. [Joint correction for motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging].

    PubMed

    Wu, Wenchuan; Fang, Sheng; Guo, Hua

    2014-06-01

    Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.

  10. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems that were addressed in this work: (i) registration, i.e. automated methods of data acquisition and the ability to align multiple data sets with each other; (ii) visualization and reconstruction, i.e. the environment in which registered data sets can be displayed on a plane or in multidimensional space; (iii) segmentation, i.e. automated and semi-automated methods to create models of relevant anatomy from images; (iv) simulation and prediction, i.e. techniques that can be used to simulate growth end evolution of researched phenomenon. Mathematical models can not only be used to verify experimental findings, but also to make qualitative and quantitative predictions, that might serve as guidelines for the future development of technology and/or treatment.

  11. In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA point-resolved spectroscopy sequence.

    PubMed

    Bhattacharyya, Pallab K; Phillips, Micheal D; Stone, Lael A; Lowe, Mark J

    2011-04-01

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain. Understanding the GABA concentration, in vivo, is important to understand normal brain function. Using MEGA point-resolved spectroscopy sequence with interleaved water scans to detect subject motion, GABA level of sensorimotor cortex was measured using a voxel identified from a functional magnetic resonance imaging scan. The GABA level in a 20×20×20-mm(3) voxel consisting of 37%±7% gray matter, 52%±12% white matter and 11%±8% cerebrospinal fluid in the sensorimotor region was measured to be 1.43±0.48 mM. In addition, using linear regression analysis, GABA concentrations within gray and white matter were calculated to be 2.87±0.61 and 0.33±0.11 mM, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Optimization of White-Matter-Nulled Magnetization Prepared Rapid Gradient Echo (MP-RAGE) Imaging

    PubMed Central

    Saranathan, Manojkumar; Tourdias, Thomas; Bayram, Ersin; Ghanouni, Pejman; Rutt, Brian K.

    2014-01-01

    Purpose To optimize the white-matter-nulled (WMn) Magnetization Prepared Rapid Gradient Echo (MP-RAGE) sequence at 7T, with comparisons to 3T. Methods Optimal parameters for maximising SNR efficiency were derived. The effect of flip angle and TR on image blurring was modeled using simulations and validated in vivo. A novel 2D-centric radial fan beam (RFB) k-space segmentation scheme was used to shorten scan times and improve parallel imaging. Healthy subjects as well as patients with multiple sclerosis and tremor were scanned using the optimized protocols. Results Inversion repetition times (TS) of 4.5s and 6s were found to yield the highest SNR efficiency for WMn MP-RAGE at 3T and 7T, respectively. Blurring was more sensitive to flip in WMn than in CSFn MP-RAGE and relatively insensitive to TR for both regimes. The 2D RFB scheme had 19% and 47% higher thalamic SNR and SNR efficiency than the 1D centric scheme for WMn MP-RAGE. Compared to 3T, SNR and SNR efficiency were higher for the 7T WMn regime by 56% and 41% respectively. MS lesions in the cortex and thalamus as well as thalamic subnuclei in tremor patients were clearly delineated using WMn MP-RAGE. Conclusion Optimization and new view ordering enabled MP-RAGE imaging with 0.8–1 mm3 isotropic spatial resolution in scan times of 5 minutes with whole brain coverage. PMID:24889754

  13. Child dermoid cyst mimicking a craniopharyngioma: the benefit of MRI T2-weighted diffusion sequence.

    PubMed

    Amelot, Aymeric; Borha, Alin; Calmon, Raphael; Barbet, Patrick; Puget, Stephanie

    2018-02-01

    Brain dermoid cysts are very rare lesions. Although benign, these cysts may be associated with devastating complications due to mass effect or meningitis. The discovery of completely asymptomatic dermoid cysts in the pediatric population is exceedingly rare. Despite the advances in imaging modalities, it sometimes remains difficult to exclude the differential diagnosis of craniopharyngioma. We describe a 12-year-old boy addressed for suspicion of craniopharyngioma diagnosed by decreased visual acuity, bitemporal hemianopia and a CT scan showing a large hypodense suprasellar lesion with intralesional calcifications. Despite the unusual localization and size of this lesion, the absence of dermal sinus commonly found, and before visualizing a hyperintense mass on MRI-diffusion, the diagnosis of craniopharyngioma was ruled out in favor of a dermoid cyst. Radical excision was performed. In the suprasellar area, craniopharyngioma and dermoid cyst may have very similar radiological aspects: low density masses on CT scan and a hyperintense signal on T1-weighted MRI sequences with a variable signal on T2-weighted sequences. Hitherto, only two cases in literature have described suprasellar dermoid cyst. Their initial diagnosis was facilitated by the presence of a dermal sinus.

  14. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach

    PubMed Central

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-01-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm2 and 1.2 × 1.2 mm2, respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:25219683

  15. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach.

    PubMed

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-11-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm(2) and 1.2 × 1.2 mm(2) , respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  16. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    NASA Astrophysics Data System (ADS)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  17. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder.

    PubMed

    August, Isaac; Oiknine, Yaniv; AbuLeil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-23

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warschkow, O.; McKenzie, D. R.; Curson, N. J.

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH{sub 3}) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH{sub 2}+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH{sub 2} fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH{sub 3} stoichiometry. Our calculated activation energies describemore » the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments.« less

  19. Progressive cone beam CT dose control in image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Hao; Cervino, Laura; Jiang, Steve B.

    2013-06-15

    Purpose: Cone beam CT (CBCT) in image-guided radiotherapy (IGRT) offers a tremendous advantage for treatment guidance. The associated imaging dose is a clinical concern. One unique feature of CBCT-based IGRT is that the same patient is repeatedly scanned during a treatment course, and the contents of CBCT images at different fractions are similar. The authors propose a progressive dose control (PDC) scheme to utilize this temporal correlation for imaging dose reduction. Methods: A dynamic CBCT scan protocol, as opposed to the static one in the current clinical practice, is proposed to gradually reduce the imaging dose in each treatment fraction.more » The CBCT image from each fraction is processed by a prior-image based nonlocal means (PINLM) module to enhance its quality. The increasing amount of prior information from previous CBCT images prevents degradation of image quality due to the reduced imaging dose. Two proof-of-principle experiments have been conducted using measured phantom data and Monte Carlo simulated patient data with deformation. Results: In the measured phantom case, utilizing a prior image acquired at 0.4 mAs, PINLM is able to improve the image quality of a CBCT acquired at 0.2 mAs by reducing the noise level from 34.95 to 12.45 HU. In the synthetic patient case, acceptable image quality is maintained at four consecutive fractions with gradually decreasing exposure levels of 0.4, 0.1, 0.07, and 0.05 mAs. When compared with the standard low-dose protocol of 0.4 mAs for each fraction, an overall imaging dose reduction of more than 60% is achieved. Conclusions: PINLM-PDC is able to reduce CBCT imaging dose in IGRT utilizing the temporal correlations among the sequence of CBCT images while maintaining the quality.« less

  20. A PRESTO-SENSE sequence with alternating partial-Fourier encoding for rapid susceptibility-weighted 3D MRI time series.

    PubMed

    Klarhöfer, Markus; Dilharreguy, Bixente; van Gelderen, Peter; Moonen, Chrit T W

    2003-10-01

    A 3D sequence for dynamic susceptibility imaging is proposed which combines echo-shifting principles (such as PRESTO), sensitivity encoding (SENSE), and partial-Fourier acquisition. The method uses a moderate SENSE factor of 2 and takes advantage of an alternating partial k-space acquisition in the "slow" phase encode direction allowing an iterative reconstruction using high-resolution phase estimates. Offering an isotropic spatial resolution of 4 x 4 x 4 mm(3), the novel sequence covers the whole brain including parts of the cerebellum in 0.5 sec. Its temporal signal stability is comparable to that of a full-Fourier, full-FOV EPI sequence having the same dynamic scan time but much less brain coverage. Initial functional MRI experiments showed consistent activation in the motor cortex with an average signal change slightly less than that of EPI. Copyright 2003 Wiley-Liss, Inc.

  1. Zoomed EPI-DWI of the pancreas using two-dimensional spatially-selective radiofrequency excitation pulses.

    PubMed

    Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Pfeuffer, Josef; Attenberger, Ulrike I; Schoenberg, Stefan O; Haneder, Stefan

    2014-01-01

    Implementation of DWI in the abdomen is challenging due to artifacts, particularly those arising from differences in tissue susceptibility. Two-dimensional, spatially-selective radiofrequency (RF) excitation pulses for single-shot echo-planar imaging (EPI) combined with a reduction in the FOV in the phase-encoding direction (i.e. zooming) leads to a decreased number of k-space acquisition lines, significantly shortening the EPI echo train and potentially susceptibility artifacts. To assess the feasibility and image quality of a zoomed diffusion-weighted EPI (z-EPI) sequence in MR imaging of the pancreas. The approach is compared to conventional single-shot EPI (c-EPI). 23 patients who had undergone an MRI study of the abdomen were included in this retrospective study. Examinations were performed on a 3T whole-body MR system (Magnetom Skyra, Siemens) equipped with a two-channel fully dynamic parallel transmit array (TimTX TrueShape, Siemens). The acquired sequences consisted of a conventional EPI DWI of the abdomen and a zoomed EPI DWI of the pancreas. For z-EPI, the standard sinc excitation was replaced with a two-dimensional spatially-selective RF pulse using an echo-planar transmit trajectory. Images were evaluated with regard to image blur, respiratory motion artifacts, diagnostic confidence, delineation of the pancreas, and overall scan preference. Additionally ADC values of the pancreatic head, body, and tail were calculated and compared between sequences. The pancreas was better delineated in every case (23/23) with z-EPI versus c-EPI. In every case (23/23), both readers preferred z-EPI overall to c-EPI. With z-EPI there was statistically significantly less image blur (p<0.0001) and respiratory motion artifact compared to c-EPI (p<0.0001). Diagnostic confidence was statistically significantly better with z-EPI (p<0.0001). No statistically significant differences in calculated ADC values were observed between the two sequences. Zoomed diffusion-weighted EPI leads to substantial image quality improvements with reduction of susceptibility artifacts in pancreatic DWI.

  2. Short Term Reproducibility of a High Contrast 3-D Isotropic Optic Nerve Imaging Sequence in Healthy Controls.

    PubMed

    Harrigan, Robert L; Smith, Alex K; Mawn, Louise A; Smith, Seth A; Landman, Bennett A

    2016-02-27

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short-term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  3. Short term reproducibility of a high contrast 3-D isotropic optic nerve imaging sequence in healthy controls

    NASA Astrophysics Data System (ADS)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2016-03-01

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short- term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  4. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment.

    PubMed

    Mahato, Niladri K; Montuelle, Stephane; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian

    2016-05-18

    Single or biplanar video radiography and Roentgen stereophotogrammetry (RSA) techniques used for the assessment of in-vivo joint kinematics involves application of ionizing radiation, which is a limitation for clinical research involving human subjects. To overcome this limitation, our long-term goal is to develop a magnetic resonance imaging (MRI)-only, three dimensional (3-D) modeling technique that permits dynamic imaging of joint motion in humans. Here, we present our initial findings, as well as reliability data, for an MRI-only protocol and modeling technique. We developed a morphology-based motion-analysis technique that uses MRI of custom-built solid-body objects to animate and quantify experimental displacements between them. The technique involved four major steps. First, the imaging volume was calibrated using a custom-built grid. Second, 3-D models were segmented from axial scans of two custom-built solid-body cubes. Third, these cubes were positioned at pre-determined relative displacements (translation and rotation) in the magnetic resonance coil and scanned with a T1 and a fast contrast-enhanced pulse sequences. The digital imaging and communications in medicine (DICOM) images were then processed for animation. The fourth step involved importing these processed images into an animation software, where they were displayed as background scenes. In the same step, 3-D models of the cubes were imported into the animation software, where the user manipulated the models to match their outlines in the scene (rotoscoping) and registered the models into an anatomical joint system. Measurements of displacements obtained from two different rotoscoping sessions were tested for reliability using coefficient of variations (CV), intraclass correlation coefficients (ICC), Bland-Altman plots, and Limits of Agreement analyses. Between-session reliability was high for both the T1 and the contrast-enhanced sequences. Specifically, the average CVs for translation were 4.31 % and 5.26 % for the two pulse sequences, respectively, while the ICCs were 0.99 for both. For rotation measures, the CVs were 3.19 % and 2.44 % for the two pulse sequences with the ICCs being 0.98 and 0.97, respectively. A novel biplanar imaging approach also yielded high reliability with mean CVs of 2.66 % and 3.39 % for translation in the x- and z-planes, respectively, and ICCs of 0.97 in both planes. This work provides basic proof-of-concept for a reliable marker-less non-ionizing-radiation-based quasi-dynamic motion quantification technique that can potentially be developed into a tool for real-time joint kinematics analysis.

  5. Self-gated golden-angle spiral 4D flow MRI.

    PubMed

    Bastkowski, Rene; Weiss, Kilian; Maintz, David; Giese, Daniel

    2018-01-17

    The acquisition of 4D flow magnetic resonance imaging (MRI) in cardiovascular applications has recently made large progress toward clinical feasibility. The need for simultaneous compensation of cardiac and breathing motion still poses a challenge for widespread clinical use. Especially, breathing motion, addressed by gating approaches, can lead to unpredictable and long scan times. The current work proposes a time-efficient self-gated 4D flow sequence that exploits up to 100% of the acquired data and operates at a predictable scan time. A self-gated golden-angle spiral 4D flow sequence was implemented and tested in 10 volunteers. Data were retrospectively binned into respiratory and cardiac states and reconstructed using a conjugate-gradient sensitivity encoding reconstruction. Net flow curves, stroke volumes, and peak flow in the aorta were evaluated and compared to a conventional Cartesian 4D flow sequence. Additionally, flow quantities reconstructed from 50% to 100% of the self-gated 4D flow data were compared. Self-gating signals for respiratory and cardiac motion were extracted for all volunteers. Flow quantities were in agreement with the standard Cartesian scan. Mean differences in stroke volumes and peak flow of 7.6 ± 11.5 and 4.0 ± 79.9 mL/s were obtained, respectively. By retrospectively increasing breathing navigator efficiency while decreasing acquisition times (15:06-07:33 minutes), 50% of the acquired data were sufficient to measure stroke volumes with errors under 9.6 mL. The feasibility to acquire respiratory and cardiac self-gated 4D flow data at a predictable scan time was demonstrated. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Dynamic scan control in STEM: Spiral scans

    DOE PAGES

    Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.; ...

    2016-06-13

    Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less

  7. Dynamic scan control in STEM: Spiral scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less

  8. Real-Time Digital Bright Field Technology for Rapid Antibiotic Susceptibility Testing.

    PubMed

    Canali, Chiara; Spillum, Erik; Valvik, Martin; Agersnap, Niels; Olesen, Tom

    2018-01-01

    Optical scanning through bacterial samples and image-based analysis may provide a robust method for bacterial identification, fast estimation of growth rates and their modulation due to the presence of antimicrobial agents. Here, we describe an automated digital, time-lapse, bright field imaging system (oCelloScope, BioSense Solutions ApS, Farum, Denmark) for rapid and higher throughput antibiotic susceptibility testing (AST) of up to 96 bacteria-antibiotic combinations at a time. The imaging system consists of a digital camera, an illumination unit and a lens where the optical axis is tilted 6.25° relative to the horizontal plane of the stage. Such tilting grants more freedom of operation at both high and low concentrations of microorganisms. When considering a bacterial suspension in a microwell, the oCelloScope acquires a sequence of 6.25°-tilted images to form an image Z-stack. The stack contains the best-focus image, as well as the adjacent out-of-focus images (which contain progressively more out-of-focus bacteria, the further the distance from the best-focus position). The acquisition process is repeated over time, so that the time-lapse sequence of best-focus images is used to generate a video. The setting of the experiment, image analysis and generation of time-lapse videos can be performed through a dedicated software (UniExplorer, BioSense Solutions ApS). The acquired images can be processed for online and offline quantification of several morphological parameters, microbial growth, and inhibition over time.

  9. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guang, E-mail: lig2@mskcc.org; Wei, Jie; Kadbi, Mo

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions;more » the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm{sup 3}) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm{sup 3}). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4DMRI has been reconstructed with adequate temporal (2 Hz) and spatial (2 × 2 × 2 mm{sup 3}) resolutions. Further TR-4DMRI characterization and improvement are necessary before clinical applications. Multi-breathing cycles can be examined, providing patient-specific breathing irregularities and motion statistics for future 4D radiation therapy.« less

  10. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates.

    PubMed

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Park, Jewook; Li, An-Ping; Zhang, X-G

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a "rubber band" model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  11. Breath-hold black-blood T1rho mapping improves liver T1rho quantification in healthy volunteers.

    PubMed

    Wáng, Yì Xiáng J; Deng, Min; Lo, Gladys G; Liang, Dong; Yuan, Jing; Chen, Weitian

    2018-03-01

    Background Recent researches suggest that T1rho may be a non-invasive and quantitative technique for detecting and grading liver fibrosis. Purpose To compare a multi-breath-hold bright-blood fast gradient echo (GRE) imaging and a single breath-hold single-shot fast spin echo (FSE) imaging with black-blood effect for liver parenchyma T1rho measurement and to study liver physiological T1rho value in healthy volunteers. Material and Methods The institutional Ethics Committee approved this study. 28 healthy participants (18 men, 10 women; age = 29.6 ± 5.1 years) underwent GRE liver T1rho imaging, and 20 healthy participants (10 men, 10 women; age = 36.9 ± 10.3 years) underwent novel black-blood FSE liver T1rho imaging, both at 3T with spin-lock frequency of 500 Hz. The FSE technique allows simultaneous acquisition of four spin lock times (TSLs; 1 ms, 10 ms, 30 ms, 50msec) in 10 s. Results For FSE technique the intra-scan repeatability intraclass correlation coefficient (ICC) was 0.98; while the inter-scan reproducibility ICC was 0.82 which is better than GRE technique's 0.76. Liver T1rho value in women tended to have a higher value than T1rho values in men (FSE: 42.28 ± 4.06 ms for women and 39.13 ± 2.12 ms for men; GRE: 44.44 ± 1.62 ms for women and 42.36 ± 2.00 ms for men) and FSE technique showed liver T1rho value decreased slightly as age increased. Conclusion Single breath-hold black-blood FSE sequence has better scan-rescan reproducibility than multi-breath-hold bright-blood GRE sequence. Gender and age dependence of liver T1rho in healthy participants is observed, with young women tending to have a higher T1rho measurement.

  12. A standardization model based on image recognition for performance evaluation of an oral scanner.

    PubMed

    Seo, Sang-Wan; Lee, Wan-Sun; Byun, Jae-Young; Lee, Kyu-Bok

    2017-12-01

    Accurate information is essential in dentistry. The image information of missing teeth is used in optically based medical equipment in prosthodontic treatment. To evaluate oral scanners, the standardized model was examined from cases of image recognition errors of linear discriminant analysis (LDA), and a model that combines the variables with reference to ISO 12836:2015 was designed. The basic model was fabricated by applying 4 factors to the tooth profile (chamfer, groove, curve, and square) and the bottom surface. Photo-type and video-type scanners were used to analyze 3D images after image capture. The scans were performed several times according to the prescribed sequence to distinguish the model from the one that did not form, and the results confirmed it to be the best. In the case of the initial basic model, a 3D shape could not be obtained by scanning even if several shots were taken. Subsequently, the recognition rate of the image was improved with every variable factor, and the difference depends on the tooth profile and the pattern of the floor surface. Based on the recognition error of the LDA, the recognition rate decreases when the model has a similar pattern. Therefore, to obtain the accurate 3D data, the difference of each class needs to be provided when developing a standardized model.

  13. Use of an advanced 3-T MRI movie to investigate articulation.

    PubMed

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-06-01

    To develop a magnetic resonance imaging (MRI) movie to reveal the dynamic movement of articulators and teeth. Five healthy females with normal occlusion participated in this study. Various concentrations of MRI contrast media (ferric ammonium citrate [FAC]) were tested for visualization of teeth, according to facial markers and with the use of a gel. Custom-made circuitry was connected to synchronize pronunciation of fricative sounds (/asa/) with scans. Three gradient echo sequences (True fast imaging with steady state precession [true FISP], FISP, and fast low angle shot [FLASH]) with a segmented cine were tested with the use of repetition times (TRs) of 9 ms and 31.5 ms. The MRI movie images were superimposed over the boundaries of teeth. The images produced during pronunciation, using the two different TRs (9 ms and 31 ms), were compared to assess the position of the lips and the tongue. Images obtained using the FLASH sequence, with a TR of 9 ms or 31.5 ms, can be used for diagnostic purposes. A TR of 9 ms, with 161 continuous images acquired, produced the highest-quality images of teeth, with few artifacts present. Pronunciation of the consonant "s" was clearly discernable. Our 3-T MRI movie system, with a temporal resolution less than 9 ms, can provide detailed information pertaining to variations in speech or oropharyngeal function. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Investigating brain response to music: a comparison of different fMRI acquisition schemes.

