Advanced scanning probe lithography.
Garcia, Ricardo; Knoll, Armin W; Riedo, Elisa
2014-08-01
The nanoscale control afforded by scanning probe microscopes has prompted the development of a wide variety of scanning-probe-based patterning methods. Some of these methods have demonstrated a high degree of robustness and patterning capabilities that are unmatched by other lithographic techniques. However, the limited throughput of scanning probe lithography has prevented its exploitation in technological applications. Here, we review the fundamentals of scanning probe lithography and its use in materials science and nanotechnology. We focus on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.
Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyoung Ryu, Yu; Garcia, Ricardo, E-mail: r.garcia@csic.es; Aitor Postigo, Pablo
2014-06-02
Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained withmore » a top-down lithography method.« less
Hard-tip, soft-spring lithography.
Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A
2011-01-27
Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.
NASA Astrophysics Data System (ADS)
Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie
2018-07-01
A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.
Advanced electric-field scanning probe lithography on molecular resist using active cantilever
NASA Astrophysics Data System (ADS)
Kaestner, Marcus; Aydogan, Cemal; Ivanov, Tzvetan; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Krivoshapkina, Yana; Hofer, Manuel; Lenk, Steve; Atanasov, Ivaylo; Holz, Mathias; Rangelow, Ivo W.
2015-07-01
The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many devices. Driven by the thermally actuated piezoresistive cantilever technology, we have developed a prototype of a scanning probe lithography (SPL) platform which is able to image, inspect, align, and pattern features down to the single digit nanoregime. Here, we present examples of practical applications of the previously published electric-field based current-controlled scanning probe lithography. In particular, individual patterning tests are carried out on calixarene by using our developed table-top SPL system. We have demonstrated the application of a step-and-repeat SPL method including optical as well as atomic force microscopy-based navigation and alignment. The closed-loop lithography scheme was applied to sequentially write positive and negative tone features. Due to the integrated unique combination of read-write cycling, each single feature is aligned separately with the highest precision and inspected after patterning. This routine was applied to create a pattern step by step. Finally, we have demonstrated the patterning over larger areas, over existing topography, and the practical applicability of the SPL processes for lithography down to 13-nm pitch patterns. To enhance the throughput capability variable beam diameter electric field, current-controlled SPL is briefly discussed.
Advanced electric-field scanning probe lithography on molecular resist using active cantilever
NASA Astrophysics Data System (ADS)
Kaestner, Marcus; Aydogan, Cemal; Lipowicz, Hubert-Seweryn; Ivanov, Tzvetan; Lenk, Steve; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Atanasov, Ivaylo; Krivoshapkina, Yana; Hofer, Manuel; Holz, Mathias; Rangelow, Ivo W.
2015-03-01
The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many novel nanoelectronic, NEMS, optical and bio-nanotechnology-based devices. Based on the thermally actuated, piezoresistive cantilever technology we have developed a first prototype of a scanning probe lithography (SPL) platform able to image, inspect, align and pattern features down to single digit nano regime. The direct, mask-less patterning of molecular resists using active scanning probes represents a promising path circumventing the problems in today's radiation-based lithography. Here, we present examples of practical applications of the previously published electric field based, current-controlled scanning probe lithography on molecular glass resist calixarene by using the developed tabletop SPL system. We demonstrate the application of a step-and-repeat scanning probe lithography scheme including optical as well as AFM based alignment and navigation. In addition, sequential read-write cycle patterning combining positive and negative tone lithography is shown. We are presenting patterning over larger areas (80 x 80 μm) and feature the practical applicability of the lithographic processes.
Brown, Treva T.; LeJeune, Zorabel M.; Liu, Kai; Hardin, Sean; Li, Jie-Ren; Rupnik, Kresimir; Garno, Jayne C.
2010-01-01
Controllers for scanning probe instruments can be programmed for automated lithography to generate desired surface arrangements of nanopatterns of organic thin films, such as n-alkanethiol self-assembled monolayers (SAMs). In this report, atomic force microscopy (AFM) methods of lithography known as nanoshaving and nanografting are used to write nanopatterns within organic thin films. Commercial instruments provide software to control the length, direction, speed, and applied force of the scanning motion of the tip. For nanoshaving, higher forces are applied to an AFM tip to selectively remove regions of the matrix monolayer, exposing bare areas of the gold substrate. Nanografting is accomplished by force-induced displacement of molecules of a matrix SAM, followed immediately by the surface self-assembly of n-alkanethiol molecules from solution. Advancements in AFM automation enable rapid protocols for nanolithography, which can be accomplished within the tight time restraints of undergraduate laboratories. Example experiments with scanning probe lithography (SPL) will be described in this report that were accomplished by undergraduate students during laboratory course activities and research internships in the chemistry department of Louisiana State University. Students were introduced to principles of surface analysis and gained “hands-on” experience with nanoscale chemistry. PMID:21483651
Mix & match electron beam & scanning probe lithography for high throughput sub-10 nm lithography
NASA Astrophysics Data System (ADS)
Kaestner, Marcus; Hofer, Manuel; Rangelow, Ivo W.
2013-03-01
The prosperous demonstration of a technique able to produce features with single nanometer (SN) resolution could guide the semiconductor industry into the desired beyond CMOS era. In the lithographic community immense efforts are being made to develop extreme ultra-violet lithography (EUVL) and multiple-e-beam direct-write systems as possible successor for next generation lithography (NGL). However, patterning below 20 nm resolution and sub-10 nm overlay alignment accuracy becomes an extremely challenging quest. Herein, the combination of electron beam lithography (EBL) or EUVL with the outstanding capabilities of closed-loop scanning proximal probe nanolithography (SPL) reveals a promising way to improve both patterning resolution and reproducibility in combination with excellent overlay and placement accuracy. In particular, the imaging and lithographic resolution capabilities provided by scanning probe microscopy (SPM) methods touches the atomic level, which expresses the theoretical limit of constructing nanoelectronic devices. Furthermore, the symbiosis between EBL (EUVL) and SPL expands the process window of EBL (EUVL) far beyond state-of-the-art allowing SPL-based pre- and post-patterning of EBL (EUVL) written features at critical dimension level with theoretically nanometer precise pattern overlay alignment. Moreover, we can modify the EBL (EUVL) pattern before as well as after the development step. In this paper we demonstrate proof of concept using the ultra-high resolution molecular glass resist calixarene. Therefor we applied Gaussian E-beam lithography system operating at 10 keV and a home-developed SPL set-up. The introduced Mix and Match lithography strategy enables a powerful use of our SPL set-up especially as post-patterning tool for inspection and repair functions below the sub-10 nm critical dimension level.
2015-11-03
scale optical projection system powered by spatial light modulators, such as digital micro-mirror device ( DMD ). Figure 4 shows the parallel lithography ...1Scientific RepoRts | 5:16192 | DOi: 10.1038/srep16192 www.nature.com/scientificreports High throughput optical lithography by scanning a massive...array of bowtie aperture antennas at near-field X. Wen1,2,3,*, A. Datta1,*, L. M. Traverso1, L. Pan1, X. Xu1 & E. E. Moon4 Optical lithography , the
NASA Astrophysics Data System (ADS)
Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo
2013-03-01
In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.
Leung, Ka-Ngo
2005-08-02
A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.
Planar techniques for fabricating X-ray diffraction gratings and zone plates
NASA Technical Reports Server (NTRS)
Smith, H. I.; Anderson, E. H.; Hawryluk, A. M.; Schattenburg, M. L.
1984-01-01
The state of current planar techniques in the fabrication of Fresnel zone plates and diffraction gratings is reviewed. Among the fabrication techniques described are multilayer resist techniques; scanning electron beam lithography; and holographic lithography. Consideration is also given to: X-ray lithography; ion beam lithography; and electroplating. SEM photographs of the undercut profiles obtained in a type AZ 135OB photoresistor by holographic lithography are provided.
16 nm-resolution lithography using ultra-small-gap bowtie apertures
NASA Astrophysics Data System (ADS)
Chen, Yang; Qin, Jin; Chen, Jianfeng; Zhang, Liang; Ma, Chengfu; Chu, Jiaru; Xu, Xianfan; Wang, Liang
2017-02-01
Photolithography has long been a critical technology for nanoscale manufacturing, especially in the semiconductor industry. However, the diffractive nature of light has limited the continuous advance of optical lithography resolution. To overcome this obstacle, near-field scanning optical lithography (NSOL) is an alternative low-cost technique, whose resolution is determined by the near-field localization that can be achieved. Here, we apply the newly-developed backside milling method to fabricate bowtie apertures with a sub-15 nm gap, which can substantially improve the resolution of NSOL. A highly confined electric near field is produced by localized surface plasmon excitation and nanofocusing of the closely-tapered gap. We show contact lithography results with a record 16 nm resolution (FWHM). This photolithography scheme promises potential applications in data storage, high-speed computation, energy harvesting, and other nanotechnology areas.
Reflective optical imaging method and circuit
Shafer, David R.
2001-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.
Sub-30 nm patterning of molecular resists based on crosslinking through tip based oxidation
NASA Astrophysics Data System (ADS)
Lorenzoni, Matteo; Wagner, Daniel; Neuber, Christian; Schmidt, Hans-Werner; Perez-Murano, Francesc
2018-06-01
Oxidation Scanning Probe Lithography (o-SPL) is an established method employed for device patterning at the nanometer scale. It represents a feasible and inexpensive alternative to standard lithographic techniques such as electron beam lithography (EBL) and nanoimprint lithography (NIL). In this work we applied non-contact o-SPL to an engineered class of molecular resists in order to obtain crosslinking by electrochemical driven oxidation. By patterning and developing various resist formulas we were able to obtain a reliable negative tone resist behavior based on local oxidation. Under optimal conditions, directly written patterns can routinely reach sub-30 nm lateral resolution, while the final developed features result wider, approaching 50 nm width.
Keskinbora, Kahraman; Grévent, Corinne; Eigenthaler, Ulrike; Weigand, Markus; Schütz, Gisela
2013-11-26
A significant challenge to the wide utilization of X-ray microscopy lies in the difficulty in fabricating adequate high-resolution optics. To date, electron beam lithography has been the dominant technique for the fabrication of diffractive focusing optics called Fresnel zone plates (FZP), even though this preparation method is usually very complicated and is composed of many fabrication steps. In this work, we demonstrate an alternative method that allows the direct, simple, and fast fabrication of FZPs using focused Ga(+) beam lithography practically, in a single step. This method enabled us to prepare a high-resolution FZP in less than 13 min. The performance of the FZP was evaluated in a scanning transmission soft X-ray microscope where nanostructures as small as sub-29 nm in width were clearly resolved, with an ultimate cutoff resolution of 24.25 nm, demonstrating the highest first-order resolution for any FZP fabricated by the ion beam lithography technique. This rapid and simple fabrication scheme illustrates the capabilities and the potential of direct ion beam lithography (IBL) and is expected to increase the accessibility of high-resolution optics to a wider community of researchers working on soft X-ray and extreme ultraviolet microscopy using synchrotron radiation and advanced laboratory sources.
Nanofabrication on unconventional substrates using transferred hard masks
Li, Luozhou; Bayn, Igal; Lu, Ming; ...
2015-01-15
Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less
150-nm generation lithography equipment
NASA Astrophysics Data System (ADS)
Deguchi, Nobuyoshi; Uzawa, Shigeyuki
1999-07-01
Lithography by step-and-scan exposure is expected to be the mainstream for semiconductor manufacturing below 180 nm resolution patterns. We have developed a scanner for 150 nm features on either 200 mm or 300 mm wafers. For this system, the synchronous stage system has been redesigned which makes it possible to improve imaging performance and overlay accuracy. A new 300 mm wafer stage enhances productivity while weighting almost the same as the stage for 200 mm wafers. The mainbody mechanical frame incorporates reactive force receiver system to counter the inertial energy and vibrational issues associated with high speed wafer and reticle stage scanning. This report outlines the total system design, new technologies and performance data of the Cannon FPA-5000ES2 step-and-scan exposure tool developed for the 150 nm generation lithography.
Yuan, Liang (Leon); Herman, Peter R.
2016-01-01
Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872
Reflective optical imaging system
Shafer, David R.
2000-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.
Compact multi-bounce projection system for extreme ultraviolet projection lithography
Hudyma, Russell M.
2002-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
Fabricating Blazed Diffraction Gratings by X-Ray Lithography
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel
2004-01-01
Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the nonlinearity and produce a desired groove profile. An example of grating grooves generated by this technique is shown in Figure 2. A maximum relative efficiency of 88 percent has been demonstrated.
Maskless, reticle-free, lithography
Ceglio, N.M.; Markle, D.A.
1997-11-25
A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.
Maskless, reticle-free, lithography
Ceglio, Natale M.; Markle, David A.
1997-11-25
A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.
Geometrical E-beam proximity correction for raster scan systems
NASA Astrophysics Data System (ADS)
Belic, Nikola; Eisenmann, Hans; Hartmann, Hans; Waas, Thomas
1999-04-01
High pattern fidelity is a basic requirement for the generation of masks containing sub micro structures and for direct writing. Increasing needs mainly emerging from OPC at mask level and x-ray lithography require a correction of the e-beam proximity effect. The most part of e-beam writers are raster scan system. This paper describes a new method for geometrical pattern correction in order to provide a correction solution for e-beam system that are not able to apply variable doses.
Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles.
Shaw, Lucas A; Chizari, Samira; Shusteff, Maxim; Naghsh-Nilchi, Hamed; Di Carlo, Dino; Hopkins, Jonathan B
2018-05-14
Demand continues to rise for custom-fabricated and engineered colloidal microparticles across a breadth of application areas. This paper demonstrates an improvement in the fabrication rate of high-resolution 3D colloidal particles by using two-photon scanning lithography within a microfluidic channel. To accomplish this, we present (1) an experimental setup that supports fast, 3D scanning by synchronizing a galvanometer, piezoelectric stage, and an acousto-optic switch, and (2) a new technique for modifying the laser's scan path to compensate for the relative motion of the rapidly-flowing photopolymer medium. The result is an instrument that allows for rapid conveyor-belt-like fabrication of colloidal objects with arbitrary 3D shapes and micron-resolution features.
High numerical aperture projection system for extreme ultraviolet projection lithography
Hudyma, Russell M.
2000-01-01
An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.
NASA Astrophysics Data System (ADS)
Li, Minkang; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Lu, Yancong; Xiang, Changcheng; Xiang, XianSong
2016-10-01
Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.
NASA Astrophysics Data System (ADS)
Masaaki Kurihara,; Sho Hatakeyama,; Noriko Yamada,; Takeya Shimomura,; Takaharu Nagai,; Kouji Yoshida,; Tatsuya Tomita,; Morihisa Hoga,; Naoya Hayashi,; Hiroyuki Ohtani,; Masamichi Fujihira,
2010-06-01
Antisticking layers (ASLs) on UV nanoimprint lithography (UV-NIL) molds were characterized by scanning probe microscopies (SPMs) in addition to macroscopic analyses of work of adhesion and separation force. Local physical properties of the ASLs were measured by atomic force microscopy (AFM) and friction force microscopy (FFM). The behavior of local adhesive forces measured with AFM on several surfaces was consistent with that of work of adhesion obtained from contact angle. The ASLs were coated by two different processes, i.e., one is a vapor-phase process and the other a spin-coating process. The homogeneity of the ASLs prepared by the vapor-phase process was better than that of those prepared by the spin-coating process. In addition, we measured the thicknesses of ASL patterns prepared by a lift-off method to investigate the effect of the ASL thicknesses on critical dimensions of the molds with ASLs and found that this effect is not negligible.
Reflective optical imaging systems with balanced distortion
Hudyma, Russell M.
2001-01-01
Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.
Maskless EUV lithography: an already difficult technology made even more complicated?
NASA Astrophysics Data System (ADS)
Chen, Yijian
2012-03-01
In this paper, we present the research progress made in maskless EUV lithography and discuss the emerging opportunities for this disruptive technology. It will be shown nanomirrors based maskless approach is one path to costeffective and defect-free EUV lithography, rather than making it even more complicated. The focus of our work is to optimize the existing vertical comb process and scale down the mirror size from several microns to sub-micron regime. The nanomirror device scaling, system configuration, and design issues will be addressed. We also report our theoretical and simulation study of reflective EUV nanomirror based imaging behavior. Dense line/space patterns are formed with an EUV nanomirror array by assigning a phase shift of π to neighboring nanomirrors. Our simulation results show that phase/intensity imbalance is an inherent characteristic of maskless EUV lithography while it only poses a manageable challenge to CD control and process window. The wafer scan and EUV laser jitter induced image blur phenomenon is discussed and a blurred imaging theory is constructed. This blur effect is found to degrade the image contrast at a level that mainly depends on the wafer scan speed.
Reflective optical imaging system with balanced distortion
Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.
1999-01-01
An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.
Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas H.; Whealton, John H.; Whitson, John C.; Wilgen, John B.
2002-12-24
Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.
Fabrication of 2D and 3D photonic structures using laser lithography
NASA Astrophysics Data System (ADS)
Gaso, P.; Jandura, D.; Pudis, D.
2016-12-01
In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.
All-optical lithography process for contacting nanometer precision donor devices
NASA Astrophysics Data System (ADS)
Ward, D. R.; Marshall, M. T.; Campbell, D. M.; Lu, T. M.; Koepke, J. C.; Scrymgeour, D. A.; Bussmann, E.; Misra, S.
2017-11-01
We describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.
All-optical lithography process for contacting nanometer precision donor devices
Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie; ...
2017-11-06
In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.
All-optical lithography process for contacting nanometer precision donor devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie
In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Y.; Chen, D; Park, S
High-density arrays of highly ordered ferritin nanocages are fabricated through the guided assembly of thiol-modified ferritin on prepatterned gold nanodots, which are prepared by block copolymer micelle lithography. One and only one ferritin nanocage is anchored to each gold nanodot, as confirmed by scanning electron and scanning force microscopy.
Rühe, J
2017-09-26
In photolithographic processes, the light inducing the photochemical reactions is confined to a small volume, which enables direct writing of micro- and nanoscale features onto solid surfaces without the need of a predefined photomask. The direct writing process can be used to generate topographic patterns through photopolymerization or photo-cross-linking or can be employed to use light to generate chemical patterns on the surface with high spatial control, which would make such processes attractive for bioapplications. The prospects of maskless photolithography technologies with a focus on two-photon lithography and scanning-probe-based photochemical processes based on scanning near-field optical microscopy or beam pen lithography are discussed.
Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.
2015-01-01
Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy. PMID:26525906
Measurement of Strain and Stress Distributions in Structural Materials by Electron Moiré Method
NASA Astrophysics Data System (ADS)
Kishimoto, Satoshi; Xing, Yougming; Tanaka, Yoshihisa; Kagawa, Yutaka
A method for measuring the strain and stress distributions in structural materials has been introduced. Fine model grids were fabricated by electron beam lithography, and an electron beam scan by a scanning electron microscope (SEM) was used as the master grid. Exposure of the electron beam scan onto the model grid in an SEM produced the electron beam moiré fringes of bright and dark parts caused by the different amounts of the secondary electrons per a primary electron. For demonstration, the micro-creep deformation of pure copper was observed. The creep strain distribution and the grain boundary sliding were analyzed. The residual strain and stress at the interface between a fiber and a matrix of a fiber reinforced plastic (FRP) were measured using the pushing-out test and this electron moiré method. Also, a non-uniform deformation around the boundary of 3-point bended laminated steel was observed and the strain distribution analyzed.
Contour metrology using critical dimension atomic force microscopy
NASA Astrophysics Data System (ADS)
Orji, Ndubuisi G.; Dixson, Ronald G.; Vladár, András E.; Ming, Bin; Postek, Michael T.
2012-03-01
The critical dimension atomic force microscope (CD-AFM), which is used as a reference instrument in lithography metrology, has been proposed as a complementary instrument for contour measurement and verification. Although data from CD-AFM is inherently three dimensional, the planar two-dimensional data required for contour metrology is not easily extracted from the top-down CD-AFM data. This is largely due to the limitations of the CD-AFM method for controlling the tip position and scanning. We describe scanning techniques and profile extraction methods to obtain contours from CD-AFM data. We also describe how we validated our technique, and explain some of its limitations. Potential sources of error for this approach are described, and a rigorous uncertainty model is presented. Our objective is to show which data acquisition and analysis methods could yield optimum contour information while preserving some of the strengths of CD-AFM metrology. We present comparison of contours extracted using our technique to those obtained from the scanning electron microscope (SEM), and the helium ion microscope (HIM).
Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale
Manfrinato, Vitor R.; Stein, Aaron; Zhang, Lihua; ...
2017-04-18
Patterning materials efficiently at the smallest length scales has been a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) andmore » the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.« less
Development of reflective optical systems for XUV projection lithography
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.; Newnam, B. E.
We describe two full-field reflective reduction systems (1 and 6.25 sq cm image area) and one scanning system (25 mm x scan length image size) that meet the performance requirements for 0.1-micron resolution projection lithography using extreme-ultraviolet (XUV) wavelengths from 10 to 15 nm. These systems consist of two centered, symmetric, annular aspheric mirrors with 35 to 40 percent central obscuration, providing a reduction ratio of 3.3 x. Outstanding features include the remarkably low distortion (less than or = 10 nm) over the entire image field and the comparatively liberal tolerances on the mirror radii and alignment. While optimized annular illumination can improve the performance, the required performance can be met with full illumination, thereby allowing a simpler system design.
Performance of the ALTA 3500 scanned-laser mask lithography system
NASA Astrophysics Data System (ADS)
Buck, Peter D.; Buxbaum, Alex H.; Coleman, Thomas P.; Tran, Long
1998-09-01
The ALTA 3500, an advanced scanned-laser mask lithography tool produced by Etec, was introduced to the marketplace in September 1997. The system architecture was described and an initial performance evaluation was presented. This system, based on the ALTA 3000, uses a new 33.3X, 0.8 NA final reduction lens to reduce the spot size to 0.27 micrometers FWHM, thereby affording improved resolution and pattern acuity on the mask. To take advantage of the improved resolution, a new anisotropic chrome etch process has been developed and introduced along with change from Olin 895i resist to TOK iP3600 resist. In this paper we will more extensively describe the performance of the ALTA 3500 and the performance of these new processes.
Wavelength Independent Optical Microscopy and Lithography
1987-10-31
methods have been used in the past to fabricate the submicron apertures needed in near-field microscopy (2-4). However, under this contract we developed an...screens. Durig, et al. (4) in Zurich produced apertures at the tip of a single crystal of quartz etched using HF to make a fine point and covered...stage pulling process was used . Scanning electron li __ NO iI |06 j JlliM ° wm ..... 3 micrographs of a 100nm diameter pipette and a 500nm diameter
NASA Astrophysics Data System (ADS)
Champagne, Alexandre
This dissertation presents the development of two original experimental techniques to probe nanoscale objects. The first one studies electronic transport in single organic molecule transistors in which the source-drain electrode spacing is mechanically adjustable. The second involves the fabrication of high-resolution scanning probe microscopy sensors using a stencil mask lithography technique. We describe the fabrication of transistors in which a single organic molecule can be incorporated. The source and drain leads of these transistors are freely suspended above a flexible substrate, and their spacing can be adjusted by bending the substrate. We detail the technology developed to carry out measurements on these samples. We study electronic transport in single C60 molecules at low temperature. We observe Coulomb blockaded transport and can resolve the discrete energy spectrum of the molecule. We are able to mechanically tune the spacing between the electrodes (over a range of 5 A) to modulate the lead-molecule coupling, and can electrostatically tune the energy levels on the molecule by up to 160 meV using a gate electrode. Initial progress in studying different transport regimes in other molecules is also discussed. We present a lithographic process that allows the deposition of metal nanostructures with a resolution down to 10 nm directly onto atomic force microscope (AFM) tips. We show that multiple layers of lithography can be deposited and aligned. We fabricate high-resolution magnetic force microscopy (MFM) probes using this method and discuss progress to fabricate other scanning probe microscopy (SPM) sensors.
Compact synchrotron radiation depth lithography facility
NASA Astrophysics Data System (ADS)
Knüppel, O.; Kadereit, D.; Neff, B.; Hormes, J.
1992-01-01
X-ray depth lithography allows the fabrication of plastic microstructures with heights of up to 1 mm but with the smallest possible lateral dimensions of about 1 μm. A resist is irradiated with ``white'' synchrotron radiation through a mask that is partially covered with x-ray absorbing microstructures. The plastic microstructure is then obtained by a subsequent chemical development of the irradiated resist. In order to irradiate a reasonably large resist area, the mask and the resist have to be ``scanned'' across the vertically thin beam of the synchrotron radiation. A flexible, nonexpensive and compact scanner apparatus has been built for x-ray depth lithography at the beamline BN1 at ELSA (the 3.5 GeV Electron Stretcher and Accelerator at the Physikalisches Institut of Bonn University). Measurements with an electronic water level showed that the apparatus limits the scanner-induced structure precision to not more than 0.02 μm. The whole apparatus is installed in a vacuum chamber thus allowing lithography under different process gases and pressures.
Graphene engineering by neon ion beams
Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; ...
2016-02-18
Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He + and Ne + beam lithographymore » of graphene based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Oizumi, Hiroaki; Itani, Toshiro; Tagawa, Seiichi
2010-11-01
The development of extreme ultraviolet (EUV) lithography has progressed owing to worldwide effort. As the development status of EUV lithography approaches the requirements for the high-volume production of semiconductor devices with a minimum line width of 22 nm, the extraction of resist parameters becomes increasingly important from the viewpoints of the accurate evaluation of resist materials for resist screening and the accurate process simulation for process and mask designs. In this study, we demonstrated that resist parameters (namely, quencher concentration, acid diffusion constant, proportionality constant of line edge roughness, and dissolution point) can be extracted from the scanning electron microscopy (SEM) images of patterned resists without the knowledge on the details of resist contents using two types of latest EUV resist.
Background and survey of bioreplication techniques.
Pulsifer, Drew Patrick; Lakhtakia, Akhlesh
2011-09-01
Bioreplication is the direct reproduction of a biological structure in order to realize at least one specific functionality. Current bioreplication techniques include the sol-gel technique, atomic layer deposition, physical vapor deposition, and imprint lithography and casting. The combined use of a focused ion beam and a scanning electron microscope could develop into a bioreplication technique as well. Some of these techniques are more suitable for reproducing surface features, others for bulk three-dimensional structures. Industrial upscaling appears possible only for imprint lithography and casting (which can be replaced by stamping).
Li, Y; Kinoshita, H; Watanabe, T; Irie, S; Shirayone, S; Okazaki, S
2000-07-01
A scanning critical illumination system is designed to couple a synchrotron radiation source to a three-aspherical-mirror imaging system for extreme ultraviolet lithography. A static illumination area of H x V = 8 mm x 3 mm (where H is horizontal and V is vertical) can be obtained. Uniform intensity distribution and a large ring field of H x V = 150 mm x 3 mm can be achieved by scanning of the mirror of the condenser. The coherence factor (sigma) of this illumination system is approximately 0.6, with the same beam divergence in both the horizontal and the vertical directions. We describe the performance of the imaging optics at sigma = 0.6 to confirm that the illumination optics can meet the requirements for three-aspherical-mirror imaging optics with a feature size of 0.06 microm.
Micro-fabrication method of graphite mesa microdevices based on optical lithography technology
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Wen, Donghui; Zhu, Huamin; Zhang, Xiaorui; Yang, Xing; Shi, Yunsheng; Zheng, Tianxiang
2017-12-01
Graphite mesa microdevices have incommensurate contact nanometer interfaces, superlubricity, high-speed self-retraction, and other characteristics, which have potential applications in high-performance oscillators and micro-scale switches, memory devices, and gyroscopes. However, the current method of fabricating graphite mesa microdevices is mainly based on high-cost, low efficiency electron beam lithography technology. In this paper, the processing technologies of graphite mesa microdevices with various shapes and sizes were investigated by a low-cost micro-fabrication method, which was mainly based on optical lithography technology. The characterization results showed that the optical lithography technology could realize a large-area of patterning on the graphite surface, and the graphite mesa microdevices, which have a regular shape, neat arrangement, and high verticality could be fabricated in large batches through optical lithography technology. The experiments and analyses showed that the graphite mesa microdevices fabricated through optical lithography technology basically have the same self-retracting characteristics as those fabricated through electron beam lithography technology, and the maximum size of the graphite mesa microdevices with self-retracting phenomenon can reach 10 µm × 10 µm. Therefore, the proposed method of this paper can realize the high-efficiency and low-cost processing of graphite mesa microdevices, which is significant for batch fabrication and application of graphite mesa microdevices.
Qin, Fei; Meng, Zi-Ming; Zhong, Xiao-Lan; Liu, Ye; Li, Zhi-Yuan
2012-06-04
We present a versatile technique based on nano-imprint lithography to fabricate high-quality semiconductor-polymer compound nonlinear photonic crystal (NPC) slabs. The approach allows one to infiltrate uniformly polystyrene materials that possess large Kerr nonlinearity and ultrafast nonlinear response into the cylindrical air holes with diameter of hundred nanometers that are perforated in silicon membranes. Both the structural characterization via the cross-sectional scanning electron microscopy images and the optical characterization via the transmission spectrum measurement undoubtedly show that the fabricated compound NPC samples have uniform and dense polymer infiltration and are of high quality in optical properties. The compound NPC samples exhibit sharp transmission band edges and nondegraded high quality factor of microcavities compared with those in the bare silicon PC. The versatile method can be expanded to make general semiconductor-polymer hybrid optical nanostructures, and thus it may pave the way for reliable and efficient fabrication of ultrafast and ultralow power all-optical tunable integrated photonic devices and circuits.
Micro and Nano Systems for Space Exploration
NASA Technical Reports Server (NTRS)
Manohara, Harish
2007-01-01
This slide presentation reviews the use of micro and nano systems in Space exploration. Included are: an explanation of the rationales behind nano and micro technologies for space exploration, a review of how the devices are fabricated, including details on lithography with more information on Electron Beam (E-Beam) lithography, and X-ray lithography, a review of micro gyroscopes and inchworm Microactuator as examples of the use of MicroElectoMechanical (MEMS) technology. Also included is information on Carbon Nanotubes, including a review of the CVD growth process. These micro-nano systems have given rise to the next generation of miniature X-ray Diffraction, X-ray Fluorescence instruments, mass spectrometers, and terahertz frequency vacuum tube oscillators and amplifiers, scanning electron microscopes and energy dispersive x-ray spectroscope. The nanotechnology has also given rise to coating technology, such as silicon nanotip anti-reflection coating.
Microfluidic device for chemical and mechanical manipulation of suspended cells
NASA Astrophysics Data System (ADS)
Rezvani, Samaneh; Shi, Nan; Squires, Todd M.; Schmidt, Christoph F.
2018-01-01
Microfluidic devices have proven to be useful and versatile for cell studies. We here report on a method to adapt microfluidic stickers made from UV-curable optical adhesive with inserted permeable hydrogel membrane micro-windows for mechanical studies of suspended cells. The windows were fabricated by optical projection lithography using scanning confocal microscopy. The device allows us to rapidly exchange embedding medium while observing and probing the cells. We characterize the device and demonstrate the function by exposing cultured fibroblasts to varying osmotic conditions. Cells can be shrunk reversibly under osmotic compression.
Projection lithography with distortion compensation using reticle chuck contouring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichenor, Daniel A.
2001-01-01
A chuck for holding a reflective reticle where the chuck has an insulator block with a non-planer surface contoured to cause distortion correction of EUV radiation is provided. Upon being placed on the chuck, a thin, pliable reflective reticle will conform to the contour of the chuck's non-planer surface. When employed in a scanning photolithography system, distortion in the scanned direction is corrected.
Geometrical correction of the e-beam proximity effect for raster scan systems
NASA Astrophysics Data System (ADS)
Belic, Nikola; Eisenmann, Hans; Hartmann, Hans; Waas, Thomas
1999-06-01
Increasing demands on pattern fidelity and CD accuracy in e- beam lithography require a correction of the e-beam proximity effect. The new needs are mainly coming from OPC at mask level and x-ray lithography. The e-beam proximity limits the achievable resolution and affects neighboring structures causing under- or over-exposion depending on the local pattern densities and process settings. Methods to compensate for this unequilibrated does distribution usually use a dose modulation or multiple passes. In general raster scan systems are not able to apply variable doses in order to compensate for the proximity effect. For system of this kind a geometrical modulation of the original pattern offers a solution for compensation of line edge deviations due to the proximity effect. In this paper a new method for the fast correction of the e-beam proximity effect via geometrical pattern optimization is described. The method consists of two steps. In a first step the pattern dependent dose distribution caused by back scattering is calculated by convolution of the pattern with the long range part of the proximity function. The restriction to the long range part result in a quadratic sped gain in computing time for the transformation. The influence of the short range part coming from forward scattering is not pattern dependent and can therefore be determined separately in a second step. The second calculation yields the dose curve at the border of a written structure. The finite gradient of this curve leads to an edge displacement depending on the amount of underground dosage at the observed position which was previously determined in the pattern dependent step. This unintended edge displacement is corrected by splitting the line into segments and shifting them by multiples of the writers address grid to the opposite direction.
Electrical characterization of HgTe nanowires using conductive atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundersen, P.; Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim; Kongshaug, K. O.
Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves atmore » several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Mahua; Libera, Joseph A.; Darling, Seth B.
Sequential infiltration synthesis (SIS) is a method for growing inorganic materials within polymers in an atomically controlled fashion. This technique can increase the etch resistance of optical, electron-beam, and block copolymer (BCP) lithography resists and is also a flexible strategy for nanomaterials synthesis. Despite this broad utility, the kinetics of SIS remain poorly understood, and this knowledge gap must be bridged in order to gain firm control over the growth of inorganic materials inside polymer films at a large scale. In this paper, we explore the reaction kinetics for Al 2O 3 SIS in PMMA using in situ Fourier transformmore » infrared spectroscopy. First, we establish the kinetics for saturation adsorption and desorption of trimethyl aluminum (TMA) in PMMA over a range of PMMA film thicknesses deposited on silicon substrates. These observations guide the selection of TMA dose and purge times during SIS lithography to achieve robust organic/inorganic structures. Next, we examine the effects of TMA desorption on BCP lithography by performing SIS on silicon surfaces coated with polystyrene-block-poly(methyl methacrylate) films. After etching the organic components, the substrates are examined using scanning electron microcopy to evaluate the resulting Al 2O 3 patterns. Finally, we examine the effects of temperature on Al 2O 3 SIS in PMMA to elucidate the infiltration kinetics. The insights provided by these measurements will help extend SIS lithography to larger substrate sizes for eventual commercialization and expand our knowledge of precursor-polymer interactions that will benefit the SIS of a wide range of inorganic materials in the future.« less
NASA Astrophysics Data System (ADS)
Ito, Kaiki; Suzuki, Yuta; Horiuchi, Toshiyuki
2017-07-01
Lithographical patterning on the surface of a fine pipe with a thin wall is required for fabricating three-dimensional micro-parts. For this reason, a new exposure system for printing patterns on a cylindrical pipe by synchronous rotary scan-projection exposure was developed. Using the exposure system, stent-like resist patterns with a width of 251 μm were printed on a surface of stainless-steel pipe with an outer diameter of 2 mm. The exposure time was 30 s. Next, the patterned pipe was chemically etched. As a result, a stent-like mesh pipe with a line width of 230 μm was fabricated. It was demonstrated that the new method had a potential to be applied to fabrications of stent and other cylindrical micro-parts.
High-numerical aperture extreme ultraviolet scanner for 8-nm lithography and beyond
NASA Astrophysics Data System (ADS)
Schoot, Jan van; Setten, Eelco van; Rispens, Gijsbert; Troost, Kars Z.; Kneer, Bernhard; Migura, Sascha; Neumann, Jens Timo; Kaiser, Winfried
2017-10-01
Current extreme ultraviolet (EUV) projection lithography systems exploit a projection lens with a numerical aperture (NA) of 0.33. It is expected that these will be used in mass production in the 2018/2019 timeframe. By then, the most difficult layers at the 7-nm logic and the mid-10-nm DRAM nodes will be exposed. These systems are a more economical alternative to multiple-exposure by 193 argon fluoride immersion scanners. To enable cost-effective shrink by EUV lithography down to 8-nm half pitch, a considerably larger NA is needed. As a result of the increased NA, the incidence angles of the light rays at the mask increase significantly. Consequently, the shadowing and the variation of the multilayer reflectivity deteriorate the aerial image contrast to unacceptably low values at the current 4× magnification. The only solution to reduce the angular range at the mask is to increase the magnification. Simulations show that the magnification has to be doubled to 8× to overcome the shadowing effects. Assuming that the mask infrastructure will not change the mask form factor, this would inevitably lead to a field size that is a quarter of the field size of the current 0.33-NA step and scan systems and reduce the throughput (TPT) of the high-NA scanner to a value below 100 wafers per hour unless additional measures are taken. This paper presents an anamorphic step and scan system capable of printing fields that are half the field size of the current full field. The anamorphic system has the potential to achieve a TPT in excess of 150 wafers per hour by increasing the transmission of the optics, as well as increasing the acceleration of the wafer stage and mask stage. This makes it an economically viable lithography solution.
Simulation of the effect of incline incident angle in DMD Maskless Lithography
NASA Astrophysics Data System (ADS)
Liang, L. W.; Zhou, J. Y.; Xiang, L. L.; Wang, B.; Wen, K. H.; Lei, L.
2017-06-01
The aim of this study is to provide a simulation method for investigation of the intensity fluctuation caused by the inclined incident angle in DMD (digital micromirror device) maskless lithography. The simulation consists of eight main processes involving the simplification of the DMD aperture function and light propagation utilizing the non-parallel angular spectrum method. These processes provide a possibility of co-simulation in the spatial frequency domain, which combines the microlens array and DMD in the maskless lithography system. The simulation provided the spot shape and illumination distribution. These two parameters are crucial in determining the exposure dose in the existing maskless lithography system.
Condenser optics, partial coherence, and imaging for soft-x-ray projection lithography.
Sommargren, G E; Seppala, L G
1993-12-01
A condenser system couples the radiation source to an imaging system, controlling the uniformity and partial coherence at the object, which ultimately affects the characteristics of the aerial image. A soft-x-ray projection lithography system based on a ring-field imaging system and a laser-produced plasma x-ray source places considerable constraints on the design of a condenser system. Two designs are proposed, critical illumination and Köhler illumination, each of which requires three mirrors and scanning for covering the entire ring field with the required uniformity and partial coherence. Images based on Hopkins' formulation of partially coherent imaging are simulated.
Rapid fabrication of microfluidic chips based on the simplest LED lithography
NASA Astrophysics Data System (ADS)
Li, Yue; Wu, Ping; Luo, Zhaofeng; Ren, Yuxuan; Liao, Meixiang; Feng, Lili; Li, Yuting; He, Liqun
2015-05-01
Microfluidic chips are generally fabricated by a soft lithography method employing commercial lithography equipment. These heavy machines require a critical room environment and high lamp power, and the cost remains too high for most normal laboratories. Here we present a novel microfluidics fabrication method utilizing a portable ultraviolet (UV) LED as an alternative UV source for photolithography. With this approach, we can repeat several common microchannels as do these conventional commercial exposure machines, and both the verticality of the channel sidewall and lithography resolution are proved to be acceptable. Further microfluidics applications such as mixing, blood typing and microdroplet generation are implemented to validate the practicability of the chips. This simple but innovative method decreases the cost and requirement of chip fabrication dramatically and may be more popular with ordinary laboratories.
Local electric field direct writing – Electron-beam lithography and mechanism
Jiang, Nan; Su, Dong; Spence, John C. H.
2017-08-24
Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less
Local electric field direct writing – Electron-beam lithography and mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Nan; Su, Dong; Spence, John C. H.
Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less
Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu
2014-08-04
We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, andmore » results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manfrinato, Vitor R.; Stein, Aaron; Zhang, Lihua
Patterning materials efficiently at the smallest length scales has been a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) andmore » the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.« less
Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation.
Kirihara, Soshu; Nonaka, Koki; Kisanuki, Shoichiro; Nozaki, Hirotoshi; Sakaguchi, Keito
2018-05-18
Three-dimensional (3D) microphotonic crystals with a diamond structure composed of titania microlattices were fabricated using ultraviolet laser lithography, and the bandgap properties in the terahertz (THz) electromagnetic-wave frequency region were investigated. An acrylic resin paste with titania fine particle dispersions was used as the raw material for additive manufacturing. By scanning a spread paste surface with an ultraviolet laser beam, two-dimensional solid patterns were dewaxed and sintered. Subsequently, 3D structures with a relative density of 97% were created via layer lamination and joining. A titania diamond lattice with a lattice constant density of 240 µm was obtained. The properties of the electromagnetic wave were measured using a THz time-domain spectrometer. In the transmission spectra for the Γ-X direction, a forbidden band was observed from 0.26 THz to 0.44 THz. The frequency range of the bandgap agreed well with calculated results obtained using the plane⁻wave expansion method. Additionally, results of a simulation via transmission-line modeling indicated that a localized mode can be obtained by introducing a plane defect between twinned diamond lattice structures.
NASA Astrophysics Data System (ADS)
Bobkowski, Romuald; Li, Yunlei; Fedosejevs, Robert; Broughton, James N.
1996-05-01
A process for the fabrication of surface acoustic wave (SAW) devices with line widths of 250 nm and less, based on x-ray lithography using a laser-plasma source has been developed. The x-ray lithography process is based on keV x-ray emission from Cu plasma produced by 15 Hz, 50 ps, 248 nm KrF excimer laser pulses. The full structure of a 2 GHz surface acoustic wave filter with interdigital transducers in a split-electrode geometry has been manufactured. The devices require patterning a 150 nm thick aluminum layer on a LiNbO3 substrate with electrodes 250 nm wide. The manufacturing process has two main steps: x-ray mask fabrication employing e-beam lithography and x-ray lithography to obtain the final device. The x-ray masks are fabricated on 1 micrometers thick membranes of Si2N4. The line patterns on the masks are written into PMMA resist using a scanning electron microscope which has been interfaced to a personal computer equipped to control the x and y scan voltages. The opaque regions of the x-ray mask are then formed by electroplating fine grain gold into the open spaces in the etched PMMA. The mask and sample are mounted in an exposure cassette with a fixed spacer of 10 micrometers separating them. The sample consists of a LiNbO3 substrate coated with Shipley XP90104C x-ray resist which has been previously characterized. The x-ray patterning is carried out in an exposure chamber with flowing helium background gas in order to minimize debris deposition on the filters. After etching the x-ray resist, the final patterns are produced using metallization and a standard lift-off technique. The SAW filters are then bonded and packaged onto impedance matching striplines. The resultant devices are tested using Scalar Network Analyzers. The final devices produced had a center frequency of 1.93 GHz with a bandwidth of 98 MHz, close to the expected performance of our simple design.
AFM-based micro/nanoscale lithography of poly(dimethylsiloxane): stick-slip on a softpolymer
NASA Astrophysics Data System (ADS)
Watson, Jolanta A.; Myhra, Sverre; Brown, Christopher L.; Watson, Gregory S.
2005-02-01
Silicone rubbers have steadily gained importance in industry since their introduction in the 1960"s. Poly(dimethylsiloxane) (PDMS) is a relatively soft and optically clear, two-part elastomer with interesting and, more importantly, useful physical and electrical properties. Some of its common applications include protective coatings (e.g., against moisture, environmental attack, mechanical and thermal shock and vibrations), and encapsulation (e.g., amplifiers, inductive coils, connectors and circuit boards). The polymer has attracted recent interest for applications in soft lithography. The polymer is now routinely used as a patterned micro-stamp for chemical modification of surfaces, in particular Au substrates. Prominent stick-slip effects, surface relaxation and elastic recovery were found to be associated with micro/nano manipulation of the polymer by an AFM-based contact mode methodology. Those effects provide the means to explore in detail the meso-scale tip-to-surface interactions between a tip and a soft surface. The dependence of scan speed, loading force, attack angle and number of scan lines have been investigated.
M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features
Brueck, Steven R.J.; Chen, Xiaolan; Zaidi, Saleem; Devine, Daniel J.
1998-06-02
Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.
Plasmonic direct writing lithography with a macroscopical contact probe
NASA Astrophysics Data System (ADS)
Huang, Yuerong; Liu, Ling; Wang, Changtao; Chen, Weidong; Liu, Yunyue; Li, Ling
2018-05-01
In this work, we design a plasmonic direct writing lithography system with a macroscopical contact probe to achieve nanometer scale spots. The probe with bowtie-shaped aperture array adopts spring hinge and beam deflection method (BDM) to realize near-field lithography. Lithography results show that a macroscopical plasmonic contact probe can achieve a patterning resolution of around 75 nm at 365 nm wavelength, and demonstrate that the lithography system is promising for practical applications due to beyond the diffraction limit, low cost, and simplification of system configuration. CST calculations provide a guide for the design of recording structure and the arrangement of placing polarizer.
Quantum lithography beyond the diffraction limit via Rabi-oscillations
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail
2011-03-01
We propose a quantum optical method to do the sub-wavelength lithography. Our method is similar to the traditional lithography but adding a critical step before dissociating the chemical bound of the photoresist. The subwavelength pattern is achieved by inducing the multi-Rabi-oscillation between the two atomic levels. The proposed method does not require multiphoton absorption and the entanglement of photons. This method is expected to be realizable using current technology. This work is supported by a grant from the Qatar National Research Fund (QNRF) under the NPRP project and a grant from the King Abdulaziz City for Science and Technology (KACST).
Miniature low voltage beam systems producable by combined lithographies
NASA Astrophysics Data System (ADS)
Koops, Hans W. P.; Munro, Eric; Rouse, John; Kretz, Johannes; Rudolph, Michael; Weber, Markus; Dahm, Gerold
The project of a miniaturized vacuum microelectronic 100 GHz switch is described. It implies the development of a field emission electron gun as well as the investigation of miniaturized lenses and deflectors. Electrostatic elements are designed and developed for this application. Connector pads and wiring pattern are created by conventional electron beam lithography and a lift-off or etching process. Wire and other 3-dimensional structures are grown using electron beam induced deposition. This additive lithography allows to form electrodes and resistors of a preset conductivity. The scanning electron microscope features positioning the structures with nm precision. An unconventional lithography system is used that is capable of controlling the pixel dwell time within a shape with different time functions. With this special function 3-dimensional structures can be generated like free standing square shaped electrodes. The switch is built by computer controlled additive lithography avoiding assembly from parts. Lenses of micrometer dimensions were investigated with numerical electron optics programs computing the 3-dimensional potential and field distribution. From the extracted axial field distribution the electron optic characteristic parameters, like focal length, chromatic and spherical aberration, were calculated for various lens excitations. The analysis reveals that miniaturized optics for low energy electrons, as low as 30 eV, are diffraction limited. For a lens with 2 μm focal length, a chromatic aberration disc of 1 nm contributes to 12 nm diffraction disc. The spherical aberration blurs the probe by 0.02 nm, assuming an aperture of 0.01 rad. Employing hydrogen ions at 100 V, a probe diameter of 0.3 nm generated by chromatic aberration is possible. Miniaturized electron optical probe forming systems and imaging systems can be constructed with those lenses. Its application as lithography systems with massive parallel beams can be forseen.
Multi-focal multiphoton lithography.
Ritschdorff, Eric T; Nielson, Rex; Shear, Jason B
2012-03-07
Multiphoton lithography (MPL) provides unparalleled capabilities for creating high-resolution, three-dimensional (3D) materials from a broad spectrum of building blocks and with few limitations on geometry, qualities that have been key to the design of chemically, mechanically, and biologically functional microforms. Unfortunately, the reliance of MPL on laser scanning limits the speed at which fabrication can be performed, making it impractical in many instances to produce large-scale, high-resolution objects such as complex micromachines, 3D microfluidics, etc. Previously, others have demonstrated the possibility of using multiple laser foci to simultaneously perform MPL at numerous sites in parallel, but use of a stage-scanning system to specify fabrication coordinates resulted in the production of identical features at each focal position. As a more general solution to the bottleneck problem, we demonstrate here the feasibility for performing multi-focal MPL using a dynamic mask to differentially modulate foci, an approach that enables each fabrication site to create independent (uncorrelated) features within a larger, integrated microform. In this proof-of-concept study, two simultaneously scanned foci produced the expected two-fold decrease in fabrication time, and this approach could be readily extended to many scanning foci by using a more powerful laser. Finally, we show that use of multiple foci in MPL can be exploited to assign heterogeneous properties (such as differential swelling) to micromaterials at distinct positions within a fabrication zone.
Controlling bridging and pinching with pixel-based mask for inverse lithography
NASA Astrophysics Data System (ADS)
Kobelkov, Sergey; Tritchkov, Alexander; Han, JiWan
2016-03-01
Inverse Lithography Technology (ILT) has become a viable computational lithography candidate in recent years as it can produce mask output that results in process latitude and CD control in the fab that is hard to match with conventional OPC/SRAF insertion approaches. An approach to solving the inverse lithography problem as a nonlinear, constrained minimization problem over a domain mask pixels was suggested in the paper by Y. Granik "Fast pixel-based mask optimization for inverse lithography" in 2006. The present paper extends this method to satisfy bridging and pinching constraints imposed on print contours. Namely, there are suggested objective functions expressing penalty for constraints violations, and their minimization with gradient descent methods is considered. This approach has been tested with an ILT-based Local Printability Enhancement (LPTM) tool in an automated flow to eliminate hotspots that can be present on the full chip after conventional SRAF placement/OPC and has been applied in 14nm, 10nm node production, single and multiple-patterning flows.
Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography
NASA Astrophysics Data System (ADS)
Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.
2016-06-01
The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.
Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography.
Albisetti, E; Petti, D; Pancaldi, M; Madami, M; Tacchi, S; Curtis, J; King, W P; Papp, A; Csaba, G; Porod, W; Vavassori, P; Riedo, E; Bertacco, R
2016-06-01
The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.
Periodic scarred States in open quantum dots as evidence of quantum Darwinism.
Burke, A M; Akis, R; Day, T E; Speyer, Gil; Ferry, D K; Bennett, B R
2010-04-30
Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.
Periodic Scarred States in Open Quantum Dots as Evidence of Quantum Darwinism
NASA Astrophysics Data System (ADS)
Burke, A. M.; Akis, R.; Day, T. E.; Speyer, Gil; Ferry, D. K.; Bennett, B. R.
2010-04-01
Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.
2014-02-15
We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.
SEM image quality enhancement technology for bright field mask
NASA Astrophysics Data System (ADS)
Fukuda, Naoki; Chihara, Yuta; Shida, Soichi; Ito, Keisuke
2013-09-01
Bright-field photomasks are used to print small contact holes via ArF immersion multiple patterning lithography. There are some technical difficulties when small floating dots are to be measured by SEM tools because of a false imaging shadow. However, a new scan technology of Multi Vision Metrology SEMTM E3630 presents a solution for this issue. The combination of new scan technology and the other MVM-SEM® functions can provide further extended applications with more accurate measurement results.
Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard
2014-02-01
We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.
Nitrogen implantation with a scanning electron microscope.
Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J
2018-01-08
Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.
Dehzangi, Arash; Abedini, Alam; Abdullah, Ahmad Makarimi; Saion, Elias; Hutagalung, Sabar D; Hamidon, Mohd N; Hassan, Jumiah
2012-01-01
Summary A double-lateral-gate p-type junctionless transistor is fabricated on a low-doped (1015) silicon-on-insulator wafer by a lithography technique based on scanning probe microscopy and two steps of wet chemical etching. The experimental transfer characteristics are obtained and compared with the numerical characteristics of the device. The simulation results are used to investigate the pinch-off mechanism, from the flat band to the off state. The study is based on the variation of the carrier density and the electric-field components. The device is a pinch-off transistor, which is normally in the on state and is driven into the off state by the application of a positive gate voltage. We demonstrate that the depletion starts from the bottom corner of the channel facing the gates and expands toward the center and top of the channel. Redistribution of the carriers due to the electric field emanating from the gates creates an electric field perpendicular to the current, toward the bottom of the channel, which provides the electrostatic squeezing of the current. PMID:23365794
Overlap junctions for high coherence superconducting qubits
NASA Astrophysics Data System (ADS)
Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.
2017-07-01
Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.
Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin
2016-01-01
Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way. PMID:27698465
Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin
2016-10-04
Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.
Manipulation of heat-diffusion channel in laser thermal lithography.
Wei, Jingsong; Wang, Yang; Wu, Yiqun
2014-12-29
Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.
Electrolytic etching of fine stainless-steel pipes patterned by laser-scan lithography
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Sagara, Tomoya; Horiuchi, Toshiyuki
2017-07-01
Recently, it is required to develop a method for fabricating cylindrical micro-components in the field of measurement and medical engineering. Here, electrolytic etching of fine stainless-steel pipes patterned by laser-scan lithography was researched. The pipe diameter was 100 μm. At first, a pipe coated with 3-7 μm thick positive resist (tok, PMER P LA-900) was exposed to a violet laser beam with a wavelength of 408 nm (Neoark,TC20-4030-45). The laser beam was reshaped in a circle by placing a pinhole, and irradiated on the pipe by reducing the size in 1/20 using a reduction projection optics. Linearly arrayed 22 slit patterns with a width of 25 μm and a length of 175 μm were delineated in every 90-degree circumferential direction. That is, 88 slits in total were delineated at an exposure speed of 110 μm/s. In the axial direction, patterns were delineated at intervals of 90 μm. Following the pattern delineation, the pipe masked by the resist patterns was electrolytically etched. The pipe was used as an anode and an aluminum cylinder was set as a cathode around the pipe. As the electrolyte, aqueous solution of NaCl and NH4Cl was used. After etching the pipe, the resist was removed by ultrasonic cleaning in acetone. Although feasibility for fabricating multi-slit pipes was demonstrated, sizes of the etched slits were enlarged being caused by the undercut, and the shapes were partially deformed, and all the pipes were snapped at the chuck side.
A fuzzy pattern matching method based on graph kernel for lithography hotspot detection
NASA Astrophysics Data System (ADS)
Nitta, Izumi; Kanazawa, Yuzi; Ishida, Tsutomu; Banno, Koji
2017-03-01
In advanced technology nodes, lithography hotspot detection has become one of the most significant issues in design for manufacturability. Recently, machine learning based lithography hotspot detection has been widely investigated, but it has trade-off between detection accuracy and false alarm. To apply machine learning based technique to the physical verification phase, designers require minimizing undetected hotspots to avoid yield degradation. They also need a ranking of similar known patterns with a detected hotspot to prioritize layout pattern to be corrected. To achieve high detection accuracy and to prioritize detected hotspots, we propose a novel lithography hotspot detection method using Delaunay triangulation and graph kernel based machine learning. Delaunay triangulation extracts features of hotspot patterns where polygons locate irregularly and closely one another, and graph kernel expresses inner structure of graphs. Additionally, our method provides similarity between two patterns and creates a list of similar training patterns with a detected hotspot. Experiments results on ICCAD 2012 benchmarks show that our method achieves high accuracy with allowable range of false alarm. We also show the ranking of the similar known patterns with a detected hotspot.
NASA Astrophysics Data System (ADS)
Nagarajan, Rao M.; Rask, Steven D.
1988-06-01
A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.
Scanning probes for lithography: Manipulation and devices
NASA Astrophysics Data System (ADS)
Rolandi, Marco
2005-11-01
Scanning probes are relatively low cost equipment that can push the limit of lithography in the nanometer range, with the advantages of high resolution, accuracy in the positioning of the overlayers and no proximity aberrations. We have developed three novel scanning probe lithography (SPL) resists based on thin films of Titanium, Molybdenum and Tungsten and we have manipulated single walled carbon nanotubes using the sharp tip of an atomic force microscope (AFM) for the fabrication of nanostructures. A dendrimer-passivated Ti film was imaged in the positive and the negative tone using SPL. This is the first example of SPL imaging in both tones using a unique resist. Positive tone patterning was obtained by locally scribing the dendrimer molecules and subsequent acid etch of the deprotected Ti film. Local anodic oxidation transforms Ti into TiO2 and deposits a thin layer of amorphous carbon on the patterned areas. This is very resistive to base etch and affords negative tone imaging of the Ti surface. Molybdenum and Tungsten were patterned using local anodic oxidation. This scheme is particularly flexible thanks to the solubility in water of the fully oxidized states of the two metals. We will present the facile fabrication of several nanostructures such as of trenches, dots wires and nanoelectrodes and show the potential of this scheme for competing with conventional lithographic techniques based on radiation. Quasi one dimensional electrodes for molecular electronics applications were also fabricated by creating nanogaps in single walled carbon nanotubes. The tubes, connected to microscopic contacts, were controllably cut via local anodic oxidation using the tip of the AFM. This technique leads to nanoscopic carboxyl terminated wires to which organic molecules can be linked using covalent chemistry. This geometry is particularly useful for the high gate efficiency without the need of a thin gate dielectric and the stability of the junction. Room temperature and low temperature measurements were performed and show single electron transistor behavior for the molecular junction.
Iberi, Vighter O.; Vlassiouk, Ivan V.; Zhang, X. -G.; ...
2015-07-07
The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ionmore » lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.« less
Nanopatterning on calixarene thin films via low-energy field-emission scanning probe lithography.
He, Xiaoyue; Li, Peng; Liu, Pengchong; Zhang, Xiaoxian; Zhou, Xiangqian; Liu, Wei; Qiu, Xiaohui
2018-08-10
Field-emitted, low-energy electrons from the conducting tip of an atomic force microscope were adopted for nanolithography on calixarene ultrathin films coated on silicon wafers. A structural evolution from protrusion to depression down to a 30 nm spatial resolution was reproducibly obtained by tuning the sample voltage and exposure current in the lithography process. Close analyses of the profiles showed that the nanostructures formed by a single exposure with a high current are almost identical to those created by cumulative exposure with a lower current but an equal number of injected electrons. Surface potential imaging by Kelvin probe force microscopy found a negatively charged region surrounding the groove structures once the structures were formed. We conclude that the mechanism related to the formation of a temporary negative state and molecule decomposition, rather than thermal ablation, is responsible for the low-energy field-emission electron lithography on a calixarene molecular resist. We hope that our elucidation of the underlying mechanism is helpful for molecular resist design and further improving the reproducibility and throughput of nanolithography.
Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication.
Rawlings, Colin D; Zientek, Michal; Spieser, Martin; Urbonas, Darius; Stöferle, Thilo; Mahrt, Rainer F; Lisunova, Yuliya; Brugger, Juergen; Duerig, Urs; Knoll, Armin W
2017-11-28
Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.
Challenges of anamorphic high-NA lithography and mask making
NASA Astrophysics Data System (ADS)
Hsu, Stephen D.; Liu, Jingjing
2017-06-01
Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV `Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI', (2015) doi: 10.1117/12.2086074). To ensure no assist feature printing, the assist feature sizes need to be scaled with λ/NA. The extremely small SRAF width (below 25 nm on the reticle) is difficult to fabricate across the full reticle. In this paper, we introduce an innovative `attenuated SRAF' to improve SRAF manufacturability and still maintain the process window benefit. A new mask fabrication process is proposed to use existing mask-making capability to manufacture the attenuated SRAFs. The high-NA EUV system utilizes anamorphic reduction; 4× in the horizontal (slit) direction and 8× in the vertical (scanning) direction (J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150; B. Kneer, S. Migura, W. Kaiser, J. T. Neumann, J. van Schoot, in `Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94221G (2015) doi: 10.1117/12.2175488). For an anamorphic system, the magnification has an angular dependency, and thus, familiar mask specifications such as mask error factor (MEF) need to be redefined. Similarly, mask-manufacturing rule check (MRC) needs to consider feature orientation.
Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.
Leggett, Graham J
2011-03-22
Continued progress in the fast-growing field of nanoplasmonics will require the development of new methods for the fabrication of metal nanostructures. Optical lithography provides a continually expanding tool box. Two-photon processes, as demonstrated by Shukla et al. (doi: 10.1021/nn103015g), enable the fabrication of gold nanostructures encapsulated in dielectric material in a simple, direct process and offer the prospect of three-dimensional fabrication. At higher resolution, scanning probe techniques enable nanoparticle particle placement by localized oxidation, and near-field sintering of nanoparticulate films enables direct writing of nanowires. Direct laser "printing" of single gold nanoparticles offers a remarkable capability for the controlled fabrication of model structures for fundamental studies, particle-by-particle. Optical methods continue to provide a powerful support for research into metamaterials.
SOR Lithography in West Germany
NASA Astrophysics Data System (ADS)
Heuberger, Anton
1989-08-01
The 64 Mbit DRAM will represent the first generation of integrated circuits which cannot be produced reasonably by means of optical lithography techniques. X-ray lithography using synchrotron radiation seems to be the most promising method in overcoming the problems in the sub-0.5 micron range. The first year of production of the 64 Mbit DRAM will be 1995 or 1996. This means that X-ray lithography has to show its applicability in an industrial environment by 1992 and has to prove that the specifications of a 64 Mbit DRAM technology can actually be achieved. Part of this task is a demonstration of production suitable equipment such as the X-ray stepper, including an appropriate X-ray source and measurement and inspection tools. The most important bottlenecks on the way toward reaching these goals are linked to the 1 x scale mask technology, especially the pattern definition accuracy and zero level of printing defects down to the order of magnitude of 50 nm. Specifically, fast defect detection methods on the basis of high resolution e-beam techniques and repair methods have to be developed. The other problems of X-ray lithography, such as high quality single layer X-ray resists, X-ray sources and stepper including alignment are either well on the way or are already solved.
Compensation of flare-induced CD changes EUVL
Bjorkholm, John E [Pleasanton, CA; Stearns, Daniel G [Los Altos, CA; Gullikson, Eric M [Oakland, CA; Tichenor, Daniel A [Castro Valley, CA; Hector, Scott D [Oakland, CA
2004-11-09
A method for compensating for flare-induced critical dimensions (CD) changes in photolithography. Changes in the flare level results in undesirable CD changes. The method when used in extreme ultraviolet (EUV) lithography essentially eliminates the unwanted CD changes. The method is based on the recognition that the intrinsic level of flare for an EUV camera (the flare level for an isolated sub-resolution opaque dot in a bright field mask) is essentially constant over the image field. The method involves calculating the flare and its variation over the area of a patterned mask that will be imaged and then using mask biasing to largely eliminate the CD variations that the flare and its variations would otherwise cause. This method would be difficult to apply to optical or DUV lithography since the intrinsic flare for those lithographies is not constant over the image field.
A study of an alignment-less lithography method as an educational resource
NASA Astrophysics Data System (ADS)
Kai, Kazuho; Shiota, Koki; Nagaoka, Shiro; Mahmood, Mohamad Rusop Bin Haji; Kawai, Akira
2016-07-01
A simplification of the lithography process was studied. The simplification method of photolithography, named "alignment-less lithography" was proposed by omitting the photomask alignment process in photolithography process using mechanically aligned photomasks and substrate by using a simple jig on which countersinks were formed. Photomasks made of glass and the photomasks made of transparent plastic sheets were prepared for the process. As the result, approximately 5µm in the case of the glass mask, and 20µm in the case of the OHP mask were obtained with repetitive accuracies, respectively. It was confirmed that the alignment-less lithography method was successful. The possibility of the application to an educational program, such as a heuristic for solving problems was suggested using the method with the OHP mask. The nMOS FET fabrication process was successfully demonstrated using this method. The feasibility of this process was confirmed. It is expected that a totally simplified device fabrication process can be achievable when combined with other simplifications, such ass the simplified impurity diffusion processes using PSG and BSG thin film as diffusion source prepared by the Sol-Gel material under normal air environment.
Fracture Toughness (KIC) of Lithography Based Manufactured Alumina Ceramic
NASA Astrophysics Data System (ADS)
Nindhia, T. G. T.; Schlacher, J.; Lube, T.
2018-04-01
Precision shaped ceramic components can be obtained by an emerging technique called Lithography based Ceramic Manufacturing (LCM). A green part is made from a slurry consisting of a ceramic powder in a photocurable binder with addition of dispersant and plasticizer. Components are built in a layer–by-layer way by exposing the desired cross- sections to light. The parts are subsequently sintered to their final density. It is a challenge to produce ceramic component with this method that yield the same mechanical properties in all direction. The fracture toughness (KIc) of of LCM-alumina (prepared at LITHOZ GmbH, Austria) was tested by using the Single-Edge-V-Notched Beam (SEVNB) method. Notches are made into prismatic bend-bars in all three direction X, Y and Z to recognize the value of fracture toughness of the material in all three directions. The microstructure was revealed with optical microscopy as well as Scanning Electron Microscopy (SEM). The results indicate that the fracture toughness in Y-direction has the highest value (3.10 MPam1/2) that is followed by the one in X-direction which is just a bit lower (2.90 MPam1/2). The Z-direction is found to have a similar fracture toughness (2.95 MPam1/2). This is supported by a homogeneous microstructure showing no hint of the layers used during production.
Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary
1991-01-01
A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.
NASA Astrophysics Data System (ADS)
Ray, Cédric; Caillau, Mathieu; Jonin, Christian; Benichou, Emmanuel; Moulin, Christophe; Salmon, Estelle; Maldonado, Melissa E.; Gomes, Anderson S. L.; Monnier, Virginie; Laurenceau, Emmanuelle; Leclercq, Jean-Louis; Chevolot, Yann; Delair, Thierry; Brevet, Pierre-François
2018-06-01
We report the use of the Second Harmonic Generation response from a riboflavin doped chitosan film as a characterization method of the film morphology. This film is of particular interest in the development of new and bio-sourced material for eco-friendly UV lithography. The method allows us to determine how riboflavin is distributed as a function of film depth in the sample. This possibility is of importance in order to have a better understanding of the riboflavin influence in chitosan films during the lithography process. On the contrary, linear optical techniques provide no information beyond the mere confirmation of the riboflavin presence.
Rigorous ILT optimization for advanced patterning and design-process co-optimization
NASA Astrophysics Data System (ADS)
Selinidis, Kosta; Kuechler, Bernd; Cai, Howard; Braam, Kyle; Hoppe, Wolfgang; Domnenko, Vitaly; Poonawala, Amyn; Xiao, Guangming
2018-03-01
Despite the large difficulties involved in extending 193i multiple patterning and the slow ramp of EUV lithography to full manufacturing readiness, the pace of development for new technology node variations has been accelerating. Multiple new variations of new and existing technology nodes have been introduced for a range of device applications; each variation with at least a few new process integration methods, layout constructs and/or design rules. This had led to a strong increase in the demand for predictive technology tools which can be used to quickly guide important patterning and design co-optimization decisions. In this paper, we introduce a novel hybrid predictive patterning method combining two patterning technologies which have each individually been widely used for process tuning, mask correction and process-design cooptimization. These technologies are rigorous lithography simulation and inverse lithography technology (ILT). Rigorous lithography simulation has been extensively used for process development/tuning, lithography tool user setup, photoresist hot-spot detection, photoresist-etch interaction analysis, lithography-TCAD interactions/sensitivities, source optimization and basic lithography design rule exploration. ILT has been extensively used in a range of lithographic areas including logic hot-spot fixing, memory layout correction, dense memory cell optimization, assist feature (AF) optimization, source optimization, complex patterning design rules and design-technology co-optimization (DTCO). The combined optimization capability of these two technologies will therefore have a wide range of useful applications. We investigate the benefits of the new functionality for a few of these advanced applications including correction for photoresist top loss and resist scumming hotspots.
Demonstration of electronic design automation flow for massively parallel e-beam lithography
NASA Astrophysics Data System (ADS)
Brandt, Pieter; Belledent, Jérôme; Tranquillin, Céline; Figueiro, Thiago; Meunier, Stéfanie; Bayle, Sébastien; Fay, Aurélien; Milléquant, Matthieu; Icard, Beatrice; Wieland, Marco
2014-07-01
For proximity effect correction in 5 keV e-beam lithography, three elementary building blocks exist: dose modulation, geometry (size) modulation, and background dose addition. Combinations of these three methods are quantitatively compared in terms of throughput impact and process window (PW). In addition, overexposure in combination with negative bias results in PW enhancement at the cost of throughput. In proximity effect correction by over exposure (PEC-OE), the entire layout is set to fixed dose and geometry sizes are adjusted. In PEC-dose to size (DTS) both dose and geometry sizes are locally optimized. In PEC-background (BG), a background is added to correct the long-range part of the point spread function. In single e-beam tools (Gaussian or Shaped-beam), throughput heavily depends on the number of shots. In raster scan tools such as MAPPER Lithography's FLX 1200 (MATRIX platform) this is not the case and instead of pattern density, the maximum local dose on the wafer is limiting throughput. The smallest considered half-pitch is 28 nm, which may be considered the 14-nm node for Metal-1 and the 10-nm node for the Via-1 layer, achieved in a single exposure with e-beam lithography. For typical 28-nm-hp Metal-1 layouts, it was shown that dose latitudes (size of process window) of around 10% are realizable with available PEC methods. For 28-nm-hp Via-1 layouts this is even higher at 14% and up. When the layouts do not reach the highest densities (up to 10∶1 in this study), PEC-BG and PEC-OE provide the capability to trade throughput for dose latitude. At the highest densities, PEC-DTS is required for proximity correction, as this method adjusts both geometry edges and doses and will reduce the dose at the densest areas. For 28-nm-hp lines critical dimension (CD), hole&dot (CD) and line ends (edge placement error), the data path errors are typically 0.9, 1.0 and 0.7 nm (3σ) and below, respectively. There is not a clear data path performance difference between the investigated PEC methods. After the simulations, the methods were successfully validated in exposures on a MAPPER pre-alpha tool. A 28-nm half pitch Metal-1 and Via-1 layouts show good performance in resist that coincide with the simulation result. Exposures of soft-edge stitched layouts show that beam-to-beam position errors up to ±7 nm specified for FLX 1200 show no noticeable impact on CD. The research leading to these results has been performed in the frame of the industrial collaborative consortium IMAGINE.
High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.
Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo
2016-11-04
We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.
High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography
NASA Astrophysics Data System (ADS)
Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo
2016-11-01
We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.
High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography
Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo
2016-01-01
We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006
The application of phase grating to CLM technology for the sub-65nm node optical lithography
NASA Astrophysics Data System (ADS)
Yoon, Gi-Sung; Kim, Sung-Hyuck; Park, Ji-Soong; Choi, Sun-Young; Jeon, Chan-Uk; Shin, In-Kyun; Choi, Sung-Woon; Han, Woo-Sung
2005-06-01
As a promising technology for sub-65nm node optical lithography, CLM(Chrome-Less Mask) technology among RETs(Resolution Enhancement Techniques) for low k1 has been researched worldwide in recent years. CLM has several advantages, such as relatively simple manufacturing process and competitive performance compared to phase-edge PSM's. For the low-k1 lithography, we have researched CLM technique as a good solution especially for sub-65nm node. As a step for developing the sub-65nm node optical lithography, we have applied CLM technology in 80nm-node lithography with mesa and trench method. From the analysis of the CLM technology in the 80nm lithography, we found that there is the optimal shutter size for best performance in the technique, the increment of wafer ADI CD varied with pattern's pitch, and a limitation in patterning various shapes and size by OPC dead-zone - OPC dead-zone in CLM technique is the specific region of shutter size that dose not make the wafer CD increased more than a specific size. And also small patterns are easily broken, while fabricating the CLM mask in mesa method. Generally, trench method has better optical performance than mesa. These issues have so far restricted the application of CLM technology to a small field. We approached these issues with 3-D topographic simulation tool and found that the issues could be overcome by applying phase grating in trench-type CLM. With the simulation data, we made some test masks which had many kinds of patterns with many different conditions and analyzed their performance through AIMS fab 193 and exposure on wafer. Finally, we have developed the CLM technology which is free of OPC dead-zone and pattern broken in fabrication process. Therefore, we can apply the CLM technique into sub-65nm node optical lithography including logic devices.
Nanobiotechnology: soft lithography.
Mele, Elisa; Pisignano, Dario
2009-01-01
An entirely new scientific and technological area has been born from the combination of nanotechnology and biology: nanobiotechnology. Such a field is primed especially by the strong potential synergy enabled by the integration of technologies, protocols, and investigation methods, since, while biomolecules represent functional nanosystems interesting for nanotechnology, micro- and nano-devices can be very useful instruments for studying biological materials. In particular, the research of new approaches for manipulating matter and fabricating structures with micrometre- and sub-micrometre resolution has determined the development of soft lithography, a new set of non-photolithographic patterning techniques applied to the realization of selective proteins and cells attachment, microfluidic circuits for protein and DNA chips, and 3D scaffolds for tissue engineering. Today, soft lithographies have become an asset of nanobiotechnology. This Chapter examines the biological applications of various soft lithographic techniques, with particular attention to the main general features of soft lithography and of materials commonly employed with these methods. We present approaches particularly suitable for biological materials, such as microcontact printing (muCP) and microfluidic lithography, and some key micro- and nanobiotechnology applications, such as the patterning of protein and DNA microarrays and the realization of microfluidic-based analytical devices.
3D Microfabrication Using Emulsion Mask Grayscale Photolithography Technique
NASA Astrophysics Data System (ADS)
Lee, Tze Pin; Mohamed, Khairudin
2016-02-01
Recently, the rapid development of technology such as biochips, microfluidic, micro-optical devices and micro-electromechanical-systems (MEMS) demands the capability to create complex design of three-dimensional (3D) microstructures. In order to create 3D microstructures, the traditional photolithography process often requires multiple photomasks to form 3D pattern from several stacked photoresist layers. This fabrication method is extremely time consuming, low throughput, costly and complicated to conduct for high volume manufacturing scale. On the other hand, next generation lithography such as electron beam lithography (EBL), focused ion beam lithography (FIB) and extreme ultraviolet lithography (EUV) are however too costly and the machines require expertise to setup. Therefore, the purpose of this study is to develop a simplified method in producing 3D microstructures using single grayscale emulsion mask technique. By using this grayscale fabrication method, microstructures of thickness as high as 500μm and as low as 20μm are obtained in a single photolithography exposure. Finally, the fabrication of 3D microfluidic channel has been demonstrated by using this grayscale photolithographic technique.
Piestrup, M.A.; Boyers, D.G.; Pincus, C.
1991-12-31
A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.
All-optical patterning of Au nanoparticles on surfaces using optical traps.
Guffey, Mason J; Scherer, Norbert F
2010-11-10
The fabrication of nanoscale devices would be greatly enhanced by "nanomanipulators" that can position single and few objects rapidly with nanometer precision and without mechanical damage. Here, we demonstrate the feasibility and precision of an optical laser tweezer, or optical trap, approach to place single gold (Au) nanoparticles on surfaces with high precision (approximately 100 nm standard deviation). The error in the deposition process is rather small but is determined to be larger than the thermal fluctuations of single nanoparticles within the optical trap. Furthermore, areas of tens of square micrometers could be patterned in a matter of minutes. Since the method does not rely on lithography, scanning probes or a specialized surface, it is versatile and compatible with a variety of systems. We discuss active feedback methods to improve positioning accuracy and the potential for multiplexing and automation.
Strategies for alignment and e-beam contact to buried atomic-precision devices in Si
NASA Astrophysics Data System (ADS)
Wyrick, Jonathan; Namboodiri, Pradeep; Wang, Xiqiao; Murray, Roy; Hagmann, Joseph; Li, Kai; Stewart, Michael; Richter, Curt; Silver, Richard
STM based hydrogen lithography has proven to be a viable route to fabrication of atomic-precision electronic devices. The strength of this technique is the ability to control the lateral placement of phosphorus atoms in a single atomic layer of Si with sub-nanometer resolution. However, because of limitations in the rate at which a scanning probe can pattern a device, as well as the ultimate size of contacts that can be fabricated (on the order of a micron in length), making electrical contact to STM fabricated devices encased in Si is nontrivial. One commonly implemented solution to this challenge is to choose the exact location on a Si surface where a device is to be patterned by STM and to design fiducials to aid in navigating the probe to that predetermined location. We present results from an alternate strategy for contacting buried devices based on performing the STM lithography fabrication first, and determination of the buried structure location after the fact using topographically identifiable STM fabricated fiducials. AFM, scanning capacitance, and peak force Kelvin microscopy as well as optical microscopy techniques are evaluated as a means for device relocation and to quantify the comparative accuracy of these techniques.
Manipulation and simulations of thermal field profiles in laser heat-mode lithography
NASA Astrophysics Data System (ADS)
Wei, Tao; Wei, Jingsong; Wang, Yang; Zhang, Long
2017-12-01
Laser heat-mode lithography is a very useful method for high-speed fabrication of large-area micro/nanostructures. To obtain nanoscale pattern structures, one needs to manipulate the thermal diffusion channels. This work reports the manipulation of the thermal diffusion in laser heat-mode lithography and provides methods to restrain the in-plane thermal diffusion and improve the out-of-plane thermal diffusion. The thermal field profiles in heat-mode resist thin films have been given. It is found that the size of the heat-spot can be decreased by decreasing the thickness of the heat-mode resist thin films, inserting the thermal conduction layers, and shortening the laser irradiation time. The optimized laser writing strategy is also given, where the in-plane thermal diffusion is completely restrained and the out-of-plane thermal diffusion is improved. The heat-spot size is almost equal to that of the laser spot, accordingly. This work provides a very important guide to laser heat-mode lithography.
Ultra-high speed digital micro-mirror device based ptychographic iterative engine method
Sun, Aihui; He, Xiaoliang; Kong, Yan; Cui, Haoyang; Song, Xiaojun; Xue, Liang; Wang, Shouyu; Liu, Cheng
2017-01-01
To reduce the long data acquisition time of the common mechanical scanning based Ptychographic Iterative Engine (PIE) technique, the digital micro-mirror device (DMD) is used to form the fast scanning illumination on the sample. Since the transverse mechanical scanning in the common PIE is replaced by the on/off switching of the micro-mirrors, the data acquisition time can be reduced from more than 15 minutes to less than 20 seconds for recording 12 × 10 diffraction patterns to cover the same field of 147.08 mm2. Furthermore, since the precision of DMD fabricated with the optical lithography is always higher than 10 nm (1 μm for the mechanical translation stage), the time consuming position-error-correction procedure is not required in the iterative reconstruction. These two improvements fundamentally speed up both the data acquisition and the reconstruction procedures in PIE, and relax its requirements on the stability of the imaging system, therefore remarkably improve its applicability for many practices. It is demonstrated experimentally with both USAF resolution target and biological sample that, the spatial resolution of 5.52 μm and the field of view of 147.08 mm2 can be reached with the DMD based PIE method. In a word, by using the DMD to replace the translation stage, we can effectively overcome the main shortcomings of common PIE related to the mechanical scanning, while keeping its advantages on both the high resolution and large field of view. PMID:28717560
Line edge roughness (LER) mitigation studies specific to interference-like lithography
NASA Astrophysics Data System (ADS)
Baylav, Burak; Estroff, Andrew; Xie, Peng; Smith, Bruce W.
2013-04-01
Line edge roughness (LER) is a common problem to most lithography approaches and is seen as the main resolution limiter for advanced technology nodes1. There are several contributors to LER such as chemical/optical shot noise, random nature of acid diffusion, development process, and concentration of acid generator/base quencher. Since interference-like lithography (IL) is used to define one directional gridded patterns, some LER mitigation approaches specific to IL-like imaging can be explored. Two methods investigated in this work for this goal are (i) translational image averaging along the line direction and (ii) pupil plane filtering. Experiments regarding the former were performed on both interferometric and projection lithography systems. Projection lithography experiments showed a small amount of reduction in low/mid frequency LER value for image averaged cases at pitch of 150 nm (193 nm illumination, 0.93 NA) with less change for smaller pitches. Aerial image smearing did not significantly increase LER since it was directional. Simulation showed less than 1% reduction in NILS (compared to a static, smooth mask equivalent) with ideal alignment. In addition, description of pupil plane filtering on the transfer of mask roughness is given. When astigmatism-like aberrations were introduced in the pupil, transfer of mask roughness is decreased at best focus. It is important to exclude main diffraction orders from the filtering to prevent contrast and NILS loss. These ideas can be valuable as projection lithography approaches to conditions similar to IL (e.g. strong RET methods).
NASA Astrophysics Data System (ADS)
Partel, S.; Urban, G.
2016-03-01
In this paper we present a method to optimize the lithography process for the fabrication of interdigitated electrode arrays (IDA) for a lift-off free electrochemical biosensor. The biosensor is based on amperometric method to allow a signal amplification by redox cycling. We already demonstrated a method to fabricate IDAs with nano gaps with conventional mask aligner lithography and two subsequent deposition processes. By decreasing the distance down to the nanometer range the linewidth variation is becoming the most critical factor and can result in a short circuit of the electrodes. Therefore, the light propagation and the resist pattern of the mask aligner lithography process are simulated to optimize the lithography process. To optimize the outer finger structure assistant features (AsFe) were introduced. The AsFe allow an optimization of the intensity distribution at the electrode fingers. Hence, the periodicity is expanded and the outer structure of the IDA is practically a part of the periodic array. The better CD uniformity can be obtained by adding three assistant features which generate an equal intensity distributions for the complete finger pattern. Considering a mask optimization of the outer structures would also be feasible. However, due to the strong impact of the gap between mask and wafer at contact lithography it is not practicable. The better choice is to create the same intensity distribution for all finger structures. With the introduction of the assistant features large areas with electrode gap sizes in the sub 100 nm region are demonstrated.
The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory
NASA Astrophysics Data System (ADS)
Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark
2011-06-01
Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.
Electric property measurement of free-standing SrTiO3 nanoparticles assembled by dielectrophoresis
NASA Astrophysics Data System (ADS)
Budiman, Faisal; Kotooka, Takumi; Horibe, Yoichi; Eguchi, Masanori; Tanaka, Hirofumi
2018-06-01
Free-standing strontium titanate (SrTiO3/STO) nanoparticles (NPs) were synthesized by the sol–gel method. X-ray diffractometry revealed that the required minimum annealing temperature to synthesize pure and highly crystalline STO NPs was 500 °C. Moreover, morphological observation by field emission scanning electron microscopy showed that the STO NPs have a spherical structure and their size depended on annealing condition. Electrical properties were measured using a low-temperature probing system. Here, an electrode was fabricated by electron beam lithography and the synthesized STO NPs were aligned at the electrodes by dielectrophoresis. The conductance of a sample was proportional to temperature. Two conduction mechanisms originating from hopping and tunneling appeared in the Arrhenius plot.
NASA Astrophysics Data System (ADS)
Wright, N.; Mateo-Feliciano, D.; Ostoski, A.; Mukherjee, P.; Witanachchi, S.
Nanosphere lithography is a combination of different methods to nanofabrication. In this work nanosphere lithography is used to study the growth of Zinc Oxide Nano-columns (ZnO NCs) on different diameter Silica Nanosphere (SNS) self-assembled templates. ZnO NCs are promising building blocks for many existing and emerging optical, electrical, and piezoelectric devices, specifically, the seeded growth of other oxide materials. Recently, reports have shown a ferroelectric phase of zinc stannate (ZnSnO3) and while lead zirconium titanate oxide (PZT) has been the main material of interest in ferroelectric and piezoelectric applications, the toxicity of lead has been of great concern. The possibility of developing lead free piezoelectric materials is of great interest in the ferroelectric community. Langmuir-Blodgett method was used to construct a self-assembled monolayer of SNSs on silicon substrates. Oriented ZnO NCs were grown on top of the spheres using the glancing angle pulsed laser deposition technique. Columns were formed in a spatially ordered closed-packed hexagonal configuration. Growth of ZnO NCs was studied as function of ambient Oxygen pressure with SNS size ranging from 250-1000 nm. Cross-sectional Scanning Electron Microscopy and X-ray diffraction (XRD) were used to study the template structure. Relative aspect ratios were studied and showed tunability of column dimensions with sphere size. XRD revealed ZnO NC arrays were c-axis oriented with hexagonal wurtzite structure.
In-Process Atomic-Force Microscopy (AFM) Based Inspection
Mekid, Samir
2017-01-01
A new in-process atomic-force microscopy (AFM) based inspection is presented for nanolithography to compensate for any deviation such as instantaneous degradation of the lithography probe tip. Traditional method used the AFM probes for lithography work and retract to inspect the obtained feature but this practice degrades the probe tip shape and hence, affects the measurement quality. This paper suggests a second dedicated lithography probe that is positioned back-to-back to the AFM probe under two synchronized controllers to correct any deviation in the process compared to specifications. This method shows that the quality improvement of the nanomachining, in progress probe tip wear, and better understanding of nanomachining. The system is hosted in a recently developed nanomanipulator for educational and research purposes. PMID:28561747
Etched-multilayer phase shifting masks for EUV lithography
Chapman, Henry N.; Taylor, John S.
2005-04-05
A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.
NASA Astrophysics Data System (ADS)
Kobinata, Hideo; Yamashita, Hiroshi; Nomura, Eiichi; Nakajima, Ken; Kuroki, Yukinori
1998-12-01
A new method for proximity effect correction, suitable for large-field electron-beam (EB) projection lithography with high accelerating voltage, such as SCALPEL and PREVAIL in the case where a stencil mask is used, is discussed. In this lithography, a large-field is exposed by the same dose, and thus, the dose modification method, which is used in the variable-shaped beam and the cell projection methods, cannot be used in this case. In this study, we report on development of a new proximity effect correction method which uses a pattern modified stencil mask suitable for high accelerating voltage and large-field EB projection lithography. In order to obtain the mask bias value, we have investigated linewidth reduction, due to the proximity effect, in the peripheral memory cell area, and found that it could be expressed by a simple function and all the correction parameters were easily determined from only the mask pattern data. The proximity effect for the peripheral array pattern could also be corrected by considering the pattern density. Calculated linewidth deviation was 3% or less for a 0.07-µm-L/S memory cell pattern and 5% or less for a 0.14-µm-line and 0.42-µm-space peripheral array pattern, simultaneously.
Imprint lithography: lab curiosity or the real NGL
NASA Astrophysics Data System (ADS)
Resnick, Douglas J.; Dauksher, William J.; Mancini, David P.; Nordquist, Kevin J.; Bailey, Todd C.; Johnson, Stephen C.; Stacey, Nicholas A.; Ekerdt, John G.; Willson, C. Grant; Sreenivasan, S. V.; Schumaker, Norman E.
2003-06-01
The escalating cost for Next Generation Lithography (NGL) tools is driven in part by the need for complex sources and optics. The cost for a single NGL tool could exceed $50M in the next few years, a prohibitive number for many companies. As a result, several researchers are looking at low cost alternative methods for printing sub-100 nm features. In the mid-1990s, several resarech groups started investigating different methods for imprinting small features. Many of these methods, although very effective at printing small features across an entire wafer, are limited in their ability to do precise overlay. In 1999, Willson and Sreenivasan discovered that imprinting could be done at low pressures and at room temperatures by using low viscosity UV curable monomers. The technology is typically referred to as Step and Flash Imprint Lithography. The use of a quartz template enabled the photocuring process to occur and also opened up the potential for optical alignment of teh wafer and template. This paper traces the development of nanoimprint lithography and addresses the issues that must be solved if this type of technology is to be applied to high-density silicon integrated circuitry.
Vectorial mask optimization methods for robust optical lithography
NASA Astrophysics Data System (ADS)
Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong; Arce, Gonzalo R.
2012-10-01
Continuous shrinkage of critical dimension in an integrated circuit impels the development of resolution enhancement techniques for low k1 lithography. Recently, several pixelated optical proximity correction (OPC) and phase-shifting mask (PSM) approaches were developed under scalar imaging models to account for the process variations. However, the lithography systems with larger-NA (NA>0.6) are predominant for current technology nodes, rendering the scalar models inadequate to describe the vector nature of the electromagnetic field that propagates through the optical lithography system. In addition, OPC and PSM algorithms based on scalar models can compensate for wavefront aberrations, but are incapable of mitigating polarization aberrations in practical lithography systems, which can only be dealt with under the vector model. To this end, we focus on developing robust pixelated gradient-based OPC and PSM optimization algorithms aimed at canceling defocus, dose variation, wavefront and polarization aberrations under a vector model. First, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. A steepest descent algorithm is then used to iteratively optimize the mask patterns. Simulations show that the proposed algorithms can effectively improve the process windows of the optical lithography systems.
Nanofabrication of insulated scanning probes for electromechanical imaging in liquid solutions
Noh, Joo Hyon; Nikiforov, Maxim; Kalinin, Sergei V.; Vertegel, Alexey A.; Rack, Philip D.
2011-01-01
In this paper, the fabrication and electrical and electromechanical characterization of insulated scanning probes have been demonstrated in liquid solutions. The silicon cantilevers were sequentially coated with chromium and silicon dioxide, and the silicon dioxide was selectively etched at tip apex using focused electron beam induced etching (FEBIE) with XeF2 The chromium layer acted not only as the conductive path from the tip, but also as an etch resistant layer. This insulated scanning probe fabrication process is compatible with any commercial AFM tip and can be used to easily tailor the scanning probe tip properties because FEBIE does not require lithography. The suitability of the fabricated probes is demonstrated by imaging of standard topographical calibration grid as well as piezoresponse force microscopy (PFM) and electrical measurements in ambient and liquid environments. PMID:20702930
Progress in coherent lithography using table-top extreme ultraviolet lasers
NASA Astrophysics Data System (ADS)
Li, Wei
Nanotechnology has drawn a wide variety of attention as interesting phenomena occurs when the dimension of the structures is in the nanometer scale. The particular characteristics of nanoscale structures had enabled new applications in different fields in science and technology. Our capability to fabricate these nanostructures routinely for sure will impact the advancement of nanoscience. Apart from the high volume manufacturing in semiconductor industry, a small-scale but reliable nanofabrication tool can dramatically help the research in the field of nanotechnology. This dissertation describes alternative extreme ultraviolet (EUV) lithography techniques which combine table-top EUV laser and various cost-effective imaging strategies. For each technique, numerical simulations, system design, experiment result and its analysis will be presented. In chapter II, a brief review of the main characteristics of table-top EUV lasers will be addressed concentrating on its high power and large coherence radius that enable the lithography application described herein. The development of a Talbot EUV lithography system which is capable of printing 50nm half pitch nanopatterns will be illustrated in chapter III. A detailed discussion of its resolution limit will be presented followed by the development of X-Y-Z positioning stage, the fabrication protocol for diffractive EUV mask, and the pattern transfer using self- developed ion beam etching, and the dose control unit. In addition, this dissertation demonstrated the capability to fabricate functional periodic nanostructures using Talbot EUV lithography. After that, resolution enhancement techniques like multiple exposure, displacement Talbot EUV lithography, fractional Talbot EUV lithography, and Talbot lithography using 18.9nm amplified spontaneous emission laser will be demonstrated. Chapter IV will describe a hybrid EUV lithography which combines the Talbot imaging and interference lithography rendering a high resolution interference pattern whose lattice is modified by a custom designed Talbot mask. In other words, this method enables filling the arbitrary Talbot cell with ultra-fine interference nanofeatures. Detailed optics modeling, system design and experiment results using He-Ne laser and table top EUV laser are included. The last part of chapter IV will analyze its exclusive advantages over traditional Talbot or interference lithography.
NASA Astrophysics Data System (ADS)
Constantoudis, Vassilios; Papavieros, George; Lorusso, Gian; Rutigliani, Vito; Van Roey, Frieda; Gogolides, Evangelos
2018-03-01
The aim of this paper is to investigate the role of etch transfer in two challenges of LER metrology raised by recent evolutions in lithography: the effects of SEM noise and the cross-line and edge correlations. The first comes from the ongoing scaling down of linewidths, which dictates SEM imaging with less scanning frames to reduce specimen damage and hence with more noise. During the last decade, it has been shown that image noise can be an important budget of the measured LER while systematically affects and alter the PSD curve of LER at high frequencies. A recent method for unbiased LER measurement is based on the systematic Fourier or correlation analysis to decompose the effects of noise from true LER (Fourier-Correlation filtering method). The success of the method depends on the PSD and HHCF curve. Previous experimental and model works have revealed that etch transfer affects the PSD of LER reducing its high frequency values. In this work, we estimate the noise contribution to the biased LER through PSD flat floor at high frequencies and relate it with the differences between the PSDs of lithography and etched LER. Based on this comparison, we propose an improvement of the PSD/HHCF-based method for noise-free LER measurement to include the missed high frequency real LER. The second issue is related with the increased density of lithographic patterns and the special characteristics of DSA and MP lithography patterns exhibits. In a previous work, we presented an enlarged LER characterization methodology for such patterns, which includes updated versions of the old metrics along with new metrics defined and developed to capture cross-edge and cross-line correlations. The fundamental concept has been the Line Center Roughness (LCR), the edge c-factor and the line c-factor correlation function and length quantifying the line fluctuations and the extent of cross-edge and cross-line correlations. In this work, we focus on the role of etch steps on cross-edge and line correlation metrics in SAQP data. We find that the spacer etch steps reduce edge correlations while etch steps with pattern transfer increase these. Furthermore, the density doubling and quadrupling increase edge correlations as well as cross-line correlations.
Interference pattern period measurement at picometer level
NASA Astrophysics Data System (ADS)
Xiang, Xiansong; Wei, Chunlong; Jia, Wei; Zhou, Changhe; Li, Minkang; Lu, Yancong
2016-10-01
To produce large scale gratings by Scanning Beam Interference Lithography (SBIL), a light spot containing grating pattern is generated by two beams interfering, and a scanning stage is used to drive the substrate moving under the light spot. In order to locate the stage at the proper exposure positions, the period of the Interference pattern must be measured accurately. We developed a set of process to obtain the period value of two interfering beams at picometer level. The process includes data acquisition and data analysis. The data is received from a photodiode and a laser interferometer with sub-nanometer resolution. Data analysis differs from conventional analyzing methods like counting wave peaks or using Fourier transform to get the signal period, after a preprocess of filtering and envelope removing, the mean square error is calculated between the received signal and ideal sinusoid waves to find the best-fit frequency, thus an accuracy period value is acquired, this method has a low sensitivity to amplitude noise and a high resolution of frequency. With 405nm laser beams interfering, a pattern period value around 562nm is acquired by employing this process, fitting diagram of the result shows the accuracy of the period value reaches picometer level, which is much higher than the results of conventional methods.
Method for detection and imaging over a broad spectral range
Yefremenko, Volodymyr; Gordiyenko, Eduard; Pishko, legal representative, Olga; Novosad, Valentyn; Pishko, deceased; Vitalii
2007-09-25
A method of controlling the coordinate sensitivity in a superconducting microbolometer employs localized light, heating or magnetic field effects to form normal or mixed state regions on a superconducting film and to control the spatial location. Electron beam lithography and wet chemical etching were applied as pattern transfer processes in epitaxial Y--Ba--Cu--O films. Two different sensor designs were tested: (i) a 3 millimeter long and 40 micrometer wide stripe and (ii) a 1.25 millimeters long, and 50 micron wide meandering-like structure. Scanning the laser beam along the stripe leads to physical displacement of the sensitive area, and, therefore, may be used as a basis for imaging over a broad spectral range. Forming the superconducting film as a meandering structure provides the equivalent of a two-dimensional detector array. Advantages of this approach are simplicity of detector fabrication, and simplicity of the read-out process requiring only two electrical terminals.
Use of Computer-Generated Holograms in Security Hologram Applications
NASA Astrophysics Data System (ADS)
Bulanovs, A.; Bakanas, R.
2016-10-01
The article discusses the use of computer-generated holograms (CGHs) for the application as one of the security features in the relief-phase protective holograms. An improved method of calculating CGHs is presented, based on ray-tracing approach in the case of interference of parallel rays. Software is developed for the calculation of multilevel phase CGHs and their integration in the application of security holograms. Topology of calculated computer-generated phase holograms was recorded on the photoresist by the optical greyscale lithography. Parameters of the recorded microstructures were investigated with the help of the atomic-force microscopy (AFM) and scanning electron microscopy (SEM) methods. The results of the research have shown highly protective properties of the security elements based on CGH microstructures. In our opinion, a wide use of CGHs is very promising in the structure of complex security holograms for increasing the level of protection against counterfeit.
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Kubis, Michael; Hinnen, Paul; de Graaf, Roelof; van der Laan, Hans; Padiy, Alexander; Menchtchikov, Boris
2013-04-01
Immersion lithography is being extended to the 20-nm and 14-nm node and the lithography performance requirements need to be tightened further to enable this shrink. In this paper we present an integral method to enable high-order fieldto- field corrections for both imaging and overlay, and we show that this method improves the performance with 20% - 50%. The lithography architecture we build for these higher order corrections connects the dynamic scanner actuators with the angle resolved scatterometer via a separate application server. Improvements of CD uniformity are based on enabling the use of freeform intra-field dose actuator and field-to-field control of focus. The feedback control loop uses CD and focus targets placed on the production mask. For the overlay metrology we use small in-die diffraction based overlay targets. Improvements of overlay are based on using the high order intra-field correction actuators on a field-tofield basis. We use this to reduce the machine matching error, extending the heating control and extending the correction capability for process induced errors.
Photomask quality evaluation using lithography simulation and multi-detector MVM-SEM
NASA Astrophysics Data System (ADS)
Ito, Keisuke; Murakawa, Tsutomu; Fukuda, Naoki; Shida, Soichi; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hagiwara, Kazuyuki; Hara, Daisuke
2013-06-01
The detection and management of mask defects which are transferred onto wafer becomes more important day by day. As the photomask patterns becomes smaller and more complicated, using Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO) with Optical Proximity Correction (OPC). To evaluate photomask quality, the current method uses aerial imaging by optical inspection tools. This technique at 1Xnm node has a resolution limit because small defects will be difficult to detect. We already reported the MEEF influence of high-end photomask using wide FOV SEM contour data of "E3630 MVM-SEM®" and lithography simulator "TrueMask® DS" of D2S Inc. in the prior paper [1]. In this paper we evaluate the correlation between our evaluation method and optical inspection tools as ongoing assessment. Also in order to reduce the defect classification work, we can compose the 3 Dimensional (3D) information of defects and can judge whether repairs of defects would be required. Moreover, we confirm the possibility of wafer plane CD measurement based on the combination between E3630 MVM-SEM® and 3D lithography simulation.
Fabrication of unique 3D microparticles in non-rectangular microchannels with flow lithography
NASA Astrophysics Data System (ADS)
Nam, Sung Min; Kim, Kibeom; Park, Wook; Lee, Wonhee
Invention of flow lithography has offered a simple yet effective method of fabricating micro-particles. However particles produced with conventional techniques were largely limited to 2-dimensional shapes projected to form a column. We proposed inexpensive and simple soft-lithography techniques to fabricate micro-channels with various cross-sectional shapes. The non-rectangular channels are then used to fabricate micro-particles using flow lithography resulting in interesting 3D shapes such as tetrahedrals or half-pyramids. In addition, a microfluidic device capable of fabricating multi-layered micro-particles was developed. On-chip PDMS valves are used to trap and position the particle at the precise location in microchannel with varying cross-section. Multilayer particles are generated by sequential monomer exchange and polymerization along the channel. While conventional multi-layered particles made with droplet generators require their layer materials be dissolved in immiscible fluids, the new method allows diverse choice of materials, not limited to their diffusibility. The multilayer 3D particles can be applied in areas such as drug delivery and tissue engineering.
NASA Astrophysics Data System (ADS)
Menezes, Shannon John
Nanoimprint Lithography (NIL) has existed since the mid 1990s as a proven concept of creating micro- and nanostructures using direct mechanical pattern transfer. Initially seen as a viable option to replace conventional lithography methods, the lack of technology to support large-scale manufacturing using NIL has motivated researchers to explore the application of NIL to create a better, more cost-efficient process with the ability to integrate NIL into a mass manufacturing system. One such method is the roll-to-roll process, similar to that used in printing presses of newspapers and plastics. This thesis is an investigation to characterize polymer deposition using a piezoelectric jetting head and attempt to create micro- and nanostructures on the polymer using R2RNIL technique.
NASA Astrophysics Data System (ADS)
Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan
2018-03-01
A novel fabrication method for high quality aspheric microlens array (MLA) was developed by combining the dose-modulated DMD-based lithography and surface thermal reflow process. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography. And the dose modulation mainly depends on the distribution of exposure dose of photoresist. Then the pre-shaped aspheric microlens is polished by a following non-contact thermal reflow (NCTR) process. Different from the normal process, the reflow process here is investigated to improve the surface quality while keeping the pre-modeled shape unchanged, and thus will avoid the difficulties in generating the aspheric surface during reflow. Fabrication of a designed aspheric MLA with this method was demonstrated in experiments. Results showed that the obtained aspheric MLA was good in both shape accuracy and surface quality. The presented method may be a promising approach in rapidly fabricating high quality aspheric microlens with complex surface.
NASA Astrophysics Data System (ADS)
Gao, Long-yue; Zhou, Wei-qi; Wang, Yuan-bo; Wang, Si-qi; Bai, Chong; Li, Shi-ming; Liu, Bin; Wang, Jun-nan; Cui, Cheng-kun; Li, Yong-liang
2016-05-01
To solve the problems with coronary stent implantation, coronary artery stent surface was directly modified by three-beam laser interference lithography through imitating the water-repellent surface of lotus leaf, and uniform micro-nano structures with the controllable period were fabricated. The morphological properties and contact angle (CA) of the microstructure were measured by scanning electron microscope (SEM) and CA system. The water repellency of stent was also evaluated by the contact and then separation between the water drop and the stent. The results show that the close-packed concave structure with the period of about 12 μm can be fabricated on the stent surface with special parameters (incident angle of 3°, laser energy density of 2.2 J·cm-2 and exposure time of 80 s) by using the three-beam laser at 1 064 nm, and the structure has good water repellency with CA of 120°.
Critical illumination condenser for x-ray lithography
Cohen, S.J.; Seppala, L.G.
1998-04-07
A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.
Critical illumination condenser for x-ray lithography
Cohen, Simon J.; Seppala, Lynn G.
1998-01-01
A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.
Force-controlled inorganic crystallization lithography.