    PubMed

    Mueller, Karsten; Mildner, Toralf; Fritz, Thomas; Lepsien, Jöran; Schwarzbauer, Christian; Schroeter, Matthias L; Möller, Harald E

    2011-01-01

    Functional magnetic resonance imaging (fMRI) in auditory experiments is a challenge, because the scanning procedure produces considerable noise that can interfere with the auditory paradigm. The noise might either mask the auditory material presented, or interfere with stimuli designed to evoke emotions because it sounds loud and rather unpleasant. Therefore, scanning paradigms that allow interleaved auditory stimulation and image acquisition appear to be advantageous. The sparse temporal sampling (STS) technique uses a very long repetition time in order to achieve a stimulus presentation in the absence of scanner noise. Although only relatively few volumes are acquired for the resulting data sets, there have been recent studies where this method has furthered remarkable results. A new development is the interleaved silent steady state (ISSS) technique. Compared with STS, this method is capable of acquiring several volumes in the time frame between the auditory trials (while the magnetization is kept in a steady state during stimulus presentation). In order to draw conclusions about the optimum fMRI procedure with auditory stimulation, different echo-planar imaging (EPI) acquisition schemes were compared: Continuous scanning, STS, and ISSS. The total acquisition time of each sequence was adjusted to about 12.5 min. The results indicate that the ISSS approach exhibits the highest sensitivity in detecting subtle activity in sub-cortical brain regions. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Management of paediatric periorbital cellulitis: Our experience of 243 children managed according to a standardised protocol 2012-2015.

    PubMed

    Crosbie, Robin A; Nairn, Jonathan; Kubba, Haytham

    2016-08-01

    Paediatric periorbital cellulitis is a common condition. Accurate assessment can be challenging and appropriate use of CT imaging is essential. We audited admissions to our unit over a four year period, with reference to CT scanning and adherence to our protocol. Retrospective audit of paediatric patients admitted with periorbital cellulitis, 2012-2015. Total of 243 patients included, mean age 4.7 years with slight male predominance, the median length of admission was 2 days. 48/243 (20%) underwent CT during admission, 25 (52%) of these underwent surgical drainage. As per protocol, CT brain performed with all orbital scans; no positive intracranial findings on any initial scan. Three children developed intracranial complications subsequently; all treated with antibiotics. Our re-admission rate within 30 days was 2.5%. Our audit demonstrates benefit of standardising practice and the low CT rate, with high percentage taken to theatre and no missed abscesses, supports the protocol. There may be an argument to avoid CT brain routinely in all initial imaging sequences in those children without neurological signs or symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Gene finding in metatranscriptomic sequences.

    PubMed

    Ismail, Wazim Mohammed; Ye, Yuzhen; Tang, Haixu

    2014-01-01

    Metatranscriptomic sequencing is a highly sensitive bioassay of functional activity in a microbial community, providing complementary information to the metagenomic sequencing of the community. The acquisition of the metatranscriptomic sequences will enable us to refine the annotations of the metagenomes, and to study the gene activities and their regulation in complex microbial communities and their dynamics. In this paper, we present TransGeneScan, a software tool for finding genes in assembled transcripts from metatranscriptomic sequences. By incorporating several features of metatranscriptomic sequencing, including strand-specificity, short intergenic regions, and putative antisense transcripts into a Hidden Markov Model, TranGeneScan can predict a sense transcript containing one or multiple genes (in an operon) or an antisense transcript. We tested TransGeneScan on a mock metatranscriptomic data set containing three known bacterial genomes. The results showed that TranGeneScan performs better than metagenomic gene finders (MetaGeneMark and FragGeneScan) on predicting protein coding genes in assembled transcripts, and achieves comparable or even higher accuracy than gene finders for microbial genomes (Glimmer and GeneMark). These results imply, with the assistance of metatranscriptomic sequencing, we can obtain a broad and precise picture about the genes (and their functions) in a microbial community. TransGeneScan is available as open-source software on SourceForge at https://sourceforge.net/projects/transgenescan/.

  17. Accelerating acquisition strategies for low-frequency conductivity imaging using MREIT

    NASA Astrophysics Data System (ADS)

    Song, Yizhuang; Seo, Jin Keun; Chauhan, Munish; Indahlastari, Aprinda; Ashok Kumar, Neeta; Sadleir, Rosalind

    2018-02-01

    We sought to improve efficiency of magnetic resonance electrical impedance tomography data acquisition so that fast conductivity changes or electric field variations could be monitored. Undersampling of k-space was used to decrease acquisition times in spin-echo-based sequences by a factor of two. Full MREIT data were reconstructed using continuity assumptions and preliminary scans gathered without current. We found that phase data were reconstructed faithfully from undersampled data. Conductivity reconstructions of phantom data were also possible. Therefore, undersampled k-space methods can potentially be used to accelerate MREIT acquisition. This method could be an advantage in imaging real-time conductivity changes with MREIT.

  18. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T.

    PubMed

    Morelli, John; Porter, David; Ai, Fei; Gerdes, Clint; Saettele, Megan; Feiweier, Thorsten; Padua, Abraham; Dix, James; Marra, Michael; Rangaswamy, Rajesh; Runge, Val

    2013-04-01

    Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P <10(-4) at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain.

  19. Advanced morphological and biochemical magnetic resonance imaging of cartilage repair procedures in the knee joint at 3 Tesla.

    PubMed

    Welsch, Goetz H; Mamisch, Tallal C; Hughes, Timothy; Domayer, Stephan; Marlovits, Stefan; Trattnig, Siegfried

    2008-09-01

    Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.

  20. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates

    PubMed Central

    Zhang, Hao; Li, Xianqi; Park, Jewook; Li, An-Ping

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a “rubber band” model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data. PMID:29362664

  1. Optimization of diffusion-weighted single-refocused spin-echo EPI by reducing eddy-current artifacts and shortening the echo time.

    PubMed

    Shrestha, Manoj; Hok, Pavel; Nöth, Ulrike; Lienerth, Bianca; Deichmann, Ralf

    2018-03-30

    The purpose of this work was to optimize the acquisition of diffusion-weighted (DW) single-refocused spin-echo (srSE) data without intrinsic eddy-current compensation (ECC) for an improved performance of ECC postprocessing. The rationale is that srSE sequences without ECC may yield shorter echo times (TE) and thus higher signal-to-noise ratios (SNR) than srSE or twice-refocused spin-echo (trSE) schemes with intrinsic ECC. The proposed method employs dummy scans with DW gradients to drive eddy currents into a steady state before data acquisition. Parameters of the ECC postprocessing algorithm were also optimized. Simulations were performed to obtain minimum TE values for the proposed sequence and sequences with intrinsic ECC. Experimentally, the proposed method was compared with standard DW-trSE imaging, both in vitro and in vivo. Simulations showed substantially shorter TE for the proposed method than for methods with intrinsic ECC when using shortened echo readouts. Data of the proposed method showed a marked increase in SNR. A dummy scan duration of at least 1.5 s improved performance of the ECC postprocessing algorithm. Changes proposed for the DW-srSE sequence and for the parameter setting of the postprocessing ECC algorithm considerably reduced eddy-current artifacts and provided a higher SNR.

  2. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects.

    PubMed

    Hauke, C; Bartl, P; Leghissa, M; Ritschl, L; Sutter, S M; Weber, T; Zeidler, J; Freudenberger, J; Mertelmeier, T; Radicke, M; Michel, T; Anton, G; Meinel, F G; Baehr, A; Auweter, S; Bondesson, D; Gaass, T; Dinkel, J; Reiser, M; Hellbach, K

    2018-06-01

    Talbot-Lau x-ray interferometry provides information about the scattering and refractive properties of an object - in addition to the object's attenuation features. Until recently, this method was ineligible for imaging human-sized objects as it is challenging to adapt Talbot-Lau interferometers (TLIs) to the relevant x-ray energy ranges. In this work, we present a preclinical Talbot-Lau prototype capable of imaging human-sized objects with proper image quality at clinically acceptable dose levels. The TLI is designed to match a setup of clinical relevance as closely as possible. The system provides a scan range of 120 × 30 cm 2 by using a scanning beam geometry. Its ultimate load is 100 kg. High aspect ratios and fine grid periods of the gratings ensure a reasonable setup length and clinically relevant image quality. The system is installed in a university hospital and is, therefore, exposed to the external influences of a clinical environment. To demonstrate the system's capabilities, a full-body scan of a euthanized pig was performed. In addition, freshly excised porcine lungs with an extrinsically provoked pneumothorax were mounted into a human thorax phantom and examined with the prototype. Both examination sequences resulted in clinically relevant image quality - even in the case of a skin entrance air kerma of only 0.3 mGy which is in the range of human thoracic imaging. The presented case of a pneumothorax and a reader study showed that the prototype's dark-field images provide added value for pulmonary diagnosis. We demonstrated that a dedicated design of a Talbot-Lau interferometer can be applied to medical imaging by constructing a preclinical Talbot-Lau prototype. We experienced that the system is feasible for imaging human-sized objects and the phase-stepping approach is suitable for clinical practice. Hence, we conclude that Talbot-Lau x-ray imaging has potential for clinical use and enhances the diagnostic power of medical x-ray imaging. © 2018 American Association of Physicists in Medicine.

  3. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    PubMed

    Loeffler, Ralf B; McCarville, M Beth; Wagstaff, Anne W; Smeltzer, Matthew P; Krafft, Axel J; Song, Ruitian; Hankins, Jane S; Hillenbrand, Claudia M

    2017-01-01

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be interchangeably used in existing R2*-HIC calibrations.

  4. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator

    NASA Astrophysics Data System (ADS)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian

    2018-04-01

    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  5. Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitken, A. P.; Giese, D.; Tsoumpas, C.

    2014-01-15

    Purpose: Ultrashort echo time (UTE) MRI has been proposed as a way to produce segmented attenuation maps for PET, as it provides contrast between bone, air, and soft tissue. However, UTE sequences require samples to be acquired during rapidly changing gradient fields, which makes the resulting images prone to eddy current artifacts. In this work it is demonstrated that this can lead to misclassification of tissues in segmented attenuation maps (AC maps) and that these effects can be corrected for by measuring the true k-space trajectories using a magnetic field camera. Methods: The k-space trajectories during a dual echo UTEmore » sequence were measured using a dynamic magnetic field camera. UTE images were reconstructed using nominal trajectories and again using the measured trajectories. A numerical phantom was used to demonstrate the effect of reconstructing with incorrect trajectories. Images of an ovine leg phantom were reconstructed and segmented and the resulting attenuation maps were compared to a segmented map derived from a CT scan of the same phantom, using the Dice similarity measure. The feasibility of the proposed method was demonstrated inin vivo cranial imaging in five healthy volunteers. Simulated PET data were generated for one volunteer to show the impact of misclassifications on the PET reconstruction. Results: Images of the numerical phantom exhibited blurring and edge artifacts on the bone–tissue and air–tissue interfaces when nominal k-space trajectories were used, leading to misclassification of soft tissue as bone and misclassification of bone as air. Images of the tissue phantom and thein vivo cranial images exhibited the same artifacts. The artifacts were greatly reduced when the measured trajectories were used. For the tissue phantom, the Dice coefficient for bone in MR relative to CT was 0.616 using the nominal trajectories and 0.814 using the measured trajectories. The Dice coefficients for soft tissue were 0.933 and 0.934 for the nominal and measured cases, respectively. For air the corresponding figures were 0.991 and 0.993. Compared to an unattenuated reference image, the mean error in simulated PET uptake in the brain was 9.16% when AC maps derived from nominal trajectories was used, with errors in the SUV{sub max} for simulated lesions in the range of 7.17%–12.19%. Corresponding figures when AC maps derived from measured trajectories were used were 0.34% (mean error) and −0.21% to +1.81% (lesions). Conclusions: Eddy current artifacts in UTE imaging can be corrected for by measuring the true k-space trajectories during a calibration scan and using them in subsequent image reconstructions. This improves the accuracy of segmented PET attenuation maps derived from UTE sequences and subsequent PET reconstruction.« less

  6. Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans.

    PubMed

    Bresch, Erik; Nielsen, Jon; Nayak, Krishna; Narayanan, Shrikanth

    2006-10-01

    This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given.

  7. Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans (L)

    PubMed Central

    Bresch, Erik; Nielsen, Jon; Nayak, Krishna; Narayanan, Shrikanth

    2007-01-01

    This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given. PMID:17069275

  8. Biological applications of near-field scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Moers, Marco H. P.; Ruiter, A. G. T.; Jalocha, Alain; van Hulst, Niko F.; Kalle, W. H. J.; Wiegant, J. C. A. G.; Raap, A. K.

    1995-09-01

    Near-field Scanning Optical Microscopy (NSOM) is a true optical microscopic technique allowing fluorescence, absorption, reflection and polarization contrast with the additional advantage of nanometer lateral resolution, unlimited by diffraction and operation at ambient conditions. NSOM based on metal coated adiabatically tapered fibers, combined with shear force feedback and operated in illumination mode, has proven to be the most powerful NSOM arrangement, because of its true localization of the optical interaction, its various optical contrast possibilities and its sensitivity down to the single molecular level. In this paper applications of `aperture' NSOM to Fluorescence In Situ Hybridization of human metaphase chromosomes are presented, where the localized fluorescence allows to identify specific DNA sequences. All images are accompanied by the simultaneously acquired force image, enabling direct comparison of the optical contrast with the sample topography on nanometer scale, far beyond the diffraction limit. Thus the unique combination of high resolution, specific optical contrast and ambient operation offers many new direction possibilities in biological studies.

  9. Stereoscopic virtual reality models for planning tumor resection in the sellar region.

    PubMed

    Wang, Shou-sen; Zhang, Shang-ming; Jing, Jun-jie

    2012-11-28

    It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region. To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery. All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images. The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.

  10. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction.

    PubMed

    Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens

    2010-07-08

    Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for real-time CMR at the ultimate limit of this technology.

  11. High-throughput physical mapping of chromosomes using automated in situ hybridization.

    PubMed

    George, Phillip; Sharakhova, Maria V; Sharakhov, Igor V

    2012-06-28

    Projects to obtain whole-genome sequences for 10,000 vertebrate species and for 5,000 insect and related arthropod species are expected to take place over the next 5 years. For example, the sequencing of the genomes for 15 malaria mosquitospecies is currently being done using an Illumina platform. This Anopheles species cluster includes both vectors and non-vectors of malaria. When the genome assemblies become available, researchers will have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, it has proven difficult to use next-generation sequencing reads to generate high-quality de novo genome assemblies. Moreover, the existing genome assemblies for Anopheles gambiae, although obtained using the Sanger method, are gapped or fragmented. Success of comparative genomic analyses will be limited if researchers deal with numerous sequencing contigs, rather than with chromosome-based genome assemblies. Fragmented, unmapped sequences create problems for genomic analyses because: (i) unidentified gaps cause incorrect or incomplete annotation of genomic sequences; (ii) unmapped sequences lead to confusion between paralogous genes and genes from different haplotypes; and (iii) the lack of chromosome assignment and orientation of the sequencing contigs does not allow for reconstructing rearrangement phylogeny and studying chromosome evolution. Developing high-resolution physical maps for species with newly sequenced genomes is a timely and cost-effective investment that will facilitate genome annotation, evolutionary analysis, and re-sequencing of individual genomes from natural populations. Here, we present innovative approaches to chromosome preparation, fluorescent in situ hybridization (FISH), and imaging that facilitate rapid development of physical maps. Using An. gambiae as an example, we demonstrate that the development of physical chromosome maps can potentially improve genome assemblies and, thus, the quality of genomic analyses. First, we use a high-pressure method to prepare polytene chromosome spreads. This method, originally developed for Drosophila, allows the user to visualize more details on chromosomes than the regular squashing technique. Second, a fully automated, front-end system for FISH is used for high-throughput physical genome mapping. The automated slide staining system runs multiple assays simultaneously and dramatically reduces hands-on time. Third, an automatic fluorescent imaging system, which includes a motorized slide stage, automatically scans and photographs labeled chromosomes after FISH. This system is especially useful for identifying and visualizing multiple chromosomal plates on the same slide. In addition, the scanning process captures a more uniform FISH result. Overall, the automated high-throughput physical mapping protocol is more efficient than a standard manual protocol.

  12. Test-retest reliability and repeatability of renal diffusion tensor MRI in healthy subjects.

    PubMed

    Cutajar, Marica; Clayden, Jonathan D; Clark, Christopher A; Gordon, Isky

    2011-12-01

    This study assessed test-retest reliability and repeatability of diffusion tensor imaging (DTI) in the kidneys. Seven healthy volunteers (age range, 19-31 years), were imaged three consecutive times on the same day (short-term reliability) and the same imaging protocol was repeated after a month (long-term reliability). Diffusion-weighted magnetic resonance imaging scans in the coronal-oblique projection of the kidney were acquired on a 1.5 T scanner using a multi-section echo-planar sequence; six contiguous slices each 5 mm thick, diffusion sensitisation along 20 non-collinear directions, TR=730 ms, TE=73 ms and 2 b-values (0 and 400 s mm(-2)). Volunteers were asked to hold their breath throughout each data acquisition (approx. 20 s). The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were obtained from maps generated using dedicated software MIStar (Apollo Medical Imaging, Melbourne, Australia). Statistical analyses of both short- and long-term repeats were carried out from which the within-subject coefficient of variation (wsCV) was calculated. The wsCV obtained for both the ADC and FA values were less than 10% in all the analyses carried out. In addition, paired (repeated measures) t-test was used to measure the variation between the diffusion parameters collected from the two scanning sessions a month apart. It showed no significant difference and the wsCV obtained after comparing the first and second scans were found to be smaller than 15% for both ADC and FA. Renal DTI produces reliable and repeatable results which make longitudinal investigation of patients viable. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Spirometer-controlled cine magnetic resonance imaging used to diagnose tracheobronchomalacia in paediatric patients.

    PubMed

    Ciet, Pierluigi; Wielopolski, Piotr; Manniesing, Rashindra; Lever, Sandra; de Bruijne, Marleen; Morana, Giovanni; Muzzio, Pier Carlo; Lequin, Maarten H; Tiddens, Harm A W M

    2014-01-01

    Tracheobronchomalacia (TBM) is defined as an excessive collapse of the intrathoracic trachea. Bronchoscopy is the gold standard for diagnosing TBM; however it has major disadvantages, such as general anaesthesia. Cine computed tomography (CT) is a noninvasive alternative used to diagnose TBM, but its use in children is restricted by ionising radiation. Our aim was to evaluate the feasibility of spirometer-controlled cine magnetic resonance imaging (MRI) as an alternative to cine-CT in a retrospective study. 12 children with a mean age (range) of 12 years (7-17 years), suspected of having TBM, underwent cine-MRI. Static scans were acquired at end-inspiration and expiration covering the thorax using a three-dimensional spoiled gradient echo sequence. Three-dimensional dynamic scans were performed covering only the central airways. TBM was defined as a decrease of the trachea or bronchi diameter >50% at end-expiration in the static and dynamic scans. The success rate of the cine-MRI protocol was 92%. Cine-MRI was compared with bronchoscopy or chest CT in seven subjects. TBM was diagnosed by cine-MRI in seven (58%) out of 12 children and was confirmed by bronchoscopy or CT. In four patients, cine-MRI demonstrated tracheal narrowing that was not present in the static scans. Spirometer controlled cine-MRI is a promising technique to assess TBM in children and has the potential to replace bronchoscopy.

  14. Recognition of the DNA sequence by an inorganic crystal surface

    PubMed Central

    Sampaolese, Beatrice; Bergia, Anna; Scipioni, Anita; Zuccheri, Giampaolo; Savino, Maria; Samorì, Bruno; De Santis, Pasquale

    2002-01-01

    The sequence-dependent curvature is generally recognized as an important and biologically relevant property of DNA because it is involved in the formation and stability of association complexes with proteins. When a DNA tract, intrinsically curved for the periodical recurrence on the same strand of A-tracts phased with the B-DNA periodicity, is deposited on a flat surface, it exposes to that surface either a T- or an A-rich face. The surface of a freshly cleaved mica crystal recognizes those two faces and preferentially interacts with the former one. Statistical analysis of scanning force microscopy (SFM) images provides evidence of this recognition between an inorganic crystal surface and nanoscale structures of double-stranded DNA. This finding could open the way toward the use of the sequence-dependent adhesion to specific crystal faces for nanotechnological purposes. PMID:12361979

  15. Characteristic CT and MR imaging findings of cerebral paragonimiasis.

    PubMed

    Xia, Yong; Chen, Jing; Ju, Yan; You, Chao

    2016-06-01

    The early diagnosis of cerebral paragonimiasis (CP) is essential for a good prognosis. We seek to provide references for early diagnosis by analyzing the imaging characteristics of cerebral paragonimiasis. Images of 27 patients with CP (22 males and 5 females; median age 20.3 years; range: 4 to 47 years) were retrospectively evaluated. All patients underwent head computed tomography (CT) scans; 22 patients underwent conventional magnetic resonance imaging (MRI) sequences, including contrast-enhanced MRI for 20 patients and diffusion-weighted-imaging (DWI) for 1 patient. The diagnosis was confirmed based on a positive antibody test using enzyme-linked immunosorbent assay (ELISA) for paragonimiasis in the serum. The most common imaging findings of CP were isodense or hypodense lesions combined with extensive hypodense areas of perilesional edema on CT scans and a large mass composed of multiple ring-shaped lesions with surrounding edema on MRI images. The conglomeration of multiple ring-shaped lesions (n=11 patients), "tunnel signs" (n=12 patients) and worm-eaten signs (n=5 patients) were characteristic of most CP images. In 14 patients, contrast-enhanced MRI showed varying degrees of contrast enhancement combined with adjacent meningeal enhancement (n=10). A large mass comprising multiple ring-shaped lesions of different sizes, "tunnel signs" and worm-eaten signs with surrounding edema are the most characteristic features of CP. Extensive invasions of the adjacent meninges and ventricular wall (19 patients), multiple intracerebral lesions, bilateral hemispheric involvement, and lesion migration are other noteworthy imaging characteristics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content.

    PubMed

    Malghem, Jacques; Lecouvet, Frédéric E; François, Robert; Vande Berg, Bruno C; Duprez, Thierry; Cosnard, Guy; Maldague, Baudouin E

    2005-02-01

    To explain a cause of high signal intensity on T1-weighted MR images in calcified intervertebral disks associated with spinal fusion. Magnetic resonance and radiological examinations of 13 patients were reviewed, presenting one or several intervertebral disks showing a high signal intensity on T1-weighted MR images, associated both with the presence of calcifications in the disks and with peripheral fusion of the corresponding spinal segments. Fusion was due to ligament ossifications (n=8), ankylosing spondylitis (n=4), or posterior arthrodesis (n=1). Imaging files included X-rays and T1-weighted MR images in all cases, T2-weighted MR images in 12 cases, MR images with fat signal suppression in 7 cases, and a CT scan in 1 case. Histological study of a calcified disk from an anatomical specimen of an ankylosed lumbar spine resulting from ankylosing spondylitis was examined. The signal intensity of the disks was similar to that of the bone marrow or of perivertebral fat both on T1-weighted MR images and on all sequences, including those with fat signal suppression. In one of these disks, a strongly negative absorption coefficient was focally measured by CT scan, suggesting a fatty content. The histological examination of the ankylosed calcified disk revealed the presence of well-differentiated bone tissue and fatty marrow within the disk. The high signal intensity of some calcified intervertebral disks on T1-weighted MR images can result from the presence of fatty marrow, probably related to a disk ossification process in ankylosed spines.

  17. Improved blood velocity measurements with a hybrid image filtering and iterative Radon transform algorithm

    PubMed Central

    Chhatbar, Pratik Y.; Kara, Prakash

    2013-01-01

    Neural activity leads to hemodynamic changes which can be detected by functional magnetic resonance imaging (fMRI). The determination of blood flow changes in individual vessels is an important aspect of understanding these hemodynamic signals. Blood flow can be calculated from the measurements of vessel diameter and blood velocity. When using line-scan imaging, the movement of blood in the vessel leads to streaks in space-time images, where streak angle is a function of the blood velocity. A variety of methods have been proposed to determine blood velocity from such space-time image sequences. Of these, the Radon transform is relatively easy to implement and has fast data processing. However, the precision of the velocity measurements is dependent on the number of Radon transforms performed, which creates a trade-off between the processing speed and measurement precision. In addition, factors like image contrast, imaging depth, image acquisition speed, and movement artifacts especially in large mammals, can potentially lead to data acquisition that results in erroneous velocity measurements. Here we show that pre-processing the data with a Sobel filter and iterative application of Radon transforms address these issues and provide more accurate blood velocity measurements. Improved signal quality of the image as a result of Sobel filtering increases the accuracy and the iterative Radon transform offers both increased precision and an order of magnitude faster implementation of velocity measurements. This algorithm does not use a priori knowledge of angle information and therefore is sensitive to sudden changes in blood flow. It can be applied on any set of space-time images with red blood cell (RBC) streaks, commonly acquired through line-scan imaging or reconstructed from full-frame, time-lapse images of the vasculature. PMID:23807877

  18. Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE) on a 3T clinical scanner

    PubMed Central

    Baete, Steven H.; Cho, Gene; Sigmund, Eric E.

    2013-01-01

    This paper describes the concepts and implementation of an MRI method, Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE), which is capable of acquiring apparent diffusion tensor maps in two scans on a 3T clinical scanner. In each MEDITATE scan, a set of RF-pulses generates multiple echoes whose amplitudes are diffusion-weighted in both magnitude and direction by a pattern of diffusion gradients. As a result, two scans acquired with different diffusion weighting strengths suffice for accurate estimation of diffusion tensor imaging (DTI)-parameters. The MEDITATE variation presented here expands previous MEDITATE approaches to adapt to the clinical scanner platform, such as exploiting longitudinal magnetization storage to reduce T2-weighting. Fully segmented multi-shot Cartesian encoding is used for image encoding. MEDITATE was tested on isotropic (agar gel), anisotropic diffusion phantoms (asparagus), and in vivo skeletal muscle in healthy volunteers with cardiac-gating. Comparisons of accuracy were performed with standard twice-refocused spin echo (TRSE) DTI in each case and good quantitative agreement was found between diffusion eigenvalues, mean diffusivity, and fractional anisotropy derived from TRSE-DTI and from the MEDITATE sequence. Orientation patterns were correctly reproduced in both isotropic and anisotropic phantoms, and approximately so for in vivo imaging. This illustrates that the MEDITATE method of compressed diffusion encoding is feasible on the clinical scanner platform. With future development and employment of appropriate view-sharing image encoding this technique may be used in clinical applications requiring time-sensitive acquisition of DTI parameters such as dynamical DTI in muscle. PMID:23828606

  19. Cerebral Amyloid Angiopathy: An Important Differential Diagnosis of Stroke in the Elderly

    PubMed Central

    AZMIN, Shahrul; OSMAN, Syazarina Sharis; MUKARI, Shahizon; SAHATHEVAN, Ramesh

    2015-01-01

    Cerebral amyloid angiopathy (CAA) accounts for approximately 10–20% of spontaneous intracerebral haemorrhage (ICH). This figure is thought to be higher in the elderly population. With the increasing life expectancy of our population, we anticipate that the prevalence of CAA- related ICH will increase in tandem. Although CAA-related ICH and hypertension-related ICH are distinct entities based on histopathology and imaging, the clinical presentation of the two conditions is similar. The use of brain computed tomography (CT) scans remain the ICH imaging modality of choice in Malaysia due to its availability, cost, and sensitivity in detecting acute bleeds. On the other hand, the use of brain magnetic resonance imaging (MRI) with susceptibility-weighted imaging (SWI) sequencing enables the clinician to determine the presence of chronic blood products in the brain, especially clinically silent microbleeds associated with CAA. However, the use of brain MRI scans in our country is limited and leads to a blurring of lines when differentiating between hypertension-related ICH and CAA-related ICH. How this misrepresentation affects the management of these conditions is unclear. In this study, we present two cases of ICH to illustrate this point and to serve as a springboard to question current practice and promote discussion. PMID:25892953

  20. Saethre-Chotzen syndrome, Pro136His TWIST mutation, hearing loss, and external and middle ear structural anomalies: report on a Brazilian family.

    PubMed

    Lamônica, Dionísia A C; Maximino, Luciana P; Feniman, Mariza Ribeiro; Silva, Greyce K; Zanchetta, Sthella; Abramides, Dagma V M; Passos-Bueno, Maria Rita; Rocha, Kátia; Richieri-Costa, Antonio

    2010-09-01

    To describe the clinical, speech, hearing, and imaging findings in three members of a Brazilian family with Saethre-Chotzen syndrome (SCS) who presented some unusual characteristics within the spectrum of the syndrome. Clinical evaluation was performed by a multidisciplinary team. Direct sequencing of the polymerase chain reaction-amplified coding region of the TWIST1 gene, routine and electrophysiological hearing evaluation, speech evaluation, and imaging studies through computed tomography (CT) scan and magnetic resonance imaging (MRI) were performed. TWIST1 gene analysis revealed a Pro136His mutation in all patients. Hearing evaluation showed peripherial and mixed hearing loss in two of the patients, one of them with severe unilateral microtia. Computed tomography scan showed structural middle ear anomalies, and MRI showed distortion of the skull contour as well as some of the brain structures. We report a previously undescribed TWIST1 gene mutation in patients with SCS. There is evidence that indicates hearing loss (conductive and mixed) can be related both with middle ear (microtia, high jugular bulb, and enlarged vestibules) as well as with brain stem anomalies. Here we discuss the relationship between the gene mutation and the clinical, imaging, speech, and hearing findings.

  1. Quantitative Characterizations of Ultrashort Echo (UTE) Images for Supporting Air-Bone Separation in the Head

    PubMed Central

    Hsu, Shu-Hui; Cao, Yue; Lawrence, Theodore S.; Tsien, Christina; Feng, Mary; Grodzki, David M.; Balter, James M.

    2015-01-01

    Accurate separation of air and bone is critical for creating synthetic CT from MRI to support Radiation Oncology workflow. This study compares two different ultrashort echo-time sequences in the separation of air from bone, and evaluates post-processing methods that correct intensity nonuniformity of images and account for intensity gradients at tissue boundaries to improve this discriminatory power. CT and MRI scans were acquired on 12 patients under an institution review board-approved prospective protocol. The two MRI sequences tested were ultra-short TE imaging using 3D radial acquisition (UTE), and using pointwise encoding time reduction with radial acquisition (PETRA). Gradient nonlinearity correction was applied to both MR image volumes after acquisition. MRI intensity nonuniformity was corrected by vendor-provided normalization methods, and then further corrected using the N4itk algorithm. To overcome the intensity-gradient at air-tissue boundaries, spatial dilations, from 0 to 4 mm, were applied to threshold-defined air regions from MR images. Receiver operating characteristic (ROC) analyses, by comparing predicted (defined by MR images) versus “true” regions of air and bone (defined by CT images), were performed with and without residual bias field correction and local spatial expansion. The post-processing corrections increased the areas under the ROC curves (AUC) from 0.944 ± 0.012 to 0.976 ± 0.003 for UTE images, and from 0.850 ± 0.022 to 0.887 ± 0.012 for PETRA images, compared to without corrections. When expanding the threshold-defined air volumes, as expected, sensitivity of air identification decreased with an increase in specificity of bone discrimination, but in a non-linear fashion. A 1-mm air mask expansion yielded AUC increases of 1% and 4% for UTE and PETRA images, respectively. UTE images had significantly greater discriminatory power in separating air from bone than PETRA images. Post-processing strategies improved the discriminatory power of air from bone for both UTE and PETRA images, and reduced the difference between the two imaging sequences. Both postprocessed UTE and PETRA images demonstrated sufficient power to discriminate air from bone to support synthetic CT generation from MRI data. PMID:25776205

  2. Space Radar Image of West Texas - SAR scan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the forthcoming Canadian RADARSAT satellite. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  3. A fast screening protocol for carotid plaques imaging using 3D multi-contrast MRI without contrast agent.

    PubMed

    Zhang, Na; Zhang, Lei; Yang, Qi; Pei, Anqi; Tong, Xiaoxin; Chung, Yiu-Cho; Liu, Xin

    2017-06-01

    To implement a fast (~15min) MRI protocol for carotid plaque screening using 3D multi-contrast MRI sequences without contrast agent on a 3Tesla MRI scanner. 7 healthy volunteers and 25 patients with clinically confirmed transient ischemic attack or suspected cerebrovascular ischemia were included in this study. The proposed protocol, including 3D T1-weighted and T2-weighted SPACE (variable-flip-angle 3D turbo spin echo), and T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) was performed first and was followed by 2D T1-weighted and T2-weighted turbo spin echo, and post-contrast T1-weighted SPACE sequences. Image quality, number of plaques, and vessel wall thicknesses measured at the intersection of the plaques were evaluated and compared between sequences. Average examination time of the proposed protocol was 14.6min. The average image quality scores of 3D T1-weighted, T2-weighted SPACE, and T1-weighted magnetization prepared rapid acquisition gradient echo were 3.69, 3.75, and 3.48, respectively. There was no significant difference in detecting the number of plaques and vulnerable plaques using pre-contrast 3D images with or without post-contrast T1-weighted SPACE. The 3D SPACE and 2D turbo spin echo sequences had excellent agreement (R=0.96 for T1-weighted and 0.98 for T2-weighted, p<0.001) regarding vessel wall thickness measurements. The proposed protocol demonstrated the feasibility of attaining carotid plaque screening within a 15-minute scan, which provided sufficient anatomical coverage and critical diagnostic information. This protocol offers the potential for rapid and reliable screening for carotid plaques without contrast agent. Copyright © 2016. Published by Elsevier Inc.

  4. Assessing the effects of subject motion on T2 relaxation under spin tagging (TRUST) cerebral oxygenation measurements using volume navigators.

    PubMed

    Stout, Jeffrey N; Tisdall, M Dylan; McDaniel, Patrick; Gagoski, Borjan; Bolar, Divya S; Grant, Patricia Ellen; Adalsteinsson, Elfar

    2017-12-01

    Subject motion may cause errors in estimates of blood T 2 when using the T 2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. The effects of integrated vNavs on TRUST-based T 2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T 2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. vNavs negligibly affected venous blood T 2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T 2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. Motion during TRUST causes an overestimate of T 2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.

    2015-01-01

    The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.

  6. Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results.

    PubMed

    Breyer, Tobias; Wanke, Isabel; Maderwald, Stefan; Woermann, Friedrich G; Kraff, Oliver; Theysohn, Jens M; Ebner, Alois; Forsting, Michael; Ladd, Mark E; Schlamann, Marc

    2010-04-01

    Focal epilepsies potentially can be cured by neurosurgery; other treatment options usually remain symptomatic. High-resolution magnetic resonance (MR) imaging is the central imaging strategy in the evaluation of focal epilepsy. The most common substrate of temporal epilepsies is hippocampal sclerosis (HS), which cannot always be sufficiently characterized with current MR field strengths. Therefore, the purpose of our study was to demonstrate the feasibility of high-resolution MR imaging at 7 Tesla in patients with focal epilepsy resulting from a HS and to improve image resolution at 7 Tesla in patients with HS. Six patients with known HS were investigated with T1-, T2-, T2(*)-, and fluid-attenuated inversion recovery-weighted sequences at 7 Tesla with an eight-channel transmit-receive head coil. Total imaging time did not exceed 90 minutes per patient. High-resolution imaging at 7 Tesla is feasible and reveals high resolution of intrahippocampal structures in vivo. HS was confirmed in all patients. The maximum non-interpolated in-plane resolution reached 0.2 x 0.2 mm(2) in T2(*)-weighted images. The increased susceptibility effects at 7 Tesla revealed identification of intrahippocampal structures in more detail than at 1.5 Tesla, but otherwise led to stronger artifacts. Imaging revealed regional differences in hippocampal atrophy between patients. The scan volume was limited because of specific absorption rate restrictions, scanning time was reasonable. High-resolution imaging at 7 Tesla is promising in presurgical epilepsy imaging. "New" contrasts may further improve detection of even very small intrahippocampal structural changes. Therefore, further investigations will be necessary to demonstrate the potential benefit for presurgical selection of patients with various lesion patterns in mesial temporal epilepsies resulting from a unilateral HS. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  7. Intensity-based dual model method for generation of synthetic CT images from standard T2-weighted MR images - Generalized technique for four different MR scanners.

    PubMed

    Koivula, Lauri; Kapanen, Mika; Seppälä, Tiina; Collan, Juhani; Dowling, Jason A; Greer, Peter B; Gustafsson, Christian; Gunnlaugsson, Adalsteinn; Olsson, Lars E; Wee, Leonard; Korhonen, Juha

    2017-12-01

    Recent studies have shown that it is possible to conduct entire radiotherapy treatment planning (RTP) workflow using only MR images. This study aims to develop a generalized intensity-based method to generate synthetic CT (sCT) images from standard T2-weighted (T2 w ) MR images of the pelvis. This study developed a generalized dual model HU conversion method to convert standard T2 w MR image intensity values to synthetic HU values, separately inside and outside of atlas-segmented bone volume contour. The method was developed and evaluated with 20 and 35 prostate cancer patients, respectively. MR images with scanning sequences in clinical use were acquired with four different MR scanners of three vendors. For the generated synthetic CT (sCT) images of the 35 prostate patients, the mean (and maximal) HU differences in soft and bony tissue volumes were 16 ± 6 HUs (34 HUs) and -46 ± 56 HUs (181 HUs), respectively, against the true CT images. The average of the PTV mean dose difference in sCTs compared to those in true CTs was -0.6 ± 0.4% (-1.3%). The study provides a generalized method for sCT creation from standard T2 w images of the pelvis. The method produced clinically acceptable dose calculation results for all the included scanners and MR sequences. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Visions of our Planet's Atmosphere, Land and Oceans

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to South Africa, Cape Town and Johannesburg using NASA Terra/MODIS data, Landsat data and 1 m IKONOS 'Spy Satellite' data. Zoom in to any place South Africa using Earth Viewer 3D from Keyhole Inc. and Landsat data at 30 m resolution Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & 'tornadoes'. See the latest visualizations of spectacular images from NASANOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained.

  9. Positron emission tomography/magnetic resonance imaging (PET/MRI): An update and initial experience at HC-FMUSP.

    PubMed

    Queiroz, Marcelo A; Barbosa, Felipe de Galiza; Buchpiguel, Carlos Alberto; Cerri, Giovanni Guido

    2018-01-01

    The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT), including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.

  10. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  11. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways.

    PubMed

    Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  12. Massive thymic hemorrhage and hemothorax occurring in utero.

    PubMed

    Gargano, Giancarlo; Paltrinieri, Anna Lucia; Gallo, Claudio; Di Pancrazio, Luciana; Roversi, Maria Federica; Ferrari, Fabrizio

    2015-11-14

    Thymic enlargement is a common and physiological finding in children and neonates' X-rays, but it is usually asymptomatic. Occasionally it can cause respiratory distress. In most cases the aetiology of this expansion remains unclear and it is diagnosed as a thymic hyperplasia. True thymic hyperplasia is defined as a gland expansion, both in size and weight, while maintaining normal microscopic architecture. Often it is a diagnosis of exclusion and prognosis is good. Thymic haemorrhage is an unusual condition related to high foetal and neonatal mortality. We report a case of spontaneous massive thymic haemorrhage in a newborn developing at birth acute respiratory distress associated with severe bilateral haemothorax. Thymic enlargement was evident after pleural evacuation and confirmed by radiographic, Computed Tomography (CT) images and Magnetic Resonance Imaging (MRI) sequences. The spontaneous resolution of this enlargement seen with CT scan and MRI sequences suggested a thymic haemorrhage; surgery was not necessary. Thymic haemorrhage should be considered in newborn infants with pleural effusion, mediastinal space enlargement and Respiratory Distress.

  13. J-Refocused Coherence Transfer Spectroscopic Imaging at 7 T in Human Brain

    PubMed Central

    Pan, J.W.; Avdievich, N.; Hetherington, H.P.

    2013-01-01

    Short echo spectroscopy is commonly used to minimize signal modulation due to J-evolution of the cerebral amino acids. However, short echo acquisitions suffer from high sensitivity to macromolecules which make accurate baseline determination difficult. In this report, we describe implementation at 7 T of a double echo J-refocused coherence transfer sequence at echo time (TE) of 34 msec to minimize J-modulation of amino acids while also decreasing interfering macromolecule signals. Simulation of the pulse sequence at 7 T shows excellent resolution of glutamate, glutamine, and N-acetyl aspartate. B1 sufficiency at 7 T for the double echo acquisition is achieved using a transceiver array with radiofrequency (RF) shimming. Using an alternate RF distribution to minimize receiver phase cancellation in the transceiver, accurate phase determination for the coherence transfer is achieved with rapid single scan calibration. This method is demonstrated in spectroscopic imaging mode with n = 5 healthy volunteers resulting in metabolite values consistent with literature and in a patient with epilepsy. PMID:20648684

  14. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    PubMed

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  15. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    PubMed

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Fast Human Detection for Intelligent Monitoring Using Surveillance Visible Sensors

    PubMed Central

    Ko, Byoung Chul; Jeong, Mira; Nam, JaeYeal

    2014-01-01

    Human detection using visible surveillance sensors is an important and challenging work for intruder detection and safety management. The biggest barrier of real-time human detection is the computational time required for dense image scaling and scanning windows extracted from an entire image. This paper proposes fast human detection by selecting optimal levels of image scale using each level's adaptive region-of-interest (ROI). To estimate the image-scaling level, we generate a Hough windows map (HWM) and select a few optimal image scales based on the strength of the HWM and the divide-and-conquer algorithm. Furthermore, adaptive ROIs are arranged per image scale to provide a different search area. We employ a cascade random forests classifier to separate candidate windows into human and nonhuman classes. The proposed algorithm has been successfully applied to real-world surveillance video sequences, and its detection accuracy and computational speed show a better performance than those of other related methods. PMID:25393782

  17. Evaluation of the effect scan pattern has on the trueness and precision of six intraoral digital impression systems.

    PubMed

    Mennito, Anthony S; Evans, Zachary P; Lauer, Abigail W; Patel, Ravi B; Ludlow, Mark E; Renne, Walter G

    2018-03-01

    Clinicians have been slow to adopt digital impression technologies due possibly to perceived technique sensitivities involved in data acquisition. This research has two aims: determine whether scan pattern and sequence affects the accuracy of the three-dimensional (3D) model created from this digital impression and to compare the 5 imaging systems with regards to their scanning accuracy for sextant impressions. Six digital intraoral impression systems were used to scan a typodont sextant with optical properties similar to natural teeth. The impressions were taken using five different scan patterns and the resulting digital models were overlayed on a master digital model to determine the accuracy of each scanner performing each scan pattern. Furthermore, regardless of scan pattern, each digital impression system was evaluated for accuracy to the other systems in this same manner. No differences of significance were noted in the accuracy of 3D models created using six distinct scan patterns with one exception involving the CEREC Omnicam. Planmeca Planscan was determined to be the truest scanner while 3Shape Trios was determined to be the most precise for sextant impression making. Scan pattern does not significantly affect the accuracy of the resulting digital model for sextant scanning. Companies who make digital impression systems often recommend a scan pattern specific for their system. However, every clinical scanning scenario is different and may require a different approach. Knowing how important scan pattern is with regards to accuracy would be helpful for guiding a growing number of practitioners who are utilizing this technology. © 2018 Wiley Periodicals, Inc.