Cheng, Chao-Min; LeDuc, Philip R
2006-09-20
Lithography plays a key role in integrated circuits, optics, information technology, biomedical applications, catalysis, and separation technologies. However, inorganic lithography techniques remain of limited utility for applications outside of the typical foci of integrated circuit manufacturing. In this communication, we have developed a novel stamping method that applies pressure on the upper surface of the stamp to regulate the dewetting process of the inorganic buffer and the evaporation rate of the solvent in this buffer between the substrate and the surface of the stamp. We focused on generating inorganic microstructures with specific locations and also on enabling the ability to pattern gradients during the crystallization of the inorganic salts. This approach utilized a combination of lithography with bottom-up growth and assembly of inorganic crystals. This work has potential applications in a variety of fields, including studying inorganic material patterning and small-scale fabrication technology.
Wide steering angle microscanner based on curved surface
NASA Astrophysics Data System (ADS)
Sabry, Yasser; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik
2013-03-01
Intensive industrial and academic research is oriented towards the design and fabrication of optical beam steering systems based on MEMS technology. In most of these systems, the scanning is achieved by rotating a flat micromirror around a central axis in which the main challenge is achieving a wide mirror rotation angle. In this work, a novel method of optical beam scanning based on reflection from a curved surface is presented. The scanning occurs when the optical axis of the curved surface is displaced with respect to the optical axis of the incident beam. To overcome the possible deformation of the spot with the scanning angle, the curved surface is designed with a specific aspherical profile. Moreover, the scanning exhibits a more linearized scanning angle-displacement relation than the conventional spherical profile. The presented scanner is fabricated using DRIE technology on an SOI wafer. The curved surface (reflector) is metalized and attached to a comb-drive actuator fabricated in the same lithography step. A single-mode fiber, behaving as a Gaussian beam source, is positioned on the substrate facing the mirror. The reflected optical beam angle and spotsize in the far field is recorded versus the relative shift between the fiber and the curved mirror. The spot size is plotted versus the scanning angle and a scanning spot size uniformity of about +/-10% is obtained for optical deflection angles up to 100 degrees. As the optical beam is propagating parallel to the wafer substrate, a completely integrated laser scanner can be achieved with filters and actuators self-aligned on the same chip that allows low cost and mass production of this important product.
Soft Lithography for Oligonucleotide Arrays Fabrication
2001-10-25
adenosine; Abbreviated T, C, G, A respectively), the other synthesis reagents and solvents except oxidation agent (seen in Table 1) were purchased...dried by cold blowing before hybridization. Oligonucleotide arrays were hybridized in 200 nM 3’-TCC TCC GAT TCA GAG AGT CC- HEX (PE Biosystems... citrate buffer), 0.1% SDS in 0.1xSSC respectively. The probe array was scanned on the Scanarray Microarray Systems (Packard Biochip Technologies, USA
Modulation Spectroscopy and Opto Mechanics of Micro Toroidal Resonators
2017-08-01
campus at UTRGV, 2) to initiate training of the UTRGV students in nano fabrication and clean room techniques, 3) to conduct experiments with silicon...Email: Volker.Quetschke@utb.edu RPPR Final Report as of 30-Oct-2017 Training Opportunities: During this reporting period PI and his students acquired...Lithography (EBL), Scanning Electron Microscope (SEM), and Reactive Ion-Etching (RIE) techniques. The students involved in this project attended the
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber
Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.; ...
2017-05-10
One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.
One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less
Automated imprint mask cleaning for step-and-flash imprint lithography
NASA Astrophysics Data System (ADS)
Singh, Sherjang; Chen, Ssuwei; Selinidis, Kosta; Fletcher, Brian; McMackin, Ian; Thompson, Ecron; Resnick, Douglas J.; Dress, Peter; Dietze, Uwe
2009-03-01
Step-and-Flash Imprint Lithography (S-FIL) is a promising lithography strategy for semiconductor manufacturing at device nodes below 32nm. The S-FIL 1:1 pattern transfer technology utilizes a field-by-field ink jet dispense of a low viscosity liquid resist to fill the relief pattern of the device layer etched into the glass mask. Compared to other sub 40nm CD lithography methods, the resulting high resolution, high throughput through clustering, 3D patterning capability, low process complexity, and low cost of ownership (CoO) of S-FIL makes it a widely accepted technology for patterned media as well as a promising mainstream option for future CMOS applications. Preservation of mask cleanliness is essential to avoid risk of repeated printing of defects. The development of mask cleaning processes capable of removing particles adhered to the mask surface without damaging the mask is critical to meet high volume manufacturing requirements. In this paper we have presented various methods of residual (cross-linked) resist removal and final imprint mask cleaning demonstrated on the HamaTech MaskTrack automated mask cleaning system. Conventional and non-conventional (acid free) methods of particle removal have been compared and the effect of mask cleaning on pattern damage and CD integrity is also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun
2010-07-15
This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fittingmore » the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.« less
Flexible fabrication of multi-scale integrated 3D periodic nanostructures with phase mask
NASA Astrophysics Data System (ADS)
Yuan, Liang Leon
Top-down fabrication of artificial nanostructures, especially three-dimensional (3D) periodic nanostructures, that forms uniform and defect-free structures over large area with the advantages of high throughput and rapid processing and in a manner that can further monolithically integrate into multi-scale and multi-functional devices is long-desired but remains a considerable challenge. This thesis study advances diffractive optical element (DOE) based 3D laser holographic nanofabrication of 3D periodic nanostructures and develops new kinds of DOEs for advanced diffracted-beam control during the fabrication. Phase masks, as one particular kind of DOE, are a promising direction for simple and rapid fabrication of 3D periodic nanostructures by means of Fresnel diffraction interference lithography. When incident with a coherent beam of light, a suitable phase mask (e.g. with 2D nano-grating) can create multiple diffraction orders that are inherently phase-locked and overlap to form a 3D light interference pattern in the proximity of the DOE. This light pattern is typically recorded in photosensitive materials including photoresist to develop into 3D photonic crystal nanostructure templates. Two kinds of advanced phase masks were developed that enable delicate phase control of multiple diffraction beams. The first exploits femtosecond laser direct writing inside fused silica to assemble multiple (up to nine) orthogonally crossed (2D) grating layers, spaced on Talbot planes to overcome the inherent weak diffraction efficiency otherwise found in low-contrast volume gratings. A systematic offsetting of orthogonal grating layers to establish phase offsets over 0 to pi/2 range provided precise means for controlling the 3D photonic crystal structure symmetry between body centered tetragonal (BCT) and woodpile-like tetragonal (wTTR). The second phase mask consisted of two-layered nanogratings with small sub-wavelength grating periods and phase offset control. That was designed with isotropic properties attractive for generating a complete photonic band gap (PBG). An isolation layer was used between adjacent polymer layers to offer a reversal coating for sample preparation of scanning electron microscopy (SEM) imaging and top surface planarization. Electron beam lithography has been employed to fabricate a multi-level nano-grating phase mask that produces a diamond-like 3D nanostructure via phase mask lithography, promising for creating photonic crystal (PC) templates that can be inverted with high-index materials and form a complete PBG at telecommunication wavelengths. A laser scanning holographic method for 3D exposure in thick photoresist is introduced that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form highly uniform 3D nanostructure with beam size scaled to small 200 microm diameter. Further direct-write holography demonstrates monolithical writing of multi-scale lab-on-a-chip with multiple functionalities including on-chip integrated fluorescence. Various 3D periodic nanostructures are demonstrated over a 15 mmx15 mm area, through full 40 microm photoresist thickness and with uniform structural and optical properties revealed by focused ion beam (FIB) milling, SEM imaging and stopband measures. The lateral and axial periods scale from respective 1500 nm to 570 nm and 9.2 microm to 1.2 microm to offer a Gamma-Z stopband at 1.5 microm. Overall, laser scanning is presented as a facile means to embed 3D PC nanostructure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.
Pushing the plasmonic imaging nanolithography to nano-manufacturing
NASA Astrophysics Data System (ADS)
Gao, Ping; Li, Xiong; Zhao, Zeyu; Ma, Xiaoliang; Pu, Mingbo; Wang, Changtao; Luo, Xiangang
2017-12-01
Suffering from the so-called diffraction limit, the minimum resolution of conventional photolithography is limited to λ / 2 or λ / 4, where λ is the incident wavelength. The physical mechanism of this limit lies at the fact that the evanescent waves that carry subwavelength information of the object decay exponentially in a medium, and cannot reach the image plane. Surface plasmons (SPs) are non-radiative electromagnetic waves that propagate along the interface between metal and dielectric, which exhibits unique sub-diffraction optical characteristics. In recent years, benefiting from SPs' features, researchers have proposed a variety of plasmonic lithography methods in the manner of interference, imaging and direct writing, and have demonstrated that sub-diffraction resolution could be achieved by theoretical simulations or experiments. Among the various plasmonic lithography modes, plasmonic imaging lithography seems to be of particular importance for applications due to its compatibility with conventional lithography. Recent results show that the half pitch of nanograting can be shrinked down to 22 nm and even 16 nm. This paper will give an overview of research progress, representative achievements of plasmonic imaging lithography, the remained problems and outlook of further developments.
Nanogrids and Beehive-Like Nanostructures Formed by Plasma Etching the Self-Organized SiGe Islands
NASA Astrophysics Data System (ADS)
Chang, Yuan-Ming; Jian, Sheng-Rui; Juang, Jenh-Yih
2010-09-01
A lithography-free method for fabricating the nanogrids and quasi-beehive nanostructures on Si substrates is developed. It combines sequential treatments of thermal annealing with reactive ion etching (RIE) on SiGe thin films grown on (100)-Si substrates. The SiGe thin films deposited by ultrahigh vacuum chemical vapor deposition form self-assembled nanoislands via the strain-induced surface roughening (Asaro-Tiller-Grinfeld instability) during thermal annealing, which, in turn, serve as patterned sacrifice regions for subsequent RIE process carried out for fabricating nanogrids and beehive-like nanostructures on Si substrates. The scanning electron microscopy and atomic force microscopy observations confirmed that the resultant pattern of the obtained structures can be manipulated by tuning the treatment conditions, suggesting an interesting alternative route of producing self-organized nanostructures.
NASA Astrophysics Data System (ADS)
Horiuchi, Toshiyuki; Watanabe, Jun; Suzuki, Yuta; Iwasaki, Jun-ya
2017-05-01
Two dimensional code marks are often used for the production management. In particular, in the production lines of liquid-crystal-display panels and others, data on fabrication processes such as production number and process conditions are written on each substrate or device in detail, and they are used for quality managements. For this reason, lithography system specialized in code mark printing is developed. However, conventional systems using lamp projection exposure or laser scan exposure are very expensive. Therefore, development of a low-cost exposure system using light emitting diodes (LEDs) and optical fibers with squared ends arrayed in a matrix is strongly expected. In the past research, feasibility of such a new exposure system was demonstrated using a handmade system equipped with 100 LEDs with a central wavelength of 405 nm, a 10×10 matrix of optical fibers with 1 mm square ends, and a 10X projection lens. Based on these progresses, a new method for fabricating large-scale arrays of finer fibers with squared ends was developed in this paper. At most 40 plastic optical fibers were arranged in a linear gap of an arraying instrument, and simultaneously squared by heating them on a hotplate at 120°C for 7 min. Fiber sizes were homogeneous within 496+/-4 μm. In addition, average light leak was improved from 34.4 to 21.3% by adopting the new method in place of conventional one by one squaring method. Square matrix arrays necessary for printing code marks will be obtained by piling the newly fabricated linear arrays up.
In situ electronic probing of semiconducting nanowires in an electron microscope.
Fauske, V T; Erlbeck, M B; Huh, J; Kim, D C; Munshi, A M; Dheeraj, D L; Weman, H; Fimland, B O; Van Helvoort, A T J
2016-05-01
For the development of electronic nanoscale structures, feedback on its electronic properties is crucial, but challenging. Here, we present a comparison of various in situ methods for electronically probing single, p-doped GaAs nanowires inside a scanning electron microscope. The methods used include (i) directly probing individual as-grown nanowires with a sharp nano-manipulator, (ii) contacting dispersed nanowires with two metal contacts and (iii) contacting dispersed nanowires with four metal contacts. For the last two cases, we compare the results obtained using conventional ex situ litho-graphy contacting techniques and by in situ, direct-write electron beam induced deposition of a metal (Pt). The comparison shows that 2-probe measurements gives consistent results also with contacts made by electron beam induced deposition, but that for 4-probe, stray deposition can be a problem for shorter nanowires. This comparative study demonstrates that the preferred in situ method depends on the required throughput and reliability. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan
2017-06-01
A flexible fabrication method for the biomimetic compound eye (BCE) array is proposed. In this method, a triple-layer sandwich-like coating configuration was introduced, and the required hierarchic microstructures are formed with a simple single-scan exposure in maskless digital lithography. Taking advantage of the difference of glass transition point (Tg) between photoresists of each layer, the pre-formed hierarchic microstructures are in turn reflowed to the curved substrate and the BCE ommatidia in a two-step thermal reflow process. To avoid affecting the spherical substrate formed in the first thermal reflow, a non-contact strategy was proposed in the second reflow process. The measurement results were in good agreement with the designed BCE profiles. Results also showed that the fabricated BCE had good performances in optical test. The presented method is flexible, convenient, low-cost and can easily adapt to the fabrications of other optical elements with hierarchic microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jia; Zhang, Ziang; Weng, Zhankun
This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beammore » laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.« less
2012-01-01
Here, we introduce and give an overview of a general lithography-free method to fabricate silicide and germanide micro-/nanostructures on Si and Ge surfaces through metal-vapor-initiated endoepitaxial growth. Excellent controls on shape and orientation are achieved by adjusting the substrate orientation and growth parameters. Furthermore, micro-/nanoscale pits with controlled morphologies can also be successfully fabricated on Si and Ge surfaces by taking advantage of the sublimation of silicides/germanides. The aim of this brief report is to illustrate the concept of lithography-free synthesis and patterning on surfaces of elemental semiconductors, and the differences and the challenges associated with the Si and the Ge surfaces will be discussed. Our results suggest that this low-cost bottom-up approach is promising for applications in functional nanodevices. PMID:22315969
NASA Astrophysics Data System (ADS)
Hirai, Yoshihiko; Okano, Masato; Okuno, Takayuki; Toyota, Hiroshi; Yotsuya, Tsutomu; Kikuta, Hisao; Tanaka, Yoshio
2001-11-01
Fabrication of a fine diffractive optical element on a Si chip is demonstrated using imprint lithography. A chirped diffraction grating, which has modulated pitched pattern with curved cross section is fabricated by an electron beam lithography, where the exposure dose profile is automatically optimized by computer aided system. Using the resist pattern as an etching mask, anisotropic dry etching is performed to transfer the resist pattern profile to the Si chip. The etched Si substrate is used as a mold in the imprint lithography. The Si mold is pressed to a thin polymer (poly methyl methacrylate) on a Si chip. After releasing the mold, a fine diffractive optical pattern is successfully transferred to the thin polymer. This method is exceedingly useful for fabrication of integrated diffractive optical elements with electric circuits on a Si chip.
Ghosh, Siddharth; Ananthasuresh, G K
2016-01-04
We report microstructures of SU-8 photo-sensitive polymer with high-aspect-ratio, which is defined as the ratio of height to in-plane feature size. The highest aspect ratio achieved in this work exceeds 250. A multi-layer and single-photon lithography approach is used in this work to expose SU-8 photoresist of thickness up to 100 μm. Here, multi-layer and time-lapsed writing is the key concept that enables nanometer localised controlled photo-induced polymerisation. We use a converging monochromatic laser beam of 405 nm wavelength with a controllable aperture. The reflection of the converging optics from the silicon substrate underneath is responsible for a trapezoidal edge profile of SU-8 microstructure. The reflection induced interfered point-spread-function and multi-layer-single-photon exposure helps to achieve sub-wavelength feature sizes. We obtained a 75 nm tip diameter on a pyramid shaped microstructure. The converging beam profile determines the number of multiple optical focal planes along the depth of field. These focal planes are scanned and exposed non-concurrently with varying energy dosage. It is notable that an un-automated height axis control is sufficient for this method. All of these contribute to realising super-high-aspect-ratio and 3D micro-/nanostructures using SU-8. Finally, we also address the critical problems of photoresist-based micro-/nanofabrication and their solutions.
Design optimization of highly asymmetrical layouts by 2D contour metrology
NASA Astrophysics Data System (ADS)
Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.
2018-03-01
As design pitch shrinks to the resolution limit of up-to-date optical lithography technology, the Critical Dimension (CD) variation tolerance has been dramatically decreased for ensuring the functionality of device. One of critical challenges associates with the narrower CD tolerance for whole chip area is the proximity effect control on asymmetrical layout environments. To fulfill the tight CD control of complex features, the Critical Dimension Scanning Electron Microscope (CD-SEM) based measurement results for qualifying process window and establishing the Optical Proximity Correction (OPC) model become insufficient, thus 2D contour extraction technique [1-5] has been an increasingly important approach for complementing the insufficiencies of traditional CD measurement algorithm. To alleviate the long cycle time and high cost penalties for product verification, manufacturing requirements are better to be well handled at design stage to improve the quality and yield of ICs. In this work, in-house 2D contour extraction platform was established for layout design optimization of 39nm half-pitch Self-Aligned Double Patterning (SADP) process layer. Combining with the adoption of Process Variation Band Index (PVBI), the contour extraction platform enables layout optimization speedup as comparing to traditional methods. The capabilities of identifying and handling lithography hotspots in complex layout environments of 2D contour extraction platform allow process window aware layout optimization to meet the manufacturing requirements.
NASA Astrophysics Data System (ADS)
Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.
2016-01-01
In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.
The fabrication of nanopatterns with Au nanoparticles-embedded micelles via nanoimprint lithography.
Lee, Jung-Pil; Kim, Eun-Uk; Koh, Haeng-Deog; Kang, Nam-Goo; Jung, Gun-Young; Lee, Jae-Suk
2009-09-09
We fabricated nanopatterns with Au nanoparticles-embedded micelles (Au-micelles) by self-assembly of block copolymers via nanoimprint lithography. The micelle structure prepared by self-assembled block copolymers was used as a template for the synthesis of Au nanoparticles (Au NPs). Au NPs were synthesized in situ inside the micelles of polystyrene-block-poly(2-vinylpyridine) (PS- b-P2VP). Au-micelles were arranged on the trenches of the polymer template, which was imprinted by nanoimprint lithography. The fabrication of line-type and dot-type nanopatterns was carried out by the combined method. In addition, multilayer nanopatterns of the Au-micelles were also proposed.
NASA Astrophysics Data System (ADS)
Xia, Younan; Whitesides, George M.
1998-08-01
Soft lithography represents a non-photolithographic strategy based on selfassembly and replica molding for carrying out micro- and nanofabrication. It provides a convenient, effective, and low-cost method for the formation and manufacturing of micro- and nanostructures. In soft lithography, an elastomeric stamp with patterned relief structures on its surface is used to generate patterns and structures with feature sizes ranging from 30 nm to 100 mum. Five techniques have been demonstrated: microcontact printing (muCP), replica molding (REM), microtransfer molding (muTM), micromolding in capillaries (MIMIC), and solvent-assisted micromolding (SAMIM). In this chapter we discuss the procedures for these techniques and their applications in micro- and nanofabrication, surface chemistry, materials science, optics, MEMS, and microelectronics.
Hybrid strategies for nanolithography and chemical patterning
NASA Astrophysics Data System (ADS)
Srinivasan, Charan
Remarkable technological advances in photolithography have extended patterning to the sub-50-nm regime. However, because photolithography is a top-down approach, it faces substantial technological and economic challenges in maintaining the downward scaling trends of feature sizes below 30 nm. Concurrently, fundamental research on chemical self-assembly has enabled the path to access molecular length scales. The key to the success of photolithography is its inherent economies of scale, which justify the large capital investment for its implementation. In this thesis research, top-down and bottom-up approaches have been combined synergistically, and these hybrid strategies have been employed in applications that do not have the economies of scale found in semiconductor chip manufacturing. The specific instances of techniques developed here include molecular-ruler lithography and a series of nanoscale chemical patterning methods. Molecular-ruler lithography utilizes self-assembled multilayered films as a sidewall spacer on initial photolithographically patterned gold features (parent) to place a second-generation feature (daughter) in precise proximity to the parent. The parent-daughter separation, which is on the nanometer length scale, is defined by the thickness of the molecular-ruler resist. Analogous to protocols followed in industry to evaluate lithographic performance, electrical test-pad structures were designed to interrogate the nanostructures patterned by molecular-ruler nanolithography, failure modes creating electrical shorts were mapped to each lithographic step, and subsequent lithographic optimization was performed to pattern nanoscale devices with excellent electrical performance. The optimized lithographic processes were applied to generate nanoscale devices such as nanowires and thin-film transistors (TFTs). Metallic nanowires were patterned by depositing a tertiary generation material in the nanogap and surrounding micron-scale regions, and then chemically removing the parent and daughter structures selectively. This processing was also performed on silicon-on-insulator substrates and the metallic nanowires were used as a hard mask to transfer the pattern to the single crystalline silicon epilayer resulting in a quaternary generation structure of single-crystalline silicon nanowire field-effect transistors. Additionally, the proof of concept for patterning nanoscale pentacene TFTs utilizing molecular-rulers was demonstrated. For applications in sub-100-nm lithography, the limitations on the relative heights of parent and daughter structures were overcome and processes to integrate molecular-ruler nanolithography with existing complementary metal-oxide-semiconductor (CMOS) processing were developed. Pattern transfer to underlying SiO2 substrates has opened a new avenue of opportunities to apply these nanostructures in nanofluidics and in non-traditional lithography such as imprint lithography. Additionally, the molecular-ruler process has been shown to increase the spatial density of features created by high-resolution techniques such as electron-beam lithography. A limitation of photolithography is its inability to pattern chemical functionality on surfaces. To overcome this limitation, two techniques were developed to extend nanolithography beyond semiconductors and apply them to patterning of self-assembled monolayers. First, a novel bilayer resist was devised to protect and to pattern chemical functionality on surfaces by being able to withstand conditions necessary for both chemical self-assembly and photooxidation of the Au-S bond while not disrupting the preexisting SAM. In addition to photolithography, soft-lithographic approaches such as microcontact printing are often used to create chemical patterns. In this work, a technique for the creation of chemical patterns of inserted molecules with dilute coverages (≤10%) was implemented. As part of the research in chemical patterning, a method for characterizing chemical patterns using scanning electron microscopy has been developed. These tools are the standard for metrology in nanolithography, and thus are readily accessible as our advances in chemical patterning are adopted and applied by the lithography community.
Interference lithography for optical devices and coatings
NASA Astrophysics Data System (ADS)
Juhl, Abigail Therese
Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.
Method to create gradient index in a polymer
Dirk, Shawn M; Johnson, Ross Stefan; Boye, Robert; Descour, Michael R; Sweatt, William C; Wheeler, David R; Kaehr, Bryan James
2014-10-14
Novel photo-writable and thermally switchable polymeric materials exhibit a refractive index change of .DELTA.n.gtoreq.1.0 when exposed to UV light or heat. For example, lithography can be used to convert a non-conjugated precursor polymer to a conjugated polymer having a higher index-of-refraction. Further, two-photon lithography can be used to pattern high-spatial frequency structures.
Sweatt, William C.; Christenson, Todd R.
2004-05-25
An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.
Direct write electron beam lithography: a historical overview
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans C.
2010-09-01
Maskless pattern generation capability in combination with practically limitless resolution made probe-forming electron beam systems attractive tools in the semiconductor fabrication process. However, serial exposure of pattern elements with a scanning beam is a slow process and throughput presented a key challenge in electron beam lithography from the beginning. To meet this challenge imaging concepts with increasing exposure efficiency have been developed projecting ever larger number of pixels in parallel. This evolution started in the 1960s with the SEM-type Gaussian beam systems writing one pixel at a time directly on wafers. During the 1970s IBM pioneered the concept of shaped beams containing multiple pixels which led to higher throughput and an early success of e-beam direct write (EBDW) in large scale manufacturing of semiconductor chips. EBDW in a mix-and match approach with optical lithography provided unique flexibility in part number management and cycle time reduction and proved extremely cost effective in IBM's Quick-Turn-Around-Time (QTAT) facilities. But shaped beams did not keep pace with Moore's law because of limitations imposed by the physics of charged particles: Coulomb interactions between beam electrons cause image blur and consequently limit beam current and throughput. A new technology approach was needed. Physically separating beam electrons into multiple beamlets to reduce Coulomb interaction led to the development of massively parallel projection of pixels. Electron projection lithography (EPL) - a mask based imaging technique emulating optical steppers - was pursued during the 1990s by Bell Labs with SCALPEL and by IBM with PREVAIL in partnership with Nikon. In 2003 Nikon shipped the first NCR-EB1A e-beam stepper based on the PREVAIL technology to Selete. It exposed pattern segments containing 10 million pixels in single shot and represented the first successful demonstration of massively parallel pixel projection. However the window of opportunity for EPL had closed with the quick implementation of immersion lithography and the interest of the industry has since shifted back to maskless lithography (ML2). This historical overview of EBDW will highlight opportunities and limitation of the technology with particular focus on technical challenges facing the current ML2 development efforts in Europe and the US. A brief status report and risk assessment of the ML2 approaches will be provided.
Software-based data path for raster-scanned multi-beam mask lithography
NASA Astrophysics Data System (ADS)
Rajagopalan, Archana; Agarwal, Ankita; Buck, Peter; Geller, Paul; Hamaker, H. Christopher; Rao, Nagswara
2016-10-01
According to the 2013 SEMATECH Mask Industry Survey,i roughly half of all photomasks are produced using laser mask pattern generator ("LMPG") lithography. LMPG lithography can be used for all layers at mature technology nodes, and for many non-critical and semi-critical masks at advanced nodes. The extensive use of multi-patterning at the 14-nm node significantly increases the number of critical mask layers, and the transition in wafer lithography from positive tone resist to negative tone resist at the 14-nm design node enables the switch from advanced binary masks back to attenuated phase shifting masks that require second level writes to remove unwanted chrome. LMPG lithography is typically used for second level writes due to its high productivity, absence of charging effects, and versatile non-actinic alignment capability. As multi-patterning use expands from double to triple patterning and beyond, the number of LMPG second level writes increases correspondingly. The desire to reserve the limited capacity of advanced electron beam writers for use when essential is another factor driving the demand for LMPG capacity. The increasing demand for cost-effective productivity has kept most of the laser mask writers ever manufactured running in production, sometimes long past their projected lifespan, and new writers continue to be built based on hardware developed some years ago.ii The data path is a case in point. While state-ofthe- art when first introduced, hardware-based data path systems are difficult to modify or add new features to meet the changing requirements of the market. As data volumes increase, design styles change, and new uses are found for laser writers, it is useful to consider a replacement for this critical subsystem. The availability of low-cost, high-performance, distributed computer systems combined with highly scalable EDA software lends itself well to creating an advanced data path system. EDA software, in routine production today, scales well to hundreds or even thousands of CPU-cores, offering the potential for virtually unlimited capacity. Features available in EDA software such as sizing, scaling, tone reversal, OPC, MPC, rasterization, and others are easily adapted to the requirements of a data path system. This paper presents the motivation, requirements, design and performance of an advanced, scalable software data path system suitable to support multi-beam laser mask lithography.
NASA Astrophysics Data System (ADS)
Tian, Yaolan; Isotalo, Tero J.; Konttinen, Mikko P.; Li, Jiawei; Heiskanen, Samuli; Geng, Zhuoran; Maasilta, Ilari J.
2017-02-01
We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional (3D) colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 160 °C, the exposure to the resist developer and the exposure to acetone, all of which are required for the electron-beam lithography step. Moreover, we show that by depositing an aluminum oxide capping layer on top of the colloidal crystal after the e-beam irradiation, the surface is smooth enough so that continuous metal wiring can be deposited by the electron-beam lithography. Finally, we also demonstrate a way to self-assemble PS colloidal crystals into a microscale container, which was fabricated using direct-write 3D laser-lithography. Metallic wiring was also successfully integrated with the combination of a container structure and a PS colloidal crystal. Our goal is to make a device for studies of thermal transport in 3D phononic crystals, but other phononic or photonic crystal applications could also be envisioned.
NASA Astrophysics Data System (ADS)
Aksu, Serap
Development of low cost nanolithography tools for precisely creating a variety of nanostructure shapes and arrangements in a high-throughput fashion is crucial for next generation biophotonic technologies. Although existing lithography techniques offer tremendous design flexibility, they have major drawbacks such as low-throughput and fabrication complexity. In addition the demand for the systematic fabrication of sub-100 nm structures on flexible, stretchable, non-planar nanoelectronic/photonic systems and multi-functional materials has fueled the research for innovative fabrication methods in recent years. This thesis research investigates a novel lithography approach for fabrication of engineered plasmonic nanostructures and metamaterials operating at visible and infrared wavelengths. The technique is called Nanostencil Lithography (NSL) and relies on direct deposition of materials through nanoapertures on a stencil. NSL enables high throughput fabrication of engineered antenna arrays with optical qualities similar to the ones fabricated by standard electron beam lithography. Moreover, nanostencils can be reused multiple times to fabricate series of plasmonic nanoantenna arrays with identical optical responses enabling high throughput manufacturing. Using nanostencils, very precise nanostructures could be fabricated with 10 nm accuracy. Furthermore, this technique has flexibility and resolution to create complex plasmonic nanostructure arrays on the substrates that are difficult to work with e-beam and ion beam lithography tools. Combining plasmonics with polymeric materials, biocompatible surfaces or curvilinear and non-planar objects enable unique optical applications since they can preserve normal device operation under large strain. In this work, mechanically tunable flexible optical materials and spectroscopy probes integrated on fiber surfaces that could be used for a wide range of applications are demonstrated. Finally, the first application of NSL fabricated low cost infrared nanoantenna arrays for plasmonically enhanced vibrational biospectroscopy is presented. Detection of immunologically important protein monolayers with thickness as small as 3 nm, and antibody assays are demonstrated using nanoantenna arrays fabricated with reusable nanostencils. The results presented indicate that nanostencil lithography is a promising method for reducing the nano manufacturing cost while enhancing the performance of biospectroscopy tools for biology and medicine. As a single step and low cost nanofabrication technique, NSL could facilitate the manufacturing of biophotonic technologies for real-world applications.
Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors
Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; ...
2016-02-23
Rapid advanced in nanoscience rely on continuous improvements of matter manipulation at near atomic scales. Currently, well characterized, robust, resist-based lithography carries the brunt of the nanofabrication process. However, use of local electron, ion and physical probe methods is also expanding, driven largely by their ability to fabricate without the multi-step preparation processes that can result in contamination from resists and solvents. Furthermore, probe based methods extend beyond nanofabrication to nanomanipulation and imaging, vital ingredients to rapid transition to prototyping and testing of layered 2D heterostructured devices. In this work we demonstrate that helium ion interaction, in a Helium Ionmore » Microscope (HIM), with the surface of bulk copper indium thiophosphate CuM IIIP 2X 6 (M = Cr, In; X= S, Se), (CITP) results in the control of ferroelectric domains, and growth of cylindrical nanostructures with enhanced conductivity; with material volumes scaling with the dosage of the beam. The nanostructures are oxygen rich, sulfur poor, and with the copper concentration virtually unchanged as confirmed by Energy Dispersive X-ray (EDX). Scanning Electron Microscopy (SEM) imaging contrast as well as Scanning Microwave Microscopy (SMM) measurements suggest enhanced conductivity in the formed particle, whereas Atomic Force Microscopy (AFM) measurements indicate that the produced structures have lower dissipation and a lower Young s modulus.« less
Application Specific Chemical Information Microprocessor (ASCI mu P)
1999-09-30
lithography created channels in polydimethylsiloxane polymer. 1C. Optical micrograph of 100 um line widths using soft lithography Progress has also been made...also collaborated with Dr. Jose Almirall at Florida International University and have accomplished the HPLC method development of explosives detection...analytical materials. We have established the base for LIF electrophoretic chip analysis and similarly for the electrochemcial detection. We have learned the
Double exposure technique for 45nm node and beyond
NASA Astrophysics Data System (ADS)
Hsu, Stephen; Park, Jungchul; Van Den Broeke, Douglas; Chen, J. Fung
2005-11-01
The technical challenges in using F2 lithography for the 45nm node, along with the insurmountable difficulties in EUV lithography, has driven the semiconductor chipmaker into the low k1 lithography era under the pressure of ever decreasing feature sizes. Extending lithography towards lower k1 puts heavy demand on the resolution enhancement technique (RET), exposure tool, and the need for litho friendly design. Hyper numerical aperture (NA) exposure tools, immersion, and double exposure techniques (DET's) are the promising methods to extend lithography manufacturing to the 45nm node at k1 factors below 0.3. Scattering bars (SB's) have become an integral part of the lithography process as chipmakers move to production at ever lower k1 factors. To achieve better critical dimension (CD) control, polarization is applied to enhance the image contrast in the preferential imaging orientation, which increases the risk of SB printability. The optimum SB width is approximately (0.20 ~ 0.25)*(λ/NA). When the SB width becomes less than the exposure wavelength on the 4X mask, Kirchhoff's scalar theory under predicts the SB intensity. The optical weighting factor of the SB increases (Figure 1b) and the SB's become more susceptible to printing. Meanwhile, under hyper NA conditions, the effectiveness of "subresolution" SB's is significantly diminished. A full-sized scattering bars (FSB) scheme becomes necessary. Double exposure methods, such as using ternary 6% attenuated PSM (attPSM) for DDL, are good imaging solutions that can reach and likely go beyond the 45nm node. Today DDL, using binary chrome masks, is capable of printing 65 nm device patterns. In this work, we investigate the use of DET with 6% attPSM masks to target 45nm node device. The SB scalability and printability issues can be taken cared of by using "mutual trimming", i.e., with the combined energy from the two exposures. In this study, we share our findings of using DET to pattern a 45nm node device design with polarization and immersion. We also explore other double patterning methods which in addition to having two exposures, incorporates double coat/developing/etch processing to break the 0.25 k1 barrier.
Carbon dioxide gas purification and analytical measurement for leading edge 193nm lithography
NASA Astrophysics Data System (ADS)
Riddle Vogt, Sarah; Landoni, Cristian; Applegarth, Chuck; Browning, Matt; Succi, Marco; Pirola, Simona; Macchi, Giorgio
2015-03-01
The use of purified carbon dioxide (CO2) has become a reality for leading edge 193 nm immersion lithography scanners. Traditionally, both dry and immersion 193 nm lithographic processes have constantly purged the optics stack with ultrahigh purity compressed dry air (UHPCDA). CO2 has been utilized for a similar purpose as UHPCDA. Airborne molecular contamniation (AMC) purification technologies and analytical measurement methods have been extensively developed to support the Lithography Tool Manufacturers purity requirements. This paper covers the analytical tests and characterizations carried out to assess impurity removal from 3.0 N CO2 (beverage grade) for its final utilization in 193 nm and EUV scanners.
Self-aligned grating couplers on template-stripped metal pyramids via nanostencil lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemme, Daniel J.; Johnson, Timothy W.; Mohr, Daniel A.
2016-05-23
We combine nanostencil lithography and template stripping to create self-aligned patterns about the apex of ultrasmooth metal pyramids with high throughput. Three-dimensional patterns such as spiral and asymmetric linear gratings, which can couple incident light into a hot spot at the tip, are presented as examples of this fabrication method. Computer simulations demonstrate that spiral and linear diffraction grating patterns are both effective at coupling light to the tip. The self-aligned stencil lithography technique can be useful for integrating plasmonic couplers with sharp metallic tips for applications such as near-field optical spectroscopy, tip-based optical trapping, plasmonic sensing, and heat-assisted magneticmore » recording.« less
Subwavelength optical lithography via classical light: A possible implementation
NASA Astrophysics Data System (ADS)
You, Jieyu; Liao, Zeyang; Hemmer, P. R.; Zubairy, M. Suhail
2018-04-01
The resolution of an interferometric optical lithography system is about the half wavelength of the illumination light. We proposed a method based on Doppleron resonance to achieve a resolution beyond half wavelength [Phys. Rev. Lett. 96, 163603 (2006), 10.1103/PhysRevLett.96.163603]. Here, we analyze a possible experimental demonstration of this method in the negatively charged silicon-vacancy (SiV-) system by considering realistic experimental parameters. Our results show that quarter wavelength resolution and beyond can be achieved in this system even in room temperature without using perturbation theory.
Coherent diffractive imaging methods for semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Helfenstein, Patrick; Mochi, Iacopo; Rajeev, Rajendran; Fernandez, Sara; Ekinci, Yasin
2017-12-01
The paradigm shift of the semiconductor industry moving from deep ultraviolet to extreme ultraviolet lithography (EUVL) brought about new challenges in the fabrication of illumination and projection optics, which constitute one of the core sources of cost of ownership for many of the metrology tools needed in the lithography process. For this reason, lensless imaging techniques based on coherent diffractive imaging started to raise interest in the EUVL community. This paper presents an overview of currently on-going research endeavors that use a number of methods based on lensless imaging with coherent light.
Effect of Alignment on Transport Properties of Carbon Nanotube/Metallic Junctions
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min; Smits, Jan; Williams, Phillip; Harvey, Robert
2003-01-01
Ballistic and spin coherent transport in single walled carbon nanotubes (SWCNT) are predicted to enable high sensitivity single-nanotube devices for strain and magnetic field sensing. Based upon these phenomena, electron beam lithography procedures have been developed to study the transport properties of purified HiPCO single walled carbon nanotubes for development into sensory materials for nondestructive evaluation. Purified nanotubes are dispersed in solvent suspension and then deposited on the device substrate before metallic contacts are defined and deposited through electron beam lithography. This procedure produces randomly dispersed ropes, typically 2 - 20 nm in diameter, of single walled carbon nanotubes. Transport and scanning probe microscopy studies have shown a good correlation between the junction resistance and tube density, alignment, and contact quality. In order to improve transport properties of the junctions a technique has been developed to align and concentrate nanotubes at specific locations on the substrate surface. Lithographic techniques are used to define local areas where high frequency electric fields are to be concentrated. Application of the fields while the substrate is exposed to nanotube-containing solution results in nanotube arrays aligned with the electric field lines. A second electron beam lithography layer is then used to deposit metallic contacts across the aligned tubes. Experimental measurements are presented showing the increased tube alignment and improvement in the transport properties of the junctions.
Evolution of ring-field systems in microlithography
NASA Astrophysics Data System (ADS)
Williamson, David M.
1998-09-01
Offner's ring-field all-reflecting triplet was the first successful projection system used in microlithography. It evolved over several generations, increasing NA and field size, reducing the feature sizes printed from three down to one micron. Because of its relative simplicity, large field size and broad spectral bandwidth it became the dominant optical design used in microlithography until the early 1980's, when the demise of optical lithography was predicted. Rumours of the death of optics turned out to be exaggerated; what happened instead was a metamorphosis to more complex optical designs. A reduction ring-field system was developed, but the inevitable loss of concentricity led to a dramatic increase in complexity. Higher NA reduction projection optics have therefore been full-field, either all-refracting or catadioptric using a beamsplitter and a single mirror. At the present time, the terminal illness of optical lithography is once again being prognosed, but now at 0.1 micro feature sizes early in the next millenium. If optics has a future beyond that, it lies at wavelengths below the practical transmission cut-off of all refracting materials. Scanning all-reflecting ring-field systems are therefore poised for a resurgence, based on their well-established advantage of rotational symmetry and consequent small aberration variations over a small, annular field. This paper explores some such designs that potentially could take optical lithography down to the region of 0.025 micron features.
Fabrication of PDMS-Based Microfluidic Devices: Application for Synthesis of Magnetic Nanoparticles
NASA Astrophysics Data System (ADS)
Thu, Vu Thi; Mai, An Ngoc; Le The Tam; Van Trung, Hoang; Thu, Phung Thi; Tien, Bui Quang; Thuat, Nguyen Tran; Lam, Tran Dai
2016-05-01
In this work, we have developed a convenient approach to synthesize magnetic nanoparticles with relatively high magnetization and controllable sizes. This was realized by combining the traditional co-precipitation method and microfluidic techniques inside microfluidic devices. The device was first designed, and then fabricated using simplified soft-lithography techniques. The device was utilized to synthesize magnetite nanoparticles. The synthesized nanomaterials were thoroughly characterized using field emission scanning electron microscopy and a vibrating sample magnetometer. The results demonstrated that the as-prepared device can be utilized as a simple and effective tool to synthesize magnetic nanoparticles with the sizes less than 10 nm and magnetization more than 50 emu/g. The development of these devices opens new strategies to synthesize nanomaterials with more precise dimensions at narrow size-distribution and with controllable behaviors.
Large scale ZnTe nanostructures on polymer micro patterns via capillary force photolithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florence, S. Sasi, E-mail: sshanmugaraj@jazanu.edu.sa; Can, N.; Adam, H.
2016-06-10
A novel approach to prepare micro patterns ZnTe nanostructures on Si (100) substrate using thermal evaporation is proposed by capillary Force Lithography (CFL) technique on a self-assembled sacrificial Polystyrene mask. Polystyrene thin films on Si substrates are used to fabricate surface micro-relief patterns. ZnTe nanoparticles have been deposited by thermal evaporation method. The deposited ZnTe nanoparticles properties were assessed by Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM). SEM studies indicated that the particles are uniform in size and shape, well dispersed and spherical in shape. This study reports the micro-arrays of ZnTe nanoparticles on a self-assembled sacrificial PS maskmore » using a capillary flow photolithography process which showed excellent, morphological properties which can be used in photovoltaic devices for anti-reflection applications.« less
Method for the fabrication of three-dimensional microstructures by deep X-ray lithography
Sweatt, William C.; Christenson, Todd R.
2005-04-05
A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.
Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E
2013-08-02
We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.
ArF halftone PSM cleaning process optimization for next-generation lithography
NASA Astrophysics Data System (ADS)
Son, Yong-Seok; Jeong, Seong-Ho; Kim, Jeong-Bae; Kim, Hong-Seok
2000-07-01
ArF lithography which is expected for the next generation optical lithography is adapted for 0.13 micrometers design-rule and beyond. ArF half-tone phase shift mask (HT PSM) will be applied as 1st generation of ArF lithography. Also ArF PSM cleaning demands by means of tighter controls related to phase angle, transmittance and contamination on the masks. Phase angle on ArF HT PSM should be controlled within at least +/- 3 degree and transmittance controlled within at least +/- 3 percent after cleaning process and pelliclization. In the cleaning process of HT PSM, requires not only the remove the particle on mask, but also control to half-tone material for metamorphosis. Contamination defects on the Qz of half tone type PSM is not easy to remove on the photomask surface. New technology and methods of cleaning will be developed in near future, but we try to get out for limit contamination on the mask, without variation of phase angle and transmittance after cleaning process.
Highly Stable Nanolattice Structures using Nonlinear Laser Lithography
NASA Astrophysics Data System (ADS)
Yavuz, Ozgun; Tokel, Onur; Ergecen, Emre; Pavlov, Ihor; Makey, Ghaith; Ilday, Fatih Omer
Periodic nanopatterning is crucial for multiple technologies, including photovoltaics and display technologies. Conventional optical lithography techniques require complex masks, while e-beam and ion-beam lithography require expensive equipment. With the Nonlinear Laser Lithography (NLL) technique, we had recently shown that various surfaces can be covered with extremely periodic nanopatterns with ultrafast lasers through a single-step, maskless and inexpensive method. Here, we expand NLL nanopatterns to flexible materials, and also present a fully predictive model for the formation of NLL nanostructures as confirmed with experiments. In NLL, a nonlocal positive feedback mechanism (dipole scattering) competes with a rate limiting negative feedback mechanism. Here, we show that judicious use of the laser polarisation can constrain the lattice symmetry, while the nonlinearities regulate periodicity. We experimentally demonstrate that in addition to one dimensional periodic stripes, two dimensional lattices can be produced on surfaces. In particular, hexagonal and square lattices were produced, which are highly desired for display technologies. Notably, with this approach, we can tile flexible substrates, which can find applications in next generation display technologies.
NASA Astrophysics Data System (ADS)
Helmer, D.; Voigt, A.; Wagner, S.; Keller, N.; Sachsenheimer, K.; Kotz, F.; Nargang, T. M.; Rapp, B. E.
2018-02-01
Polydimethylsiloxane (PDMS) is one of the most widely used polymers for the generation of microfluidic chips. The standard procedures of soft lithography require the formation of a new master structure for every design which is timeconsuming and expensive. All channel generated by soft lithography need to be consecutively sealed by bonding which is a process that can proof to be hard to control. Channel cross-sections are largely restricted to squares or flat-topped designs and the generation of truly three-dimensional designs is not straightforward. Here we present Suspended Liquid Subtractive Lithography (SLSL) a method for generating microfluidic channels of nearly arbitrary three-dimensional structures in PDMS that do not require master formation or bonding and give circular channel cross sections which are especially interesting for mimicking in vivo environments. In SLSL, an immiscible liquid is introduced into the uncured PDMS by a capillary mounted on a 3D printer head. The liquid forms continuous "threads" inside the matrix thus creating void suspended channel structures.
Optimal design of wide-view-angle waveplate used for polarimetric diagnosis of lithography system
NASA Astrophysics Data System (ADS)
Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Chen, Xiuguo; Liu, Shiyuan
2016-03-01
The diagnosis and control of the polarization aberrations is one of the main concerns in a hyper numerical aperture (NA) lithography system. Waveplates are basic and indispensable optical components in the polarimetric diagnosis tools for the immersion lithography system. The retardance of a birefringent waveplate is highly sensitive to the incident angle of the light, which makes the conventional waveplate not suitable to be applied in the polarimetric diagnosis for the immersion lithography system with a hyper NA. In this paper, we propose a method for the optimal design of a wideview- angle waveplate by combining two positive waveplates made from magnesium fluoride (MgF2) and two negative waveplates made from sapphire using the simulated annealing algorithm. Theoretical derivations and numerical simulations are performed and the results demonstrate that the maximum variation in the retardance of the optimally designed wide-view-angle waveplate is less than +/- 0.35° for a wide-view-angle range of +/- 20°.
A two-in-one process for reliable graphene transistors processed with photo-lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlberg, P.; Hinnemo, M.; Song, M.
2015-11-16
Research on graphene field-effect transistors (GFETs) has mainly relied on devices fabricated using electron-beam lithography for pattern generation, a method that has known problems with polymer contaminants. GFETs fabricated via photo-lithography suffer even worse from other chemical contaminations, which may lead to strong unintentional doping of the graphene. In this letter, we report on a scalable fabrication process for reliable GFETs based on ordinary photo-lithography by eliminating the aforementioned issues. The key to making this GFET processing compatible with silicon technology lies in a two-in-one process where a gate dielectric is deposited by means of atomic layer deposition. During thismore » deposition step, contaminants, likely unintentionally introduced during the graphene transfer and patterning, are effectively removed. The resulting GFETs exhibit current-voltage characteristics representative to that of intrinsic non-doped graphene. Fundamental aspects pertaining to the surface engineering employed in this work are investigated in the light of chemical analysis in combination with electrical characterization.« less
NASA Astrophysics Data System (ADS)
Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon
2013-07-01
The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.
Lölsberg, Jonas; Linkhorst, John; Cinar, Arne; Jans, Alexander; Kuehne, Alexander J C; Wessling, Matthias
2018-05-01
Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a three-dimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond.
Hylemetry versus Biometry: a new method to certificate the lithography authenticity
NASA Astrophysics Data System (ADS)
Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo; Simonetti, Carla
2011-06-01
When we buy an artwork object a certificate of authenticity contain specific details about the artwork. Unfortunately, these certificates are often exchanged between similar artworks: the same document is supplied by the seller to certificate the originality. In this way the buyer will have a copy of an original certificate to attest that the "not original artwork" is an original one. A solution for this problem would be to insert a system that links together the certificate and a specific artwork. To do this it is necessary, for a single artwork, to find unique, unrepeatable, and unchangeable characteristics. In this paper we propose a new lithography certification based on the color spots distribution, which compose the lithography itself. Due to the high resolution acquisition media available today, it is possible using analysis method typical of speckle metrology. In particular, in verification phase it is only necessary acquiring the same portion of lithography, extracting the verification information, using the private key to obtain the same information from the certificate and confronting the two information using a comparison threshold. Due to the possible rotation and translation it is applied image correlation solutions, used in speckle metrology, to determine translation and rotation error and correct allow to verifying extracted and acquired images in the best situation, for granting correct originality verification.
The research progress of metrological 248nm deep ultraviolent microscope inspection device
NASA Astrophysics Data System (ADS)
Wang, Zhi-xin; Li, Qi; Gao, Si-tian; Shi, Yu-shu; Li, Wei; Li, Shi
2016-01-01
In lithography process, the precision of wafer pattern to a large extent depends on the geometric dimensioning and tolerance of photomasks when accuracy of lithography aligner is certain. Since the minimum linewidth (Critical Dimension) of the aligner exposing shrinks to a few tens of nanometers in size, one-tenth of tolerance errors in fabrication may lead to microchip function failure, so it is very important to calibrate these errors of photomasks. Among different error measurement instruments, deep ultraviolent (DUV) microscope because of its high resolution, as well as its advantages compared to scanning probe microscope restrained by measuring range and scanning electron microscope restrained by vacuum environment, makes itself the most suitable apparatus. But currently there is very few DUV microscope adopting 248nm optical system, means it can attain 80nm resolution; furthermore, there is almost no DUV microscope possessing traceable calibration capability. For these reason, the National Institute of Metrology, China is developing a metrological 248nm DUV microscope mainly consists of DUV microscopic components, PZT and air supporting stages as well as interferometer calibration framework. In DUV microscopic component, the Köhler high aperture transmit condenser, DUV splitting optical elements and PMT pinhole scanning elements are built. In PZT and air supporting stages, a novel PZT actuating flexural hinge stage nested separate X, Y direction kinematics and a friction wheel driving long range air supporting stage are researched. In interferometer framework, a heterodyne multi-pass interferometer measures XY axis translation and Z axis rotation through Zerodur mirror mounted on stage. It is expected the apparatus has the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.
Lithography alternatives meet design style reality: How do they "line" up?
NASA Astrophysics Data System (ADS)
Smayling, Michael C.
2016-03-01
Optical lithography resolution scaling has stalled, giving innovative alternatives a window of opportunity. One important factor that impacts these lithographic approaches is the transition in design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D fabrication 50 years ago created an opportunity for a new breed of electronics companies, the transition today presents exciting and challenging time for lithographers. Today, we are looking at a range of non-optical lithography processes. Those considered here can be broadly categorized: self-aligned lithography, self-assembled lithography, deposition lithography, nano-imprint lithography, pixelated e-beam lithography, shot-based e-beam lithography .Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely adopted process for CMOS nodes at 22nm and below. Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D layout, the placement of "cut" in the lines and "holes" for interlayer connections can be tuned for a given process capability. Examples of such optimization have been presented at this conference, typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL (Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-based e-beam lithography for cuts and holes. Does one (shrinking) size fit all? No, that's why we have many alternatives. For example NIL (Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D NAND Flash to set the channel length of select and memory transistors.
Phase-conjugate holographic lithography based on micromirror array recording.
Lim, Yongjun; Hahn, Joonku; Lee, Byoungho
2011-12-01
We present phase-conjugate holographic lithography with a hologram recorded by a digital micromirror device (DMD) and a telecentric lens. In our lithography system, a phase-conjugate hologram is applied instead of conventional masks or reticles to form patterns. This method has the advantage of increasing focus range, and it is applicable to the formation of patterns on fairly uneven surfaces. The hologram pattern is dynamically generated by the DMD, and its resolution is mainly determined by the demagnification of the telecentric lens. We experimentally demonstrate that our holographic lithographic system has a large focus range, and it is feasible to make a large-area hologram by stitching each pattern generated by the DMD without a falling off in resolution. © 2011 Optical Society of America
Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography.
Gonidec, Mathieu; Hamedi, Mahiar M; Nemiroski, Alex; Rubio, Luis M; Torres, Cesar; Whitesides, George M
2016-07-13
This paper describes a strategy that uses template-directed self-assembly of micrometer-scale microspheres to fabricate arrays of microlenses for projection photolithography of periodic, quasiperiodic, and aperiodic infrared metasurfaces. This method of "template-encoded microlens projection lithography" (TEMPL) enables rapid prototyping of planar, multiscale patterns of similarly shaped structures with critical dimensions down to ∼400 nm. Each of these structures is defined by local projection lithography with a single microsphere acting as a lens. This paper explores the use of TEMPL for the fabrication of a broad range of two-dimensional lattices with varying types of nonperiodic spatial distribution. The matching optical spectra of the fabricated and simulated metasurfaces confirm that TEMPL can produce structures that conform to expected optical behavior.
Anisimova, Margarita; Samardak, Aleksei; Ognev, Alexey
2015-01-01
Summary The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5–30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices. PMID:25977869
Clean focus, dose and CD metrology for CD uniformity improvement
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck
2018-03-01
Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.
Al nanogrid electrode for ultraviolet detectors.
Ding, G; Deng, J; Zhou, L; Gan, Q; Hwang, J C M; Dierolf, V; Bartoli, F J; Mazuir, C; Schoenfeld, W V
2011-09-15
Optical properties of Al nanogrids of different pitches and gaps were investigated both theoretically and experimentally. Three-dimensional finite-difference time-domain simulation predicted that surface plasmons at the air/Al interface would enhance ultraviolet transmission through the subwavelength gaps of the nanogrid, making it an effective electrode on GaN-based photodetectors to compensate for the lack of transparent electrode and high p-type doping. The predicted transmission enhancement was verified by confocal scanning optical microscopy performed at 365 nm. The quality of the nanogrids fabricated by electron-beam lithography was verified by near-field scanning optical microscopy and scanning electron microscopy. Based on the results, the pitch and gap of the nanogrids can be optimized for the best trade-off between electrical conductivity and optical transmission at different wavelengths. Based on different cutoff wavelengths, the nanogrids can also double as a filter to render photodetectors solar-blind.
Drawing lithography for microneedles: a review of fundamentals and biomedical applications.
Lee, Kwang; Jung, Hyungil
2012-10-01
A microneedle is a three-dimensional (3D) micromechanical structure and has been in the spotlight recently as a drug delivery system (DDS). Because a microneedle delivers the target drug after penetrating the skin barrier, the therapeutic effects of microneedles proceed from its 3D structural geometry. Various types of microneedles have been fabricated using subtractive micromanufacturing methods which are based on the inherently planar two-dimensional (2D) geometries. However, traditional subtractive processes are limited for flexible structural microneedles and makes functional biomedical applications for efficient drug delivery difficult. The authors of the present study propose drawing lithography as a unique additive process for the fabrication of a microneedle directly from 2D planar substrates, thus overcoming a subtractive process shortcoming. The present article provides the first overview of the principal drawing lithography technology: fundamentals and biomedical applications. The continuous drawing technique for an ultrahigh-aspect ratio (UHAR) hollow microneedle, stepwise controlled drawing technique for a dissolving microneedle, and drawing technique with antidromic isolation for a hybrid electro-microneedle (HEM) are reviewed, and efficient biomedical applications by drawing lithography-mediated microneedles as an innovative drug and gene delivery system are described. Drawing lithography herein can provide a great breakthrough in the development of materials science and biotechnology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fabrication of tunable plasmonic 3D nanostructures for SERS applications
NASA Astrophysics Data System (ADS)
Ozbay, Ayse; Yuksel, Handan; Solmaz, Ramazan; Kahraman, Mehmet
2016-03-01
Surface-enhanced Raman scattering (SERS) is a powerful technique used for characterization of biological and nonbiological molecules and structures. Since plasmonic properties of the nanomaterials is one of the most important factor influencing SERS activity, tunable plasmonic properties (wavelength of the surface plasmons and magnitude of the electromagnetic field generated on the surface) of SERS substrates are crucial in SERS studies. SERS enhancement can be maximized by controlling of plasmonic properties of the nanomaterials. In this study, a novel approach to fabricate tunable plasmonic 3D nanostructures based on combination of soft lithography and nanosphere lithography is studied. Spherical latex particles having different diameters are uniformly deposited on glass slides with convective assembly method. The experimental parameters for the convective assembly are optimized by changing of latex spheres concentration, stage velocity and latex particles volume placed between to two glass slides that staying with a certain angle to each other. Afterwards, polydimethylsiloxane (PDMS) elastomer is poured on the deposited latex particles and cured to obtain nanovoids on the PDMS surfaces. The diameter and depth of the nanovoids on the PDMS surface are controlled by the size of the latex particles. Finally, fabricated nanovoid template on the PDMS surfaces are filled with the silver coating to obtain plasmonic 3D nanostructures. Characterization of the fabricated surfaces is performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SERS performance of fabricated 3D plasmonic nanostructures will be evaluated using Raman reporter molecules.
Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography.
Scharnweber, Tim; Truckenmüller, Roman; Schneider, Andrea M; Welle, Alexander; Reinhardt, Martina; Giselbrecht, Stefan
2011-04-07
Microstructuring of polydimethylsiloxane (PDMS) is a key step for many lab-on-a-chip (LOC) applications. In general, the structure is generated by casting the liquid prepolymer against a master. The production of the master in turn calls for special equipment and know how. Furthermore, a given master only allows the reproduction of the defined structure. We report on a simple, cheap and practical method to produce microstructures in already cured PDMS by direct UV-lithography followed by chemical development. Due to the available options during the lithographic process like multiple exposures, the method offers a high design flexibility granting easy access to complex and stepped structures. Furthermore, no master is needed and the use of pre-cured PDMS allows processing at ambient (light) conditions. Features down to approximately 5 µm and a depth of 10 µm can be realised. As a proof of principle, we demonstrate the feasibility of the process by applying the structures to various established soft lithography techniques.
Dawood, M K; Liew, T H; Lianto, P; Hong, M H; Tripathy, S; Thong, J T L; Choi, W K
2010-05-21
We report a simple and cost effective method for the synthesis of large-area, precisely located silicon nanocones from nanowires. The nanowires were obtained from our interference lithography and catalytic etching (IL-CE) method. We found that porous silicon was formed near the Au catalyst during the fabrication of the nanowires. The porous silicon exhibited enhanced oxidation ability when exposed to atmospheric conditions or in wet oxidation ambient. Very well located nanocones with uniform sharpness resulted when these oxidized nanowires were etched in 10% HF. Nanocones of different heights were obtained by varying the doping concentration of the silicon wafers. We believe this is a novel method of producing large-area, low cost, well defined nanocones from nanowires both in terms of the control of location and shape of the nanocones. A wide range of potential applications of the nanocone array can be found as a master copy for nanoimprinted polymer substrates for possible biomedical research; as a candidate for making sharp probes for scanning probe nanolithography; or as a building block for field emitting tips or photodetectors in electronic/optoelectronic applications.
NASA Astrophysics Data System (ADS)
Buitrago, Elizabeth; Fallica, Roberto; Fan, Daniel; Karim, Waiz; Vockenhuber, Michaela; van Bokhoven, Jeroen A.; Ekinci, Yasin
2016-09-01
Extreme ultraviolet interference lithography (EUV-IL, λ = 13.5 nm) has been shown to be a powerful technique not only for academic, but also for industrial research and development of EUV materials due to its relative simplicity yet record high-resolution patterning capabilities. With EUV-IL, it is possible to pattern high-resolution periodic images to create highly ordered nanostructures that are difficult or time consuming to pattern by electron beam lithography (EBL) yet interesting for a wide range of applications such as catalysis, electronic and photonic devices, and fundamental materials analysis, among others. Here, we will show state-of the-art research performed using the EUV-IL tool at the Swiss Light Source (SLS) synchrotron facility in the Paul Scherrer Institute (PSI). For example, using a grating period doubling method, a diffraction mask capable of patterning a world record in photolithography of 6 nm half-pitch (HP), was produced. In addition to the description of the method, we will give a few examples of applications of the technique. Well-ordered arrays of suspended silicon nanowires down to 6.5 nm linewidths have been fabricated and are to be studied as field effect transistors (FETs) or biosensors, for instance. EUV achromatic Talbot lithography (ATL), another interference scheme that utilizes a single grating, was shown to yield well-defined nanoparticles over large-areas with high uniformity presenting great opportunities in the field of nanocatalysis. EUV-IL is in addition, playing a key role in the future introduction of EUV lithography into high volume manufacturing (HVM) of semiconductor devices for the 7 and 5 nm logic node (16 nm and 13 nm HP, respectively) and beyond while the availability of commercial EUV-tools is still very much limited for research.
ILT optimization of EUV masks for sub-7nm lithography
NASA Astrophysics Data System (ADS)
Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin
2017-06-01
The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.
Protein assay structured on paper by using lithography
NASA Astrophysics Data System (ADS)
Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.
2015-03-01
There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.
Extension of optical lithography by mask-litho integration with computational lithography
NASA Astrophysics Data System (ADS)
Takigawa, T.; Gronlund, K.; Wiley, J.
2010-05-01
Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.
Non-contact XUV metrology of Ru/B4C multilayer optics by means of Hartmann wavefront analysis.
Ruiz-Lopez, Mabel; Dacasa, Hugo; Mahieu, Benoit; Lozano, Magali; Li, Lu; Zeitoun, Philippe; Bleiner, Davide
2018-02-20
Short-wavelength imaging, spectroscopy, and lithography scale down the characteristic length-scale to nanometers. This poses tight constraints on the optics finishing tolerances, which is often difficult to characterize. Indeed, even a tiny surface defect degrades the reflectivity and spatial projection of such optics. In this study, we demonstrate experimentally that a Hartmann wavefront sensor for extreme ultraviolet (XUV) wavelengths is an effective non-contact analytical method for inspecting the surface of multilayer optics. The experiment was carried out in a tabletop laboratory using a high-order harmonic generation as an XUV source. The wavefront sensor was used to measure the wavefront errors after the reflection of the XUV beam on a spherical Ru/B 4 C multilayer mirror, scanning a large surface of approximately 40 mm in diameter. The results showed that the technique detects the aberrations in the nanometer range.
Structural and mechanical characterization of hybrid metallic-inorganic nanosprings
NASA Astrophysics Data System (ADS)
Habtoun, Sabrina; Houmadi, Said; Reig, Benjamin; Pouget, Emilie; Dedovets, Dmytro; Delville, Marie-Hélène; Oda, Reiko; Cristiano, Fuccio; Bergaud, Christian
2017-10-01
Silica nanosprings (NS) are fabricated by a sol-gel deposition of silica precursors onto a template made of self-assembled organic chiral nanostructures. They are deposited and assembled on microstructured silicon substrates, and then metallized and clamped in a single lithography-free step using a focused ion beam (FIB). The resulting suspended hybrid metallic/inorganic NS are then characterized with high-resolution transmission electron microscopy (HRTEM) and scanning TEM/energy-dispersive X-ray spectroscopy (STEM/EDX), showing the atomic structure of the metallic layer. Three-point bending tests are also carried out using an atomic force microscope (AFM) and supported by finite element method (FEM) simulation with COMSOL Multiphysics allowing the characterization of the mechanical behavior and the estimation of the stiffness of the resulting NS. The information obtained on the structural and mechanical properties of the NS is discussed for future nano-electro-mechanical system (NEMS) applications.
Method and apparatus for inspecting reflection masks for defects
Bokor, Jeffrey; Lin, Yun
2003-04-29
An at-wavelength system for extreme ultraviolet lithography mask blank defect detection is provided. When a focused beam of wavelength 13 nm is incident on a defective region of a mask blank, three possible phenomena can occur. The defect will induce an intensity reduction in the specularly reflected beam, scatter incoming photons into an off-specular direction, and change the amplitude and phase of the electric field at the surface which can be monitored through the change in the photoemission current. The magnitude of these changes will depend on the incident beam size, and the nature, extent and size of the defect. Inspection of the mask blank is performed by scanning the mask blank with 13 nm light focused to a spot a few .mu.m in diameter, while measuring the reflected beam intensity (bright field detection), the scattered beam intensity (dark-field detection) and/or the change in the photoemission current.
Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes
NASA Astrophysics Data System (ADS)
Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees
2018-04-01
We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.
Feasibility of Air Levitated Surface Stage for Lithography Tool
NASA Astrophysics Data System (ADS)
Tanaka, Keiichi
The application of light-weight drive technology into the lithography stage has been the current state of art because of minimization of power loss. The purpose of this article is to point out the so-called, "surface stage" which is composed of Lorentz forced 3 DOF (Degree Of Freedom) planar motor (x, y and theta z), air levitation (bearing) system and motor cooling system, is the most balanced concept for the next generation lithography through the verification of each component by manufacturing simple parts and test stand. This paper presents the design method and procedure, and experimental results of the air levitated surface stage which was conducted several years ago, however the author is convinced that the results are enough to adapt various developments of precision machining tool.
Driving imaging and overlay performance to the limits with advanced lithography optimization
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Finders, Jo; van der Laan, Hans; Hinnen, Paul; Kubis, Michael; Beems, Marcel
2012-03-01
Immersion lithography is being extended to 22-nm and even below. Next to generic scanner system improvements, application specific solutions are needed to follow the requirements for CD control and overlay. Starting from the performance budgets, this paper discusses how to improve (in volume manufacturing environment) CDU towards 1-nm and overlay towards 3-nm. The improvements are based on deploying the actuator capabilities of the immersion scanner. The latest generation immersion scanners have extended the correction capabilities for overlay and imaging, offering freeform adjustments of lens, illuminator and wafer grid. In order to determine the needed adjustments the recipe generation per user application is based on a combination wafer metrology data and computational lithography methods. For overlay, focus and CD metrology we use an angle resolved optical scatterometer.
NASA Astrophysics Data System (ADS)
Minaev, N. V.; Tarkhov, M. A.; Dudova, D. S.; Timashev, P. S.; Chichkov, B. N.; Bagratashvili, V. N.
2018-02-01
This paper describes a new approach to the fabrication of superconducting nanowire single-photon detectors from ultrathin NbN films on SiO2 substrates. The technology is based on nonlinear femtosecond optical lithography and includes direct formation of the sensitive element of the detector (the meander) through femtosecond laser exposure of the polymethyl methacrylate resist at a wavelength of 525 nm and subsequent removal of NbN using plasma-chemical etching. The nonlinear femtosecond optical lithography method allows the formation of planar structures with a spatial resolution of ~50 nm. These structures were used to fabricate single-photon superconducting detectors with quantum efficiency no worse than 8% at a wavelength of 1310 nm and dark count rate of 10 s-1 at liquid helium temperature.
Jo, Pil Sung; Vailionis, Arturas; Park, Young Min; Salleo, Alberto
2012-06-26
Strongly textured organic semiconductor micropatterns made of the small molecule dioctylbenzothienobenzothiophene (C(8)-BTBT) are fabricated by using a method based on capillary force lithography (CFL). This technique provides the C(8)-BTBT solution with nucleation sites for directional growth, and can be used as a scalable way to produce high quality crystalline arrays in desired regions of a substrate for OFET applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; Susner, Michael A; McGuire, Michael A; Joy, David; Jesse, Stephen; Rondinone, Adam J; Kalinin, Sergei V; Ovchinnikova, Olga S
2016-03-23
Rapid advances in nanoscience rely on continuous improvements of material manipulation at near-atomic scales. Currently, the workhorse of nanofabrication is resist-based lithography and its various derivatives. However, the use of local electron, ion, and physical probe methods is expanding, driven largely by the need for fabrication without the multistep preparation processes that can result in contamination from resists and solvents. Furthermore, probe-based methods extend beyond nanofabrication to nanomanipulation and to imaging which are all vital for a rapid transition to the prototyping and testing of devices. In this work we study helium ion interactions with the surface of bulk copper indium thiophosphate CuM(III)P2X6 (M = Cr, In; X= S, Se), a novel layered 2D material, with a Helium Ion Microscope (HIM). Using this technique, we are able to control ferrielectric domains and grow conical nanostructures with enhanced conductivity whose material volumes scale with the beam dosage. Compared to the copper indium thiophosphate (CITP) from which they grow, the nanostructures are oxygen rich, sulfur poor, and with virtually unchanged copper concentration as confirmed by energy-dispersive X-ray spectroscopy (EDX). Scanning electron microscopy (SEM) imaging contrast as well as scanning microwave microscopy (SMM) measurements suggest enhanced conductivity in the formed particles, whereas atomic force microscopy (AFM) measurements indicate that the produced structures have lower dissipation and are softer as compared to the CITP.
NASA Astrophysics Data System (ADS)
Standaert, Alexander; Brancato, Luigi; Lips, Bram; Ceyssens, Frederik; Puers, Robert; Reynaert, Patrick
2018-03-01
This paper proposes a novel packaging solution which integrates micro-machined 3D horn antennas with millimeter-wave and THz tranceivers. This packaging solution is shown to be a valid competitor to existing technologies like metallic split-block waveguides and low temperature cofired ceramics. Three different fabrication methods based on two-photon lithography are presented to form the horn antennas. The first uses two-photon lithography to form the bulk of the antenna. This structure is then metalised through physical vapor deposition (PVD) and copper plating. The second fabrication method makes use of a soft polydimethylsiloxane (PDMS) mold to easily replicate structures and the third method forms the horn antenna through electroforming. A prototype is accurately positioned on top of a 400 GHz 28 nm CMOS transmitter and glued in place with epoxy, thus providing a fully packaged solution. Measurement results show a 12 dB increase in the antenna gain when using the packaged solution. The fabrication processes are not limited to horn antennas alone and can be used to form a wide range of mm-sized metal components.
Hotspot detection using image pattern recognition based on higher-order local auto-correlation
NASA Astrophysics Data System (ADS)
Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki
2011-04-01
Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.
Fabrication of 3D polymer photonic crystals for near-IR applications
NASA Astrophysics Data System (ADS)
Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric
2008-02-01
Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem occurred as we reduced the lattice constant for near-IR applications. In this work, we address this problem by employing SU8. The exposure is vertically confined by using a mismatched 220nm DUV source. Intermixing problem is eliminated due to more densely crosslinked resist molecules. Using this method, we have demonstrated 3D "woodpile" structure with 1.55μm lattice constant and a 2mm-by-2mm pattern area.
Low-cost method for producing extreme ultraviolet lithography optics
Folta, James A [Livermore, CA; Montcalm, Claude [Fort Collins, CO; Taylor, John S [Livermore, CA; Spiller, Eberhard A [Mt. Kisco, NY
2003-11-21
Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.
NASA Astrophysics Data System (ADS)
Cummings, K. D.; Frye, R. C.; Rietman, E. A.
1990-10-01
This letter describes the initial results of using a theoretical determination of the proximity function and an adaptively trained neural network to proximity-correct patterns written on a Cambridge electron beam lithography system. The methods described are complete and may be applied to any electron beam exposure system that can modify the dose during exposure. The patterns produced in resist show the effects of proximity correction versus noncorrected patterns.
NASA Astrophysics Data System (ADS)
Salvato, M.; Baghdadi, R.; Cirillo, C.; Prischepa, S. L.; Dolgiy, A. L.; Bondarenko, V. P.; Lombardi, F.; Attanasio, C.
2017-11-01
Superconducting NbN nanonetworks with a very small number of interconnected nanowires, with diameter of the order of 4 nm, are fabricated combining a bottom-up (use of porous silicon nanotemplates) with a top-down technique (high-resolution electron beam lithography). The method is easy to control and allows the fabrication of devices, on a robust support, with electrical properties close to a one-dimensional superconductor that can be used fruitfully for novel applications.
Method for extreme ultraviolet lithography
Felter, T. E.; Kubiak, Glenn D.
1999-01-01
A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.
Method for extreme ultraviolet lithography
Felter, T. E.; Kubiak, G. D.
2000-01-01
A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.
NASA Astrophysics Data System (ADS)
Azrina Talik, Noor; Boon Kar, Yap; Noradhlia Mohamad Tukijan, Siti; Wong, Chuan Ling
2017-10-01
To date, the state of art organic semiconductor distributed feedback (DFB) lasers gains tremendous interest in the organic device industry. This paper presents a short reviews on the fabrication techniques of DFB based laser by focusing on the fabrication method of DFB corrugated structure and the deposition of organic gain on the nano-patterned DFB resonator. The fabrication techniques such as Laser Direct Writing (LDW), ultrafast photo excitation dynamics, Laser Interference Lithography (LIL) and Nanoimprint Lithography (NIL) for DFB patterning are presented. In addition to that, the method for gain medium deposition method is also discussed. The technical procedures of the stated fabrication techniques are summarized together with their benefits and comparisons to the traditional fabrication techniques.
Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate
NASA Astrophysics Data System (ADS)
Mukai, Kohki; Okumura, Isao; Nishizaki, Yuta; Yamashita, Shuzo; Niwa, Keisuke
2018-04-01
We succeeded in controlling the apparent size of a colloidal PbS quantum dot (QD) in the range of 20 to 140 nm by coating with silica and trapping the coated QDs in a nanohole prepared by scanning probe microscope lithography. Photoluminescence intensity was improved by controlling the process of adding the silica source material of tetraethoxysilane for the coating. Nanoholes of different sizes were formed on a single substrate by scanning probe oxidation with the combination of SF6 dry etching and KOH wet etching. QDs having an arbitrary energy structure can be arranged at an arbitrary position on the semiconductor substrate using this technique, which will aid in the fabrication of future nanosize solid devices such as quantum information circuits.
Electron beam throughput from raster to imaging
NASA Astrophysics Data System (ADS)
Zywno, Marek
2016-12-01
Two architectures of electron beam tools are presented: single beam MEBES Exara designed and built by Etec Systems for mask writing, and the Reflected E-Beam Lithography tool (REBL), designed and built by KLA-Tencor under a DARPA Agreement No. HR0011-07-9-0007. Both tools have implemented technologies not used before to achieve their goals. The MEBES X, renamed Exara for marketing purposes, used an air bearing stage running in vacuum to achieve smooth continuous scanning. The REBL used 2 dimensional imaging to distribute charge to a 4k pixel swath to achieve writing times on the order of 1 wafer per hour, scalable to throughput approaching optical projection tools. Three stage architectures were designed for continuous scanning of wafers: linear maglev, rotary maglev, and dual linear maglev.
NASA Astrophysics Data System (ADS)
Ye, Zhou; Nain, Amrinder S.; Behkam, Bahareh
2016-06-01
Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features.Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features. Electronic supplementary information (ESI) available: SWAN lithography on silicon; comparison of SWAN lithography and state-of-the-art nanopatterning methods; replica molding using SWAN lithography fabricated template; PDMS nanofluidic device, gold nanopattern characterization. See DOI: 10.1039/c6nr03323g
Enhanced capture rate for haze defects in production wafer inspection
NASA Astrophysics Data System (ADS)
Auerbach, Ditza; Shulman, Adi; Rozentsvige, Moshe
2010-03-01
Photomask degradation via haze defect formation is an increasing troublesome yield problem in the semiconductor fab. Wafer inspection is often utilized to detect haze defects due to the fact that it can be a bi-product of process control wafer inspection; furthermore, the detection of the haze on the wafer is effectively enhanced due to the multitude of distinct fields being scanned. In this paper, we demonstrate a novel application for enhancing the wafer inspection tool's sensitivity to haze defects even further. In particular, we present results of bright field wafer inspection using the on several photo layers suffering from haze defects. One way in which the enhanced sensitivity can be achieved in inspection tools is by using a double scan of the wafer: one regular scan with the normal recipe and another high sensitivity scan from which only the repeater defects are extracted (the non-repeater defects consist largely of noise which is difficult to filter). Our solution essentially combines the double scan into a single high sensitivity scan whose processing is carried out along two parallel routes (see Fig. 1). Along one route, potential defects follow the standard recipe thresholds to produce a defect map at the nominal sensitivity. Along the alternate route, potential defects are used to extract only field repeater defects which are identified using an optimal repeater algorithm that eliminates "false repeaters". At the end of the scan, the two defect maps are merged into one with optical scan images available for all the merged defects. It is important to note, that there is no throughput hit; in addition, the repeater sensitivity is increased relative to a double scan, due to a novel runtime algorithm implementation whose memory requirements are minimized, thus enabling to search a much larger number of potential defects for repeaters. We evaluated the new application on photo wafers which consisted of both random and haze defects. The evaluation procedure involved scanning with three different recipe types: Standard Inspection: Nominal recipe with a low false alarm rate was used to scan the wafer and repeaters were extracted from the final defect map. Haze Monitoring Application: Recipe sensitivity was enhanced and run on a single field column from which on repeating defects were extracted. Enhanced Repeater Extractor: Defect processing included the two parallel routes: a nominal recipe for the random defects and the new high sensitive repeater extractor algorithm. The results showed that the new application (recipe #3) had the highest capture rate on haze defects and detected new repeater defects not found in the first two recipes. In addition, the recipe was much simpler to setup since repeaters are filtered separately from random defects. We expect that in the future, with the advent of mask-less lithography and EUV lithography, the monitoring of field and die repeating defects on the wafer will become a necessity for process control in the semiconductor fab.
Uçar, Yurdanur; Aysan Meriç, İpek; Ekren, Orhun
2018-02-11
To compare the fracture mechanics, microstructure, and elemental composition of lithography-based ceramic manufacturing with pressing and CAD/CAM. Disc-shaped specimens (16 mm diameter, 1.2 mm thick) were used for mechanical testing (n = 10/group). Biaxial flexural strength of three groups (In-Ceram alumina [ICA], lithography-based alumina, ZirkonZahn) were determined using the "piston on 3-ball" technique as suggested in test Standard ISO-6872. Vickers hardness test was performed. Fracture toughness was calculated using fractography. Results were statistically analyzed using Kruskal-Wallis test followed by Dunnett T3 (α = 0.05). Weibull analysis was conducted. Polished and fracture surface characterization was made using scanning electron microscope (SEM). Energy dispersive spectroscopy (EDS) was used for elemental analysis. Biaxial flexural strength of ICA, LCM alumina (LCMA), and ZirkonZahn were 147 ± 43 MPa, 490 ± 44 MPa, and 709 ± 94 MPa, respectively, and were statistically different (P ≤ 0.05). The Vickers hardness number of ICA was 850 ± 41, whereas hardness values for LCMA and ZirkonZahn were 1581 ± 144 and 1249 ± 57, respectively, and were statistically different (P ≤ 0.05). A statistically significant difference was found between fracture toughness of ICA (2 ± 0.4 MPa⋅m 1/2 ), LCMA (6.5 ± 1.5 MPa⋅m 1/2 ), and ZirkonZahn (7.7 ± 1 MPa⋅m 1/2 ) (P ≤ 0.05). Weibull modulus was highest for LCMA (m = 11.43) followed by ZirkonZahn (m = 8.16) and ICA (m = 5.21). Unlike LCMA and ZirkonZahn groups, a homogeneous microstructure was not observed for ICA. EDS results supported the SEM images. Within the limitations of this in vitro study, it can be concluded that LCM seems to be a promising technique for final ceramic object manufacturing in dental applications. Both the manufacturing method and the material used should be improved. © 2018 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Xie, Wanchuan; Chen, Jiang; Jiang, Lang; Yang, Ping; Sun, Hong; Huang, Nan
2013-10-01
The Cu nanomesh was obtained by a combination of nanosphere lithography (NSL) and high power pulsed magnetron sputtering (HiPPMS). A deposition mask was formed on TiO2 substrates by the self-assembly of polystyrene latex spheres with a diameter of 1 μm, then Cu nanomesh structure was produced on the substrate using sputtering. The structures were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results show the increase of temperature of the polystyrene mask caused by the thermal radiation from the target and the bombardment of sputtering particles would affect the quality of the final nanopattern. The tests of photocatalytic degradation, platelet adhesion and human umbilical artery smooth muscle cells (HUASMCs) culture show Cu deposition could promote the photocatalytic efficiency of TiO2, affect platelet adhesion and inhibit smooth muscle cell adhesion and proliferation. It is highlighted that these findings may serve as a guide for the research of multifunctional surface structure.
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)
1991-01-01
Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.
Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique
NASA Astrophysics Data System (ADS)
Portesi, C.; Borini, S.; Amato, G.; Monticone, E.
2006-03-01
In this work, we present the results obtained in fabrication and characterization of magnesium diboride nanowires realized by an electron beam lithography (EBL)-based method. For fabricating MgB2 thin films, an all in situ technique has been used, based on the coevaporation of B and Mg by means of an e-gun and a resistive heater, respectively. Since the high temperatures required for the fabrication of good quality MgB2 thin films do not allow the nanostructuring approach based on the lift-off technique, we structured the samples combining EBL, optical lithography, and Ar milling. In this way, reproducible nanowires 1 μm long have been obtained. To illustrate the impact of the MgB2 film processing on its superconducting properties, we measured the temperature dependence of the resistance on a nanowire and compared it to the original magnesium diboride film. The electrical properties of the films are not degraded as a consequence of the nanostructuring process, so that superconducting nanodevices may be obtained by this method.
NASA Astrophysics Data System (ADS)
Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen
2014-12-01
Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.
Plasmonic nanostructures through DNA-assisted lithography
Shen, Boxuan; Linko, Veikko; Tapio, Kosti; Pikker, Siim; Lemma, Tibebe; Gopinath, Ashwin; Gothelf, Kurt V.; Kostiainen, Mauri A.; Toppari, J. Jussi
2018-01-01
Programmable self-assembly of nucleic acids enables the fabrication of custom, precise objects with nanoscale dimensions. These structures can be further harnessed as templates to build novel materials such as metallic nanostructures, which are widely used and explored because of their unique optical properties and their potency to serve as components of novel metamaterials. However, approaches to transfer the spatial information of DNA constructions to metal nanostructures remain a challenge. We report a DNA-assisted lithography (DALI) method that combines the structural versatility of DNA origami with conventional lithography techniques to create discrete, well-defined, and entirely metallic nanostructures with designed plasmonic properties. DALI is a parallel, high-throughput fabrication method compatible with transparent substrates, thus providing an additional advantage for optical measurements, and yields structures with a feature size of ~10 nm. We demonstrate its feasibility by producing metal nanostructures with a chiral plasmonic response and bowtie-shaped nanoantennas for surface-enhanced Raman spectroscopy. We envisage that DALI can be generalized to large substrates, which would subsequently enable scale-up production of diverse metallic nanostructures with tailored plasmonic features. PMID:29423446
Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu
2017-01-01
The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to deposit the Au-Ag triangle hexagonal periodic nanoparticle arrays. The SEM images showed that as the single-layer PS nanosphere mask was well controlled, the thermal evaporation could deposit the Au-Ag triangle hexagonal nanoparticle arrays with a higher quality than the other two methods. PMID:28772741
Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu
2017-04-03
The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to deposit the Au-Ag triangle hexagonal periodic nanoparticle arrays. The SEM images showed that as the single-layer PS nanosphere mask was well controlled, the thermal evaporation could deposit the Au-Ag triangle hexagonal nanoparticle arrays with a higher quality than the other two methods.
Nanoimprinted photonic crystal color filters for solar-powered reflective displays.
Cho, Eun-Hyoung; Kim, Hae-Sung; Sohn, Jin-Seung; Moon, Chang-Youl; Park, No-Cheol; Park, Young-Pil
2010-12-20
A novel concept for reflective displays that uses two-dimensional photonic crystals with subwavelength gratings is introduced. A solar-powered reflective display with photonic crystal color filters was analyzed by a theoretical approach. We fabricated the photonic crystal color filters on a glass substrate by using low-cost nanoimprint lithography and multi-scan excimer laser annealing to produce RGB color filters through a single patterning process. The theoretical and experimental results show that the color filters have high reflectance and angular tolerance, which was qualitatively confirmed by chromaticity coordination analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Ximan
The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In ordermore » to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3δ CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator.« less
EDITORIAL: Mastering matter at the nanoscale Mastering matter at the nanoscale
NASA Astrophysics Data System (ADS)
Forchel, Alfred
2009-10-01
In the early 1980s, the development of scanning probe techniques gave scientists a titillating view of surfaces with nanometre resolution, igniting activity in research at the nanoscale. Images at unprecedented resolution were unveiled with the aid of various types of nanosized tips, including the scanning tunnelling (Binnig G, Rohrer H, Gerber C and Weibel E 1982 Appl. Phys. Lett. 40 178-80) the atomic force (Binnig G, Quate C F and Gerber C 1986 Phys. Rev. Lett. 56 930-3) and the near-field scanning microscopes (Dürig U, Pohl D W and Rohner F 1986 J. Appl. Phys. 59 3318-27). From the magnitude of tunnelling currents between conductive surfaces and van der Waals forces between dielectrics to the non-propagating evanescent fields at illuminated surfaces, a range of signal responses were harnessed enabling conductive, dielectric and even biological systems to be imaged. But it may be argued that it was the ability to manipulate matter at the nanoscale that really empowered nanotechnology. From the inception of the scanning probe revolution, these probes used to image nanostructures were also discovered to be remarkable tools for the manipulation of nanoparticles. Insights into the mechanism behind such processes were reported by a team of researchers at UCLA over ten years ago in 1998 (Baur C et al 1998 Nanotechnology 9 360-4). In addition, lithography and etching methods of patterning continue to evolve into ever more sophisticated techniques for exerting design over the structure of matter at the nanoscale. These so-called top-down methods, such as photolithography, electron-beam lithography and nanoimprint lithography, now provide control over features with a resolution of a few nanometres. Bottom-up fabrication techniques that exploit the self-assembly of constituents into desired structures have also stimulated extensive research. These techniques, such as the electrochemically assembled quantum-dot arrays reported by a team of US reasearchers over ten years ago (Bandyopadhyay S et al 1996 Nanotechnology 7 360-71) have long been investigated as a means to avoid the damage caused by exposing systems to high-energy beams or reactive-ion etching. Such self-assembly procedures also enable higher throughput production, thus expediting the path of nanotechnology from the lab to the commercial arena. Control over features at nanometre scales continues to open up research into the effects of nanostructures on a system's properties, such as its optical or electronic response. For example a recent report by a collaboration of researchers in Japan and China demonstrated a method of controlling the self-assembly of gold nanoparticles to yield tunable surface plasmon properties (Yang Y, Matsubara S, Nogami M, Shi J and Huang W 2006 Nanotechnology 17 2821-7). Such work provides insights that allow us to tailor and optimise the properties of systems for particular applications. The optimising of plasmonic responses also features in this 20th volume special issue of Nanotechnology. Researchers in the US report the design of a plasmonic crystal comprised of nanoposts, which has an enhanced sensitivity to the refractive index of the bulk medium and may be particularly valuable in sensing applications (Truong T T et al 2009 Nanotechnology 20 434011). Also in this issue, a team of researchers from Universtät Würzburg report on the site-controlled growth of quantum dots that have emission line widths as narrow as 110 μeV and excellent long-range ordering (Schneider C et al 2009 Nanotechnology 20 434012). The results are promising for applications in spintronics and quantum information processing. Over the past twenty years since the first issue of Nanotechnology, fabrication and patterning at the nanometre scale has developed into a highly sophisticated and increasingly efficient art, unleashing vast potential for the development of a range of applications and facilitating investigations in nanoscience. As the journal enters its third decade, the pace of reports on further progress in technological capabilities invites us to look forward to further emancipation from fabrication constraints, allowing us to probe deeper into the phenomena that govern the nanoworld.
State-of-the-art Nanofabrication in Catalysis.
Karim, Waiz; Tschupp, Simon A; Herranz, Juan; Schmidt, Thomas J; Ekinci, Yasin; van Bokhovenac, Jeroen A
2017-04-26
We present recent developments in top-down nanofabrication that have found application in catalysis research. To unravel the complexity of catalytic systems, the design and use of models with control of size, morphology, shape and inter-particle distances is a necessity. The study of well-defined and ordered nanoparticles on a support contributes to the understanding of complex phenomena that govern reactions in heterogeneous and electro-catalysis. We review the strengths and limitations of different nanolithography methods such as electron beam lithography (EBL), photolithography, extreme ultraviolet (EUV) lithography and colloidal lithography for the creation of such highly tunable catalytic model systems and their applications in catalysis. Innovative strategies have enabled particle sizes reaching dimensions below 10 nm. It is now possible to create pairs of particles with distance controlled with an extremely high precision in the order of one nanometer. We discuss our approach to study these model systems at the single-particle level using X-ray absorption spectroscopy and show new ways to fabricate arrays of single nanoparticles or nanoparticles in pairs over a large area using EBL and EUV-achromatic Talbot lithography. These advancements have provided new insights into the active sites in metal catalysts and enhanced the understanding of the role of inter-particle interactions and catalyst supports, such as in the phenomenon of hydrogen spillover. We present a perspective on future directions for employing top-down nanofabrication in heterogeneous and electrocatalysis. The rapid development in nanofabrication and characterization methods will continue to have an impact on understanding of complex catalytic processes.
NASA Astrophysics Data System (ADS)
Cui, Hongtao; Kalinin, Sergei; Yang, Xiaojing; Lowndes, Douglas
2005-03-01
Carbon nanofibers (CNFs) are grown on tipless cantilevers as probe tips for scanning probe microscopy. A catalyst dot pattern is formed on the surface of the tipless cantilever using electron beam lithography and CNF growth is performed in a direct-current plasma enhanced chemical vapor deposition reactor. Because the CNF is aligned with the electric field near the edge of the cantilever during growth, it is tilted with respect to the cantilever surface, which compensates partially for the probe tilt introduced when used in scanning probe microscopy. CNFs with different shapes and tip radii can be produced by variation of experimental conditions. The tip geometries of the CNF probes are defined by their catalyst particles, whose magnetic nature also imparts a capability for imaging magnetic samples. We have demonstrated their use in both atomic force and magnetic force surface imaging. These probe tips may provide information on magnetic phenomena at the nanometer scale in connection with the drive for ever-increasing storage density of magnetic hard disks.
NASA Astrophysics Data System (ADS)
Boggild, Peter; Hjorth Petersen, Dirch; Sardan Sukas, Ozlem; Dam, Henrik Friis; Lei, Anders; Booth, Timothy; Molhave, Kristian; Eicchorn, Volkmar
2010-03-01
We present a range of highly adaptable microtools for direct interaction with nanoscale structures; (i) semiautomatic pick-and-place assembly of multiwalled carbon nanotubes onto cantilevers for high-aspect ratio scanning probe microscopy, using electrothermal microgrippers inside a SEM. Topology optimisation was used to calculate the optimal gripper shape defined by the boundary conditions, resulting in 10-100 times better performance. By instead pre-defining detachable tips using electron beam lithography, free-form scanning probe tips (Nanobits) can be mounted in virtually any position on a cantilever; (ii) scanning micro four point probes allow fast, non- destructive mapping of local electrical properties (sheet resistance and Hall mobility) and hysteresis effects of graphene sheets; (iii) sub 100 nm freestanding devices with wires, heaters, actuators, sensors, resonators and probes were defined in a 100 nm thin membrane with focused ion beam milling. By patterning generic membrane templates (Nembranes) the fabrication time of a TEM compatible NEMS device is effectively reduced to less around 20 minutes.
Report on the fifth workshop on synchrotron x ray lithography
NASA Astrophysics Data System (ADS)
Williams, G. P.; Godel, J. B.; Brown, G. S.; Liebmann, W.
Semiconductors comprise a greater part of the United States economy than the aircraft, steel, and automobile industries combined. In future the semiconductor manufacturing industry will be forced to switch away from present optical manufacturing methods in the early to mid 1990s. X ray lithography has emerged as the leading contender for continuing production below the 0.4 micron level. Brookhaven National Laboratory began a series of workshops on x ray lithography in 1986 to examine key issues and in particular to enable United States industry to take advantage of the technical base established in this field. Since accelerators provide the brightest sources for x ray lithography, most of the research and development to date has taken place at large accelerator-based research centers such as Brookhaven, the University of Wisconsin, and Stanford. The goals of this Fifth Brookhaven Workshop were to review progress and goals since the last workshop and to establish a blueprint for the future. The meeting focused on the exposure tool, that is, a term defined as the source plus beamline and stepper. In order to assess the appropriateness of schedules for the development of this tool, other aspects of the required technology such as masks, resists and inspection and repair were also reviewed. To accomplish this, two working groups were set up, one to review the overall aspects of x ray lithography and set a time frame, the other to focus on sources.
NASA Astrophysics Data System (ADS)
Lysaght, Patrick S.; Ybarra, Israel; Sax, Harry; Gupta, Gaurav; West, Michael; Doros, Theodore G.; Beach, James V.; Mello, Jim
2000-06-01
The continued growth of the semiconductor manufacturing industry has been due, in large part, to improved lithographic resolution and overlay across increasingly larger chip areas. Optical lithography continues to be the mainstream technology for the industry with extensions of optical lithography being employed to support 180 nm product and process development. While the industry momentum is behind optical extensions to 130 nm, the key challenge will be maintaining an adequate and affordable process latitude (depth of focus/exposure window) necessary for 10% post-etch critical dimension (CD) control. If the full potential of optical lithography is to be exploited, the current lithographic systems can not be compromised by incoming wafer quality. Impurity specifications of novel Low-k dielectric materials, plating solutions, chemical-mechanical planarization (CMP) slurries, and chemical vapor deposition (CVD) precursors are not well understood and more stringent control measures will be required to meet defect density targets as identified in the National Technology Roadmap for Semiconductors (NTRS). This paper identifies several specific poor quality wafer issues that have been effectively addressed as a result of the introduction of a set of flexible and reliable wafer back surface clean processes developed on the SEZ Spin-Processor 203 configured for processing of 200 mm diameter wafers. Patterned wafers have been back surface etched by means of a novel spin process contamination elimination (SpCE) technique with the wafer suspended by a dynamic nitrogen (N2) flow, device side down, via the Bernoulli effect. Figure 1 illustrates the wafer-chuck orientation within the process chamber during back side etch processing. This paper addresses a number of direct and immediate benefits to the MicraScan IIITM deep-ultraviolet (DUV) step-and-scan system at SEMATECH. These enhancements have resulted from the resolution of three significant problems: (1) back surface particle/residual contamination, (2) wafer flatness, and (3) control of contaminant materials such as copper (Cu). Data associated with the SpCE process, optimized for flatness improvement, particle removal, and Cu contamination control is presented in this paper, as it relates to excessive consumption of the usable depth of focus (UDOF) and comprehensive yield enhancement in photolithography. Additionally, data illustrating a highly effective means of eliminating copper from the wafer backside, bevel/edge, and frontside edge exclusion zone (0.5 mm - 3 mm), is presented. The data, obtained within the framework of standard and experimental copper/low-k device production at SEMATECH, quantifies the benefits of implementing the SEZ SpCE clean operation. Furthermore, this data confirms the feasibility of utilizing existing (non-copper) process equipment in conjunction with the development of copper applications by verifying the reliability and cost effectiveness of SpCE functionality.
CA resist with high sensitivity and sub-100-nm resolution for advanced mask making
NASA Astrophysics Data System (ADS)
Huang, Wu-Song; Kwong, Ranee W.; Hartley, John G.; Moreau, Wayne M.; Angelopoulos, Marie; Magg, Christopher; Lawliss, Mark
2000-07-01
Recently, there is significant interest in using CA resist for electron beam (E-beam) applications including mask making, direct write, and projection printing. CA resists provide superior lithographic performance in comparison to traditional non-CA E-beam resist in particular high contrast, resolution, and sensitivity. However, most of the commercially available CA resist have the concern of airborne base contaminants and sensitivity to PAB and/or PEB temperatures. In this presentation, we will discuss a new improved ketal resists system referred to as KRS-XE which exhibits excellent lithography, is robust toward airborne base, compatible with 0.263N TMAH aqueous developer and exhibits excellent lithography, is robust toward airborne base, compatible with 0.263N TMAH aqueous developer and exhibits a large PAB/PEB latitude. With the combination of a high performance mask making E-beam exposure tool, high kV shaped beam system EL4+ and the KRS-XE resist, we have printed 75nm lines/space feature with excellent profile control at a dose of 13(mu) C/cm2 at 75kV. The shaped beam vector scan system used here provides a unique property in resolving small features in lithography and throughput. Overhead in EL4+$ limits the systems ability to fully exploit the sensitivity of the new resist for throughput. The EL5 system has sufficiently low overhead that it is projected to print a 4X, 16G DRAM mask with OPC in under 3 hours with the CA resist. We will discuss the throughput advantages of the next generation EL5 system over the existing EL4+.
Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-10-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.
Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-09-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.
NASA Astrophysics Data System (ADS)
Kim, Garam; Sun, Min-Chul; Kim, Jang Hyun; Park, Euyhwan; Park, Byung-Gook
2017-01-01
In order to improve the internal quantum efficiency of GaN-based LEDs, a LED structure featuring a p-type trench in the multi-quantum well (MQW) is proposed. This structure has effects on spreading holes into the MQW and reducing the quantum-confined stark effect (QCSE). In addition, two simple fabrication methods using electron-beam (e-beam) lithography or selective wet etching for manufacturing the p-type structure are also proposed. From the measurement results of the manufactured GaN-based LEDs, it is confirmed that the proposed structure using e-beam lithography or selective wet etching shows improved light output power compared to the conventional structure because of more uniform hole distribution. It is also confirmed that the proposed structure formed by e-beam lithography has a significant effect on strain relaxation and reduction in the QCSE from the electro-luminescence measurement.
Micro-optical foundry: 3D lithography by freezing liquid instabilities at nanoscale
NASA Astrophysics Data System (ADS)
Grilli, S.; Coppola, S.; Vespini, V.; Merola, F.; Finizio, A.; Ferraro, P.
2012-06-01
The pyroelectric functionality of a Lithium Niobate (LN) substrate is used for non-contact manipulation of polymeric material. In this work we introduced a novel approach for fabricating a wide variety of soft solid-like microstructures, thus leading to a new concept in 3D lithography. A relatively easy to accomplish technique has been demonstrated for curing different transient stages of polymer fluids by rapid cross-linking of PDMS. The method is twofold innovative thanks to the electrode-less configuration and to the rapid formation of a wide variety of 3D solid-like structures by exploiting polymer instabilities. This new and unique technique is named "pyro-electrohydrodynamic (PEHD) lithography", meaning the generation of structures by using forces produced by electric fields generated by the pyroelectric effect. The fabrication of polymer wires, needles, pillars, cones, or microspheres is reported, and practical proofs of their use in photonics are presented.
Photomask quality evaluation using lithography simulation and precision SEM image contour data
NASA Astrophysics Data System (ADS)
Murakawa, Tsutomu; Fukuda, Naoki; Shida, Soichi; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki; Hagiwara, Kazuyuki; Matsushita, Shohei; Hara, Daisuke; Adamov, Anthony
2012-11-01
To evaluate photomask quality, the current method uses spatial imaging by optical inspection tools. This technique at 1Xnm node has a resolution limit because small defects will be difficult to extract. To simulate the mask error-enhancement factor (MEEF) influence for aggressive OPC in 1Xnm node, wide FOV contour data and tone information are derived from high precision SEM images. For this purpose we have developed a new contour data extraction algorithm with sub-nanometer accuracy resulting in a wide Field of View (FOV) SEM image: (for example, more than 10um x 10um square). We evaluated MEEF influence of high-end photomask pattern using the wide FOV contour data of "E3630 MVM-SEMTM" and lithography simulator "TrueMaskTM DS" of D2S, Inc. As a result, we can detect the "invisible defect" as the MEEF influence using the wide FOV contour data and lithography simulator.
NASA Astrophysics Data System (ADS)
Yoon, Jinsik; Kim, Kibeom; Park, Wook
2017-07-01
We present an essential method for generating microparticles uniformly in a single ultraviolet (UV) light exposure area for optofluidic maskless lithography. In the optofluidic maskless lithography process, the productivity of monodisperse microparticles depends on the size of the UV exposure area. An effective fabrication area is determined by the size of the UV intensity profile map, satisfying the required uniformity of UV intensity. To increase the productivity of monodisperse microparticles in optofluidic maskless lithography, we expanded the effective UV exposure area by modulating the intensity of the desired UV light pattern based on the premeasured UV intensity profile map. We verified the improvement of the uniformity of the microparticles generated by the proposed modulation technique, providing histogram analyses of the conjugated fluorescent intensities and the sizes of the microparticles. Additionally, we demonstrated the generation of DNA uniformly encapsulated in microparticles.
Stencil Nano Lithography Based on a Nanoscale Polymer Shadow Mask: Towards Organic Nanoelectronics
Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E. B.; Hyoung Lee, Wi; Wook Lee, Sang
2015-01-01
A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices. PMID:25959389
Stencil nano lithography based on a nanoscale polymer shadow mask: towards organic nanoelectronics.
Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E B; Hyoung Lee, Wi; Wook Lee, Sang
2015-05-11
A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices.
Analysis of e-beam impact on the resist stack in e-beam lithography process
NASA Astrophysics Data System (ADS)
Indykeiwicz, K.; Paszkiewicz, B.
2013-07-01
Paper presents research on the sub-micron gate, AlGaN /GaN HEMT type transistors, fabrication by e-beam lithography and lift-off technique. The impact of the electron beam on the resists layer and the substrate was analyzed by MC method in Casino v3.2 software. The influence of technological process parameters on the metal structures resolution and quality for paths 100 nm, 300 nm and 500 nm wide and 20 μm long was studied. Qualitative simulation correspondences to the conducted experiments were obtained.
Nanostructures Enabled by On-Wire Lithography (OWL)
Braunschweig, Adam B.; Schmucker, Abrin L.; Wei, Wei David; Mirkin, Chad A.
2010-01-01
Nanostructures fabricated by a novel technique, termed On-Wire-Lithography (OWL), can be combined with organic and biological molecules to create systems with emergent and highly functional properties. OWL is a template-based, electrochemical process for forming gapped cylindrical structures on a solid support, with feature sizes (both gap and segment length) that can be controlled on the sub-100 nm length scale. Structures prepared by this method have provided valuable insight into the plasmonic properties of noble metal nanomaterials and have formed the basis for novel molecular electronic, encoding, and biological detection devices. PMID:20396668
Nondestructive imaging of atomically thin nanostructures buried in silicon
Gramse, Georg; Kölker, Alexander; Lim, Tingbin; Stock, Taylor J. Z.; Solanki, Hari; Schofield, Steven R.; Brinciotti, Enrico; Aeppli, Gabriel; Kienberger, Ferry; Curson, Neil J.