  18. Visualizing and quantifying the in vivo structure and dynamics of the Arabidopsis cortical cytoskeleton using CLSM and VAEM.

    PubMed

    Rosero, Amparo; Zárský, Viktor; Cvrčková, Fatima

    2014-01-01

    The cortical microtubules, and to some extent also the actin meshwork, play a central role in the shaping of plant cells. Transgenic plants expressing fluorescent protein markers specifically tagging the two main cytoskeletal systems are available, allowing noninvasive in vivo studies. Advanced microscopy techniques, in particular confocal laser scanning microscopy (CLSM) and variable angle epifluorescence microscopy (VAEM), can be nowadays used for imaging the cortical cytoskeleton of living cells with unprecedented spatial and temporal resolution. With the aid of suitable computing techniques, quantitative information can be extracted from microscopic images and video sequences, providing insight into both architecture and dynamics of the cortical cytoskeleton.

  19. [Magnetic resonance imaging of tibial periostitis].

    PubMed

    Meyer, X; Boscagli, G; Tavernier, T; Aczel, F; Weber, F; Legros, R; Charlopain, P; Martin, J P

    1998-01-01

    Tibial periostitis frequently occurs in athletes. We present our experience with MRI in a series of 7 patients (11 legs) with this condition. The clinical presentation and scintigraphic scanning suggested the diagnosis. MRI exploration of 11 legs demonstrated a high band-like juxta-osseous signal enhancement of SE and IR T2 weighted sequences in 6 cases, a signal enhancement after i.v. contrast administration in 4. Tibial periostitis is a clinical diagnosis and MRI and scintigraphic findings can be used to assure the differential diagnosis in difficult cases with stress fracture. MRI can visualize juxta-osseous edematous and inflammatory reactions and an increased signal would appear to be characteristic when the band-like image is fixed to the periosteum.

  20. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  1. Three-Dimensional Isotropic Fat-Suppressed Proton Density-Weighted MRI at 3 Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging.

    PubMed

    Homsi, R; Gieseke, J; Luetkens, J A; Kupczyk, P; Maedler, B; Kukuk, G M; Träber, F; Agha, B; Rauch, M; Rajakaruna, N; Willinek, W; Schild, H H; Hadizadeh, D R

    2016-10-01

    To evaluate whether a 3 D proton density-weighted fat-suppressed sequence (PDwFS) of the knee is able to replace multiplanar 2D-PDwFS. 52 patients (26 men, mean age: 41.9 ± 14.5years) underwent magnetic resonance imaging (MRI) of the knee at 3.0 Tesla using a T/R-coil. The imaging protocol included 3 planes of 2D-PDwFS (acquisition time (AT): 6:40 min; voxel sizes: 0.40 - 0.63 × 0.44 - 0.89 × 3mm³) and a 3D-PDwFS (AT: 6:31 min; voxel size: 0.63 × 0.68 × 0.63mm³). Homogeneity of fat suppression (HFS), artifacts, and image sharpness (IS) were evaluated on a 5-point scale (5[excellent] - 1[non-diagnostic]). The sum served as a measure for the overall image quality (OIQ). Contrast ratios (CR) compared to popliteal muscle were calculated for the meniscus (MEN), anterior (ACL) and posterior cruciate ligaments (PCL). In 13 patients who underwent arthroscopic knee surgery, two radiologists evaluated the presence of meniscal, ligamental and cartilage lesions to estimate the sensitivity and specificity of lesion detection. The CR was higher in the ACL, PCL and MEN in 3D- PDwFS compared to 2D-PDwFS (p < 0.01 for ACL and PCL; p = 0.07 for MEN). Compared to 2 D images, the OIQ was rated higher in 3D-PDwFS images (p < 0.01) due to fewer artifacts and HFS despite the lower IS (p < 0.01). The sensitivity and specificity of lesion detection in 3D- and 2D-PDwFS were similar. Compared to standard multiplanar 2D-PDwFS knee imaging, isotropic high spatial resolution 3D-PDwFS of the knee at 3.0 T can be acquired with high image quality in a reasonable scan time. Multiplanar reformations in arbitrary planes may serve as an additional benefit of 3D-PDwFS. • 3D-PDwFS of the knee is acquired with high image quality• 3D-PDwFS can be achieved in only one measurement with a reasonable scan time• 3D-PDwFS with the advantage of multiplanar reformation may replace 2D-PD-weighted knee MRI Citation Format: • Homsi R, Gieseke J, Luetkens JA et al. Three-Dimensional Isotropic Fat-Suppressed Proton Density-Weighted MRI at 3 Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging. Fortschr Röntgenstr 2016; 188: 949 - 956. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Imaging atomic-level random walk of a point defect in graphene

    NASA Astrophysics Data System (ADS)

    Kotakoski, Jani; Mangler, Clemens; Meyer, Jannik C.

    2014-05-01

    Deviations from the perfect atomic arrangements in crystals play an important role in affecting their properties. Similarly, diffusion of such deviations is behind many microstructural changes in solids. However, observation of point defect diffusion is hindered both by the difficulties related to direct imaging of non-periodic structures and by the timescales involved in the diffusion process. Here, instead of imaging thermal diffusion, we stimulate and follow the migration of a divacancy through graphene lattice using a scanning transmission electron microscope operated at 60 kV. The beam-activated process happens on a timescale that allows us to capture a significant part of the structural transformations and trajectory of the defect. The low voltage combined with ultra-high vacuum conditions ensure that the defect remains stable over long image sequences, which allows us for the first time to directly follow the diffusion of a point defect in a crystalline material.

  3. Development of a High Angular Resolution Diffusion Imaging Human Brain Template

    PubMed Central

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-01-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528

  4. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers.

    PubMed

    Wang, Jun; Bonnesen, Peter V; Rangel, E; Vallejo, E; Sanchez-Castillo, Ariadna; James Cleaves Ii, H; Baddorf, Arthur P; Sumpter, Bobby G; Pan, Minghu; Maksymovych, Petro; Fuentes-Cabrera, Miguel

    2016-01-04

    Self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N(9)-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two or more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. These characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Further, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.

  5. Magnetic resonance imaging of the posterior cruciate ligament in flexion.

    PubMed

    Craddock, William; Smithers, Troy; Harris, Craig; du Moulin, William; Molnar, Robert

    2018-06-01

    Posterior cruciate ligament (PCL) injuries of the knee are common and sometimes difficult to diagnose. Magnetic resonance imaging (MRI), performed using standard orthogonal plane views, is the investigation of choice. It can be particularly difficult to differentiate acute partial and complete tears and identify elongation of chronic healed tears. The aim of the paper is to describe a new method of positioning the patient with the knee flexed at 90°, allowing the PCL to be visualised in a position of greatest length and tension which may assist in differentiating and identifying these injuries. Four symptomatic patients with suspected PCL injuries, two acute and two chronic, were MRI scanned using a routine protocol with the knee in extension before performing oblique sagittal fast spin-echo (FSE) proton-density (PD) sequences with the knee positioned in 90° of flexion. The appearance of the PCLs were then qualitatively assessed. MRI scanning with the knee in flexion identified more extensive PCL injury than standard imaging. In the two patients with acute injuries, partial tears on the standard orthogonal plane views were found to be complete ruptures. In the two patients with chronic injuries, elongation of the PCL not identifiable on the standard orthogonal plane views was apparent. MRI scanning of the PCL with the knee flexed at 90° may help in differentiating partial and complete ruptures of the PCL and identifying elongation of the PCL in chronic injuries. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    PubMed

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  7. Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging.

    PubMed

    Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien

    2018-01-01

    To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Safety of externally stimulated intracranial electrodes during functional MRI at 1.5T.

    PubMed

    Bhattacharyya, Pallab K; Mullin, Jeffery; Lee, Bryan S; Gonzalez-Martinez, Jorge A; Jones, Stephen E

    2017-05-01

    Surgical resection of the epileptogenic zone (EZ) is a potential cure for medically refractory focal epilepsy. Proper identification of the EZ is essential for such resection. Synergistic application of functional magnetic resonance imaging (fMRI) simultaneously with stimulation of a single externalized intracranial stereotactic EEG (SEEG) electrode has the potential to improve identification of the EZ. While most EEG-fMRI studies use the electrodes passively to record electrical activity, it is possible to stimulate the brain using the electrodes by connecting them with conducting cables to the stimulation hardware. In this study, we investigated the effect of MRI-induced heating on a single SEEG electrode and its sensitivity to geometry, configuration, and associated connections required for the stimulation. The temperature increase of a single electrode embedded within a gel phantom and connected to an external stimulation system was measured during 1.5T MRI scans using adjacent fluoroptic temperature sensors. A receive-only split-array head coil and a transmit-receive head coil were used for testing. Sequences included a standard localizer, T1-weighted axial fast low-angle shot (FLASH), gradient echo-planar imaging (GE-EPI) axial fMRI, and a high specific absorption rate T2-weighted turbo spin-echo (TSE) axial scan. Variations of the electrode location and connecting cable configuration were tested. No unacceptable heating was observed with the standard sequences used for evaluation of the EZ. Considerable heating (up to 14°C) was observed with the TSE sequence, which is not used clinically. The temperature increase was insignificant (<0.05°C) for electrode contacts closest to the isocenter and connecting cables lying along the isocenter, and varied with configurations of the connecting cable assembly. Simultaneous intracranial electrode stimulation during fMRI using an externalized stimulation system may be safe with strict adherence to settings tested prior to the fMRI. Localizer, FLASH, and GE-EPI fMRI may be safely performed in patients with a single SEEG electrode following the configurations tested in this study, but high SAR TSE scans should not be performed in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. SU-E-J-220: Assessment of MRI Geometric Distortion in Head and Neck Cancer Patients Scanned in Immobilized Radiation Treatment Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C; Mohamed, A; Weygand, J

    2015-06-15

    Purpose: Uncertainties about geometric distortion have somewhat hindered MRI simulation in radiation therapy. Most of the geometric distortion studies were performed with phantom measurements but another major aspect of MR distortion is patient related. We studied the geometric distortion in patient images by comparing their MRI scans with the corresponding CT, using CT as the non-distorted gold standard. Methods: Ten H&N cancer patients were imaged with MRI as part of a prospective IRB approved study. All patients had their treatment planning CT done on the same day or within one week of the MRI. MR Images were acquired with amore » T2 SE sequence (1×1×2.5mm voxel size) in the same immobilization position as in the CT scans. MRI to CT rigid registration was then done and geometric distortion comparison was done by measuring the corresponding anatomical landmarks on both the MRI and the CT images by two observers. Several skin to skin (9 landmarks), bone to bone (8 landmarks), and soft tissue (3 landmarks) were measured at specific levels in horizontal and vertical planes of both scans. Results: The mean distortion for all landmark measurements in all scans was 1.8±1.9mm. For each patient 11 measurements were done in the horizontal plane while 9 were done in the vertical plane. The measured geometric distortion were significantly lower in the horizontal axis compared to the vertical axis (1.3±0.16 mm vs 2.2±0.19 mm, respectively, P=0.003*). The magnitude of distortion was lower in the bone to bone landmarks compared to the combined soft tissue and skin to skin landmarks (1.2±0.19 mm vs 2.3±0.17 mm, P=0.0006*). The mean distortion measured by observer one was not significantly different compared toobserver 2 (2.3 vs 2.4 mm, P=0.4). Conclusion: MRI geometric distortions were quantified in H&N patients with mean error of less than 2 mm. JW received a corporate sponsored research grant from Elekta.« less

  10. Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE.

    PubMed

    Sekine, Tetsuro; Amano, Yasuo; Takagi, Ryo; Matsumura, Yoshio; Murai, Yasuo; Kumita, Shinichiro

    2014-01-01

    A drawback of time-resolved 3-dimensional phase contrast magnetic resonance (4D Flow MR) imaging is its lengthy scan time for clinical application in the brain. We assessed the feasibility for flow measurement and visualization of 4D Flow MR imaging using Cartesian y-z radial sampling and that using k-t sensitivity encoding (k-t SENSE) by comparison with the standard scan using SENSE. Sixteen volunteers underwent 3 types of 4D Flow MR imaging of the brain using a 3.0-tesla scanner. As the standard scan, 4D Flow MR imaging with SENSE was performed first and then followed by 2 types of acceleration scan-with Cartesian y-z radial sampling and with k-t SENSE. We measured peak systolic velocity (PSV) and blood flow volume (BFV) in 9 arteries, and the percentage of particles arriving from the emitter plane at the target plane in 3 arteries, visually graded image quality in 9 arteries, and compared these quantitative and visual data between the standard scan and each acceleration scan. 4D Flow MR imaging examinations were completed in all but one volunteer, who did not undergo the last examination because of headache. Each acceleration scan reduced scan time by 50% compared with the standard scan. The k-t SENSE imaging underestimated PSV and BFV (P < 0.05). There were significant correlations for PSV and BFV between the standard scan and each acceleration scan (P < 0.01). The percentage of particles reaching the target plane did not differ between the standard scan and each acceleration scan. For visual assessment, y-z radial sampling deteriorated the image quality of the 3 arteries. Cartesian y-z radial sampling is feasible for measuring flow, and k-t SENSE offers sufficient flow visualization; both allow acquisition of 4D Flow MR imaging with shorter scan time.

  11. Targeted delayed scanning at CT urography: a worthwhile use of radiation?

    PubMed

    Hack, Kalesha; Pinto, Patricia A; Gollub, Marc J

    2012-10-01

    To determine whether ureteral segments not filled with contrast material at computed tomographic (CT) urography ever contain tumor detectable only by filling these segments with contrast material. In this institutional review board-approved, HIPAA-compliant retrospective study, with waiver of informed consent, databases were searched for all patients who underwent heminephroureterectomy or ureteroscopy between January 1, 2001, and December 31, 2009, with available CT urography findings in the 12 months prior to surgery or biopsy and patients who had undergone at least two CT urography procedures with a minimum 5-year follow-up between studies. One of two radiologists blinded to results of pathologic examination recorded location of unfilled segments, time of scan, subsequent filling, and pathologic or 5-year follow-up CT urography results. Tumors were considered missed in an unfilled segment if tumor was found at pathologic examination or follow-up CT urography in the same one-third of the ureter and there were no secondary signs of a mass with other index CT urography sequences. Estimated radiation dose for additional delayed sequences was calculated with a 32-cm phantom. In 59 male and 33 female patients (mean age, 66 years) undergoing heminephroureterectomy, 27 tumors were present in 41 partially nonopacified ureters in 20 patients. Six tumors were present in nonopacified segments (one multifocal, none bilateral); all were identifiable by means of secondary signs present with earlier sequences. Among 182 lesions biopsied at ureteroscopy in 124 male and 53 female patients (mean age, 69 years), 28 tumors were present in nonopacified segments in 25 patients (four multifocal, none bilateral), all with secondary imaging signs detectable without delayed scanning. In 64 male and 29 female patients (mean age, 69 years) who underwent 5-year follow-up CT urography, three new tumors were revealed in three patients; none occurred in the unfilled ureter at index CT urography. Estimated radiation dose from additional sequences was 4.3 mSv per patient. Targeted delayed scanning at CT urography yielded no additional ureteral tumors and resulted in additional radiation exposure. © RSNA, 2012.

  12. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    PubMed Central

    Kim, Hyun-joo; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    Objective We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Materials and Methods Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. Results The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). Conclusion The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella. PMID:21228943

  13. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    PubMed

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella.

  14. Assessment of sequence dependent geometric distortion in contrast-enhanced MR images employed in stereotactic radiosurgery treatment planning.

    PubMed

    Pappas, Eleftherios P; Seimenis, Ioannis; Dellios, Dimitrios; Kollias, Georgios; Lampropoulos, Kostas I; Karaiskos, Pantelis

    2018-06-25

    This work focuses on MR-related sequence dependent geometric distortions, which are associated with B 0 inhomogeneity and patient-induced distortion (susceptibility differences and chemical shift effects), in MR images used in stereotactic radiosurgery (SRS) applications. Emphasis is put on characterizing distortion at target brain areas identified by gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) paramagnetic contrast agent uptake. A custom-made phantom for distortion detection was modified to accommodate two small cylindrical inserts, simulating small brain targets. The inserts were filled with Gd-DTPA solutions of various concentrations (0-20 mM). The phantom was scanned at 1.5 T unit using both the reversed read gradient polarity (to determine the overall distortion as reflected by the inserts centroid offset) and the field mapping (to determine B 0 inhomogeneity related distortion in the vicinity of the inserts) techniques. Post-Gd patient images involving a total of 10 brain metastases/targets were also studied using a similar methodology. For the specific imaging conditions, contrast agent presence was found to evidently affect phantom insert position, with centroid offset extending up to 0.068 mm mM -1 (0.208 ppm mM -1 ). The Gd-DTPA induced distortion in patient images was of the order of 0.5 mm for the MRI protocol used, in agreement with the phantom results. Total localization uncertainty of metastases-targets in patient images ranged from 0.35 mm to 0.87 mm, depending on target location, with an average value of 0.54 mm (2.24 ppm). This relative wide range of target localization uncertainty results from the fact that the B 0 inhomogeneity distortion vector in a specific location may add to or partly counterbalance Gd-DTPA induced distortion, thus increasing or decreasing, respectively, the total sequence dependent distortion. Although relatively small, the sequence dependent distortion in Gd-DTPA enhanced brain images can be easily taken into account for SRS treatment planning and target definition purposes by carefully inspecting both the forward and reversed polarity series.

  15. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less

  16. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    DOE PAGES

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; ...

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less

  17. MRI T2 Mapping of the Knee Articular Cartilage Using Different Acquisition Sequences and Calculation Methods at 1.5 Tesla.

    PubMed

    Mars, Mokhtar; Bouaziz, Mouna; Tbini, Zeineb; Ladeb, Fethi; Gharbi, Souha

    2018-06-12

    This study aims to determine how Magnetic Resonance Imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 Tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. This study was performed on phantom and twenty-nine patients who underwent MRI of the knee joint at 1.5 Tesla. The protocol includes T2 mapping sequences based on Single Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and monoexponential fit). Signal to Noise Ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). t-Test showed no significant difference between SNR values for all sequences. T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping. ©2018The Author(s). Published by S. Karger AG, Basel.

  18. Optimization of sampling pattern and the design of Fourier ptychographic illuminator.

    PubMed

    Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan

    2015-03-09

    Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology.

  19. Software electron counting for low-dose scanning transmission electron microscopy.

    PubMed

    Mittelberger, Andreas; Kramberger, Christian; Meyer, Jannik C

    2018-05-01

    The performance of the detector is of key importance for low-dose imaging in transmission electron microscopy, and counting every single electron can be considered as the ultimate goal. In scanning transmission electron microscopy, low-dose imaging can be realized by very fast scanning, however, this also introduces artifacts and a loss of resolution in the scan direction. We have developed a software approach to correct for artifacts introduced by fast scans, making use of a scintillator and photomultiplier response that extends over several pixels. The parameters for this correction can be directly extracted from the raw image. Finally, the images can be converted into electron counts. This approach enables low-dose imaging in the scanning transmission electron microscope via high scan speeds while retaining the image quality of artifact-free slower scans. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. The gastrin/cholecystokinin-B receptor on prostate cells--a novel target for bifunctional prostate cancer imaging.