2017-01-01
It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers. PMID:28782006
The Introduction and Early Use of Lithography in the United States.
ERIC Educational Resources Information Center
Barnhill, Georgia B.
This paper discusses the use of lithography in the United States in the early 1800s. Highlights include: the development of lithography in Germany between 1796 and 1798; early expectations for lithography; competition against the existing technology for the production of images--relief prints and copper-plate engravings; examples of 18th-century…
Data Compression for Maskless Lithography Systems: Architecture, Algorithms and Implementation
2008-05-19
Data Compression for Maskless Lithography Systems: Architecture, Algorithms and Implementation Vito Dai Electrical Engineering and Computer Sciences...servers or to redistribute to lists, requires prior specific permission. Data Compression for Maskless Lithography Systems: Architecture, Algorithms and...for Maskless Lithography Systems: Architecture, Algorithms and Implementation Copyright 2008 by Vito Dai 1 Abstract Data Compression for Maskless
2.5 dimension structures in deep proton lithography
NASA Astrophysics Data System (ADS)
Kasztelanic, Rafal
2006-04-01
There are several technologies for cheap mass fabrication of microelements. One of them is deep proton lithography, used for the fabrication of elements of high structural depth. In this technology, accelerated protons are usually focused or formed by a mask to light a target. The energy of the proton beam is enough for all the protons to get through the target, losing only a part of their kinesthetic energy. Protons leaving the target are counted in various ways, thanks to which it is possible to estimate the energy deposed inside the target. In the next step chemical development is used to get rid of the radiated part of the target. With the use of this method, various 2D microelements can be obtained and the proton beam plays the role of a knife, cutting out the required shapes from the material. However, in order to make elements of modified surface (2.5D surface) it is necessary to change the energy of the proton beam or to change the dose deposed inside the material. The current article presents a proposal of creating simple 2.5D structures with the use of the method modifying the deposed does. This entails the modification of the deep proton lithography setup, which results moving the part for measuring the deposed dose of energy before the target. Additionally, the new deep proton lithography setup operates in the air. This article presents the results of simulations, as well as experimental results for such a setup built for the tandem accelerator in Erlangen, Germany.
Mapper: high throughput maskless lithography
NASA Astrophysics Data System (ADS)
Kuiper, V.; Kampherbeek, B. J.; Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Boers, J.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.
2009-01-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. A new platform has been designed and built which contains a 300 mm wafer stage, a wafer handler and an electron beam column with 110 parallel electron beams. This manuscript describes the first patterning results with this 300 mm platform.
Immersion lithography defectivity analysis at DUV inspection wavelength
NASA Astrophysics Data System (ADS)
Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.
2007-03-01
Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.
Large area nanoimprint by substrate conformal imprint lithography (SCIL)
NASA Astrophysics Data System (ADS)
Verschuuren, Marc A.; Megens, Mischa; Ni, Yongfeng; van Sprang, Hans; Polman, Albert
2017-06-01
Releasing the potential of advanced material properties by controlled structuring materials on sub-100-nm length scales for applications such as integrated circuits, nano-photonics, (bio-)sensors, lasers, optical security, etc. requires new technology to fabricate nano-patterns on large areas (from cm2 to 200 mm up to display sizes) in a cost-effective manner. Conventional high-end optical lithography such as stepper/scanners is highly capital intensive and not flexible towards substrate types. Nanoimprint has had the potential for over 20 years to bring a cost-effective, flexible method for large area nano-patterning. Over the last 3-4 years, nanoimprint has made great progress towards volume production. The main accelerator has been the switch from rigid- to wafer-scale soft stamps and tool improvements for step and repeat patterning. In this paper, we discuss substrate conformal imprint lithography (SCIL), which combines nanometer resolution, low patterns distortion, and overlay alignment, traditionally reserved for rigid stamps, with the flexibility and robustness of soft stamps. This was made possible by a combination of a new soft stamp material, an inorganic resist, combined with an innovative imprint method. Finally, a volume production solution will be presented, which can pattern up to 60 wafers per hour.
Simulation of Patterned Glass Film Formation in the Evaporating Colloidal Liquid under IR Heating
NASA Astrophysics Data System (ADS)
Kolegov, K. S.
2018-02-01
The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.
Metallic Nanostructures Based on DNA Nanoshapes
Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A.; Toppari, Jari Jussi
2016-01-01
Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects. PMID:28335274
The capability of lithography simulation based on MVM-SEM® system
NASA Astrophysics Data System (ADS)
Yoshikawa, Shingo; Fujii, Nobuaki; Kanno, Koichi; Imai, Hidemichi; Hayano, Katsuya; Miyashita, Hiroyuki; Shida, Soichi; Murakawa, Tsutomu; Kuribara, Masayuki; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hara, Daisuke; Pang, Linyong
2015-10-01
The 1Xnm technology node lithography is using SMO-ILT, NTD or more complex pattern. Therefore in mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask feature. One key Technology of mask manufacture is defect verification to use aerial image simulator or other printability simulation. AIMS™ Technology is excellent correlation for the wafer and standards tool for defect verification however it is difficult for verification over hundred numbers or more. We reported capability of defect verification based on lithography simulation with a SEM system that architecture and software is excellent correlation for simple line and space.[1] In this paper, we use a SEM system for the next generation combined with a lithography simulation tool for SMO-ILT, NTD and other complex pattern lithography. Furthermore we will use three dimension (3D) lithography simulation based on Multi Vision Metrology SEM system. Finally, we will confirm the performance of the 2D and 3D lithography simulation based on SEM system for a photomask verification.
Polarization manipulation in single refractive prism based holography lithography
NASA Astrophysics Data System (ADS)
Xiong, Wenjie; Xu, Yi; Xiao, Yujian; Lv, Xiaoxu; Wu, Lijun
2015-01-01
We propose theoretically and demonstrate experimentally a simple but effective strategy for polarization manipulation in single refractive prism based holographic lithography. By tuning the polarization of a single laser beam, we can obtain the pill shape interference pattern with a high-contrast where a complex optical setup and multiple polarizers are needed in the conventional holography lithography. Fabrication of pill shape two-dimensional polymer photonic crystals using one beam and one shoot holography lithography is shown as an example to support our theoretical results. This integrated polarization manipulation technique can release the crucial stability restrictions imposed on the multiple beams holography lithography.
Surface photonic crystal structures for LED emission modification
NASA Astrophysics Data System (ADS)
Uherek, Frantisek; Škriniarová, Jaroslava; Kuzma, Anton; Šušlik, Łuboš; Lettrichova, Ivana; Wang, Dong; Schaaf, Peter
2017-12-01
Application of photonic crystal structures (PhC) can be attractive for overall and local enhancement of light from patterned areas of the light emitting diode (LED) surface. We used interference and near-field scanning optical microscope lithography for patterning of the surface of GaAs/AlGaAs based LEDs emitted at 840 nm. Also new approach with patterned polydimethylsiloxane (PDMS) membrane applied directly on the surface of red emitting LED was investigated. The overall emission properties of prepared LED with patterned structure show enhanced light extraction efficiency, what was documented from near- and far-field measurements.
Chen, Jem-Kun; Chang, Chi-Jung
2014-01-01
In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, and solvent-responsive composites. Many important new applications for stimuli-responsive polymers lie in the field of nano- and micro-fabrication, where stimuli-responsive polymers are being established as important manipulation tools. Some techniques have been developed to selectively position organic molecules and then to obtain well-defined patterned substrates at the micrometer or submicrometer scale. Methods for patterning of stimuli-responsive hydrogels, including photolithography, electron beam lithography, scanning probe writing, and printing techniques (microcontact printing, ink-jet printing) were surveyed. We also surveyed the applications of nanostructured stimuli-responsive hydrogels, such as biotechnology (biological interfaces and purification of biomacromoles), switchable wettability, sensors (optical sensors, biosensors, chemical sensors), and actuators. PMID:28788489
Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; ...
2015-07-22
The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe 2 monolayer crystals with SiO 2, and the exposed locations are selectively and totally converted to MoS 2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe 2/MoS 2 heterojunctions in predefinedmore » patterns. The junctions and conversion process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.« less
Komanicky, Vladimir; Barbour, Andi; Lackova, Miroslava; ...
2014-07-05
Here, we developed a method for production of arrays of platinum nanocrystals of controlled size and shape using templates from ordered silica bead monolayers. Silica beads with nominal sizes of 150 and 450 nm were self-assembl into monolayers over strontium titanate single crystal substrates. The monolayers were used as shadow masks for platinum metal deposition on the substrate using the three-step evaporation technique. Produced arrays of epitaxial platinum islands were transformed into nanocrystals by annealing in a quartz tube in nitrogen flow. The shape of particles is determined by the substrate crystallography, while the size of the particles and theirmore » spacing are controlled by the size of the silica beads in the mono- layer mask. As a proof of concept, arrays of platinum nanocrystals of cubooctahedral shape were prepared on (100) strontium titanate substrates. We also characterized the nanocrystal arrays by atomic force microscopy, scanning electron microscopy, and synchrotron X-ray diffraction techniques.« less
In situ cell manipulation through enzymatic hydrogel photopatterning
NASA Astrophysics Data System (ADS)
Mosiewicz, Katarzyna A.; Kolb, Laura; van der Vlies, André J.; Martino, Mikaël M.; Lienemann, Philipp S.; Hubbell, Jeffrey A.; Ehrbar, Martin; Lutolf, Matthias P.
2013-11-01
The physicochemical properties of hydrogels can be manipulated in both space and time through the controlled application of a light beam. However, methods for hydrogel photopatterning either fail to maintain the bioactivity of fragile proteins and are thus limited to short peptides, or have been used in hydrogels that often do not support three-dimensional (3D) cell growth. Here, we show that the 3D invasion of primary human mesenchymal stem cells can be spatiotemporally controlled by micropatterning the hydrogel with desired extracellular matrix (ECM) proteins and growth factors. A peptide substrate of activated transglutaminase factor XIII (FXIIIa)—a key ECM crosslinking enzyme—is rendered photosensitive by masking its active site with a photolabile cage group. Covalent incorporation of the caged FXIIIa substrate into poly(ethylene glycol) hydrogels and subsequent laser-scanning lithography affords highly localized biomolecule tethering. This approach for the 3D manipulation of cells within gels should open up avenues for the study and manipulation of cell signalling.
Coupling between diffusion and orientation of pentacene molecules on an organic surface.
Rotter, Paul; Lechner, Barbara A J; Morherr, Antonia; Chisnall, David M; Ward, David J; Jardine, Andrew P; Ellis, John; Allison, William; Eckhardt, Bruno; Witte, Gregor
2016-04-01
The realization of efficient organic electronic devices requires the controlled preparation of molecular thin films and heterostructures. As top-down structuring methods such as lithography cannot be applied to van der Waals bound materials, surface diffusion becomes a structure-determining factor that requires microscopic understanding. Scanning probe techniques provide atomic resolution, but are limited to observations of slow movements, and therefore constrained to low temperatures. In contrast, the helium-3 spin-echo (HeSE) technique achieves spatial and time resolution on the nm and ps scale, respectively, thus enabling measurements at elevated temperatures. Here we use HeSE to unveil the intricate motion of pentacene admolecules diffusing on a chemisorbed monolayer of pentacene on Cu(110) that serves as a stable, well-ordered organic model surface. We find that pentacene moves along rails parallel and perpendicular to the surface molecules. The experimental data are explained by admolecule rotation that enables a switching between diffusion directions, which extends our molecular level understanding of diffusion in complex organic systems.
Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R.; Lee, Jaekwang; Basile, Leonardo; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; Ivanov, Ilia N.; Xiao, Kai; Yoon, Mina; Geohegan, David B.
2015-01-01
The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically patterned arrays of lateral semiconducting heterojunctions within a single two-dimensional crystal. Electron beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser vaporization of sulfur to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are studied by Raman and photoluminescence spectroscopy, atomically resolved scanning transmission electron microscopy and device characterization. This demonstration of lateral heterojunction arrays within a monolayer crystal is an essential step for the integration of two-dimensional semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin devices. PMID:26198727
Chang, Chia-Ching; Sun, Kien Wen; Lee, Shang-Fan; Kan, Lou-Sing
2007-04-01
The paper reports the methods of preparing molecular magnets and patterning of the molecules on a semiconductor surface. A highly magnetically aligned metallothionein containing Mn and Cd (Mn,Cd-MT-2) is first synthesized, and the molecules are then placed into nanopores prepared on silicon (001) surfaces using electron beam lithography and reactive ion-etching techniques. We have observed the self-assemble growth of the MT molecules on the patterned Si surface such that the MT molecules have grown into rod or ring type three-dimensional nanostructures, depending on the patterned nanostructures on the surface. We also provide scanning electron microscopy, atomic force microscopy, and magnetic force microscope studies of the molecular nanostructures. This engineered molecule shows molecular magnetization and is biocompatible with conventional semiconductors. These features make Mn,Cd-MT-2 a good candidate for biological applications and sensing sources of new nanodevices. Using molecular self-assembly and topographical patterning of the semiconductor substrate, we can close the gap between bio-molecules and nanoelectronics built into the semiconductor chip.
Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography
NASA Astrophysics Data System (ADS)
Wu, Yuanzi; Jiang, Ye; Zheng, Xiaoshan; Jia, Shasha; Zhu, Zhi; Ren, Bin; Ma, Hongwei
2018-04-01
We describe a facile and low-cost approach for a flexibly integrated surface-enhanced Raman scattering (SERS) substrate in microfluidic chips. Briefly, a SERS substrate was fabricated by the electrostatic assembling of gold nanoparticles, and shaped into designed patterns by subsequent lift-up soft lithography. The SERS micro-pattern could be further integrated within microfluidic channels conveniently. The resulting microfluidic SERS chip allowed ultrasensitive in situ SERS monitoring from the transparent glass window. With its advantages in simplicity, functionality and cost-effectiveness, this method could be readily expanded into optical microfluidic fabrication for biochemical applications.
Photodetector based on carbon nanotubes
NASA Astrophysics Data System (ADS)
Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.
2015-09-01
Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Min, Guoquan; Song, Zhitang; Zhang, Jing; Liu, Yanbo; Zhang, Jianping
2010-05-01
This paper reports a significant enhancement in the extraction efficiency of nano-patterned GaN light emitting diodes (LED) realized by soft UV nanoimprint lithography. The 2 inch soft stamp was fabricated using a replication stamp of anodic alumina oxide (AAO) membrane. The light output power was enhanced by 10.9% compared to that of the LED sample without a nano-patterned surface. Up to 41% enhancement in photoluminescence intensity was obtained from the nano-patterned GaN LED sample. The method is simple, cheap and suitable for mass production.
Resistless lithography - selective etching of silicon with gallium doping regions
NASA Astrophysics Data System (ADS)
Abdullaev, D.; Milovanov, R.; Zubov, D.
2016-12-01
This paper presents the results for used of resistless lithography with a further reactive-ion etching (RIE) in various chemistry after local (Ga+) implantation of silicon with different doping dose and different size doped regions. We describe the different etching regimes for pattern transfer of FIB implanted Ga masks in silicon. The paper studied the influence of the implantation dose on the silicon surface, the masking effect and the mask resistance to erosion at dry etching. Based on these results we conclude about the possibility of using this method to create micro-and nanoscale silicon structures.
NASA Astrophysics Data System (ADS)
Sankar, M. S. Ravi; Gangineni, R. B.
2018-04-01
This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.
Numerical analyses of planer plasmonic focusing lens
NASA Astrophysics Data System (ADS)
Chou, Yen-Yu; Lee, Yeeu-Chang
2018-03-01
The use of polystyrene (PS) sphere lithography has been widely applied in the fabrication of micron and nano structures, due to their low cost and ease of fabrication in large scale applications. This study evaluated the feasibility of plasmonic lens base on metal thin films with nanohole structures fabricated by using PS sphere lithography through three-dimensional (3D) finite difference time domain (FDTD) method. We calculated the intensity profile of lens with various wavelength of incident light, lens size, cutting positions, diameters of nanohole, and periods of nanohole to investigate the geometric parameters influence on the focusing properties of the plasmonic lens.
Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices
Betancourt, Tania; Brannon-Peppas, Lisa
2006-01-01
Micro- and nanofabrication techniques have revolutionized the pharmaceutical and medical fields as they offer the possibility for highly reproducible mass-fabrication of systems with complex geometries and functionalities, including novel drug delivery systems and bionsensors. The principal micro- and nanofabrication techniques are described, including photolithography, soft lithography, film deposition, etching, bonding, molecular self assembly, electrically induced nanopatterning, rapid prototyping, and electron, X-ray, colloidal monolayer, and focused ion beam lithography. Application of these techniques for the fabrication of drug delivery and biosensing systems including injectable, implantable, transdermal, and mucoadhesive devices is described. PMID:17722281
Invited Article: Progress in coherent lithography using table-top extreme ultraviolet lasers
NASA Astrophysics Data System (ADS)
Li, W.; Urbanski, L.; Marconi, M. C.
2015-12-01
Compact (table top) lasers emitting at wavelengths below 50 nm had expanded the spectrum of applications in the extreme ultraviolet (EUV). Among them, the high-flux, highly coherent laser sources enabled lithographic approaches with distinctive characteristics. In this review, we will describe the implementation of a compact EUV lithography system capable of printing features with sub-50 nm resolution using Talbot imaging. This compact system is capable of producing consistent defect-free samples in a reliable and effective manner. Examples of different patterns and structures fabricated with this method will be presented.
MTO-like reference mask modeling for advanced inverse lithography technology patterns
NASA Astrophysics Data System (ADS)
Park, Jongju; Moon, Jongin; Son, Suein; Chung, Donghoon; Kim, Byung-Gook; Jeon, Chan-Uk; LoPresti, Patrick; Xue, Shan; Wang, Sonny; Broadbent, Bill; Kim, Soonho; Hur, Jiuk; Choo, Min
2017-07-01
Advanced Inverse Lithography Technology (ILT) can result in mask post-OPC databases with very small address units, all-angle figures, and very high vertex counts. This creates mask inspection issues for existing mask inspection database rendering. These issues include: large data volumes, low transfer rate, long data preparation times, slow inspection throughput, and marginal rendering accuracy leading to high false detections. This paper demonstrates the application of a new rendering method including a new OASIS-like mask inspection format, new high-speed rendering algorithms, and related hardware to meet the inspection challenges posed by Advanced ILT masks.
NASA Astrophysics Data System (ADS)
Yun, Sang Geun; Lee, Jin Young; Yang, Young Soo; Shin, Seung Wook; Lee, Sung Jae; Kwon, Hyo Young; Cho, Youn Jin; Choi, Seung Jib; Choi, Sang Jun; Kim, Jong Seob; Chang, Tuwon
2010-04-01
A topcoat material plays a significant role in achieving technology nodes below 45 nm via ArF immersion lithography. Switching the exposure medium between the lens and the photoresist (PR) film from gas (air, n=1) to liquid (H2O, n=1.44) may lead to leaching of the polymer, the photoacid generator (PAG), or the solvent. These substances can contaminate the lens or cause bubbles, which can lead to defects during the patterning. Previously reported topcoat materials mainly use hydrophobic fluoro-compounds and carboxylic acids to provide high dissolution rates (DR) to basic developers as well as high receding contact angles (RCA). Recently, the demand for a new top-coat material has risen since current materials cause water-mark defects and decreases in scan speeds, due to insufficient RCA's. However, RCA and DR are in a trade-off relationship as an increase in RCA generally results in a lower DR. To overcome this, a novel polymer with high-fluorine content was synthesized to produce a topcoat material with improved DR (120 nm/s in 2.38 wt% TMAH) and RCA (>70°). In addition, a strategy to control the pattern profile according to needs of customers was found.
Doppler Effect on Structure Period of Nonlinear Laser Lithography
NASA Astrophysics Data System (ADS)
Yavuz, Ozgun; Kara, Semih; Tokel, Onur; Pavlov, Ihor; Ilday, Fatih Omer
Recently, Nonlinear Laser Lithography (NLL) was developed for large-area, nanopatterning of surfaces. In NLL, nanopatterns emerge through coherent scattering of the laser from the surface, and its interference with the incident beam. The period of the structures is determined by the laser wavelength. It has been shown by Sipe that the period depends on the laser incidence angle (θ) as λ / (1 +/- sinθ). Here, we show that the period not only depends on this angle, but also on the polarisation angle. We update the Sipe equation as λ / (1 +/- sinθsinα) , where ' α' is the angle between scanning direction and polarisation. The physical reason behind this is found through a formal analogy to Doppler effect. In Doppler effect, the measured wavelength of a moving emitter is given as λ / (1 +/- c / vsinθ) , where ' θ'is the angle between observer and the direction of emitter, 'c' is the speed of observer, 'v' is speed of source. In NLL, velocity of source can be written as vsinθ , and the period equation can be shown to take its new form. We believe that this is the first application of Doppler effect in laser-processing of solid materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo
2014-07-07
The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCsmore » is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350 mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.« less
System design considerations for a production-grade, ESR-based x-ray lithography beamline
NASA Astrophysics Data System (ADS)
Kovacs, Stephen; Melore, Dan; Cerrina, Franco; Cole, Richard K.
1991-08-01
As electron storage ring (ESR) based x-ray lithography technology moves closer to becoming an industrial reality, more and more attention has been devoted to studying problem areas related to its application in the production environment. A principle component is the x-ray lithography beamline (XLBL) and its associated design requirements. XLBL, an x-ray radiation transport system, is one of the three major subunits in the ESR-based x-ray lithography system (XLS) and has a pivotal role in defining performance characteristics of the entire XLS. Its major functions are to transport the synchrotron orbital radiation (SOR) to the lithography target area with defined efficiency and to modify SOR into the spectral distribution defined by the lithography process window. These functions must be performed reliably in order to satisfy the required high production rate and ensure 0.25 micron resolution lithography conditions. In this paper the authors attempt to answer some specific questions that arise during the formulation of an XLBL system design. Three principle issues that are essential to formulating a design are (1) Radiation transport efficiency, (2) X-ray optical configurations in the beamline, (3) Beamline system configurations. Some practical solutions to thee problem areas are presented, and the effects of these parameters on lithography production rate are examined.
NASA Astrophysics Data System (ADS)
Steen, S. E.; McNab, S. J.; Sekaric, L.; Babich, I.; Patel, J.; Bucchignano, J.; Rooks, M.; Fried, D. M.; Topol, A. W.; Brancaccio, J. R.; Yu, R.; Hergenrother, J. M.; Doyle, J. P.; Nunes, R.; Viswanathan, R. G.; Purushothaman, S.; Rothwell, M. B.
2005-05-01
Semiconductor process development teams are faced with increasing process and integration complexity while the time between lithographic capability and volume production has remained more or less constant over the last decade. Lithography tools have often gated the volume checkpoint of a new device node on the ITRS roadmap. The processes have to be redeveloped after the tooling capability for the new groundrule is obtained since straight scaling is no longer sufficient. In certain cases the time window that the process development teams have is actually decreasing. In the extreme, some forecasts are showing that by the time the 45nm technology node is scheduled for volume production, the tooling vendors will just begin shipping the tools required for this technology node. To address this time pressure, IBM has implemented a hybrid-lithography strategy that marries the advantages of optical lithography (high throughput) with electron beam direct write lithography (high resolution and alignment capability). This hybrid-lithography scheme allows for the timely development of semiconductor processes for the 32nm node, and beyond. In this paper we will describe how hybrid lithography has enabled early process integration and device learning and how IBM applied e-beam & optical hybrid lithography to create the world's smallest working SRAM cell.
Trends in imprint lithography for biological applications.
Truskett, Van N; Watts, Michael P C
2006-07-01
Imprint lithography is emerging as an alternative nano-patterning technology to traditional photolithography that permits the fabrication of 2D and 3D structures with <100 nm resolution, patterning and modification of functional materials other than photoresist and is low cost, with operational ease for use in developing bio-devices. Techniques for imprint lithography, categorized as either 'molding and embossing' or 'transfer printing', will be discussed in the context of microarrays for genomics, proteomics and tissue engineering. Specifically, fabrication by nanoimprint lithography (NIL), UV-NIL, step and flash imprint lithography (S-FIL), micromolding by elastomeric stamps and micro- and nano-contact printing will be reviewed.
NASA Astrophysics Data System (ADS)
Han, X. M.; Lin, J.; Fu, J.; Xing, R. B.; Yu, M.; Zhou, Y. H.; Pang, M. L.
2004-04-01
X 2-Y 2SiO 5:A (A=Eu 3+, Tb 3+, Ce 3+) phosphor films and their patterning were fabricated by a sol-gel process combined with a soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM) optical microscopy and photoluminescence (PL) were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 900 °C with X 1-Y 2SiO 5, which transformed completely to X 2-Y 2SiO 5 at 1250 °C. Patterned thin films with different band widths (5 μm spaced by 5 μm and 16 μm spaced by 24 μm) were obtained by a soft lithography technique (micromoulding in capillaries, MIMIC). The SEM and AFM study revealed that the nonpatterned phosphor films were uniform and crack free, and the films mainly consisted of closely packed grains with an average size of 350 nm. The doped rare earth ions (A) showed their characteristic emissions in X 2-Y 2SiO 5 phosphor films, i.e., 5D 0- 7F J ( J=0,1,2,3,4) for Eu 3+, 5D 3, 4- 7F J ( J=6,5,4,3) for Tb 3+ and 5d ( 2D)-4f ( 2F 2/5, 2/7) for Ce 3+, respectively. The optimum doping concentrations for Eu 3+, Tb 3+ were determined to be 13 and 8 mol% of Y 3+ in X 2-Y 2SiO 5 films, respectively.
Physical Limitations in Lithography for Microelectronics.
ERIC Educational Resources Information Center
Flavin, P. G.
1981-01-01
Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)
Advantages of isofocal printing in maskmaking with the ALTA 3500
NASA Astrophysics Data System (ADS)
Fuller, Scott E.; Pochkowski, Mike
1999-04-01
The ALTA 3500, an advanced scanned-laser mask lithography tool produced by Etec, was introduced to the marketplace in 1997. The system architecture was described and an initial performance evaluation was presented. This system, based on the ALTA 3000 system, uses a new 33.3X, 0.8 NA final reduction lens to reduce the spot size to 0.27 micrometers FWHM, thereby affording improved resolution and pattern acuity on the mask. An anisotropic chrome etch process was developed and introduced along with a TOK iP3600 resist to take advantage of the improved resolution. In this paper we will more extensively describe the performance of the ALTA 3500 scanned laser system and the performance of these new processes. In addition, an investigation of the benefits of operating in the optimal isofocal print region is examined and compared to printing at the nominal process conditions.
Uniformity of LED light illumination in application to direct imaging lithography
NASA Astrophysics Data System (ADS)
Huang, Ting-Ming; Chang, Shenq-Tsong; Tsay, Ho-Lin; Hsu, Ming-Ying; Chen, Fong-Zhi
2016-09-01
Direct imaging has widely applied in lithography for a long time because of its simplicity and easy-maintenance. Although this method has limitation of lithography resolution, it is still adopted in industries. Uniformity of UV irradiance for a designed area is an important requirement. While mercury lamps were used as the light source in the early stage, LEDs have drawn a lot of attention for consideration from several aspects. Although LED has better and better performance, arrays of LEDs are required to obtain desired irradiance because of limitation of brightness for a single LED. Several effects are considered that affect the uniformity of UV irradiance such as alignment of optics, temperature of each LED, performance of each LED due to production uniformity, and pointing of LED module. Effects of these factors are considered to study the uniformity of LED Light Illumination. Numerical analysis is performed by assuming a serious of control factors to have a better understanding of each factor.
Achieving pattern uniformity in plasmonic lithography by spatial frequency selection
NASA Astrophysics Data System (ADS)
Liang, Gaofeng; Chen, Xi; Zhao, Qing; Guo, L. Jay
2018-01-01
The effects of the surface roughness of thin films and defects on photomasks are investigated in two representative plasmonic lithography systems: thin silver film-based superlens and multilayer-based hyperbolic metamaterial (HMM). Superlens can replicate arbitrary patterns because of its broad evanescent wave passband, which also makes it inherently vulnerable to the roughness of the thin film and imperfections of the mask. On the other hand, the HMM system has spatial frequency filtering characteristics and its pattern formation is based on interference, producing uniform and stable periodic patterns. In this work, we show that the HMM system is more immune to such imperfections due to its function of spatial frequency selection. The analyses are further verified by an interference lithography system incorporating the photoresist layer as an optical waveguide to improve the aspect ratio of the pattern. It is concluded that a system capable of spatial frequency selection is a powerful method to produce deep-subwavelength periodic patterns with high degree of uniformity and fidelity.
Paul, Debjani; Saias, Laure; Pedinotti, Jean-Cedric; Chabert, Max; Magnifico, Sebastien; Pallandre, Antoine; De Lambert, Bertrand; Houdayer, Claude; Brugg, Bernard; Peyrin, Jean-Michel; Viovy, Jean-Louis
2011-01-01
A broad range of microfluidic applications, ranging from cell culture to protein crystallization, requires multilevel devices with different heights and feature sizes (from micrometers to millimeters). While state-of-the-art direct-writing techniques have been developed for creating complex three-dimensional shapes, replication molding from a multilevel template is still the preferred method for fast prototyping of microfluidic devices in the laboratory. Here, we report on a “dry and wet hybrid” technique to fabricate multilevel replication molds by combining SU-8 lithography with a dry film resist (Ordyl). We show that the two lithography protocols are chemically compatible with each other. Finally, we demonstrate the hybrid technique in two different microfluidic applications: (1) a neuron culture device with compartmentalization of different elements of a neuron and (2) a two-phase (gas-liquid) global micromixer for fast mixing of a small amount of a viscous liquid into a larger volume of a less viscous liquid. PMID:21559239
EUV patterning improvement toward high-volume manufacturing
NASA Astrophysics Data System (ADS)
Kuwahara, Yuhei; Matsunaga, Koichi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie
2015-03-01
Extreme ultraviolet lithography (EUVL) technology is a promising candidate for a semiconductor process for 18nm half pitch and beyond. So far, the studies of EUV for manufacturability have been focused on particular aspects. It still requires fine resolution, uniform and smooth patterns, and low defectivity, not only after lithography but also after the etch process. Tokyo Electron Limited and imec are continuously collaborating to improve manufacturing quality of the process of record (POR) on a CLEAN TRACKTM LITHIUS ProTMZ-EUV. This next generation coating/developing system has been upgraded with defectivity reduction enhancements which are applied along with TELTM best known methods. We have evaluated process defectivity post lithography and post etch. Apart from defectivity, FIRMTM rinse material and application compatibility with sub 18nm patterning is improved to prevent line pattern collapse and increase process window on next generation resist materials. This paper reports on the progress of defectivity and patterning performance optimization towards the NXE:3300 POR.
NASA Astrophysics Data System (ADS)
Ke, Xianhua; Jiang, Hao; Lv, Wen; Liu, Shiyuan
2016-03-01
Triple patterning (TP) lithography becomes a feasible technology for manufacturing as the feature size further scale down to sub 14/10 nm. In TP, a layout is decomposed into three masks followed with exposures and etches/freezing processes respectively. Previous works mostly focus on layout decomposition with minimal conflicts and stitches simultaneously. However, since any existence of native conflict will result in layout re-design/modification and reperforming the time-consuming decomposition, the effective method that can be aware of native conflicts (NCs) in layout is desirable. In this paper, a bin-based library matching method is proposed for NCs detection and layout decomposition. First, a layout is divided into bins and the corresponding conflict graph in each bin is constructed. Then, we match the conflict graph in a prebuilt colored library, and as a result the NCs can be located and highlighted quickly.
Method for nanomachining high aspect ratio structures
Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.
2004-11-09
A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.
Merging Bottom-Up with Top-Down: Continuous Lamellar Networks and Block Copolymer Lithography
NASA Astrophysics Data System (ADS)
Campbell, Ian Patrick
Block copolymer lithography is an emerging nanopatterning technology with capabilities that may complement and eventually replace those provided by existing optical lithography techniques. This bottom-up process relies on the parallel self-assembly of macromolecules composed of covalently linked, chemically distinct blocks to generate periodic nanostructures. Among the myriad potential morphologies, lamellar structures formed by diblock copolymers with symmetric volume fractions have attracted the most interest as a patterning tool. When confined to thin films and directed to assemble with interfaces perpendicular to the substrate, two-dimensional domains are formed between the free surface and the substrate, and selective removal of a single block creates a nanostructured polymeric template. The substrate exposed between the polymeric features can subsequently be modified through standard top-down microfabrication processes to generate novel nanostructured materials. Despite tremendous progress in our understanding of block copolymer self-assembly, continuous two-dimensional materials have not yet been fabricated via this robust technique, which may enable nanostructured material combinations that cannot be fabricated through bottom-up methods. This thesis aims to study the effects of block copolymer composition and processing on the lamellar network morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) and utilize this knowledge to fabricate continuous two-dimensional materials through top-down methods. First, block copolymer composition was varied through homopolymer blending to explore the physical phenomena surrounding lamellar network continuity. After establishing a framework for tuning the continuity, the effects of various processing parameters were explored to engineer the network connectivity via defect annihilation processes. Precisely controlling the connectivity and continuity of lamellar networks through defect engineering and optimizing the block copolymer lithography process thus enabled the top-down fabrication of continuous two-dimensional gold networks with nanoscale properties. The lamellar structure of these networks was found to confer unique mechanical properties on the nanowire networks and suggests that materials templated via this method may be excellent candidates for integration into stretchable and flexible devices.
Sidewall patterning—a new wafer-scale method for accurate patterning of vertical silicon structures
NASA Astrophysics Data System (ADS)
Westerik, P. J.; Vijselaar, W. J. C.; Berenschot, J. W.; Tas, N. R.; Huskens, J.; Gardeniers, J. G. E.
2018-01-01
For the definition of wafer scale micro- and nanostructures, in-plane geometry is usually controlled by optical lithography. However, options for precisely patterning structures in the out-of-plane direction are much more limited. In this paper we present a versatile self-aligned technique that allows for reproducible sub-micrometer resolution local modification along vertical silicon sidewalls. Instead of optical lithography, this method makes smart use of inclined ion beam etching to selectively etch the top parts of structures, and controlled retraction of a conformal layer to define a hard mask in the vertical direction. The top, bottom or middle part of a structure could be selectively exposed, and it was shown that these exposed regions can, for example, be selectively covered with a catalyst, doped, or structured further.
Method for maskless lithography
Sweatt, William C.; Stulen, Richard H.
2000-01-01
The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.
Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.
Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc
2015-11-06
Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.
Demonstration of lithography patterns using reflective e-beam direct write
NASA Astrophysics Data System (ADS)
Freed, Regina; Sun, Jeff; Brodie, Alan; Petric, Paul; McCord, Mark; Ronse, Kurt; Haspeslagh, Luc; Vereecke, Bart
2011-04-01
Traditionally, e-beam direct write lithography has been too slow for most lithography applications. E-beam direct write lithography has been used for mask writing rather than wafer processing since the maximum blur requirements limit column beam current - which drives e-beam throughput. To print small features and a fine pitch with an e-beam tool requires a sacrifice in processing time unless one significantly increases the total number of beams on a single writing tool. Because of the uncertainty with regards to the optical lithography roadmap beyond the 22 nm technology node, the semiconductor equipment industry is in the process of designing and testing e-beam lithography tools with the potential for high volume wafer processing. For this work, we report on the development and current status of a new maskless, direct write e-beam lithography tool which has the potential for high volume lithography at and below the 22 nm technology node. A Reflective Electron Beam Lithography (REBL) tool is being developed for high throughput electron beam direct write maskless lithography. The system is targeting critical patterning steps at the 22 nm node and beyond at a capital cost equivalent to conventional lithography. Reflective Electron Beam Lithography incorporates a number of novel technologies to generate and expose lithographic patterns with a throughput and footprint comparable to current 193 nm immersion lithography systems. A patented, reflective electron optic or Digital Pattern Generator (DPG) enables the unique approach. The Digital Pattern Generator is a CMOS ASIC chip with an array of small, independently controllable lens elements (lenslets), which act as an array of electron mirrors. In this way, the REBL system is capable of generating the pattern to be written using massively parallel exposure by ~1 million beams at extremely high data rates (~ 1Tbps). A rotary stage concept using a rotating platen carrying multiple wafers optimizes the writing strategy of the DPG to achieve the capability of high throughput for sparse pattern wafer levels. The lens elements on the DPG are fabricated at IMEC (Leuven, Belgium) under IMEC's CMORE program. The CMOS fabricated DPG contains ~ 1,000,000 lens elements, allowing for 1,000,000 individually controllable beamlets. A single lens element consists of 5 electrodes, each of which can be set at controlled voltage levels to either absorb or reflect the electron beam. A system using a linear movable stage and the DPG integrated into the electron optics module was used to expose patterns on device representative wafers. Results of these exposure tests are discussed.
Design of an electron projection system with slider lenses and multiple beams
NASA Astrophysics Data System (ADS)
Moonen, Daniel; Leunissen, Peter L. H. A.; de Jager, Patrick W.; Kruit, Pieter; Bleeker, Arno J.; Van der Mast, Karel D.
2002-07-01
The commercial applicability of electron beam projection lithography systems may be limited at high resolution because of low throughput. The main limitations to the throughput are: (i) Beam current. The Coulomb interaction between electrons result in an image blue. Therefore less beam current can be allowed at higher resolution, impacting the illuminate time of the wafer. (ii) Exposure field size. Early attempts to improve throughput with 'full chip' electron beam projection systems failed, because the system suffered from large off-axis aberrations of the electron optics, which severely restricted the useful field size. This has impact on the overhead time. A new type of projection optics will be proposed in this paper to overcome both limits. A slider lens is proposed that allows an effective field that is much larger than schemes proposed by SCALPEL and PREVAIL. The full width of the die can be exposed without mechanical scanning by sliding the beam through the slit-like bore of the lens. Locally, at the beam position, a 'round'-lens field is created with a combination of a rectangular magnetic field and quadruples that are positioned inside the lens. A die can now be exposed during a single mechanical scan as in state-of-the-art light optical tools. The total beam current can be improved without impact on the Coulomb interaction blur by combining several beams in a single lithography system if these beams do not interfere with each other. Several optical layouts have been proposed that combined up to 5 beams in a projection system consisting of a doublet of slider lenses. This type of projection optics has a potential throughput of 50 WPH at 45 nm with a resist sensitivity of 6 (mu) C/cm2.
Monolithic microfabricated valves and pumps by multilayer soft lithography.
Unger, M A; Chou, H P; Thorsen, T; Scherer, A; Quake, S R
2000-04-07
Soft lithography is an alternative to silicon-based micromachining that uses replica molding of nontraditional elastomeric materials to fabricate stamps and microfluidic channels. We describe here an extension to the soft lithography paradigm, multilayer soft lithography, with which devices consisting of multiple layers may be fabricated from soft materials. We used this technique to build active microfluidic systems containing on-off valves, switching valves, and pumps entirely out of elastomer. The softness of these materials allows the device areas to be reduced by more than two orders of magnitude compared with silicon-based devices. The other advantages of soft lithography, such as rapid prototyping, ease of fabrication, and biocompatibility, are retained.
Nanoimprint lithography for nanodevice fabrication
NASA Astrophysics Data System (ADS)
Barcelo, Steven; Li, Zhiyong
2016-09-01
Nanoimprint lithography (NIL) is a compelling technique for low cost nanoscale device fabrication. The precise and repeatable replication of nanoscale patterns from a single high resolution patterning step makes the NIL technique much more versatile than other expensive techniques such as e-beam or even helium ion beam lithography. Furthermore, the use of mechanical deformation during the NIL process enables grayscale lithography with only a single patterning step, not achievable with any other conventional lithography techniques. These strengths enable the fabrication of unique nanoscale devices by NIL for a variety of applications including optics, plasmonics and even biotechnology. Recent advances in throughput and yield in NIL processes demonstrate the potential of being adopted for mainstream semiconductor device fabrication as well.
Successful demonstration of a comprehensive lithography defect monitoring strategy
NASA Astrophysics Data System (ADS)
Peterson, Ingrid B.; Breaux, Louis H.; Cross, Andrew; von den Hoff, Michael
2003-07-01
This paper describes the validation of the methodology, the model and the impact of an optimized Lithography Defect Monitoring Strategy at two different semiconductor manufacturing factories. The lithography defect inspection optimization was implemented for the Gate Module at both factories running 0.13-0.15μm technologies on 200mm wafers, one running microprocessor and the other memory devices. As minimum dimensions and process windows decrease in the lithography area, new technologies and technological advances with resists and resist systems are being implemented to meet the demands. Along with these new technological advances in the lithography area comes potentially unforeseen defect issues. The latest lithography processes involve new resists in extremely thin, uniform films, exposing the films under conditions of highly optimized focus and illumination, and finally removing the resist completely and cleanly. The lithography cell is defined as the cluster of process equipment that accomplishes the coating process (surface prep, resist spin, edge-bead removal and soft bake), the alignment and exposure, and the developing process (post-exposure bake, develop, rinse) of the resist. Often the resist spinning process involves multiple materials such as BARC (bottom ARC) and / or TARC (top ARC) materials in addition to the resist itself. The introduction of these new materials with the multiple materials interfaces and the tightness of the process windows leads to an increased variety of defect mechanisms in the lithography area. Defect management in the lithography area has become critical to successful product introduction and yield ramp. The semiconductor process itself contributes the largest number and variety of defects, and a significant portion of the total defects originate within the lithography cell. From a defect management perspective, the lithography cell has some unique characteristics. First, defects in the lithography process module have the widest range of sizes, from full-wafer to suboptical, and with the largest variety of characteristics. Some of these defects fall into the categories of coating problems, focus and exposure defects, developer defects, edge-bead removal problems, contamination and scratches usually defined as lithography macro defects as shown in Figure 1. Others fall into the category of lithography micro defects, Figure 2. They are characterized as having low topography such as stains, developer spots, satellites, are very small such as micro-bridging, partial micro-bridging, micro-bubbles, CD variation and single isolated missing or deformed contacts or vias. Lithography is the only area of the fab besides CMP in which defect excursions can be corrected by reworking the wafers. The opportunity to fix defect problems without scrapping wafers is best served by a defect inspection strategy that captures the full range of all relevant defect types with a proper balance between the costs of monitoring and inspection and the potential cost of yield loss. In the previous paper [1] it was shown that a combination of macro inspection and high numerical aperture (NA) brightfield imaging inspection technology is best suited for the application in the case of the idealized fab modeled. In this paper we will report on the successful efforts in implementing and validating the lithography defect monitoring strategy at two existing 200 mm factories running 0.15 μm and 0.13 μm design rules.
NASA Astrophysics Data System (ADS)
Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro
2016-07-01
The high throughput of character projection (CP) electron-beam (EB) lithography makes it a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as for standard-cell logics and memory arrays. However, non-VLSI applications such as MEMS and MOEMS may not be able to fully utilize the benefits of the CP method due to the wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear because of the EB exposure process often result in intolerable edge roughness, which degrades device performances. In this study, we propose a general EB lithography methodology for such applications utilizing a combination of the CP and variable-shaped beam methods. In the process of layout data conversion with CP character instantiation, several control parameters were optimized to minimize the shot count, improve the edge quality, and enhance the overall device performance. We have demonstrated EB shot reduction and edge-quality improvement with our methodology by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and a high-resolution hydrogen silsesquioxane resist. Atomic force microscope observations were used to analyze the resist edge profiles' quality to determine the influence of the control parameters used in the data conversion process.
Direct-writing lithography using laser diode beam focused with single elliptical microlens
NASA Astrophysics Data System (ADS)
Hasan, Md. Nazmul; Haque, Muttahid-Ull; Trisno, Jonathan; Lee, Yung-Chun
2015-10-01
A lithography method is proposed for arbitrary patterning using an elliptically diverging laser diode beam focused with a single planoconvex elliptical microlens. Simulations are performed to model the propagation properties of the laser beam and to design the elliptical microlens, which has two different profiles in the x- and y-axis directions. The microlens is fabricated using an excimer laser dragging method and is then attached to the laser diode using double-sided optically cleared adhesive (OCA) tape. Notably, the use of OCA tape removes the need for a complicated alignment procedure and thus significantly reduces the assembly cost. The minimum focused spot of the laser diode beam is investigated by performing single-shot exposure tests on a photoresist (PR) layer. Finally, the practical feasibility of this lithography technique to generate an arbitrary pattern is demonstrated by dotted and continuous features through thin chromium layer deposition on PR and a metal lift-off process. The results show that the minimum feature size for the dotted patterns is around 6.23 μm, while the minimum linewidths for continuous patterns is 6.44 μm. In other words, the proposed focusing technique has significant potential for writing any arbitrary high-resolution pattern for applications like printed circuit board fabrication.
MAPPER: high-throughput maskless lithography
NASA Astrophysics Data System (ADS)
Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.; Kampherbeek, B. J.
2009-03-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. The objective of building these tools is to involve semiconductor companies to be able to verify tool performance in their own environment. To enable this, the tools will have a 300 mm wafer stage in addition to a 110-beam optics column. First exposures at 45 nm half pitch resolution have been performed and analyzed. On the same wafer it is observed that all beams print and based on analysis of 11 beams the CD for the different patterns is within 2.2 nm from target and the CD uniformity for the different patterns is better than 2.8 nm.
A novel methodology for litho-to-etch pattern fidelity correction for SADP process
NASA Astrophysics Data System (ADS)
Chen, Shr-Jia; Chang, Yu-Cheng; Lin, Arthur; Chang, Yi-Shiang; Lin, Chia-Chi; Lai, Jun-Cheng
2017-03-01
For 2x nm node semiconductor devices and beyond, more aggressive resolution enhancement techniques (RETs) such as source-mask co-optimization (SMO), litho-etch-litho-etch (LELE) and self-aligned double patterning (SADP) are utilized for the low k1 factor lithography processes. In the SADP process, the pattern fidelity is extremely critical since a slight photoresist (PR) top-loss or profile roughness may impact the later core trim process, due to its sensitivity to environment. During the subsequent sidewall formation and core removal processes, the core trim profile weakness may worsen and induces serious defects that affect the final electrical performance. To predict PR top-loss, a rigorous lithography simulation can provide a reference to modify mask layouts; but it takes a much longer run time and is not capable of full-field mask data preparation. In this paper, we first brought out an algorithm which utilizes multi-intensity levels from conventional aerial image simulation to assess the physical profile through lithography to core trim etching steps. Subsequently, a novel correction method was utilized to improve the post-etch pattern fidelity without the litho. process window suffering. The results not only matched PR top-loss in rigorous lithography simulation, but also agreed with post-etch wafer data. Furthermore, this methodology can also be incorporated with OPC and post-OPC verification to improve core trim profile and final pattern fidelity at an early stage.
Patterning control strategies for minimum edge placement error in logic devices
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim
2017-03-01
In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.
NASA Astrophysics Data System (ADS)
Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong
2012-03-01
Optical proximity correction (OPC) and phase shifting mask (PSM) are the most widely used resolution enhancement techniques (RET) in the semiconductor industry. Recently, a set of OPC and PSM optimization algorithms have been developed to solve for the inverse lithography problem, which are only designed for the nominal imaging parameters without giving sufficient attention to the process variations due to the aberrations, defocus and dose variation. However, the effects of process variations existing in the practical optical lithography systems become more pronounced as the critical dimension (CD) continuously shrinks. On the other hand, the lithography systems with larger NA (NA>0.6) are now extensively used, rendering the scalar imaging models inadequate to describe the vector nature of the electromagnetic field in the current optical lithography systems. In order to tackle the above problems, this paper focuses on developing robust gradient-based OPC and PSM optimization algorithms to the process variations under a vector imaging model. To achieve this goal, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. The steepest descent algorithm is used to optimize the mask iteratively. In order to improve the efficiency of the proposed algorithms, a set of algorithm acceleration techniques (AAT) are exploited during the optimization procedure.
Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography
NASA Astrophysics Data System (ADS)
Madey, Theodore E.; Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Edwards, N. V.
2006-12-01
One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ∼2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapon, Omree; Muallem, Merav; Palatnik, Alex
Interference lithography has proven to be a useful technique for generating periodic sub-diffraction limited nanostructures. Interference lithography can be implemented by exposing a photoresist polymer to laser light using a two-beam arrangement or more simply a one beam configuration based on a Lloyd's Mirror Interferometer. For typical photoresist layers, an anti-reflection coating must be deposited on the substrate to prevent adverse reflections from cancelling the holographic pattern of the interfering beams. For silicon substrates, such coatings are typically multilayered and complex in composition. By thinning the photoresist layer to a thickness well below the quarter wavelength of the exposing beam,more » we demonstrate that interference gratings can be generated without an anti-reflection coating on the substrate. We used ammonium dichromate doped polyvinyl alcohol as the positive photoresist because it provides excellent pinhole free layers down to thicknesses of 40 nm, and can be cross-linked by a low-cost single mode 457 nm laser, and can be etched in water. Gratings with a period of 320 nm and depth of 4 nm were realized, as well as a variety of morphologies depending on the photoresist thickness. This simplified interference lithography technique promises to be useful for generating periodic nanostructures with high fidelity and minimal substrate treatments.« less
Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography
2004-05-07
The basic idea is to use fiducial grids, fabricated using interference lithography (or a derivative thereof) to determine the placement of features...sensed, and corrections are fed back to the beam-control electronics to cancel errors in the beam’s position. The virtue of interference lithography ...Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography Project Period: March 1, 2001 – February 28, 2004 F i n a l R e p o r t Army Research
Accuracy and performance of 3D mask models in optical projection lithography
NASA Astrophysics Data System (ADS)
Agudelo, Viviana; Evanschitzky, Peter; Erdmann, Andreas; Fühner, Tim; Shao, Feng; Limmer, Steffen; Fey, Dietmar
2011-04-01
Different mask models have been compared: rigorous electromagnetic field (EMF) modeling, rigorous EMF modeling with decomposition techniques and the thin mask approach (Kirchhoff approach) to simulate optical diffraction from different mask patterns in projection systems for lithography. In addition, each rigorous model was tested for two different formulations for partially coherent imaging: The Hopkins assumption and rigorous simulation of mask diffraction orders for multiple illumination angles. The aim of this work is to closely approximate results of the rigorous EMF method by the thin mask model enhanced with pupil filtering techniques. The validity of this approach for different feature sizes, shapes and illumination conditions is investigated.
Sequential infiltration synthesis for advanced lithography
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih; Peng, Qing
2015-03-17
A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned using photolithography, electron-beam lithography or a block copolymer self-assembly process.
Phase-shift/transmittance measurements in a micro pattern using MPM193EX
NASA Astrophysics Data System (ADS)
Nozawa, Hiroto; Ishida, Takayuki; Kato, Satoru; Sato, Osamu; Miyazaki, Koji; Takehisa, Kiwamu; Awamura, Naoki; Takizawa, Hideo; Kusunose, Hal
2009-04-01
A new direct Phase-shift/Transmittance measurement tool "MPM193EX" has been developed to respond to the growing demand for higher precision measurements of finer patterns in ArF Lithography. Specifications of MPM193EX are listed below along with corresponding specifications of the conventional tool MPM193. 1) Phase-shift [3 Sigma]: 0.5 deg. (MPM193) => 0.2 deg. (MPM193EX) 2) Transmittance [3 Sigma]: 0.20 % (MPM193) => 0.04 % (MPM193EX) 3) Minimum measurement pattern width: 7.5 μm (MPM193) => 1.0 μm (MPM193EX) Furthermore, new design optics using an ArF Laser and an objective lens with long working distance allows measurements of masks with pellicles. The new method for improving the measurement repeatability is based on elimination of influence from instantaneous fluctuation in interferometer fringes by scanning two adjacent areas simultaneously. Also, MPM193EX is equipped with high-resolution and stable optics. The newly employed auto-focus system in MPM193EX accurately adjusts, by a new image processing method using high-resolution optics, the focus height that is one of the most important factors for measurements in a micro pattern.
Moore's law, lithography, and how optics drive the semiconductor industry
NASA Astrophysics Data System (ADS)
Hutcheson, G. Dan
2018-03-01
When the subject of Moore's Law arises, the important role that lithography plays and how advances in optics have made it all possible is seldom brought up in the world outside of lithography itself. When lithography is mentioned up in the value chain, it's often a critique of how advances are coming too slow and getting far too expensive. Yet advances in lithography are at the core of how Moore's Law is viable. This presentation lays out how technology and the economics of optics in manufacturing interleave to drive the immense value that semiconductors have brought to the world by making it smarter. Continuing these advances will be critical as electronics make the move from smart to cognitive.
Lithography with MeV Energy Ions for Biomedical Applications: Accelerator Considerations
NASA Astrophysics Data System (ADS)
Sangyuenyongpipat, S.; Whitlow, H. J.; Nakagawa, S. T.; Yoshida, E.
2009-03-01
MeV ion beam lithographies are very powerful techniques for 3D direct writing in positive or negtive photoresist materials. Nanometer-scale rough structures, or clear areas with straight vertical sidewalls as thin as a few 10's of nm in a resist of a few nm to 100 μm thickness can be made. These capabilities are particularly useful for lithography in cellular- and sub-cellular level biomedical research and technology applications. It can be used for tailor making special structures such as optical waveguides, biosensors, DNA sorters, spotting plates, systems for DNA, protein and cell separation, special cell-growth substrates and microfluidic lab-on-a-chip devices. Furthermore MeV ion beam lithography can be used for rapid prototyping, and also making master stamps and moulds for mass production by hot embossing and nanoimprint lithography. The accelerator requirements for three different high energy ion beam lithography techniques are overviewed. We consider the special requirements placed on the accelerator and how this is achieved for a commercial proton beam writing tool.
NASA Astrophysics Data System (ADS)
Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro
2016-03-01
Among various electron-beam lithography (EBL) techniques, variable-shaped beam (VSB) and character projection (CP) methods have attracted many EBL users for their high-throughput feature, but they are considered to be more suited to small-featured VLSI fabrication with regularly-arranged layouts like standard-cell logics and memory arrays. On the other hand, non-VLSI applications like photonics, MEMS, MOEMS, and so on, have not been fully utilized the benefit of CP method due to their wide variety of layout patterns. In addition, the stepwise edge shapes by VSB method often causes intolerable edge roughness to degrade device characteristics from its intended performance with smooth edges. We proposed an overall EBL methodology applicable to wade-variety of EBL applications utilizing VSB and CP methods. Its key idea is in our layout data conversion algorithm that decomposes curved or oblique edges of arbitrary layout patterns into CP shots. We expect significant reduction in EB shot count with a CP-bordered exposure data compared to the corresponding VSB-alone conversion result. Several CP conversion parameters are used to optimize EB exposure throughput, edge quality, and resultant device characteristics. We demonstrated out methodology using the leading-edge VSB/CP EBL tool, ADVANTEST F7000S-VD02, with high resolution Hydrogen Silsesquioxane (HSQ) resist. Through our experiments of curved and oblique edge lithography under various data conversion conditions, we learned correspondence of the conversion parameters to the resultant edge roughness and other conditions. They will be utilized as the fundamental data for further enhancement of our EBL strategy for optimized EB exposure.
Tunneling electron induced chemisorption of copper phthalocyanine molecules on the Cu(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, T.; Nogami, J.
2014-02-17
The adsorption of up to one monolayer (ML) of copper phthalocyanine (CuPc) molecules on a room temperature Cu(111) surface has been studied using scanning tunneling microscopy (STM). Below 1 ML the molecules are in a fluid state and are highly mobile on the surface. At 1 ML coverage the molecules coalesce into a highly ordered 2D crystal phase. At sub-ML coverages, chemisorption of individual CuPc molecules can be induced through exposure to tunneling electrons at a tunneling bias voltage exceeding a threshold value. This tunneling electron induced effect has been exploited to perform molecular STM lithography.
Lithography-Free Fabrication of Core-Shell GaAs Nanowire Tunnel Diodes.
Darbandi, A; Kavanagh, K L; Watkins, S P
2015-08-12
GaAs core-shell p-n junction tunnel diodes were demonstrated by combining vapor-liquid-solid growth with gallium oxide deposition by atomic layer deposition for electrical isolation. The characterization of an ensemble of core-shell structures was enabled by the use of a tungsten probe in a scanning electron microscope without the need for lithographic processing. Radial tunneling transport was observed, exhibiting negative differential resistance behavior with peak-to-valley current ratios of up to 3.1. Peak current densities of up to 2.1 kA/cm(2) point the way to applications in core-shell photovoltaics and tunnel field effect transistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, J. E.; Doundoulakis, G.; Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion
2016-06-14
We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO{sub 2} mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well asmore » numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.« less
Wendt, J.R.; Plut, T.A.; Martens, J.S.
1995-05-02
A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.
Lee, Seungwoo; Kang, Hong Suk; Park, Jung-Ki
2012-04-24
This review demonstrates directional photofluidization lithography (DPL), which makes it possible to fabricate a generic and sophisticated micro/nanoarchitecture that would be difficult or impossible to attain with other methods. In particular, DPL differs from many of the existing micro/nanofabrication methods in that the post-treatment (i.e., photofluidization), after the preliminary fabrication process of the original micro/nanostructures, plays a pivotal role in the various micro/nanostructural evolutions including the deterministic reshaping of architectures, the reduction of structural roughness, and the dramatic enhancement of pattern resolution. Also, DPL techniques are directly compatible with a parallel and scalable micro/nanofabrication. Thus, DPL with such extraordinary advantages in micro/nanofabrication could provide compelling opportunities for basic micro/nanoscale science as well as for general technology applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhichao; Wu, Shuang; Liu, Bo, E-mail: lbo@tongji.edu.cn
2015-06-15
Soft-X-ray interference lithography is utilized in combination with atomic layer deposition to prepare photonic crystal structures on the surface of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillator in order to extract the light otherwise trapped in the internal of scintillator due to total internal reflection. An enhancement with wavelength- and emergence angle-integration by 95.1% has been achieved. This method is advantageous to fabricate photonic crystal structures with large-area and high-index-contrast which enable a high-efficient coupling of evanescent field and the photonic crystal structures. Generally, the method demonstrated in this work is also suitable for many other light emitting devices where amore » large-area is required in the practical applications.« less
Photoresist composition for extreme ultraviolet lithography
Felter, T. E.; Kubiak, G. D.
1999-01-01
A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.
NASA Astrophysics Data System (ADS)
Chang, Chih-Yuan; Owen, Gerry; Pease, Roger Fabian W.; Kailath, Thomas
1992-07-01
Dose correction is commonly used to compensate for the proximity effect in electron lithography. The computation of the required dose modulation is usually carried out using 'self-consistent' algorithms that work by solving a large number of simultaneous linear equations. However, there are two major drawbacks: the resulting correction is not exact, and the computation time is excessively long. A computational scheme, as shown in Figure 1, has been devised to eliminate this problem by the deconvolution of the point spread function in the pattern domain. The method is iterative, based on a steepest descent algorithm. The scheme has been successfully tested on a simple pattern with a minimum feature size 0.5 micrometers , exposed on a MEBES tool at 10 KeV in 0.2 micrometers of PMMA resist on a silicon substrate.
Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS
NASA Astrophysics Data System (ADS)
Syms, Richard R. A.; Liu, Dixi; Ahmad, Munir M.
2017-07-01
Sidewall transfer lithography (STL) is demonstrated as a method for parallel fabrication of 2D nanostructured cellular solids in single-crystal silicon. The linear mechanical properties of four lattices (perfect and defected diamond; singly and doubly periodic honeycomb) with low effective Young’s moduli and effective Poisson’s ratio ranging from positive to negative are modelled using analytic theory and the matrix stiffness method with an emphasis on boundary effects. The lattices are fabricated with a minimum feature size of 100 nm and an aspect ratio of 40:1 using single- and double-level STL and deep reactive ion etching of bonded silicon-on-insulator. Nanoelectromechanical systems (NEMS) containing cellular materials are used to demonstrate stretching, bending and brittle fracture. Predicted edge effects are observed, theoretical values of Poisson’s ratio are verified and failure patterns are described.
Method for maskless lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of thesemore » individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.« less
Integrating nanosphere lithography in device fabrication
NASA Astrophysics Data System (ADS)
Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.
2016-03-01
This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.
Consideration of correlativity between litho and etching shape
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka
2012-03-01
We developed an effective method for evaluating the correlation of shape of Litho and Etching pattern. The purpose of this method, makes the relations of the shape after that is the etching pattern an index in wafer same as a pattern shape on wafer made by a lithography process. Therefore, this method measures the characteristic of the shape of the wafer pattern by the lithography process and can predict the hotspot pattern shape by the etching process. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used wafer CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and lithography management, and this has a big impact on the semiconductor market that centers on the semiconductor business. 2-dimensional shape of wafer quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. In this study, we conducted experiments for correlation method of the pattern (Measurement Based Contouring) as two-dimensional litho and etch evaluation technique. That is, observation of the identical position of a litho and etch was considered. It is possible to analyze variability of the edge of the same position with high precision.
An investigation on defect-generation conditions in immersion lithography
NASA Astrophysics Data System (ADS)
Tomita, Tadatoshi; Shimoaoki, Takeshi; Enomoto, Masashi; Kyoda, Hideharu; Kitano, Junichi; Suganaga, Toshifumi
2006-03-01
As a powerful candidate for a lithography technique that can accommodate the scaling-down of semiconductors, 193-nm immersion lithography-which realizes a high numerical aperture (NA) and uses deionized water as the medium between the lens and wafer in the exposure system-has been developing at a rapid pace and has reached the stage of practical application. In regards to defects that are a cause for concern in the case of 193-nm immersion lithography, however, many components are still unclear and many problems remain to be solved. It has been pointed out, for example, that in the case of 193-nm immersion lithography, immersion of the resist film in deionized water during exposure causes infiltration of moisture into the resist film, internal components of the resist dissolve into the deionized water, and residual water generated during exposure affects post-processing. Moreover, to prevent this influence of directly immersing the resist in de-ionized water, application of a protective film is regarded as effective. However, even if such a film is applied, it is still highly likely that the above-mentioned defects will still occur. Accordingly, to reduce these defects, it is essential to identify the typical defects occurring in 193-nm immersion lithography and to understand the condition for generation of defects by using some kinds of protective films and resist materials. Furthermore, from now onwards, with further scaling down of semiconductors, it is important to maintain a clear understanding of the relation between defect-generation conditions and critical dimensions (CD). Aiming to extract typical defects occurring in 193-nm immersion lithography, the authors carried out a comparative study with dry exposure lithography, thereby confirming several typical defects associated with immersion lithography. We then investigated the conditions for generation of defects in the case of some kinds of protective films. In addition to that, by investigating the defect-generation conditions and comparing the classification data between wet and dry exposure, we were able to determine the origin of each particular defect involved in immersion lithography. Furthermore, the comparison of CD for wet and dry processing could indicate the future defectivity levels to be expected with shrinking immersion process critical dimensions.
Integration of plant viruses in electron beam lithography nanostructures.
Alonso, Jose M; Ondarçuhu, Thierry; Bittner, Alexander M
2013-03-15
Tobacco mosaic virus (TMV) is the textbook example of a virus, and also of a self-assembling nanoscale structure. This tubular RNA/protein architecture has also found applications as biotemplate for the synthesis of nanomaterials such as wires, as tubes, or as nanoparticle assemblies. Although TMV is, being a biological structure, quite resilient to environmental conditions (temperature, chemicals), it cannot be processed in electron beam lithography (eBL) fabrication, which is the most important and most versatile method of nanoscale structuring. Here we present adjusted eBL-compatible processes that allow the incorporation of TMV in nanostructures made of positive and negative tone eBL resists. The key steps are covering TMV by polymer resists, which are only heated to 50 °C, and development (selective dissolution) in carefully selected organic solvents. We demonstrate the post-lithography biochemical functionality of TMV by selective immunocoating of the viral particles, and the use of immobilized TMV as direct immunosensor. Our modified eBL process should be applicable to incorporate a wide range of sensitive materials in nanofabrication schemes.
Lossless compression techniques for maskless lithography data
NASA Astrophysics Data System (ADS)
Dai, Vito; Zakhor, Avideh
2002-07-01
Future lithography systems must produce more dense chips with smaller feature sizes, while maintaining the throughput of one wafer per sixty seconds per layer achieved by today's optical lithography systems. To achieve this throughput with a direct-write maskless lithography system, using 25 nm pixels for 50 nm feature sizes, requires data rates of about 10 Tb/s. In a previous paper, we presented an architecture which achieves this data rate contingent on consistent 25 to 1 compression of lithography data, and on implementation of a decoder-writer chip with a real-time decompressor fabricated on the same chip as the massively parallel array of lithography writers. In this paper, we examine the compression efficiency of a spectrum of techniques suitable for lithography data, including two industry standards JBIG and JPEG-LS, a wavelet based technique SPIHT, general file compression techniques ZIP and BZIP2, our own 2D-LZ technique, and a simple list-of-rectangles representation RECT. Layouts rasterized both to black-and-white pixels, and to 32 level gray pixels are considered. Based on compression efficiency, JBIG, ZIP, 2D-LZ, and BZIP2 are found to be strong candidates for application to maskless lithography data, in many cases far exceeding the required compression ratio of 25. To demonstrate the feasibility of implementing the decoder-writer chip, we consider the design of a hardware decoder based on ZIP, the simplest of the four candidate techniques. The basic algorithm behind ZIP compression is Lempel-Ziv 1977 (LZ77), and the design parameters of LZ77 decompression are optimized to minimize circuit usage while maintaining compression efficiency.
Logic gate scanner focus control in high-volume manufacturing using scatterometry
NASA Astrophysics Data System (ADS)
Dare, Richard J.; Swain, Bryan; Laughery, Michael
2004-05-01
Tool matching and optimal process control are critical requirements for success in semiconductor manufacturing. It is imperative that a tool"s operating conditions are understood and controlled in order to create a process that is repeatable and produces devices within specifications. Likewise, it is important where possible to match multiple systems using some methodology, so that regardless of which tool is used the process remains in control. Agere Systems is currently using Timbre Technologies" Optical Digital Profilometry (ODP) scatterometry for controlling Nikon scanner focus at the most critical lithography layer; logic gate. By adjusting focus settings and verifying the resultant changes in resist profile shape using ODP, it becomes possible to actively control scanner focus to achieve a desired resist profile. Since many critical lithography processes are designed to produce slightly re-entrant resist profiles, this type of focus control is not possible via Critical Dimension Scanning Electron Microscopy (CDSEM) where reentrant profiles cannot be accurately determined. Additionally, the high throughput and non-destructive nature of this measurement technique saves both cycle time and wafer costs compared to cross-section SEM. By implementing an ODP daily process check and after any maintenance on a scanner, Agere successfully enabled focus drift control, i.e. making necessary focus or equipment changes in order to maintain a desired resist profile.
NASA Astrophysics Data System (ADS)
Simpson, R. A.; Davis, D. E.
1982-09-01
This paper describes techniques to detect submicron pattern defects on optical photomasks with an enhanced direct-write, electron-beam lithographic tool. EL-3 is a third generation, shaped spot, electron-beam lithography tool developed by IBM to fabricate semiconductor devices and masks. This tool is being upgraded to provide 100% inspection of optical photomasks for submicron pattern defects, which are subsequently repaired. Fixed-size overlapped spots are stepped over the mask patterns while a signal derived from the back-scattered electrons is monitored to detect pattern defects. Inspection does not require pattern recognition because the inspection scan patterns are derived from the original design data. The inspection spot is square and larger than the minimum defect to be detected, to improve throughput. A new registration technique provides the beam-to-pattern overlay required to locate submicron defects. The 'guard banding" of inspection shapes prevents mask and system tolerances from producing false alarms that would occur should the spots be mispositioned such that they only partially covered a shape being inspected. A rescanning technique eliminates noise-related false alarms and significantly improves throughput. Data is accumulated during inspection and processed offline, as required for defect repair. EL-3 will detect 0.5 um pattern defects at throughputs compatible with mask manufacturing.
Liu, Jianpeng; Shao, Jinhai; Zhang, Sichao; Ma, Yaqi; Taksatorn, Nit; Mao, Chengwen; Chen, Yifang; Deng, Biao; Xiao, Tiqiao
2015-11-10
For acquiring high-contrast and high-brightness images in hard-x-ray optics, Fresnel zone plates with high aspect ratios (zone height/zone width) have been constantly pursued. However, knowledge of aspect ratio limits remains limited. This work explores the achievable aspect ratio limit in polymethyl methacrylate (PMMA) by electron-beam lithography (EBL) under 100 keV, and investigates the lithographic factors for this limitation. Both Monte Carlo simulation and EBL on thick PMMA are applied to investigate the profile evolution with exposure doses over 100 nm wide dense zones. A high-resolution scanning electron microscope at low acceleration mode for charging free is applied to characterize the resultant zone profiles. It was discovered for what we believe is the first time that the primary electron-beam spreading in PMMA and the proximity effect due to extra exposure from neighboring areas could be the major causes of limiting the aspect ratio. Using the optimized lithography condition, a 100 nm zone plate with aspect ratio of 15/1 was fabricated and its focusing property was characterized at the Shanghai Synchrotron Radiation Facility. The aspect ratio limit found in this work should be extremely useful for guiding further technical development in nanofabrication of high-quality Fresnel zone plates.
Matsunaga, Masahiro; Higuchi, Ayaka; He, Guanchen; Yamada, Tetsushi; Krüger, Peter; Ochiai, Yuichi; Gong, Yongji; Vajtai, Robert; Ajayan, Pulickel M; Bird, Jonathan P; Aoki, Nobuyuki
2016-10-05
Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS 2 ), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS 2 . Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS 2 bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations. A nanoscale potential barrier develops at the boundary between exposed and unexposed regions and may cause extrinsic variations in the resulting electrical characteristics exhibited by the transistor. The widespread use of electron-beam lithography in nanofabrication implies that the presence of such strain must be carefully considered when seeking to harness the potential of atomically thin transistors. At the same time, this work also promises the possibility of exploiting the strain as a means to achieve "bandstructure engineering" in such devices.
EDITORIAL: Nanotechnology impact on sensors Nanotechnology impact on sensors
NASA Astrophysics Data System (ADS)
Brugger, Jürgen
2009-10-01
A sensor is a device that responds to a stimulus by generating a functional output induced by a change in some intrinsic properties. We are surrounded by sensors and sensing networks that monitor a multitude of parameters in view of enhancing our safety and quality of life. Sensors assist us in health care and diagnostics, they monitor our environment, our aeroplanes and automobiles, our mobile phones, game consoles and watches, and last but not least, many of our human body functions. Modern sensing systems have greatly benefited in recent decades from advances in microelectronics and microengineering, mainly in view of making sensors smaller, cheaper, more sensitive, more selective, and with a better signal-to-noise ratio, following classical scaling rules. So how about nanotechnology-enabled sensing? Nanoscale features have a great impact on many (though not all) sensing systems, in particular where the surface-to-volume ratio plays a fundamental role, such as in certain chemical and gas sensors. The high surface-to-volume ratios of nanoporous and nanostructured materials have led to their implementation in sensing systems since sensing research first began to engage with the nanotechnology. The surface plasmon resonances of nanostructures have also enriched the scope for developing novel sensing devices. On the other hand, sensors where bulk properties dominate, such as inertial sensors, are less likely to benefit from extreme scaling. Advances in thin film techniques and chemical synthesis have allowed material properties to be tailored to sensing requirements for enhanced performance. These bottom-up fabrication techniques enable parallel fabrication of ordered nanostructures, often in domain-like areas with molecular precision. At the same time the progress in top-down methods such as scanning probe lithography, nanoimprint lithography, soft-lithography and stencil lithography have also facilitated research into sensing and actuating nanotechnology. Although radically different from each other, these techniques represent a formidable toolset for structuring materials at the nanoscale in a multitude of fashions. The availability of these new nanopatterning techniques are increasingly implemented in the manufacturing of advanced sensor systems, and we can expect in the next decade an increased emergence of micro- and nanosensor systems that implement novel nano-functionalities thanks to cost-effective fabrication. Moreover, some of these techniques are desktop tools that can be used on your kitchen table at home. Thus, over the past 20 years we have witnessed a democratization of nanotechnology. More and more researchers, engineers, and even schoolchildren, can benefit from and use these new methods and devise novel applications for nanosystems. This is certainly beneficial to expediting a further dramatic increase in knowledge and the development of actual devices and applications that put gains in our understanding of nanosystems into practice. Nanotechnology is a relatively young discipline compared to classical engineering, and it is inherently interdisciplinary. It seems that in many fields we are actually just beginning to venture into these new dimensions. Challenges remain, however, in all aspects of nanotechnology. We need to improve imaging performance by enabling faster (video rate) coverage of larger surfaces, eventually down to the molecular scale. We also need to perfect nanopatterning methods to improve resolution, overlay and throughput capabilities. Future nanomanufacturing will most likely rely on combinations of top-down engineering and bottom-up self-assembly. Last but not least, we need to find ways for the mutual integration of multiple length-scale devices (nano/micro/macro) so that we can program a 'nano-functionality' into a microsystem exactly where it is needed. Such improvements will ultimately lead to improved sensors and contribute not only to improvements in our quality of life but also to building energy-saving systems that can be fabricated with low-waste manufacturing methods.
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2018-03-01
LER (Line Edge Roughness) and LWR (Line Width Roughness) of the semiconductor device are an important evaluation scale of the performance of the device. Conventionally, LER and LWR is evaluated from CD-SEM (Critical Dimension Scanning Electron Microscope) images. However, CD-SEM measurement has a problem that high frequency random noise is large, and resolution is not sufficiently high. For random noise of CD-SEM measurement, some techniques are proposed. In these methods, it is necessary to set parameters for model and processing, and it is necessary to verify the correctness of these parameters using reference metrology. We have already proposed a novel reference metrology using FIB (Focused Ion Beam) process and planar-TEM (Transmission Electron Microscope) method. In this study, we applied the proposed method to three new samples such as SAQP (Self-Aligned Quadruple Patterning) FinFET device, EUV (Extreme Ultraviolet Lithography) conventional resist, and EUV new material resist. LWR and PSD (Power Spectral Density) of LWR are calculated from the edge positions on planar-TEM images. We confirmed that LWR and PSD of LWR can be measured with high accuracy and evaluated the difference by the proposed method. Furthermore, from comparisons with PSD of the same sample by CD-SEM, the validity of measurement of PSD and LWR by CD-SEM can be verified.
NASA Astrophysics Data System (ADS)
Setiya Pradana, Jalu; Hidayat, Rahmat
2018-04-01
In this paper, we report our research work on developing a Surface Plasmon Resonance (SPR) element with sub-micron (hundreds of nanometers) periodicity grating structure. This grating structure was fabricated by using a simple nano-imprint lithography technique from an organically siloxane polymers, which was then covered by nanometer thin gold layer. The formed grating structure was a very well defined square-shaped periodic structure. The measured reflectance spectra indicate the SPR wave excitation on this grating structure. For comparison, the simulations of reflectance spectra have been also carried out by using Rigorous Coupled-Wave Analysis (RCWA) method. The experimental results are in very good agreement with the simulation results.
Newman, D M; Hawley, R W; Goeckel, D L; Crawford, R D; Abraham, S; Gallagher, N C
1993-05-10
An efficient storage format was developed for computer-generated holograms for use in electron-beam lithography. This method employs run-length encoding and Lempel-Ziv-Welch compression and succeeds in exposing holograms that were previously infeasible owing to the hologram's tremendous pattern-data file size. These holograms also require significant computation; thus the algorithm was implemented on a parallel computer, which improved performance by 2 orders of magnitude. The decompression algorithm was integrated into the Cambridge electron-beam machine's front-end processor.Although this provides much-needed ability, some hardware enhancements will be required in the future to overcome inadequacies in the current front-end processor that result in a lengthy exposure time.
Sequential infiltration synthesis for advanced lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih
A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned usingmore » photolithography, electron-beam lithography or a block copolymer self-assembly process.« less
Inverse lithography using sparse mask representations
NASA Astrophysics Data System (ADS)
Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan
2015-03-01
We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.
Khaleque, Tanzina; Svavarsson, Halldor Gudfinnur; Magnusson, Robert
2013-07-01
A single-step, low-cost fabrication method to generate resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. A guided-mode resonant structure is obtained by subsequent deposition of thin films of transparent conductive oxide and amorphous silicon on the imprinted area. Referenced to equivalent planar structures, around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm to 900-nm wavelength range in one- and two-dimensional patterned samples, respectively. The fabricated elements provided have 300-nm periods. Thermally imprinted thermoplastic substrates hold potential for low-cost fabrication of nano-patterned thin-film solar cells for efficient light management.
Fabrication of micro/nano hierarchical structures with analysis on the surface mechanics
NASA Astrophysics Data System (ADS)
Jheng, Yu-Sheng; Lee, Yeeu-Chang
2016-10-01
Biomimicry refers to the imitation of mechanisms and features found in living creatures using artificial methods. This study used optical lithography, colloidal lithography, and dry etching to mimic the micro/nano hierarchical structures covering the soles of gecko feet. We measured the static contact angle and contact angle hysteresis to reveal the behavior of liquid drops on the hierarchical structures. Pulling tests were also performed to measure the resistance of movement between the hierarchical structures and a testing plate. Our results reveal that hierarchical structures at the micro-/nano-scale are considerably hydrophobic, they provide good flow characteristics, and they generate more contact force than do surfaces with micro-scale cylindrical structures.
Imbalance aware lithography hotspot detection: a deep learning approach
NASA Astrophysics Data System (ADS)
Yang, Haoyu; Luo, Luyang; Su, Jing; Lin, Chenxi; Yu, Bei
2017-03-01
With the advancement of VLSI technology nodes, light diffraction caused lithographic hotspots have become a serious problem affecting manufacture yield. Lithography hotspot detection at the post-OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained satisfactory performance, with extreme scaling of transistor feature size and more and more complicated layout patterns, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc feature extraction in a machine learning framework may lose important information when predicting potential errors in ultra-large-scale integrated circuit masks. In this paper, we present a deep convolutional neural network (CNN) targeting representative feature learning in lithography hotspot detection. We carefully analyze impact and effectiveness of different CNN hyper-parameters, through which a hotspot-detection-oriented neural network model is established. Because hotspot patterns are always minorities in VLSI mask design, the training data set is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained model with high classification accuracy may still suffer from high false negative results (missing hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply minority upsampling and random-mirror flipping before training the network. Experimental results show that our proposed neural network model achieves highly comparable or better performance on the ICCAD 2012 contest benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.
High resolution imaging and lithography with hard x rays using parabolic compound refractive lenses
NASA Astrophysics Data System (ADS)
Schroer, C. G.; Benner, B.; Günzler, T. F.; Kuhlmann, M.; Zimprich, C.; Lengeler, B.; Rau, C.; Weitkamp, T.; Snigirev, A.; Snigireva, I.; Appenzeller, J.
2002-03-01
Parabolic compound refractive lenses are high quality optical components for hard x rays. They are particularly suited for full field imaging, with applications in microscopy and x-ray lithography. Taking advantage of the large penetration depth of hard x rays, the interior of opaque samples can be imaged with submicrometer resolution. To obtain the three-dimensional structure of a sample, microscopy is combined with tomographic techniques. In a first hard x-ray lithography experiment, parabolic compound refractive lenses have been used to project the reduced image of a lithography mask onto a resist. Future developments are discussed.
Nanoparticle photoresist studies for EUV lithography
NASA Astrophysics Data System (ADS)
Kasahara, Kazuki; Xu, Hong; Kosma, Vasiliki; Odent, Jeremy; Giannelis, Emmanuel P.; Ober, Christopher K.
2017-03-01
EUV (extreme ultraviolet) lithography is one of the most promising candidates for next generation lithography. The main challenge for EUV resists is to simultaneously satisfy resolution, LWR (line-width roughness) and sensitivity requirements according to the ITRS roadmap. Though polymer type CAR (chemically amplified resist) is the currently standard photoresist, entirely new resist platforms are required due to the performance targets of smaller process nodes. In this paper, recent progress in nanoparticle photoresists which Cornell University has intensely studied is discussed. Lithography performance, especially scum elimination, improvement studies with the dissolution rate acceleration concept and new metal core applications are described.
Alternative stitching method for massively parallel e-beam lithography
NASA Astrophysics Data System (ADS)
Brandt, Pieter; Tranquillin, Céline; Wieland, Marco; Bayle, Sébastien; Milléquant, Matthieu; Renault, Guillaume
2015-07-01
In this study, a stitching method other than soft edge (SE) and smart boundary (SB) is introduced and benchmarked against SE. The method is based on locally enhanced exposure latitude without throughput cost, making use of the fact that the two beams that pass through the stitching region can deposit up to 2× the nominal dose. The method requires a complex proximity effect correction that takes a preset stitching dose profile into account. Although the principle of the presented stitching method can be multibeam (lithography) systems in general, in this study, the MAPPER FLX 1200 tool is specifically considered. For the latter tool at a metal clip at minimum half-pitch of 32 nm, the stitching method effectively mitigates beam-to-beam (B2B) position errors such that they do not induce an increase in critical dimension uniformity (CDU). In other words, the same CDU can be realized inside the stitching region as outside the stitching region. For the SE method, the CDU inside is 0.3 nm higher than outside the stitching region. A 5-nm direct overlay impact from the B2B position errors cannot be reduced by a stitching strategy.
Design and fabrication of nano-imprint templates using unique pattern transforms and primitives
NASA Astrophysics Data System (ADS)
MacDonald, Susan; Mellenthin, David; Rentzsch, Kevin; Kramer, Kenneth; Ellenson, James; Hostetler, Tim; Enck, Ron
2005-11-01
Increasing numbers of MEMS, photonic, and integrated circuit manufacturers are investigating the use of Nano-imprint Lithography or Step and Flash Imprint Lithography (SFIL) as a lithography choice for making various devices and products. Their main interests in using these technologies are the lack of aberrations inherent in traditional optical reduction lithography, and the relative low cost of imprint tools. Since imprint templates are at 1X scale, the small sizes of these structures have necessitated the use of high-resolution 50KeV, and 100KeV e-beam lithography tools to build these templates. For MEMS and photonic applications, the structures desired are often circles, arches, and other non-orthogonal shapes. It has long been known that both 50keV, and especially 100keV e-beam lithography tools are extremely accurate, and can produce very high resolution structures, but the trade off is long write times. The main drivers in write time are shot count and stage travel. This work will show how circles and other non-orthogonal shapes can be produced with a 50KeV Variable Shaped Beam (VSB) e-beam lithography system using unique pattern transforms and primitive shapes, while keeping the shot count and write times under control. The quality of shapes replicated into the resist on wafer using an SFIL tool will also be presented.
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Maki, Hirotaka; Sugahara, Kigen; Ito, Kenta; Hanabata, Makoto
2015-07-01
An electron beam (EB) lithography method using inedible cellulose-based resist material derived from woody biomass has been successfully developed. This method allows the use of pure water in the development process instead of the conventionally used tetramethylammonium hydroxide and anisole. The inedible cellulose-based biomass resist material, as an alternative to alpha-linked disaccharides in sugar derivatives that compete with food supplies, was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB-sensitive 2-methacryloyloxyethyl groups. A 75 nm line and space pattern at an exposure dose of 19 μC/cm2, a resist thickness uniformity of less than 0.4 nm on a 200 mm wafer, and low film thickness shrinkage under EB irradiation were achieved with this inedible cellulose-based biomass resist material using a water-based development process.
NASA Astrophysics Data System (ADS)
Kim, Sung Jin; Kim, Hyung Tae; Choi, Jong Hoon; Chung, Ho Kyoon; Cho, Sung Min
2018-04-01
An amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by a self-aligned imprint lithography (SAIL) method with a sacrificial photoresist layer. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The sacrificial layer was applied in the SAIL process for the purpose of removing the resin residues that were inevitably left when the etch mask was thinned by plasma etching. This work demonstrated that the a-IGZO TFT could be fabricated by the SAIL process with the sacrificial layer. Specifically, the simple fabrication process utilized in this study can be utilized for the TFT with a plasma-sensitive semiconductor such as the a-IGZO and further extended for the roll-to-roll TFT fabrication.
Yan, Guanyong; Wang, Xiangzhao; Li, Sikun; Yang, Jishuo; Xu, Dongbo; Erdmann, Andreas
2014-03-10
We propose an in situ aberration measurement technique based on an analytical linear model of through-focus aerial images. The aberrations are retrieved from aerial images of six isolated space patterns, which have the same width but different orientations. The imaging formulas of the space patterns are investigated and simplified, and then an analytical linear relationship between the aerial image intensity distributions and the Zernike coefficients is established. The linear relationship is composed of linear fitting matrices and rotation matrices, which can be calculated numerically in advance and utilized to retrieve Zernike coefficients. Numerical simulations using the lithography simulators PROLITH and Dr.LiTHO demonstrate that the proposed method can measure wavefront aberrations up to Z(37). Experiments on a real lithography tool confirm that our method can monitor lens aberration offset with an accuracy of 0.7 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumberg, L.N.; Murphy, J.B.; Reusch, M.F.
1991-01-01
The orbit, tune, chromaticity and {beta} values for the Phase 1 XLS ring were computed by numerical integration of equations of motion using fields obtained from the coefficients of the 3-dimensional solution of Laplace's Equation evaluated by fits to magnetic measurements. The results are in good agreement with available data. The method has been extended to higher order fits of TOSCA generated fields in planes normal to the reference axis using the coil configuration proposed for the Superconducting X-Ray Lithography Source. Agreement with results from numerical integration through fields given directly by TOSCA is excellent. The formulation of the normalmore » multipole expansion presented by Brown and Servranckx has been extended to include skew multipole terms. The method appears appropriate for analysis of magnetic measurements of the SXLS. 8 refs. , 2 figs., 2 tabs.« less
Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Costecalde, Jean; Rèmiens, Denis; Soyer, Caroline; Nicu, Liviu
2012-09-01
The advantage of using lead zirconate titanate (PbZr(0.54)Ti(0.46)O(3)) ceramics as an active material in nanoelectromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we develop a specific patterning method based on optical lithography coupled with a dual-layer resist process. The main objective is to obtain sub-micrometer features by lifting off a 100-nm-thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.
Chan, Lesley W; Morse, Daniel E; Gordon, Michael J
2018-05-08
Near- and sub-wavelength photonic structures are used by numerous organisms (e.g. insects, cephalopods, fish, birds) to create vivid and often dynamically-tunable colors, as well as create, manipulate, or capture light for vision, communication, crypsis, photosynthesis, and defense. This review introduces the physics of moth eye (ME)-like, biomimetic nanostructures and discusses their application to reduce optical losses and improve efficiency of various optoelectronic devices, including photodetectors, photovoltaics, imagers, and light emitting diodes. Light-matter interactions at structured and heterogeneous surfaces over different length scales are discussed, as are the various methods used to create ME-inspired surfaces. Special interest is placed on a simple, scalable, and tunable method, namely colloidal lithography with plasma dry etching, to fabricate ME-inspired nanostructures in a vast suite of materials. Anti-reflective surfaces and coatings for IR devices and enhancing light extraction from visible light emitting diodes are highlighted.
Microsystems Research in Japan
2003-09-01
microsystems applications, like microfluidic systems, will require more than planar lithography -based fabrication processes. The committee was impressed by the...United States focused on exploiting silicon planar lithography as the core technology for microstructure fabrication, whereas Japan explored a wide...including LIGA and its extensions, micro-stereolithography, and e-beam lithography . The range of materials seen in Japan was broader than in the
Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok
2017-01-01
In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856
Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok
2017-04-04
In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.
High resolution thickness measurements of ultrathin Si:P monolayers using weak localization
NASA Astrophysics Data System (ADS)
Hagmann, Joseph A.; Wang, Xiqiao; Namboodiri, Pradeep; Wyrick, Jonathan; Murray, Roy; Stewart, M. D.; Silver, Richard M.; Richter, Curt A.
2018-01-01
The key building blocks for the fabrication of devices based on the deterministic placement of dopants in silicon using scanning tunneling microscopy (STM) hydrogen lithography are the formation of well-defined dopant delta-layers and the overgrowth of high quality crystalline Si. To develop these capabilities, it is of critical importance to quantify dopant movement in the sub-nanometer regime. To this end, we investigate Si:P delta-layer samples produced by fully exposing a Si surface to PH3 prior to Si encapsulation with dramatically different levels of dopant confinement. We examine the effect of delta layer confinement on the weak localization signal in parallel and perpendicular magnetic fields and extract the delta-layer thickness from fits to the Hikami-Larkin-Nagaoka equation. We find good agreement with secondary ion mass spectroscopy measurements and demonstrate the applicability of this method in the sub-nanometer thickness regime. Our analysis serves as detailed instruction for the determination of the conducting layer thickness of a Si:P delta-layer by means of a high-throughput, nondestructive electrical transport measurement.
Agrawal, Anant; Majdi, Joseph; Clouse, Kathleen A; Stantchev, Tzanko
2018-05-23
Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these new optical biosensing methods. To date, spherical polymer nanoparticles have been the only non-biological reference materials employed with scattered-light biosensing techniques. However, pathogens like filoviruses, including the Ebola virus, are far from spherical and their shape strongly affects scattered-light signals. Using electron beam lithography, we fabricated nanostructures resembling individual filamentous virions attached to a biosensing substrate (silicon wafer overlaid with silicon oxide film) and characterized their dimensions with scanning electron and atomic force microscopes. To assess the relevance of these nanostructures, we compared their signals across the visible spectrum to signals recorded from Ebola virus-like particles which exhibit characteristic filamentous morphology. We demonstrate the highly stable nature of our nanostructures and use them to obtain new insights into the relationship between virion dimensions and scattered-light signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn; Rippa, Massimo
A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example,more » a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.« less
Block copolymer lithography of rhodium nanoparticles for high temperature electrocatalysis.
Boyd, David A; Hao, Yong; Li, Changyi; Goodwin, David G; Haile, Sossina M
2013-06-25
We present a method for forming ordered rhodium nanostructures on a solid support. The approach makes use of a block copolymer to create and assemble rhodium chloride nanoparticles from solution onto a surface; subsequent plasma and thermal processing are employed to remove the polymer and fully convert the nanostructures to metallic rhodium. Films cast from a solution of the triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) dissolved in toluene with rhodium(III) chloride hydrate were capable of producing a monolayer of rhodium nanoparticles of uniform size and interparticle spacing. The nanostructures were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The electrocatalytic performance of the nanoparticles was investigated with AC impedance spectroscopy. We observed that the addition of the particles to a model solid oxide fuel cell anode provided up to a 14-fold improvement in the anode activity as evidenced by a decrease in the AC impedance resistance. Examination of the anode after electrochemical measurement revealed that the basic morphology and distribution of the particles were preserved.
Rananavare, Shankar B; Morakinyo, Moshood K
2017-02-12
Nano-patterns fabricated with extreme ultraviolet (EUV) or electron-beam (E-beam) lithography exhibit unexpected variations in size. This variation has been attributed to statistical fluctuations in the number of photons/electrons arriving at a given nano-region arising from shot-noise (SN). The SN varies inversely to the square root of a number of photons/electrons. For a fixed dosage, the SN is larger in EUV and E-beam lithographies than for traditional (193 nm) optical lithography. Bottom-up and top-down patterning approaches are combined to minimize the effects of shot noise in nano-hole patterning. Specifically, an amino-silane surfactant self-assembles on a silicon wafer that is subsequently spin-coated with a 100 nm film of a PMMA-based E-beam photoresist. Exposure to the E-beam and the subsequent development uncover the underlying surfactant film at the bottoms of the holes. Dipping the wafer in a suspension of negatively charged, citrate-capped, 20 nm gold nanoparticles (GNP) deposits one particle per hole. The exposed positively charged surfactant film in the hole electrostatically funnels the negatively charged nanoparticle to the center of an exposed hole, which permanently fixes the positional registry. Next, by heating near the glass transition temperature of the photoresist polymer, the photoresist film reflows and engulfs the nanoparticles. This process erases the holes affected by SN but leaves the deposited GNPs locked in place by strong electrostatic binding. Treatment with oxygen plasma exposes the GNPs by etching a thin layer of the photoresist. Wet-etching the exposed GNPs with a solution of I2/KI yields uniform holes located at the center of indentations patterned by E-beam lithography. The experiments presented show that the approach reduces the variation in the size of the holes caused by SN from 35% to below 10%. The method extends the patterning limits of transistor contact holes to below 20 nm.
Matching OPC and masks on 300-mm lithography tools utilizing variable illumination settings
NASA Astrophysics Data System (ADS)
Palitzsch, Katrin; Kubis, Michael; Schroeder, Uwe P.; Schumacher, Karl; Frangen, Andreas
2004-05-01
CD control is crucial to maximize product yields on 300mm wafers. This is particularly true for DRAM frontend lithography layers, like gate level, and deep trench (capacitor) level. In the DRAM process, large areas of the chip are taken up by array structures, which are difficult to structure due to aggressive pitch requirements. Consequently, the lithography process is centered such that the array structures are printed on target. Optical proximity correction is applied to print gate level structures in the periphery circuitry on target. Only slight differences of the different Zernike terms can cause rather large variations of the proximity curves, resulting in a difference of isolated and semi-isolated lines printed on different tools. If the deviations are too large, tool specific OPC is needed. The same is true for deep trench level, where the length to width ratio of elongated contact-like structures is an important parameter to adjust the electrical properties of the chip. Again, masks with specific biases for tools with different Zernikes are needed to optimize product yield. Additionally, mask making contributes to the CD variation of the process. Theoretically, the CD deviation caused by an off-centered mask process can easily eat up the majority of the CD budget of a lithography process. In practice, masks are very often distributed intelligently among production tools, such that lens and mask effects cancel each other. However, only dose adjusting and mask allocation may still result in a high CD variation with large systematical contributions. By adjusting the illumination settings, we have successfully implemented a method to reduce CD variation on our advanced processes. Especially inner and outer sigma for annular illumination, and the numerical aperture, can be optimized to match mask and stepper properties. This process will be shown to overcome slight lens and mask differences effectively. The effects on lithography process windows have to be considered, nonetheless.
NASA Astrophysics Data System (ADS)
Horiuchi, Toshiyuki; Furuhata, Takahiro; Muro, Hideyuki
2016-06-01
The scan-projection exposure of small-diameter pipe surfaces was investigated using a newly developed prototype exposure system. It is necessary to secure a very large depth of focus for printing thick resist patterns on round pipe surfaces with a roughness larger than that of semiconductor wafers. For this reason, a camera lens with a low numerical aperture of 0.089 was used as a projection lens, and the momentary exposure area was limited by a narrow slit with a width of 800 µm. Thus, patterns on a flat reticle were replicated on a pipe surface by linearly moving the reticle and rotating the pipe synchronously. By using a reticle with inclined line-and-space patterns, helical patterns with a width of 30 µm were successfully replicated on stainless-steel pipes with an outer diameter of 2 mm and coated with a 10-µm-thick negative resist. The patterns replicated at the start and stop edges were smoothly stitched seamlessly.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Smits, Jan; Namkung, Min; Ingram, JoAnne; Watkins, Neal; Jordan, Jeffrey D.; Louie, Richard
2002-01-01
Carbon nanotubes (CNTs) offer great potential for advanced sensor development due to the unique electronic transport properties of the material. However, a significant obstacle to the realization of practical CNT devices is the formation of reliable and reproducible CNT to metallic contacts. In this work, scanning probe techniques are explored for both fabrication of metallic junctions and positioning of singlewalled CNTs across these junctions. The use of a haptic force feedback interface to a scanning probe microscope is used to enable movement of nanotubes over micron length scales with nanometer precision. In this case, imaging of the surface is performed with light or intermittent contact to the surface. Increased tip-to-sample interaction forces are then applied to either create junctions or position CNTs. The effect of functionalization of substrate surfaces on the movement and tribology of the materials is also studied. The application of these techniques to the fabrication of CNT-based sensors for nondestructive evaluation applications is discussed.
Comparison of technologies for nano device prototyping with a special focus on ion beams: A review
NASA Astrophysics Data System (ADS)
Bruchhaus, L.; Mazarov, P.; Bischoff, L.; Gierak, J.; Wieck, A. D.; Hövel, H.
2017-03-01
Nano device prototyping (NDP) is essential for realizing and assessing ideas as well as theories in the form of nano devices, before they can be made available in or as commercial products. In this review, application results patterned similarly to those in the semiconductor industry (for cell phone, computer processors, or memory) will be presented. For NDP, some requirements are different: thus, other technologies are employed. Currently, in NDP, for many applications direct write Gaussian vector scan electron beam lithography (EBL) is used to define the required features in organic resists on this scale. We will take a look at many application results carried out by EBL, self-organized 3D epitaxy, atomic probe microscopy (scanning tunneling microscope/atomic force microscope), and in more detail ion beam techniques. For ion beam techniques, there is a special focus on those based upon liquid metal (alloy) ion sources, as recent developments have significantly increased their applicability for NDP.
Materials Design for Block Copolymer Lithography
NASA Astrophysics Data System (ADS)
Sweat, Daniel Patrick
Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up a wide slew of applications from directed self-assembly to biomaterial engineering.
Range pattern matching with layer operations and continuous refinements
NASA Astrophysics Data System (ADS)
Tseng, I.-Lun; Lee, Zhao Chuan; Li, Yongfu; Perez, Valerio; Tripathi, Vikas; Ong, Jonathan Yoong Seang
2018-03-01
At advanced and mainstream process nodes (e.g., 7nm, 14nm, 22nm, and 55nm process nodes), lithography hotspots can exist in layouts of integrated circuits even if the layouts pass design rule checking (DRC). Existence of lithography hotspots in a layout can cause manufacturability issues, which can result in yield losses of manufactured integrated circuits. In order to detect lithography hotspots existing in physical layouts, pattern matching (PM) algorithms and commercial PM tools have been developed. However, there are still needs to use DRC tools to perform PM operations. In this paper, we propose a PM synthesis methodology, which uses a continuous refinement technique, for the automatic synthesis of a given lithography hotspot pattern into a DRC deck, which consists of layer operation commands, so that an equivalent PM operation can be performed by executing the synthesized deck with the use of a DRC tool. Note that the proposed methodology can deal with not only exact patterns, but also range patterns. Also, lithography hotspot patterns containing multiple layers can be processed. Experimental results show that the proposed methodology can accurately and efficiently detect lithography hotspots in physical layouts.
Intelligent control system based on ARM for lithography tool
NASA Astrophysics Data System (ADS)
Chen, Changlong; Tang, Xiaoping; Hu, Song; Wang, Nan
2014-08-01
The control system of traditional lithography tool is based on PC and MCU. The PC handles the complex algorithm, human-computer interaction, and communicates with MCU via serial port; The MCU controls motors and electromagnetic valves, etc. This mode has shortcomings like big volume, high power consumption, and wasting of PC resource. In this paper, an embedded intelligent control system of lithography tool, based on ARM, is provided. The control system used S5PV210 as processor, completing the functions of PC in traditional lithography tool, and provided a good human-computer interaction by using LCD and capacitive touch screen. Using Android4.0.3 as operating system, the equipment provided a cool and easy UI which made the control more user-friendly, and implemented remote control and debug, pushing video information of product by network programming. As a result, it's convenient for equipment vendor to provide technical support for users. Finally, compared with traditional lithography tool, this design reduced the PC part, making the hardware resources efficiently used and reducing the cost and volume. Introducing embedded OS and the concepts in "The Internet of things" into the design of lithography tool can be a development trend.
Holographic lithography for biomedical applications
NASA Astrophysics Data System (ADS)
Stankevicius, E.; Balciunas, E.; Malinauskas, M.; Raciukaitis, G.; Baltriukiene, D.; Bukelskiene, V.
2012-06-01
Fabrication of scaffolds for cell growth with appropriate mechanical characteristics is top-most important for successful creation of tissue. Due to ability of fast fabrication of periodic structures with a different period, the holographic lithography technique is a suitable tool for scaffolds fabrication. The scaffolds fabricated by holographic lithography can be used in various biomedical investigations such as the cellular adhesion, proliferation and viability. These investigations allow selection of the suitable material and geometry of scaffolds which can be used in creation of tissue. Scaffolds fabricated from di-acrylated poly(ethylene glycol) (PEG-DA-258) over a large area by holographic lithography technique are presented in this paper. The PEG-DA scaffolds fabricated by holographic lithography showed good cytocompatibility for rabbit myogenic stem cells. It was observed that adult rabbit muscle-derived myogenic stem cells grew onto PEG-DA scaffolds. They were attached to the pillars and formed cell-cell interactions. It demonstrates that the fabricated structures have potential to be an interconnection channel network for cell-to-cell interactions, flow transport of nutrients and metabolic waste as well as vascular capillary ingrowth. These results are encouraging for further development of holographic lithography by improving its efficiency for microstructuring three-dimensional scaffolds out of biodegradable hydrogels
PREFACE: Self-organized nanostructures
NASA Astrophysics Data System (ADS)
Rousset, Sylvie; Ortega, Enrique
2006-04-01
In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by the EUROCORES SONS Programme under the auspices of the European Science Foundation and the VI Framework Programme of the European Community. It was also funded by CNRS `formation permanente'. Major topics relevant to self-organization are covered in these papers. The first two papers deal with the physics of self-organized nucleation and growth. Both metal and semiconductor templates are investigated. The paper by Meyer zu Heringdorf focuses on the mesoscopic patterns formed by the Au-induced faceting of vicinal Si (001). Repain et al describe how uniform and long-range ordered nanostructures are built on a surface by using nucleation on a point-defect array. Electronic properties of such self-organized systems are reviewed by Mugarza and Ortega. The next three papers deal with molecules and self-organization. In the paper presented by Kröger, molecules are deposited on vicinal Au surfaces and are studied by STM. A very active field in self-organized nanostructures is the chemical route for nanoparticle synthesis. The paper by Piléni deals with self-organization of inorganic crystals produced by evaporation of a solution, also called colloids. Their physical properties are also treated. Gacoin et al illustrate chemical synthesis, including the template approach, using organized mesoporous silica films for the production of semiconductor or metal arrays of particles. An alternative method is developed in the paper by Allongue and Maroun which is the electrochemical method of building arrays of nanostructures. Ultimately, self-organization is a very interdisciplinary field. There is also an attempt in this issue to present some of the challenges using biology. The paper by Belamie et al deals with the self-assembly of biological macromolecules, such as chitin and collagen. Finally, Molodtsov and co-workers describe how a biological template can be used in order to achieve novel materials made of hybrid metallo-organic nanostructures.