    PubMed

    Sturzu, Alexander; Klose, Uwe; Sheikh, Sumbla; Echner, Hartmut; Kalbacher, Hubert; Deeg, Martin; Nägele, Thomas; Schwentner, Christian; Ernemann, Ulrike; Heckl, Stefan

    2014-02-14

    The means of identifying prostate carcinoma and its metastases are limited. The contrast agents used in magnetic resonance imaging clinical diagnostics are not taken up into the tumor cells, but only accumulate in the interstitial space of the highly vasculated tumor. We examined the gastrin/cholecystokinin-B receptor as a possible target for prostate-specific detection using the C-terminal seven amino acid sequence of the gastrin peptide hormone. The correct sequence and a scrambled control sequence were coupled to the fluorescent dye rhodamine and the magnetic resonance imaging contrast agent gadolinium (Gd)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Expression analysis of the gastrin receptor mRNA was performed by reverse transcriptase polymerase chain reaction on PC3 prostate carcinoma cells, U373 glioma, U2OS osteosarcoma and Colo205 colon carcinoma cells. After having confirmed elevated expression of gastrin receptor in PC3 cells and very low expression of the receptor in Colo205 cells, these two cell lines were used to create tumor xenografts on nude mice for in vivo experiments. Confocal lasers scanning microscopy and magnetic resonance imaging showed a high specificity of the correct conjugate for the PC3 xenografts. Staining of the PC3 xenografts was much weaker with the scrambled conjugate while the Colo205 xenografts showed no marked staining with any of the conjugates. In vitro experiments comparing the correct and scrambled conjugates on PC3 cells by magnetic resonance relaxometry and fluorescence-activated cell sorting confirmed markedly higher specificity of the correct conjugate. The investigations show that the gastrin receptor is a promising tumor cell surface target for future prostate-cancer-specific imaging applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. International Cognition and Cancer Task Force Recommendations for Neuroimaging Methods in the Study of Cognitive Impairment in Non-CNS Cancer Patients.

    PubMed

    Deprez, Sabine; Kesler, Shelli R; Saykin, Andrew J; Silverman, Daniel H S; de Ruiter, Michiel B; McDonald, Brenna C

    2018-03-01

    Cancer- and treatment-related cognitive changes have been a focus of increasing research since the early 1980s, with meta-analyses demonstrating poorer performance in cancer patients in cognitive domains including executive functions, processing speed, and memory. To facilitate collaborative efforts, in 2011 the International Cognition and Cancer Task Force (ICCTF) published consensus recommendations for core neuropsychological tests for studies of cancer populations. Over the past decade, studies have used neuroimaging techniques, including structural and functional magnetic resonance imaging (fMRI) and positron emission tomography, to examine the underlying brain basis for cancer- and treatment-related cognitive declines. As yet, however, there have been no consensus recommendations to guide researchers new to this field or to promote the ability to combine data sets. We first discuss important methodological issues with regard to neuroimaging study design, scanner considerations, and sequence selection, focusing on concerns relevant to cancer populations. We propose a minimum recommended set of sequences, including a high-resolution T1-weighted volume and a resting state fMRI scan. Additional advanced imaging sequences are discussed for consideration when feasible, including task-based fMRI and diffusion tensor imaging. Important image data processing and analytic considerations are also reviewed. These recommendations are offered to facilitate increased use of neuroimaging in studies of cancer- and treatment-related cognitive dysfunction. They are not intended to discourage investigator-initiated efforts to develop cutting-edge techniques, which will be helpful in advancing the state of the knowledge. Use of common imaging protocols will facilitate multicenter and data-pooling initiatives, which are needed to address critical mechanistic research questions.

  2. SU-E-I-60: Quality Assurance Testing Methods and Customized Phantom for Magnetic Resonance Imaging and Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, K-H; Lee, D-W; Choe, B-Y

    2015-06-15

    Purpose: The objectives of this study are to develop an magnetic resonance imaging and spectroscopy (MRI-MRS) fused phantom along with the inserts for metabolite quantification and to conduct quantitative analysis and evaluation of the layered vials of brain-mimicking solution for quality assurance (QA) performance, according to the localization sequence. Methods: The outer cylindrical phantom body is made of acrylic materials. The section other than where the inner vials are located was filled with copper sulfate and diluted with water so as to reduce the T1 relaxation time. Sodium chloride was included to provide conductivity similar to the human body. Allmore » measurements of MRI and MRS were made using a 3.0 T scanner (Achiva Tx 3.0 T; Philips Medical Systems, Netherlands). The MRI scan parameters were as follows: (1) spin echo (SE) T1-weighted image: repetition time (TR), 500ms; echo time (TE), 20ms; matrix, 256×256; field of view (FOV), 250mm; gap, 1mm; number of signal averages (NSA), 1; (2) SE T2-weighted image: TR, 2,500 ms; TE, 80 ms; matrix, 256×256; FOV, 250mm; gap, 1mm; NSA, 1; 23 slice images were obtained with slice thickness of 5mm. The water signal of each volume of interest was suppressed by variable pulse power and optimized relaxation delays (VAPOR) applied before the scan. By applying a point-resolved spectroscopy sequence, the MRS scan parameters were as follows: voxel size, 0.8×0.8×0.8 cm{sup 3}; TR, 2,000ms; TE, 35ms; NSA, 128. Results: Using the fused phantom, the results of measuring MRI factors were: geometric distortion, <2% and ±2 mm; image intensity uniformity, 83.09±1.33%; percent-signal ghosting, 0.025±0.004; low-contrast object detectability, 27.85±0.80. In addition, the signal-to-noise ratio of N-acetyl-aspartate was consistently high (42.00±5.66). Conclusion: The MRI-MRS QA factors obtained simultaneously using the phantom can facilitate evaluation of both images and spectra, and provide guidelines for obtaining MRI and MRS QA factors simultaneously. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)« less

  3. Unenhanced 320-row multidetector computed tomography of the brain in children: comparison of image quality and radiation dose among wide-volume, one-shot volume, and helical scan modes.

    PubMed

    Jeon, Sun Kyung; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Yeon Jin; Ha, Ji Young; Lee, Seung Hyun; Hyun, Hyejin; Kim, In-One

    2018-04-01

    The 320-row multidetector computed tomography (CT) scanner has multiple scan modes, including volumetric modes. To compare the image quality and radiation dose of 320-row CT in three acquisition modes - helical, one-shot volume, and wide-volume scan - at pediatric brain imaging. Fifty-seven children underwent unenhanced brain CT using one of three scan modes (helical scan, n=21; one-shot volume scan, n=17; wide-volume scan, n=19). For qualitative analysis, two reviewers evaluated overall image quality and image noise using a 5-point grading system. For quantitative analysis, signal-to-noise ratio, image noise and posterior fossa artifact index were calculated. To measure the radiation dose, adjusted CT dose index per unit volume (CTDI adj ) and dose length product (DLP) were compared. Qualitatively, the wide-volume scan showed significantly less image noise than the helical scan (P=0.009), and less streak artifact than the one-shot volume scan (P=0.001). The helical mode showed significantly lower signal-to-noise ratio, with a higher image noise level compared with the one-shot volume and wide-volume modes (all P<0.05). The CTDI adj and DLP were significantly lower in the one-shot volume and wide-volume modes compared with those in the helical scan mode (all P<0.05). For pediatric unenhanced brain CT, both the wide-volume and one-shot volume scans reduced radiation dose compared to the helical scan mode, while the wide-volume scan mode showed fewer streak artifacts in the skull vertex and posterior fossa than the one-shot volume scan.

  4. An audit of imaging test utilization for the management of lymphoma in an oncology hospital: implications for resource planning?

    PubMed

    Schwartz, A; Gospodarowicz, M K; Khalili, K; Pintilie, M; Goddard, S; Keller, A; Tsang, R W

    2006-02-01

    The purpose of this study was to assist with resource planning by examining the pattern of physician utilization of imaging procedures for lymphoma patients in a dedicated oncology hospital. The proportion of imaging tests ordered for routine follow up with no specific clinical indication was quantified, with specific attention to CT scans. A 3-month audit was performed. The reasons for ordering all imaging procedures (X-rays, CT scans, ultrasound, nuclear scan and MRI) were determined through a retrospective chart review. 411 lymphoma patients had 686 assessments (sets of imaging tests) and 981 procedures (individual imaging tests). Most procedures were CT scans (52%) and chest radiographs (30%). The most common reasons for ordering imaging were assessing response (23%), and investigating new symptoms (19%). Routine follow up constituted 21% of the assessments (142/686), and of these, 82% were chest radiographs (116/142), while 24% (34/142) were CT scans. With analysis restricted to CT scans (296 assessments in 248 patients), the most common reason for ordering CT scans were response evaluation (40%), and suspicion of recurrence and/or new symptom (23%). Follow-up CT scans done with no clinical indication comprised 8% (25/296) of all CT assessments. Staging CT scans were under-represented at 6% of all assessments. Imaging with CT scans for follow up of asymptomatic patients is infrequent. However, scans done for staging new lymphoma patients were unexpectedly low in frequency, due to scans done elsewhere prior to referral. This analysis uncovered utilization patterns, helped resource planning and provided data to reduce unnecessary imaging procedures.

  5. Real time magnetic resonance guided endomyocardial local delivery

    PubMed Central

    Corti, R; Badimon, J; Mizsei, G; Macaluso, F; Lee, M; Licato, P; Viles-Gonzalez, J F; Fuster, V; Sherman, W

    2005-01-01

    Objective: To investigate the feasibility of targeting various areas of left ventricle myocardium under real time magnetic resonance (MR) imaging with a customised injection catheter equipped with a miniaturised coil. Design: A needle injection catheter with a mounted resonant solenoid circuit (coil) at its tip was designed and constructed. A 1.5 T MR scanner with customised real time sequence combined with in-room scan running capabilities was used. With this system, various myocardial areas within the left ventricle were targeted and injected with a gadolinium-diethylenetriaminepentaacetic acid (DTPA) and Indian ink mixture. Results: Real time sequencing at 10 frames/s allowed clear visualisation of the moving catheter and its transit through the aorta into the ventricle, as well as targeting of all ventricle wall segments without further image enhancement techniques. All injections were visualised by real time MR imaging and verified by gross pathology. Conclusion: The tracking device allowed real time in vivo visualisation of catheters in the aorta and left ventricle as well as precise targeting of myocardial areas. The use of this real time catheter tracking may enable precise and adequate delivery of agents for tissue regeneration. PMID:15710717

  6. Rapid myelin water imaging in human cervical spinal cord.

    PubMed

    Ljungberg, Emil; Vavasour, Irene; Tam, Roger; Yoo, Youngjin; Rauscher, Alexander; Li, David K B; Traboulsee, Anthony; MacKay, Alex; Kolind, Shannon

    2017-10-01

    Myelin water imaging (MWI) using multi-echo T 2 relaxation is a quantitative MRI technique that can be used as an in vivo biomarker for myelin in the central nervous system. MWI using a multi-echo spin echo sequence currently takes more than 20 min to acquire eight axial slices (5 mm thickness) in the cervical spinal cord, making spinal cord MWI impractical for implementation in clinical studies. In this study, an accelerated gradient and spin echo sequence (GRASE), previously validated for brain MWI, was adapted for spinal cord MWI. Ten healthy volunteers were scanned with the GRASE sequence (acquisition time 8.5 min) and compared with the multi-echo spin echo sequence (acquisition time 23.5 min). Using region of interest analysis, myelin estimates obtained from the two sequences were found to be in good agreement (mean difference = -0.0092, 95% confidence interval =  - 0.0092 ± 0.061; regression slope = 1.01, ρ = 0.9). MWI using GRASE was shown to be highly reproducible with an average coefficient of variation of 6.1%. The results from this study show that MWI can be performed in the cervical spinal cord in less than 10 min, allowing for practical implementation in multimodal clinical studies. Magn Reson Med 78:1482-1487, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. SU-E-J-36: Comparison of CBCT Image Quality for Manufacturer Default Imaging Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, G

    Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth,more » Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes.« less

  8. Evaluating the effect of increased pitch, iterative reconstruction and dual source CT on dose reduction and image quality.

    PubMed

    Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier

    2018-06-14

    To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.

  9. Dynamic electronic collimation method for 3-D catheter tracking on a scanning-beam digital x-ray system

    PubMed Central

    Dunkerley, David A. P.; Slagowski, Jordan M.; Funk, Tobias; Speidel, Michael A.

    2017-01-01

    Abstract. Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3-D catheter tracking. This work proposes a method of dose-reduced 3-D catheter tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. This is achieved through the selective deactivation of focal spot positions not needed for the catheter tracking task. The technique was retrospectively evaluated with SBDX detector data recorded during a phantom study. DEC imaging of a catheter tip at isocenter required 340 active focal spots per frame versus 4473 spots in full field-of-view (FOV) mode. The dose-area product (DAP) and peak skin dose (PSD) for DEC versus full FOV scanning were calculated using an SBDX Monte Carlo simulation code. The average DAP was reduced to 7.8% of the full FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full FOV value. The root-mean-squared-deviation between DEC-based 3-D tracking coordinates and full FOV 3-D tracking coordinates was less than 0.1 mm. The 3-D distance between the tracked tip and the sheath centerline averaged 0.75 mm. DEC is a feasible method for dose reduction during SBDX 3-D catheter tracking. PMID:28439521

  10. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    NASA Astrophysics Data System (ADS)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  11. Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.

    PubMed

    Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald

    2011-11-01

    MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a reliable, compact, flexible, and relatively safe marker for clinical use.

  12. An enhanced fast scanning algorithm for image segmentation

    NASA Astrophysics Data System (ADS)

    Ismael, Ahmed Naser; Yusof, Yuhanis binti

    2015-12-01

    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.

  13. Codification of scan path parameters and development of perimeter scan strategies for 3D bowl-shaped laser forming

    NASA Astrophysics Data System (ADS)

    Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani

    2018-01-01

    In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.

  14. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  15. High resolution MRI imaging at 9.4 Tesla of the osteochondral unit in a translational model of articular cartilage repair.

    PubMed

    Goebel, Lars; Müller, Andreas; Bücker, Arno; Madry, Henning

    2015-04-16

    Non-destructive structural evaluation of the osteochondral unit is challenging. Here, the capability of high-field magnetic resonance imaging (μMRI) at 9.4 Tesla (T) was explored to examine osteochondral repair ex vivo in a preclinical large animal model. A specific aim of this study was to detect recently described alterations of the subchondral bone associated with cartilage repair. Osteochondral samples of medial femoral condyles from adult ewes containing full-thickness articular cartilage defects treated with marrow stimulation were obtained after 6 month in vivo and scanned in a 9.4 T μMRI. Ex vivo imaging of small osteochondral samples (typical volume: 1-2 cm(3)) at μMRI was optimised by variation of repetition time (TR), time echo (TE), flip angle (FA), spatial resolution and number of excitations (NEX) from standard MultiSliceMultiEcho (MSME) and three-dimensional (3D) spoiled GradientEcho (SGE) sequences. A 3D SGE sequence with the parameters: TR = 10 ms, TE = 3 ms, FA = 10°, voxel size = 120 × 120 × 120 μm(3) and NEX = 10 resulted in the best fitting for sample size, image quality, scanning time and artifacts. An isovolumetric voxel shape allowed for multiplanar reconstructions. Within the osteochondral unit articular cartilage, cartilaginous repair tissue and bone marrow could clearly be distinguished from the subchondral bone plate and subarticular spongiosa. Specific alterations of the osteochondral unit associated with cartilage repair such as persistent drill holes, subchondral bone cysts, sclerosis of the subchondral bone plate and of the subarticular spongiosa and intralesional osteophytes were precisely detected. High resolution, non-destructive ex vivo analysis of the entire osteochondral unit in a preclinical large animal model that is sufficient for further analyses is possible using μMRI at 9.4 T. In particular, 9.4 T is capable of accurately depicting alterations of the subchondral bone that are associated with osteochondral repair.

  16. Preoperative localization of intracranial lesions with MRI using marking pills.

    PubMed

    Shibata, Sumiya; Kunieda, Takeharu; Adachi, Hidemitsu; Ueno, Yasushi; Kohara, Nobuo; Sakai, Nobuyuki

    2011-12-01

    To describe a simple technique for preoperative surface localization of intracranial lesions. 11 pills in total, including Alfarol (alfacalcidol) capsules, were affixed to a phantom with adhesive tape and a MRI scan was performed. The visibility of the pills and any spatial errors in determining their locations were evaluated. Between June 2006 and April 2009, we employed Alfarol capsules as a skin marker in MRI in clinical surgical cases. Alfarol capsules, whose actual size is 5.6 mm in diameter, were identified as a hyperintense spot at a size of 4.2, 4.2, and 4.5mm in diameter in T1-weighted, T2-weighted, and FLAIR (fluid attenuated inversion recovery) sequence images, respectively. The size discrepancies were within 1.4 mm. The average spatial errors were 0.7, 0.6, and 0.7 mm in T1-weighted, T2-weighted, and FLAIR sequence images, respectively. Other pills were not identified in the MRI scans. During this 35-month period, 8 patients underwent preoperative MRI-guided localization at our institution. There were 5 men and 3 women in whom 8 biopsies were performed. In all cases, the result of the biopsy was positive and useful for the treatment that followed. No perioperative complications were encountered. Alfarol capsule can be used as an external skin marker. Our simple and inexpensive method is a useful addition to preoperative evaluation of superficial intracranial lesions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. 4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.

    PubMed

    Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A

    2016-03-01

    The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan time = 3:44 min. The conventional sequence achieved TE = 2.9 ms and scan time = 5:23 min. In subjects with aortic stenosis, we also compared both MRI methods with Doppler ultrasound (US) in the measurement of peak velocity, time to peak systolic velocity, and eject time. Bland-Altman analysis revealed that, when comparing peak velocities, the discrepancy between Doppler US and 4D spiral flow was significantly less than the discrepancy between Doppler and 4D Cartesian flow (2.75 cm/s vs. 10.25 cm/s), whereas the two MR methods were comparable (-5.75 s vs. -6 s) for time to peak. However, for the estimation of eject time, relative to Doppler US, the discrepancy for 4D conventional flow was smaller than that of 4D spiral flow (-16.25 s vs. -20 s). Relative to conventional 4D flow, 4D spiral flow achieves substantial reductions in both the TE and scan times; therefore, utility for it should be sought in a variety of in vivo and complex flow imaging applications. © 2015 Wiley Periodicals, Inc.

  18. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.

    Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.« less

  19. Visions of our Planet's Atmosphere, Land and Oceans: Spectacular Visualizations of our Blue Marble

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to South Africa, Cape Town and Johannesburg using NASA Terra/MODIS data, Landsat data and 1 m IKONOS 'Spy Satellite' data. Zoom in to any place South Africa using Earth Viewer 3D from Keyhole Inc. and Landsat data at 30 m resolution. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and 'tornadoes'. See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained.

  20. Three-dimensional quantitative T1 and T2 mapping of the carotid artery: Sequence design and in vivo feasibility.

    PubMed

    Coolen, Bram F; Poot, Dirk H J; Liem, Madieke I; Smits, Loek P; Gao, Shan; Kotek, Gyula; Klein, Stefan; Nederveen, Aart J

    2016-03-01

    A novel three-dimensional (3D) T1 and T2 mapping protocol for the carotid artery is presented. A 3D black-blood imaging sequence was adapted allowing carotid T1 and T2 mapping using multiple flip angles and echo time (TE) preparation times. B1 mapping was performed to correct for spatially varying deviations from the nominal flip angle. The protocol was optimized using simulations and phantom experiments. In vivo scans were performed on six healthy volunteers in two sessions, and in a patient with advanced atherosclerosis. Compensation for patient motion was achieved by 3D registration of the inter/intrasession scans. Subsequently, T1 and T2 maps were obtained by maximum likelihood estimation. Simulations and phantom experiments showed that the bias in T1 and T2 estimation was < 10% within the range of physiological values. In vivo T1 and T2 values for carotid vessel wall were 844 ± 96 and 39 ± 5 ms, with good repeatability across scans. Patient data revealed altered T1 and T2 values in regions of atherosclerotic plaque. The 3D T1 and T2 mapping of the carotid artery is feasible using variable flip angle and variable TE preparation acquisitions. We foresee application of this technique for plaque characterization and monitoring plaque progression in atherosclerotic patients. © 2015 Wiley Periodicals, Inc.

  1. [Comparison of image distortion between three magnetic resonance imaging systems of different magnetic field strengths for use in stereotactic irradiation of brain].

    PubMed

    Takemura, Akihiro; Sasamoto, Kouhei; Nakamura, Kaori; Kuroda, Tatsunori; Shoji, Saori; Matsuura, Yukihiro; Matsushita, Tatsuhiko

    2013-06-01

    In this study, we evaluated the image distortion of three magnetic resonance imaging (MRI) systems with magnetic field strengths of 0.4 T, 1.5 T and 3 T, during stereotactic irradiation of the brain. A quality assurance phantom for MRI image distortion in radiosurgery was used for these measurements of image distortion. Images were obtained from a 0.4-T MRI (APERTO Eterna, HITACHI), a 1.5-T MRI (Signa HDxt, GE Healthcare) and a 3-T MRI (Signa HDx 3.0 T, GE Healthcare) system. Imaging sequences for the 0.4-T and 3-T MRI were based on the 1.5-T MRI sequence used for stereotactic irradiation in the clinical setting. The same phantom was scanned using a computed tomography (CT) system (Aquilion L/B, Toshiba) as the standard. The results showed mean errors in the Z direction to be the least satisfactory of all the directions in all results. The mean error in the Z direction for 1.5-T MRI at -110 mm in the axial plane showed the largest error of 4.0 mm. The maximum errors for the 0.4-T and 3-T MRI were 1.7 mm and 2.8 mm, respectively. The errors in the plane were not uniform and did not show linearity, suggesting that simple distortion correction using outside markers is unlikely to be effective. The 0.4-T MRI showed the lowest image distortion of the three. However, other items, such as image noise, contrast and study duration need to be evaluated in MRI systems when applying frameless stereotactic irradiation.