Three dimensional profile measurement using multi-channel detector MVM-SEM
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki
2014-07-01
In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.
Nanofabrication with a helium ion microscope
NASA Astrophysics Data System (ADS)
Maas, Diederik; van Veldhoven, Emile; Chen, Ping; Sidorkin, Vadim; Salemink, Huub; van der Drift, Emile..; Alkemade, Paul
2010-03-01
The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valuable signal for high-resolution imaging as well as a mechanism for very precise nanofabrication. The low proximity effects, due to the low yield of backscattered ions and the confinement of the forward scattered ions into a narrow cone, enable patterning of ultra-dense sub-10 nm structures. This paper presents various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion beam induced deposition.
Picosecond excimer laser-plasma x-ray source for microscopy, biochemistry, and lithography
NASA Astrophysics Data System (ADS)
Turcu, I. C. Edmond; Ross, Ian N.; Trenda, P.; Wharton, C. W.; Meldrum, R. A.; Daido, Hiroyuki; Schulz, M. S.; Fluck, P.; Michette, Alan G.; Juna, A. P.; Maldonado, Juan R.; Shields, Harry; Tallents, Gregory J.; Dwivedi, L.; Krishnan, J.; Stevens, D. L.; Jenner, T.; Batani, Dimitri; Goodson, H.
1994-02-01
At Rutherford Appleton Laboratory we developed a high repetition rate, picosecond, excimer laser system which generates a high temperature and density plasma source emitting approximately 200 mW (78 mW/sr) x ray average power at h(nu) approximately 1.2 KeV or 0.28 KeV < h(nu) < 0.53 KeV (the `water window'). At 3.37 nm wavelength the spectral brightness of the source is approximately 9 X 1011 photons/s/mm2/mrad2/0.1% bandwidth. The x-ray source serves a large user community for applications such as: scanning and holographic microscopy, the study of the biochemistry of DNA damage and repair, microlithography and spectroscopy.
Lossless compression algorithm for REBL direct-write e-beam lithography system
NASA Astrophysics Data System (ADS)
Cramer, George; Liu, Hsin-I.; Zakhor, Avideh
2010-03-01
Future lithography systems must produce microchips with smaller feature sizes, while maintaining throughputs comparable to those of today's optical lithography systems. This places stringent constraints on the effective data throughput of any maskless lithography system. In recent years, we have developed a datapath architecture for direct-write lithography systems, and have shown that compression plays a key role in reducing throughput requirements of such systems. Our approach integrates a low complexity hardware-based decoder with the writers, in order to decompress a compressed data layer in real time on the fly. In doing so, we have developed a spectrum of lossless compression algorithms for integrated circuit layout data to provide a tradeoff between compression efficiency and hardware complexity, the latest of which is Block Golomb Context Copy Coding (Block GC3). In this paper, we present a modified version of Block GC3 called Block RGC3, specifically tailored to the REBL direct-write E-beam lithography system. Two characteristic features of the REBL system are a rotary stage resulting in arbitrarily-rotated layout imagery, and E-beam corrections prior to writing the data, both of which present significant challenges to lossless compression algorithms. Together, these effects reduce the effectiveness of both the copy and predict compression methods within Block GC3. Similar to Block GC3, our newly proposed technique Block RGC3, divides the image into a grid of two-dimensional "blocks" of pixels, each of which copies from a specified location in a history buffer of recently-decoded pixels. However, in Block RGC3 the number of possible copy locations is significantly increased, so as to allow repetition to be discovered along any angle of orientation, rather than horizontal or vertical. Also, by copying smaller groups of pixels at a time, repetition in layout patterns is easier to find and take advantage of. As a side effect, this increases the total number of copy locations to transmit; this is combated with an extra region-growing step, which enforces spatial coherence among neighboring copy locations, thereby improving compression efficiency. We characterize the performance of Block RGC3 in terms of compression efficiency and encoding complexity on a number of rotated Metal 1, Poly, and Via layouts at various angles, and show that Block RGC3 provides higher compression efficiency than existing lossless compression algorithms, including JPEG-LS, ZIP, BZIP2, and Block GC3.
NASA Astrophysics Data System (ADS)
Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.
2013-07-01
High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.
Automated aberration correction of arbitrary laser modes in high numerical aperture systems.
Hering, Julian; Waller, Erik H; Von Freymann, Georg
2016-12-12
Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture system. Using circularly polarized light for the measurement and first-guess initial conditions for amplitude and phase of the pupil function our scalar approach outperforms recent algorithms with vectorial corrections. Besides laser lithography also applications like optical tweezers and microscopy might benefit from the method presented.
Chang, Yun-Chorng; Lu, Sih-Chen; Chung, Hsin-Chan; Wang, Shih-Ming; Tsai, Tzung-Da; Guo, Tzung-Fang
2013-01-01
Various infra-red and planar chiral metamaterials were fabricated using the modified Nanospherical-Lens Lithography. By replacing the light source with a hand-held ultraviolet lamp, its asymmetric light emission pattern produces the elliptical-shaped photoresist holes after passing through the spheres. The long axis of the ellipse is parallel to the lamp direction. The fabricated ellipse arrays exhibit localized surface plasmon resonance in mid-infra-red and are ideal platforms for surface enhanced infra-red absorption (SEIRA). We also demonstrate a way to design and fabricate complicated patterns by tuning parameters in each exposure step. This method is both high-throughput and low-cost, which is a powerful tool for future infra-red metamaterials applications. PMID:24284941
Design of the ultraprecision stage for lithography using VCM
NASA Astrophysics Data System (ADS)
Kim, Jung-Han; Kim, Mun-Su; Oh, Min-Taek
2007-12-01
This paper presents a new design of precision stage for the reticle in lithography process and a low hunting control method for the stage. The stage has three axes for X,Y, θ Z, those actuated by three voice coil motors individually. The proposed precision stage system has three gap sensors and voice coil motors, and supported by four air bearings, so it do not have any mechanical contact and nonlinear effect such as hysterisis which usually degrade performance in nano level movement. The reticle stage has cross coupled dynamics between X,Y,θ Z, axes, so the forward and inverse kinematics were solved to get an accurate reference position. When the stage is in regulating control mode, there always exist small fluctuations (stage hunting) in the stage movement. Because the low stage hunting characteristic is very important in recent lithography and nano-level applications, the proposed stage has a special regulating controller composed of digital filter, adjustor and switching algorithm. Another importance factor that generates hunting noise is the system noise inside the lithography machine such as EMI from another motor and solenoids. For reducing such system noises, the proposed controller has a two-port transmission system that transfers torque command signal from the DSP board to the amplifier. The low hunting control algorithm and two-port transmission system reduced hunting noise as 35nm(rms) when a conventional PID generates 77nm(rms) in the same mechanical system. The experimental results showed that the reticle system has 100nm linear accuracy and 1μ rad rotation accuracy at the control frequency of 8 kHz.
Imbalance aware lithography hotspot detection: a deep learning approach
NASA Astrophysics Data System (ADS)
Yang, Haoyu; Luo, Luyang; Su, Jing; Lin, Chenxi; Yu, Bei
2017-07-01
With the advancement of very large scale integrated circuits (VLSI) technology nodes, lithographic hotspots become a serious problem that affects manufacture yield. Lithography hotspot detection at the post-OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained satisfactory performance, with the extreme scaling of transistor feature size and layout patterns growing in complexity, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc feature extraction in a machine learning framework may lose important information when predicting potential errors in ultra-large-scale integrated circuit masks. We present a deep convolutional neural network (CNN) that targets representative feature learning in lithography hotspot detection. We carefully analyze the impact and effectiveness of different CNN hyperparameters, through which a hotspot-detection-oriented neural network model is established. Because hotspot patterns are always in the minority in VLSI mask design, the training dataset is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained model with high classification accuracy may still suffer from a high number of false negative results (missing hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply hotspot upsampling and random-mirror flipping before training the network. Experimental results show that our proposed neural network model achieves comparable or better performance on the ICCAD 2012 contest benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.
Recent developments of x-ray lithography in Canada
NASA Astrophysics Data System (ADS)
Chaker, Mohamed; Boily, Stephane; Ginovker, A.; Jean, Alain; Kieffer, Jean-Claude; Mercier, P. P.; Pepin, Henri; Leung, Pak; Currie, John F.; Lafontaine, Hugues
1991-08-01
An overview of current activities in Canada is reported, including x-ray lithography studies based on laser plasma sources and x-ray mask development. In particular, the application of laser plasma sources for x-ray lithography is discussed, taking into account the industrial requirement and the present state of laser technology. The authors describe the development of silicon carbide membranes for x-ray lithography application. SiC films were prepared using either a 100 kHz plasma-enhanced chemical vapor deposition (PECVD) system or a laser ablation technique. These membranes have a relatively large diameter (> 1 in.) and a high optical transparency (> 50%). Experimental studies on stresses in tungsten films deposited with triode sputtering are reported.
Fabrication of biomimetic dry-adhesion structures through nanosphere lithography
NASA Astrophysics Data System (ADS)
Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.
2018-03-01
Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.
Holistic approach for overlay and edge placement error to meet the 5nm technology node requirements
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Slachter, Bram; Kubis, Michael; Tel, Wim; Hinnen, Paul; Maslow, Mark; Dillen, Harm; Ma, Eric; Chou, Kevin; Liu, Xuedong; Ren, Weiming; Hu, Xuerang; Wang, Fei; Liu, Kevin
2018-03-01
In this paper, we discuss the metrology methods and error budget that describe the edge placement error (EPE). EPE quantifies the pattern fidelity of a device structure made in a multi-patterning scheme. Here the pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. EPE is computed by combining optical and ebeam metrology data. We show that high NA optical scatterometer can be used to densely measure in device CD and overlay errors. Large field e-beam system enables massive CD metrology which is used to characterize the local CD error. Local CD distribution needs to be characterized beyond 6 sigma, and requires high throughput e-beam system. We present in this paper the first images of a multi-beam e-beam inspection system. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As a use case, we evaluated a 5-nm logic patterning process based on Self-Aligned-QuadruplePatterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography.
Fabrication of nanochannels on polyimide films using dynamic plowing lithography
NASA Astrophysics Data System (ADS)
Stoica, Iuliana; Barzic, Andreea Irina; Hulubei, Camelia
2017-12-01
Three distinct polyimide films were analyzed from the point of view of their morphology in order to determine if their surface features can be adapted for applications where surface anisotropy is mandatory. Channels of nanometric dimensions were created on surface of the specimens by using a less common atomic force microscopy (AFM) method, namely Dynamic Plowing Lithography (DPL). The changes generated by DPL procedure were monitored through the surface texture and other functional parameters, denoting the surface orientation degree and also bearing and fluid retention properties. The results revealed that in the same nanolithography conditions, the diamine and dianhydride moieties have affected the characteristics of the nanochannels. This was explained based on the aliphatic/aromatic nature of the monomers and the backbone flexibility. The reported data are of great importance in designing custom nanostructures with enhanced anisotropy on surface of polyimide films for liquid crystal orientation or guided cell growth purposes. At the end, to track the effect of the nanolithography process on the tip sharpness, degradation and contamination, the blind tip reconstruction was performed on AFM probe, before and after lithography experiments, using TGT1 test grating AFM image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael David; Lewis, Rupert M.
The present invention relates to the use of gallium beam lithography to form superconductive structures. Generally, the method includes exposing a surface to gallium to form an implanted region and then removing material adjacent to and/or below that implanted region. In particular embodiments, the methods herein provide microstructures and nanostructures in any useful substrate, such as those including niobium, tantalum, tungsten, or titanium.
Ptychographic imaging with partially coherent plasma EUV sources
NASA Astrophysics Data System (ADS)
Bußmann, Jan; Odstrčil, Michal; Teramoto, Yusuke; Juschkin, Larissa
2017-12-01
We report on high-resolution lens-less imaging experiments based on ptychographic scanning coherent diffractive imaging (CDI) method employing compact plasma sources developed for extreme ultraviolet (EUV) lithography applications. Two kinds of discharge sources were used in our experiments: a hollow-cathode-triggered pinch plasma source operated with oxygen and for the first time a laser-assisted discharge EUV source with a liquid tin target. Ptychographic reconstructions of different samples were achieved by applying constraint relaxation to the algorithm. Our ptychography algorithms can handle low spatial coherence and broadband illumination as well as compensate for the residual background due to plasma radiation in the visible spectral range. Image resolution down to 100 nm is demonstrated even for sparse objects, and it is limited presently by the sample structure contrast and the available coherent photon flux. We could extract material properties by the reconstruction of the complex exit-wave field, gaining additional information compared to electron microscopy or CDI with longer-wavelength high harmonic laser sources. Our results show that compact plasma-based EUV light sources of only partial spatial and temporal coherence can be effectively used for lens-less imaging applications. The reported methods may be applied in combination with reflectometry and scatterometry for high-resolution EUV metrology.
Real cell overlay measurement through design based metrology
NASA Astrophysics Data System (ADS)
Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Jo, Gyoyeon; Yang, Hyunjo; Yim, Donggyu; Yamamoto, Masahiro; Maruyama, Kotaro; Park, Byungjun
2014-04-01
Until recent device nodes, lithography has been struggling to improve its resolution limit. Even though next generation lithography technology is now facing various difficulties, several innovative resolution enhancement technologies, based on 193nm wavelength, were introduced and implemented to keep the trend of device scaling. Scanner makers keep developing state-of-the-art exposure system which guarantees higher productivity and meets a more aggressive overlay specification. "The scaling reduction of the overlay error has been a simple matter of the capability of exposure tools. However, it is clear that the scanner contributions may no longer be the majority component in total overlay performance. The ability to control correctable overlay components is paramount to achieve the desired performance.(2)" In a manufacturing fab, the overlay error, determined by a conventional overlay measurement: by using an overlay mark based on IBO and DBO, often does not represent the physical placement error in the cell area of a memory device. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion, caused by etching or CMP, also can be a source of the mismatch. Therefore, the requirement of a direct overlay measurement in the cell pattern gradually increases in the manufacturing field, and also in the development level. In order to overcome the mismatch between conventional overlay measurement and the real placement error of layer to layer in the cell area of a memory device, we suggest an alternative overlay measurement method utilizing by design, based metrology tool. A basic concept of this method is shown in figure1. A CD-SEM measurement of the overlay error between layer 1 and 2 could be the ideal method but it takes too long time to extract a lot of data from wafer level. An E-beam based DBM tool provides high speed to cover the whole wafer with high repeatability. It is enabled by using the design as a reference for overlay measurement and a high speed scan system. In this paper, we have demonstrated that direct overlay measurement in the cell area can distinguish the mismatch exactly, instead of using overlay mark. This experiment was carried out for several critical layer in DRAM and Flash memory, using DBM(Design Based Metrology) tool, NGR2170™.
Study on photochemical analysis system (VLES) for EUV lithography
NASA Astrophysics Data System (ADS)
Sekiguchi, A.; Kono, Y.; Kadoi, M.; Minami, Y.; Kozawa, T.; Tagawa, S.; Gustafson, D.; Blackborow, P.
2007-03-01
A system for photo-chemical analysis of EUV lithography processes has been developed. This system has consists of 3 units: (1) an exposure that uses the Z-Pinch (Energetiq Tech.) EUV Light source (DPP) to carry out a flood exposure, (2) a measurement system RDA (Litho Tech Japan) for the development rate of photo-resists, and (3) a simulation unit that utilizes PROLITH (KLA-Tencor) to calculate the resist profiles and process latitude using the measured development rate data. With this system, preliminary evaluation of the performance of EUV lithography can be performed without any lithography tool (Stepper and Scanner system) that is capable of imaging and alignment. Profiles for 32 nm line and space pattern are simulated for the EUV resist (Posi-2 resist by TOK) by using VLES that hat has sensitivity at the 13.5nm wavelength. The simulation successfully predicts the resist behavior. Thus it is confirmed that the system enables efficient evaluation of the performance of EUV lithography processes.
Modeling of projection electron lithography
NASA Astrophysics Data System (ADS)
Mack, Chris A.
2000-07-01
Projection Electron Lithography (PEL) has recently become a leading candidate for the next generation of lithography systems after the successful demonstration of SCAPEL by Lucent Technologies and PREVAIL by IBM. These systems use a scattering membrane mask followed by a lens with limited angular acceptance range to form an image of the mask when illuminated by high energy electrons. This paper presents an initial modeling system for such types of projection electron lithography systems. Monte Carlo modeling of electron scattering within the mask structure creates an effective mask 'diffraction' pattern, to borrow the standard optical terminology. A cutoff of this scattered pattern by the imaging 'lens' provides an electron energy distribution striking the wafer. This distribution is then convolved with a 'point spread function,' the results of a Monte Carlo scattering calculation of a point beam of electrons striking the resist coated substrate and including the effects of beam blur. Resist exposure and development models from standard electron beam lithography simulation are used to simulate the final three-dimensional resist profile.
EB and EUV lithography using inedible cellulose-based biomass resist material
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2016-03-01
The validity of our approach of inedible cellulose-based resist material derived from woody biomass has been confirmed experimentally for the use of pure water in organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques of eco-conscious electron beam (EB) and extreme-ultraviolet (EUV) lithography. The water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB and EUV lithography was developed for environmental affair, safety, easiness of handling, and health of the working people. The inedible cellulose-based biomass resist material was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB and EUV sensitive groups. The 50-100 nm line and space width, and little footing profiles of cellulose-based biomass resist material on hardmask and layer were resolved at the doses of 10-30 μC/cm2. The eco-conscious lithography techniques was referred to as green EB and EUV lithography using inedible cellulose-based biomass resist material.
Combination photo and electron beam lithography with polymethyl methacrylate (PMMA) resist.
Carbaugh, Daniel J; Pandya, Sneha G; Wright, Jason T; Kaya, Savas; Rahman, Faiz
2017-11-10
We describe techniques for performing photolithography and electron beam lithography in succession on the same resist-covered substrate. Larger openings are defined in the resist film through photolithography whereas smaller openings are defined through conventional electron beam lithography. The two processes are carried out one after the other and without an intermediate wet development step. At the conclusion of the two exposures, the resist film is developed once to reveal both large and small openings. Interestingly, these techniques are applicable to both positive and negative tone lithographies with both optical and electron beam exposure. Polymethyl methacrylate, by itself or mixed with a photocatalytic cross-linking agent, is used for this purpose. We demonstrate that such resists are sensitive to both ultraviolet and electron beam irradiation. All four possible combinations, consisting of optical and electron beam lithographies, carried out in positive and negative tone modes have been described. Demonstration grating structures have been shown and process conditions have been described for all four cases.
NASA Astrophysics Data System (ADS)
Mason, Michael D.; Ray, Krishanu; Feke, Gilbert D.; Grober, Robert D.; Pohlers, Gerd; Cameron, James F.
2003-05-01
Coumarin 6 (C6), a pH sensitive fluorescent molecule were doped into commercial resist systems to demonstrate a cost-effective fluorescence microscopy technique for detecting latent photoacid images in exposed chemically amplified resist films. The fluorescenec image contrast is optimized by carefully selecting optical filters to match the spectroscopic properties of C6 in the resist matrices. We demonstrate the potential of this technique for two sepcific non-invasive applications. First, a fast, conventient, fluorescence technique is demonstrated for determination of quantum yeidsl of photo-acid generation. Since the Ka of C6 in the 193nm resist system lies wihtin the range of acid concentrations that can be photogenerated, we have used this technique to evaluate the acid generation efficiency of various photo-acid generators (PAGs). The technique is based on doping the resist formulations containing the candidate PAGs with C6, coating one wafer per PAG, patterning the wafer with a dose ramp and spectroscopically imaging the wafers. The fluorescence of each pattern in the dose ramp is measured as a single image and analyzed with the optical titration model. Second, a nondestructive in-line diagnostic technique is developed for the focus calibration and validation of a projection lithography system. Our experimental results show excellent correlation between the fluorescence images and scanning electron microscope analysis of developed features. This technique has successfully been applied in both deep UV resists e.g., Shipley UVIIHS resist and 193 nm resists e.g., Shipley Vema-type resist. This method of focus calibration has also been extended to samples with feature sizes below the diffraction limit where the pitch between adjacent features is on the order of 300 nm. Image capture, data analysis, and focus latitude verification are all computer controlled from a single hardware/software platform. Typical focus calibration curves can be obtained within several minutes.
Magnetron Sputtering as a Fabrication Method for a Biodegradable Fe32Mn Alloy
Jurgeleit, Till; Quandt, Eckhard; Zamponi, Christiane
2017-01-01
Biodegradable metals are a topic of great interest and Fe-based materials are prominent examples. The research task is to find a suitable compromise between mechanical, corrosion, and magnetic properties. For this purpose, investigations regarding alternative fabrication processes are important. In the present study, magnetron sputtering technology in combination with UV-lithography was used in order to fabricate freestanding, microstructured Fe32Mn films. To adjust the microstructure and crystalline phase composition with respect to the requirements, the foils were post-deposition annealed under a reducing atmosphere. The microstructure and crystalline phase composition were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, for mechanical characterization, uniaxial tensile tests were performed. The in vitro corrosion rates were determined by electrochemical polarization measurements in pseudo-physiological solution. Additionally, the magnetic properties were measured via vibrating sample magnetometry. The foils showed a fine-grained structure and a tensile strength of 712 MPa, which is approximately a factor of two higher compared to the sputtered pure Fe reference material. The yield strength was observed to be even higher than values reported in literature for alloys with similar composition. Against expectations, the corrosion rates were found to be lower in comparison to pure Fe. Since the annealed foils exist in the austenitic, and antiferromagnetic γ-phase, an additional advantage of the FeMn foils is the low magnetic saturation polarization of 0.003 T, compared to Fe with 1.978 T. This value is even lower compared to the SS 316L steel acting as a gold standard for implants, and thus enhances the MRI compatibility of the material. The study demonstrates that magnetron sputtering in combination with UV-lithography is a new concept for the fabrication of already in situ geometrically structured FeMn-based foils with promising mechanical and magnetic properties. PMID:29057837
Fabrication of Three-Dimensional Imprint Lithography Templates by Colloidal Dispersions
2011-03-06
Dispersions A. Marcia Almanza-Workman, Taussig P. Carl, Albert H. Jeans, Robert L. Cobene HP Laboratories HPL-2011-32 Flexible displays, Self aligned...imprint lithography, stamps, fluorothermoplastics, latex Self -aligned imprint lithography (SAIL) enables patterning and alignment of submicron-sized...features on flexible substrates in the roll-to roll (R2R) environment. Soft molds made of elastomers have been used as stamps to pattern three
OML: optical maskless lithography for economic design prototyping and small-volume production
NASA Astrophysics Data System (ADS)
Sandstrom, Tor; Bleeker, Arno; Hintersteiner, Jason; Troost, Kars; Freyer, Jorge; van der Mast, Karel
2004-05-01
The business case for Maskless Lithography is more compelling than ever before, due to more critical processes, rising mask costs and shorter product cycles. The economics of Maskless Lithography gives a crossover volume from Maskless to mask-based lithography at surprisingly many wafers per mask for surprisingly few wafers per hour throughput. Also, small-volume production will in many cases be more economical with Maskless Lithography, even when compared to "shuttle" schemes, reticles with multiple layers, etc. The full benefit of Maskless Lithography is only achievable by duplicating processes that are compatible with volume production processes on conventional scanners. This can be accomplished by the integration of pattern generators based on spatial light modulator technology with state-of-the-art optical scanner systems. This paper reports on the system design of an Optical Maskless Scanner in development by ASML and Micronic: small-field optics with high demagnification, variable NA and illumination schemes, spatial light modulators with millions of MEMS mirrors on CMOS drivers, a data path with a sustained data flow of more than 250 GPixels per second, stitching of sub-fields to scanner fields, and rasterization and writing strategies for throughput and good image fidelity. Predicted lithographic performance based on image simulations is also shown.
Artifacts for Calibration of Submicron Width Measurements
NASA Technical Reports Server (NTRS)
Grunthaner, Frank; Grunthaner, Paula; Bryson, Charles, III
2003-01-01
Artifacts that are fabricated with the help of molecular-beam epitaxy (MBE) are undergoing development for use as dimensional calibration standards with submicron widths. Such standards are needed for calibrating instruments (principally, scanning electron microscopes and scanning probe microscopes) for measuring the widths of features in advanced integrated circuits. Dimensional calibration standards fabricated by an older process that involves lithography and etching of trenches in (110) surfaces of single-crystal silicon are generally reproducible to within dimensional tolerances of about 15 nm. It is anticipated that when the artifacts of the present type are fully developed, their critical dimensions will be reproducible to within 1 nm. These artifacts are expected to find increasing use in the semiconductor-device and integrated- circuit industries as the width tolerances on semiconductor devices shrink to a few nanometers during the next few years. Unlike in the older process, one does not rely on lithography and etching to define the critical dimensions. Instead, one relies on the inherent smoothness and flatness of MBE layers deposited under controlled conditions and defines the critical dimensions as the thicknesses of such layers. An artifact of the present type is fabricated in two stages (see figure): In the first stage, a multilayer epitaxial wafer is grown on a very flat substrate. In the second stage, the wafer is cleaved to expose the layers, then the exposed layers are differentially etched (taking advantage of large differences between the etch rates of the different epitaxial layer materials). The resulting structure includes narrow and well-defined trenches and a shelf with thicknesses determined by the thicknesses of the epitaxial layers from which they were etched. Eventually, it should be possible to add a third fabrication stage in which durable, electronically inert artifacts could be replicated in diamondlike carbon from a master made by MBE and etching as described above.
Data sharing system for lithography APC
NASA Astrophysics Data System (ADS)
Kawamura, Eiichi; Teranishi, Yoshiharu; Shimabara, Masanori
2007-03-01
We have developed a simple and cost-effective data sharing system between fabs for lithography advanced process control (APC). Lithography APC requires process flow, inter-layer information, history information, mask information and so on. So, inter-APC data sharing system has become necessary when lots are to be processed in multiple fabs (usually two fabs). The development cost and maintenance cost also have to be taken into account. The system handles minimum information necessary to make trend prediction for the lots. Three types of data have to be shared for precise trend prediction. First one is device information of the lots, e.g., process flow of the device and inter-layer information. Second one is mask information from mask suppliers, e.g., pattern characteristics and pattern widths. Last one is history data of the lots. Device information is electronic file and easy to handle. The electronic file is common between APCs and uploaded into the database. As for mask information sharing, mask information described in common format is obtained via Wide Area Network (WAN) from mask-vender will be stored in the mask-information data server. This information is periodically transferred to one specific lithography-APC server and compiled into the database. This lithography-APC server periodically delivers the mask-information to every other lithography-APC server. Process-history data sharing system mainly consists of function of delivering process-history data. In shipping production lots to another fab, the product-related process-history data is delivered by the lithography-APC server from the shipping site. We have confirmed the function and effectiveness of data sharing systems.
Lithography for enabling advances in integrated circuits and devices.
Garner, C Michael
2012-08-28
Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.
Rapid fabrication of microneedles using magnetorheological drawing lithography.
Chen, Zhipeng; Ren, Lei; Li, Jiyu; Yao, Lebin; Chen, Yan; Liu, Bin; Jiang, Lelun
2018-01-01
Microneedles are micron-sized needles that are widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. In this study, we present a novel magnetorheological drawing lithography (MRDL) method to efficiently fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. With the assistance of an external magnetic field, the 3D structure of a microneedle can be directly drawn from a droplet of curable magnetorheological fluid. The formation process of a microneedle consists of two key stages, elasto-capillary self-thinning and magneto-capillary self-shrinking, which greatly affect the microneedle height and tip radius. Penetration and fracture tests demonstrated that the microneedle had sufficient strength and toughness for skin penetration. Microneedle arrays and a bio-inspired microneedle were also fabricated, which further demonstrated the versatility and flexibility of the MRDL method. Microneedles have been widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. Furthermore, most researchers have focused on the biomedical applications of microneedles but have given little attention to the optimization of the fabrication process. This research presents a novel magnetorheological drawing lithography (MRDL) method to fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. In this proposed technique, a droplet of curable magnetorheological fluid (CMRF) is drawn directly from almost any substrate to produce a 3D microneedle under an external magnetic field. This method not only inherits the advantages of thermal drawing approach without the need for a mask and light irradiation but also eliminates the requirement for drawing temperature adjustment. The MRDL method is extremely simple and can even produce the complex and multiscale structure of bio-inspired microneedle. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Photosensitive naturally derived resins toward optical 3-D printing
NASA Astrophysics Data System (ADS)
Skliutas, Edvinas; Kasetaite, Sigita; Jonušauskas, Linas; Ostrauskaite, Jolita; Malinauskas, Mangirdas
2018-04-01
Recent advances in material engineering have shown that renewable raw materials, such as plant oils or glycerol, can be applied for synthesis of polymers due to ready availability, inherent biodegradability, limited toxicity, and existence of modifiable functional groups and eventually resulting to a potentially lower cost. After additional chemical modifications (epoxidation, acrylation, double bonds metathesis, etc.), they can be applied in such high-tech areas as stereolithography, which allows fabrication of three-dimensional (3-D) objects. "Autodesk's" 3-D optical printer "Ember" using 405-nm light was implemented for dynamic projection lithography. It enabled straightforward spatio-selective photopolymerization on demand, which allows development of various photosensitive materials. The bio-based resins' photosensitivity was compared to standard "Autodesk" "PR48" and "Formlabs" "Clear" materials. It turned out that the bioresins need a higher energy dose to be cured (a least 16 J · cm - 2 for a single layer varying from 100 to 130 μm). Despite this, submillimeter range 2.5-D structural features were formed, and their morphology was assessed by optical profilometer and scanning electron microscope. It was revealed that a higher exposition dose (up to 26 J · cm - 2) results in a linear increase in the formed structures height, proving controllability of the undergoing process. Overall, the provided results show that naturally derived resins are suitable candidates for tabletop gray-tone lithography.
Interconnections in ULSI: Correlation and Crosstalk
1992-12-31
basic tool is electron beam lithography of poly (methyl methacrylate) (PMMA). The two central issues to creating very dense patterns as described...direct lithographic techniques. Fig. 2: Ti/Au (2 nm/15 nm) grating with 38 nm pitch fabricated by electron beam lithography using our high contrast...G. H. Bernstein, G. Bazan, and D. A. Hill, "Spatial Density of Lines in PMMA by Electron Beam Lithography ," Journal of Vacuum Science and Technology
Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon
2009-10-07
We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.
Near-Field Scanning Optical Microscopy and Raman Microscopy.
NASA Astrophysics Data System (ADS)
Harootunian, Alec Tate
1987-09-01
Both a one dimensional near-field scanning optical microscope and Raman microprobe were constructed. In near -field scanning optical microscopy (NSOM) a subwavelength aperture is scanned in the near-field of the object. Radiation transmitted through the aperture is collected to form an image as the aperture scans over the object. The resolution of an NSOM system is essentially wavelength independent and is limited by the diameter of the aperture used to scan the object. NSOM was developed in an effort to provide a nondestructive in situ high spatial resolution probe while still utilizing photons at optical wavelengths. The Raman microprobe constructed provided vibrational Raman information with spatial resolution equivalent that of a conventional diffraction limited microscope. Both transmission studies and near-field diffration studies of subwavelength apertures were performed. Diffraction theories for a small aperture in an infinitely thin conducting screen, a slit in a thick conducting screen, and an aperture in a black screen were examined. All three theories indicate collimation of radiation to the size to the size of the subwavelength aperture or slit in the near-field. Theoretical calculations and experimental results indicate that light transmitted through subwavelength apertures is readily detectable. Light of wavelength 4579 (ANGSTROM) was transmitted through apertures with diameters as small as 300 (ANGSTROM). These studies indicate the feasibility of constructing an NSOM system. One dimensional transmission and fluorescence NSOM systems were constructed. Apertures in the tips of metallized glass pipettes width inner diameters of less than 1000 (ANGSTROM) were used as a light source in the NSOM system. A tunneling current was used to maintain the aperture position in the near-field. Fluorescence NSOM was demonstrated for the first time. Microspectroscopic and Raman microscopic studies of turtle cone oil droplets were performed. Both the Raman vibrational frequencies and the Raman excitation data indicate that the carotenoids are unaggregated. The carotenoid astaxanthin was identified in the orange and red droplets by Raman microscopy. Future applications for both Raman microscopy and near-field microscopy were proposed. Four methods of near-field distance regulation were also examined. Finally, theoretical exposure curves for near-field lithography were calculated. Both the near-field lithographic results and the near field diffraction studies indicate essentially wavelength independent resolution. (Abstract shortened with permission of author.).
Direct etch method for microfludic channel and nanoheight post-fabrication by picoliter droplets
NASA Astrophysics Data System (ADS)
Demirci, Utkan; Toner, Mehmet
2006-01-01
Photolithography is an expensive and significant step in microfabrication. Approaches that could change lithography would create an impact on semiconductor industry and microelectromechanical systems technologies. We demonstrate a direct etching method by ejecting etchant droplets at desired locations by using microdroplet ejector arrays. This method could be used for easy fabrication of poly(dimethylsiloxane) microfluidic channels and nanometer height postlike structures in microfluidic channels.
NASA Astrophysics Data System (ADS)
Park, Joonhan; Choi, Yunkyoung; Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan
2014-12-01
A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures.A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures. Electronic supplementary information (ESI) available: The incident angle dependence of reflectance spectra and the atomic force microscopy image of the Au nanoparticle array on a silk film after 1 hour of ultrasonication. See DOI: 10.1039/c4nr05172f
Challenges and requirements of mask data processing for multi-beam mask writer
NASA Astrophysics Data System (ADS)
Choi, Jin; Lee, Dong Hyun; Park, Sinjeung; Lee, SookHyun; Tamamushi, Shuichi; Shin, In Kyun; Jeon, Chan Uk
2015-07-01
To overcome the resolution and throughput of current mask writer for advanced lithography technologies, the platform of e-beam writer have been evolved by the developments of hardware and software in writer. Especially, aggressive optical proximity correction (OPC) for unprecedented extension of optical lithography and the needs of low sensitivity resist for high resolution result in the limit of variable shaped beam writer which is widely used for mass production. The multi-beam mask writer is attractive candidate for photomask writing of sub-10nm device because of its high speed and the large degree of freedom which enable high dose and dose modulation for each pixel. However, the higher dose and almost unlimited appetite for dose modulation challenge the mask data processing (MDP) in aspects of extreme data volume and correction method. Here, we discuss the requirements of mask data processing for multi-beam mask writer and presents new challenges of the data format, data flow, and correction method for user and supplier MDP tool.
Active membrane masks for improved overlay performance in proximity lithography
NASA Astrophysics Data System (ADS)
Huston, Dryver R.; Plumpton, James; Esser, Brian; Sullivan, Gerald A.
2004-07-01
Membrane masks are thin (2 micron x 35 mm x 35 mm) structures that carry the master exposure patterns in proximity (X-ray) lithography. With the continuous drive to the printing of ever-finer features in microelectronics, the reduction of mask-wafer overlay positioning errors by passive rigid body positioning and passive stress control in the mask becomes impractical due to nano and sub-micron scale elastic deformations in the membrane mask. This paper describes the design, mechanics and performance of a system for actively stretching a membrane mask in-plane to control overlay distortion. The method uses thermoelectric heating/cooling elements placed on the mask perimeter. The thermoelectric elements cause controlled thermoelastic deformations in the supporting wafer, which in turn corrects distortions in the membrane mask. Silicon carbide masks are the focus of this study, but the method is believed to be applicable to other mask materials, such as diamond. Experimental and numerical results will be presented, as well as a discussion of the design issues and related design decisions.
2013-01-01
We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution. PMID:23557325
Gonzalez, Federico Lora; Gordon, Michael J
2014-06-02
Quasi-ordered moth-eye arrays were fabricated in Si using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering was explored experimentally and modeled quantitatively using effective medium theory. The highest aspect ratio structures (AR = 9.4) achieved peak transmittance of 98%, with >85% transmission for λ = 7-30 μm. A detailed photon balance was constructed by measuring transmission, forward scattering, specular reflection and diffuse reflection to quantify optical losses due to near-field effects. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior anti-reflective properties compared to unstructured interfaces over a wide angular range (0-60° incidence). The colloidal lithography method presented here is scalable and substrate-independent, providing a general approach to realize moth-eye structures and anti-reflection in many IR-compatible material systems.
Method and system for gas flow mitigation of molecular contamination of optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, Gildardo; Johnson, Terry; Arienti, Marco
A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less
Ag paste-based nanomesh electrodes for large-area touch screen panels
NASA Astrophysics Data System (ADS)
Chung, Sung-il; Kyeom Kim, Pan; Ha, Tae-gyu
2017-10-01
This study reports a novel method for fabricating a nickel nanomesh mold using phase shift lithography, suitable for use in large-area touch screen panel applications. Generally, the values of light transmittance and sheet resistance of metal mesh transparent conducting electrode (TCE) films are determined by the ratio of the aperture to metal areas. In this study, taking into consideration the optimal light transmittance, sheet resistance, and pattern visibility issues, the line width of the metal mesh pattern was ~1 µm, and the pitch of the pattern was ~100 µm. In addition, a novel method of manufacturing wiring electrodes using a phase shift lithography process was also developed and evaluated. A TCE film with a size of 370 mm × 470 mm was prepared and evaluated for its light transmittance and sheet resistance. In addition, wiring electrodes with a length of 70 mm were fabricated and their line resistances evaluated by varying their line width.
Layout decomposition of self-aligned double patterning for 2D random logic patterning
NASA Astrophysics Data System (ADS)
Ban, Yongchan; Miloslavsky, Alex; Lucas, Kevin; Choi, Soo-Han; Park, Chul-Hong; Pan, David Z.
2011-04-01
Self-aligned double pattering (SADP) has been adapted as a promising solution for sub-30nm technology nodes due to its lower overlay problem and better process tolerance. SADP is in production use for 1D dense patterns with good pitch control such as NAND Flash memory applications, but it is still challenging to apply SADP to 2D random logic patterns. The favored type of SADP for complex logic interconnects is a two mask approach using a core mask and a trim mask. In this paper, we first describe layout decomposition methods of spacer-type double patterning lithography, then report a type of SADP compliant layouts, and finally report SADP applications on Samsung 22nm SRAM layout. For SADP decomposition, we propose several SADP-aware layout coloring algorithms and a method of generating lithography-friendly core mask patterns. Experimental results on 22nm node designs show that our proposed layout decomposition for SADP effectively decomposes any given layouts.
EUV wavefront metrology system in EUVA
NASA Astrophysics Data System (ADS)
Hasegawa, Takayuki; Ouchi, Chidane; Hasegawa, Masanobu; Kato, Seima; Suzuki, Akiyoshi; Sugisaki, Katsumi; Murakami, Katsuhiko; Saito, Jun; Niibe, Masahito
2004-05-01
An Experimental extreme ultraviolet (EUV) interferometer (EEI) using an undulator as a light source was installed in New SUBARU synchrotron facility at Himeji Institute of Technology (HIT). The EEI can evaluate the five metrology methods reported before. (1) A purpose of the EEI is to determine the most suitable method for measuring the projection optics of EUV lithography systems for mass production tools.
Gao, Yang; Shi, Tielin; Tan, Xianhua; Liao, Guanglan
2014-06-01
We have developed a novel method to fabricate micro/nano structure based on the coherent diffraction lithography, and acquired periodic silicon tubular gratings with deep nano-scale tapered profiles at the top part. The optical properties of these tubular gratings were similar to an effective gradient-index antireflective surface, resulting in a broadband antireflective combining super-hydrophobic behavior. The mechanism of the method was simulated by rigorous coupled wave analysis algorithms. Then coherent diffraction lithography by use of suitable mask, in which periodic micro-scale circular opaque patters were distributed, was realized on the traditional aligner. Due to coherent diffraction, we obtained enough light intensity for photoresist exposure under the center of the opaque area in the mask together with transparent areas. The tapered line profiles and hollow photoresist gratings over large areas could be fabricated on the silicon wafer after development. The dry etching process was carried out, and high aspect ratio silicon tubular gratings with deep tapered profiles at the top were fabricated. The optical property and wettability of the structure were verified, proving that the proposed method and obtained micro/nano structure provide application potential in the future.
Introduction to Micro/Nanofabrication
NASA Astrophysics Data System (ADS)
Ziaie, Babak; Baldi, Antonio; Atashbar, Massood
This chapter outlines and discusses important micro- and nanofabrication techniques. We start with the most basic methods borrowed from the integrated circuit (IC) industry, such as thin film deposition, lithography and etching, and then move on to look at MEMS and nanofabrication technologies. We cover a broad range of dimensions, from the micron to the nanometer scale. Although most of the current research is geared towards the nanodomain, a good understanding of top-down methods for fabricating micron-sized objects can aid our understanding of this research. Due to space constraints, we have focused here on the most important technologies; in the microdomain these include surface, bulk and high aspect ratio micromachining; in the nanodomain we concentrate on e-beam lithography, epitaxial growth, template manufacturing and self-assembly. MEMS technology is maturing rapidly, with some new technologies displacing older ones that have proven to be unsuited to manufacture on a commercial scale. However, the jury is still out on methods used in the nanodomain, although it appears that bottom-up methods are the most feasible, and these will have a major impact in a variety of application areas such as biology, medicine, environmental monitoring and nanoelectronics.
Wei, Xueyong
2010-11-01
Since it was invented two decades ago, Nanosphere Lithography (NSL) has been widely studied as a low cost and flexible technique to fabricate nanostructures. Based on the registered patents and some selected papers, this review will discuss recent developments of different NSL strategies for the fabrication of ordered nanostructure arrays. The mechanism of self-assembly process and the techniques for preparing the self-assembled nanosphere template are first briefly introduced. The nanosphere templates are used either as shadow masks or as moulds for pattern transfer. Much more work now combines NSL with other lithographic techniques and material growth methods to form novel nanostructures of complex shape or various materials. Hence, this review finally gives a discussion on some future directions in NSL study.
NASA Astrophysics Data System (ADS)
Zhang, Chen; Huang, Xiaohu; Liu, Hongfei; Chua, Soo Jin; Ross, Caroline A.
2016-12-01
Vertically aligned, highly ordered, large area arrays of nanostructures are important building blocks for multifunctional devices. Here, ZnO nanorod arrays are selectively synthesized on Si substrates by a solution method within patterns created by nanoimprint lithography. The growth modes of two dimensional nucleation-driven wedding cakes and screw dislocation-driven spirals are inferred to determine the top end morphologies of the nanorods. Sub-bandgap photoluminescence of the nanorods is greatly enhanced by the manipulation of the hydrogen donors via a post-growth thermal treatment. Lasing behavior is facilitated in the nanorods with faceted top ends formed from wedding cakes growth mode. This work demonstrates the control of morphologies of oxide nanostructures in a large scale and the optimization of the optical performance.
Aluminum Nanowire Arrays via Soft Nanoimprint Lithography
NASA Astrophysics Data System (ADS)
Naughton, Michael J.; Nesbitt, Nathan T.; Merlo, Juan M.; Rose, Aaron H.; Calm, Yitzi M.; D'Imperio, Luke A.; Courtney, Dave T.; Shepard, Steve; Kempa, Krzysztof; Burns, Michael J.
We have previously reported a method to fabricate freestanding, vertically-oriented, and lithographically-ordered Al nanowire arrays via directed assembly, and demonstrated their utility as a plasmonic waveguide. However, the process, a variation on the preparation of anodized aluminum oxide (AAO), involved imprinting Al with a hard stamp, which wore down the stamp and had a low yield of Al NWs. Here we show a new nanoimprint lithography (NIL) technique that uses a soft stamp to pattern a mask on the Al; it provides a greater yield of Al NWs and is less destructive to the stamp, providing a path to applications that require NW arrays over macroscopic areas. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).
Method for the protection of extreme ultraviolet lithography optics
Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.
2010-06-22
A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.
Sweatt, William C.; Stulen, Richard H.
1999-01-01
The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.
Sweatt, W.C.; Stulen, R.H.
1999-02-09
The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides. 12 figs.
Template assisted synthesis and optical properties of gold nanoparticles.
NASA Astrophysics Data System (ADS)
Fodor, Petru; Lasalvia, Vincenzo
2009-03-01
A hybrid nanofabrication method (interference lithography + self assembly) was explored for the fabrication of arrays of gold nanoparticles. To ensure the uniformity of the nanoparticles, a template assisted synthesis was used in which the gold is electrodeposited in the pores of anodized aluminum membranes. The spacing between the pores and their ordering is controlled in the first fabrication step of the template in which laser lithography and metal deposition are used to produce aluminum films with controlled strain profiles. The diameter of the pores produced after anodizing the aluminum film in acidic solution determines the diameter of the gold particles, while their aspect ratio is controlled through the deposition time. Optical absorbance spectroscopy is used to evaluate the ability to tune the nanoparticles plasmon resonance spectra through control over their size and aspect ratio.
Aging effect of AlF3 coatings for 193 nm lithography
NASA Astrophysics Data System (ADS)
Zhao, Jia; Wang, Lin; Zhang, Weili; Yi, Kui; Shao, Jianda
2018-02-01
As important part of components for 193 nm lithography, AlF3 coatings deposited by resistive heating method acquire advantages like lower optical loss and higher laser damage threshold, but they also possess some disadvantages like worse stability, which is what aging effect focuses on. AlF3 single-layer coatings were deposited; optical property, surface morphology and roughness, and composition were characterized in different periods. Owing to aging effect, refractive index and extinction coefficient increased; larger and larger roughness caused more and more scattering loss, which was in the same order with absorption at 193.4 nm and part of optical loss; from composition analysis, proportional substitution of AlF3 by alumina may account for changes in refractive index as well as absorption.
Okamoto, Toshihiro; Fukuta, Tetsuya; Sato, Shuji; Haraguchi, Masanobu; Fukui, Masuo
2011-04-11
We succeeded in making a silver split-ring (SR) structure of approximately 130 nm in diameter on a glass substrate using a nanosphere lithography technique. The light scattering spectrum in visible near-infrared region of a single, isolated SR was measured using a microscope spectroscopy optical system. The electromagnetic field enhancement spectrum and distribution of the SR structure were simulated by the finite-difference time-domain method, and the excitation modes were clarified. The long wavelength peak in the light scattering spectra corresponded to a fundamental LC resonance mode excited by an incident electric field. It was shown that a single SR structure fabricated as abovementioned can operate as a resonator and generate a magnetic dipole. © 2011 Optical Society of America
Patterning and templating for nanoelectronics.
Galatsis, Kosmas; Wang, Kang L; Ozkan, Mihri; Ozkan, Cengiz S; Huang, Yu; Chang, Jane P; Monbouquette, Harold G; Chen, Yong; Nealey, Paul; Botros, Youssry
2010-02-09
The semiconductor industry will soon be launching 32 nm complementary metal oxide semiconductor (CMOS) technology node using 193 nm lithography patterning technology to fabricate microprocessors with more than 2 billion transistors. To ensure the survival of Moore's law, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored. It is evident that most alternative patterning techniques may not offer compelling advantages to succeed conventional top-down lithography for silicon integrated circuits, but alternative approaches may well indeed offer functional advantages in realising next-generation information processing nanoarchitectures such as those based on cellular, bioinsipired, magnetic dot logic, and crossbar schemes. This paper highlights and evaluates some patterning methods from the Center on Functional Engineered Nano Architectonics in Los Angeles and discusses key benchmarking criteria with respect to CMOS scaling.
Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.
Hwang, Jae K; Cho, Sangho; Seo, Eun K; Myoung, Jae M; Sung, Myung M
2009-12-01
We demonstrate selective adsorption and alignment of ZnO nanowires on patterned poly(dimethylsiloxane) (PDMS) thin layers with (aminopropyl)siloxane self-assembled monolayers (SAMs). Light stamping lithography (LSL) was used to prepare patterned PDMS thin layers as neutral passivation regions on Si substrates. (3-Aminopropyl)triethoxysilane-based SAMs were selectively formed only on regions exposing the silanol groups of the Si substrates. The patterned positively charged amino groups define and direct the selective adsorption of ZnO nanowires with negative surface charges in the protic solvent. This procedure can be adopted in automated printing machines that generate patterned ZnO-nanowire arrays on large-area substrates. To demonstrate its usefulness, the LSL method was applied to prepare ZnO-nanowire transistor arrays on 4-in. Si wafers.
ILT for double exposure lithography with conventional and novel materials
NASA Astrophysics Data System (ADS)
Poonawala, Amyn; Borodovsky, Yan; Milanfar, Peyman
2007-03-01
Multiple paths exists to provide lithography solutions pursuant to Moore's Law for next 3-5 generations of technology, yet each of those paths inevitably leads to solutions eventually requiring patterning at k I < 0.30 and below. In this article, we explore double exposure single development lithography for k I >= 0.25 (using conventional resist) and k1 < 0.25 (using new out-of-sight out-of-mind materials). For the case of k I >= 0.25, we propose a novel double exposure inverse lithography technique (ILT) to split the pattern. Our algorithm is based on our earlier proposed single exposure ILT framework, and works by decomposing the aerial image (instead of the target pattern) into two parts. It also resolves the phase conflicts automatically as part of the decomposition, and the combined aerial image obtained using the estimated masks has a superior contrast. For the case of k I < 0.25, we focus on analyzing the use of various dual patterning techniques enabled by the use of hypothetic materials with properties that allow for the violation of the linear superposition of intensities from the two exposures. We investigate the possible use of two materials: contrast enhancement layer (CEL) and two-photon absorption resists. We propose a mathematical model for CEL, define its characteristic properties, and derive fundamental bounds on the improvement in image log-slope. Simulation results demonstrate that double exposure single development lithography using CEL enables printing 80nm gratings using dry lithography. We also combine ILT, CEL, and DEL to synthesize 2-D patterns with k I = 0.185. Finally, we discuss the viability of two-photon absorption resists for double exposure lithography.
Multi-shaped beam: development status and update on lithography results
NASA Astrophysics Data System (ADS)
Slodowski, Matthias; Doering, Hans-Joachim; Dorl, Wolfgang; Stolberg, Ines A.