  2. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength.

    PubMed

    Nandigam, R N K; Viswanathan, A; Delgado, P; Skehan, M E; Smith, E E; Rosand, J; Greenberg, S M; Dickerson, B C

    2009-02-01

    The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2-1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71-1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB.

  3. MR Imaging Detection of Cerebral Microbleeds: Effect of Susceptibility-Weighted Imaging, Section Thickness, and Field Strength

    PubMed Central

    Nandigam, R.N.K.; Viswanathan, A.; Delgado, P.; Skehan, M.E.; Smith, E.E.; Rosand, J.; Greenberg, S.M.; Dickerson, B.C.

    2009-01-01

    BACKGROUND AND PURPOSE: The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. MATERIALS AND METHODS: Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2–1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. RESULTS: With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71–1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. CONCLUSIONS: The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB. PMID:19001544

  4. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  5. MRI evaluation and safety in the developing brain.

    PubMed

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-03-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Insights into the physical chemistry of materials from advances in HAADF-STEM

    DOE PAGES

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; ...

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging formore » probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.« less

  7. X-ray imaging using amorphous selenium: photoinduced discharge (PID) readout for digital general radiography.

    PubMed

    Rowlands, J A; Hunter, D M

    1995-12-01

    Digital radiographic systems based on photoconductive layers with the latent charge image readout by photoinduced discharge (PID) are investigated theoretically. Previously, a number of different systems have been proposed using sandwiched photoconductor and insulator layers and readout using a scanning laser beam. These systems are shown to have the general property of being very closely coupled (i.e., optimization of one imaging characteristic usually impacts negatively on others). The presence of a condensed state insulator between the photoconductor surface and the readout electrode does, however, confer a great advantage over systems using air gaps with their relatively low breakdown field. The greater breakdown field of condensed state dielectrics permits the modification of the electric field during the period between image formation and image readout. The trade-off between readout speed and noise makes this system suitable for instant general radiography and even rapid sequence radiography, however, the system is unsuitable for the low exposure rates used in fluoroscopy.

  8. [Comparison of Quantification of Myocardial Infarct Size by One Breath Hold Single Shot PSIR Sequence and Segmented FLASH-PSIR Sequence at 3. 0 Tesla MR].

    PubMed

    Cheng, Wei; Cai, Shu; Sun, Jia-yu; Xia, Chun-chao; Li, Zhen-lin; Chen, Yu-cheng; Zhong, Yao-zu

    2015-05-01

    To compare the two sequences [single shot true-FISP-PSIR (single shot-PSIR) and segmented-turbo-FLASH-PSIR (segmented-PSIR)] in the value of quantification for myocardial infarct size at 3. 0 tesla MRI. 38 patients with clinical confirmed myocardial infarction were served a comprehensive gadonilium cardiac MRI at 3. 0 tesla MRI system (Trio, Siemens). Myocardial delayed enhancement (MDE) were performed by single shot-PSIR and segmented-PSIR sequences separatedly in 12-20 min followed gadopentetate dimeglumine injection (0. 15 mmol/kg). The quality of MDE images were analysed by experienced physicians. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) between the two techniques were compared. Myocardial infarct size was quantified by a dedicated software automatically (Q-mass, Medis). All objectives were scanned on the 3. 0T MR successfully. No significant difference was found in SNR and CNR of the image quality between the two sequences (P>0. 05), as well as the total myocardial volume, between two sequences (P>0. 05). Furthermore, there were still no difference in the infarct size [single shot-PSIR (30. 87 ± 15. 72) mL, segmented-PSIR (29. 26±14. 07) ml], ratio [single shot-PSIR (22. 94%±10. 94%), segmented-PSIR (20. 75% ± 8. 78%)] between the two sequences (P>0. 05). However, the average aquisition time of single shot-PSIR (21. 4 s) was less than that of the latter (380 s). Single shot-PSIR is equal to segmented-PSIR in detecting the myocardial infarct size with less acquisition time, which is valuable in the clinic application and further research.

  9. Stability of Gradient Field Corrections for Quantitative Diffusion MRI.

    PubMed

    Rogers, Baxter P; Blaber, Justin; Welch, E Brian; Ding, Zhaohua; Anderson, Adam W; Landman, Bennett A

    2017-02-11

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.

  10. How does signal fade on photo-stimulable storage phosphor imaging plates when scanned with a delay and what is the effect on image quality?

    PubMed

    Ang, Dan B; Angelopoulos, Christos; Katz, Jerald O

    2006-11-01

    The goals of this in vitro study were to determine the effect of signal fading of DenOptix photo-stimulable storage phosphor imaging plates scanned with a delay and to determine the effect on the diagnostic quality of the image. In addition, we sought to correlate signal fading with image spatial resolution and average pixel intensity values. Forty-eight images were obtained of a test specimen apparatus and scanned at 6 delayed time intervals: immediately scanned, 1 hour, 8 hours, 24 hours, 72 hours, and 168 hours. Six general dentists using Vixwin2000 software performed a measuring task to determine the location of an endodontic file tip and root apex. One-way ANOVA with repeated measures was used to determine the effect of signal fading (delayed scan time) on diagnostic image quality and average pixel intensity value. There was no statistically significant difference in diagnostic image quality resulting from signal fading. No difference was observed in spatial resolution of the images. There was a statistically significant difference in the pixel intensity analysis of an 8-step aluminum wedge between immediate scanning and 24-hour delayed scan time. There was an effect of delayed scanning on the average pixel intensity value. However, there was no effect on image quality and raters' ability to perform a clinical identification task. Proprietary software of the DenOptix digital imaging system demonstrates an excellent ability to process a delayed scan time signal and create an image of diagnostic quality.

  11. ScanRanker: Quality Assessment of Tandem Mass Spectra via Sequence Tagging

    PubMed Central

    Ma, Ze-Qiang; Chambers, Matthew C.; Ham, Amy-Joan L.; Cheek, Kristin L.; Whitwell, Corbin W.; Aerni, Hans-Rudolf; Schilling, Birgit; Miller, Aaron W.; Caprioli, Richard M.; Tabb, David L.

    2011-01-01

    In shotgun proteomics, protein identification by tandem mass spectrometry relies on bioinformatics tools. Despite recent improvements in identification algorithms, a significant number of high quality spectra remain unidentified for various reasons. Here we present ScanRanker, an open-source tool that evaluates the quality of tandem mass spectra via sequence tagging with reliable performance in data from different instruments. The superior performance of ScanRanker enables it not only to find unassigned high quality spectra that evade identification through database search, but also to select spectra for de novo sequencing and cross-linking analysis. In addition, we demonstrate that the distribution of ScanRanker scores predicts the richness of identifiable spectra among multiple LC-MS/MS runs in an experiment, and ScanRanker scores assist the process of peptide assignment validation to increase confident spectrum identifications. The source code and executable versions of ScanRanker are available from http://fenchurch.mc.vanderbilt.edu. PMID:21520941

  12. Fibered fluorescence microscopy (FFM) of intra epidermal nerve fibers--translational marker for peripheral neuropathies in preclinical research: processing and analysis of the data

    NASA Astrophysics Data System (ADS)

    Cornelissen, Frans; De Backer, Steve; Lemeire, Jan; Torfs, Berf; Nuydens, Rony; Meert, Theo; Schelkens, Peter; Scheunders, Paul

    2008-08-01

    Peripheral neuropathy can be caused by diabetes or AIDS or be a side-effect of chemotherapy. Fibered Fluorescence Microscopy (FFM) is a recently developed imaging modality using a fiber optic probe connected to a laser scanning unit. It allows for in-vivo scanning of small animal subjects by moving the probe along the tissue surface. In preclinical research, FFM enables non-invasive, longitudinal in vivo assessment of intra epidermal nerve fibre density in various models for peripheral neuropathies. By moving the probe, FFM allows visualization of larger surfaces, since, during the movement, images are continuously captured, allowing to acquire an area larger then the field of view of the probe. For analysis purposes, we need to obtain a single static image from the multiple overlapping frames. We introduce a mosaicing procedure for this kind of video sequence. Construction of mosaic images with sub-pixel alignment is indispensable and must be integrated into a global consistent image aligning. An additional motivation for the mosaicing is the use of overlapping redundant information to improve the signal to noise ratio of the acquisition, because the individual frames tend to have both high noise levels and intensity inhomogeneities. For longitudinal analysis, mosaics captured at different times must be aligned as well. For alignment, global correlation-based matching is compared with interest point matching. Use of algorithms working on multiple CPU's (parallel processor/cluster/grid) is imperative for use in a screening model.

  13. Fabry-Perot observations of comet Austin

    NASA Technical Reports Server (NTRS)

    Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.

    1990-01-01

    Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.

  14. Acquisition of multiple image stacks with a confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Zuschratter, Werner; Steffen, Thomas; Braun, Katharina; Herzog, Andreas; Michaelis, Bernd; Scheich, Henning

    1998-06-01

    Image acquisition at high magnification is inevitably correlated with a limited view over the entire tissue section. To overcome this limitation we designed software for multiple image-stack acquisition (3D-MISA) in confocal laser scanning microscopy (CLSM). The system consists of a 4 channel Leica CLSM equipped with a high resolution z- scanning stage mounted on a xy-monitorized stage. The 3D- MISA software is implemented into the microscope scanning software and uses the microscope settings for the movements of the xy-stage. It allows storage and recall of 70 xyz- positions and the automatic 3D-scanning of image arrays between selected xyz-coordinates. The number of images within one array is limited only by the amount of disk space or memory available. Although for most applications the accuracy of the xy-scanning stage is sufficient for a precise alignment of tiled views, the software provides the possibility of an adjustable overlap between two image stacks by shifting the moving steps of the xy-scanning stage. After scanning a tiled image gallery of the extended focus-images of each channel will be displayed on a graphic monitor. In addition, a tiled image gallery of individual focal planes can be created. In summary, the 3D-MISA allows 3D-image acquisition of coherent regions in combination with high resolution of single images.

  15. Rational Protein Engineering Guided by Deep Mutational Scanning

    PubMed Central

    Shin, HyeonSeok; Cho, Byung-Kwan

    2015-01-01

    Sequence–function relationship in a protein is commonly determined by the three-dimensional protein structure followed by various biochemical experiments. However, with the explosive increase in the number of genome sequences, facilitated by recent advances in sequencing technology, the gap between protein sequences available and three-dimensional structures is rapidly widening. A recently developed method termed deep mutational scanning explores the functional phenotype of thousands of mutants via massive sequencing. Coupled with a highly efficient screening system, this approach assesses the phenotypic changes made by the substitution of each amino acid sequence that constitutes a protein. Such an informational resource provides the functional role of each amino acid sequence, thereby providing sufficient rationale for selecting target residues for protein engineering. Here, we discuss the current applications of deep mutational scanning and consider experimental design. PMID:26404267

  16. The genesis of craniofacial biology as a health science discipline.

    PubMed

    Sperber, G H; Sperber, S M

    2014-06-01

    The craniofacial complex encapsulates the brain and contains the organs for key functions of the body, including sight, hearing and balance, smell, taste, respiration and mastication. All these systems are intimately integrated within the head. The combination of these diverse systems into a new field was dictated by the dental profession's desire for a research branch of basic science devoted and attuned to its specific needs. The traditional subjects of genetics, embryology, anatomy, physiology, biochemistry, dental materials, odontology, molecular biology and palaeoanthropology pertaining to dentistry have been drawn together by many newly emerging technologies. These new technologies include gene sequencing, CAT scanning, MRI imaging, laser scanning, image analysis, ultrasonography, spectroscopy and visualosonics. A vibrant unitary discipline of investigation, craniofacial biology, has emerged that builds on the original concept of 'oral biology' that began in the 1960s. This paper reviews some of the developments that have led to the genesis of craniofacial biology as a fully-fledged health science discipline of significance in the advancement of clinical dental practice. Some of the key figures and milestones in craniofacial biology are identified. © 2014 Australian Dental Association.

  17. Global methylation screening in the Arabidopsis thaliana and Mus musculus genome: applications of virtual image restriction landmark genomic scanning (Vi-RLGS)

    PubMed Central

    Matsuyama, Tomoki; Kimura, Makoto T.; Koike, Kuniaki; Abe, Tomoko; Nakano, Takeshi; Asami, Tadao; Ebisuzaki, Toshikazu; Held, William A.; Yoshida, Shigeo; Nagase, Hiroki

    2003-01-01

    Understanding the role of ‘epigenetic’ changes such as DNA methylation and chromatin remodeling has now become critical in understanding many biological processes. In order to delineate the global methylation pattern in a given genomic DNA, computer software has been developed to create a virtual image of restriction landmark genomic scanning (Vi-RLGS). When using a methylation- sensitive enzyme such as NotI as the restriction landmark, the comparison between real and in silico RLGS profiles of the genome provides a methylation map of genomic NotI sites. A methylation map of the Arabidopsis genome was created that could be confirmed by a methylation-sensitive PCR assay. The method has also been applied to the mouse genome. Although a complete methylation map has not been completed, a region of methylation difference between two tissues has been tested and confirmed by bisulfite sequencing. Vi-RLGS in conjunction with real RLGS will make it possible to develop a more complete map of genomic sites that are methylated or demethylated as a consequence of normal or abnormal development. PMID:12888509

  18. Gallbladder radionuclide scan

    MedlinePlus

    ... Gallbladder scan; Biliary scan; Cholescintigraphy; HIDA; Hepatobiliary nuclear imaging scan ... test results. This test is combined with other imaging (such as CT or ultrasound). After the gallbladder ...

  19. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap.

    PubMed

    Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham

    2017-10-17

    Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

  20. An introduction to Na(18)F bone scintigraphy: basic principles, advanced imaging concepts, and case examples.

    PubMed

    Bridges, Robert L; Wiley, Chris R; Christian, John C; Strohm, Adam P

    2007-06-01

    Na(18)F, an early bone scintigraphy agent, is poised to reenter mainstream clinical imaging with the present generations of stand-alone PET and PET/CT hybrid scanners. (18)F PET scans promise improved imaging quality for both benign and malignant bone disease, with significantly improved sensitivity and specificity over conventional planar and SPECT bone scans. In this article, basic acquisition information will be presented along with examples of studies related to oncology, sports medicine, and general orthopedics. The use of image fusion of PET bone scans with CT and MRI will be demonstrated. The objectives of this article are to provide the reader with an understanding of the history of early bone scintigraphy in relation to Na(18)F scanning, a familiarity with basic imaging techniques for PET bone scanning, an appreciation of the extent of disease processes that can be imaged with PET bone scanning, an appreciation for the added value of multimodality image fusion with bone disease, and a recognition of the potential role PET bone scanning may play in clinical imaging.

  1. Assessment of proximal pulmonary arterial stiffness using magnetic resonance imaging: effects of technique, age and exercise

    PubMed Central

    Kamalasanan, Anu; Cassidy, Deidre B; Struthers, Allan D; Lipworth, Brian J; Houston, J Graeme

    2016-01-01

    Introduction To compare the reproducibility of pulmonary pulse wave velocity (PWV) techniques, and the effects of age and exercise on these. Methods 10 young healthy volunteers (YHV) and 20 older healthy volunteers (OHV) with no cardiac or lung condition were recruited. High temporal resolution phase contrast sequences were performed through the main pulmonary arteries (MPAs), right pulmonary arteries (RPAs) and left pulmonary arteries (LPAs), while high spatial resolution sequences were obtained through the MPA. YHV underwent 2 MRIs 6 months apart with the sequences repeated during exercise. OHV underwent an MRI scan with on-table repetition. PWV was calculated using the transit time (TT) and flow area techniques (QA). 3 methods for calculating QA PWV were compared. Results PWV did not differ between the two age groups (YHV 2.4±0.3/ms, OHV 2.9±0.2/ms, p=0.1). Using a high temporal resolution sequence through the RPA using the QA accounting for wave reflections yielded consistently better within-scan, interscan, intraobserver and interobserver reproducibility. Exercise did not result in a change in either TT PWV (mean (95% CI) of the differences: −0.42 (−1.2 to 0.4), p=0.24) or QA PWV (mean (95% CI) of the differences: 0.10 (−0.5 to 0.9), p=0.49) despite a significant rise in heart rate (65±2 to 87±3, p<0.0001), blood pressure (113/68 to 130/84, p<0.0001) and cardiac output (5.4±0.4 to 6.7±0.6 L/min, p=0.004). Conclusions QA PWV performed through the RPA using a high temporal resolution sequence accounting for wave reflections yields the most reproducible measurements of pulmonary PWV. PMID:27843548

  2. Is 3D MPRAGE better than the combination DIR/PSIR for cortical lesion detection at 3T MRI?

    PubMed

    Nelson, Flavia; Poonawalla, Aziz; Datta, Sushmita; Wolinsky, Jerry; Narayana, Ponnada

    2014-03-01

    Based on the application of newer magnetic resonance imaging (MRI) acquisition sequences, the detection of cortical lesions (CL) in multiple sclerosis (MS) has significantly improved. Double inversion recovery (DIR) at 3T has increased the detection sensitivity and classification specificity when combined with phase sensitive inversion recovery (PSIR). Previous findings with 3D magnetization prepared rapid acquisition with gradient echo (MPRAGE) sequences, showed improved classification specificity of purely intracortical (IC) and mixed (MX) lesions, compared to the classification based on DIR/PSIR. Direct comparison between the detection of CL by 3D MPRAGE and by DIR/PSIR at 3T has not been evaluated. Eleven subjects were imaged on a 3T magnet. DIR/PSIR and 3D MPRAGE images were reviewed independently. Each image set was reviewed twice; only lesions detected on both sessions were scored. Review time per scan was ~5min for DIR/PSIR and ~15min for 3D MPRAGE. We identified 141 CL (62 IC+79 MX) based on DIR/PSIR images vs. 93 (38 IC+55 MX) based on MPRAGE from all eleven patients. MPRAGE under-detected the number of CL in seven cases and over-detected the number of CL in three, only one case had the same number of CL on both sets of images. Combination DIR/PSIR at 3T is superior to 3D MPRAGE for detection of cortical gray matter lesions in MS. The contrast-to-noise ratio of CL appears to be inferior on the MPRAGE images relative to DIR/PSIR. © 2013 Published by Elsevier B.V.

  3. Diffusion tensor imaging (DTI) with retrospective motion correction for large-scale pediatric imaging.

    PubMed

    Holdsworth, Samantha J; Aksoy, Murat; Newbould, Rexford D; Yeom, Kristen; Van, Anh T; Ooi, Melvyn B; Barnes, Patrick D; Bammer, Roland; Skare, Stefan

    2012-10-01

    To develop and implement a clinical DTI technique suitable for the pediatric setting that retrospectively corrects for large motion without the need for rescanning and/or reacquisition strategies, and to deliver high-quality DTI images (both in the presence and absence of large motion) using procedures that reduce image noise and artifacts. We implemented an in-house built generalized autocalibrating partially parallel acquisitions (GRAPPA)-accelerated diffusion tensor (DT) echo-planar imaging (EPI) sequence at 1.5T and 3T on 1600 patients between 1 month and 18 years old. To reconstruct the data, we developed a fully automated tailored reconstruction software that selects the best GRAPPA and ghost calibration weights; does 3D rigid-body realignment with importance weighting; and employs phase correction and complex averaging to lower Rician noise and reduce phase artifacts. For select cases we investigated the use of an additional volume rejection criterion and b-matrix correction for large motion. The DTI image reconstruction procedures developed here were extremely robust in correcting for motion, failing on only three subjects, while providing the radiologists high-quality data for routine evaluation. This work suggests that, apart from the rare instance of continuous motion throughout the scan, high-quality DTI brain data can be acquired using our proposed integrated sequence and reconstruction that uses a retrospective approach to motion correction. In addition, we demonstrate a substantial improvement in overall image quality by combining phase correction with complex averaging, which reduces the Rician noise that biases noisy data. Copyright © 2012 Wiley Periodicals, Inc.

  4. Methodological challenges and solutions in auditory functional magnetic resonance imaging

    PubMed Central

    Peelle, Jonathan E.