2011-04-01
According to the ITRS [1] photo mask is a significant challenge for the 22nm technology node requirements and beyond. Mask making capability and cost escalation continue to be critical for future lithography progress. On the technological side mask specifications and complexity have increased more quickly than the half-pitch requirements on the wafer designated by the roadmap due to advanced optical proximity correction and double patterning demands. From the economical perspective mask costs have significantly increased each generation, in which mask writing represents a major portion. The availability of a multi-electron-beam lithography system for mask write application is considered a potential solution to overcome these challenges [2, 3]. In this paper an update of the development status of a full-package high-throughput multi electron-beam writer, called Multi Shaped Beam (MSB), will be presented. Lithography performance results, which are most relevant for mask writing applications, will be disclosed. The MSB technology is an evolutionary development of the matured single Variable Shaped Beam (VSB) technology. An arrangement of Multi Deflection Arrays (MDA) allows operation with multiple shaped beams of variable size, which can be deflected and controlled individually [4]. This evolutionary MSB approach is associated with a lower level of risk and a relatively short time to implementation compared to the known revolutionary concepts [3, 5, 6]. Lithography performance is demonstrated through exposed pattern. Further details of the substrate positioning platform performance will be disclosed. It will become apparent that the MSB operational mode enables lithography on the same and higher performance level compared to single VSB and that there are no specific additional lithography challenges existing beside those which have already been addressed [1].
NASA Astrophysics Data System (ADS)
Nozaka, Takahiro; Mukai, Kohki
2016-04-01
A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.
Optical force stamping lithography
Nedev, Spas; Urban, Alexander S.; Lutich, Andrey A.; Feldmann, Jochen
2013-01-01
Here we introduce a new paradigm of far-field optical lithography, optical force stamping lithography. The approach employs optical forces exerted by a spatially modulated light field on colloidal nanoparticles to rapidly stamp large arbitrary patterns comprised of single nanoparticles onto a substrate with a single-nanoparticle positioning accuracy well beyond the diffraction limit. Because the process is all-optical, the stamping pattern can be changed almost instantly and there is no constraint on the type of nanoparticle or substrates used. PMID:21992538
NASA Astrophysics Data System (ADS)
Cantu, Pietro; Baldi, Livio; Piacentini, Paolo; Sytsma, Joost; Le Gratiet, Bertrand; Gaugiran, Stéphanie; Wong, Patrick; Miyashita, Hiroyuki; Atzei, Luisa R.; Buch, Xavier; Verkleij, Dick; Toublan, Olivier; Perez-Murano, Francesco; Mecerreyes, David
2010-04-01
In 2009 a new European initiative on Double Patterning and Double Exposure lithography process development was started in the framework of the ENIAC Joint Undertaking. The project, named LENS (Lithography Enhancement Towards Nano Scale), involves twelve companies from five different European Countries (Italy, Netherlands, France, Belgium Spain; includes: IC makers (Numonyx and STMicroelectronics), a group of equipment and materials companies (ASML, Lam Research srl, JSR, FEI), a mask maker (Dai Nippon Photomask Europe), an EDA company (Mentor Graphics) and four research and development institutes (CEA-Leti, IMEC, Centro Nacional de Microelectrónica, CIDETEC). The LENS project aims to develop and integrate the overall infrastructure required to reach patterning resolutions required by 32nm and 22nm technology nodes through the double patterning and pitch doubling technologies on existing conventional immersion exposure tools, with the purpose to allow the timely development of 32nm and 22nm technology nodes for memories and logic devices, providing a safe alternative to EUV, Higher Refraction Index Fluids Immersion Lithography and maskless lithography, which appear to be still far from maturity. The project will cover the whole lithography supply chain including design, masks, materials, exposure tools, process integration, metrology and its final objective is the demonstration of 22nm node patterning on available 1.35 NA immersion tools on high complexity mask set.
Electron beam mask writer EBM-9500 for logic 7nm node generation
NASA Astrophysics Data System (ADS)
Matsui, Hideki; Kamikubo, Takashi; Nakahashi, Satoshi; Nomura, Haruyuki; Nakayamada, Noriaki; Suganuma, Mizuna; Kato, Yasuo; Yashima, Jun; Katsap, Victor; Saito, Kenichi; Kobayashi, Ryoei; Miyamoto, Nobuo; Ogasawara, Munehiro
2016-10-01
Semiconductor scaling is slowing down because of difficulties of device manufacturing below logic 7nm node generation. Various lithography candidates which include ArF immersion with resolution enhancement technology (like Inversed Lithography technology), Extreme Ultra Violet lithography and Nano Imprint lithography are being developed to address the situation. In such advanced lithography, shot counts of mask patterns are estimated to increase explosively in critical layers, and then it is hoped that multi beam mask writer (MBMW) is released to handle them within realistic write time. However, ArF immersion technology with multiple patterning will continue to be a mainstream lithography solution for most of the layers. Then, the shot counts in less critical layers are estimated to be stable because of the limitation of resolution in ArF immersion technology. Therefore, single beam mask writer (SBMW) can play an important role for mask production still, relative to MBMW. Also the demand of SBMW seems actually strong for the logic 7nm node. To realize this, we have developed a new SBMW, EBM-9500 for mask fabrication in this generation. A newly introduced electron beam source enables higher current density of 1200A/cm2. Heating effect correction function has also been newly introduced to satisfy the requirements for both pattern accuracy and throughput. In this paper, we will report the configuration and performance of EBM-9500.
Full-chip level MEEF analysis using model based lithography verification
NASA Astrophysics Data System (ADS)
Kim, Juhwan; Wang, Lantian; Zhang, Daniel; Tang, Zongwu
2005-11-01
MEEF (Mask Error Enhancement Factor) has become a critical factor in CD uniformity control since optical lithography process moved to sub-resolution era. A lot of studies have been done by quantifying the impact of the mask CD (Critical Dimension) errors on the wafer CD errors1-2. However, the benefits from those studies were restricted only to small pattern areas of the full-chip data due to long simulation time. As fast turn around time can be achieved for the complicated verifications on very large data by linearly scalable distributed processing technology, model-based lithography verification becomes feasible for various types of applications such as post mask synthesis data sign off for mask tape out in production and lithography process development with full-chip data3,4,5. In this study, we introduced two useful methodologies for the full-chip level verification of mask error impact on wafer lithography patterning process. One methodology is to check MEEF distribution in addition to CD distribution through process window, which can be used for RET/OPC optimization at R&D stage. The other is to check mask error sensitivity on potential pinch and bridge hotspots through lithography process variation, where the outputs can be passed on to Mask CD metrology to add CD measurements on those hotspot locations. Two different OPC data were compared using the two methodologies in this study.
The partial coherence modulation transfer function in testing lithography lens
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2018-03-01
Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.
Mastering multi-depth bio-chip patterns with DVD LBRs
NASA Astrophysics Data System (ADS)
Carson, Doug
2017-08-01
Bio chip and bio disc are rapidly growing technologies used in medical, health and other industries. While there are numerous unique designs and features, these products all rely on precise three-dimensional micro-fluidic channels or arrays to move, separate and combine samples under test. These bio chip and bio disc consumables are typically manufactured by molding these parts to a precise three-dimensional pattern on a negative metal stamper, or they can be made in smaller quantities using an appropriate curable resin and a negative mold/stamper. Stampers required for bio chips have been traditionally made using either micro machining or XY stepping lithography. Both of these technologies have their advantages as well as limitations when it comes to creating micro-fluidic patterns. Significant breakthroughs in continuous maskless lithography have enabled accurate and efficient manufacturing of micro-fluidic masters using LBRs (Laser Beam Recorders) and DRIE (Deep Reactive Ion Etching). The important advantages of LBR continuous lithography vs. XY stepping lithography and micro machining are speed and cost. LBR based continuous lithography is >100x faster than XY stepping lithography and more accurate than micro machining. Several innovations were required in order to create multi-depth patterns with sub micron accuracy. By combining proven industrial LBRs with DCA's G3-VIA pattern generator and DRIE, three-dimensional bio chip masters and stampers are being manufactured efficiently and accurately.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro
2015-09-01
Electron beam (EB) lithography is a key technology for the fabrication of photomasks for ArF immersion and extreme ultraviolet (EUV) lithography and molds for nanoimprint lithography. In this study, the temporal change in the chemical gradient of line-and-space patterns with a 7 nm quarter-pitch (7 nm space width and 21 nm line width) was calculated until it became constant, independently of postexposure baking (PEB) time, to clarify the feasibility of single nano patterning on quartz substrates using EB lithography with chemically amplified resist processes. When the quencher diffusion constant is the same as the acid diffusion constant, the maximum chemical gradient of the line-and-space pattern with a 7 nm quarter-pitch did not differ much from that with a 14 nm half-pitch under the condition described above. Also, from the viewpoint of process control, a low quencher diffusion constant is considered to be preferable for the fabrication of line-and-space patterns with a 7 nm quarter-pitch on quartz substrates.
Programmable lithography engine (ProLE) grid-type supercomputer and its applications
NASA Astrophysics Data System (ADS)
Petersen, John S.; Maslow, Mark J.; Gerold, David J.; Greenway, Robert T.
2003-06-01
There are many variables that can affect lithographic dependent device yield. Because of this, it is not enough to make optical proximity corrections (OPC) based on the mask type, wavelength, lens, illumination-type and coherence. Resist chemistry and physics along with substrate, exposure, and all post-exposure processing must be considered too. Only a holistic approach to finding imaging solutions will accelerate yield and maximize performance. Since experiments are too costly in both time and money, accomplishing this takes massive amounts of accurate simulation capability. Our solution is to create a workbench that has a set of advanced user applications that utilize best-in-class simulator engines for solving litho-related DFM problems using distributive computing. Our product, ProLE (Programmable Lithography Engine), is an integrated system that combines Petersen Advanced Lithography Inc."s (PAL"s) proprietary applications and cluster management software wrapped around commercial software engines, along with optional commercial hardware and software. It uses the most rigorous lithography simulation engines to solve deep sub-wavelength imaging problems accurately and at speeds that are several orders of magnitude faster than current methods. Specifically, ProLE uses full vector thin-mask aerial image models or when needed, full across source 3D electromagnetic field simulation to make accurate aerial image predictions along with calibrated resist models;. The ProLE workstation from Petersen Advanced Lithography, Inc., is the first commercial product that makes it possible to do these intensive calculations at a fraction of a time previously available thus significantly reducing time to market for advance technology devices. In this work, ProLE is introduced, through model comparison to show why vector imaging and rigorous resist models work better than other less rigorous models, then some applications of that use our distributive computing solution are shown. Topics covered describe why ProLE solutions are needed from an economic and technical aspect, a high level discussion of how the distributive system works, speed benchmarking, and finally, a brief survey of applications including advanced aberrations for lens sensitivity and flare studies, optical-proximity-correction for a bitcell and an application that will allow evaluation of the potential of a design to have systematic failures during fabrication.
NASA Astrophysics Data System (ADS)
Fay, Aurélien; Browning, Clyde; Brandt, Pieter; Chartoire, Jacky; Bérard-Bergery, Sébastien; Hazart, Jérôme; Chagoya, Alexandre; Postnikov, Sergei; Saib, Mohamed; Lattard, Ludovic; Schavione, Patrick
2016-03-01
Massively parallel mask-less electron beam lithography (MP-EBL) offers a large intrinsic flexibility at a low cost of ownership in comparison to conventional optical lithography tools. This attractive direct-write technique needs a dedicated data preparation flow to correct both electronic and resist processes. Moreover, Data Prep has to be completed in a short enough time to preserve the flexibility advantage of MP-EBL. While the MP-EBL tools have currently entered an advanced stage of development, this paper will focus on the data preparation side of the work for specifically the MAPPER Lithography FLX-1200 tool [1]-[4], using the ASELTA Nanographics Inscale software. The complete flow as well as the methodology used to achieve a full-field layout data preparation, within an acceptable cycle time, will be presented. Layout used for Data Prep evaluation was one of a 28 nm technology node Metal1 chip with a field size of 26x33mm2, compatible with typical stepper/scanner field sizes and wafer stepping plans. Proximity Effect Correction (PEC) was applied to the entire field, which was then exported as a single file to MAPPER Lithography's machine format, containing fractured shapes and dose assignments. The Soft Edge beam to beam stitching method was employed in the specific overlap regions defined by the machine format as well. In addition to PEC, verification of the correction was included as part of the overall data preparation cycle time. This verification step was executed on the machine file format to ensure pattern fidelity and accuracy as late in the flow as possible. Verification over the full chip, involving billions of evaluation points, is performed both at nominal conditions and at Process Window corners in order to ensure proper exposure and process latitude. The complete MP-EBL data preparation flow was demonstrated for a 28 nm node Metal1 layout in 37 hours. The final verification step shows that the Edge Placement Error (EPE) is kept below 2.25 nm over an exposure dose variation of 8%.
NASA Astrophysics Data System (ADS)
Ruzmetov, D.; O'Regan, T.; Zhang, K.; Herzing, A.; Mazzoni, A.; Chin, M.; Huang, S.; Zhang, Z.; Burke, R.; Neupane, M.; Birdwell, Ag; Shah, P.; Crowne, F.; Kolmakov, A.; Leroy, B.; Robinson, J.; Davydov, A.; Ivanov, T.
We investigate vertical semiconductor junctions consisting of monolayer MoS2 that is epitaxially grown on n- and p-doped GaN crystals. Such a junction represents a building block for 2D/3D vertical semiconductor heterostructures. Epitaxial, lattice-matched growth of MoS2 on GaN is important to ensure high quality interfaces that are crucial for the efficient vertical transport. The MoS2/GaN junctions were characterized with cross-sectional and planar scanning transmission electron microscopy (STEM), scanning tunneling microscopy, and atomic force microscopy. The MoS2/GaN lattice mismatch is measured to be near 1% using STEM. The electrical transport in the out-of-plane direction across the MoS2/GaN junctions was measured using conductive atomic force microscopy and mechanical nano-probes inside a scanning electron microscope. Nano-disc metal contacts to MoS2 were fabricated by e-beam lithography and evaporation. The current-voltage curves of the vertical MoS2/GaN junctions exhibit rectification with opposite polarities for n-doped and p-doped GaN. The metal contact determines the general features of the current-voltage curves, and the MoS2 monolayer modifies the electrical transport across the contact/GaN interface.
MAGIC: a European program to push the insertion of maskless lithography
NASA Astrophysics Data System (ADS)
Pain, L.; Icard, B.; Tedesco, S.; Kampherbeek, B.; Gross, G.; Klein, C.; Loeschner, H.; Platzgummer, E.; Morgan, R.; Manakli, S.; Kretz, J.; Holhe, C.; Choi, K.-H.; Thrum, F.; Kassel, E.; Pilz, W.; Keil, K.; Butschke, J.; Irmscher, M.; Letzkus, F.; Hudek, P.; Paraskevopoulos, A.; Ramm, P.; Weber, J.
2008-03-01
With the willingness of the semiconductor industry to push manufacturing costs down, the mask less lithography solution represents a promising option to deal with the cost and complexity concerns about the optical lithography solution. Though a real interest, the development of multi beam tools still remains in laboratory environment. In the frame of the seventh European Framework Program (FP7), a new project, MAGIC, started January 1st 2008 with the objective to strengthen the development of the mask less technology. The aim of the program is to develop multi beam systems from MAPPER and IMS nanofabrication technologies and the associated infrastructure for the future tool usage. This paper draws the present status of multi beam lithography and details the content and the objectives of the MAGIC project.
Indus-2 X-ray lithography beamline for X-ray optics and material science applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in
2014-04-24
X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less
Electron-beam lithography for micro and nano-optical applications
NASA Technical Reports Server (NTRS)
Wilson, Daniel W.; Muller, Richard E.; Echternach, Pierre M.
2005-01-01
Direct-write electron-beam lithography has proven to be a powerful technique for fabricating a variety of micro- and nano-optical devices. Binary E-beam lithography is the workhorse technique for fabricating optical devices that require complicated precision nano-scale features. We describe a bi-layer resist system and virtual-mark height measurement for improving the reliability of fabricating binary patterns. Analog E-beam lithography is a newer technique that has found significant application in the fabrication of diffractive optical elements. We describe our techniques for fabricating analog surface-relief profiles in E-beam resist, including some discussion regarding overcoming the problems of resist heating and charging. We also describe a multiple-field-size exposure scheme for suppression of field-stitch induced ghost diffraction orders produced by blazed diffraction gratings on non-flat substrates.
United States Air Force High School Apprenticeship Program. 1990 Program Management Report. Volume 3
1991-04-18
User Guide Shelly Knupp 73 Computer-Aided Design (CAD) Area Christopher O’Dell 74 Electron Beam Lithography Suzette Yu 68 Flight Dynamics Laboratory 75...fabrication. I Mr. Ed Davis, for the background knowledge of device processes and I information on electron beam lithography . Captain Mike Cheney, for...researcher may write gates on to the wafer by a process called lithography . This is the most crucial and complex part of the process. Two types of proven
Tunable cw Single-Frequency Source for Injection Seeding 2-micrometer Lasers
1990-06-01
Nd:glass Slab Asilomar, CA, January, 1989. Laser for X-ray Lithography ," presented at Lasers 11. R. L. Byer, "Solid State Lasers for Accelerator 89, New...Alumni Association (Stanford Club of M.K. Reed and R.L. Byer, "A Nd:glass Slab Connecticut), April, 1989. Laserfor X-ray Lithography ," to be...and R.L. Byer, "A Nd:Glass Slab asymmetric quantum wells," invited paper QWA1 Laser for Soft X-ray Lithography ", paper MB4, International Quantum
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto
2017-03-01
We report high-resolution (150 nm) nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using dichloromethane as a volatile solvent for improving the liquidity and a porous cyclodextrin-based gas-permeable mold. This study demonstrates the high-resolution patterning of polylactic acid and other non-liquid functional materials with poor fluidity by thermal nanoimprinting. Such a patterning is expected to expand the utility of thermal nanoimprint lithography and fabricate non-liquid functional materials suitable for eco-friendly and biomedical applications.
Marching of the microlithography horses: electron, ion, and photon: past, present, and future
NASA Astrophysics Data System (ADS)
Lin, Burn J.
2007-03-01
Microlithography patterning employs one of three media; electron, ion, and photon. They are in a way like horses, racing towards the mainstream. Some horses such as electrons run fast but repel each other. Ion beams behave like electron beams but are less developed. The photon beam is the undisputed workhorse, taking microlithography from the 5-μm minimum feature size to 32-nm half pitch. This paper examines the history of microlithography in pattern generation, proximity printing, and projection printing, then identifies the strong and weak points of each technology. In addition to ion-beam and e-beam lithography, the coverage of optical lithography spans the wavelength from 436 to 13.5 nm. Our learning from history helps us prevent mistakes in the future. In almost all cases, making or using the mask presents one of the limiting problems, no matter the type of beams or the replication method. Only the maskless method relieves us from mask-related problems. A way to overcome the low throughput handicap of maskless systems is to use multiple e-beam direct writing, whose imaging lens can be economically and compactly fabricated using MEMS techniques. In a way, the history of microlithography parallels that of aviation. Proximity printing is like the Wright-Brothers' plane; 1X projection printing, single-engine propeller plane with unitized body; reduction step-and-repeat projection printing, multi-engine commercial airliner; scanners, jet airliners. Optical lithography has improved in many ways than just increasing NA and reducing wavelength just as the commercial airliners improving in many other areas than just the speed. The SST increased the speed of airliners by more than a factor of two just as optical resolution doubled with double exposures. EUV lithography with the wavelength reduced by an order of magnitude is similar to the space shuttle increasing its speed to more than 10 times that of the SST. Multiple-beam direct write systems are like helicopters. They do not need airports(masks) but we need a lot of beams to carry the same payload.
Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography
He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling
2016-01-01
With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment. PMID:26902520
Alvarez-Escobar, Marta; Hansford, Derek; Monteiro, Fernando J.
2018-01-01
Introduction Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces of dental materials with different topographies, but studies using human being are still limited. Objective To evaluate a synergy of microfabrication and hMIRS to study the bacterial adhesion on micropatterned surfaces for dental materials. Materials and Methods Micropatterned and flat surfaces on biomedical PDMS disks were produced by soft lithography. The hMIRS approach was used to evaluate the total oral bacterial adhesion on PDMS surfaces placed in the oral cavity of five volunteers (the study was approved by the University Ethical Committee). After 24 h, the disks were analyzed using MTT assay and light microscopy. Results In the present pilot study, microwell structures were microfabricated on the PDMS surface via soft lithography with a spacing of 5 µm. Overall, bacterial adhesion did not significantly differ between the flat and micropatterned surfaces. However, individual analysis of two subjects showed greater bacterial adhesion on the micropatterned surfaces than on the flat surfaces. Significance Microfabrication and hMIRS might be implemented to study the cell/biomaterial interactions for dental materials. PMID:29593793
NASA Astrophysics Data System (ADS)
Balciunas, Evaldas; Jonusauskas, Linas; Valuckas, Vytautas; Baltriukiene, Daiva; Bukelskiene, Virginija; Gadonas, Roaldas; Malinauskas, Mangirdas
2012-06-01
In this work, a combination of Direct Laser Writing (DLW), PoliDiMethylSiloxane (PDMS) soft lithography and UV lithography was used to create cm- scale microstructured polymer scaolds for cell culture experiments out of dierent biocompatible materials: novel hybrid organic-inorganic SZ2080, PDMS elastomer, biodegradable PEG- DA-258 and SU-8. Rabbit muscle-derived stem cells were seeded on the fabricated dierent periodicity scaolds to evaluate if the relief surface had any eect on cell proliferation. An array of microlenses was fabricated using DLW out of SZ2080 and replicated in PDMS and PEG-DA-258, showing good potential applicability of the used techniques in many other elds like micro- and nano- uidics, photonics, and MicroElectroMechanical Systems (MEMS). The synergetic employment of three dierent fabrication techniques allowed to produce desired objects with low cost, high throughput and precision as well as use materials that are dicult to process by other means (PDMS and PEG-DA-258). DLW is a relatively slow fabrication method, since the object has to be written point-by-point. By applying PDMS soft lithography, we were enabled to replicate laser-fabricated scaolds for stem cell growth and micro-optical elements for lab-on-a-chip applications with high speed, low cost and good reproducible quality.
Glass ceramic ZERODUR enabling nanometer precision
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas
2014-03-01
The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.
NASA Technical Reports Server (NTRS)
Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.;
2015-01-01
Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.
NASA Astrophysics Data System (ADS)
Kuo, Hung-Fei; Kao, Guan-Hsuan; Zhu, Liang-Xiu; Hung, Kuo-Shu; Lin, Yu-Hsin
2018-02-01
This study used a digital micromirror device (DMD) to produce point-array patterns and employed a self-developed optical system to define line-and-space patterns on nonplanar substrates. First, field tracing was employed to analyze the aerial images of the lithographic system, which comprised an optical system and the DMD. Multiobjective particle swarm optimization was then applied to determine the spot overlapping rate used. The objective functions were set to minimize linewidth and maximize image log slope, through which the dose of the exposure agent could be effectively controlled and the quality of the nonplanar lithography could be enhanced. Laser beams with 405-nm wavelength were employed as the light source. Silicon substrates coated with photoresist were placed on a nonplanar translation stage. The DMD was used to produce lithographic patterns, during which the parameters were analyzed and optimized. The optimal delay time-sequence combinations were used to scan images of the patterns. Finally, an exposure linewidth of less than 10 μm was successfully achieved using the nonplanar lithographic process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.
The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k{sub 1} of 0.52. The illuminator produces 13.4 nmmore » radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features.« less
Two-dimensional hexagonally oriented CdCl2.H2O nanorod assembly: formation and replication.
Deng, Zhaoxiang; Mao, Chengde
2004-09-14
This paper reports a simple bottom-up method that can controllably fabricate 2D hexagonally oriented and randomly distributed CdCl(2).H(2)O nanorods on mica surfaces. The as-formed nanorod assemblies have been successfully replicated into various matrixes, including gold, poly(dimethylsiloxane), and polyurethane. Thus, this method is compatible with soft-lithography towards further applications.
3D printing of new biobased unsaturated polyesters by microstereo-thermallithography.
Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Farinha, Dina; Faneca, Henrique; Simões, Pedro N; Serra, Arménio C; Bártolo, Paulo J; Coelho, Jorge F J
2014-09-01
New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area.
NASA Astrophysics Data System (ADS)
Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong
2014-04-01
An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.
Engineered ZnO nanowire arrays using different nanopatterning techniques
NASA Astrophysics Data System (ADS)
Volk, János; Szabó, Zoltán; Erdélyi, Róbert; Khánh, Nguyen Q.
2012-02-01
The impact of various masking patterns and template layers on the wet chemically grown vertical ZnO nanowire arrays was investigated. The nanowires/nanorods were seeded at nucleation windows which were patterned in a mask layer using various techniques such as electron beam lithography, nanosphere photolithography, and atomic force microscope type nanolithography. The compared ZnO templates included single crystals, epitaxial layer, and textured polycrystalline films. Scanning electron microscopy revealed that the alignment and crystal orientation of the nanowires were dictated by the underlying seed layer, while their geometry can be tuned by the parameters of the certain nanopatterning technique and of the wet chemical process. The comparison of the alternative nanolithography techniques showed that using direct writing methods the diameter of the ordered ZnO nanowires can be as low as 30-40 nm at a density of 100- 1000 NW/μm2 in a very limited area (10 μm2-1 mm2). Nanosphere photolithography assisted growth, on the other hand, favors thicker nanopillars (~400 nm) and enables large-area, low-cost patterning (1-100 cm2). These alternative lowtemperature fabrication routes can be used for different novel optoelectronic devices, such as nanorod based ultraviolet photodiode, light emitting device, and waveguide laser.
Brinkert, Katharina; Richter, Matthias H.; Akay, Ömer; ...
2018-01-01
We demonstrate that shadow nanosphere lithography (SNL) is an auspicious tool to systematically create three-dimensional electrocatalyst nanostructures on the semiconductor photoelectrode through controlling their morphology and optical properties.
Sequential infiltration synthesis for enhancing multiple-patterning lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih
Simplified methods of multiple-patterning photolithography using sequential infiltration synthesis to modify the photoresist such that it withstands plasma etching better than unmodified resist and replaces one or more hard masks and/or a freezing step in MPL processes including litho-etch-litho-etch photolithography or litho-freeze-litho-etch photolithography.
Applying the miniaturization technologies for biosensor design.
Derkus, Burak
2016-05-15
Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology. Copyright © 2016 Elsevier B.V. All rights reserved.
Integration of multiple theories for the simulation of laser interference lithography processes
NASA Astrophysics Data System (ADS)
Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung
2017-11-01
The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.
Integration of multiple theories for the simulation of laser interference lithography processes.
Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung
2017-11-24
The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.
The novel top-coat material for RLS trade-off reduction in EUVL
NASA Astrophysics Data System (ADS)
Onishi, Ryuji; Sakamoto, Rikimaru; Fujitani, Noriaki; Endo, Takafumi; Ho, Bang-ching
2012-03-01
For the next generation lithography (NGL), several technologies have been proposed to achieve the 22nm-node devices and beyond. Extreme ultraviolet (EUV) lithography is one of the candidates for the next generation lithography. In EUV light source development, low power is one of the critical issue because of the low throughput, and another issue is Out of Band (OoB) light existing in EUV light. OoB is concerned to be the cause of deterioration for the lithography performance. In order to avoid this critical issue, we focused on development of the resist top coat material with OoB absorption property as Out of Band Protection Layer (OBPL). We designed this material having high absorbance around 240nm wavelength and high transmittance for EUV light. And this material aimed to improve sensitivity, resolution and LWR performance.
Lithographic process window optimization for mask aligner proximity lithography
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna; Erdmann, Andreas; Ünal, Nezih; Hofmann, Ulrich; Hennemeyer, Marc; Zoberbier, Ralph; Nguyen, David; Brugger, Juergen
2014-03-01
We introduce a complete methodology for process window optimization in proximity mask aligner lithography. The commercially available lithography simulation software LAB from GenISys GmbH was used for simulation of light propagation and 3D resist development. The methodology was tested for the practical example of lines and spaces, 5 micron half-pitch, printed in a 1 micron thick layer of AZ® 1512HS1 positive photoresist on a silicon wafer. A SUSS MicroTec MA8 mask aligner, equipped with MO Exposure Optics® was used in simulation and experiment. MO Exposure Optics® is the latest generation of illumination systems for mask aligners. MO Exposure Optics® provides telecentric illumination and excellent light uniformity over the full mask field. MO Exposure Optics® allows the lithography engineer to freely shape the angular spectrum of the illumination light (customized illumination), which is a mandatory requirement for process window optimization. Three different illumination settings have been tested for 0 to 100 micron proximity gap. The results obtained prove, that the introduced process window methodology is a major step forward to obtain more robust processes in mask aligner lithography. The most remarkable outcome of the presented study is that a smaller exposure gap does not automatically lead to better print results in proximity lithography - what the "good instinct" of a lithographer would expect. With more than 5'000 mask aligners installed in research and industry worldwide, the proposed process window methodology might have significant impact on yield improvement and cost saving in industry.
The lithographer's dilemma: shrinking without breaking the bank
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2013-10-01
It can no longer be assumed that the lithographic scaling which has previously driven Moore's Law will lead in the future to reduced cost per transistor. Until recently, higher prices for lithography tools were offset by improvements in scanner productivity. The necessity of using double patterning to extend scaling beyond the single exposure resolution limit of optical lithography has resulted in a sharp increase in the cost of patterning a critical construction layer that has not been offset by improvements in exposure tool productivity. Double patterning has also substantially increased the cost of mask sets. EUV lithography represents a single patterning option, but the combination of very high exposure tools prices, moderate throughput, high maintenance costs, and expensive mask blanks makes this a solution more expensive than optical double patterning but less expensive than triple patterning. Directed self-assembly (DSA) could potentially improve wafer costs, but this technology currently is immature. There are also design layout and process integration issues associated with DSA that need to be solved in order to obtain full benefit from tighter pitches. There are many approaches for improving the cost effectiveness of lithography. Innovative double patterning schemes lead to smaller die. EUV lithography productivity can be improved with higher power light sources and improved reliability. There are many technical and business challenges for extending EUV lithography to higher numerical apertures. Efficient contact hole and cut mask solutions are needed, as well as very tight overlay control, regardless of lithographic solution.
Baraldi, G; Bakhti, S; Liu, Z; Reynaud, S; Lefkir, Y; Vocanson, F; Destouches, N
2017-01-20
One of the main challenges in plasmonics is to conceive large-scale, low-cost techniques suitable for the fabrication of metal nanoparticle patterns showing precise spatial organization. Here, we introduce a simple method based on continuous-wave laser illumination to induce the self-organization of silver nanoparticles within high-index thin films. We show that highly regular and homogeneous nanoparticle gratings can be produced on large areas using laser-controlled self-organization processes. This very versatile technique can provide 1D and 2D patterns at a subwavelength scale with tunable features. It does not need any stabilization or expensive devices, such as those required by optical or electron lithography, and is rapid to implement. Accurate in-plane and in-depth characterizations provide valuable information to explain the mechanisms that lead to pattern formation and especially how 2D self-organization can fall into place with successive laser scans. The regular and homogeneous 2D self-organization of metallic NPs with a single laser scan is also reported for the first time in this article. As the reported nanostructures are embedded in porous TiO 2 , we also theoretically explore the interesting potential of organization on the photocatalytic activity of Ag-NP-containing TiO 2 porous films, which is one of the most promising materials for self-cleaning or remediation applications. Realistic electromagnetic simulations demonstrate that the periodic organization of silver nanoparticles can increase the light intensity within the film more than ten times that produced with randomly distributed nanoparticles, leading as expected to enhanced photocatalytic efficiency.
NASA Astrophysics Data System (ADS)
Baraldi, G.; Bakhti, S.; Liu, Z.; Reynaud, S.; Lefkir, Y.; Vocanson, F.; Destouches, N.
2017-01-01
One of the main challenges in plasmonics is to conceive large-scale, low-cost techniques suitable for the fabrication of metal nanoparticle patterns showing precise spatial organization. Here, we introduce a simple method based on continuous-wave laser illumination to induce the self-organization of silver nanoparticles within high-index thin films. We show that highly regular and homogeneous nanoparticle gratings can be produced on large areas using laser-controlled self-organization processes. This very versatile technique can provide 1D and 2D patterns at a subwavelength scale with tunable features. It does not need any stabilization or expensive devices, such as those required by optical or electron lithography, and is rapid to implement. Accurate in-plane and in-depth characterizations provide valuable information to explain the mechanisms that lead to pattern formation and especially how 2D self-organization can fall into place with successive laser scans. The regular and homogeneous 2D self-organization of metallic NPs with a single laser scan is also reported for the first time in this article. As the reported nanostructures are embedded in porous TiO2, we also theoretically explore the interesting potential of organization on the photocatalytic activity of Ag-NP-containing TiO2 porous films, which is one of the most promising materials for self-cleaning or remediation applications. Realistic electromagnetic simulations demonstrate that the periodic organization of silver nanoparticles can increase the light intensity within the film more than ten times that produced with randomly distributed nanoparticles, leading as expected to enhanced photocatalytic efficiency.
3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures
NASA Astrophysics Data System (ADS)
Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.
2018-04-01
In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.
NASA Astrophysics Data System (ADS)
Ozel, Tuncay; Bourret, Gilles R.; Mirkin, Chad A.
2015-05-01
The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowire that can be created and studied in the laboratory. Here, we report a high-throughput technique that can be used to prepare coaxial nanowires with sub-10 nm control over the architectural parameters in both axial and radial dimensions. The method, termed coaxial lithography (COAL), relies on templated electrochemical synthesis and can create coaxial nanowires composed of combinations of metals, metal oxides, metal chalcogenides and conjugated polymers. To illustrate the possibilities of the technique, a core/shell semiconductor nanowire with an embedded plasmonic nanoring was synthesized—a structure that cannot be prepared by any previously known method—and its plasmon-excitation-dependent optoelectronic properties were characterized.
Fabrication of tunable diffraction grating by imprint lithography with photoresist mold
NASA Astrophysics Data System (ADS)
Yamada, Itsunari; Ikeda, Yusuke; Higuchi, Tetsuya
2018-05-01
We fabricated a deformable transmission silicone [poly(dimethylsiloxane)] grating using a two-beam interference method and imprint lithography and evaluated its optical characteristics during a compression process. The grating pattern with 0.43 μm depth and 1.0 μm pitch was created on a silicone surface by an imprinting process with a photoresist mold to realize a simple, low-cost fabrication process. The first-order diffraction transmittance of this grating reached 10.3% at 632.8 nm wavelength. We also measured the relationship between the grating period and compressive stress to the fabricated elements. The grating period changed from 1.0 μm to 0.84 μm by 16.6% compression of the fabricated element in one direction, perpendicular to the grooves, and the first-order diffraction transmittance was 8.6%.
Fabricating optical phantoms to simulate skin tissue properties and microvasculatures
NASA Astrophysics Data System (ADS)
Sheng, Shuwei; Wu, Qiang; Han, Yilin; Dong, Erbao; Xu, Ronald
2015-03-01
This paper introduces novel methods to fabricate optical phantoms that simulate the morphologic, optical, and microvascular characteristics of skin tissue. The multi-layer skin-simulating phantom was fabricated by a light-cured 3D printer that mixed and printed the colorless light-curable ink with the absorption and the scattering ingredients for the designated optical properties. The simulated microvascular network was fabricated by a soft lithography process to embed microchannels in polydimethylsiloxane (PDMS) phantoms. The phantoms also simulated vascular anomalies and hypoxia commonly observed in cancer. A dual-modal multispectral and laser speckle imaging system was used for oxygen and perfusion imaging of the tissue-simulating phantoms. The light-cured 3D printing technique and the soft lithography process may enable freeform fabrication of skin-simulating phantoms that embed microvessels for image and drug delivery applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweatt, W.C.; Stulen, R.H.
The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of thesemore » individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides. 12 figs.« less
Solving the shrinkage-induced PDMS alignment registration issue in multilayer soft lithography
NASA Astrophysics Data System (ADS)
Moraes, Christopher; Sun, Yu; Simmons, Craig A.
2009-06-01
Shrinkage of polydimethylsiloxane (PDMS) complicates alignment registration between layers during multilayer soft lithography fabrication. This often hinders the development of large-scale microfabricated arrayed devices. Here we report a rapid method to construct large-area, multilayered devices with stringent alignment requirements. This technique, which exploits a previously unrecognized aspect of sandwich mold fabrication, improves device yield, enables highly accurate alignment over large areas of multilayered devices and does not require strict regulation of fabrication conditions or extensive calibration processes. To demonstrate this technique, a microfabricated Braille display was developed and characterized. High device yield and accurate alignment within 15 µm were achieved over three layers for an array of 108 Braille units spread over a 6.5 cm2 area, demonstrating the fabrication of well-aligned devices with greater ease and efficiency than previously possible.
NASA Astrophysics Data System (ADS)
Burtsev, Vasilii; Marchuk, Valentina; Kugaevskiy, Artem; Guselnikova, Olga; Elashnikov, Roman; Miliutina, Elena; Postnikov, Pavel; Svorcik, Vaclav; Lyutakov, Oleksiy
2018-03-01
Nano-spheres lithography is actually considered as a powerful tool to manufacture various periodic structures with a wide potential in the field of nano- and micro-fabrication. However, during self-assembling of colloid microspheres, various defects and mismatches can appear. In this work the size and quality of single-domains of closed-packed polystyrene (PS), grown up on thin Au layers modified by hydrophilic or hydrophobic functional groups via diazonium chemistry was studied. The effects of the surface modification on the quality and single-domain size of polystyrene (PS) microspheres array were investigated and discussed. Modified surfaces were characterized using the AFM and wettability tests. PS colloidal suspension was deposited using the drop evaporation method. Resulted PS microspheres array was characterized using the SEM, AFM and confocal microscopy technique.
Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li, E-mail: lil@cust.edu.cn, E-mail: wangz@cust.edu.cn, E-mail: kq-peng@bnu.edu.cn; Zhang, Ziang; Yu, Miao
2015-09-28
Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arraysmore » with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ{sub 0} = 1064 nm. The minimal feature size is only several nanometers (sub λ{sub 0}/100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser.« less
Juluri, Bala Krishna; Chaturvedi, Neetu; Hao, Qingzhen; Lu, Mengqian; Velegol, Darrell; Jensen, Lasse; Huang, Tony Jun
2014-01-01
Localization of large electric fields in plasmonic nanostructures enables various processes such as single molecule detection, higher harmonic light generation, and control of molecular fluorescence and absorption. High-throughput, simple nanofabrication techniques are essential for implementing plasmonic nanostructures with large electric fields for practical applications. In this article we demonstrate a scalable, rapid, and inexpensive fabrication method based on the salting-out quenching technique and colloidal lithography for the fabrication of two types of nanostructures with large electric field: nanodisk dimers and cusp nanostructures. Our technique relies on fabricating polystyrene doublets from single beads by controlled aggregation and later using them as soft masks to fabricate metal nanodisk dimers and nanocusp structures. Both of these structures have a well-defined geometry for the localization of large electric fields comparable to structures fabricated by conventional nanofabrication techniques. We also show that various parameters in the fabrication process can be adjusted to tune the geometry of the final structures and control their plasmonic properties. With advantages in throughput, cost, and geometric tunability, our fabrication method can be valuable in many applications that require plasmonic nanostructures with large electric fields. PMID:21692473
A facile and low-cost micro fabrication material: flash foam.
He, Yong; Xiao, Xiao; Wu, Yan; Fu, Jian-zhong
2015-08-28
Although many microfabrication methods have been reported, the preliminary replication templates used in most microfabrication still depend on the expensive and long-period photolithography. This paper explores an alternative replication templates based on a daily used material, flash foam (FF), and proposes a facile microfabrication method, flash foam stamp lithography (FFSL). When FF is exposed with a desired pattern mask, the negative of the pattern is transferred to its surface and micro structures are formed due to the shrinkage of the exposed area. As FF is commonly used in personal stamps, FFSL is very simple and cost-effective. In this paper, we demonstrated that FF is a good and low-cost template for many micro fabrication methods, such as micro casting and soft lithography. Thus, designing and fabricating micro structures at personal office immediately become possible with FFSL. Furthermore, we demonstrated that multi-scale micro structures can be easily fabricated by double exposure with FFSL. Skin textures is used as another case to demonstrate that FFSL can fabricate structures with different depth in a single exposure. As a result, FF shows a promising future in biology, and analytical chemistry, such as rapid fabrication of point of care diagnostics and microfluidic analytical devices with low cost.
Modular microfluidic systems using reversibly attached PDMS fluid control modules
NASA Astrophysics Data System (ADS)
Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin
2013-05-01
The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.
Computer simulation of reconstructed image for computer-generated holograms
NASA Astrophysics Data System (ADS)
Yasuda, Tomoki; Kitamura, Mitsuru; Watanabe, Masachika; Tsumuta, Masato; Yamaguchi, Takeshi; Yoshikawa, Hiroshi
2009-02-01
This report presents the results of computer simulation images for image-type Computer-Generated Holograms (CGHs) observable under white light fabricated with an electron beam lithography system. The simulated image is obtained by calculating wavelength and intensity of diffracted light traveling toward the viewing point from the CGH. Wavelength and intensity of the diffracted light are calculated using FFT image generated from interference fringe data. Parallax image of CGH corresponding to the viewing point can be easily obtained using this simulation method. Simulated image from interference fringe data was compared with reconstructed image of real CGH with an Electron Beam (EB) lithography system. According to the result, the simulated image resembled the reconstructed image of the CGH closely in shape, parallax, coloring and shade. And, in accordance with the shape of the light sources the simulated images which were changed in chroma saturation and blur by using two kinds of simulations: the several light sources method and smoothing method. In addition, as the applications of the CGH, full-color CGH and CGH with multiple images were simulated. The result was that the simulated images of those CGHs closely resembled the reconstructed image of real CGHs.
NASA Astrophysics Data System (ADS)
Ichimura, Koji; Hikichi, Ryugo; Harada, Saburo; Kanno, Koichi; Kurihara, Masaaki; Hayashi, Naoya
2017-04-01
Nanoimprint lithography, NIL, is gathering much attention as one of the most potential candidates for the next generation lithography for semiconductor. This technology needs no pattern data modification for exposure, simpler exposure system, and single step patterning process without any coat/develop truck, and has potential of cost effective patterning rather than very complex optical lithography and/or EUV lithography. NIL working templates are made by the replication of the EB written high quality master templates. Fabrication of high resolution master templates is one of the most important issues. Since NIL is 1:1 pattern transfer process, master templates have 4 times higher resolution compared with photomasks. Another key is to maintain the quality of the master templates in replication process. NIL process is applied for the template replication and this imprint process determines most of the performance of the replicated templates. Expectations to the NIL are not only high resolution line and spaces but also the contact hole layer application. Conventional ArF-i lithography has a certain limit in size and pitch for contact hole fabrication. On the other hand, NIL has good pattern fidelity for contact hole fabrication at smaller sizes and pitches compared with conventional optical lithography. Regarding the tone of the templates for contact hole, there are the possibilities of both tone, the hole template and the pillar template, depending on the processes of the wafer side. We have succeeded to fabricate both types of templates at 2xnm in size. In this presentation, we will be discussing fabrication or our replica template for the contact hole layer application. Both tone of the template fabrication will be presented as well as the performance of the replica templates. We will also discuss the resolution improvement of the hole master templates by using various e-beam exposure technologies.
Nanosphere lithography applied to magnetic thin films
NASA Astrophysics Data System (ADS)
Gleason, Russell
Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.
Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas
Hobbs, Richard G.; Putnam, William P.; Fallahi, Arya; ...
2017-09-19
Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light–matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. Here, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses. We observe exposure of the electron-beam resists (both PMMA and HSQ) in regions on the surface of nanoantennas where the local field is significantly enhanced. Exposuremore » in these regions is consistent with previously reported optical-field-controlled electron emission from plasmonic hotspots as well as earlier work on low-electron-energy scanning probe lithography. For HSQ, in addition to exposure in hotspots, we observe resist exposure at the centers of rod-shaped nanoantennas in addition to exposure in plasmonic hotspots. Optical field enhancement is minimized at the center of nanorods suggesting that exposure in these regions involves a different mechanism to that in plasmonic hotspots. Our simulations suggest that exposure at the center of nanorods results from the emission of hot electrons produced via plasmon decay in the nanorods. Our results provide a means to map both optical-field-controlled electron emission and hot-electron transfer from nanoparticles via chemical transformations produced locally in lithographic materials.« less
Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, Richard G.; Putnam, William P.; Fallahi, Arya
Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light–matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. Here, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses. We observe exposure of the electron-beam resists (both PMMA and HSQ) in regions on the surface of nanoantennas where the local field is significantly enhanced. Exposuremore » in these regions is consistent with previously reported optical-field-controlled electron emission from plasmonic hotspots as well as earlier work on low-electron-energy scanning probe lithography. For HSQ, in addition to exposure in hotspots, we observe resist exposure at the centers of rod-shaped nanoantennas in addition to exposure in plasmonic hotspots. Optical field enhancement is minimized at the center of nanorods suggesting that exposure in these regions involves a different mechanism to that in plasmonic hotspots. Our simulations suggest that exposure at the center of nanorods results from the emission of hot electrons produced via plasmon decay in the nanorods. Our results provide a means to map both optical-field-controlled electron emission and hot-electron transfer from nanoparticles via chemical transformations produced locally in lithographic materials.« less
1.55 µm emission from a single III-nitride top-down and site-controlled nanowire quantum disk
NASA Astrophysics Data System (ADS)
Chen, Qiming; Yan, Changling; Qu, Yi
2017-07-01
InN/InGaN single quantum well (SQW) was fabricated on 100 nm GaN buffer layer which was deposited on GaN template by plasma assisted molecular beam epitaxy (PA-MBE). The In composition and the surface morphology were measured by x-ray diffusion (XRD) and atom force microscope (AFM), respectively. Afterwards, the sample was fabricated into site-controlled nanowires arrays by hot-embossing nano-imprint lithography (HE-NIL) and ultraviolet nanoimprint lithography (UV-NIL). The nanowires were uniform along the c-axis and aligned periodically as presented by scanning electron microscope (SEM). The single nanowire showed disk-in-a-wire structure by high angle annular dark field (HAADF) and an In-rich or Ga deficient region was observed by energy dispersive x-ray spectrum (EDXS). The optical properties of the SQW film and single nanowire were measured using micro photoluminescence (µ-PL) spectroscopy. The stimulating light wavelength was 632.8 nm which was emitted from a He-Ne laser and the detector was a liquid nitrogen cooled InGaAs detector. A blue peak shift from the film material to the nanowire was observed. This was due to the quantum confinement Stark Effect. More importantly, the 1.55 µm emission was given from the single disk-in-a-wire structure at room temperature. We believe the arrays of such nanowires may be useful for quantum communication in the future.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... Semiconductor Products Made by Advanced Lithography Techniques and Products Containing Same; Notice of... Mexico) (``STC''), alleging a violation of section 337 in the importation, sale for [[Page 81644
EUV lithography using water-developable resist material derived from biomass
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Oshima, Akihiro; Oyama, Tomoko G.; Ichikawa, Takumi; Sekiguchi, Atsushi; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2013-03-01
A water-developable resist material which had specific desired properties such as high sensitivity of 5.0 μC/cm2, thermal stability of 160 °C, suitable calculated linear absorption coefficients of 13.5 nm, and acceptable CF4 etch selectivity was proposed using EB lithography for EUV lithography. A water developable resist material derived from biomass is expected for non-petroleum resources, environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of trimethylphenylammonium hydroxide. 100 nm line and 400 nm space patterning images with exposure dose of 5.0 μC/cm2 were provided by specific process conditions of EB lithography. The developed trehalose derivatives with hydroxyl groups and EB sensitive groups in the water-developable resist material derived from biomass were applicable to future development of high-sensitive and resolution negative type of water-developable resist material as a novel chemical design.
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2015-03-01
We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.
NASA Astrophysics Data System (ADS)
Williams, Henry E.; Diaz, Carlos; Padilla, Gabriel; Hernandez, Florencio E.; Kuebler, Stephen M.
2017-06-01
Multiphoton lithography (MPL), Z-scan spectroscopy, and quantum chemical calculations were employed to investigate the order of multiphoton excitation that occurs when femtosecond laser pulses are used to excite two sulfonium photo-acid generators (PAGs) commonly used in photoresists based on the cross-linkable epoxide SU-8. The mole-fractions of the mono- and bis-sulfonium forms of these PAGs were determined for the commercially available photoresist SU-8 2075 and for the PAGs alone from a separate source. Both were found to contain similar fractions of the mono- and bis-forms, with the mono form present in the majority. Reichert's method was used to determine the solvatochromic strength of the SU-8 matrix, so that results obtained for the PAGs in SU-8 and in solution could be reliably compared. The PAGs were found to exhibit a minimal solvatochromic shift for a series of solvents that span across the solvatochromic strength of SU-8 itself. Sub-micron-sized features were fabricated in SU-8 2075 by MPL using amplified and continuous-wave mode-locked laser pulses. Analysis of the features as a function of average laser power, scan speed, and excitation wavelength shows that the PAGs can be activated by both two- and three-photon absorption (2PA and 3PA). Which activation mode dominates depends principally upon the excitation wavelength because the average laser powers that can be used with the photoresist are limited by practical considerations. The power must be high enough to effect sufficient cross-linking, yet not so high as to exceed the damage threshold of the material. When the laser pulses have a duration on the order of 100 fs, 3PA dominates at wavelengths near 800 nm, whereas 2PA becomes dominant at wavelengths below 700 nm. These findings are corroborated by open-aperture Z-scan measurements and quantum chemical calculations of the cross-sections for 2PA and 3PA as a function of wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiuguo; Ma, Zhichao; Xu, Zhimou
Mueller matrix ellipsometry (MME) is applied to detect foot-like asymmetry encountered in nanoimprint lithography (NIL) processes. We present both theoretical and experimental results which show that MME has good sensitivity to both the magnitude and direction of asymmetric profiles. The physics behind the use of MME for asymmetry detection is the breaking of electromagnetic reciprocity theorem for the zeroth-order diffraction of asymmetric gratings. We demonstrate that accurate characterization of asymmetric nanoimprinted gratings can be achieved by performing MME measurements in a conical mounting with the plane of incidence parallel to grating lines and meanwhile incorporating depolarization effects into the opticalmore » model. The comparison of MME-extracted asymmetric profile with the measurement by cross-sectional scanning electron microscopy also reveals the strong potential of this technique for in-line monitoring NIL processes, where symmetric structures are desired.« less
Characterization of superconducting nanowire single-photon detector with artificial constrictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ling; Liu, Dengkuan; Wu, Junjie
2014-06-15
Statistical studies on the performance of different superconducting nanowire single-photon detectors (SNSPDs) on one chip suggested that random constrictions existed in the nanowire that were barely registered by scanning electron microscopy. With the aid of advanced e-beam lithography, artificial geometric constrictions were fabricated on SNSPDs as well as single nanowires. In this way, we studied the influence of artificial constrictions on SNSPDs in a straight forward manner. By introducing artificial constrictions with different wire widths in single nanowires, we concluded that the dark counts of SNSPDs originate from a single constriction. Further introducing artificial constrictions in SNSPDs, we studied themore » relationship between detection efficiency and kinetic inductance and the bias current, confirming the hypothesis that constrictions exist in SNSPDs.« less