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies involve substantial acoustic noise. This review covers the difficulties posed by such noise for auditory neuroscience, as well as a number of possible solutions that have emerged. Acoustic noise can affect the processing of auditory stimuli by making them inaudible or unintelligible, and can result in reduced sensitivity to auditory activation in auditory cortex. Equally importantly, acoustic noise may also lead to increased listening effort, meaning that even when auditory stimuli are perceived, neural processing may differ from when the same stimuli are presented in quiet. These and other challenges have motivated a number of approaches for collecting auditory fMRI data. Although using a continuous echoplanar imaging (EPI) sequence provides high quality imaging data, these data may also be contaminated by background acoustic noise. Traditional sparse imaging has the advantage of avoiding acoustic noise during stimulus presentation, but at a cost of reduced temporal resolution. Recently, three classes of techniques have been developed to circumvent these limitations. The first is Interleaved Silent Steady State (ISSS) imaging, a variation of sparse imaging that involves collecting multiple volumes following a silent period while maintaining steady-state longitudinal magnetization. The second involves active noise control to limit the impact of acoustic scanner noise. Finally, novel MRI sequences that reduce the amount of acoustic noise produced during fMRI make the use of continuous scanning a more practical option. Together these advances provide unprecedented opportunities for researchers to collect high-quality data of hemodynamic responses to auditory stimuli using fMRI. PMID:25191218

  5. An image registration based ultrasound probe calibration

    NASA Astrophysics Data System (ADS)

    Li, Xin; Kumar, Dinesh; Sarkar, Saradwata; Narayanan, Ram

    2012-02-01

    Reconstructed 3D ultrasound of prostate gland finds application in several medical areas such as image guided biopsy, therapy planning and dose delivery. In our application, we use an end-fire probe rotated about its axis to acquire a sequence of rotational slices to reconstruct 3D TRUS (Transrectal Ultrasound) image. The image acquisition system consists of an ultrasound transducer situated on a cradle directly attached to a rotational sensor. However, due to system tolerances, axis of probe does not align exactly with the designed axis of rotation resulting in artifacts in the 3D reconstructed ultrasound volume. We present a rigid registration based automatic probe calibration approach. The method uses a sequence of phantom images, each pair acquired at angular separation of 180 degrees and registers corresponding image pairs to compute the deviation from designed axis. A modified shadow removal algorithm is applied for preprocessing. An attribute vector is constructed from image intensity and a speckle-insensitive information-theoretic feature. We compare registration between the presented method and expert-corrected images in 16 prostate phantom scans. Images were acquired at multiple resolutions, and different misalignment settings from two ultrasound machines. Screenshots from 3D reconstruction are shown before and after misalignment correction. Registration parameters from automatic and manual correction were found to be in good agreement. Average absolute differences of translation and rotation between automatic and manual methods were 0.27 mm and 0.65 degree, respectively. The registration parameters also showed lower variability for automatic registration (pooled standard deviation σtranslation = 0.50 mm, σrotation = 0.52 degree) compared to the manual approach (pooled standard deviation σtranslation = 0.62 mm, σrotation = 0.78 degree).

  6. Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: Procedure development using CaliBrain structural MRI data

    PubMed Central

    2009-01-01

    Background Structural Magnetic Resonance Imaging (sMRI) of the brain is employed in the assessment of a wide range of neuropsychiatric disorders. In order to improve statistical power in such studies it is desirable to pool scanning resources from multiple centres. The CaliBrain project was designed to provide for an assessment of scanner differences at three centres in Scotland, and to assess the practicality of pooling scans from multiple-centres. Methods We scanned healthy subjects twice on each of the 3 scanners in the CaliBrain project with T1-weighted sequences. The tissue classifier supplied within the Statistical Parametric Mapping (SPM5) application was used to map the grey and white tissue for each scan. We were thus able to assess within scanner variability and between scanner differences. We have sought to correct for between scanner differences by adjusting the probability mappings of tissue occupancy (tissue priors) used in SPM5 for tissue classification. The adjustment procedure resulted in separate sets of tissue priors being developed for each scanner and we refer to these as scanner specific priors. Results Voxel Based Morphometry (VBM) analyses and metric tests indicated that the use of scanner specific priors reduced tissue classification differences between scanners. However, the metric results also demonstrated that the between scanner differences were not reduced to the level of within scanner variability, the ideal for scanner harmonisation. Conclusion Our results indicate the development of scanner specific priors for SPM can assist in pooling of scan resources from different research centres. This can facilitate improvements in the statistical power of quantitative brain imaging studies. PMID:19445668

  7. The Use of Magnetic Resonance Imaging in Axial Spondyloarthritis: Time to Bridge the Gap Between Radiologists and Rheumatologists.

    PubMed

    Bennett, Alexander N; Marzo-Ortega, Helena; Kaur-Papadakis, Daljit; Rehman, Amer

    2017-06-01

    Magnetic resonance imaging (MRI) is involved in the assessment of axial spondyloarthritis (axSpA); however, anecdotal evidence suggests diverse practice among radiologists. The objective of this study was to describe current practice in the use of MRI for assessment of axSpA by UK radiologists. Six hundred ninety-nine UK radiologists were invited to complete an online survey. Availability of MR scanners, familiarity with axSpA disease-specific lesions, and MRI protocols and definitions of positive sacroiliac joint (SIJ) or spinal MRI were assessed. Two-hundred sixty-nine radiologists (38%) from 131/180 (73%) acute UK National Health Service trusts/health boards responded. MRI waiting times < 2 months were reported by 90% of radiologists. Twenty-nine radiologists (11%) used contrast as standard, 256 (91%) used T1 and short-tau inversion recovery, and 172 (64%) also used T2 sequences. Five percent scanned only SIJ, 33% scanned SIJ and lumbar spine, 29% scanned SIJ and thoracolumbar spine, and 30% scanned SIJ and the whole spine. Mean scan time was 34 min. Eighteen percent did not use the subchondral bone marrow edema of the SIJ to help diagnose axSpA and 18% did not use the inflammatory vertebral corner lesions to assist diagnosis. Awareness of axSpA was reported by 75% of radiologists, and awareness of definitions for positive MRI of SIJ and spine by 31% and 25%, respectively. These data highlight the need for better rheumatology-radiology collaboration on the identification of diagnostic axSpA MRI lesions and support the need for a consensus on the most appropriate MRI protocols for the assessment of axSpA.

  8. Random forest regression for magnetic resonance image synthesis.

    PubMed

    Jog, Amod; Carass, Aaron; Roy, Snehashis; Pham, Dzung L; Prince, Jerry L

    2017-01-01

    By choosing different pulse sequences and their parameters, magnetic resonance imaging (MRI) can generate a large variety of tissue contrasts. This very flexibility, however, can yield inconsistencies with MRI acquisitions across datasets or scanning sessions that can in turn cause inconsistent automated image analysis. Although image synthesis of MR images has been shown to be helpful in addressing this problem, an inability to synthesize both T 2 -weighted brain images that include the skull and FLuid Attenuated Inversion Recovery (FLAIR) images has been reported. The method described herein, called REPLICA, addresses these limitations. REPLICA is a supervised random forest image synthesis approach that learns a nonlinear regression to predict intensities of alternate tissue contrasts given specific input tissue contrasts. Experimental results include direct image comparisons between synthetic and real images, results from image analysis tasks on both synthetic and real images, and comparison against other state-of-the-art image synthesis methods. REPLICA is computationally fast, and is shown to be comparable to other methods on tasks they are able to perform. Additionally REPLICA has the capability to synthesize both T 2 -weighted images of the full head and FLAIR images, and perform intensity standardization between different imaging datasets. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Human body motion capture from multi-image video sequences

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.

  10. Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors.

    PubMed

    Patronas, Nicholas; Bulakbasi, Nail; Stratakis, Constantine A; Lafferty, Antony; Oldfield, Edward H; Doppman, John; Nieman, Lynnette K

    2003-04-01

    Recent studies show that the standard T1-weighted spin echo (SE) technique for magnetic resonance imaging (MRI) fails to identify 40% of corticotrope adenomas. We hypothesized that the superior soft tissue contrast and thinner sections obtained with spoiled gradient recalled acquisition in the steady state (SPGR) would improve tumor detection. We compared the performance of SE and SPGR MRI in 50 patients (age, 7-67 yr) with surgically confirmed corticotrope adenoma. Coronal SE and SPGR MR images were obtained before and after administration of gadolinium contrast, using a 1.5 T scanner. SE scans were obtained over 5.1 min (12-cm field of view; interleaved sections, 3 mm). SPGR scans were obtained over 3.45 min (12- or 18-cm field of view, contiguous 1- or 2-mm slices). The MRI interpretations of two radiologists were compared with findings at surgical resection. Compared with SE for detection of tumor, SPGR had superior sensitivity (80%; confidence interval, 68-91; vs. 49%; confidence interval, 34-63%), but a higher false positive rate (2% vs. 4%). We recommend the addition of SPGR to SE sequences using pituitary-specific technical parameters to improve the MRI detection of ACTH-secreting pituitary tumors.

  11. Buried mine detection using fractal geometry analysis to the LWIR successive line scan data image

    NASA Astrophysics Data System (ADS)

    Araki, Kan

    2012-06-01

    We have engaged in research on buried mine/IED detection by remote sensing method using LWIR camera. A IR image of a ground, containing buried objects can be assumed as a superimposed pattern including thermal scattering which may depend on the ground surface roughness, vegetation canopy, and effect of the sun light, and radiation due to various heat interaction caused by differences in specific heat, size, and buried depth of the objects and local temperature of their surrounding environment. In this cumbersome environment, we introduce fractal geometry for analyzing from an IR image. Clutter patterns due to these complex elements have oftentimes low ordered fractal dimension of Hausdorff Dimension. On the other hand, the target patterns have its tendency of obtaining higher ordered fractal dimension in terms of Information Dimension. Random Shuffle Surrogate method or Fourier Transform Surrogate method is used to evaluate fractional statistics by applying shuffle of time sequence data or phase of spectrum. Fractal interpolation to each line scan was also applied to improve the signal processing performance in order to evade zero division and enhance information of data. Some results of target extraction by using relationship between low and high ordered fractal dimension are to be presented.

  12. Improving Image Quality of Coronary Computed Tomography Angiography Using Patient Weight and Height-Dependent Scan Trigger Threshold.

    PubMed

    Kang, Deqiang; Hua, Haiqin; Peng, Nan; Zhao, Jing; Wang, Zhiqun

    2017-04-01

    We aim to improve the image quality of coronary computed tomography angiography (CCTA) by using personalized weight and height-dependent scan trigger threshold. This study was divided into two parts. First, we performed and analyzed the 100 scheduled CCTA data, which were acquired by using body mass index-dependent Smart Prep sequence (trigger threshold ranged from 80 Hu to 250 Hu based on body mass index). By identifying the cases of high quality image, a linear regression equation was established to determine the correlation among the Smart Prep threshold, height, and body weight. Furthermore, a quick search table was generated for weight and height-dependent Smart Prep threshold in CCTA scan. Second, to evaluate the effectiveness of the new individual threshold method, an additional 100 consecutive patients were divided into two groups: individualized group (n = 50) with weight and height-dependent threshold and control group (n = 50) with the conventional constant threshold of 150 HU. Image quality was compared between the two groups by measuring the enhancement in coronary artery, aorta, left and right ventricle, and inferior vena cava. By visual inspection, image quality scores were performed to compare between the two groups. Regression equation between Smart Prep threshold (K, Hu), height (H, cm), and body weight (BW, kg) was K = 0.811 × H + 1.917 × BW - 99.341. When compared to the control group, the individualized group presented an average overall increase of 12.30% in enhancement in left main coronary artery, 12.94% in proximal right coronary artery, and 10.6% in aorta. Correspondingly, the contrast-to-noise ratios increased by 26.03%, 27.08%, and 23.17%, respectively, and by 633.1% in contrast between aorta and left ventricle. Meanwhile, the individualized group showed an average overall decrease of 22.7% in enhancement of right ventricle and 32.7% in inferior vena cava. There was no significant difference of the image noise between the two groups (P > .05). By visual inspection, the image quality score of the individualized group was higher than that of the control group. Using personalized weight and height-dependent Smart Prep threshold to adjust scan trigger time can significantly improve the image quality of CCTA. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Electronic fingerprints of DNA bases on graphene.

    PubMed

    Ahmed, Towfiq; Kilina, Svetlana; Das, Tanmoy; Haraldsen, Jason T; Rehr, John J; Balatsky, Alexander V

    2012-02-08

    We calculate the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T), deposited on graphene. We observe significant base-dependent features in the LDOS in an energy range within a few electronvolts of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases in scanning tunneling spectroscopy (STS) experiments that perform image and site dependent spectroscopy on biomolecules. Thus the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. © 2012 American Chemical Society

  14. Rapid data processing for ultrafast X-ray computed tomography using scalable and modular CUDA based pipelines

    NASA Astrophysics Data System (ADS)

    Frust, Tobias; Wagner, Michael; Stephan, Jan; Juckeland, Guido; Bieberle, André

    2017-10-01

    Ultrafast X-ray tomography is an advanced imaging technique for the study of dynamic processes basing on the principles of electron beam scanning. A typical application case for this technique is e.g. the study of multiphase flows, that is, flows of mixtures of substances such as gas-liquidflows in pipelines or chemical reactors. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) a number of such tomography scanners are operated. Currently, there are two main points limiting their application in some fields. First, after each CT scan sequence the data of the radiation detector must be downloaded from the scanner to a data processing machine. Second, the current data processing is comparably time-consuming compared to the CT scan sequence interval. To enable online observations or use this technique to control actuators in real-time, a modular and scalable data processing tool has been developed, consisting of user-definable stages working independently together in a so called data processing pipeline, that keeps up with the CT scanner's maximal frame rate of up to 8 kHz. The newly developed data processing stages are freely programmable and combinable. In order to achieve the highest processing performance all relevant data processing steps, which are required for a standard slice image reconstruction, were individually implemented in separate stages using Graphics Processing Units (GPUs) and NVIDIA's CUDA programming language. Data processing performance tests on different high-end GPUs (Tesla K20c, GeForce GTX 1080, Tesla P100) showed excellent performance. Program Files doi:http://dx.doi.org/10.17632/65sx747rvm.1 Licensing provisions: LGPLv3 Programming language: C++/CUDA Supplementary material: Test data set, used for the performance analysis. Nature of problem: Ultrafast computed tomography is performed with a scan rate of up to 8 kHz. To obtain cross-sectional images from projection data computer-based image reconstruction algorithms must be applied. The objective of the presented program is to reconstruct a data stream of around 1.3 GB s-1 in a minimum time period. Thus, the program allows to go into new fields of application and to use in the future even more compute-intensive algorithms, especially for data post-processing, to improve the quality of data analysis. Solution method: The program solves the given problem using a two-step process: first, by a generic, expandable and widely applicable template library implementing the streaming paradigm (GLADOS); second, by optimized processing stages for ultrafast computed tomography implementing the required algorithms in a performance-oriented way using CUDA (RISA). Thereby, task-parallelism between the processing stages as well as data parallelism within one processing stage is realized.

  15. [Optimization of diagnosis indicator selection and inspection plan by 3.0T MRI in breast cancer].

    PubMed

    Jiang, Zhongbiao; Wang, Yunhua; He, Zhong; Zhang, Lejun; Zheng, Kai

    2013-08-01

    To optimize 3.0T MRI diagnosis indicator in breast cancer and to select the best MRI scan program. Totally 45 patients with breast cancers were collected, and another 35 patients with benign breast tumor served as the control group. All patients underwent 3.0T MRI, including T1- weighted imaging (T1WI), fat suppression of the T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), 1H magnetic resonance spectroscopy (1H-MRS) and dynamic contrast enhanced (DCE) sequence. With operation pathology results as the gold standard in the diagnosis of breast diseases, the pathological results of benign and malignant served as dependent variables, and the diagnostic indicators of MRI were taken as independent variables. We put all the indicators of MRI examination under Logistic regression analysis, established the Logistic model, and optimized the diagnosis indicators of MRI examination to further improve MRI scan of breast cancer. By Logistic regression analysis, some indicators were selected in the equation, including the edge feature of the tumor, the time-signal intensity curve (TIC) type and the apparent diffusion coefficient (ADC) value when b=500 s/mm2. The regression equation was Logit (P)=-21.936+20.478X6+3.267X7+ 21.488X3. Valuable indicators in the diagnosis of breast cancer are the edge feature of the tumor, the TIC type and the ADC value when b=500 s/mm2. Combining conventional MRI scan, DWI and dynamic enhanced MRI is a better examination program, while MRS is the complementary program when diagnosis is difficult.

  16. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, H; Jeon, H; Nam, J

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

  17. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR)

    NASA Astrophysics Data System (ADS)

    Wang, Tonghe; Zhu, Lei

    2016-09-01

    Conventional dual-energy CT (DECT) reconstruction requires two full-size projection datasets with two different energy spectra. In this study, we propose an iterative algorithm to enable a new data acquisition scheme which requires one full scan and a second sparse-view scan for potential reduction in imaging dose and engineering cost of DECT. A bilateral filter is calculated as a similarity matrix from the first full-scan CT image to quantify the similarity between any two pixels, which is assumed unchanged on a second CT image since DECT scans are performed on the same object. The second CT image from reduced projections is reconstructed by an iterative algorithm which updates the image by minimizing the total variation of the difference between the image and its filtered image by the similarity matrix under data fidelity constraint. As the redundant structural information of the two CT images is contained in the similarity matrix for CT reconstruction, we refer to the algorithm as structure preserving iterative reconstruction (SPIR). The proposed method is evaluated on both digital and physical phantoms, and is compared with the filtered-backprojection (FBP) method, the conventional total-variation-regularization-based algorithm (TVR) and prior-image-constrained-compressed-sensing (PICCS). SPIR with a second 10-view scan reduces the image noise STD by a factor of one order of magnitude with same spatial resolution as full-view FBP image. SPIR substantially improves over TVR on the reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 6.18% to 1.33%, and outperforms TVR at 50 and 20-view scans on spatial resolution with a higher frequency at the modulation transfer function value of 10% by an average factor of 4. Compared with the 20-view scan PICCS result, the SPIR image has 7 times lower noise STD with similar spatial resolution. The electron density map obtained from the SPIR-based DECT images with a second 10-view scan has an average error of less than 1%.

  18. What is the best imaging strategy for acute stroke?

    PubMed

    Wardlaw, J M; Keir, S L; Seymour, J; Lewis, S; Sandercock, P A G; Dennis, M S; Cairns, J

    2004-01-01

    To determine the cost-effectiveness of computed tomographic (CT) scanning after acute stroke. To assess the contribution of brain imaging to the diagnosis and management of stroke, and to estimate the costs, benefits and risks of different imaging strategies in order to provide data to inform national and local policy on the use of brain imaging in stroke. A decision-analysis model was developed to represent the pathway of care in acute stroke using 'scan all patients within 48 hours' as the comparator against which to cost 12 alternative scan strategies. Hospitals in Scotland. Subjects were patients admitted to hospital with a first stroke and those managed as outpatients. The effect on functional outcome after ischaemic or haemorrhagic stroke, tumours or infections, of correctly administered antithrombotic or other treatment; of time to scan and stroke severity on diagnosis by CT or MRI; on management, including length of stay, functional outcome, and quality-adjusted life years (QALYs), of the diagnostic information provided by CT scanning; the cost-effectiveness (cost versus QALYs) of different strategies for use of CT after acute stroke. Death and functional outcome at long-term follow-up; accuracy of CT and MRI; cost of CT scanning by time of day and week; effect of CT diagnosis on change in health outcome, length of stay in hospital and QALYs; cost-effectiveness of various scanning strategies. CT is very sensitive and specific for haemorrhage within the first 8 days of stroke only. Suboptimal scanning used in epidemiology studies suggests that the frequency of primary intracerebral haemorrhage (PICH) has been underestimated. Aspirin increases the risk of PICH. There were no reliable data on functional outcome or on the effect of antithrombotic treatment given long term after PICH. In 60% of patients with recurrent stroke after PICH, the cause is another PICH and mortality is high among PICH patients. A specific MR sequence (gradient echo) is required to identify prior PICH reliably. CT scanners were distributed unevenly in Scotland, 65% provided CT scanning within 48 hours of stroke, and 100% within 7 days for hospital-admitted patients, but access out of hours was very variable, and for outpatients was poor. The average cost of a CT brain scan for stroke was pounds 30.23 to pounds 89.56 in normal working hours and pounds 55.05 to pounds 173.46 out of hours. Average length of stay was greatest for severe strokes and those who survived in a dependent state. For a cohort of 1000 patients aged 70-74 years, the policy 'scan all strokes within 48 hours', cost pounds 10,279,728 and achieved 1982.3 QALYS. The most cost-effective strategy was 'scan all immediately' (pounds 9,993,676 and 1982.4 QALYS). The least cost-effective was to 'scan patients on anticoagulants, in a life-threatening condition immediately and the rest within 14 days'. In general, strategies in which most patients were scanned immediately cost least and achieved the most QALYs, as the cost of providing CT (even out of hours) was less than the cost of inpatient care. Increasing independent survival by even a small proportion through early use of aspirin in the majority with ischaemic stroke, avoiding aspirin in those with haemorrhagic stroke, and appropriate early management of those who have not had a stroke, reduced costs and increased QALYs.

  19. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers

    DOE PAGES

    Wang, Jun; Bonnesen, Peter V; Rangel, E.; ...

    2016-01-04

    The self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N9-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two ormore » more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. The resulting characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Moreover, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.« less

  20. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Bonnesen, Peter V; Rangel, E.

    The self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N9-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two ormore » more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. The resulting characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Moreover, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.« less

  1. Diagnostic value of the fluoroscopic triggering 3D LAVA technique for primary liver cancer.

    PubMed

    Shen, Xiao-Yong; Chai, Chun-Hua; Xiao, Wen-Bo; Wang, Qi-Dong

    2010-04-01

    Primary liver cancer (PLC) is one of the common malignant tumors. Liver acquisition with acceleration volume acquisition (LAVA), which allows simultaneous dynamic enhancement of the hepatic parenchyma and vasculature imaging, is of great help in the diagnosis of PLC. This study aimed to evaluate application of the fluoroscopic triggering 3D LAVA technique in the imaging of PLC and liver vasculature. The clinical data and imaging findings of 38 adults with PLC (22 men and 16 women; average age 52 years), pathologically confirmed by surgical resection or biopsy, were collected and analyzed. All magnetic resonance images were obtained with a 1.5-T system (General Electrics Medical Systems) with an eight-element body array coil and application of the fluoroscopic triggering 3D LAVA technique. Overall image quality was assessed on a 5-point scale by two experienced radiologists. All the nodules and blood vessel were recorded and compared. The diagnostic accuracy and feasibility of LAVA were evaluated. Thirty-eight patients gave high quality images of 72 nodules in the liver for diagnosis. The accuracy of LAVA was 97.2% (70/72), and the coincidence rate between the extent of tumor judged by dynamic enhancement and pathological examination was 87.5% (63/72). Displayed by the maximum intensity projection reconstruction, nearly all cases gave satisfactory images of branches III and IV of the hepatic artery. Furthermore, small early-stage enhancing hepatic lesions and the parallel portal vein were also well displayed. Sequence of LAVA provides good multi-phase dynamic enhancement scanning of hepatic lesions. Combined with conventional scanning technology, LAVA effectively and safely displays focal hepatic lesions and the relationship between tumor and normal tissues, especially blood vessels.

  2. Dose reduction assessment in dynamic CT myocardial perfusion imaging in a porcine balloon-induced-ischemia model

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    We investigated the use of an advanced hybrid iterative reconstruction (IR) technique (iDose4, Philips Health- care) for low dose dynamic myocardial CT perfusion (CTP) imaging. A porcine model was created to mimic coronary stenosis through partial occlusion of the left anterior descending (LAD) artery with a balloon catheter. The severity of LAD occlusion was adjusted with FFR measurements. Dynamic CT images were acquired at end-systole (45% R-R) using a multi-detector CT (MDCT) scanner. Various corrections were applied to the acquired scans to reduce motion and imaging artifacts. Absolute myocardial blood flow (MBF) was computed with a deconvolution-based approach using singular value decomposition (SVD). We compared a high and a low dose radiation protocol corresponding to two different tube-voltage/tube-current combinations (80kV p/100mAs and 120kV p/150mAs). The corresponding radiation doses for these protocols are 7.8mSv and 34.3mSV , respectively. The images were reconstructed using conventional FBP and three noise-reduction strengths of the IR method, iDose. Flow contrast-to-noise ratio, CNRf, as obtained from MBF maps, was used to quantitatively evaluate the effect of reconstruction on contrast between normal and ischemic myocardial tissue. Preliminary results showed that the use of iDose to reconstruct low dose images provide better or comparable CNRf to that of high dose images reconstructed with FBP, suggesting significant dose savings. CNRf was improved with the three used levels of iDose compared to FBP for both protocols. When using the entire 4D dynamic sequence for MBF computation, a 77% dose reduction was achieved, while considering only half the scans (i.e., every other heart cycle) allowed even further dose reduction while maintaining relatively higher CNRf.

  3. Optimized 14 + 1 receive coil array and position system for 3D high-resolution MRI of dental and maxillomandibular structures.

    PubMed

    Sedlacik, Jan; Kutzner, Daniel; Khokale, Arun; Schulze, Dirk; Fiehler, Jens; Celik, Turgay; Gareis, Daniel; Smeets, Ralf; Friedrich, Reinhard E; Heiland, Max; Assaf, Alexandre T

    2016-01-01

    The purpose of this study was to design, build and test a multielement receive coil array and position system, which is optimized for three-dimensional (3D) high-resolution dental and maxillomandibular MRI with high patient comfort. A 14 + 1 coil array and positioning system, allowing easy handling by the technologists, reproducible positioning of the patients and high patient comfort, was tested with three healthy volunteers using a 3.0-T MRI machine (Siemens Skyra; Siemens Medical Solutions, Erlangen, Germany). High-resolution 3D T1 weighted, water excitation T1 weighted and fat-saturated T2 weighted imaging sequences were scanned, and 3D image data were reformatted in different orientations and curvatures to aid diagnosis. The high number of receiving coils and the comfortable positioning of the coil array close to the patient's face provided a high signal-to-noise ratio and allowed high quality, high resolution, 3D image data to be acquired within reasonable scan times owing to the possibility of parallel image acquisition acceleration. Reformatting the isotropic 3D image data in different views is helpful for diagnosis, e.g. panoramic reconstruction. The visibility of soft tissues such as the mandibular canal, nutritive canals and periodontal ligaments was exquisite. The optimized MRI receive coil array and positioning system for dental and oral-maxillofacial imaging provides a valuable tool for detecting and diagnosing pathologies in dental and oral-maxillofacial structures while avoiding radiation dose. The high patient comfort, as achieved by our design, is very crucial, since image artefacts due to movement or failing to complete the examination jeopardize the diagnostic value of MRI examinations.

  4. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    PubMed

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  5. The design and performance characteristics of a cellular logic 3-D image classification processor

    NASA Astrophysics Data System (ADS)

    Ankeney, L. A.

    1981-04-01

    The introduction of high resolution scanning laser radar systems which are capable of collecting range and reflectivity images, is predicted to significantly influence the development of processors capable of performing autonomous target classification tasks. Actively sensed range images are shown to be superior to passively collected infrared images in both image stability and information content. An illustrated tutorial introduces cellular logic (neighborhood) transformations and two and three dimensional erosion and dilation operations which are used for noise filters and geometric shape measurement. A unique 'cookbook' approach to selecting a sequence of neighborhood transformations suitable for object measurement is developed and related to false alarm rate and algorithm effectiveness measures. The cookbook design approach is used to develop an algorithm to classify objects based upon their 3-D geometrical features. A Monte Carlo performance analysis is used to demonstrate the utility of the design approach by characterizing the ability of the algorithm to classify randomly positioned three dimensional objects in the presence of additive noise, scale variations, and other forms of image distortion.

  6. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.

  7. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo

    PubMed Central

    Liang, Kaicheng; Wang, Zhao; Ahsen, Osman O.; Lee, Hsiang-Chieh; Potsaid, Benjamin M.; Jayaraman, Vijaysekhar; Cable, Alex; Mashimo, Hiroshi; Li, Xingde; Fujimoto, James G.

    2018-01-01

    Devices that perform wide field-of-view (FOV) precision optical scanning are important for endoscopic assessment and diagnosis of luminal organ disease such as in gastroenterology. Optical scanning for in vivo endoscopic imaging has traditionally relied on one or more proximal mechanical actuators, limiting scan accuracy and imaging speed. There is a need for rapid and precise two-dimensional (2D) microscanning technologies to enable the translation of benchtop scanning microscopies to in vivo endoscopic imaging. We demonstrate a new cycloid scanner in a tethered capsule for ultrahigh speed, side-viewing optical coherence tomography (OCT) endomicroscopy in vivo. The cycloid capsule incorporates two scanners: a piezoelectrically actuated resonant fiber scanner to perform a precision, small FOV, fast scan and a micromotor scanner to perform a wide FOV, slow scan. Together these scanners distally scan the beam circumferentially in a 2D cycloid pattern, generating an unwrapped 1 mm × 38 mm strip FOV. Sequential strip volumes can be acquired with proximal pullback to image centimeter-long regions. Using ultrahigh speed 1.3 μm wavelength swept-source OCT at a 1.17 MHz axial scan rate, we imaged the human rectum at 3 volumes/s. Each OCT strip volume had 166 × 2322 axial scans with 8.5 μm axial and 30 μm transverse resolution. We further demonstrate OCT angiography at 0.5 volumes/s, producing volumetric images of vasculature. In addition to OCT applications, cycloid scanning promises to enable precision 2D optical scanning for other imaging modalities, including fluorescence confocal and nonlinear microscopy. PMID:29682598

  8. Characterization of Nanopipettes.

    PubMed

    Perry, David; Momotenko, Dmitry; Lazenby, Robert A; Kang, Minkyung; Unwin, Patrick R

    2016-05-17

    Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery, and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy and finite element method simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope setup.

  9. Germination and Outgrowth of Single Spores of Saccharomyces cerevisiae Viewed by Scanning Electron and Phase-Contrast Microscopy

    PubMed Central

    Rousseau, Paul; Halvorson, Harlyn O.; Bulla, Lee A.; Julian, Grant St.

    1972-01-01

    Single spores of Saccharomyces cerevisiae were examined during germination and outgrowth by scanning electron and phase-contrast microscopy. Also determined were changes in cell weight and light absorbance, trehalose utilization, and synthesis of protein and KOH-soluble carbohydrates. These studies reveal that development of the vegetative cell from a spore follows a definite sequence of events involving dramatic physical and chemical modifications. These changes are: initial rapid loss in cellular absorbance followed later by an abrupt gain in absorbance; reduction in cell weight and a subsequent progressive increase; modification of the spore surface with concomitant diminution in refractility; elongation of the cell and augmentation of surface irregularities; rapid decline in trehalose content of the cell accompanied by extensive formation of KOH-soluble carbohydrates; and bud formation. Images PMID:4551750

  10. Translational-circular scanning for magneto-acoustic tomography with current injection.

    PubMed

    Wang, Shigang; Ma, Ren; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng

    2016-01-27

    Magneto-acoustic tomography with current injection involves using electrical impedance imaging technology. To explore the potential applications in imaging biological tissue and enhance image quality, a new scan mode for the transducer is proposed that is based on translational and circular scanning to record acoustic signals from sources. An imaging algorithm to analyze these signals is developed in respect to this alternative scanning scheme. Numerical simulations and physical experiments were conducted to evaluate the effectiveness of this scheme. An experiment using a graphite sheet as a tissue-mimicking phantom medium was conducted to verify simulation results. A pulsed voltage signal was applied across the sample, and acoustic signals were recorded as the transducer performed stepped translational or circular scans. The imaging algorithm was used to obtain an acoustic-source image based on the signals. In simulations, the acoustic-source image is correlated with the conductivity at the sample boundaries of the sample, but image results change depending on distance and angular aspect of the transducer. In general, as angle and distance decreases, the image quality improves. Moreover, experimental data confirmed the correlation. The acoustic-source images resulting from the alternative scanning mode has yielded the outline of a phantom medium. This scan mode enables improvements to be made in the sensitivity of the detecting unit and a change to a transducer array that would improve the efficiency and accuracy of acoustic-source images.

  11. Reconstruction of measurable three-dimensional point cloud model based on large-scene archaeological excavation sites

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Sen; Zhang, Meng-Meng; Zhang, Wei-Xing

    2017-01-01

    This paper outlines a low-cost, user-friendly photogrammetric technique with nonmetric cameras to obtain excavation site digital sequence images, based on photogrammetry and computer vision. Digital camera calibration, automatic aerial triangulation, image feature extraction, image sequence matching, and dense digital differential rectification are used, combined with a certain number of global control points of the excavation site, to reconstruct the high precision of measured three-dimensional (3-D) models. Using the acrobatic figurines in the Qin Shi Huang mausoleum excavation as an example, our method solves the problems of little base-to-height ratio, high inclination, unstable altitudes, and significant ground elevation changes affecting image matching. Compared to 3-D laser scanning, the 3-D color point cloud obtained by this method can maintain the same visual result and has advantages of low project cost, simple data processing, and high accuracy. Structure-from-motion (SfM) is often used to reconstruct 3-D models of large scenes and has lower accuracy if it is a reconstructed 3-D model of a small scene at close range. Results indicate that this method quickly achieves 3-D reconstruction of large archaeological sites and produces heritage site distribution of orthophotos providing a scientific basis for accurate location of cultural relics, archaeological excavations, investigation, and site protection planning. This proposed method has a comprehensive application value.

  12. International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol.

    PubMed

    Rusbridge, Clare; Long, Sam; Jovanovik, Jelena; Milne, Marjorie; Berendt, Mette; Bhatti, Sofie F M; De Risio, Luisa; Farqhuar, Robyn G; Fischer, Andrea; Matiasek, Kaspar; Muñana, Karen; Patterson, Edward E; Pakozdy, Akos; Penderis, Jacques; Platt, Simon; Podell, Michael; Potschka, Heidrun; Stein, Veronika M; Tipold, Andrea; Volk, Holger A

    2015-08-28

    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature.There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6-7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed.

  13. Impact of Methamphetamine on Regional Metabolism and Cerebral Blood Flow after Traumatic Brain Injury

    PubMed Central

    O'Phelan, Kristine; Ernst, Thomas; Park, Dalnam; Stenger, Andrew; Denny, Katherine; Green, Deborah; Chang, Cherylee; Chang, Linda

    2014-01-01

    Substance abuse is a frequent comorbid condition among patients with Traumatic Brain Injury (TBI), but little is known about its potential additive or interactive effects on tissue injury or recovery from TBI. This study aims to evaluate changes in regional metabolism and cerebral perfusion in subjects who used methamphetamine(METH) prior to sustaining a TBI. We hypothesized that METH use would decrease pericontusional cerebral perfusion and markers of neuronal metabolism, in TBI patients compared to those without METH use. Methods This is a single center prospective observational study. Adults with moderate and severe TBI were included. MRI scanning was performed on a 3 Tesla scanner. MP-RAGE and FLAIR sequences as well as Metabolite spectra of NAA and lactate in pericontusional and contralateral voxels identified on the MP-RAGE scans. A spiral-based FAIR sequence was used for the acquisition of cerebral blood flow (CBF) maps. Regional CBF images were analyzed using Image J open source software. Pericontusional and contralateral CBF, NAA and lactate were assessed in the entire cohort and in the METH and non-METH groups. Results 17 subjects completed the MR studies. Analysis of entire cohort: Pericontusional NAA concentrations (5.81 ± 2.0 mM/kg) were 12% lower compared to the contralateral NAA (6.98 ± 1.2 mM/kg; p=0.03). Lactate concentrations and CBF were not significantly different between the two regions, however, regional cerebral blood flow was equally reduced in the two regions. Subgroup analysis: 41% of subjects tested positive for METH. The mean age, Glasgow Coma Scale and time to scan did not differ between groups. The two subject groups also had similar regional NAA and lactate. Pericontusional CBF was 60% lower in the METH users than the non-users, p=0.04; contralateral CBF did not differ between the groups. Conclusion This small study demonstrates that tissue metabolism is regionally heterogeneous after TBI and pericontusional perfusion was significantly reduced in the METH subgroup. PMID:23836426

  14. Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) for dynamic contrast-enhanced MRI of liver.

    PubMed

    Ning, Jia; Sun, Yongliang; Xie, Sheng; Zhang, Bida; Huang, Feng; Koken, Peter; Smink, Jouke; Yuan, Chun; Chen, Huijun

    2018-05-01

    To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Rapid whole-brain resting-state fMRI at 3 T: Efficiency-optimized three-dimensional EPI versus repetition time-matched simultaneous-multi-slice EPI.

    PubMed

    Stirnberg, Rüdiger; Huijbers, Willem; Brenner, Daniel; Poser, Benedikt A; Breteler, Monique; Stöcker, Tony

    2017-12-01

    State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling. We performed an application-oriented comparison between a tailored, six-fold CAIPIRINHA-accelerated 3D-EPI protocol at 530 ms temporal and 2.4 mm isotropic spatial resolution and an SMS-EPI protocol with identical spatial and temporal resolution for whole-brain resting-state fMRI at 3 T. The latter required eight-fold slice acceleration to compensate for the lack of elliptical sampling and fast water excitation. Both sequences used vendor-supplied on-line image reconstruction. We acquired test/retest resting-state fMRI scans in ten volunteers, with simultaneous acquisition of cardiac and respiration data, subsequently used for optional physiological noise removal (nuisance regression). We found that the 3D-EPI protocol has significantly increased temporal signal-to-noise ratio throughout the brain as compared to the SMS-EPI protocol, especially when employing motion and nuisance regression. Both sequence types reliably identified known functional networks with stronger functional connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T, with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals from BOLD signals in the frequency domain. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging.

    PubMed

    Dalili Kajan, Zahra; Khademi, Jalil; Alizadeh, Ahmad; Babaei Hemmaty, Yasamin; Atrkar Roushan, Zahra

    2015-09-01

    This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo T1 -weighted images, fast spin-echo T2 -weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires.

  17. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging

    PubMed Central

    Khademi, Jalil; Alizadeh, Ahmad; Babaei Hemmaty, Yasamin; Atrkar Roushan, Zahra

    2015-01-01

    Purpose This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Materials and Methods A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo T1-weighted images, fast spin-echo T2-weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Results Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. Conclusion With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires. PMID:26389058

  18. Cardio-chemical exchange saturation transfer magnetic resonance imaging reveals molecular signatures of endogenous fibrosis and exogenous contrast media.

    PubMed

    Vandsburger, Moriel; Vandoorne, Katrien; Oren, Roni; Leftin, Avigdor; Mpofu, Senzeni; Delli Castelli, Daniela; Aime, Silvio; Neeman, Michal

    2015-01-01

    Application of emerging molecular MRI techniques, including chemical exchange saturation transfer (CEST)-MRI, to cardiac imaging is desirable; however, conventional methods are poorly suited for cardiac imaging, particularly in small animals with rapid heart rates. We developed a CEST-encoded steady state and retrospectively gated cardiac cine imaging sequence in which the presence of fibrosis or paraCEST contrast agents was directly encoded into the steady-state myocardial signal intensity (cardioCEST). Development of cardioCEST: A CEST-encoded cardiac cine MRI sequence was implemented on a 9.4T small animal scanner. CardioCEST of fibrosis was serially performed by acquisition of a series of CEST-encoded cine images at multiple offset frequencies in mice (n=7) after surgically induced myocardial infarction. Scar formation was quantified using a spectral modeling approach and confirmed with histological staining. Separately, circulatory redistribution kinetics of the paramagnetic CEST agent Eu-HPDO3A were probed in mice using cardioCEST imaging, revealing rapid myocardial redistribution, and washout within 30 minutes (n=6). Manipulation of vascular tone resulted in heightened peak CEST contrast in the heart, but did not alter redistribution kinetics (n=6). At 28 days after myocardial infarction (n=3), CEST contrast kinetics in infarct zone tissue were altered, demonstrating gradual accumulation of Eu-HPDO3A in the increased extracellular space. cardioCEST MRI enables in vivo imaging of myocardial fibrosis using endogenous contrast mechanisms, and of exogenously delivered paraCEST agents, and can enable multiplexed imaging of multiple molecular targets at high-resolution coupled with conventional cardiac MRI scans. © 2013 American Heart Association, Inc.

  19. 3D reconstruction of emergency cranial computed tomography scans as a tool in clinical forensic radiology after survived blunt head trauma--report of two cases.

    PubMed

    Grassberger, M; Gehl, A; Püschel, K; Turk, E E

    2011-04-15

    When requested to evaluate surviving victims of blunt head trauma the forensic expert has to draw mainly on medical documentation from the time of hospital admission. In many cases these consist of written clinical records, radiographs and in some cases photographic documentation of the injuries. We report two cases of survived severe blunt head trauma where CT images, which had primarily been obtained for clinical diagnostic purposes, were used for forensic assessment. 3D reconstructions of the clinical CT-images yielded valuable information regarding the sequence, number and direction of the impacts to the head, their gross morphology and the inflicting weapon. We conclude that computed tomography and related imaging methods, along with their 3D reconstruction capabilities, provide a useful tool to approach questions in clinical forensic casework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Radioisotope scanning of brain, liver, lung and bone with a note on tumour localizing agents

    PubMed Central

    Lavender, J. P.

    1973-01-01

    Radioisotopic scanning of brain, liver, lungs and the skeleton is briefly reviewed with a survey of recent developments of clinical significance. In brain scanning neoplasm detection rates of greater than 90% are claimed. The true figure is probably 70-80%. Autopsy data shows a number of false negatives, particularly with vascular lesions. Attempts to make scanning more specific in differentiating neoplasm from vascular lesions by rapid sequence blood flow studies are reviewed. In liver scanning by means of colloids again high success rate is claimed but small metastases are frequently missed and the false negative scan rate is probably quite high. Lung scanning still has its main place in investigating pulmonary embolic disease. Ventilation studies using Xenon 133 are useful, particularly combined with perfusion studies. The various radiopharmaceuticals for use in bone scanning are reviewed. The appearance of technetium labelled phosphate compounds will probably allow much wider use of total skeletal scanning. Research into tumour localizing agents continues, the most recent and interesting being Gallium citrate and labelled bleomycin. Neither agent is predictable however although Gallium may have a place in Hodgkins disease and bronchogenic neoplasm and both may have a place in the detection of cerebral tumours. ImagesFig. 1Fig. 2Fig. 3p452-bFig. 3bFig. 4Fig. 5Fig. 5bFig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 12c & 12dFig. 13Fig. 13 b,c,dFig. 14Fig. 14bFig. 15Fig. 15bFig. 16Fig. 17Fig. 18 PMID:4602127

Top